WorldWideScience

Sample records for chromatin structures related

  1. Chromatin Structure and Function

    CERN Document Server

    Wolffe, Alan P

    1999-01-01

    The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active

  2. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  3. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  4. Computational strategies to address chromatin structure problems.

    Science.gov (United States)

    Perišić, Ognjen; Schlick, Tamar

    2016-01-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin's dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber's structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure. PMID:27345617

  5. Computational strategies to address chromatin structure problems

    Science.gov (United States)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  6. Effects of aluminum and other cations on the structure of brain and liver chromatin.

    Science.gov (United States)

    Walker, P R; LeBlanc, J; Sikorska, M

    1989-05-01

    The reactivity of aluminum and several other divalent and trivalent metallic cations toward chromatin from rat brain and liver has been investigated. Two criteria are used to determine the relative reactivity of these cations toward chromatin. The first involves the ability of the ions to compact the chromatin fibers to the point where chromatin precipitates. The second criterion measures the ability of cations to interfere with the accessibility of exogenous structural probes (nucleases) to chromatin. Of the divalent cations tested, nickel, cobalt, zinc, cadmium, and mercury were the most reactive toward chromatin, on the basis of their ability to induce precipitation of chromatin in the micromolar concentration range. The divalent cations magnesium, calcium, copper, strontium, and barium were much less effective, although all cations precipitate chromatin if their concentration is increased. Of the trivalent cations tested, aluminum, indium, and gallium were very effective precipitants, whereas iron and scandium were without effect at the concentrations tested. Of all the cations tested, aluminum was the most reactive. Aluminum's ability to alter the structure of chromatin was investigated further by testing its ability to interfere with nuclease accessibility. This test confirmed that aluminum does induce considerable changes in chromatin structure at micromolar concentrations. Furthermore, chromatin from cortical areas of the brain was much more sensitive to aluminum than chromatin from liver. These results are discussed in light of the known toxicity of these cations, with particular emphasis on the possible role of aluminum in Alzheimer's disease. PMID:2752000

  7. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  8. Biphasic Chromatin Structure and FISH Signals Reflect Intranuclear Order

    Directory of Open Access Journals (Sweden)

    Jyoti P. Chaudhuri

    2005-01-01

    Full Text Available Background and Aim: One of the two parental allelic genes may selectively be expressed, regulated by imprinting, X-inactivation or by other less known mechanisms. This study aims to reflect on such genetic mechanisms. Materials and Methods: Slides from short term cultures or direct smears of blood, bone marrow and amniotic fluids were hybridized with FISH probes singly, combined or sequentially. Two to three hundred cells were examined from each preparation. Results and Aignificance: A small number of cells (up to about 5%, more frequent in leukemia cases, showed the twin features: (1 nuclei with biphasic chromatin, one part decondensed and the other condensed; and (2 homologous FISH signals distributed equitably in those two regions. The biphasic chromatin structure with equitable distribution of the homologous FISH signals may correspond to the two sets of chromosomes, supporting observations on ploidywise intranuclear order. The decondensed chromatin may relate to enhanced transcriptions or advanced replications. Conclusions: Transcriptions of only one of the two parental genomes cause allelic exclusion. Genomes may switch with alternating monoallelic expression of biallelic genes as an efficient genetic mechanism. If genomes fail to switch, allelic exclusion may lead to malignancy. Similarly, a genome-wide monoallelic replication may tilt the balance of heterozygosity resulting in aneusomy, initiating early events in malignant transformation and in predicting cancer mortality.

  9. Sperm chromatin structure and male fertility: biological and clinical aspects

    Institute of Scientific and Technical Information of China (English)

    J. Erenpreiss; M. Spano; J. Erenpreisa; M. Bungum; A. Giwercman

    2006-01-01

    Aim: Sperm chromatin/DNA integrity is essential for the accurate transmission of paternal genetic information, and normal sperm chromatin structure is important for sperm fertilizing ability. The routine examination of semen, which includes sperm concentration, motility and morphology, does not identify defects in sperm chromatin structure. The origin of sperm DNA damage and a variety of methods for its assessment are described. Evaluation of sperm DNA damage appears to be a useful tool for assessing male fertility potential both in vivo and in vitro. The possible impact of sperm DNA defects on the offspring is also discussed.

  10. Impact of chromatin structure on PR signaling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Hager, Gordon L

    2012-01-01

    but also to the glucocorticoid receptor (GR), as these receptors share many similarities regarding interaction with, and remodeling of, chromatin. Both receptors can bind nucleosomal DNA and have accordingly been described as pioneering factors. However recent genomic approaches (ChIP-seq and DHS-seq) show...

  11. Neutron scattering studies on chromatin higher-order structure

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  12. Control of chromatin structure by long noncoding RNA

    Science.gov (United States)

    Böhmdorfer, Gudrun; Wierzbicki, Andrzej T.

    2015-01-01

    Long noncoding RNA (lncRNA) is a pivotal factor regulating various aspects of genome activity. Genome regulation via DNA methylation and posttranslational histone modifications is a well-documented function of lncRNA in plants, fungi, and animals. Here, we summarize evidence showing that lncRNA also controls chromatin structure including nucleosome positioning and chromosome looping. We focus on data from plant experimental systems, discussed in the context of other eukaryotes. We explain the mechanisms of lncRNA-controlled chromatin remodeling and the implications of the functional interplay between noncoding transcription and several different chromatin remodelers. We propose that the unique properties of RNA make it suitable for controlling chromatin modifications and structure. PMID:26410408

  13. Chromatin structure modulates DNA repair by photolyase in vivo.

    OpenAIRE

    Suter, B.; Livingstone-Zatchej, M; Thoma, F

    1997-01-01

    Yeast and many other organisms use nucleotide excision repair (NER) and photolyase in the presence of light (photoreactivation) to repair cyclobutane pyrimidine dimers (CPDs), a major class of DNA lesions generated by UV light. To study the role of photoreactivation at the chromatin level in vivo, we used yeast strains which contained minichromosomes (YRpTRURAP, YRpCS1) with well-characterized chromatin structures. The strains were either proficient (RAD1) or deficient (rad1 delta) in NER. In...

  14. Age-related reduction of chromatin fractal dimension in toluidine blue - stained hepatocytes.

    Science.gov (United States)

    Pantic, Igor; Petrovic, Danica; Paunovic, Jovana; Vucevic, Danijela; Radosavljevic, Tatjana; Pantic, Senka

    2016-07-01

    In this study, we proposed a hypothesis that chromatin of mouse hepatocytes exhibits age-related reduction of fractal dimension. This hypothesis was based on previously published works demonstrating that complexity of biological systems such as tissues, decreases during the process of physiological aging. Liver tissue was obtained from 24 male mice divided into 3 age groups: 10-days-old (young, juvenile), 210-days-old (adult) and 390-days-old. The tissue was stained using a modification of toluidine blue (nucleic acid - specific) staining method. A total of 480 chromatin structures (20 for each animal) were analyzed. For each structure, the values of fractal dimension, lacunarity, textural angular second moment and inverse difference moment were calculated using ImageJ software and its plugins. The results indicated the age-related reduction in fractal dimension and increase in lacunarity (p<0.01). Fractal dimension is a potentially good indicator of age associated changes in chromatin structure. To our knowledge, this is the first study to show that fractal complexity of hepatocyte chromatin decreases during the process of physiological aging. Fractal analysis as a method could be useful in detection of small age-related changes in chromatin distribution not otherwise visible with naked eye on conventional tissue micrographs. PMID:27412950

  15. Chromatin structure near transcriptionally active genes

    International Nuclear Information System (INIS)

    Hypersensitive domains are the most prominent features of transcriptionally active chromatin. In the case of the β/sup A/-globin gene, it seems likely that two or more protein factors are capable of binding to the DNA so tightly that the nucleosome is prevented from binding. We have shown that nucleosomes, once bound in the assembly process in vitro, cannot be displaced. The interaction of the 5S gene transcription factor TFIIIA with its target DNA also is blocked by histones, and it has been suggested that the activation of the gene must occur during replication, before histones are reassembled on the DNA. We suppose that a similar mechanism may govern the binding of the hypersensitivity factors. It should be noted that nucleosomes are excluded not only from the sites to which the factors bind, but also from the regions between the two domains and at either side. 12 refs., 6 figs

  16. Organization of higher-level chromatin structures (chromomere, chromonema and chromatin block) examined using visible light-induced chromatin photo-stabilization.

    Science.gov (United States)

    Sheval, E V; Prusov, A N; Kireev, I I; Fais, D; Polyakov, V Yu

    2002-01-01

    The method of chromatin photo-stabilization by the action of visible light in the presence of ethidium bromide was used for investigation of higher-level chromatin structures in isolated nuclei. As a model we used rat hepatocyte nuclei isolated in buffers which stabilized or destabilized nuclear matrix. Several higher-level chromatin structures were visualized: 100nm globules-chromomeres, chains of chromomeres-chromonemata, aggregates of chromomeres-blocks of condensed chromatin. All these structures were completely destroyed by 2M NaCl extraction independent of the matrix state, and DNA was extruded from the residual nuclei (nuclear matrices) into a halo. These results show that nuclear matrix proteins do not play the main role in the maintenance of higher-level chromatin structures. Preliminary irradiation led to the reduction of the halo width in the dose-dependent manner. In regions of condensed chromatin of irradiated nucleoids there were discrete complexes consisting of DNA fibers radiating from an electron-dense core and resembling the decondensed chromomeres or the rosette-like structures. As shown by the analysis of proteins bound to irradiated nuclei upon high-salt extraction, irradiation presumably stabilized the non-histone proteins. These results suggest that in interphase nuclei loop domains are folded into discrete higher-level chromatin complexes (chromomeres). These complexes are possibly maintained by putative non-histone proteins, which are extracted with high-salt buffers from non-irradiated nuclei. PMID:12127937

  17. Chromatin Structure in Cell Differentiation, Aging and Cancer

    NARCIS (Netherlands)

    S. Kheradmand Kia (Sima)

    2009-01-01

    textabstractChromatin is the structure that the eukaryotic genome is packaged into, allowing over a metre of DNA to fit into the small volume of the nucleus. It is composed of DNA and proteins, most of which are histones. This DNA-protein complex is the template for a number of essential cell proces

  18. Regulation of chromatin structure by poly(ADP-ribosylation

    Directory of Open Access Journals (Sweden)

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  19. Light scattering measurements supporting helical structures for chromatin in solution.

    Science.gov (United States)

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model. PMID:662693

  20. Repression and activation by multiprotein complexes that alter chromatin structure.

    Science.gov (United States)

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  1. Evaluation of sperm chromatin structure in boar semen

    Directory of Open Access Journals (Sweden)

    Banaszewska Dorota

    2015-06-01

    Full Text Available This study was an attempt to evaluate sperm chromatin structure in the semen of insemination boars. Preparations of semen were stained with acridine orange, aniline blue, and chromomycin A3. Abnormal protamination occurred more frequently in young individuals whose sexual development was not yet complete, but may also be an individual trait. This possibility is important to factor into the decision regarding further exploitation of insemination boars. Thus a precise assessment of abnormalities in the protamination process would seem to be expedient as a tool supplementing morphological and molecular evaluation of semen. Disruptions in nucleoprotein structure can be treated as indicators of the biological value of sperm cells.

  2. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells.

    Science.gov (United States)

    Luciano, Alberto M; Franciosi, Federica; Dieci, Cecilia; Lodde, Valentina

    2014-09-01

    The mammalian oocyte nucleus or germinal vesicle (GV) exhibits characteristic chromatin configurations, which are subject to dynamic modifications through oogenesis. Aim of this review is to highlight how changes in chromatin configurations are related to both functional and structural modifications occurring in the oocyte nuclear and cytoplasmic compartments. During the long phase of meiotic arrest at the diplotene stage, the chromatin enclosed within the GV is subjected to several levels of regulation. Morphologically, the chromosomes lose their individuality and form a loose chromatin mass. The decondensed configuration of chromatin then undergoes profound rearrangements during the final stages of oocyte growth that are tightly associated with the acquisition of meiotic and developmental competence. Functionally, the discrete stages of chromatin condensation are characterized by different level of transcriptional activity, DNA methylation and covalent histone modifications. Interestingly, the program of chromatin rearrangement is not completely intrinsic to the oocyte, but follicular cells exert their regulatory actions through gap junction mediated communications and intracellular messenger dependent mechanism(s). With this in mind and since oocyte growth mostly relies on the bidirectional interaction with the follicular cells, a connection between cumulus cells gene expression profile and oocyte developmental competence, according to chromatin configuration is proposed. This analysis can help in identifying candidate genes involved in the process of oocyte developmental competence acquisition and in providing non-invasive biomarkers of oocyte health status that can have important implications in treating human infertility as well as managing breeding schemes in domestic mammals.

  3. The Sperm Chromatin Structure Assay (SCSA(®)) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility.

    Science.gov (United States)

    Evenson, Donald P

    2016-06-01

    Thirty-five years ago the pioneering paper in Science (240:1131) on the relationship between sperm DNA integrity and pregnancy outcome was featured as the cover issue showing a fluorescence photomicrograph of red and green stained sperm. The flow cytometry data showed a very significant difference in sperm DNA integrity between fertile and subfertile bulls and men. This study utilized heat (100°C, 5min) to denature DNA at sites of DNA strand breaks followed by staining with acridine orange (AO) and measurements of 5000 individual sperm of green double strand (ds) DNA and red single strand (ss) DNA fluorescence. Later, the heat protocol was changed to a low pH protocol to denature the DNA at sites of strand breaks; the heat and acid procedures produced the same results. SCSA data are very advantageously dual parameter with 1024 channels (degrees) of both red and green fluorescence. Hundreds of publications on the use of the SCSA test in animals and humans have validated the SCSA as a highly useful test for determining male breeding soundness. The SCSA test is a rapid, non-biased flow cytometer machine measurement providing robust statistical data with exceptional precision and repeatability. Many genotoxic experiments showed excellent dose response data with very low coefficient of variation that further validated the SCSA as being a highly powerful assay for sperm DNA integrity. Twelve years following the introduction of the SCSA test, the terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labelling (TUNEL) test (1993) for sperm was introduced as the only other flow cytometric assay for sperm DNA fragmentation. However, the TUNEL test can also be done by light microscopy with much less statistical robustness. The COMET (1998) and Sperm Chromatin Dispersion (SCD; HALO) (2003) tests were introduced as light microscope tests that don't require a flow cytometer. Since these tests measure only 50-200 sperm per sample, they suffer from the lack of

  4. RNA is an integral component of chromatin that contributes to its structural organization.

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez-Campos

    Full Text Available Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%-5% of total chromatin-associated nucleic acids, are polyA(- and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with alpha-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.

  5. Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy.

    NARCIS (Netherlands)

    Terry, S.Y.A.; Vallis, K.A.

    2012-01-01

    PURPOSE: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. METHODS AND MATERIALS: Chromatin structure was alte

  6. The shades of gray of the chromatin fiber: recent literature provides new insights into the structure of chromatin.

    Science.gov (United States)

    Ausió, Juan

    2015-01-01

    The chromatin fiber consists of a string of nucleosomes connected by linker DNA regions. The hierarchy of folding of this fiber within the cell has long been controversial, and the existence of an originally described 30 nm fiber has been debated and reviewed extensively. This review contextualizes two recent papers on this topic that suggest the 30 nm fiber to be an over-simplification. The idealized model from the first study provides good insight into the constraints and histone participation in the maintenance of the fiber structure. The second paper provides a theoretical description of a more realistic view of the highly heterogeneous and dynamic chromatin organization in the in vivo setting. It is now time to abandon the highly regular "one start" solenoidal 30 nm structure and replace it with a more realistic highly dynamic, polymorphic fiber.

  7. Polymer Physics of the Large-Scale Structure of Chromatin.

    Science.gov (United States)

    Bianco, Simona; Chiariello, Andrea Maria; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments. PMID:27659986

  8. Insights into Chromatin Structure and Dynamics in Plants

    Directory of Open Access Journals (Sweden)

    Stefanie Rosa

    2013-11-01

    Full Text Available The packaging of chromatin into the nucleus of a eukaryotic cell requires an extraordinary degree of compaction and physical organization. In recent years, it has been shown that this organization is dynamically orchestrated to regulate responses to exogenous stimuli as well as to guide complex cell-type-specific developmental programs. Gene expression is regulated by the compartmentalization of functional domains within the nucleus, by distinct nucleosome compositions accomplished via differential modifications on the histone tails and through the replacement of core histones by histone variants. In this review, we focus on these aspects of chromatin organization and discuss novel approaches such as live cell imaging and photobleaching as important tools likely to give significant insights into our understanding of the very dynamic nature of chromatin and chromatin regulatory processes. We highlight the contribution plant studies have made in this area showing the potential advantages of plants as models in understanding this fundamental aspect of biology.

  9. Higher order chromatin structure: bridging physics and biology

    OpenAIRE

    Fudenberg, Geoffrey; Mirny, Leonid A.

    2012-01-01

    Recent advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of high-order interph...

  10. Structural Fluctuations of the Chromatin Fiber within Topologically Associating Domains.

    Science.gov (United States)

    Tiana, Guido; Amitai, Assaf; Pollex, Tim; Piolot, Tristan; Holcman, David; Heard, Edith; Giorgetti, Luca

    2016-03-29

    Experiments based on chromosome conformation capture have shown that mammalian genomes are partitioned into topologically associating domains (TADs), within which the chromatin fiber preferentially interacts. TADs may provide three-dimensional scaffolds allowing genes to contact their appropriate distal regulatory DNA sequences (e.g., enhancers) and thus to be properly regulated. Understanding the cell-to-cell and temporal variability of the chromatin fiber within TADs, and what determines them, is thus of great importance to better understand transcriptional regulation. We recently described an equilibrium polymer model that can accurately predict cell-to-cell variation of chromosome conformation within single TADs, from chromosome conformation capture-based data. Here we further analyze the conformational and energetic properties of our model. We show that the chromatin fiber within TADs can easily fluctuate between several conformational states, which are hierarchically organized and are not separated by important free energy barriers, and that this is facilitated by the fact that the chromatin fiber within TADs is close to the onset of the coil-globule transition. We further show that in this dynamic state the properties of the chromatin fiber, and its contact probabilities in particular, are determined in a nontrivial manner not only by site-specific interactions between strongly interacting loci along the fiber, but also by nonlocal correlations between pairs of contacts. Finally, we use live-cell experiments to measure the dynamics of the chromatin fiber in mouse embryonic stem cells, in combination with dynamical simulations, and predict that conformational changes within one TAD are likely to occur on timescales that are much shorter than the duration of one cell cycle. This suggests that genes and their regulatory elements may come together and disassociate several times during a cell cycle. These results have important implications for transcriptional

  11. Structural plasticity of single chromatin fibers revealed by torsional manipulation

    CERN Document Server

    Bancaud, Aurelien; Barbi, Maria; Wagner, Gaudeline; Allemand, Jean-Francois; Mozziconacci, Julien; Lavelle, Christophe; Croquette, Vincent; Victor, Jean-Marc; Prunell, Ariel; Viovy, Jean-Louis

    2006-01-01

    Magnetic tweezers are used to study the mechanical response under torsion of single nucleosome arrays reconstituted on tandem repeats of 5S positioning sequences. Regular arrays are extremely resilient and can reversibly accommodate a large amount of supercoiling without much change in length. This behavior is quantitatively described by a molecular model of the chromatin 3-D architecture. In this model, we assume the existence of a dynamic equilibrium between three conformations of the nucleosome, which are determined by the crossing status of the entry/exit DNAs (positive, null or negative). Torsional strain, in displacing that equilibrium, extensively reorganizes the fiber architecture. The model explains a number of long-standing topological questions regarding DNA in chromatin, and may provide the ground to better understand the dynamic binding of most chromatin-associated proteins.

  12. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers

    International Nuclear Information System (INIS)

    Our objective was to evaluate alterations in sperm chromatin structure in men occupationally exposed to a mixture of organophosphorus pesticides (OP) because these alterations have been proposed to compromise male fertility and offspring development. Chromatin susceptibility to in situ acid-induced denaturation structure was assessed by the sperm chromatin structure assay (SCSA). Urinary levels of alkylphosphates (DAP) were used to assess exposure. Diethylthiophosphate (DETP) was the most frequent OP metabolite found in urine samples indicating that compounds derived from thiophosphoric acid were mainly used. Chromatin structure was altered in most samples. About 75% of semen samples were classified as having poor fertility potential (>30% of Percentage of DNA Fragmentation Index [DFI%]), whereas individuals without OP occupational exposure showed average DFI% values of 9.9%. Most parameters of conventional semen analysis were within normality except for the presence of immature cells (IGC) in which 82% of the samples were above reference values. There were significant direct associations between urinary DETP concentrations and mean DFI and SD-DFI but marginally (P = 0.079) with DFI%, after adjustment for potential confounders, including IGC. This suggests that OP exposure alters sperm chromatin condensation, which could be reflected in an increased number of cells with greater susceptibility to DNA denaturation. This study showed that human sperm chromatin is a sensitive target to OP exposure and may contribute to adverse reproductive outcomes. Further studies on the relevance of protein phosphorylation as a possible mechanism by which OP alter sperm chromatin are required

  13. Structure of chromatin, protein transitions, and post-translational histone modifications in several sperm models

    OpenAIRE

    Kurtz, Katryn Lucille

    2008-01-01

    [eng] The study of chromatin structure in several simple sperm models of increasing complexity was performed. Species demonstrating different types of sperm nuclear protein transitions and structural changes in spermatic chromatin during spermiogenesis were selected as models for comparison: "H" (non-histone proteins are removed), "H->P" (protamine displaces histones), and "H->Pp->P" (precursor protamine displaces histones, and subsequently is converted into the mature protamine). This study ...

  14. Data on force-dependent structural changes of chromatin fibers measured with magnetic tweezers

    Directory of Open Access Journals (Sweden)

    Fan-Tso Chien

    2014-12-01

    Full Text Available The compaction of chromatin fibers regulates the accessibility of embedded DNA, highly associated with transcriptional activities [1]. Single molecule force spectroscopy has revealed the great details of the structural changes of chromatin fibers in the presence of external exerted force [2–7]. However, most of the studies focus on a specific force regime [2,3,8,9]. The data here show force-extension (FE traces of chromatin fibers as measured with magnetic tweezers, covering the force regime from 0 pN to 27 pN. Those traces provide information for further studies at varied force regimes.

  15. Chromatin remodeling and stem cell theory of relativity.

    Science.gov (United States)

    Cerny, Jan; Quesenberry, Peter J

    2004-10-01

    The field of stem cell biology is currently being redefined. Stem cell (hematopoietic and non-hematopoietic) differentiation has been considered hierarchical in nature, but recent data suggest that there is no progenitor/stem cell hierarchy, but rather a reversible continuum. The stem cell (hematopoietic and non-hematopoietic) phenotype, the total differentiation capacity (hematopoietic and non-hematopoietic), gene expression as well as other stem cell functional characteristics (homing, receptor and adhesion molecule expression) vary throughout a cell-cycle transit widely. This seems to be dependent on shifting chromatin and gene expression with cell-cycle transit. The published data on DNA methylation, histone acetylation, and also RNAi, the major regulators of gene expression, conjoins very well and provides an explanation for the major issues of stem cell biology. Those features of stem cells mentioned above can be rather difficult to apprehend when a classical hierarchy biology view is applied, but they become clear and easier to understand once they are correlated with the underlining epigenetic changes. We are entering a new era of stem cell biology the era of "chromatinomics." We are one step closer to the practical use of cellular therapy for degenerative diseases.

  16. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo.

    Directory of Open Access Journals (Sweden)

    Davide F V Corona

    2007-09-01

    Full Text Available Imitation SWI (ISWI and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of ISWI in vivo, we examined defects in chromosome structure and gene expression resulting from the loss of Iswi function in Drosophila. Consistent with a broad role in transcriptional regulation, the expression of a large number of genes is altered in Iswi mutant larvae. The expression of a dominant-negative form of ISWI leads to dramatic alterations in higher-order chromatin structure, including the apparent decondensation of both mitotic and polytene chromosomes. The loss of ISWI function does not cause obvious defects in nucleosome assembly, but results in a significant reduction in the level of histone H1 associated with chromatin in vivo. These findings suggest that ISWI plays a global role in chromatin compaction in vivo by promoting the association of the linker histone H1 with chromatin.

  17. CTCF-cohesin complex: architect of chromatin structure regulates V(D)J rearrangement

    Institute of Scientific and Technical Information of China (English)

    Ann J Feeney; Jiyoti Verma-Gaur

    2012-01-01

    The CTCF/cohesin complex regulates higher order chromatin structure by creating long-range chromatin loops and by insulating neighboring genes from each other.The lymphocyte antigen receptor loci have large numbers of CTCF/cohesin binding sites,and recent studies demonstrate that the CTCF/cohesin complex plays several important roles in regulating the process of V(D)J recombination at these megabase-sized receptor loci.

  18. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility

    Institute of Scientific and Technical Information of China (English)

    Mona Bungum; Leif Bungum; Aleksander Giwercman

    2011-01-01

    Diagnosis of male infertility has mainly been based on the World Health Organization (WHO) manual-based semen parameter's concentration,motility and morphology.It has,however,become apparent that none of these parameters are reliable markers for evaluation of the fertility potential of a couple.A search for better markers has led to an increased focus on sperm chromatin integrity testing in fertility work-up and assisted reproductive techniques.During the last couple of decades,numerous sperm DNA integrity tests have been developed.These are claimed to be characterized by a lower intraindividual variation,less intralaboratory and interlaboratory variation and thus less subjective than the conventional sperm analysis.However,not all the sperm chromatin integrity tests have yet been shown to be of clinical value.So far,the test that has been found to have the most stable clinical threshold values in relation to fertility is the sperm chromatin structure assay (SCSA),a flow cytometric test that measures the susceptibility of sperm DNA to acid-induced DNA denaturation in situ.Sperm DNA fragmentation as measured by SCSA has shown to be an independent predictor of successful pregnancy in first pregnancy planners as well as in couples undergoing intrauterine insemination,and can be used as a tool in investigation,counseling and treatment of involuntary childlessness.More conflicting data exist regarding the role of sperm DNA fragmentation in relation to fertilization,pre-embryo development and pregnancy outcome in in vitrofertilization and intracytoplasmic sperm injection (ICSI).

  19. Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization

    International Nuclear Information System (INIS)

    The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10-1 to 10-4 A-1 with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 μm and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure of the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm

  20. Distributed probing of chromatin structure in vivo reveals pervasive chromatin accessibility for expressed and non-expressed genes during tissue differentiation in C. elegans

    Directory of Open Access Journals (Sweden)

    Sha Ky

    2010-08-01

    Full Text Available Abstract Background Tissue differentiation is accompanied by genome-wide changes in the underlying chromatin structure and dynamics, or epigenome. By controlling when, where, and what regulatory factors have access to the underlying genomic DNA, the epigenome influences the cell's transcriptome and ultimately its function. Existing genomic methods for analyzing cell-type-specific changes in chromatin generally involve two elements: (i a source for purified cells (or nuclei of distinct types, and (ii a specific treatment that partitions or degrades chromatin by activity or structural features. For many cell types of great interest, such assays are limited by our inability to isolate the relevant cell populations in an organism or complex tissue containing an intertwined mixture of other cells. This limitation has confined available knowledge of chromatin dynamics to a narrow range of biological systems (cell types that can be sorted/separated/dissected in large numbers and tissue culture models or to amalgamations of diverse cell types (tissue chunks, whole organisms. Results Transgene-driven expression of DNA/chromatin modifying enzymes provides one opportunity to query chromatin structures in expression-defined cell subsets. In this work we combine in vivo expression of a bacterial DNA adenine methyltransferase (DAM with high throughput sequencing to sample tissue-specific chromatin accessibility on a genome-wide scale. We have applied the method (DALEC: Direct Asymmetric Ligation End Capture towards mapping a cell-type-specific view of genome accessibility as a function of differentiated state. Taking advantage of C. elegans strains expressing the DAM enzyme in diverse tissues (body wall muscle, gut, and hypodermis, our efforts yield a genome-wide dataset measuring chromatin accessibility at each of 538,000 DAM target sites in the C. elegans (diploid genome. Conclusions Validating the DALEC mapping results, we observe a strong association

  1. Salt and divalent cations affect the flexible nature of the natural beaded chromatin structure

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Griffith, J

    1977-01-01

    A natural chromatin containing simian virus 40 (SV40) DNA and histone has been used to examine changes in chromatin structure caused by various physical and chemical treatments. We find that histone H1 depleted chromatin is more compact in solutions of 0.15M NaCl or 2 mM MgCl2 than in 0.01 M Na......Cl or 0.6M NaCL, and is compact in 0.01 M NaCl solutions if histone H 1 is present. Even high concentrations of urea did not alter the fundamental beaded structure, consisting of 110A beads of 200 base pair content, each joined by thin DNA bridges of 50 base pairs. The physical bead observed by EM...... therefore contains more DNA than the 140 base pair "core particle". The natural variation in the bridge length is consistent with the broad bands observed after nuclease digestion of chromatin. Chromatin prepared for EM without fixation containing long 20A to 30A fibers possibly complexed with protein....

  2. Fourier transform infrared spectroscopic analysis of sperm chromatin structure and DNA stability.

    Science.gov (United States)

    Oldenhof, H; Schütze, S; Wolkers, W F; Sieme, H

    2016-05-01

    Sperm chromatin structure and condensation determine accessibility for damage, and hence success of fertilization and development. The aim of this study was to reveal characteristic spectral features coinciding with abnormal sperm chromatin packing (i.e., DNA-protein interactions) and decreased fertility, using Fourier transform infrared spectroscopy. Chromatin structure in spermatozoa obtained from different stallions was investigated. Furthermore, spermatozoa were exposed to oxidative stress, or treated with thiol-oxidizing and disulfide-reducing agents, to alter chromatin structure and packing. Spectroscopic studies were corroborated with flow cytometric analyses using the DNA-intercalating fluorescent dye acridine orange. Decreased fertility of individuals correlated with increased abnormal sperm morphology and decreased stability toward induced DNA damage. Treatment with the disulfide reducing agent dithiothreitol resulted in increased sperm chromatin decondensation and DNA accessibility, similar as found for less mature epididymal spermatozoa. In situ infrared spectroscopic analysis revealed that characteristic bands arising from the DNA backbone (ν1230, ν1086, ν1051 cm(-1) ) changed in response to induced oxidative damage, water removal, and decondensation. This coincided with changes in the amide-I region (intensity at ν1620 vs. ν1640 cm(-1) ) denoting concomitant changes in protein secondary structure. Reduction in protein disulfide bonds resulted in a decreased value of the asymmetric to symmetric phosphate band intensity (ν1230/ν1086 cm(-1) ), suggesting that this band ratio is sensitive for the degree of chromatin condensation. Moreover, when analyzing spermatozoa from different individuals, it was found that the asymmetric/symmetric phosphate band ratio negatively correlated with the percentage of morphologically abnormal spermatozoa. PMID:26916383

  3. Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis

    DEFF Research Database (Denmark)

    Fismen, S; Hedberg, A; Fenton, K A;

    2009-01-01

    Murine and human lupus nephritis are characterized by glomerular deposits of electron-dense structures (EDS). Dominant components of EDS are chromatin fragments and IgG antibodies. Whether glomerular EDS predispose for similar deposits in skin is unknown. We analysed (i) whether dermo...... (NZBxNZW)F1 and MRL-lpr/lpr mice and from five patients with lupus nephritis were analysed by immunofluorescence, immune electron microscopy (IEM) and co-localization TUNEL IEM. Affinity of chromatin fragments for membrane structures was determined by surface plasmon resonance. Results demonstrated (i...... were present in capillary lumina in glomeruli and skin of all nephritic individuals. Thus, chromatin-IgG complexes accounting for lupus nephritis seem to reach skin through circulation, but other undetermined factors are required for these complexes to deposit within skin membranes....

  4. Mass Spectrometry-Based Proteomics for the Analysis of Chromatin Structure and Dynamics

    Directory of Open Access Journals (Sweden)

    Monica Soldi

    2013-03-01

    Full Text Available Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs and DNA methylation, which act in a concerted manner to enforce a specific “chromatin landscape”, with a regulatory effect on gene expression. Mass Spectrometry (MS has emerged as a powerful analytical strategy to detect histone PTMs, revealing interplays between neighbouring PTMs and enabling screens for their readers in a comprehensive and quantitative fashion. Here we provide an overview of the recent achievements of state-of-the-art mass spectrometry-based proteomics for the detailed qualitative and quantitative characterization of histone post-translational modifications, histone variants, and global interactomes at specific chromatin regions. This synopsis emphasizes how the advances in high resolution MS, from “Bottom Up” to “Top Down” analysis, together with the uptake of quantitative proteomics methods by chromatin biologists, have made MS a well-established method in the epigenetics field, enabling the acquisition of original information, highly complementary to that offered by more conventional, antibody-based, assays.

  5. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence

    Directory of Open Access Journals (Sweden)

    Ryosuke eOhsawa

    2013-07-01

    Full Text Available It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships among non-coding RNA transcription, maintenance of genomic stability, chromatin structure and adult stem cell senescence. DNA damage-induced non-coding RNAs transcribed in the vicinity of the DNA break regulate recruitment of the DNA damage machinery and DNA repair efficiency. We will discuss the correlation between non-coding RNAs and DNA damage repair efficiency and the potential role of changing chromatin structures around double-strand break sites. On the other hand, induction of non-coding RNA transcription from the repetitive Alu elements occurs during human stem cell aging and hinders efficient DNA repair causing entry into senescence. We will discuss how this fine balance between transcription and genomic instability may be regulated by the dramatic changes to chromatin structure that accompany cellular senescence.

  6. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging

    OpenAIRE

    Adams, Peter D

    2007-01-01

    Cellular senescence is an important tumor suppression process, and a possible contributor to tissue aging. Senescence is accompanied extensive changes in chromatin structure. In particular, many senescent cells accumulate specialized domains of facultative heterochromatin, called Senescence Associated Heterochromatin Foci (SAHF), which are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. This article reviews ou...

  7. Hypothesis for the influence of fixatives on the chromatin patterns of interphase nuclei, based on shrinkage and retraction of nuclear and perinuclear structures.

    Science.gov (United States)

    Bignold, L P

    2002-01-01

    Nuclear chromatin patterns are used to distinguish normal and abnormal cells in histopathology and cytopathology. However, many chromatin pattern features are affected by aspects of tissue processing, especially fixation. Major effects of aldehyde and/or ethanol fixation on nuclei in the living state include shrinkage, chromatin aggregation and production of a 'chromatinic rim'. The mechanisms of these effects are poorly understood. In the past, possible mechanisms of fixation-induced morphological change have been considered only in terms of the theoretical model of the nucleus, which involves only a random tangle of partly unfolded chromosomes contained within the nuclear membrane. Such a model provides no basis for chromatin to be associated with the nuclear envelope, and hence no obvious clue to a mechanism for the formation of the 'chromatinic rim' in fixed nuclei. In recent years, two new models of nuclear structure have been described. The nuclear membrane-bound, chromosomal-domain model is based on the discoveries of chromatin-nuclear membrane attachments and of the localisation of the chromatin of each chromosome within discrete, exclusive parts of the nucleus (the 'domain' of each partly unfolded chromosome). The nuclear matrix/scaffold model is based on the discovery of relatively insoluble proteins in nuclei, which it suggests forms a 'matrix' and modulates gene expression by affecting transcription of DNA. Here, a hypothesis for fixation-associated chromatin pattern formation based mainly on the first model but partially relying on the second, is presented. The hypothesis offers explanations of the variations of appearance of nuclei according to fixation (especially air-drying versus wet-fixation with formaldehyde, glutaraldehyde or ethanol); the appearances of the nuclei of more metabolically active versus less metabolically active cells of the same type; the appearances of nuclei after fixation with osmium tetroxide; and of the marked central

  8. [Cytophotometric analysis of the chromatin structural conformity in interphase nuclei detected in UV light and by gallocyanine staining].

    Science.gov (United States)

    Zhukotskiĭ, A V; Shchegolev, A I; Butusova, N N; Nemirovskiĭ, L E; Kogan, E M

    1985-06-01

    Geometric and optical parameters of chromatin of hepatocyte nuclei have been examined before (UV, lambda = 265 nm) and after gallocyanine staining. Quantitative parameters of the chromatin structure in the same nuclei measured in situ by a scanning microscope-photometer (step size 0.125 micron) before and after staining were equal. Tinctorial properties of chromatin granules (condensed part of the nuclear material) and its diffuse part were different. It is suggested that the difference between granules and the nongranular part of chromatin is not only of optical but also of chemical nature. PMID:2410060

  9. Local chromatin structure of heterochromatin regulates repeatedDNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.

    2007-05-05

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  10. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  11. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  12. Relationship Between Chromatin Structure and Sensitivity to Molecularly Targeted Auger Electron Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Samantha Y.A. [CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford (United Kingdom); Vallis, Katherine A., E-mail: katherine.vallis@oncology.ox.ac.uk [CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford (United Kingdom)

    2012-07-15

    Purpose: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. Methods and Materials: Chromatin structure was altered in MDA-MB-468 and 231-H2N human breast cancer cells by suberoylanilide hydroxamic acid (SAHA), 5-aza-2-deoxycytidine, or hypertonic treatment. The extent and duration of chromatin structural changes were evaluated using the micrococcal nuclease assay. DNA damage ({gamma}H2AX assay) and clonogenic survival were evaluated after exposure to {sup 111}In-DTPA-hEGF, an Auger electron-emitting radiopharmaceutical, or IR. The intracellular distribution of {sup 111}In-DTPA-hEGF after chromatin modification was investigated in cell fractionation experiments. Results: Chromatin remained condensed for up to 20 minutes after NaCl and in a relaxed state 24 hours after SAHA treatment. The number of {gamma}H2AX foci per cell was greater in MDA-MB-468 and 231-H2N cells after IR (0.5 Gy) plus SAHA (1 {mu}M) compared with IR alone (16 {+-} 0.6 and 14 {+-} 0.3 vs. 12 {+-} 0.4 and 11 {+-} 0.2, respectively). More {gamma}H2AX foci were observed in MDA-MB-468 and 231-H2N cells exposed to {sup 111}In-DTPA-hEGF (6 MBq/{mu}g) plus SAHA vs. {sup 111}In-DTPA-hEGF alone (11 {+-} 0.3 and 12 {+-} 0.7 vs. 9 {+-} 0.4 and 7 {+-} 0.3, respectively). 5-aza-2-deoxycytidine enhanced the DNA damage caused by IR and {sup 111}In-DTPA-hEGF. Clonogenic survival was reduced in MDA-MB-468 and 231-H2N cells after IR (6 Gy) plus SAHA (1 {mu}M) vs. IR alone (0.6% {+-} 0.01 and 0.3% {+-} 0.2 vs. 5.8% {+-} 0.2 and 2% {+-} 0.1, respectively) and after {sup 111}In-DTPA-hEGF plus SAHA compared to {sup 111}In-DTPA-hEGF alone (21% {+-} 0.4% and 19% {+-} 4.6 vs. 33% {+-} 2.3 and 32% {+-} 3.7). SAHA did not affect {sup 111}In-DTPA-hEGF nuclear localization. Hypertonic treatment resulted in fewer {gamma}H2AX foci per cell

  13. Distinct differences in chromatin structure at subtelomeric X and Y' elements in budding yeast.

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhu

    Full Text Available In Saccharomyces cerevisiae, all ends of telomeric DNA contain telomeric repeats of (TG(1-3, but the number and position of subtelomeric X and Y' repeat elements vary. Using chromatin immunoprecipitation and genome-wide analyses, we here demonstrate that the subtelomeric X and Y' elements have distinct structural and functional properties. Y' elements are transcriptionally active and highly enriched in nucleosomes, whereas X elements are repressed and devoid of nucleosomes. In contrast to X elements, the Y' elements also lack the classical hallmarks of heterochromatin, such as high Sir3 and Rap1 occupancy as well as low levels of histone H4 lysine 16 acetylation. Our analyses suggest that the presence of X and Y' elements govern chromatin structure and transcription activity at individual chromosome ends.

  14. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure

    International Nuclear Information System (INIS)

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  15. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4.

    Directory of Open Access Journals (Sweden)

    Araceli G Castillo

    2007-07-01

    Full Text Available The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-A(Cnp1 chromatin is confined to specific sequences or whether histone H3 is actively excluded. Here, we show that fission yeast CENP-A(Cnp1 can assemble on noncentromeric DNA when it is inserted within the central kinetochore domain, suggesting that in fission yeast CENP-A(Cnp1 chromatin assembly is driven by the context of a sequence rather than the underlying DNA sequence itself. Silencing in the central domain is correlated with the amount of CENP-A(Cnp1 associated with the marker gene and is also affected by the relative level of histone H3. Our analyses indicate that kinetochore integrity is dependent on maintaining the normal ratio of H3 and H4. Excess H3 competes with CENP-A(Cnp1 for assembly into central domain chromatin, resulting in less CENP-A(Cnp1 and other kinetochore proteins at centromeres causing defective kinetochore function, which is manifest as aberrant mitotic chromosome segregation. Alterations in the levels of H3 relative to H4 and CENP-A(Cnp1 influence the extent of DNA at centromeres that is packaged in CENP-A(Cnp1 chromatin and the composition of this chromatin. Thus, CENP-A(Cnp1 chromatin assembly in fission yeast exhibits plasticity with respect to the underlying sequences and is sensitive to the levels of CENP-A(Cnp1 and other core histones.

  16. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4.

    Science.gov (United States)

    Castillo, Araceli G; Mellone, Barbara G; Partridge, Janet F; Richardson, William; Hamilton, Georgina L; Allshire, Robin C; Pidoux, Alison L

    2007-07-01

    The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-A(Cnp1) chromatin is confined to specific sequences or whether histone H3 is actively excluded. Here, we show that fission yeast CENP-A(Cnp1) can assemble on noncentromeric DNA when it is inserted within the central kinetochore domain, suggesting that in fission yeast CENP-A(Cnp1) chromatin assembly is driven by the context of a sequence rather than the underlying DNA sequence itself. Silencing in the central domain is correlated with the amount of CENP-A(Cnp1) associated with the marker gene and is also affected by the relative level of histone H3. Our analyses indicate that kinetochore integrity is dependent on maintaining the normal ratio of H3 and H4. Excess H3 competes with CENP-A(Cnp1) for assembly into central domain chromatin, resulting in less CENP-A(Cnp1) and other kinetochore proteins at centromeres causing defective kinetochore function, which is manifest as aberrant mitotic chromosome segregation. Alterations in the levels of H3 relative to H4 and CENP-A(Cnp1) influence the extent of DNA at centromeres that is packaged in CENP-A(Cnp1) chromatin and the composition of this chromatin. Thus, CENP-A(Cnp1) chromatin assembly in fission yeast exhibits plasticity with respect to the underlying sequences and is sensitive to the levels of CENP-A(Cnp1) and other core histones. PMID:17677001

  17. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 105 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G0, the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  18. RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation

    OpenAIRE

    Crane, Yan Ma; Gelvin, Stanton B

    2007-01-01

    We investigated the effect of RNAi-mediated gene silencing of 109 Arabidopsis thaliana chromatin-related genes (termed “chromatin genes” hereafter) on Agrobacterium-mediated root transformation. Each of the RNAi lines contains a single- or low-copy-number insertion of a hairpin construction that silences the endogenous copy of the target gene. We used three standard transient and stable transformation assays to screen 340 independent RNAi lines, representing 109 target genes, for the rat (res...

  19. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin.

    Directory of Open Access Journals (Sweden)

    Anderly C Chueh

    2009-01-01

    Full Text Available We have previously identified and characterized the phenomenon of ectopic human centromeres, known as neocentromeres. Human neocentromeres form epigenetically at euchromatic chromosomal sites and are structurally and functionally similar to normal human centromeres. Recent studies have indicated that neocentromere formation provides a major mechanism for centromere repositioning, karyotype evolution, and speciation. Using a marker chromosome mardel(10 containing a neocentromere formed at the normal chromosomal 10q25 region, we have previously mapped a 330-kb CENP-A-binding domain and described an increased prevalence of L1 retrotransposons in the underlying DNA sequences of the CENP-A-binding clusters. Here, we investigated the potential role of the L1 retrotransposons in the regulation of neocentromere activity. Determination of the transcriptional activity of a panel of full-length L1s (FL-L1s across a 6-Mb region spanning the 10q25 neocentromere chromatin identified one of the FL-L1 retrotransposons, designated FL-L1b and residing centrally within the CENP-A-binding clusters, to be transcriptionally active. We demonstrated the direct incorporation of the FL-L1b RNA transcripts into the CENP-A-associated chromatin. RNAi-mediated knockdown of the FL-L1b RNA transcripts led to a reduction in CENP-A binding and an impaired mitotic function of the 10q25 neocentromere. These results indicate that LINE retrotransposon RNA is a previously undescribed essential structural and functional component of the neocentromeric chromatin and that retrotransposable elements may serve as a critical epigenetic determinant in the chromatin remodelling events leading to neocentromere formation.

  20. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    Science.gov (United States)

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.

  1. Replication domains are self-interacting structural chromatin units of human chromosomes

    Science.gov (United States)

    Arneodo, Alain

    2011-03-01

    In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into

  2. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action

    International Nuclear Information System (INIS)

    According to their physical characteristics, protons and ion beams promise a revolution in cancer radiotherapy. Curing protocols however reflect rather the empirical knowledge than experimental data on DNA repair. This especially holds for the spatio-temporal organization of repair processes in the context of higher-order chromatin structure—the problematics addressed in this work. The consequences for the mechanism of chromosomal translocations are compared for gamma rays and proton beams. - Highlights: ► The majority of DSBs are repaired individually close to the sites of their origin. ► Decondensation of damaged chromatin domains can potentiate clustering of lesions. ► DSB clustering might increase the risk of chromatin translocation. ► Distances of lesions and higher-order chromatin structure influence DSB clustering. ► The conclusions seem to hold both for DSB damage caused by γ-radiation and protons

  3. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  4. Fine analysis of the chromatin structure of yeast RNA polymerase Ⅱ transcription teminators

    Institute of Scientific and Technical Information of China (English)

    HUGENGXI; YUNHUAYU; 等

    1992-01-01

    In order to study the functional structure of the transcription terminators and the mechanism of temination,a survey of the chromatin structure,including the location of DNase I hypersensitive sites and the nucleosome arrangement,of yeast ADH1 and FLP terminators was made.The results show that there is no relationship between the function of the terminators and the existence of DNase I hypersensitive sites.However,it is found that there is always a nucleosmoe at the immediate upstream of the transcriptional termination sites.As a control,the chromatin structures of the pBR322 DNA fragments on the yeast shutter vectors are also investigated at the same time.The random nucleosome arrangement on the bacterial DNA in yesast agrees with the published reports.A new hypothesis,about the mechanism of transcriptional termination is put forward and the reason of different nucleosome arrengement on the DNAs which are originally from different species in yeast is discussed.

  5. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  6. Exposure to Hycanthone alters chromatin structure around specific gene functions and specific repeats in Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    David eRoquis

    2014-07-01

    Full Text Available Schistosoma mansoni is a parasitic plathyhelminth responsible for intestinal schistosomiasis (or bilharziasis, a disease affecting 67 million people worldwide and causing an important economic burden. The schistosomicides hycanthone, and its later proxy oxamniquine, were widely used for treatments in endemic areas during the 20th century. Recently, the mechanism of action, as well as the genetic origin of a stably and Mendelian inherited resistance for both drugs was elucidated in two strains. However, several observations suggested early on that alternative mechanisms might exist, by which resistance could be induced for these two drugs in sensitive lines of schistosomes. This induced resistance appeared rapidly, within the first generation, but was metastable (not stably inherited. Epigenetic inheritance could explain such a phenomenon and we therefore re-analyzed the historical data with our current knowledge of epigenetics. In addition, we performed new experiments such as ChIP-seq on hycanthone treated worms. We found distinct chromatin structure changes between sensitive worms and induced resistant worms from the same strain. No specific pathway was discovered, but genes in which chromatin structure modification were observed are mostly associated with transport and catabolism, which makes sense in the context of the elimination of the drug. Specific differences were observed in the repetitive compartment of the genome. We finally describe what types of experiments are needed to understand the complexity of heritability that can be based on genetic and/or epigenetic mechanisms for drug resistance in schistosomes.

  7. Large-Scale Chromatin Structure-Function Relationships during the Cell Cycle and Development: Insights from Replication Timing.

    Science.gov (United States)

    Dileep, Vishnu; Rivera-Mulia, Juan Carlos; Sima, Jiao; Gilbert, David M

    2015-01-01

    Chromosome architecture has received a lot of attention since the recent development of genome-scale methods to measure chromatin interactions (Hi-C), enabling the first sequence-based models of chromosome tertiary structure. A view has emerged of chromosomes as a string of structural units (topologically associating domains; TADs) whose boundaries persist through the cell cycle and development. TADs with similar chromatin states tend to aggregate, forming spatially segregated chromatin compartments. However, high-resolution Hi-C has revealed substructure within TADs (subTADs) that poses a challenge for models that attribute significance to structural units at any given scale. More than 20 years ago, the DNA replication field independently identified stable structural (and functional) units of chromosomes (replication foci) as well as spatially segregated chromatin compartments (early and late foci), but lacked the means to link these units to genomic map units. Genome-wide studies of replication timing (RT) have now merged these two disciplines by identifying individual units of replication regulation (replication domains; RDs) that correspond to TADs and are arranged in 3D to form spatiotemporally segregated subnuclear compartments. Furthermore, classifying RDs/TADs by their constitutive versus developmentally regulated RT has revealed distinct classes of chromatin organization, providing unexpected insight into the relationship between large-scale chromosome structure and function. PMID:26590169

  8. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Yolanda Stypula-Cyrus

    Full Text Available Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC. However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  9. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Science.gov (United States)

    Stypula-Cyrus, Yolanda; Damania, Dhwanil; Kunte, Dhananjay P; Cruz, Mart Dela; Subramanian, Hariharan; Roy, Hemant K; Backman, Vadim

    2013-01-01

    Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC) family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC). However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs) interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA) targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS) to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  10. Reprogramming chromatin

    DEFF Research Database (Denmark)

    Ehrensberger, Andreas Hasso; Svejstrup, Jesper Qualmann

    2012-01-01

    attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming...... and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors...

  11. Expression-dependent folding of interphase chromatin.

    Directory of Open Access Journals (Sweden)

    Hansjoerg Jerabek

    Full Text Available Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology.

  12. Methods for Analyzing the Role of DNA Methylation and Chromatin Structure in Regulating T Lymphocyte Gene Expression

    Directory of Open Access Journals (Sweden)

    Lu Qianjin

    2004-01-01

    Full Text Available Chromatin structure, determined in part by DNA methylation, is established during differentiation and prevents expression of genes unnecessary for the function of a given cell type. We reported that DNA methylation and chromatin structure contributes to lymphoid-specific ITGAL (CD11a and PRF1 (perforin expression. We used bisulfite sequencing to compare methylation patterns in the ITGAL promoter and 5' flanking region of T cells and fibroblasts, and in the PRF1 promoter and upstream enhancer of CD4+ and CD8+ T cells with fibroblasts. The effects of methylation on promoter function were tested using regional methylation of reporter constructs, and confirmed by DNA methyltransferase inhibition. The relationship between DNA methylation and chromatin structure was analyzed by DNaseI hypersensitivity. Herein we described the methods and results in greater detail.

  13. Dose-related Increased Binding of Nickel to Chromatin Proteins; and Changes to DNA Concentration in the Liver of Guinea Pigs Treated with Nigerian Light Crude Oil

    Directory of Open Access Journals (Sweden)

    Lauretta Idabor

    2007-09-01

    Full Text Available The alteration in nuclear DNA concentration and the concomitant binding of xenobiotics (alkylating agents, heavy metals, etc. to chromatin constituents may adversely affect gene structure and/or function, and thus initiate carcinogenesis. Binding of nickel to chromatin DNA has been reported to cause DNA damage (cross-links, single-strand breaks, and although many soluble nickel compounds and complexes have been shown to bind to chromatin, porphyrin-complexed nickel (PCN in crude oils has not been studied. We have determined the doserelated increases in total and chromatin DNA concentrations, and the differential distribution (binding of PCN (crude oil nickel-CON to chromatin constituents in livers of adult male guinea pigs treated with 1.25, 2.50 and 5.0 ml/kg bw Nigerian Bonny light crude oil (BLCO by intraperitoneal injection. The results showed large BLCO-induced increases in total DNA concentrations of 424%, 632% and 436% at 1.25, 2.50 and 5.0 ml/kg bw BLCO respectively over the untreated controls; while it induced equally large increases in chromatin DNA concentrations of 585% and 200% at 2.50 and 5.0 ml/kg bw respectively. In both cases, maximum increases occurred at 2.50 ml/kg bw BLCO. The distribution of PCN in BLCO between chromatin DNA and chromatin proteins (histones and non-histones showed that at 2.50 and 5.0 ml/kg bw BLCO, nickel content in chromatin DNA reduced by 25% and 12.5% respectively over the controls; while its content in chromatin proteins also reduced by 26%; but increased by 166% at 2.50 and 5.0 ml/kg bw BLCO, respectively over the untreated controls. However, in intra-chromatin comparison, 38.8% more PCN bound to chromatin DNA than to chromatin proteins at 2.50 ml/kg bw; but at 5.0 ml/kg bw BLCO, 90.4% more PCN bound to chromatin proteins than to chromatin DNA. These results show a greater affinity of PCN in BLCO for chromatin proteins over chromatin DNA which may have played a role in the increased DNA concentrations

  14. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea

    OpenAIRE

    Guo, Li; Feng, Yingang; Zhang, Zhenfeng; Yao, Hongwei; Luo, Yuanming; Wang, Jinfeng; Huang, Li

    2007-01-01

    Archaea contain a variety of chromatin proteins consistent with the evolution of different genome packaging mechanisms. Among the two main kingdoms in the Archaea, Euryarchaeota synthesize histone homologs, whereas Crenarchaeota have not been shown to possess a chromatin protein conserved at the kingdom level. We report the identification of Cren7, a novel family of chromatin proteins highly conserved in the Crenarchaeota. A small, basic, methylated and abundant protein, Cren7 displays a high...

  15. Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability

    Directory of Open Access Journals (Sweden)

    Sujit eRoy

    2014-09-01

    Full Text Available Plant cells are subject to high levels of DNA damage resulting from plant’s obligatory dependence on sunlight and the associated exposure to environmental stresses like solar UV radiation, high soil salinity, drought, chilling injury and other air and soil pollutants including heavy metals and metabolic byproducts from endogenous processes. The irreversible DNA damages, generated by the environmental and genotoxic stresses affect plant growth and development, reproduction and crop productivity. Thus, for maintaining genome stability, plants have developed an extensive array of mechanisms for the detection and repair of DNA damages. This review will focus recent advances in our understanding of mechanisms regulating plant genome stability in the context of repairing of double stand breaks and chromatin structure maintenance.

  16. Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization.

    Directory of Open Access Journals (Sweden)

    Shlomit Farkash-Amar

    Full Text Available DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR. Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further showed that at the hundreds kb-to-megabase scale the genome can be divided into constant ToR regions (CTRs in which the replication process propagates at a faster pace due to the activation of multiple origins and temporal transition regions (TTRs in which the replication process propagates at a slower pace. We developed a computational tool that assigns a ToR to every measured locus and determines its replication activity type (CTR versus TTR. Our algorithm, ARTO (Analysis of Replication Timing and Organization, uses signal processing methods to fit a constant piece-wise linear curve to the measured raw data. We tested our algorithm and provide performance and usability results. A Matlab implementation of ARTO is available at http://bioinfo.cs.technion.ac.il/people/zohar/ARTO/. Applying our algorithm to ToR data measured in multiple mouse and human samples allowed precise genome-wide ToR determination and replication activity type characterization. Analysis of the results highlighted the plasticity of the replication program. For example, we observed significant ToR differences in 10-25% of the genome when comparing different tissue types. Our analyses also provide evidence for activity type differences in up to 30% of the probes. Integration of the ToR data with multiple aspects of chromosome organization characteristics suggests that ToR plays a role in shaping the regional chromatin structure. Namely, repressive chromatin marks, are associated with late ToR both in TTRs and CTRs. Finally, characterization of the differences between TTRs and CTRs, with matching ToR, revealed that TTRs are

  17. Using oocyte nuclei for studies on chromatin structure and gene expression.

    Science.gov (United States)

    Sommerville, John

    2010-05-01

    The giant nucleus of amphibian oocytes is generally referred to as the germinal vesicle (GV). Its size allows relatively easy manual isolation from the rest of the oocyte and also presents a large target in situ for microinjection of macromolecules including plasmid DNA, RNA species, antibodies and other proteins and even whole organelles, including somatic cell nuclei. Thus the use of GVs is excellent for two major types of study: the function of endogenous nuclear processes such as gene transcription, RNA processing and intra-nuclear dynamics; and the use of the nuclear components to effect processes such as chromatin assembly, expression of foreign genes and nucleocytoplasmic transport of injected biomolecules. This article outlines some basic techniques appropriate for GV studies, particularly the preparation of oocytes for microinjection and the isolation of germinal vesicles into an oil phase. As an aid to the targeting of the GV within the nucleus, descriptions are given of the use of oocytes from albino animals.

  18. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  19. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers

    International Nuclear Information System (INIS)

    To assess the influence of chromatin structure on the frequency of radiation-induced DNA strand breaks, the alkaline unwinding technique was applied to nuclear and nucleoid monolayers. These chromatin substrates were prepared by treating human fibroblasts grown as monolayers with the nonionic detergent Triton X-100 and varying concentrations of cations. The chromatin structure was modified either by a stepwise removal of DNA-bound proteins by extraction in increasing concentrations of monovalent salt, or by the addition or deletion of mono- and divalent cations to condense or decondense the chromatin, respectively. It was found that the stepwise removal of DNA-bound proteins from the chromatin dramatically increased the frequency of radiation-induced DNA strand breaks. The DNA-bound proteins showed a qualitative difference in their ability to protect the DNA where proteins removed by salt concentrations above 1.0 M exerted the greatest protection. Furthermore, the frequency of radiation-induced DNA strand breaks was found to be 6 times lower in condensed chromatin than in decondensed chromatin and about 80 times lower than in protein-depleted chromatin. It is concluded that the presence of DNA-bound proteins and the folding of the chromatin into higher-order structures protect the DNA against radiation-induced strand breaks

  20. Chromatin assembly using Drosophila systems.

    Science.gov (United States)

    Fyodorov, Dmitry V; Levenstein, Mark E

    2002-05-01

    To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.

  1. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells

    Science.gov (United States)

    Shinkai, Soya; Nozaki, Tadasu; Maeshima, Kazuhiro

    2016-01-01

    The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory. We analytically show that the mean-squared displacement (MSD) of nucleosome fluctuations within CDs is subdiffusive. The diffusion coefficient and the subdiffusive exponent depend on the structural information of CDs. This analytical result enabled us to extract information from the single-nucleosome imaging data for HeLa cells. Our observation that the MSD is lower at the nuclear periphery region than the interior region indicates that CDs in the heterochromatin-rich nuclear periphery region are more compact than those in the euchromatin-rich interior region with respect to the fractal dimensions as well as the size. Finally, we evaluated that the average size of CDs is in the range of 100–500 nm and that the relaxation time of nucleosome movement within CDs is a few seconds. Our results provide physical and dynamic insights into the genome architecture in living cells. PMID:27764097

  2. Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge.

    Science.gov (United States)

    Robin, Jérôme D; Magdinier, Frédérique

    2016-01-01

    Lamins are intermediate filaments that form a complex meshwork at the inner nuclear membrane. Mammalian cells express two types of Lamins, Lamins A/C and Lamins B, encoded by three different genes, LMNA, LMNB1, and LMNB2. Mutations in the LMNA gene are associated with a group of phenotypically diverse diseases referred to as laminopathies. Lamins interact with a large number of binding partners including proteins of the nuclear envelope but also chromatin-associated factors. Lamins not only constitute a scaffold for nuclear shape, rigidity and resistance to stress but also contribute to the organization of chromatin and chromosomal domains. We will discuss here the impact of A-type Lamins loss on alterations of chromatin organization and formation of chromatin domains and how disorganization of the lamina contributes to the patho-physiology of premature aging syndromes. PMID:27602048

  3. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities.

    Science.gov (United States)

    Yao, Wei; Beckwith, Sean L; Zheng, Tina; Young, Thomas; Dinh, Van T; Ranjan, Anand; Morrison, Ashby J

    2015-10-16

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement.

  4. The Relation Between Promoter Chromatin Status, Xyr1 and Cellulase Ex-pression in Trichoderma reesei.

    Science.gov (United States)

    Mello-de-Sousa, Thiago M; Rassinger, Alice; Derntl, Christian; Poças-Fonseca, Marcio J; Mach, Robert L; Mach-Aigner, Astrid R

    2016-04-01

    The ascomycete Trichoderma reesei is used for the production of plant cell wall-degrading enzymes in industrial scale. The interplay of the transactivator Xyr1 and the repressor Cre1 mainly regulates the expression of these enzymes. During induc-ing conditions, such as in the presence of sophorose, the transcription of the two major cellulase-encoding genes, cbh1 and cbh2, is activated as well as the expression of xyr1. In the presence of D-glucose carbon catabolite repression mediated by Cre1 takes place and the expression of Xyr1 and the plant cell wall-degrading enzymes is down-regulated. In this study we compare the chromatin status of xyr1, cbh1, and cbh2 promoters in the wild-type strain and the Cre1-deficient strain Rut-C30. Chromatin rearrangement occurs in the xyr1 promoter during induction on sophorose. Chromatin opening and protein-DNA interactions in the xyr1 promoter were detected especially in a region located 0.9 kb upstream the translation start co-don, which bears several putative Cre1-binding sites and a CCAAT-box. Moreover, the xyr1 promoter is overall more acces-sible in a cre1-truncated background, no matter which carbon source is present. This makes the xyr1 regulatory sequence a good target for promoter engineering aiming at the enhancement of cellulase production. PMID:27226770

  5. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  6. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures

    Science.gov (United States)

    Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang

    2016-01-01

    Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for 60Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with 60Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.

  7. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene

    International Nuclear Information System (INIS)

    Inhibition of herpes simplex virus (HSV) thymidine kinase (TK) gene transcription (pHSV-106, pML-BPV-TK4) by DNA methylation is an indirect effect, which occurs with a latency period of ∼ 8 hr microinjection of the DNA into TK- rat 2 and mouse LTK- cells. The authors have strong evidence that chromatin formation is critical for the transition of the injected DNA from methylation insensitivity to methylation sensitivity. Chromatin was reconstituted in vitro by using methylated and mock-methylated HSV TK DNA and purified chicken histone octamers. After microinjection, the methylated chromatin was always biologically inactive, as tested by autoradiography of the cells after incubation with [3H]thymidine and by RNA dot blot analysis. However, in transformed cell lines, reactivation of the methylated chromatic occurred after treatment with 5-azacytidine. Furthermore, integration of the TK chromatin into the host genome is not required to block expression of the methylated TK gene. Mouse cells that contained the pML-BPV-TK4 chromatin permanently in an episomal state also did not support TK gene expression as long as the TK DNA remained methylated

  8. Site-specific demethylation and normal chromatin structure of the human dihydrofolate reductase gene promoter after transfection into CHO cells.

    OpenAIRE

    Shimada, T.; Inokuchi, K; Nienhuis, A W

    1987-01-01

    The effect of in vitro methylation on the function and chromatin structure of the human dihydrofolate reductase (DHFR) promoter linked to the DHFR coding sequences (minigene) was studied after DNA-mediated gene transfer into DHFR- CHO cells. Methylation of HhaI sites reduced the transforming frequency to about 10% of control, whereas methylation of HpaII sites had a less significant effect. The integrated genes were demethylated at specific sites in the promoter sequence, namely, HpaII sites ...

  9. Role of chromatin structure modulation by the histone deacetylase inhibitor trichostatin A on the radio-sensitivity of ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Meschini, Roberta, E-mail: meschini@unitus.it; Morucci, Elisa; Berni, Andrea; Lopez-Martinez, Wilner; Palitti, Fabrizio

    2015-07-15

    Highlights: • Role of chromatin compaction on chromosomal instability. • Reduced radiation-induced clastogenicity in Ataxia telangiectasia cell lines. • Histone tails hyperacetylation reduces heterochromatin content favouring DSBs repair. - Abstract: At present, a lot is known about biochemical aspects of double strand breaks (DBS) repair but how chromatin structure affects this process and the sensitivity of DNA to DSB induction is still an unresolved question. Ataxia telangiectasia (A-T) patients are characterised by very high sensitivity to DSB-inducing agents such as ionising radiation. This radiosensitivity is revealed with an enhancement of chromosomal instability as a consequence of defective DNA repair for a small fraction of breaks located in the heterochromatin, where they are less accessible. Besides, recently it has been reported that Ataxia Telangiectasia Mutated (ATM) mediated signalling modifies chromatin structure. In order to study the impact of chromatin compaction on the chromosomal instability of A-T cells, the response to trichostatin-A, an histone deacetylase inhibitor, in normal and A-T lymphoblastoid cell lines was investigated testing its effect on chromosomal aberrations, cell cycle progression, DNA damage and repair after exposure to X-rays. The results suggest that the response to both trichostatin-A pre- and continuous treatments is independent of the presence of either functional or mutated ATM protein, as the reduction of chromosomal damage was found also in the wild-type cell line. The presence of trichostatin-A before exposure to X-rays could give rise to prompt DNA repair functioning on chromatin structure already in an open conformation. Differently, trichostatin-A post-treatment causing hyperacetylation of histone tails and reducing the heterochromatic DNA content might diminish the requirement for ATM and favour DSBs repair reducing chromosomal damage only in A-T cells. This fact could suggest that trichostatin-A post

  10. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    Energy Technology Data Exchange (ETDEWEB)

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.; Barcellos-Hoff, Mary Helen; Jakob, Burkhard

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histone H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.

  11. Plasticity of Fission Yeast CENP-A Chromatin Driven by Relative Levels of Histone H3 and H4

    OpenAIRE

    Castillo, Araceli G.; Mellone, Barbara G; Partridge, Janet F; William Richardson; Hamilton, Georgina L.; Allshire, Robin C.; Pidoux, Alison L.

    2007-01-01

    The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-A(Cnp1) chromatin is confined to specific sequences or whether histone...

  12. The differential mobilization of histones H3.1 and H3.3 by herpes simplex virus 1 relates histone dynamics to the assembly of viral chromatin.

    Science.gov (United States)

    Conn, Kristen L; Hendzel, Michael J; Schang, Luis M

    2013-01-01

    During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly.

  13. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor

    International Nuclear Information System (INIS)

    Embryonic stem (ES) cells have generated enormous interest due to their capacity to self-renew and the potential for growing many different cell types in vitro. Leukemia inhibitory factor (LIF), bone morphogenetic proteins, octamer-binding protein 3 or 4, and Nanog are important factors in the maintenance of pluripotency in mouse ES cells. However, the mechanisms by which these factors regulate the pluripotency remain poorly understood. To identify other proteins involved in this process, we did a proteomic analysis of mouse ES cells that were cultured in the presence or absence of LIF. More than 100 proteins were found to be involved specifically in either the differentiation process or the maintenance of undifferentiated state. Among these, chromatin-related proteins were identified as the major proteins in nuclear extracts of undifferentiated cells. Analysis with real-time RT-PCR revealed that enrichment of these proteins in pluripotent ES cells was regulated at the transcriptional levels. These results suggest that specific chromatin-related proteins may be involved in maintaining the unique properties of pluripotent ES cells

  14. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor.

    Science.gov (United States)

    Kurisaki, Akira; Hamazaki, Tatsuo S; Okabayashi, Koji; Iida, Tetsuo; Nishine, Tsutomu; Chonan, Ritsu; Kido, Hiroshi; Tsunasawa, Susumu; Nishimura, Osamu; Asashima, Makoto; Sugino, Hiromu

    2005-09-30

    Embryonic stem (ES) cells have generated enormous interest due to their capacity to self-renew and the potential for growing many different cell types in vitro. Leukemia inhibitory factor (LIF), bone morphogenetic proteins, octamer-binding protein 3 or 4, and Nanog are important factors in the maintenance of pluripotency in mouse ES cells. However, the mechanisms by which these factors regulate the pluripotency remain poorly understood. To identify other proteins involved in this process, we did a proteomic analysis of mouse ES cells that were cultured in the presence or absence of LIF. More than 100 proteins were found to be involved specifically in either the differentiation process or the maintenance of undifferentiated state. Among these, chromatin-related proteins were identified as the major proteins in nuclear extracts of undifferentiated cells. Analysis with real-time RT-PCR revealed that enrichment of these proteins in pluripotent ES cells was regulated at the transcriptional levels. These results suggest that specific chromatin-related proteins may be involved in maintaining the unique properties of pluripotent ES cells.

  15. Topoisomerase II–DNA complexes trapped by ICRF-193 perturb chromatin structure

    OpenAIRE

    Germe, Thomas; Hyrien, Olivier

    2005-01-01

    DNA topoisomerase II (topo II) is involved in unlinking replicating DNA and organizing mitotic chromosomes. Topo II is the target of many antitumour drugs. Topo II inhibition results in extensive catenation of newly replicated DNA and may potentially perturb chromatin assembly. Here, we show that the topo II inhibitor ICRF-193 does not prevent the bulk of nucleosome deposition, but perturbs nucleosome spacing in Xenopus egg extracts. This is due to the trapping of topo II-closed clamps on the...

  16. The structure of the nucleosome core particle of chromatin in chicken erythrocytes visualized by using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHAOHUI; YIZHANG; 等

    1999-01-01

    The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by using AFM.The 146 bp of DNA wrapped twice around the core histone octamer are clearly visualized.Both the ends of entry/exit of linker DNA are also demonstrated.The dimension of the nucleosome core particles is - 1-4 nm in height and - 13-22 nm in width.In addition,superbeads (width of - 48-57 nm,height of - 2-3 nm )are occasionally revealed,two turns of DNA around the core particles are also detected.

  17. Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling

    Directory of Open Access Journals (Sweden)

    Dostie Josée

    2011-10-01

    Full Text Available Abstract Background Long-range interactions between regulatory DNA elements such as enhancers, insulators and promoters play an important role in regulating transcription. As chromatin contacts have been found throughout the human genome and in different cell types, spatial transcriptional control is now viewed as a general mechanism of gene expression regulation. Chromosome Conformation Capture Carbon Copy (5C and its variant Hi-C are techniques used to measure the interaction frequency (IF between specific regions of the genome. Our goal is to use the IF data generated by these experiments to computationally model and analyze three-dimensional chromatin organization. Results We formulate a probabilistic model linking 5C/Hi-C data to physical distances and describe a Markov chain Monte Carlo (MCMC approach called MCMC5C to generate a representative sample from the posterior distribution over structures from IF data. Structures produced from parallel MCMC runs on the same dataset demonstrate that our MCMC method mixes quickly and is able to sample from the posterior distribution of structures and find subclasses of structures. Structural properties (base looping, condensation, and local density were defined and their distribution measured across the ensembles of structures generated. We applied these methods to a biological model of human myelomonocyte cellular differentiation and identified distinct chromatin conformation signatures (CCSs corresponding to each of the cellular states. We also demonstrate the ability of our method to run on Hi-C data and produce a model of human chromosome 14 at 1Mb resolution that is consistent with previously observed structural properties as measured by 3D-FISH. Conclusions We believe that tools like MCMC5C are essential for the reliable analysis of data from the 3C-derived techniques such as 5C and Hi-C. By integrating complex, high-dimensional and noisy datasets into an easy to interpret ensemble of three

  18. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin).

    Science.gov (United States)

    Duan, Ming-Rui; Smerdon, Michael J

    2014-03-21

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.

  19. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation

    Science.gov (United States)

    Nguyen, Carvell T.; Gonzales, Felicidad A.; Jones, Peter A.

    2001-01-01

    Silencing of tumor-suppressor genes by hypermethylation of promoter CpG islands is well documented in human cancer and may be mediated by methyl-CpG-binding proteins, like MeCP2, that are associated in vivo with chromatin modifiers and transcriptional repressors. However, the exact dynamic between methylation and chromatin structure in the regulation of gene expression is not well understood. In this study, we have analyzed the methylation status and chromatin structure of three CpG islands in the p14(ARF)/p16(INK4A) locus in a series of normal and cancer cell lines using methylation-sensitive digestion, MspI accessibility in intact nuclei and chromatin immunoprecipitation (ChIP) assays. We demonstrate the existence of an altered chromatin structure associated with the silencing of tumor-suppressor genes in human cancer cell lines involving CpG island methylation, chromatin condensation, histone deacetylation and MeCP2 binding. The data showed that MeCP2 could bind to methylated CpG islands in both promoters and exons; MeCP2 does not interfere with transcription when bound at an exon, suggesting a more generalized role for the protein beyond transcriptional repression. In the absence of methylation, it is demonstrated that CpG islands located in promoters versus exons display marked differences in the levels of acetylation of associated histone H3, suggesting that chromatin remodeling can be achieved by methylation-independent processes and perhaps explaining why non-promoter CpG islands are more susceptible to de novo methylation than promoter islands. PMID:11713309

  20. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

    Science.gov (United States)

    Igaz, Nóra; Kovács, Dávid; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M; Kiricsi, Mónika

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols. PMID:27434153

  1. Functions of the Proteasome on Chromatin

    Science.gov (United States)

    McCann, Tyler S.; Tansey, William P.

    2014-01-01

    The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome. PMID:25422899

  2. Functions of the Proteasome on Chromatin

    Directory of Open Access Journals (Sweden)

    Tyler S. McCann

    2014-11-01

    Full Text Available The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome.

  3. Impact of Chromatin on HIV Replication

    OpenAIRE

    Agosto, Luis M.; Matthew Gagne; Henderson, Andrew J.

    2015-01-01

    Chromatin influences Human Immunodeficiency Virus (HIV) integration and replication. This review highlights critical host factors that influence chromatin structure and organization and that also impact HIV integration, transcriptional regulation and latency. Furthermore, recent attempts to target chromatin associated factors to reduce the HIV proviral load are discussed.

  4. An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length.

    Directory of Open Access Journals (Sweden)

    Hua Wong

    Full Text Available In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kinematics problem. Our model is based on recent electron microscopy measurements of reconstituted fiber dimensions. Strikingly, we find that the chromatin fiber containing linker histones is a polymorphic structure. We show that different fiber conformations are obtained by tuning the linker histone orientation at the nucleosomes entry/exit according to the nucleosomal repeat length. We propose that the observed in vivo quantization of nucleosomal repeat length could reflect nature's ability to use the DNA molecule's helical geometry in order to give chromatin versatile topological and mechanical properties.

  5. Chromatin Immunoprecipitation.

    Science.gov (United States)

    Wiehle, Laura; Breiling, Achim

    2016-01-01

    Chromatin immunoprecipitation (ChIP) is a valuable method to investigate protein-DNA interactions in vivo. Since its discovery it has been indispensable to identify binding sites and patterns of a variety of DNA-interacting proteins, such as transcription factors and regulators, modified histones, and epigenetic modifiers. The Polycomb repressors were the first proteins that have been mapped using this technique, which provided the mechanistic basis for the understanding of their biological function. Cross-linked (XChIP) or native (NChIP) chromatin from tissues or cultured cells is fragmented and the protein of interest is immunoprecipitated using a specific antibody. The co-precipitated DNA is then purified and subjected to analysis by region-specific PCR, DNA microarray (ChIP-on-chip), or next-generation sequencing (ChIP-seq). The assay can therefore produce information about the localization of the analyzed protein at specific candidate loci or throughout the entire genome. In this chapter, we provide a detailed protocol of the basic standard ChIP assay and some remarks about variations. PMID:27659971

  6. Structural Logical Relations

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Sarnat, Jeffrey

    2008-01-01

    , such as Twelf, and yet they are often straightforward in proof assistants with stronger meta-logics. In this paper, we propose structural logical relations as a technique for conducting these proofs in systems with limited meta-logical strength by explicitly representing and reasoning about an auxiliary logic......Tait's method (a.k.a. proof by logical relations) is a powerful proof technique frequently used for showing foundational properties of languages based on typed lambda-calculi. Historically, these proofs have been extremely difficult to formalize in proof assistants with weak meta-logics...

  7. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.

    Science.gov (United States)

    Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G

    2016-01-02

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.

  8. Brain Function and Chromatin Plasticity

    OpenAIRE

    Dulac, Catherine

    2010-01-01

    The characteristics of epigenetic control, including the potential for long-lasting, stable effects on gene expression that outlive an initial transient signal, could be of singular importance for post-mitotic neurons, which are subject to changes with short- to long-lasting influence on their activity and connectivity. Persistent changes in chromatin structure are thought to contribute to mechanisms of epigenetic inheritance. Recent advances in chromatin biology offer new avenues to investig...

  9. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    Science.gov (United States)

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR.

  10. Systems Biological Determination of the Epi-Genomic Structure Function Relation: : Nucleosomal Association Changes, Intra/Inter Chromosomal Architecture, Transcriptional Structure Relationship, Simulations of Nucleosomal/Chromatin Fiber/Chromosome Architecture and Dynamics, System Biological/Medical Result Integration via the GLOBE 3D Genome Platform.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); P.R. Cook (Peter); K. Rippe (Karsten); Gernot Längst; G. Wedemann (Gero); F.G. Grosveld (Frank)

    2010-01-01

    textabstractDespite our knowledge of the sequence of the human genome, the relation of its three-dimensional dynamic architecture with its function – the storage and expression of genetic information – remains one of the central unresolved issues of our age. It became very clear meanwhile that this

  11. Structural changes in single chromatin fibers induced by tension and torsion

    NARCIS (Netherlands)

    Meng, He

    2014-01-01

    Since the discovery of the right-handed helical structure of DNA, 61 years have passed. The DNA molecule, which encodes genetic information, is also found twisted into coils. This extra twist of the helical structure, called supercoiling, plays important roles in both DNA compaction and gene regul

  12. Magnetic tweezers based force spectroscopy studies of the structure and dynamics of nucleosomes and chromatin

    OpenAIRE

    Kruithof, Maarten Christiaan

    2009-01-01

    Animals and plants are build from a large number of cells. These cells continuously respond to signals from outside and inside the cell by producing various kinds of proteins. The blueprints of these proteins are stored in genes. The genes, in cells with a nucleus, are carried in chromosomes: threadlike structures in the nucleus of a cell that become visible when the cell, upon dividing, condenses these structures. Chromosomes consist of roughly two parts: proteins, that take care of the cond...

  13. Single Molecule Studies of Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  14. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin

    Directory of Open Access Journals (Sweden)

    Mora Xavier

    2007-05-01

    Full Text Available Abstract Background Histone H1 is involved in the formation and maintenance of chromatin higher order structure. H1 has multiple isoforms; the subtypes differ in timing of expression, extent of phosphorylation and turnover rate. In vertebrates, the amino acid substitution rates differ among subtypes by almost one order of magnitude, suggesting that each subtype might have acquired a unique function. We have devised a competitive assay to estimate the relative binding affinities of histone H1 mammalian somatic subtypes H1a-e and H1° for long chromatin fragments (30–35 nucleosomes in physiological salt (0.14 M NaCl at constant stoichiometry. Results The H1 complement of native chromatin was perturbed by adding an additional amount of one of the subtypes. A certain amount of SAR (scaffold-associated region DNA was present in the mixture to avoid precipitation of chromatin by excess H1. SAR DNA also provided a set of reference relative affinities, which were needed to estimate the relative affinities of the subtypes for chromatin from the distribution of the subtypes between the SAR and the chromatin. The amounts of chromatin, SAR and additional H1 were adjusted so as to keep the stoichiometry of perturbed chromatin similar to that of native chromatin. H1 molecules freely exchanged between the chromatin and SAR binding sites. In conditions of free exchange, H1a was the subtype of lowest affinity, H1b and H1c had intermediate affinities and H1d, H1e and H1° the highest affinities. Subtype affinities for chromatin differed by up to 19-fold. The relative affinities of the subtypes for chromatin were equivalent to those estimated for a SAR DNA fragment and a pUC19 fragment of similar length. Avian H5 had an affinity ~12-fold higher than H1e for both DNA and chromatin. Conclusion H1 subtypes freely exchange in vitro between chromatin binding sites in physiological salt (0.14 M NaCl. The large differences in relative affinity of the H1 subtypes for

  15. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  16. Chromatin remodelers and their roles in chromatin organization

    OpenAIRE

    Strålfors, Annelie

    2012-01-01

    The DNA in the eukaryotic nucleus is organized into a complex DNA-protein structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of 147 bp of DNA wrapped around a histone protein octamer. The nucleosomes form a “beads on a string” structure, which can be folded into higherorder structures that allow an extensive degree of DNA compaction. This compaction is so effective that 2 meters of DNA can fit into the human cell nucleus with a ...

  17. Astrocyte- and hepatocyte-specific expression of genes from the distal serpin subcluster at 14q32.1 associates with tissue-specific chromatin structures

    OpenAIRE

    Gopalan, Sunita; Kasza, Aneta; Xu, Weili; Kiss, Daniel L.; Wilczynska, Katarzyna M.; Rydel, Russell E.; Kordula, Tomasz

    2005-01-01

    The distal serpin subcluster contains genes encoding α1-antichymotrypsin (ACT), protein C inhibitor (PCI), kallistatin (KAL), and the KAL-like protein that are expressed in hepatocytes but only the act gene is expressed in astrocytes. We show here that the tissue-specific expression of these genes associates with astrocyte- and hepatocyte-specific chromatin structures. In hepatocytes, we identified twelve DNase I-hypersenitive sites (DHS) that were distributed throughout the entire subcluster...

  18. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure

    DEFF Research Database (Denmark)

    Luijsterburg, Martijn S; Acs, Klara; Ackermann, Leena;

    2012-01-01

    The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensatio...

  19. TM6, a novel nuclear matrix attachment region, enhances its flanking gene expression through influencing their chromatin structure.

    Science.gov (United States)

    Ji, Lusha; Xu, Rui; Lu, Longtao; Zhang, Jiedao; Yang, Guodong; Huang, Jinguang; Wu, Changai; Zheng, Chengchao

    2013-08-01

    Nuclear matrix attachment regions (MARs) regulate the higher-order organization of chromatin and affect the expression of their flanking genes. In this study, a tobacco MAR, TM6, was isolated and demonstrated to remarkably increase the expression of four different promoters that drive gusA gene and adjacent nptII gene. In turn, this expression enhanced the transformation frequency of transgenic tobacco. Deletion analysis of topoisomerase II-binding site, AT-rich element, and MAR recognition signature (MRS) showed that MRS has the highest contribution (61.7%) to the TM6 sequence-mediated transcription activation. Micrococcal nuclease (MNase) accessibility assay showed that 35S and NOS promoter regions with TM6 are more sensitive than those without TM6. The analysis also revealed that TM6 reduces promoter DNA methylation which can affect the gusA expression. In addition, two tobacco chromatin-associated proteins, NtMBP1 and NtHMGB, isolated using a yeast one-hybrid system, specifically bound to the TM6II-1 region (761 bp to 870 bp) and to the MRS element in the TM6II-2 (934 bp to 1,021 bp) region, respectively. We thus suggested that TM6 mediated its chromatin opening and chromatin accessibility of its flanking promoters with consequent enhancement of transcription.

  20. Halos and related structures

    DEFF Research Database (Denmark)

    Riisager, Karsten

    2013-01-01

    The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding of these stru......The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding...... of these structures, with an emphasis on how the structures evolve as more cluster components are added and on the experimental situation concerning halo states in light nuclei....

  1. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin...... remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications....... Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression....

  2. Chromatin is wonderful stuff.

    NARCIS (Netherlands)

    R. van Driel

    2007-01-01

    Chromatin molecules have properties that set them aside from all other biomacromolecules in the cell. (i) Chromosomes, which are single chromatin molecules, are the largest macromolecules in eukaryotic cells. (ii) Chromatin molecules carry the cell's genetic and epigenetic information and all contro

  3. A Testis-Specific Chaperone and the Chromatin Remodeler ISWI Mediate Repackaging of the Paternal Genome

    Directory of Open Access Journals (Sweden)

    Cécile M. Doyen

    2015-11-01

    Full Text Available During spermatogenesis, the paternal genome is repackaged into a non-nucleosomal, highly compacted chromatin structure. Bioinformatic analysis revealed that Drosophila sperm chromatin proteins are characterized by a motif related to the high-mobility group (HMG box, which we termed male-specific transcript (MST-HMG box. MST77F is a MST-HMG-box protein that forms an essential component of sperm chromatin. The deposition of MST77F onto the paternal genome requires the chaperone function of tNAP, a testis-specific NAP protein. MST77F, in turn, enables the stable incorporation of MST35Ba and MST35Bb into sperm chromatin. Following MST-HMG-box protein deposition, the ATP-dependent chromatin remodeler ISWI mediates the appropriate organization of sperm chromatin. Conversely, at fertilization, maternal ISWI targets the paternal genome and drives its repackaging into de-condensed nucleosomal chromatin. Failure of this transition in ISWI mutant embryos is followed by mitotic defects, aneuploidy, and haploid embryonic divisions. Thus, ISWI enables bi-directional transitions between two fundamentally different forms of chromatin.

  4. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    Science.gov (United States)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  5. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    International Nuclear Information System (INIS)

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity. (perspective)

  6. Chromatin dynamics resolved with force spectroscopy

    NARCIS (Netherlands)

    Chien, Fan-Tso

    2011-01-01

    In eukaryotic cells, genomic DNA is organized in chromatin fibers composed of nucleosomes as structural units. A nucleosome contains 1.7 turns of DNA wrapped around a histone octamer and is connected to the adjacent nucleosomes with linker DNA. The folding of chromatin fibers effectively increases t

  7. Chromatin domain boundaries: insulators and beyond

    Institute of Scientific and Technical Information of China (English)

    Gong Hong WEI; De Pei LIU; Chih Chuan LIANG

    2005-01-01

    The eukaryotic genome is organized into functionally and structurally distinct domains, representing regulatory units for gene expression and chromosome behavior. DNA sequences that mark the border between adjacent domains are the insulators or boundary elements, which are required in maintenance of the function of different domains. Some insulators need others enable to play insulation activity. Chromatin domains are defined by distinct sets of post-translationally modified histones. Recent studies show that these histone modifications are also involved in establishment of sharp chromatin boundaries in order to prevent the spreading of distinct domains. Additionally, in some loci, the high-order chromatin structures for long-range looping interactions also have boundary activities, suggesting a correlation between insulators and chromatin loop domains. In this review, we will discuss recent progress in the field of chromatin domain boundaries.

  8. Promoter region of interleukin-2 gene undergoes chromatin structure changes and confers inducibility on chloramphenicol acetyltransferase gene during activation of T cells.

    OpenAIRE

    Siebenlist, U; Durand, D B; Bressler, P; Holbrook, N J; Norris, C A; Kamoun, M.; Kant, J A; Crabtree, G R

    1986-01-01

    The chromatin structure of the interleukin-2 (IL-2) gene was probed by DNase I treatment of isolated nuclei. The 5' region of the IL-2 gene contains three regions of hypersensitivity to DNase I. When peripheral blood T cells or Jurkat T cells are stimulated with mitogens, IL-2 message is induced, and the promoter region of the IL-2 gene develops an additional hypersensitive site. This suggests that a DNA sequence close to the transcriptional start site is involved in the transduction of the e...

  9. Chromatin Dynamics of the mouse β-globin locus

    NARCIS (Netherlands)

    M.P.C. van de Corput (Mariëtte); E. de Boer (Ernie); T.A. Knoch (Tobias); W.A. van Cappellen (Gert); M. Lesnussa (Michael); H.J.F.M.M. Eussen (Bert)

    2010-01-01

    textabstractLately it has become more clear that (subtle) changes in 3D organization of chromatin can either trigger transcription or silence genes or gene clusters. It has also been postulated that due to changes in chromatin structure, a change in chromatin accessibility of transcription factors

  10. The many faces of plant chromatin: Meeting summary of the 4th European workshop on plant chromatin 2015, Uppsala, Sweden.

    Science.gov (United States)

    Mozgová, Iva; Köhler, Claudia; Gaudin, Valérie; Hennig, Lars

    2015-01-01

    In June 2015, the fourth European Workshop on Plant Chromatin took place in Uppsala, Sweden, bringing together 80 researchers studying various aspects of plant chromatin and epigenetics. The intricate relationships between plant chromatin dynamics and gene expression change, chromatin organization within the plant cell nucleus, and the impact of chromatin structure on plant development were discussed. Among the main highlights of the meeting were an ever-growing list of newly identified players in chromatin structure establishment and the development of novel tools and approaches to foster our understanding of chromatin-mediated gene regulation, taking into account the context of the plant cell nucleus and its architecture. In this report, we summarize some of the main advances and prospects of plant chromatin research presented at this meeting. PMID:26646904

  11. H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast

    LENUS (Irish Health Repository)

    Shieh, Grace S.

    2011-12-22

    Abstract Background The packaging of DNA into chromatin regulates transcription from initiation through 3\\' end processing. One aspect of transcription in which chromatin plays a poorly understood role is the co-transcriptional splicing of pre-mRNA. Results Here we provide evidence that H2B monoubiquitylation (H2BK123ub1) marks introns in Saccharomyces cerevisiae. A genome-wide map of H2BK123ub1 in this organism reveals that this modification is enriched in coding regions and that its levels peak at the transcribed regions of two characteristic subgroups of genes. First, long genes are more likely to have higher levels of H2BK123ub1, correlating with the postulated role of this modification in preventing cryptic transcription initiation in ORFs. Second, genes that are highly transcribed also have high levels of H2BK123ub1, including the ribosomal protein genes, which comprise the majority of intron-containing genes in yeast. H2BK123ub1 is also a feature of introns in the yeast genome, and the disruption of this modification alters the intragenic distribution of H3 trimethylation on lysine 36 (H3K36me3), which functionally correlates with alternative RNA splicing in humans. In addition, the deletion of genes encoding the U2 snRNP subunits, Lea1 or Msl1, in combination with an htb-K123R mutation, leads to synthetic lethality. Conclusion These data suggest that H2BK123ub1 facilitates cross talk between chromatin and pre-mRNA splicing by modulating the distribution of intronic and exonic histone modifications.

  12. Where splicing joins chromatin

    OpenAIRE

    Hnilicová, Jarmila; Staněk, David

    2011-01-01

    There are numerous data suggesting that two key steps in gene expression—transcription and splicing influence each other closely. For a long time it was known that chromatin modifications regulate transcription, but only recently it was shown that chromatin and histone modifications play a significant role in pre-mRNA splicing. Here we summarize interactions between splicing machinery and chromatin and discuss their potential functional significance. We focus mainly on histone acetylation and...

  13. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair.

    Science.gov (United States)

    Chambers, Anna L; Downs, Jessica A

    2012-01-01

    In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.

  14. Chromatin Remodelers: From Function to Dysfunction

    Directory of Open Access Journals (Sweden)

    Gernot Längst

    2015-06-01

    Full Text Available Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.

  15. LncRNA Khps1 Regulates Expression of the Proto-oncogene SPHK1 via Triplex-Mediated Changes in Chromatin Structure.

    Science.gov (United States)

    Postepska-Igielska, Anna; Giwojna, Alena; Gasri-Plotnitsky, Lital; Schmitt, Nina; Dold, Annabelle; Ginsberg, Doron; Grummt, Ingrid

    2015-11-19

    Although thousands of long noncoding RNAs (lncRNAs) have been discovered, very little is known about their mode of action. Here we functionally characterize an E2F1-regulated lncRNA named Khps1, which is transcribed in antisense orientation to the proto-oncogene SPHK1. Khps1 activates SPHK1 expression by recruiting the histone acetyltransferase p300/CBP to the SPHK1 promoter, which leads to local changes of the chromatin structure that ensures E2F1 binding and enhances transcription. Mechanistically, this is achieved by direct association of Khps1 with a homopurine stretch upstream of the transcription start site of SPHK1, which forms a DNA-RNA triplex that anchors the lncRNA and associated effector proteins to the gene promoter. The results reveal an lncRNA- and E2F1-driven regulatory loop in which E2F1-dependent induction of antisense RNA leads to changes in chromatin structure, facilitating E2F1-dependent expression of SPHK1 and restriction of E2F1-induced apoptosis. PMID:26590717

  16. ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in naïve SLE B cells.

    Science.gov (United States)

    Scharer, Christopher D; Blalock, Emily L; Barwick, Benjamin G; Haines, Robert R; Wei, Chungwen; Sanz, Ignacio; Boss, Jeremy M

    2016-01-01

    Biobanking is a widespread practice for storing biological samples for future studies ranging from genotyping to RNA analysis. However, methods that probe the status of the epigenome are lacking. Here, the framework for applying the Assay for Transposase Accessible Sequencing (ATAC-seq) to biobanked specimens is described and was used to examine the accessibility landscape of naïve B cells from Systemic Lupus Erythematosus (SLE) patients undergoing disease flares. An SLE specific chromatin accessibility signature was identified. Changes in accessibility occurred at loci surrounding genes involved in B cell activation and contained motifs for transcription factors that regulate B cell activation and differentiation. These data provide evidence for an altered epigenetic programming in SLE B cells and identify loci and transcription factor networks that potentially impact disease. The ability to determine the chromatin accessibility landscape and identify cis-regulatory elements has broad application to studies using biorepositories and offers significant advantages to improve the molecular information obtained from biobanked samples. PMID:27249108

  17. Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci.

    Science.gov (United States)

    Bonifer, C; Hecht, A; Saueressig, H; Winter, D M; Sippel, A E

    1991-10-01

    It is hypothesized that nuclear DNA is organized in topologically constrained loop domains defining basic units of higher order chromatin structure. Our studies are performed in order to investigate the functional relevance of this structural subdivision of eukaryotic chromatin for the control of gene expression. We used the chicken lysozyme gene locus as a model to examine the relation between chromatin structure and gene function. Several structural features of the lysozyme locus are known: the extension of the region of general DNAasel sensitivity of the active gene, the location of DNA-sequences with high affinity for the nuclear matrix in vitro, and the position of DNAasel hypersensitive chromatin sites (DHSs). The pattern of DHSs changes depending on the transcriptional status of the gene. Functional studies demonstrated that DHSs mark the position of cis-acting regulatory elements. Additionally, we discovered a novel cis-activity of the border regions of the DNAasel sensitive domain (A-elements). By eliminating the position effect on gene expression usually observed when genes are randomly integrated into the genome after transfection, A-elements possibly serve as punctuation marks for a regulatory chromatin domain. Experiments using transgenic mice confirmed that the complete structurally defined lysozyme gene domain behaves as an independent regulatory unit, expressing the gene in a tissue specific and position independent manner. These expression features were lost in transgenic mice carrying a construct, in which the A-elements as well as an upstream enhancer region were deleted, indicating the lack of a locus activation function on this construct. Experiments are designed in order to uncover possible hierarchical relationships between the different cis-acting regulatory elements for stepwise gene activation during cell differentiation. We are aiming at the definition of the basic structural and functional requirements for position independent and high

  18. The Chromatin Fiber: Multiscale Problems and Approaches

    OpenAIRE

    Ozer, Gungor; Luque, Antoni; Schlick, Tamar

    2015-01-01

    The structure of chromatin, affected by many factors from DNA linker lengths to posttranslational modifications, is crucial to the regulation of eukaryotic cells. Combined experimental and computational methods have led to new insights into its structural and dynamical features, from interactions due to the flexible core histone tails of the nucleosomes to the physical mechanism driving the formation of chromosomal domains. Here we present a perspective of recent advances in chromatin modelin...

  19. Extracellular Matrix, Nuclear and Chromatin Structure and GeneExpression in Normal Tissues and Malignant Tumors: A Work inProgress

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Virginia A.; Xu, Ren; Bissell, Mina J.

    2006-08-01

    Almost three decades ago, we presented a model where theextracellular matrix (ECM) was postulated to influence gene expressionand tissue-specificity through the action of ECM receptors and thecytoskeleton. This hypothesis implied that ECM molecules could signal tothe nucleus and that the unit of function in higher organisms was not thecell alone, but the cell plus its microenvironment. We now know that ECMinvokes changes in tissue and organ architecture and that tissue, cell,nuclear, and chromatin structure are changed profoundly as a result ofand during malignant progression. Whereas some evidence has beengenerated for a link between ECM-induced alterations in tissuearchitecture and changes in both nuclear and chromatin organization, themanner by which these changes actively induce or repress gene expressionin normal and malignant cells is a topic in need of further attention.Here, we will discuss some key findings that may provide insights intomechanisms through which ECM could influence gene transcription and howtumor cells acquire the ability to overcome these levels ofcontrol.

  20. Tilings and associated relational structures

    CERN Document Server

    Oger, Francis

    2009-01-01

    In the present paper, as we did previously in [5], we investigate the relations between the geometric properties of tilings and the algebraic and model-theoretic properties of associated relational structures. Our study is motivated by the existence of aperiodic tilings. In [5], we considered tilings of the euclidean spaces of finite dimension, and isomorphism was defined up to translation. Here, we consider, more generally, tilings of a metric space, and isomorphism is defined modulo an arbitrary group of isometries. The results of Sections 1 and 2 concern, in particular, the characterization of relational structures which can be represented by tilings of some given type, local isomorphism and the extraction preorder. In Section 3, we show that the notions of periodicity and invariance through a translation, defined for tilings of the euclidean spaces of finite dimension, can be generalized, with appropriate hypotheses, to relational structures, and in particular to tilings of non-euclidean spaces. In Sectio...

  1. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure; Etude des cassures de l'ADN et des mecanismes de reparation dans les sequences telomeriques interstitielles: Influence de la structure chromatinienne

    Energy Technology Data Exchange (ETDEWEB)

    Revaud, D.

    2009-06-15

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  2. Extensive Variation in Chromatin States Across Humans

    KAUST Repository

    Kasowski, M.

    2013-10-17

    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

  3. Etiology and Evaluation of Sperm Chromatin Anomalies

    Directory of Open Access Journals (Sweden)

    Marziyeh Tavalaee

    2008-01-01

    Full Text Available Evidence suggests that human sperm chromatin anomalies adversely affect reproductive outcomesand infertile men possess substantially amount of sperm with chromatin anomalies than fertilemen.Routine semen analysis evaluates parameters such as sperm motility and morphology, but doesnot examine the nuclear DNA integrity of spermatozoa. It has been suggested that altered nuclearchromatin structure or damaged DNA in spermatozoa could modify the special cellular functionsof human spermatozoa, and thereby affect the fertility potential. Intra-cytoplasmic sperm injection(ICSI bypass the barriers to fertilization for such a sperm, then the effect of chromatin anomalies onthe development remains a concern. Therefore, it is essential to develop and use accurate diagnostictests, which may provide better prognostic capabilities than the standard sperm assessments. Thisreview discusses our current understanding of the structure and organization of sperm DNA,the different procedures for assessment of sperm chromatin anomalies including comet assay,Chromomycin A3 (CMA3, sperm chromatin structure assay (SCSA, acridine orange test (AOT,terminal TdT-mediated dUTP-nick-end labelling (TUNEL assay, aniline blue and sperm chromatindispersion (SCD test and the impact of chromatin anomalies on reproductive outcome.

  4. Prenucleosomes and Active Chromatin

    Science.gov (United States)

    Khuong, Mai T.; Fei, Jia; Ishii, Haruhiko; Kadonaga, James T.

    2016-01-01

    Chromatin consists of nucleosomes as well as nonnucleosomal histone-containing particles. Here we describe the prenucleosome, which is a stable conformational isomer of the nucleosome that associates with ~80 bp DNA. Prenucleosomes are formed rapidly upon the deposition of histones onto DNA and can be converted into canonical nucleosomes by an ATP-driven chromatin assembly factor such as ACF. Different lines of evidence reveal that there are prenucleosome-sized DNA-containing particles with histones in the upstream region of active promoters. Moreover, p300 acetylates histone H3K56 in prenucleosomes but not in nucleosomes, and H3K56 acetylation is found at active promoters and enhancers. These findings therefore suggest that there may be prenucleosomes or prenucleosome-like particles in the upstream region of active promoters. More generally, we postulate that prenucleosomes or prenucleosome-like particles are present at dynamic chromatin, whereas canonical nucleosomes are at static chromatin. PMID:26767995

  5. ATP-Dependent Chromatin Remodeling Factors and Their Roles in Affecting Nucleosome Fiber Composition

    Directory of Open Access Journals (Sweden)

    Alexandra Lusser

    2011-10-01

    Full Text Available ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.

  6. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes.

    Science.gov (United States)

    Thijssen, Peter E; Tobi, Elmar W; Balog, Judit; Schouten, Suzanne G; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P; Heijmans, Bastiaan T; van der Maarel, Silvère M

    2013-05-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence.

  7. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  8. Interaction of sulfur mustard with rat liver salt fractionated chromatin.

    Science.gov (United States)

    Jafari, Mahvash; Nateghi, M; Rabbani, A

    2010-01-01

    In this study, the interaction of an alkylating agent, sulfur mustard (SM) with rat liver active (S1 and S2) and inactive (P2) chromatin was investigated employing UV/vis spectroscopy and gel electrophoreses. The results show that SM affects the chromatin structure in a dose-dependent manner. The binding of SM to fractions is different. At lower concentrations (<500 microM), SM seems to unfold the structure and at higher concentrations, it induces aggregation and condensation of chromatin possibly via forming cross-links between the chromatin components. The extent of condensation in S2 is higher when compared to the P2 fraction.

  9. N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi

    Science.gov (United States)

    Su, Chang; Lu, Yang; Liu, Haoping

    2016-01-01

    N-acetylglucosamine (GlcNAc) exists ubiquitously as a component of the surface on a wide range of cells, from bacteria to humans. Many fungi are able to utilize environmental GlcNAc to support growth and induce cellular development, a property important for their survival in various host niches. However, how the GlcNAc signal is sensed and subsequently transduced is largely unknown. Here, we identify a gene that is essential for GlcNAc signalling (NGS1) in Candida albicans, a commensal and pathogenic yeast of humans. Ngs1 can bind GlcNAc through the N-terminal β-N-acetylglucosaminidase homology domain. This binding activates N-acetyltransferase activity in the C-terminal GCN5-related N-acetyltransferase domain, which is required for GlcNAc-induced promoter histone acetylation and transcription. Ngs1 is targeted to the promoters of GlcNAc-inducible genes constitutively by the transcription factor Rep1. Ngs1 is conserved in diverse fungi that have GlcNAc catabolic genes. Thus, fungi use Ngs1 as a GlcNAc-sensor and transducer for GlcNAc-induced transcription. PMID:27694804

  10. Chromatin architecture and gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2004-01-01

    Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli.......Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli....

  11. Chromatin remodeling regulated by steroid and nuclear receptors

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Coactivators and corepressors regulate transcription by controlling interactions between sequence-specific transcription factors,the basal transcriptional machinery and the chromatin environment,This review consider the access of nuclear and steroid receptors to chromatin,their use of corepressors and coactivators to modify chromatin structure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures and targeted histone modification emerge as central controlling elements for gene expression.

  12. Reprogramming the chromatin landscape

    DEFF Research Database (Denmark)

    Miranda, Tina B; Voss, Ty C; Sung, Myong-Hee;

    2013-01-01

    , mechanistic details defining the cellular interactions between ER and GR are poorly understood. We investigated genome-wide binding profiles for ER and GR upon coactivation and characterized the status of the chromatin landscape. We describe a novel mechanism dictating the molecular interplay between ER...... and GR. Upon induction, GR modulates access of ER to specific sites in the genome by reorganization of the chromatin configuration for these elements. Binding to these newly accessible sites occurs either by direct recognition of ER response elements or indirectly through interactions with other factors...

  13. Nucleosome dynamics during chromatin remodeling in vivo.

    Science.gov (United States)

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  14. Chromatin ring formation at plant centromeres

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2016-02-01

    Full Text Available We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

  15. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP

    DEFF Research Database (Denmark)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R;

    2015-01-01

    and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a complex is dictated by its structure. In addition, it may help us estimate the effects of mutations on GR interactions...

  16. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  17. Inverstigation of chromatin folding patterns by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANGYi; OUYANGZhenqian; 等

    1999-01-01

    The chromatin folding patterns in air and liquid were studied by atomic force microscopy(AFM),A gentle water-air interface method was adopted to spread chromatin from interphase nucleus of chicken erythrocyte.The chromatin was absorbed on APS-mica surface and studied with AFM,Beads-on a-string were observed and many higher-order structrues such as superbeads with dimensions 40-60nm in diameter and 4-7nm in height were found to string together to make chromation fibers.When sample spreading and absorbing time were shortened.higher-order chromatin fibers with 60-120nm in width were observed in air as well as under water environment.These chromatin structures may reflect chromatin folding patterns in the living cells.

  18. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct AFM visualization of variant chromatin

    CERN Document Server

    Montel, Fabien; Castelnovo, Martin; Bednar, Jan; Dimitrov, Stefan; Angelov, Dimitar; Faivre-Moskalenko, Cendrine

    2009-01-01

    Chromatin organization and dynamics is studied in this work at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique and numerical modeling. We demonstrate that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by AFM, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show ?beads on a string? structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results strongly suggest that higher-order organization of H1-free nucleosomal arrays is mainly determined by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existenc...

  19. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  20. Chromatin chemistry goes cellular.

    OpenAIRE

    W. Fischle; D. Schwarzer; Mootz, H.

    2015-01-01

    Analysing post-translational modifications of histone proteins as they occur within chromatin is challenging due to their large number and chemical diversity. A major step forward has now been achieved by using split intein chemistry to engineer functionalized histones within cells.

  1. Permeability relation for periodic structures.

    Science.gov (United States)

    Dunn, K J; LaTorraca, G A; Bergman, D J

    1998-01-01

    The permeability relation for periodic porous media is studied with respect to other petrophysical parameters such as formation factor, porosity, surface-to-volume ratio, and nuclear magnetic resonance (NMR) relaxation time. All these quantities were computed for periodic structures of simple, body-centered, and face-centered cubic arrays of touching and overlapping spheres. The formation factors were calculated by using a method which is based on a Fourier-space representation of an integral equation for the electric potential in a two-component composite. The nuclear magnetic resonance relaxation time for the case where surface-enchanced relaxation plays a dominant role is known to be V P/rho S (VP is the pore volume, S is the pore surface, is the surface relaxation strength) when rho is not too large. Previously calculated permeabilities for these structures from the literature were used for correlation studies with other petrophysical parameters. Various correlation schemes among these quantities, such as k = aTbFc, and k = aTb phi c, were investigated, where k is permeability, T is the NMR relaxation time, phi is the porosity, and F is the formation factor. PMID:9803908

  2. Neutron-scattering studies of chromatin

    International Nuclear Information System (INIS)

    It is clear that a knowledge of the basic molecular structure of chromatin is a prerequisite for any progress toward an understanding of chromosome organization. With a two-component system, protein and nucleic acid, neutrons have a particularly powerful application to studies of the spatial arrangements of these components because of the ability, by contrast matching with H2O-D2O mixtures, to obtain neutron-scattering data on the individual components. With this approach it has been shown that the neutron diffraction of chromatin is consistent with a ''beads on a string'' model in which the bead consists of a protein core with DNA coiled on the outside. However, because chromatin is a gel and gives limited structural data, confirmation of such a model requires extension of the neutron studies by deuteration of specific chromatin components and the isolation of chromatin subunits. Although these studies are not complete, the neutron results so far obtained support the subunit model described above

  3. Chromatin associations in Arabidopsis interphase nuclei

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2014-11-01

    Full Text Available The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analysed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fibre movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns.Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its ten centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  4. The epigenetic regulation of cell cycle and chromatin dynamic by sirtuins

    OpenAIRE

    Martínez Redondo, Paloma

    2014-01-01

    Tesi realitzada a l'Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) The chromatin consists of a hierarchical and dynamical structure that is modulated during the different cell cycle stages in order to maintain genome integrity and preserve the genetic information coded in the DNA. The dynamic structure of the chromatin depends on the coordination of the different chromatin remodeling processes: histone modifications, chromatin remodeling enzymes/complexes, DNA methylation and chr...

  5. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1999-01-01

    In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism in eukar......In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism...

  6. Lessons from Anaplasma phagocytophilum: Chromatin Remodeling by Bacterial Effectors

    OpenAIRE

    Rennoll-Bankert, Kristen E.; Dumler, J. Stephen

    2012-01-01

    Bacterial pathogens can alter global host gene expression via histone modifications and chromatin remodeling in order to subvert host responses, including those involved with innate immunity, allowing for bacterial survival. Shigella flexneri, Listeria monocytogenes, Chlamydia trachomatis, and Anaplasma phagocytophilum express effector proteins that modify host histones and chromatin structure. A. phagocytophilum modulates granulocyte respiratory burst in part by dampening transcription of se...

  7. CHD chromatin remodelers and the transcription cycle.

    Science.gov (United States)

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  8. Dissipative structures and related methods

    Science.gov (United States)

    Langhorst, Benjamin R; Chu, Henry S

    2013-11-05

    Dissipative structures include at least one panel and a cell structure disposed adjacent to the at least one panel having interconnected cells. A deformable material, which may comprise at least one hydrogel, is disposed within at least one interconnected cell proximate to the at least one panel. Dissipative structures may also include a cell structure having interconnected cells formed by wall elements. The wall elements may include a mesh formed by overlapping fibers having apertures formed therebetween. The apertures may form passageways between the interconnected cells. Methods of dissipating a force include disposing at least one hydrogel in a cell structure proximate to at least one panel, applying a force to the at least one panel, and forcing at least a portion of the at least one hydrogel through apertures formed in the cell structure.

  9. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae.

    Science.gov (United States)

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J

    2014-04-01

    The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.

  10. A model of photon cell killing based on the spatio-temporal clustering of DNA damage in higher order chromatin structures.

    Directory of Open Access Journals (Sweden)

    Lisa Herr

    Full Text Available We present a new approach to model dose rate effects on cell killing after photon radiation based on the spatio-temporal clustering of DNA double strand breaks (DSBs within higher order chromatin structures of approximately 1-2 Mbp size, so called giant loops. The main concept of this approach consists of a distinction of two classes of lesions, isolated and clustered DSBs, characterized by the number of double strand breaks induced in a giant loop. We assume a low lethality and fast component of repair for isolated DSBs and a high lethality and slow component of repair for clustered DSBs. With appropriate rates, the temporal transition between the different lesion classes is expressed in terms of five differential equations. These allow formulating the dynamics involved in the competition of damage induction and repair for arbitrary dose rates and fractionation schemes. Final cell survival probabilities are computable with a cell line specific set of three parameters: The lethality for isolated DSBs, the lethality for clustered DSBs and the half-life time of isolated DSBs. By comparison with larger sets of published experimental data it is demonstrated that the model describes the cell line dependent response to treatments using either continuous irradiation at a constant dose rate or to split dose irradiation well. Furthermore, an analytic investigation of the formulation concerning single fraction treatments with constant dose rates in the limiting cases of extremely high or low dose rates is presented. The approach is consistent with the Linear-Quadratic model extended by the Lea-Catcheside factor up to the second moment in dose. Finally, it is shown that the model correctly predicts empirical findings about the dose rate dependence of incidence probabilities for deterministic radiation effects like pneumonitis and the bone marrow syndrome. These findings further support the general concepts on which the approach is based.

  11. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin

    Science.gov (United States)

    Yu, Shirong; Evans, Katie; Bennett, Mark; Webster, Richard M.; Leadbitter, Matthew; Teng, Yumin; Waters, Raymond

    2016-01-01

    The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome–NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome. PMID:27470111

  12. Fractal Characterization of Chromatin Decompaction in Live Cells.

    Science.gov (United States)

    Yi, Ji; Stypula-Cyrus, Yolanda; Blaha, Catherine S; Roy, Hemant K; Backman, Vadim

    2015-12-01

    Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy.

  13. Expression of p21WAF1 is related to acetylation of histone H3 in total chromatin in human colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Ying-Xuan Chen; Jing-Yuan Fang; Rong Lu; De-Kai Qiu

    2007-01-01

    AIM: To explore the relationship between acetylation of histone in total chromatin and p21WAF1 expression regulation in human colorectal carcinoma.METHODS: We analyzed the expression of tumor suppressor gene p21WAF1 mRNA by RT-PCR or realtime PCR in 33 samples of colorectal cancerous tissue,corresponding para-cancerous tissue and normal colorectal mucosa, and also examined the level of acetylated histone H3 in total chromatin using Western blotting.RESULTS: The expression level of p21WAF1 mRNA was significantly lower in colorectal cancerous tissue from 33 patients than in para-cancerous tissue and normal colorectal mucosa (2377.95 ± 865.80 vs 3216.58 ±1149.42 and 3541.61 ± 1433.17 respectively, P <0.01). In addition, when p21WAF1 mRNA expression was undectectable or at very low level (50% less than that in adjacent tissue and normal colorectal mucosa) in all tissues, the level of acetylated histone H3 in colorectal cancerous tissue was significantly lower than that in corresponding para-cancerous tissue and normal colorectal mucosa in five of seven (71.43%) cases. The transcriptional level of p21WAF1 in colorectal carcinoma might not be associated with its biological behaviors.CONCLUSION: The down-regulation of p21WAF1 transcription is involved in the tumorigenesis and development of colorectal carcinoma. The down-expression of p21WAF1 mRNA in colorectal carcinoma might be associated with histone hypoacetylation in chromatin but not with biological behaviors.

  14. Deciphering Noncoding RNA and Chromatin Interactions: Multiplex Chromatin Interaction Analysis by Paired-End Tag Sequencing (mChIA-PET).

    Science.gov (United States)

    Choy, Jocelyn; Fullwood, Melissa J

    2017-01-01

    Genomic DNA is dynamically associated with protein factors and folded to form chromatin fibers. The 3-dimensional (3D) configuration of the chromatin will enable the distal genetic elements to come into close proximity, allowing transcriptional regulation. Noncoding RNA can mediate the 3D structure of chromatin. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) is a valuable and powerful technique in molecular biology which allows the study of unbiased, genome-wide de novo chromatin interactions with paired-end tags. Here, we describe the standard version of ChIA-PET and a Multiplex ChIA-PET version. PMID:27662871

  15. Sibling Structure and Intergenerational Relations.

    Science.gov (United States)

    Spitze, Glenna; Logan, John R.

    1991-01-01

    Examined effects of adult siblings' number, gender, and birth order on their relationships with parents. Analyses showed no evidence for effects of sibling structure through effects on closeness to parents, attitudes about filial responsibilities, or attitudes about gender-typing of responsibilities. Number of siblings had consistent negative…

  16. Cas9 Functionally Opens Chromatin

    OpenAIRE

    Barkal, Amira A.; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K.; Sherwood, Richard I.

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding.

  17. Cas9 Functionally Opens Chromatin

    OpenAIRE

    Barkal, Amira A.; Srinivasan, Sharanya; Gifford, David K.; Sherwood, Richard I.; Hashimoto, Tatsunori Benjamin

    2015-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding.

  18. Cas9 Functionally Opens Chromatin.

    Directory of Open Access Journals (Sweden)

    Amira A Barkal

    Full Text Available Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding.

  19. Histone variants: key players of chromatin.

    Science.gov (United States)

    Biterge, Burcu; Schneider, Robert

    2014-06-01

    Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.

  20. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  1. Genome maintenance in the context of 4D chromatin condensation.

    Science.gov (United States)

    Yu, Sonia; Yang, Fan; Shen, Wen H

    2016-08-01

    The eukaryotic genome is packaged in the three-dimensional nuclear space by forming loops, domains, and compartments in a hierarchical manner. However, when duplicated genomes prepare for segregation, mitotic cells eliminate topologically associating domains and abandon the compartmentalized structure. Alongside chromatin architecture reorganization during the transition from interphase to mitosis, cells halt most DNA-templated processes such as transcription and repair. The intrinsically condensed chromatin serves as a sophisticated signaling module subjected to selective relaxation for programmed genomic activities. To understand the elaborate genome-epigenome interplay during cell cycle progression, the steady three-dimensional genome requires a time scale to form a dynamic four-dimensional and a more comprehensive portrait. In this review, we will dissect the functions of critical chromatin architectural components in constructing and maintaining an orderly packaged chromatin environment. We will also highlight the importance of the spatially and temporally conscious orchestration of chromatin remodeling to ensure high-fidelity genetic transmission. PMID:27098512

  2. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  3. Carbon Nanotubes and Related Structures

    Directory of Open Access Journals (Sweden)

    Kingsuk Mukhopadhyay

    2008-07-01

    Full Text Available Carbon nanotubes have attracted the fancy of many scientists world wide. The small dimensions,strength, and the remarkable physical properties of these structures make them a unique material with a whole range of promising applications. In this review, the structural aspects, the advantages and disadvantages of different for their procedures synthesis, the qualitative and quantitative estimation of carbon nanotubes by different analytical techniques, the present status on their applications as well as the current challenges faced in the application field, national, in particular DRDO, DMSRDE status, and interest in this field, have been discussed.Defence Science Journal, 2008, 58(4, pp.437-450, DOI:http://dx.doi.org/10.14429/dsj.58.1666

  4. Chromatin Regulators as a Guide for Cancer Treatment Choice.

    Science.gov (United States)

    Gurard-Levin, Zachary A; Wilson, Laurence O W; Pancaldi, Vera; Postel-Vinay, Sophie; Sousa, Fabricio G; Reyes, Cecile; Marangoni, Elisabetta; Gentien, David; Valencia, Alfonso; Pommier, Yves; Cottu, Paul; Almouzni, Geneviève

    2016-07-01

    The limited capacity to predict a patient's response to distinct chemotherapeutic agents is a major hurdle in cancer management. The efficiency of a large fraction of current cancer therapeutics (radio- and chemotherapies) is influenced by chromatin structure. Reciprocally, alterations in chromatin organization may affect resistance mechanisms. Here, we explore how the misexpression of chromatin regulators-factors involved in the establishment and maintenance of functional chromatin domains-can inform about the extent of docetaxel response. We exploit Affymetrix and NanoString gene expression data for a set of chromatin regulators generated from breast cancer patient-derived xenograft models and patient samples treated with docetaxel. Random Forest classification reveals specific panels of chromatin regulators, including key components of the SWI/SNF chromatin remodeler, which readily distinguish docetaxel high-responders and poor-responders. Further exploration of SWI/SNF components in the comprehensive NCI-60 dataset reveals that the expression inversely correlates with docetaxel sensitivity. Finally, we show that loss of the SWI/SNF subunit BRG1 (SMARCA4) in a model cell line leads to enhanced docetaxel sensitivity. Altogether, our findings point toward chromatin regulators as biomarkers for drug response as well as therapeutic targets to sensitize patients toward docetaxel and combat drug resistance. Mol Cancer Ther; 15(7); 1768-77. ©2016 AACR. PMID:27196757

  5. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... reassembly on nascent DNA strands. The aim of this review is to discuss how histones - new and old - are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms....

  6. Chromatin Flavors: Chromatin composition and domain organization in Drosophila melanogaster

    NARCIS (Netherlands)

    J.G. van Bemmel (Joke)

    2012-01-01

    textabstractChromatin was originally identified by W. Flemming in 1882 as not much more than the stainable substance of the cell nucleus. Flemming named this substance according to the Greek word “chroma”, meaning color. In 1911 chromatin was characterized as proteins, named histones, that were atta

  7. Influence of chromatin structure, antibiotics, and endogenous histone methylation on phosphorylation of histones H1 and H3 in the presence of protein kinase A in rat liver nuclei in vitro.

    Science.gov (United States)

    Prusov, A N; Smirnova, T A; Kolomijtseva, G Ya

    2013-02-01

    In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-³²P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100-200 nm; N-1) and partly decondensed (diameter of fibrils ~30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4-7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin

  8. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Wioletta Czaja

    2012-09-01

    Full Text Available DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo.

  9. A symmetry-related sequence-structure relation of proteins

    Institute of Scientific and Technical Information of China (English)

    XU Ruizhen; LI Mingfen; CHEN Hanlin; HUANG Yanzhao; XIAO Yi

    2005-01-01

    Proteins have regular tertiary structures but irregular amino acid sequences. This made it very difficult to decode the structural information in the protein sequences. Here we demonstrate that many small αprotein domains have hidden sequence symmetries characteristic of their pseudo-symmetric tertiary structures. We also present a modified method of recurrent plot to reveal this kind of the hidden sequence symmetry. The results may enable us to understand part of the relations between protein sequences and their tertiary structures.

  10. Preliminary study of sperm chromatin characteristics of the brachyuran crab Maja brachydactyla. Histones and nucleosome-like structures in decapod crustacean sperm nuclei previously described without SNBPs.

    Science.gov (United States)

    Kurtz, K; Ausió, J; Chiva, M

    2009-10-01

    An interesting characteristic of decapod crustacean sperm nuclei is that they do not contain highly packaged chromatin. In the present study we re-examine the presence of DNA-interacting proteins in sperm nuclei of the brachyuran Maja brachydactyla. Although previous reports have indicated that, unlike the majority of sperm cells, DNA of decapod sperm is not organized by basic proteins, in this work we show that: (1) histones are present in sperm of M. brachydactyla; (2) histones are associated with sperm DNA; (3) histone H3 appears in lower proportions than the other core histones, while histone H2B appears in higher proportions; and (4) histone H3 in sperm nuclei is acetylated. This work complements a previous study of sperm histones of Cancer pagurus and supports the suggestion that decapod crustacean sperm chromatin deserves further attention. PMID:19324386

  11. Hybrid Tourism-Related Structures

    DEFF Research Database (Denmark)

    Pasgaard, Jens Christian

    2014-01-01

    This article is rooted in theories presented in the PhD dissertation Tourism and Strategic Planning (Pasgaard 2012) and features a number of much discussed concepts related to the complicated phenomenon of tourism and to the discipline of strategic urban planning. It is beyond the scope...... of this article to enter a detailed discussion of all mentioned concepts; however, it is important to set the stage by providing a few compressed notes on the overall approach to the phenomenon of tourism. Corresponding to the fluid transition between chores of everyday life and tourism behavior, the tourist...... space is not an unequivocal spatial specification. Rather, tourist space is a temporary condition, which depends on tourism activity and the mode of the observer. It is essential to understand and accept the liquidity of the tourism phenomenon and remember that tourism behavior and tourist space...

  12. Epigenetics & chromatin: Interactions and processes

    NARCIS (Netherlands)

    S. Henikoff (Steven); F.G. Grosveld (Frank)

    2013-01-01

    textabstractOn 11 to 13 March 2013, BioMed Central will be hosting its inaugural conference, Epigenetics & Chromatin: Interactions and Processes, at Harvard Medical School, Cambridge, MA, USA. Epigenetics & Chromatin has now launched a special article series based on the general themes of the confer

  13. Interaction and conformational changes of chromatin with divalent ions.

    OpenAIRE

    Borochov, N; Ausio, J; Eisenberg, H

    1984-01-01

    We have investigated the interaction of divalent ions with chromatin towards a closer understanding of the role of metal ions in the cell nucleus. The first row transition metal ion chlorides MnCl2, CoCl2, NiCl2 and CuCl2 lead to precipitation of chicken erythrocyte chromatin at a significantly lower concentration than the alkali earth metal chlorides MgCl2, CaCl2 and BaCl2. A similar distinction can be made for the compaction of chromatin to the "30 nm" solenoid higher order structure which ...

  14. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    Science.gov (United States)

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  15. Chromatin regulation in drug addiction and depression

    OpenAIRE

    Renthal, William; Nestler, Eric J.

    2009-01-01

    Alterations in gene expression are implicated in the pathogenesis of several neuropsychiatrie disorders, including drug addiction and depression, increasing evidence indicates that changes in gene expression in neurons, in the context of animal models of addiction and depression, are mediated in part by epigenetic mechanisms that alter chromatin structure on specific gene promoters. This review discusses recent findings from behavioral, molecular, and bioinformatic approaches that are being u...

  16. R-loop: an emerging regulator of chromatin dynamics

    Institute of Scientific and Technical Information of China (English)

    Qais Al-Hadid; Yanzhong Yang

    2016-01-01

    The dynamic structure of chromatin,which exists in two conformational states:heterochromatin and euchromatin,alters the accessibility of the DNA to regulatory factors during transcription,replication,recombination,and DNA damage repair.Chemical modifications of histones and DNA,as well as adenosine triphospahate-dependent nucleosome remodeling,have been the major focus of research on chromatin dynamics over the past two decades.However,recent studies using a DNA-RNA hybrid-specific antibody and next-generation seque,ncing approaches have revealed that the formation of R-loops,one of the most common non-canonical DNA structures,is an emerging regulator of chromatin states.This review focuses on recent insights into the interplay between R-loop formation and the epigenetic modifications of chromatin in normal and disease states.

  17. Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin.

    Science.gov (United States)

    Bandaria, Jigar N; Qin, Peiwu; Berk, Veysel; Chu, Steven; Yildiz, Ahmet

    2016-02-11

    Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, but not by DNA methylation, histone deacetylation, or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres accumulate DDR signals and become more accessible to telomere-associated proteins. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery. PMID:26871633

  18. PREDICTION OF CHROMATIN STATES USING DNA SEQUENCE PROPERTIES

    KAUST Repository

    Bahabri, Rihab R.

    2013-06-01

    Activities of DNA are to a great extent controlled epigenetically through the internal struc- ture of chromatin. This structure is dynamic and is influenced by different modifications of histone proteins. Various combinations of epigenetic modification of histones pinpoint to different functional regions of the DNA determining the so-called chromatin states. How- ever, the characterization of chromatin states by the DNA sequence properties remains largely unknown. In this study we aim to explore whether DNA sequence patterns in the human genome can characterize different chromatin states. Using DNA sequence motifs we built binary classifiers for each chromatic state to eval- uate whether a given genomic sequence is a good candidate for belonging to a particular chromatin state. Of four classification algorithms (C4.5, Naive Bayes, Random Forest, and SVM) used for this purpose, the decision tree based classifiers (C4.5 and Random Forest) yielded best results among those we evaluated. Our results suggest that in general these models lack sufficient predictive power, although for four chromatin states (insulators, het- erochromatin, and two types of copy number variation) we found that presence of certain motifs in DNA sequences does imply an increased probability that such a sequence is one of these chromatin states.

  19. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    Directory of Open Access Journals (Sweden)

    Timsy Uppal

    2015-01-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.

  20. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uppal, Timsy [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Jha, Hem C. [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Verma, Subhash C. [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Robertson, Erle S., E-mail: erle@mail.med.upenn.edu [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)

    2015-01-14

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.

  1. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    International Nuclear Information System (INIS)

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle

  2. Tracking the mechanical dynamics of human embryonic stem cell chromatin

    Directory of Open Access Journals (Sweden)

    Hinde Elizabeth

    2012-12-01

    Full Text Available Abstract Background A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. Results We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs are modulated spatiotemporally during differentiation into cardiomyocytes (CM. Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. Conclusions We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method.

  3. Chromatin, epigenetics and stem cells.

    Science.gov (United States)

    Roloff, Tim C; Nuber, Ulrike A

    2005-03-01

    Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control. PMID:15819395

  4. Vernalization-mediated chromatin changes.

    Science.gov (United States)

    Zografos, Brett R; Sung, Sibum

    2012-07-01

    Proper flowering time is vital for reproductive fitness in flowering plants. In Arabidopsis, vernalization is mediated primarily through the repression of a MADS box transcription factor, FLOWERING LOCUS C (FLC). The induction of a plant homeodomain-containing protein, VERNALIZATION INSENSITIVE 3 (VIN3), by vernalizing cold is required for proper repression of FLC. One of a myriad of changes that occurs after VIN3 is induced is the establishment of FLC chromatin at a mitotically repressed state due to the enrichment of repressive histone modifications. VIN3 induction by cold is the earliest known event during the vernalization response and includes changes in histone modifications at its chromatin. Here, the current understanding of the vernalization-mediated chromatin changes in Arabidopsis is discussed, with a focus on the roles of shared chromatin-modifying machineries in regulating VIN3 and FLC gene family expression during the course of vernalization.

  5. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2008-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on t

  6. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I;

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle....... The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results...... in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III...

  7. Minor groove binder distamycin remodels chromatin but inhibits transcription.

    Directory of Open Access Journals (Sweden)

    Parijat Majumder

    Full Text Available The condensed structure of chromatin limits access of cellular machinery towards template DNA. This in turn represses essential processes like transcription, replication, repair and recombination. The repression is alleviated by a variety of energy dependent processes, collectively known as "chromatin remodeling". In a eukaryotic cell, a fine balance between condensed and de-condensed states of chromatin helps to maintain an optimum level of gene expression. DNA binding small molecules have the potential to perturb such equilibrium. We present herein the study of an oligopeptide antibiotic distamycin, which binds to the minor groove of B-DNA. Chromatin mobility assays and circular dichroism spectroscopy have been employed to study the effect of distamycin on chromatosomes, isolated from the liver of Sprague-Dawley rats. Our results show that distamycin is capable of remodeling both chromatosomes and reconstituted nucleosomes, and the remodeling takes place in an ATP-independent manner. Binding of distamycin to the linker and nucleosomal DNA culminates in eviction of the linker histone and the formation of a population of off-centered nucleosomes. This hints at a possible corkscrew type motion of the DNA with respect to the histone octamer. Our results indicate that distamycin in spite of remodeling chromatin, inhibits transcription from both DNA and chromatin templates. Therefore, the DNA that is made accessible due to remodeling is either structurally incompetent for transcription, or bound distamycin poses a roadblock for the transcription machinery to advance.

  8. Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays

    Directory of Open Access Journals (Sweden)

    Yu Jingjing

    2011-11-01

    Full Text Available Abstract Background The processes that compose expression of a given gene are far more complex than previously thought presenting unprecedented conceptual and mechanistic challenges that require development of new tools. Chromatin structure, which is regulated by DNA methylation and histone modification, is at the center of gene regulation. Immunoprecipitations of chromatin (ChIP and methylated DNA (MeDIP represent a major achievement in this area that allow researchers to probe chromatin modifications as well as specific protein-DNA interactions in vivo and to estimate the density of proteins at specific sites genome-wide. Although a critical component of chromatin structure, DNA methylation has often been studied independently of other chromatin events and transcription. Results To allow simultaneous measurements of DNA methylation with other genomic processes, we developed and validated a simple and easy-to-use high throughput microplate-based platform for analysis of DNA methylation. Compared to the traditional beads-based MeDIP the microplate MeDIP was more sensitive and had lower non-specific binding. We integrated the MeDIP method with a microplate ChIP assay which allows measurements of both DNA methylation and histone marks at the same time, Matrix ChIP-MeDIP platform. We illustrated several applications of this platform to relate DNA methylation, with chromatin and transcription events at selected genes in cultured cells, human cancer and in a model of diabetic kidney disease. Conclusion The high throughput capacity of Matrix ChIP-MeDIP to profile tens and potentially hundreds of different genomic events at the same time as DNA methylation represents a powerful platform to explore complex genomic mechanism at selected genes in cultured cells and in whole tissues. In this regard, Matrix ChIP-MeDIP should be useful to complement genome-wide studies where the rich chromatin and transcription database resources provide fruitful foundation

  9. In vitro binding of nitracrine to DNA in chromatin.

    Science.gov (United States)

    Wilmańska, D; Szmigiero, L; Gniazdowski, M

    1989-01-01

    In the presence of sulfhydryl compounds nitracrine, an anticancer drug, binds covalently to DNA. The accessibility of DNA in chromatin both to nitracrine and to 8-methoxypsoralen, which was used as a reference compound in this study, when assayed in NaCl concentrations from 0 to 2 M show similar characteristics. The initial decrease reaches a minimum at 0.15 M NaCl above which dissociation of non-histone proteins and histones at higher ionic strengths is demonstrated by an increase in accessible sites. The relative accessibility of DNA in chromatin to nitracrine is, however, lower than that found for 8-methoxypsoralen. Partial dissociation of chromatin with 0.7 M NaCl increases the accessibility of DNA in chromatin when assayed in the absence of NaCl but has no apparent influence when estimated at ionic strength close to physiological conditions. PMID:2742691

  10. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima;

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin....... Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309¿, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing....

  11. Ectopically tethered CP190 induces large-scale chromatin decondensation

    Science.gov (United States)

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.

  12. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner

    DEFF Research Database (Denmark)

    Alexiadis, V; Waldmann, T; Andersen, Jens S.;

    2000-01-01

    The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology...

  13. Algebraic and geometric structures of Special Relativity

    OpenAIRE

    Giulini, Domenico

    2006-01-01

    I review, some of the algebraic and geometric structures that underlie the theory of Special Relativity. This includes a discussion of relativity as a symmetry principle, derivations of the Lorentz group, its composition law, its Lie algebra, comparison with the Galilei group, Einstein synchronization, the lattice of causally and chronologically complete regions in Minkowski space, rigid motion (the Noether-Herglotz theorem), and the geometry of rotating reference frames. Representation-theor...

  14. Direct Measurement of Local Chromatin Fluidity Using Optical Trap Modulation Force Spectroscopy

    OpenAIRE

    Roopa, T.; Shivashankar, G. V.

    2006-01-01

    Chromatin assembly is condensed by histone tail-tail interactions and other nuclear proteins into a highly compact structure. Using an optical trap modulation force spectroscopy, we probe the effect of tail interactions on local chromatin fluidity. Chromatin fibers, purified from mammalian cells, are tethered between a microscope coverslip and a glass micropipette. Mechanical unzipping of tail interactions, using the micropipette, lead to the enhancement of local fluidity. This is measured us...

  15. General relativity and cosmic structure formation

    CERN Document Server

    Adamek, Julian; Durrer, Ruth; Kunz, Martin

    2015-01-01

    Numerical simulations are a versatile tool providing insight into the complicated process of structure formation in cosmology. This process is mainly governed by gravity, which is the dominant force on large scales. To date, a century after the formulation of general relativity, numerical codes for structure formation still employ Newton's law of gravitation. This approximation relies on the two assumptions that gravitational fields are weak and that they are only sourced by non-relativistic matter. While the former appears well justified on cosmological scales, the latter imposes restrictions on the nature of the "dark" components of the Universe (dark matter and dark energy) which are, however, poorly understood. Here we present the first simulations of cosmic structure formation using equations consistently derived from general relativity. We study in detail the small relativistic effects for a standard {\\Lambda}CDM cosmology which cannot be obtained within a purely Newtonian framework. Our particle-mesh N...

  16. Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes

    International Nuclear Information System (INIS)

    Whey Acidic Protein (WAP) gene expression is specific to the mammary gland and regulated by lactogenic hormones to peak during lactation. It differs markedly from the more constitutive expression of the two flanking genes, Ramp3 and Tbrg4. Our results show that the tight regulation of WAP gene expression parallels variations in the chromatin structure and DNA methylation profile throughout the Ramp3-WAP-Tbrg4 locus. Three Matrix Attachment Regions (MAR) have been predicted in this locus. Two of them are located between regions exhibiting open and closed chromatin structures in the liver. The third, located around the transcription start site of the Tbrg4 gene, interacts with topoisomerase II in HC11 mouse mammary cells, and in these cells anchors the chromatin loop to the nuclear matrix. Furthermore, if lactogenic hormones are present in these cells, the chromatin loop surrounding the WAP gene is more tightly attached to the nuclear structure, as observed after a high salt treatment of the nuclei and the formation of nuclear halos. Taken together, our results point to a combination of several epigenetic events that may explain the differential expression pattern of the WAP locus in relation to tissue and developmental stages

  17. Guarding against Collateral Damage during Chromatin Transactions

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Lukas, Jiri

    2013-01-01

    Signal amplifications are vital for chromatin function, yet they also bear the risk of transforming into unrestrained, self-escalating, and potentially harmful responses. Examples of inbuilt limitations are emerging, revealing how chromatin transactions are confined within physiological boundaries....

  18. Restoring chromatin after replication: How new and old histone marks come together

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    replication and chromatin assembly processes in time and space. Dynamic recycling and de novo deposition of histones are fundamental for chromatin restoration. Histone post-translational modifications (PTMs) are thought to have a causal role in establishing distinct chromatin structures. Here we discuss PTMs...... present on new and parental histones and how they influence genome stability and restoration of epigenetically defined domains. Newly deposited histones must change their signature in the process of chromatin restoration, this may occur in a step-wise fashion involving replication-coupled processes...... and information from recycled parental histones....

  19. Structure-Property Relations in Nonferrous Metals

    Science.gov (United States)

    Russell, Alan; Loong Lee, Kok

    2005-05-01

    A long-awaited text that fills the void in non-ferrous metallurgy literature While most undergraduate metallurgy textbooks focus on iron, the most commercially important metallic element, Structure-Property Relations in Nonferrous Metals is a comprehensive textbook covering the remaining eighty-two nonferrous metals. Designed to be readily accessible to materials engineering students at all academic levels, the text describes the relationships between the atomic-, crystal-, and micro-structures of nonferrous metals, and such physical behaviors as strength, ductility, electrical conductivity, and corrosion. In order to capture and retain students' interest, the authors maintain a strong focus on practical application. Each chapter supplements fundamental concepts with engaging examples from actual engineering case studies and industrial projects, directly relating content to real-world application. Part One describes the general concepts of crystal- and micro-structures and the implications of these structures for the mechanical, thermal, and electronic properties of nonferrous metals, intermetallic compounds, and metal matrix composites. Chapters focus on such relevant topics as: Point, line, and planar defects and their effects on a material's properties Dislocations and strengthening mechanisms Fracture and fatigue Strain rate effects and creep Deviations from classic crystallinity Processing methods Composites and intermetallic compounds Part Two builds on Part One by exploring how the concepts presented define the properties of a particular metallic element and its alloys, and how these properties contribute to the engineering uses of each nonferrous metal. An accompanying ftp site contains homework problems, appendices, bibliographies, and tables of data indicating the nations producing metallic elements and the quantities produced. Structure-Property Relations in Nonferrous Metals is a valuable reference for both students in undergraduate metallurgy courses

  20. Predicting chromatin organization using histone marks

    OpenAIRE

    Huang, Jialiang; Marco, Eugenio; Pinello, Luca; Yuan, Guo-Cheng

    2015-01-01

    Genome-wide mapping of three dimensional chromatin organization is an important yet technically challenging task. To aid experimental effort and to understand the determinants of long-range chromatin interactions, we have developed a computational model integrating Hi-C and histone mark ChIP-seq data to predict two important features of chromatin organization: chromatin interaction hubs and topologically associated domain (TAD) boundaries. Our model accurately and robustly predicts these feat...

  1. Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling.

    Directory of Open Access Journals (Sweden)

    Mariliis Tark-Dame

    2014-10-01

    Full Text Available Folding of the chromosomal fibre in interphase nuclei is an important element in the regulation of gene expression. For instance, physical contacts between promoters and enhancers are a key element in cell-type-specific transcription. We know remarkably little about the principles that control chromosome folding. Here we explore the view that intrachromosomal interactions, forming a complex pattern of loops, are a key element in chromosome folding. CTCF and cohesin are two abundant looping proteins of interphase chromosomes of higher eukaryotes. To investigate the role of looping in large-scale (supra Mb folding of human chromosomes, we knocked down the gene that codes for CTCF and the one coding for Rad21, an essential subunit of cohesin. We measured the effect on chromosome folding using systematic 3D fluorescent in situ hybridization (FISH. Results show that chromatin becomes more compact after reducing the concentration of these two looping proteins. The molecular basis for this counter-intuitive behaviour is explored by polymer modelling usingy the Dynamic Loop model (Bohn M, Heermann DW (2010 Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS ONE 5: e12218.. We show that compaction can be explained by selectively decreasing the number of short-range loops, leaving long-range looping unchanged. In support of this model prediction it has recently been shown by others that CTCF and cohesin indeed are responsible primarily for short-range looping. Our results suggest that the local and the overall changes in of chromosome structure are controlled by a delicate balance between short-range and long-range loops, allowing easy switching between, for instance, open and more compact chromatin states.

  2. Temporal profiling of the chromatin proteome reveals system-wide responses to replication inhibition

    DEFF Research Database (Denmark)

    Khoudoli, Guennadi A; Gillespie, Peter J; Stewart, Graeme;

    2008-01-01

    Although the replication, expression, and maintenance of DNA are well-studied processes, the way that they are coordinated is poorly understood. Here, we report an analysis of the changing association of proteins with chromatin (the chromatin proteome) during progression through interphase...... of the cell cycle. Sperm nuclei were incubated in Xenopus egg extracts, and chromatin-associated proteins were analyzed by mass spectrometry at different times. Approximately 75% of the proteins varied in abundance on chromatin by more than 15%, suggesting that the chromatin proteome is highly dynamic....... Proteins were then assigned to one of 12 different clusters on the basis of their pattern of chromatin association. Each cluster contained functional groups of proteins involved in different nuclear processes related to progression through interphase. We also blocked DNA replication by inhibiting either...

  3. General relativity and cosmic structure formation

    Science.gov (United States)

    Adamek, Julian; Daverio, David; Durrer, Ruth; Kunz, Martin

    2016-04-01

    Numerical simulations are a versatile tool for providing insight into the complicated process of structure formation in cosmology. This process is mainly governed by gravity, which is the dominant force on large scales. At present, a century after the formulation of general relativity, numerical codes for structure formation still employ Newton’s law of gravitation. This approximation relies on the two assumptions that gravitational fields are weak and that they originate from non-relativistic matter. Whereas the former seems well justified on cosmological scales, the latter imposes restrictions on the nature of the `dark’ components of the Universe (dark matter and dark energy), which are, however, poorly understood. Here we present the first simulations of cosmic structure formation using equations consistently derived from general relativity. We study in detail the small relativistic effects for a standard lambda cold dark matter cosmology that cannot be obtained within a purely Newtonian framework. Our particle-mesh N-body code computes all six degrees of freedom of the metric and consistently solves the geodesic equation for particles, taking into account the relativistic potentials and the frame-dragging force. This conceptually clean approach is very general and can be applied to various settings where the Newtonian approximation fails or becomes inaccurate, ranging from simulations of models with dynamical dark energy or warm/hot dark matter to core collapse supernova explosions.

  4. Prediction of highly expressed genes in microbes based on chromatin accessibility

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2007-01-01

    BACKGROUND: It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed...

  5. Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in S. cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Mette Moesgaard; Christensen, Marianne Skovgaard; Bonven, Bjarne Juul;

    2008-01-01

    , but not Asf1p, reassociation of H3 with DNA is compromised. However, despite a lasting open chromatin structure, transcription ceases normally in the spt6 mutant. Thus, transcriptional downregulation can be uncoupled from histone redepositioning and ongoing transcription is not required to prevent chromatin...

  6. Long Noncoding RNAs, Chromatin, and Development

    Directory of Open Access Journals (Sweden)

    Daniel P. Caley

    2010-01-01

    Full Text Available The way in which the genome of a multicellular organism can orchestrate the differentiation of trillions of cells and many organs, all from a single fertilized egg, is the subject of intense study. Different cell types can be defined by the networks of genes they express. This differential expression is regulated at the epigenetic level by chromatin modifications, such as DNA and histone methylation, which interact with structural and enzymatic proteins, resulting in the activation or silencing of any given gene. While detailed mechanisms are emerging on the role of different chromatin modifications and how these functions are effected at the molecular level, it is still unclear how their deposition across the epigenomic landscape is regulated in different cells. A raft of recent evidence is accumulating that implicates long noncoding RNAs (lncRNAs in these processes. Most genomes studied to date undergo widespread transcription, the majority of which is not translated into proteins. In this review, we will describe recent work suggesting that lncRNAs are more than transcriptional "noise", but instead play a functional role by acting as tethers and guides to bind proteins responsible for modifying chromatin and mediating their deposition at specific genomic locations. We suggest that lncRNAs are at the heart of developmental regulation, determining the epigenetic status and transcriptional network in any given cell type, and that they provide a means to integrate external differentiation cues with dynamic nuclear responses through the regulation of a metastable epigenome. Better characterization of the lncRNA-protein "interactome" may eventually lead to a new molecular toolkit, allowing researchers and clinicians to modulate the genome at the epigenetic level to treat conditions such as cancer.

  7. Canopy Structure in Relation to Rainfall Interception

    Science.gov (United States)

    Fathizadeh, Omid; Mohsen Hosseini, Seyed; Keim, Richard

    2016-04-01

    Spatial variation of throughfall (TF) is linked to canopy structure. The effects of canopy structure on the spatial redistribution of rainfall in deciduous stands remains poorly documented. Therefore, the objective of this study is to evaluate the influence of canopy structure such as stand density on the partitioning of incident rainfall when passing through the canopy of Brant's oak (Quercus branti) forest stands. The study site is the Zagros forests in the western Iranian state of Ilam, protected forests of Dalab region. Twelve TF plots (50 m × 50 m) with 30 gauges randomly placed within each plot were established. Interception loss was computed as the difference between rain and TF. Canopy cover (%) and leaf area index (LAI, m2 m‑2) were estimated from the analysis of hemispherical photographs obtained during the fully leafed period. Relative interception varied from ˜4% at 0.1 LAI and canopy cover of 10% to ˜25% at 1.5 LAI and canopy cover of 65%. Interception represents a significant component of the seasonal water balance of oak forests, particularly in the case of intensive plantings. Keywords: Canopy Structure, Rainfall redistribution, Zagros forests, Quercus branti

  8. The yeast chromatin remodeler Rsc1-RSC complex is required for transcriptional activation of autophagy-related genes and inhibition of the TORC1 pathway in response to nitrogen starvation.

    Science.gov (United States)

    Yu, Feifei; Imamura, Yuko; Ueno, Masaru; Suzuki, Sho W; Ohsumi, Yoshinori; Yukawa, Masashi; Tsuchiya, Eiko

    2015-09-01

    The yeast RSC, an ATP-dependent chromatin-remodeling complex, is essential for mitotic and meiotic growth. There are two distinct isoforms of this complex defined by the presence of either Rsc1 or Rsc2; however, the functional differences between these complexes are unclear. Here we show that the RSC complex containing Rsc1, but not Rsc2, functions in autophagy induction. Rsc1 was required not only for full expression of ATG8 mRNA but also for maintenance of Atg8 protein stability. Interestingly, decreased autophagic activity and Atg8 protein stability in rsc1Δ cells, but not the defect in ATG8 mRNA expression, were partially suppressed by deletion of TOR1. In addition, we found that rsc1Δ impaired the binding between the Rho GTPase Rho1 and the TORC1-specific component Kog1, which is required for down-regulation of TORC1 activity. These results suggest that the Rsc1-containing RSC complex plays dual roles in the proper induction of autophagy: 1) the transcriptional activation of autophagy-related genes independent of the TORC1 pathway and 2) the inactivation of TORC1, possibly through enhancement of Rho1-Kog1 binding.

  9. Metabolomics reveals a role for the chromatin-binding protein HMGN5 in glutathione metabolism.

    Directory of Open Access Journals (Sweden)

    Eric D Ciappio

    Full Text Available High mobility group nucleosome-binding protein 5 (HMGN5 is a chromatin architectural protein that binds specifically to nucleosomes and reduces the compaction of the chromatin fiber. The protein is present in most vertebrate tissues however the physiological function of this protein is unknown. To examine the function of HMGN5 in vivo, mice lacking the nucleosome-binding domain of HMGN5 were generated and characterized. Serological analysis revealed that compared to wild-type littermates (Hmgn5(+/Y, mice with a targeted mutation in the HMGN5 gene (Hmgn5(tm1/Y, had elevated serum albumin, non-HDL cholesterol, triglycerides, and alanine transaminase, suggesting mild hepatic abnormalities. Metabolomics analysis of liver extracts and urine revealed clear differences in metabolites between Hmgn5(tm1/Y and their Hmgn5(+/Y littermates. Hmgn5(tm1/Y mice had a significant increase in hepatic glutathione levels and decreased urinary concentrations of betaine, phenylacetylglycine, and creatine, all of which are metabolically related to the glutathione precursor glycine. Microarray and qPCR analysis revealed that expression of two genes affecting glutathione metabolism, glutathione peroxidase 6 (Gpx6 and hexokinase 1 (Hk1, was significantly decreased in Hmgn5(tm1/Y mouse liver tissue. Analysis of chromatin structure by DNase I digestion revealed alterations in the chromatin structure of these genes in the livers of Hmgn5(tm1/Y mice. Thus, functional loss of HMGN5 leads to changes in transcription of Gpx6 and Hk1 that alter glutathione metabolism.

  10. Retention of the Native Epigenome in Purified Mammalian Chromatin.

    Directory of Open Access Journals (Sweden)

    Andreas H Ehrensberger

    Full Text Available A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.

  11. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis

    Directory of Open Access Journals (Sweden)

    Jialei Hu

    2015-12-01

    Full Text Available Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  12. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  13. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    Science.gov (United States)

    Kotomura, Naoe; Harada, Nobuhiro; Ishihara, Satoru

    2015-01-01

    The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin.

  14. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    Science.gov (United States)

    Kotomura, Naoe; Harada, Nobuhiro; Ishihara, Satoru

    2015-01-01

    The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin. PMID:26020632

  15. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    Directory of Open Access Journals (Sweden)

    Naoe Kotomura

    Full Text Available The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin.

  16. Chromatin Dynamics of Circadian Transcription

    OpenAIRE

    Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo

    2015-01-01

    The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intrigui...

  17. Trichostatin A induced histone acetylation causes decondensation of interphase chromatin.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Wachsmuth (Malte); M. Frank-Stöhr (Monika); M. Stöhr (Michael); C.P. Bacher (Christian); K. Rippe (Karsten)

    2004-01-01

    textabstractThe effect of trichostatin A (TSA)-induced histone acetylation on the interphase chromatin structure was visualized in vivo with a HeLa cell line stably expressing histone H2A, which was fused to enhanced yellow fluorescent protein. The globally increased histone acetylation caused a rev

  18. On the mechanochemical machinery underlying chromatin remodeling

    Science.gov (United States)

    Yusufaly, Tahir I.

    This dissertation discuss two recent efforts, via a unique combination of structural bioinformatics and density functional theory, to unravel some of the details concerning how molecular machinery within the eukaryotic cell nucleus controls chromatin architecture. The first, a study of the 5-methylation of cytosine in 5'-CG-3' : 5'-CG-3' base-pair steps, reveals that the methyl groups roughen the local elastic energy landscape of the DNA. This enhances the probability of the canonical B-DNA structure transitioning into the undertwisted A-like and overtwisted C-like forms seen in nucleosomes, or looped segments of DNA bound to histones. The second part focuses on the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. The arginine residues are ob- served to apply a tunable mechanical load to the backbone, enabling precision-controlled activation of DNA deformations.

  19. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  20. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Jenna [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); Ekwall, Karl, E-mail: karl.ekwall@ki.se [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); School of Life Sciences, University College Sodertorn, NOVUM, Huddinge (Sweden)

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  1. Relations Between Permeability and Structure of Wood

    Institute of Scientific and Technical Information of China (English)

    Bao Fucheng; Zhao Youke; Lü Jianxiong

    2003-01-01

    The permeability and the structure of heartwood and sapwood of the solvent-exchange dried and the air-dried green-wood of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) were measured inorder to study the relations between the permeability and the structure. The results showed that the permeability of sapwood of boththe air-dried and the solvent-exchange dried wood was higher than that of heartwood, and the permeability of the solvent-exchangeddried heartwood and sapwood was higher than that of the air-dried. A higher permeability of wood was attributed to, on the one hand,a bigger number of flow path per unit area of the wood perpendicular to the flow direction resulted from a bigger number ofunaspirated pits per unit area and a bigger number of effective pit openings per membrane, and on the other hand, a smaller numberof tracheid in series connection per unit length parallel to flow direction resulted from a longer tracheid length and an effectivetracheid length for permeability.

  2. Prion protein: structural features and related toxicity

    Institute of Scientific and Technical Information of China (English)

    Ping Ping Hu; Cheng Zhi Huang

    2013-01-01

    Transmissible spongiform encephalopathies,or prion diseases,is a group of infectious neurodegenerative disorders.The conformational conversion from cellular form (PrPC) to disease-causing isoform (PrPSc) is considered to be the most important and remarkable event in these diseases,while accumulation of PrPSc is thought to be the main reason for cell death,inflammation and spongiform degeneration observed in infected individuals.Although these rare but unique neurodegenerative disorders have attracted much attention,there are still many questions that remain to be answered.Knowledge of the scrapie agent structures and the toxic species may have significance for understanding the causes of the diseases,and could be helpful for rational design of novel therapeutic and diagnostic methods.In this review,we summarized the available experimental evidence concerning the relationship among the structural features,aggregation status of misfolded PrP and related neurotoxicity in the course of prion diseases development.In particular,most data supports the idea that the smaller oligomeric PrPSc aggregates,rather than the mature amyloid fibers,exhibit the highest toxicity to the host.

  3. Structure of triadic relations in multiplex networks

    Science.gov (United States)

    Cozzo, Emanuele; Kivelä, Mikko; De Domenico, Manlio; Solé-Ribalta, Albert; Arenas, Alex; Gómez, Sergio; Porter, Mason A.; Moreno, Yamir

    2015-07-01

    Recent advances in the study of networked systems have highlighted that our interconnected world is composed of networks that are coupled to each other through different ‘layers’ that each represent one of many possible subsystems or types of interactions. Nevertheless, it is traditional to aggregate multilayer networks into a single weighted network in order to take advantage of existing tools. This is admittedly convenient, but it is also extremely problematic, as important information can be lost as a result. It is therefore important to develop multilayer generalizations of network concepts. In this paper, we analyze triadic relations and generalize the idea of transitivity to multiplex networks. By focusing on triadic relations, which yield the simplest type of transitivity, we generalize the concept and computation of clustering coefficients to multiplex networks. We show how the layered structure of such networks introduces a new degree of freedom that has a fundamental effect on transitivity. We compute multiplex clustering coefficients for several real multiplex networks and illustrate why one must take great care when generalizing standard network concepts to multiplex networks. We also derive analytical expressions for our clustering coefficients for ensemble averages of networks in a family of random multiplex networks. Our analysis illustrates that social networks have a strong tendency to promote redundancy by closing triads at every layer and that they thereby have a different type of multiplex transitivity from transportation networks, which do not exhibit such a tendency. These insights are invisible if one only studies aggregated networks.

  4. Dicer is associated with ribosomal DNA chromatin in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Lasse Sinkkonen

    Full Text Available BACKGROUND: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer(-/- ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. CONCLUSION/SIGNIFICANCE: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since the enzyme is associated with rDNA genes regardless of their transcriptional activity. However, localization of Dicer to the transcribed region suggests that transcription may contribute to the Dicer deposition at rDNA chromatin. We hypothesize that Dicer functions in maintaining integrity of rDNA arrays.

  5. Proteomics of a fuzzy organelle: interphase chromatin

    Science.gov (United States)

    Kustatscher, Georg; Hégarat, Nadia; Wills, Karen L H; Furlan, Cristina; Bukowski-Wills, Jimi-Carlo; Hochegger, Helfrid; Rappsilber, Juri

    2014-01-01

    Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology. PMID:24534090

  6. Chromatin Modification and Remodeling in Heart Development

    Directory of Open Access Journals (Sweden)

    Paul Delgado-Olguín

    2006-01-01

    Full Text Available In organogenesis, cell types are specified from determined precursors as morphogenetic patterning takes place. These events are largely controlled by tissue-specific transcription factors. These transcription factors must function within the context of chromatin to activate or repress target genes. Recent evidence suggests that chromatin-remodeling and -modifying factors may have tissue-specific function. Here we review the potential roles for chromatin-remodeling and -modifying proteins in the development of the mammalian heart.

  7. Rapid genome-scale mapping of chromatin accessibility in tissue

    Science.gov (United States)

    2012-01-01

    Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh). The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied across a broad range of

  8. Rapid genome-scale mapping of chromatin accessibility in tissue

    Directory of Open Access Journals (Sweden)

    Grøntved Lars

    2012-06-01

    Full Text Available Abstract Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh. The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied

  9. Sequence-structure relations of biopolymers

    CERN Document Server

    Barrett, Christopher; Reidys, Christian M

    2015-01-01

    Motivation: DNA data is transcribed into single-stranded RNA, which folds into specific molecular structures. In this paper we pose the question to what extent sequence- and structure-information correlate. We view this correlation as structural semantics of sequence data that allows for a different interpretation than conventional sequence alignment. Structural semantics could enable us to identify more general embedded "patterns" in DNA and RNA sequences. Results: We compute the partition function of sequences with respect to a fixed structure and connect this computation to the mutual information of a sequence-structure pair for RNA secondary structures. We present a Boltzmann sampler and obtain the a priori probability of specific sequence patterns. We present a detailed analysis for the three PDB-structures, 2JXV (hairpin), 2N3R (3-branch multi-loop) and 1EHZ (tRNA). We localize specific sequence patterns, contrast the energy spectrum of the Boltzmann sampled sequences versus those sequences that refold ...

  10. Nucleosomal organization of chromatin in sperm nuclei of the bivalve mollusc Aulacomya ater.

    Science.gov (United States)

    Olivares, C; Ruiz, S

    1991-03-13

    The sperm nuclei of Aulacomya ater, family Mitylidae, contain three proteins (X, Aa5 and Aa6) which are specific to this cell type coexisting with a set of five somatic-type histones. Information about the chromatin structure resulting from this kind of association is scarce. Therefore, we have probed the structure of this sperm chromatin through digestion with micrococcal nuclease in combination with salt fractionation. The data obtained have allowed us to propose a nucleosomal arrangement for this chromatin. However, two types of nucleosomes would be present in agreement with their protein components. PMID:1861676

  11. The architects of crenarchaeal chromatin : A biophysical characterization of chromatin proteins from Sulfolobus solfataricus

    NARCIS (Netherlands)

    Driessen, Rosalie Paula Catharina

    2014-01-01

    Understanding of chromatin organization and compaction in Archaea is currently limited. The genome of several megabasepairs long is folded by a set of small chromatin proteins to fit into the micron-sized cell. A first step in understanding archaeal chromatin organization is to study the action of i

  12. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes

    OpenAIRE

    Ura, Kiyoe; Araki, Marito; Saeki, Hideaki; Masutani, Chikahide; Ito, Takashi; Iwai, Shigenori; Mizukoshi, Toshimi; Kaneda, Yasufumi; Hanaoka, Fumio

    2001-01-01

    To investigate the relationship between chromatin dynamics and nucleotide excision repair (NER), we have examined the effect of chromatin structure on the formation of two major classes of UV-induced DNA lesions in reconstituted dinucleosomes. Furthermore, we have developed a model chromatin-NER system consisting of purified human NER factors and dinucleosome substrates that contain pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) either at the center of the nucleosome or in the linker DNA....

  13. A microscopic analysis of Arabidopsis chromatin

    NARCIS (Netherlands)

    Willemse, J.J.

    2007-01-01

    Genetic information of eukaryotic organisms is stored as DNA in the nuclei of their cells. Nuclear DNA is associated with several proteins, which together form chromatin. The most abundant chromatin proteins arehistones,they arrange the initial packaging step of the DNA. DNA

  14. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain;

    2007-01-01

    the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...

  15. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    -despite the fact that all cells in the organism contain the same genetic information. A large amount of data gathered over the last decades has demonstrated that deregulation of chromatin-modifying proteins is etiologically involved in the development and progression of cancer. Here we discuss how epigenetic...... alterations influence cancer development and review known cancer-associated alterations in chromatin-modifying proteins....

  16. A Long-Distance Chromatin Affair

    NARCIS (Netherlands)

    Denker, Annette; de Laat, Wouter

    2015-01-01

    Changes in transcription factor binding sequences result in correlated changes in chromatin composition locally and at sites hundreds of kilobases away. New studies demonstrate that this concordance is mediated via spatial chromatin interactions that constitute regulatory modules of the human genome

  17. Structure Selection from Streaming Relational Data

    CERN Document Server

    Mihalkova, Lilyana

    2011-01-01

    Statistical relational learning techniques have been successfully applied in a wide range of relational domains. In most of these applications, the human designers capitalized on their background knowledge by following a trial-and-error trajectory, where relational features are manually defined by a human engineer, parameters are learned for those features on the training data, the resulting model is validated, and the cycle repeats as the engineer adjusts the set of features. This paper seeks to streamline application development in large relational domains by introducing a light-weight approach that efficiently evaluates relational features on pieces of the relational graph that are streamed to it one at a time. We evaluate our approach on two social media tasks and demonstrate that it leads to more accurate models that are learned faster.

  18. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non......-parametric generative model for hierarchical clustering of similarity based on multifurcating Gibbs fragmentation trees. This allows us to infer and display the posterior distribution of hierarchical structures that comply with the data. We demonstrate the utility of our method on synthetic data and data of functional...

  19. Discovering Multidimensional Structure in Relational Data

    DEFF Research Database (Denmark)

    Jensen, Mikael Rune; Holmgren, Thomas; Pedersen, Torben Bach

    2004-01-01

    On-Line Analytical Processing (OLAP) systems based on multidimensional databases are essential elements of decision support. However, most existing data is stored in “ordinary” relational OLTP databases, i.e., data has to be (re-) modeled as multidimensional cubes before the advantages of OLAP to...... algorithms for discovering multidimensional schemas from relational databases. The algorithms take a wide range of available metadata into account in the discovery process, including functional and inclusion dependencies, and key and cardinality information....

  20. Subnational Government Structure and Intergovernmental Fiscal Relations

    OpenAIRE

    Jameson Boex; Jorge Martinez-Vazquez; Andrey Timofeev

    2004-01-01

    Many countries around the world are currently engaged in one way or another in policy debates or reforms of their system of intergovernmental fiscal relations. While the policy dynamics vary greatly from country to country, the focus of such reform efforts can generally be categorized into one of the four main dimensions of intergovernmental fiscal relations, namely the assignment of functional responsibilities (expenditure assignments), the assignment of revenue sources, the provision of int...

  1. Sense and antisense transcription are associated with distinct chromatin architectures across genes.

    Science.gov (United States)

    Murray, Struan C; Haenni, Simon; Howe, Françoise S; Fischl, Harry; Chocian, Karolina; Nair, Anitha; Mellor, Jane

    2015-09-18

    Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.

  2. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    Science.gov (United States)

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  3. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).

    Science.gov (United States)

    Soyer, Jessica L; Möller, Mareike; Schotanus, Klaas; Connolly, Lanelle R; Galazka, Jonathan M; Freitag, Michael; Stukenbrock, Eva H

    2015-06-01

    The presence or absence of specific transcription factors, chromatin remodeling machineries, chromatin modification enzymes, post-translational histone modifications and histone variants all play crucial roles in the regulation of pathogenicity genes. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) provides an important tool to study genome-wide protein-DNA interactions to help understand gene regulation in the context of native chromatin. ChIP-seq is a convenient in vivo technique to identify, map and characterize occupancy of specific DNA fragments with proteins against which specific antibodies exist or which can be epitope-tagged in vivo. We optimized existing ChIP protocols for use in the wheat pathogen Zymoseptoria tritici and closely related sister species. Here, we provide a detailed method, underscoring which aspects of the technique are organism-specific. Library preparation for Illumina sequencing is described, as this is currently the most widely used ChIP-seq method. One approach for the analysis and visualization of representative sequence is described; improved tools for these analyses are constantly being developed. Using ChIP-seq with antibodies against H3K4me2, which is considered a mark for euchromatin or H3K9me3 and H3K27me3, which are considered marks for heterochromatin, the overall distribution of euchromatin and heterochromatin in the genome of Z. tritici can be determined. Our ChIP-seq protocol was also successfully applied to Z. tritici strains with high levels of melanization or aberrant colony morphology, and to different species of the genus (Z. ardabiliae and Z. pseudotritici), suggesting that our technique is robust. The methods described here provide a powerful framework to study new aspects of chromatin biology and gene regulation in this prominent wheat pathogen.

  4. Relating transverse structure of various parton distributions

    CERN Document Server

    Maji, Tanmay; Chakrabarti, D; Teryaev, O V

    2015-01-01

    We present the results of T-even TMDs in a light front quark-diquark model of nucleons with the wave functions constructed from the soft-wall AdS/QCD prediction. The relations amongst TMDs are discussed. The $p_\\perp$ dependence of the TMDs are compared with the $t$-dependence of the GPDs. AdS/QCD wave function provides an explanation behind the approximate $x$ and $p_\\perp$ factorization observed in lattice TMD calculations.

  5. Interaction of the Arabidopsis UV-B-Specific Signaling Component UVR8 with Chromatin

    Institute of Scientific and Technical Information of China (English)

    Catherine Cloix; Gareth I.Jenkins

    2008-01-01

    Arabidopsis UV RESISTANCE LOCUS8 (UVR8) is a UV-B-specific signaling component that regulates expression of a range of genes concerned with UV protection. Here, we investigate the interaction of UVR8 with chromatin. Using antibodies specific to UVR8 in chromatin immunoprecipitation (CHIP) assays with wild-type plants, we show that native UVR8 binds to chromatin in vivo. Similar experiments using an anti-GFP antibody with plants expressing a GFP-UVR8 fusion show that UVR8 associates with a relatively small region of chromatin containing the HY5 gene. UVR8 interacts with chromatin containing the promoter regions of other genes, but not with all the genes it regulates. UV-B is not required for the interaction of UVR8 with chromatin because association with several gene loci is observed in the absence of UV-B. Pulldown assays demonstrate that UVR8 associates with histones in vivo and competition experiments indicate that the interaction is preferentially with histone H2B. ChIP experiments using antibodies that recognize specific histone modifications indicate that the UV-B-stimulated transcription of some genes may be correlated with histone modification. In particular, the ELIP1 promoter showed a significant enrichment of diacetyl histone H3 (K9/K14) following UV-B exposure.These findings increase understanding of the interaction of the key UV-B-specific regulator UVR8 with chromatin.

  6. Structure of Leptin Receptor Related with Obesity

    DEFF Research Database (Denmark)

    Toleikis, Zigmantas

    The hormone leptin is central to obesity, but the molecular processes underlying the activation of the leptin receptor are unknown. To further the understanding of the system, an atomic resolution structure of this cytokine type I receptor in the unbound inactive form and in the activated bound...... receptor, while the D5 domain is the central leptin-binding domain, implicated in the first steps of activation. Both domains are characterized by a fibronectin type III fold and both contain a conserved WSXWS motif (X represents an unconserved amino acid residue), a distinct feature of the cytokine...... receptors. This motif is thought to play a major role in correct folding and activation of the receptor. The complex between leptin and the D5CA domain was analyzed using nuclear magnetic resonance spectroscopy and the amino acid residues implicated in the binding were determined. To investigate which parts...

  7. Effect of saffron on rat sperm chromatin integrity

    OpenAIRE

    Mohammad Mardani; Ahmad Vaez; Shahnaz Razavi

    2014-01-01

    Background: Currently, relation between reactive oxygen species (ROS) ROS concentration and semen quality was indicated. Saffron has traditionally been not only considered as a food additive but also as a medicinal herb, which has a good antioxidant properties. Objective: The aim of this study was to evaluate the protection potency of saffron and vitamin E on sperm chromatin integrity. Materials and Methods: Thirty adult male Wistar rats divided equally into saffron (100 mg/kg), vitamin E (10...

  8. Chromatin Domains: The Unit of Chromosome Organization.

    Science.gov (United States)

    Dixon, Jesse R; Gorkin, David U; Ren, Bing

    2016-06-01

    How eukaryotic chromosomes fold inside the nucleus is an age-old question that remains unanswered today. Early biochemical and microscopic studies revealed the existence of chromatin domains and loops as a pervasive feature of interphase chromosomes, but the biological implications of such organizational features were obscure. Genome-wide analysis of pair-wise chromatin interactions using chromatin conformation capture (3C)-based techniques has shed new light on the organization of chromosomes in interphase nuclei. Particularly, the finding of cell-type invariant, evolutionarily conserved topologically associating domains (TADs) in a broad spectrum of cell types has provided a new molecular framework for the study of animal development and human diseases. Here, we review recent progress in characterization of such chromatin domains and delineation of mechanisms of their formation in animal cells. PMID:27259200

  9. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...

  10. Involvement of ZFPIP/Zfp462 in chromatin integrity and survival of P19 pluripotent cells

    Energy Technology Data Exchange (ETDEWEB)

    Masse, Julie; Laurent, Audrey; Nicol, Barbara; Guerrier, Daniel; Pellerin, Isabelle; Deschamps, Stephane [UMR CNRS 6061, Institut of Genetique et Developpement de Rennes (IGDR), Faculte de Medecine, Universite de Rennes 1, 35043 Rennes cedex (France)

    2010-04-15

    Toti- or pluripotent cells proliferation and/or differentiation have been shown to be strongly related to nuclear chromatin organization and structure over the last past years. We have recently identified ZFPIP/Zfp462 as a zinc finger nuclear factor necessary for correct cell division during early embryonic developmental steps of vertebrates. We thus questioned whether this factor was playing a general role during cell division or if it was somehow involved in embryonic cell fate or differentiation. To achieve this goal, we performed a knock-down experiment in the pluripotent P19 and differentiated 3T3 cell lines, both expressing endogenous ZFPIP/Zfp462. Using specific shRNA directed against ZFPIP/Zfp462 transcripts, we demonstrated that depletion of this protein induced cell death in P19 but had no effect in 3T3 cells. In addition, in the absence of the protein, the P19 cells exhibited a complete destructuration of pericentromeric domains associated with a redistribution of the HP1{alpha} proteins and an increase in DNA satellites transcribed RNAs level. These data suggested an instrumental role of ZFPIP/Zfp462 in maintaining the chromatin structure of pluripotent cells.

  11. Chromatin Dynamics During DNA Replication and Uncharacterized Replication Factors determined by Nascent Chromatin Capture (NCC) Proteomics

    Science.gov (United States)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Bau; Kustatscher, Georg; Nakamura, Kyosuke; de Lima Alves, Flavia; Menard, Patrice; Mejlvang, Jakob; Rappsilber, Juri; Groth, Anja

    2014-01-01

    SUMMARY To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use Nascent Chromatin Capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity-purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3995 proteins. The replication machinery and 485 chromatin factors like CAF-1, DNMT1, SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, while H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance. PMID:24561620

  12. Dancing on damaged chromatin. Functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage

    International Nuclear Information System (INIS)

    In order to preserve and protect genetic information, eukaryotic cells have developed a signaling or communications network to help the cell respond to DNA damage, and ATM and NBS1 are key players in this network. ATM is a protein kinase which is activated immediately after a DNA double strand break (DSB) is formed, and the resulting signal cascade generated in response to cellular DSBs is regulated by post-translational protein modifications such as phosphorylation and acetylation. In addition, to ensure the efficient functioning of DNA repair and cell cycle checkpoints, the highly ordered structure of eukaryotic chromatin must be appropriately altered to permit access of repair-related factors to DNA. These alterations are termed chromatin remodeling, and are executed by a specific remodeling complex in conjunction with histone modifications. Current advances in the molecular analysis of DNA damage responses have shown that the auto-phosphorylation of ATM and the interaction between ATM and NBS1 are key steps for ATM activation, and that the association of ATM and NBS1 is involved in chromatin remodeling. Identification of novel factors which function in ubiquitination (RNF8, Ubc13, Rap80, etc.) has also enabled us to understand more details of the early stages in DNA repair pathways which respond to DSBs. In this review, the focus is on the role of ATM and the RAD50/MRE11/NBS1 complex in DSB response pathways, and their role in DSB repair and in the regulation of chromatin remodeling. (author)

  13. Till disassembly do us part: a happy marriage of nuclear envelope and chromatin.

    Science.gov (United States)

    Tsuchiya, Yuichi

    2008-02-01

    A characteristic feature of eukaryotic cells is the presence of nuclear envelope (NE) which separates genomic DNA from cytoplasm. NE is composed of inner nuclear membrane (INM), which interacts with chromatin, and outer nuclear membrane, which is connected to endoplasmic reticulum. Nuclear pore complexes are inserted into NE to form transport channels between nucleus and cytoplasm. In metazoan cells, an intermediate filament-based meshwork called as nuclear lamina exists between INM and chromatin. Sophisticated collaboration of these molecular machineries is necessary for the structure and functions of NE. Recent research advances have revealed that NE dynamically communicates with chromatin and cytoskeleton to control multiple nuclear functions. In this mini review, I briefly summarize the basic concepts and current topics of functional relationships between NE and chromatin.

  14. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics

    Science.gov (United States)

    Aguilar, Carlos A.; Craighead, Harold G.

    2013-10-01

    Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin -- a dynamic complex of nucleic acids and proteins -- is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

  15. Spacetime Causal Structure and Dimension from Horismotic Relation

    Directory of Open Access Journals (Sweden)

    O. C. Stoica

    2016-01-01

    Full Text Available A reflexive relation on a set can be a starting point in defining the causal structure of a spacetime in General Relativity and other relativistic theories of gravity. If we identify this relation as the relation between lightlike separated events (the horismos relation, we can construct in a natural way the entire causal structure: causal and chronological relations, causal curves, and a topology. By imposing a simple additional condition, the structure gains a definite number of dimensions. This construction works with both continuous and discrete spacetimes. The dimensionality is obtained also in the discrete case, so this approach can be suited to prove the fundamental conjecture of causal sets. Other simple conditions lead to a differentiable manifold with a conformal structure (the metric up to a scaling factor as in Lorentzian manifolds. This structure provides a simple and general reconstruction of the spacetime in relativistic theories of gravity, which normally requires topological structure, differential structure, and geometric structure (which decomposes in the conformal structure, giving the causal relations and the volume element. Motivations for such a reconstruction come from relativistic theories of gravity, where the conformal structure is important, from the problem of singularities, and from Quantum Gravity, where various discretization methods are pursued, particularly in the causal sets approach.

  16. Visualization of chromatin folding patterns in chicken erythrocytes by atomic force microscopy (AFM)

    Institute of Scientific and Technical Information of China (English)

    QIANRUOLAN; ZHENGXIALIU; 等

    1997-01-01

    The organization of the higher order structure of chromatin in chicken erythrocytes has been examined with tapping-mode scanning force microscopy under conditions close to their native envirinment.Reproducible highresolution AFM images of chromatin compaction at several levels can be demonstrated.An extended beads-on-astring (width of - 15-20nm,height of - 2-3nm for each individual nucleosome) can be consistently observed.Furthermore,superbeade (width of - 40nm,height of - 7nm) are demonstrated.Visualization of the solenoid conformation at the level of 30nm chromatin fiber is attained either by using AFM or by using electron microscopy.In addition,tightly coiled chromatin fibers (- 50-60nm and - 90-110nm) can be revealed.Our data suggest that the chromatin in the interphase nucleus of chicken erythrocyte represents a high-order conformation and AFM provides useful high-resolution structural information concerning the folding pattern of interphase chromatin fibers.

  17. Structure soil structure interaction effects: Seismic analysis of safety related collocated concrete structures

    International Nuclear Information System (INIS)

    The Process, Purification and Stack Buildings are collocated safety related concrete shear wall structures with plan dimensions in excess of 100 feet. An important aspect of their seismic analysis was the determination of structure soil structure interaction (SSSI) effects, if any. The SSSI analysis of the Process Building, with one other building at a time, was performed with the SASSI computer code for up to 50 frequencies. Each combined model had about 1500 interaction nodes. Results of the SSSI analysis were compared with those from soil structure interaction (SSI) analysis of the individual buildings, done with ABAQUS and SASSI codes, for three parameters: peak accelerations, seismic forces and the in-structure floor response spectra (FRS). The results may be of wider interest due to the model size and the potential applicability to other deep soil layered sites. Results obtained from the ABAQUS analysis were consistently higher, as expected, than those from the SSI and SSSI analyses using the SASSI. The SSSI effect between the Process and Purification Buildings was not significant. The Process and Stack Building results demonstrated that under certain conditions a massive structure can have an observable effect on the seismic response of a smaller and less stiff structure

  18. Structure soil structure interaction effects: Seismic analysis of safety related collocated concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, J.R.

    2000-06-20

    The Process, Purification and Stack Buildings are collocated safety related concrete shear wall structures with plan dimensions in excess of 100 feet. An important aspect of their seismic analysis was the determination of structure soil structure interaction (SSSI) effects, if any. The SSSI analysis of the Process Building, with one other building at a time, was performed with the SASSI computer code for up to 50 frequencies. Each combined model had about 1500 interaction nodes. Results of the SSSI analysis were compared with those from soil structure interaction (SSI) analysis of the individual buildings, done with ABAQUS and SASSI codes, for three parameters: peak accelerations, seismic forces and the in-structure floor response spectra (FRS). The results may be of wider interest due to the model size and the potential applicability to other deep soil layered sites. Results obtained from the ABAQUS analysis were consistently higher, as expected, than those from the SSI and SSSI analyses using the SASSI. The SSSI effect between the Process and Purification Buildings was not significant. The Process and Stack Building results demonstrated that under certain conditions a massive structure can have an observable effect on the seismic response of a smaller and less stiff structure.

  19. Effect of Seminal Vesicles and Dithiotritol (Dtt on Stability of Sperm Chromatin

    Directory of Open Access Journals (Sweden)

    MH Nasr-Esfahani

    2005-04-01

    Full Text Available Introduction: Different studies have shown that there is no relation between sperm chromatin stability and fertilization rate in both IVF and ICSI patients. However, the relation between SDS tests, as a detergent, along with DTT as reducer of disulphide bridges has not been studied so far in ICSI patients. Since different concentrations of DTT can induce different degrees of sperm chromatin decondensation, the aim of this study was to evaluate the effect of different concentrations of DTT on sperm chromatin decondensation in IVF and ICSI cases. Methods: During this study, 85 patients were divided into two groups according to their treatment procedure (IVF or ICSI.Semen samples of each patient was evaluated for sperm chromatin tests including SDS, SDS+EDTA & SDS+DTT for assessment of free thiole groups level (-SH, amount of non covalent bond between Zn and thioles(-SH Zn SH- and levels of disulfide bond (-S-S- in sperm chromatin, respectively. In this study, seminal fructose concentration, corrected seminal fructose level and true corrected fructose level as indicators of seminal vesicle function on sperm chromatin stability were assessed. Results: No correlation was observed between any of the above tests and rate of fertilization, both in IVF and ICSI cases. However, in IVF patients, a significant correlation was observed between SDS, SDS+DTT test and seminal fructose level, while in ICSI patients, only a significant correlation was observed between SDS+DTT and corrected or true fructose concentration. Conclusion: Since no correlation was observed between sperm chromatin test and fertilization rate, it is suggested that the chromatin status of these samples are adequate for fertilization to take place and extent of disulphide bridges has no effect on fertilization rate. However, the amount of disulphide bound present in sperms of ICSI and IVF patients are different, and this difference is related to seminal vesicle performance in these patients.

  20. Global assemblages and Structural Models of International Relations

    DEFF Research Database (Denmark)

    Corry, Olaf

    2014-01-01

    This chapter argues that 'assemblages', although rooted in a deep skepticism of grand theory, could also be useful for re-thinking structure and models of structure in international relations. IR models of structure usually restrict themselves to how subjects are ordered. The idea of an ordering ...

  1. Holistic Structuralism, Elementarism and Piaget's Theory of 'Relationalism'.

    Science.gov (United States)

    Kitchener, Richard F.

    1985-01-01

    Contrasts holism, elementarism and Piaget's rationalism. Suggests Piaget's views are close to those of transactionalism and that the key difference between Gestalt holistic structure and Piagetian operatory structure is whether the composition laws are additive or not. Piaget's version of structuralism (relationalism) is distinctive in being…

  2. Absence of canonical marks of active chromatin in developmentally regulated genes.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Tilgner, Hagen; Curado, Joao; Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-10-01

    The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.

  3. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    Science.gov (United States)

    Lo, Stanley M; McElroy, Kyle A; Francis, Nicole J

    2012-01-01

    Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG) proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC), compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged) using Scanning Transmission Electron Microscopy (STEM). We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data highlight the diversity

  4. Nucleosome conformational flexibility in experiments with single chromatin fibers

    Directory of Open Access Journals (Sweden)

    Sivolob A. V.

    2010-09-01

    Full Text Available Studies on the chromatin nucleosome organization play an ever increasing role in our comprehension of mechanisms of the gene activity regulation. This minireview describes the results on the nucleosome conformational flexibility, which were obtained using magnetic tweezers to apply torsion to oligonucleosome fibers reconstituted on single DNA molecules. Such an approach revealed a new structural form of the nucleosome, the reversome, in which DNA is wrapped in a right-handed superhelix around a distorted histone octamer. Molecular mechanisms of the nucleosome structural flexibility and its biological relevance are discussed.

  5. A NIMA homologue promotes chromatin condensation in fission yeast.

    Science.gov (United States)

    Krien, M J; Bugg, S J; Palatsides, M; Asouline, G; Morimyo, M; O'Connell, M J

    1998-04-01

    Entry into mitosis requires p34(cdc2), which activates downstream mitotic events through phosphorylation of key target proteins. In Aspergillus nidulans, the NIMA protein kinase has been identified as a potential downstream target and plays a role in regulating chromatin condensation at mitosis. nimA- mutants arrest in a state that physically resembles interphase even though p34(cdc2) is fully active. Despite evidence for the existence of NIMA-like activities in a variety of cell types, the only bona fide NIMA homologue that has been identified is the nim-1 gene of Neurospora crassa. We report here the isolation of a fission yeast NIMA homologue, and have designated this gene fin1 and the 83 kDa predicted protein p83(fin1). Overexpression of fin1 promotes premature chromatin condensation from any point in the cell cycle independently of p34(cdc2) function. Like NIMA, p83(fin1) levels fluctuate through the cell cycle, peaking in mitosis and levels are greatly elevated by removal of C-terminal PEST sequences. Deletion of fin1 results in viable but elongated cells, indicative of a cell cycle delay. Genetic analysis has placed this delay in G2 but, unlike in nimA mutants of Aspergillus, p34(cdc2) activation appears to be delayed. Interaction of fin1 mutants with other strains defective in chromatin organisation also support the hypothesis of p83(fin1) playing a role in this process at the onset of mitosis. These data indicate that NIMA-related kinases may be a general feature of the cell cycle and chromatin organisation at mitosis.

  6. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  7. Novel RNA-binding properties of the MTG chromatin regulatory proteins

    Directory of Open Access Journals (Sweden)

    Sacchi Nicoletta

    2008-10-01

    Full Text Available Abstract Background The myeloid translocation gene (MTG proteins are non-DNA-binding transcriptional regulators capable of interacting with chromatin modifying proteins. As a consequence of leukemia-associated chromosomal translocations, two of the MTG proteins, MTG8 and MTG16, are fused to the DNA-binding domain of AML1, a transcriptional activator crucial for hematopoiesis. The AML1-MTG fusion proteins, as the wild type MTGs, display four conserved homology regions (NHR1-4 related to the Drosophila nervy protein. Structural protein analyses led us to test the hypothesis that specific MTG domains may mediate RNA binding. Results By using an RNA-binding assay based on synthetic RNA homopolymers and a panel of MTG deletion mutants, here we show that all the MTG proteins can bind RNA. The RNA-binding properties can be traced to two regions: the Zinc finger domains in the NHR4, which mediate Zinc-dependent RNA binding, and a novel short basic region (SBR upstream of the NHR2, which mediates Zinc-independent RNA binding. The two AML1-MTG fusion proteins, retaining both the Zinc fingers domains and the SBR, also display RNA-binding properties. Conclusion Evidence has been accumulating that RNA plays a role in transcriptional control. Both wild type MTGs and chimeric AML1-MTG proteins display in vitro RNA-binding properties, thus opening new perspectives on the possible involvement of an RNA component in MTG-mediated chromatin regulation.

  8. Chromatin Proteomics Reveals Variable Histone Modifications during the Life Cycle of Trypanosoma cruzi.

    Science.gov (United States)

    de Jesus, Teresa Cristina Leandro; Nunes, Vinícius Santana; Lopes, Mariana de Camargo; Martil, Daiana Evelin; Iwai, Leo Kei; Moretti, Nilmar Silvio; Machado, Fabrício Castro; de Lima-Stein, Mariana L; Thiemann, Otavio Henrique; Elias, Maria Carolina; Janzen, Christian; Schenkman, Sergio; da Cunha, Julia Pinheiro Chagas

    2016-06-01

    Histones are well-conserved proteins that form the basic structure of chromatin in eukaryotes and undergo several post-translational modifications, which are important for the control of transcription, replication, DNA damage repair, and chromosome condensation. In early branched organisms, histones are less conserved and appear to contain alternative sites for modifications, which could reveal evolutionary unique functions of histone modifications in gene expression and other chromatin-based processes. Here, by using high-resolution mass spectrometry, we identified and quantified histone post-translational modifications in two life cycle stages of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. We detected 44 new modifications, namely: 18 acetylations, seven monomethylations, seven dimethylations, seven trimethylations, and four phosphorylations. We found that replicative (epimastigote stage) contains more histone modifications than nonreplicative and infective parasites (trypomastigote stage). Acetylations of lysines at the C-terminus of histone H2A and methylations of lysine 23 of histone H3 were found to be enriched in trypomastigotes. In contrast, phosphorylation in serine 23 of H2B and methylations of lysine 76 of histone H3 predominates in proliferative states. The presence of one or two methylations in the lysine 76 was found in cells undergoing mitosis and cytokinesis, typical of proliferating parasites. Our findings provide new insights into the role of histone modifications related to the control of gene expression and cell-cycle regulation in an early divergent organism. PMID:27108550

  9. An in vitro reconstitution system for the assessment of chromatin protein fluidity during Xenopus development

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Ryuta; Inui, Masafumi; Hayashi, Yohei; Sedohara, Ayako [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Okabayashi, Koji [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); ICORP Organ Regeneration Project, Japan Science and Technology Agency (JST), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Ohnuma, Kiyoshi, E-mail: kohnuma@vos.nagaokaut.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Murata, Masayuki [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Asashima, Makoto, E-mail: asashi@bio.c.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); ICORP Organ Regeneration Project, Japan Science and Technology Agency (JST), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Organ Development Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan)

    2010-09-17

    Research highlights: {yields} An in vitro reconstitution system was established with isolated nuclei and cytoplasm. {yields} Chromatin fluidities were measured in the system using FRAP. {yields} Chromatin fluidities were higher in the cytoplasm of earlier-stage embryos. {yields} Chromatin fluidities were higher in the earlier-stage nuclei with egg-extract. {yields} Chromatin fluidity may decrease during embryonic development. -- Abstract: Chromatin fluidity, which is one of the indicators of higher-order structures in chromatin, is associated with cell differentiation. However, little is known about the relationships between chromatin fluidity and cell differentiation status in embryonic development. We established an in vitro reconstitution system that uses isolated nuclei and cytoplasmic extracts of Xenopus embryos and a fluorescence recovery after photobleaching assay to measure the fluidities of heterochromatin protein 1 (HP1) and histone H1 during development. The HP1 and H1 fluidities of nuclei isolated from the tailbuds of early tadpole stage (stage 32) embryos in the cytoplasmic extracts of eggs and of late blastula stage (stage 9) embryos were higher than those in the cytoplasmic extracts of mid-neurula stage (stage 15) embryos. The HP1 fluidities of nuclei isolated from animal cap cells of early gastrula stage (stage 10) embryos and from the neural plates of neural stage (stage 20) embryos were higher than those isolated from the tailbuds of stage 32 embryos in egg extracts, whereas the HP1 fluidities of these nuclei were the same in the cytoplasmic extracts of stage 15 embryos. These results suggest that chromatin fluidity is dependent upon both cytoplasmic and nuclear factors and decreases during development.

  10. An in vitro reconstitution system for the assessment of chromatin protein fluidity during Xenopus development

    International Nuclear Information System (INIS)

    Research highlights: → An in vitro reconstitution system was established with isolated nuclei and cytoplasm. → Chromatin fluidities were measured in the system using FRAP. → Chromatin fluidities were higher in the cytoplasm of earlier-stage embryos. → Chromatin fluidities were higher in the earlier-stage nuclei with egg-extract. → Chromatin fluidity may decrease during embryonic development. -- Abstract: Chromatin fluidity, which is one of the indicators of higher-order structures in chromatin, is associated with cell differentiation. However, little is known about the relationships between chromatin fluidity and cell differentiation status in embryonic development. We established an in vitro reconstitution system that uses isolated nuclei and cytoplasmic extracts of Xenopus embryos and a fluorescence recovery after photobleaching assay to measure the fluidities of heterochromatin protein 1 (HP1) and histone H1 during development. The HP1 and H1 fluidities of nuclei isolated from the tailbuds of early tadpole stage (stage 32) embryos in the cytoplasmic extracts of eggs and of late blastula stage (stage 9) embryos were higher than those in the cytoplasmic extracts of mid-neurula stage (stage 15) embryos. The HP1 fluidities of nuclei isolated from animal cap cells of early gastrula stage (stage 10) embryos and from the neural plates of neural stage (stage 20) embryos were higher than those isolated from the tailbuds of stage 32 embryos in egg extracts, whereas the HP1 fluidities of these nuclei were the same in the cytoplasmic extracts of stage 15 embryos. These results suggest that chromatin fluidity is dependent upon both cytoplasmic and nuclear factors and decreases during development.

  11. Host-viral effects of chromatin assembly factor 1 interaction with HCMV IE2

    Institute of Scientific and Technical Information of China (English)

    Sung-Bau Lee; Li-Jung Juan; Chung-Fan Lee; Derick S-C Ou; Kalpana Dulal; Liang-Hao Chang; Chen-Han Ma; Chien-Fu Huang; Hua Zhu; Young-Sun Lin

    2011-01-01

    Chromatin assembly factor 1 (CAF1) consisting of p150, p60 and p48 is known to assemble histones onto newly synthesized DNA and thus maintain the chromatin structure. Here, we show that CAF1 expression was induced in human cytomegalovirus (HCMV)-infected cells, concomitantly with global chromatin decondensation. This apparent conflict was thought to result, in part, from CAF1 mislocalization to compartments of HCMV DNA synthesis through binding of its largest subunit p150 to viral immediate-early protein 2 (IE2). p150 interaction with p60 and IE2 facilitated HCMV DNA synthesis. The IE2Q548R mutation, previously reported to result in impaired HCMV growth with unknown mechanism, disrupted IE2/p150 and IE2/histones association in our study. Moreover, IE2 interaction with histones partly depends on p150, and the HCMV-induced chromatin decondensation was reduced in cells ectopically expressing the p150 mutant defective in IE2 binding. These results not only indicate that CAF1 was hijacked by IE2 to facilitate the replication of the HCMV genome, suggesting chromatin assembly plays an important role in herpesviral DNA synthesis, but also provide a model of the virus-induced chromatin instability through CAF1.

  12. Relations between the emission spectra and radio structures of quasars

    International Nuclear Information System (INIS)

    We present evidence that the emission spectra and radio structures of low-redshift quasars are related statistically. Our sample compriese 34 quasars with z<0.70 and known radio structures. Objects with the broadest and most irregular emission lines are associated with extended radio sources, while those with relatively narrow emission lines with smooth profiles tend to have compact radio structures. There is also a significant tendency for Fe II emission lines to be found preferentially in quasars with compact radio structure

  13. Sperm chromatin structure assay predicts the outcome of intrauterine insemination%精子染色质结构分析预测夫精宫腔内人工授精结局的临床研究

    Institute of Scientific and Technical Information of China (English)

    杨晓玉; 张燕; 孙雪萍; 崔毓桂; 钱晓乔; 冒韵东; 刘嘉茵

    2011-01-01

    Objective; Speim chromatin structure assay (SCSA) , as a clinically practical technique for the analysis of DNA damage, is rarely reported in China. This study focuses on the correlation of DNA damage with the pregnancy rate of intrauterine insemination (IUI). Methods-. We performed semen analysis for482 couples undergoing IUI, calculated the DNA fragmentation index (DFI) by SCSA, and observed the relationship between DFI and the pregnancy rate of IUI. Results: Clinical pregnancy was achieved in 5 (5.26% ) of the 95 cases with DFI > 25% , and in 59 (15.25% ) of the 387 cases with DFI 25%. Those with sperm DFI >25% had significantly lower rates of biochemical pregnancy and clinical pregnancy than those with DFI s;25% (0R: 0. 37, 95% CI: 0.14 -0.96 and OR: 0.38, 95% CI: 0.16 -0.97). No significant differences were found in the DFI of 54 cases between the first and the second cycle ( [ 15.05 ±7.98]% vs [17.25 ± 12.18]% , P >0.05). Sperm DFI was significantly negatively correlated with sperm concentration, sperm motility and total progressively motile sperm count (P 25% than in those with DFI ^25%. Sperm DFI obtained from SCSA is partly correlated with sperm concentration and motility, and it is a robust predictor of the IUI outcome. Natl J Androl, 2011, 17 (II) -. 977 -983%目的:分析精子DNA损伤与宫腔内人工授精(intrauterine insemination,IUI)妊娠率的关系.方法:482例行IUI治疗的患者,常规精液分析,并采用精子染色质结构分析法(SCSA)计算DNA碎片指数(DNA fragmentation index,DFI),观察DFI与IUI妊娠率的关系.结果:482例患者中DFI> 25%的患者为95例,5例临床妊娠,妊娠率为5.26%;DFI≤25%的患者为387例,59例临床妊娠,妊娠率为15.25%.DFI> 25%的患者,其生化妊娠率和临床妊娠率只有DFI≤25%的患者的0.37(95% CI:0.14~0.96)和0.38(95% CI:0.16~0.97)倍.54例患者前后2个周期DFI值分别为(15.05±7.98)%与(17.25 +12.18)%,差异无统计学意义(P>0

  14. Relative Energy Dissipation: Sensitive to Structural Changes of Liquids

    Institute of Scientific and Technical Information of China (English)

    祖方遒; 郭丽君; 朱震刚; 凤仪

    2002-01-01

    Energy dissipation techniques, widely used in solid physics previously, are proven to be sensitive also to changes in liquid structure. It has been suggested from relative energy dissipation that changes in liquid structure can occur as a function of temperature in some ordinary binary systems such as Pb-Sn, In-Sn and In-Bi. This finding may be helpful to understand liquid structure changing patterns, therefore enriching the phenomenology of liquid state physics. This is significant for engineering practices.

  15. Measurement of local relative displacements in large structures

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Eder, Martin Alexander; Nielsen, Magda

    2014-01-01

    This paper presents a novel measurement technique to measure local relative displacements between parts of large-scale structures. The measured deformations can be of significant importance for fracture analyses in many different types of structures in general, and for adhesive connections in par...

  16. Comparing Structural Brain Connectivity by the Infinite Relational Model

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø; Herlau, Tue; Dyrby, Tim;

    2013-01-01

    The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from...... modeling tool for the identification of structure and quantification of similarity in graphs of brain connectivity in general....

  17. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  18. CTCF Binding Polarity Determines Chromatin Looping

    NARCIS (Netherlands)

    de Wit, Elzo; Vos, Erica S M; Holwerda, Sjoerd J B; Valdes-Quezada, Christian; Verstegen, Marjon J A M; Teunissen, Hans; Splinter, Erik; Wijchers, Patrick J; Krijger, Peter H L; de Laat, Wouter

    2015-01-01

    CCCTC-binding factor (CTCF) is an architectural protein involved in the three-dimensional (3D) organization of chromatin. In this study, we assayed the 3D genomic contact profiles of a large number of CTCF binding sites with high-resolution 4C-seq. As recently reported, our data also suggest that ch

  19. Unraveling the mechanisms of chromatin fibril packaging.

    Science.gov (United States)

    Gavrilov, Alexey A; Shevelyov, Yuri Y; Ulianov, Sergey V; Khrameeva, Ekaterina E; Kos, Pavel; Chertovich, Alexander; Razin, Sergey V

    2016-05-01

    Recent data indicate that eukaryotic chromosomes are organized into Topologically Associating Domains (TADs); however, the mechanisms underlying TAD formation remain obscure. Based on the results of Hi-C analysis performed on 4 Drosophila melanogaster cell lines, we have proposed that specific properties of nucleosomes in active and repressed chromatin play a key role in the formation of TADs. Our computer simulations showed that the ability of "inactive" nucleosomes to stick to each other and the lack of such ability in "active" nucleosomes is sufficient for spatial segregation of these types of chromatin, which is revealed in the Hi-C analysis as TAD/inter-TAD partitioning. However, some Drosophila and mammalian TADs contain both active and inactive chromatin, a fact that does not fit this model. Herein, we present additional arguments for the model by postulating that transcriptionally active chromatin is extruded on the surface of a TAD, and discuss the possible impact of this organization on the enhancer-promoter communication and on the segregation of TADs. PMID:27249516

  20. Chromatin and epigenetics in all their states

    NARCIS (Netherlands)

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Gall, Le Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-01-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meetin

  1. Single Chromatin Fibre Assembly Using Optical Tweezers

    NARCIS (Netherlands)

    Bennink, M.L.; Pope, L.H.; Leuba, S.H.; Grooth, de B.G.; Greve, J.

    2001-01-01

    Here we observe the formation of a single chromatin fibre using optical tweezers. A single -DNA molecule was suspended between two micron-sized beads, one held by a micropipette and the other in an optical trap. The constrained DNA molecule was incubated with Xenopus laevis egg extract in order to r

  2. Research Discovers Frequent Mutations of Chromatin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the support of National Natural Science Foundation of China, BGI, the largest genomics organization in the world, and Peking University Shenzhen Hospital, published online in Nature Geneticsics that the study on frequent mutations of chromatin remodeling genes in transitional cell carcinoma (TCC) of thebladder on August 8th, 2011. Their study provides a valuable genetic basis for future studies on TCC,

  3. Epigenetic chromatin silencing: bistability and front propagation

    Science.gov (United States)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  4. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell;

    2013-01-01

    Although the general relevance of chromatin modifications for genotoxic stress signaling, cell-cycle checkpoint activation, and DNA repair is well established, how these modifications reach initial thresholds in order to trigger robust responses remains largely unexplored. Here, we identify...... the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly......(ADP-ribose)-polymerase 1- and poly(ADP-ribose)-dependent manner and is required for unperturbed cell-cycle checkpoint activation and guarding cells against replicative stress. Altogether, our data reveal that transient recruitment of an architectural chromatin component is required in order to overcome physiological...

  5. Evaluation of chromatin integrity of motile bovine spermatozoa capacitated in vitro.

    Science.gov (United States)

    Reckova, Z; Machatkova, M; Rybar, R; Horakova, J; Hulinska, P; Machal, L

    2008-08-01

    The efficiency of in vitro embryo production is highly variable amongst individual sires in cattle. To eliminate that this variability is not caused by sperm chromatin damage caused by separation or capacitacion, chromatin integrity was evaluated. Seventeen of AI bulls with good NRRs but variable embryo production efficiency were used. For each bull, motile spermatozoa were separated on a Percoll gradient, resuspended in IVF-TALP medium and capacitated with or incubated without heparin for 6 h. Samples before and after separation and after 3-h and 6-h capacitacion or incubation were evaluated by the Sperm Chromatin Structure Assay (SCSA) and the proportion of sperm with intact chromatin structure was calculated. Based on changes in the non-DFI-sperm proportion, the sires were categorized as DNA-unstable (DNA-us), DNA-stable (DNA-s) and DNA-most stable (DNA-ms) bulls (n=3, n=5 and n=9, respectively). In DNA-us bulls, separation produced a significant increase of the mean non-DFI-sperm proportion (p Capacitacion produced a significant decrease in the mean non-DFI-sperm proportion in H+ sperm (p capacitacion, the mean non-DFI-sperm proportion remained almost unchanged. In DNA-ms bulls, neither separation nor capacitacion had any effect on the mean non-DFI-sperm proportion. It can be concluded that, although separation and capacitacion may produce some changes in sperm chromatin integrity, these are not associated with different in vitro fertility of the bulls involved. PMID:18578952

  6. Evaluation of chromatin condensation in human spermatozoa: a flow cytometric assay using acridine orange staining.

    Science.gov (United States)

    Golan, R; Shochat, L; Weissenberg, R; Soffer, Y; Marcus, Z; Oschry, Y; Lewin, L M

    1997-01-01

    The quality of sperm chromatin is an important factor in fertilization and is especially critical where one spermatozoon is artificially selected for fertilizing an egg (as in intracytoplasmic sperm injection). In this study, flow cytometry after staining of human spermatozoa with Acridine Orange was used to study chromatin structure. A method is described for estimating the percentage of cells in a human sperm sample that have completed epididymal maturation in regard to chromatin condensation. Of the 121 samples of the semen that were examined, nine contained a higher percentage of hypocondensed spermatozoa and six samples contained elevated amounts of hypercondensed spermatozoa. In addition to aberrancies in chromatin condensation other defects showed up as satellite populations of spermatozoa with higher than normal ratios of red/green fluorescence after Acridine Orange staining. Such defects were found in 15 semen samples. The use of swim-up and Percoll gradient centrifugation methods was shown to improve the percentage of spermatozoa with normal chromatin structure in some samples with poor initial quality.

  7. Introducing enteral feeding induces intestinal subclinical inflammation and respective chromatin changes in preterm pigs

    DEFF Research Database (Denmark)

    Willems, Rhea; Krych, Lukasz; Rybicki, Verena;

    2015-01-01

    AIM: To analyze how enteral food introduction affects intestinal gene regulation and chromatin structure in preterm pigs. MATERIALS & METHODS: Preterm pigs were fed parenteral nutrition plus/minus slowly increasing volumes of enteral nutrition. Intestinal gene-expression and chromatin structure...... were analyzed 5 days after birth. RESULTS: Enteral feeding led to differential upregulation of inflammatory and pattern recognition receptor genes, including IL8 (median: 5.8, 95% CI: 3.9-7.8 for formula; median: 2.2, 95% CI: 1.3-3.3 for colostrum) and TLR4 (median: 3.7, 95% CI: 2.6-4.8 for formula...... stimulation with lipopolysaccharide (median: 7.0; interquartile range: 5.63-8.85) compared with naive cells (median 4.2; interquartile range: 2.45-6.33; p = 0.03). CONCLUSION: Enteral feeding, particular with formula, induces subclinical inflammation in the premature intestine and more open chromatin...

  8. Principle of relative positioning of structures in the human body

    Institute of Scientific and Technical Information of China (English)

    Buliang Meng; Ailan Pang; Ming Li

    2013-01-01

    The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.

  9. Silencing of renal DNaseI in murine lupus nephritis imposes exposure of large chromatin fragments and activation of Toll like receptors and the Clec4e

    DEFF Research Database (Denmark)

    Thiyagarajan, Dhivya; Fismen, Silje; Seredkina, Natalya;

    2012-01-01

    Recent studies demonstrate that transformation of mild lupus nephritis into end-stage disease is imposed by silencing of renal DNaseI gene expression in (NZBxNZW)F1 mice. Down-regulation of DNaseI results in reduced chromatin fragmentation, and in deposition of extracellular chromatin-IgG complexes...... in glomerular basement membranes in individuals that produce IgG anti-chromatin antibodies. The main focus of the present study is to describe the biological consequences of renal DNaseI shut-down and reduced chromatin fragmentation with a particular focus on whether exposed large chromatin fragments activate...... Toll like receptors and the necrosis-related Clec4e receptor in murine and human lupus nephritis. Furthermore, analyses where performed to determine if matrix metalloproteases are up-regulated as a consequence of chromatin-mediated Toll like receptors/Clec4e stimulation. Mouse and human mRNA expression...

  10. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  11. Structure relations for monic orthogonal polynomials in two discrete variables

    Science.gov (United States)

    Rodal, J.; Area, I.; Godoy, E.

    2008-04-01

    In this paper, extensions of several relations linking differences of bivariate discrete orthogonal polynomials and polynomials themselves are given, by using an appropriate vector-matrix notation. Three-term recurrence relations are presented for the partial differences of the monic polynomial solutions of admissible second order partial difference equation of hypergeometric type. Structure relations, difference representations as well as lowering and raising operators are obtained. Finally, expressions for all matrix coefficients appearing in these finite-type relations are explicitly presented for a finite set of Hahn and Kravchuk orthogonal polynomials.

  12. Hinge Atlas: relating protein sequence to sites of structural flexibility

    OpenAIRE

    Yang Julie; Lu Long J; Flores Samuel C; Carriero Nicholas; Gerstein Mark B

    2007-01-01

    Abstract Background Relating features of protein sequences to structural hinges is important for identifying domain boundaries, understanding structure-function relationships, and designing flexibility into proteins. Efforts in this field have been hampered by the lack of a proper dataset for studying characteristics of hinges. Results Using the Molecular Motions Database we have created a Hinge Atlas of manually annotated hinges and a statistical formalism for calculating the enrichment of v...

  13. DNA damage and Repair Modify DNA methylation and Chromatin Domain of the Targeted Locus: Mechanism of allele methylation polymorphism.

    Science.gov (United States)

    Russo, Giusi; Landi, Rosaria; Pezone, Antonio; Morano, Annalisa; Zuchegna, Candida; Romano, Antonella; Muller, Mark T; Gottesman, Max E; Porcellini, Antonio; Avvedimento, Enrico V

    2016-01-01

    We characterize the changes in chromatin structure, DNA methylation and transcription during and after homologous DNA repair (HR). We find that HR modifies the DNA methylation pattern of the repaired segment. HR also alters local histone H3 methylation as well chromatin structure by inducing DNA-chromatin loops connecting the 5' and 3' ends of the repaired gene. During a two-week period after repair, transcription-associated demethylation promoted by Base Excision Repair enzymes further modifies methylation of the repaired DNA. Subsequently, the repaired genes display stable but diverse methylation profiles. These profiles govern the levels of expression in each clone. Our data argue that DNA methylation and chromatin remodelling induced by HR may be a source of permanent variation of gene expression in somatic cells. PMID:27629060

  14. A CADASTRAL SPATIAL DATA STORAGE STRUCTURE BASED ON RELATIONAL DATABASE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a cadastral spatial data storage structure based on relational database,the method and the procedure to realize it.The paper consists of three parts.In the first part,some existing problems in some de veloped cadastral management systems are discussed.These problems are the fo llowing four.1) The security of cadastral spatial data is difficult to be assure d.2) It is difficult to varify cadastral data and the integrality of cadastral d ata is diffi cult to be kept.3) To transmit and share cadastral data is difficult.4) The effi ciency of data access is low.In the second part,t he feasibility of using relational database to store spatial data is analyzed an d a new cadastral spatial data storage structure is presented.At the same time, the related table structures and field descriptions are given,and then the merits and demerits of this storage structure are analyzed in detail.In th e last part,through a real example,the detailed methods to make the new storag e structure a reality are given.Moreover,some involving key techniques of the ne w storage structure are discussed.These techniques are:1) the application of database transaction,2) the application of database trigger,3) and the appl ication of secure recovery of database.

  15. CAST-ChIP Maps Cell-Type-Specific Chromatin States in the Drosophila Central Nervous System

    Directory of Open Access Journals (Sweden)

    Tamás Schauer

    2013-10-01

    Full Text Available Chromatin organization and gene activity are responsive to developmental and environmental cues. Although many genes are transcribed throughout development and across cell types, much of gene regulation is highly cell-type specific. To readily track chromatin features at the resolution of cell types within complex tissues, we developed and validated chromatin affinity purification from specific cell types by chromatin immunoprecipitation (CAST-ChIP, a broadly applicable biochemical procedure. RNA polymerase II (Pol II CAST-ChIP identifies ∼1,500 neuronal and glia-specific genes in differentiated cells within the adult Drosophila brain. In contrast, the histone H2A.Z is distributed similarly across cell types and throughout development, marking cell-type-invariant Pol II-bound regions. Our study identifies H2A.Z as an active chromatin signature that is refractory to changes across cell fates. Thus, CAST-ChIP powerfully identifies cell-type-specific as well as cell-type-invariant chromatin states, enabling the systematic dissection of chromatin structure and gene regulation within complex tissues such as the brain.

  16. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening.

    Science.gov (United States)

    Musladin, Sanja; Krietenstein, Nils; Korber, Philipp; Barbaric, Slobodan

    2014-04-01

    Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC's presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.

  17. Assessment of chromatin status (SCSA) in epididymal and ejaculated sperm in Iberian red deer, ram and domestic dog.

    Science.gov (United States)

    Garcia-Macias, Vanesa; Martinez-Pastor, Felipe; Alvarez, Mercedes; Garde, Jose Julian; Anel, Enrique; Anel, Luis; de Paz, Paulino

    2006-11-01

    Abnormal chromatin condensation is not detected using classical techniques for sperm analysis. SCSA has demonstrated its usefulness in sperm chromatin analysis in several species (human, bull, stallion and boar). In this work, we studied sperm samples from red deer, ram and dog to analyze the differentiation of chromatin structure applying SCSA in epididymal and ejaculated spermatozoa. Epididymal samples were obtained from the caput, corpus and cauda by means of cuts, and ejaculated ones were obtained by electroejaculation (deer), artificial vagina (ram) and digital manipulation (dog). SCSA results suggested different critical points in sperm maturation (spermatozoa with loose chromatin to more condensed chromatin) among species: from corpus to cauda in ram and from caput to corpus in deer and dog. Moreover, we also detected differences in ruminants and dog, reflected in the appearance of SCSA plots. Indeed, ram and deer samples rendered two peaks within the sperm main population (sperm with condensed chromatin), whereas only one was detected in dog. Although some differences were observed between cauda and ejaculated samples, SCSA parameters indicated good chromatin condensation, making these samples suitable for germplasm banking. Some species-dependent modifications in the analysis of the results may be necessary to take full advantage of its analytical power.

  18. Heterogeneous anisotropic complex structure gradual model and constitutive relation

    Institute of Scientific and Technical Information of China (English)

    李永; 宋健; 张志民

    2003-01-01

    Four new gradually delaminate models of the three-dimensional macro-/mesoscopic structure and delamination of the heterogeneous anisotropic composite (HAC) are set up by conducting research into its structure and performance. A general theory, which demonstrates the three-dimensional constitutive relation of the macro-/mesoscopic performance of this structure is further developed. The macroscopic expression of HAC is presented in terms of a Tanigawa delaminate homogeneous equivalent approach, the mesoscopic problems are analysed utilizing Eshelby-Mori-Tanaka theory, with the introduction of the representative volume elements of monolayer single unit cell and interlaminar double unit cells.According to the gradual continuity of the structure as a whole, great attention is given to the modelling and research of the interlaminar macroscopic and mesoscopic problems of HAC structure. Comparison with the existing solutions is made through calculation of typical cases.

  19. A Chromatin-Focused siRNA Screen for Regulators of p53-Dependent Transcription.

    Science.gov (United States)

    Sammons, Morgan A; Zhu, Jiajun; Berger, Shelley L

    2016-01-01

    The protein product of the Homo sapiens TP53 gene is a transcription factor (p53) that regulates the expression of genes critical for the response to DNA damage and tumor suppression, including genes involved in cell cycle arrest, apoptosis, DNA repair, metabolism, and a number of other tumorigenesis-related pathways. Differential transcriptional regulation of these genes is believed to alter the balance between two p53-dependent cell fates: cell cycle arrest or apoptosis. A number of previously identified p53 cofactors covalently modify and alter the function of both the p53 protein and histone proteins. Both gain- and loss-of-function mutations in chromatin modifiers have been strongly implicated in cancer development; thus, we sought to identify novel chromatin regulatory proteins that affect p53-dependent transcription and the balance between the expression of pro-cell cycle arrest and proapoptotic genes. We utilized an siRNA library designed against predicted chromatin regulatory proteins, and identified known and novel chromatin-related factors that affect both global p53-dependent transcription and gene-specific regulators of p53 transcriptional activation. The results from this screen will serve as a comprehensive resource for those interested in further characterizing chromatin and epigenetic factors that regulate p53 transcription. PMID:27334938

  20. The binding of [3H]oestradiol-receptor complex to hypothalamic chromatin of male and female mice.

    Science.gov (United States)

    Lopez, A; Burgos, J; Ventanas, J

    1985-01-01

    Histones and masking acidic proteins were removed from hypothalamic chromatin in order to evaluate/measure the number of available acceptor sites for the [3H]oestradiol-receptor complex. This number increases after dehistonizing and unmasking and is lower than published values for comparable preparations. No sex-related difference in [3H]oestradiol-receptor binding to hypothalamic chromatin in vitro was observed. Failure to observe such a difference suggests that sexual differentiation and steroid sensitivity cannot be attributed to marked differences in the degree of chromatin masking.

  1. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation.

    Science.gov (United States)

    Castellano-Pozo, Maikel; Santos-Pereira, José M; Rondón, Ana G; Barroso, Sonia; Andújar, Eloisa; Pérez-Alegre, Mónica; García-Muse, Tatiana; Aguilera, Andrés

    2013-11-21

    R loops are transcription byproducts that constitute a threat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation. Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonuclease H overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics.

  2. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  3. The landscape of accessible chromatin in mammalian preimplantation embryos.

    Science.gov (United States)

    Wu, Jingyi; Huang, Bo; Chen, He; Yin, Qiangzong; Liu, Yang; Xiang, Yunlong; Zhang, Bingjie; Liu, Bofeng; Wang, Qiujun; Xia, Weikun; Li, Wenzhi; Li, Yuanyuan; Ma, Jing; Peng, Xu; Zheng, Hui; Ming, Jia; Zhang, Wenhao; Zhang, Jing; Tian, Geng; Xu, Feng; Chang, Zai; Na, Jie; Yang, Xuerui; Xie, Wei

    2016-06-30

    In mammals, extensive chromatin reorganization is essential for reprogramming terminally committed gametes to a totipotent state during preimplantation development. However, the global chromatin landscape and its dynamics in this period remain unexplored. Here we report a genome-wide map of accessible chromatin in mouse preimplantation embryos using an improved assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) approach with CRISPR/Cas9-assisted mitochondrial DNA depletion. We show that despite extensive parental asymmetry in DNA methylomes, the chromatin accessibility between the parental genomes is globally comparable after major zygotic genome activation (ZGA). Accessible chromatin in early embryos is widely shaped by transposable elements and overlaps extensively with putative cis-regulatory sequences. Unexpectedly, accessible chromatin is also found near the transcription end sites of active genes. By integrating the maps of cis-regulatory elements and single-cell transcriptomes, we construct the regulatory network of early development, which helps to identify the key modulators for lineage specification. Finally, we find that the activities of cis-regulatory elements and their associated open chromatin diminished before major ZGA. Surprisingly, we observed many loci showing non-canonical, large open chromatin domains over the entire transcribed units in minor ZGA, supporting the presence of an unusually permissive chromatin state. Together, these data reveal a unique spatiotemporal chromatin configuration that accompanies early mammalian development. PMID:27309802

  4. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer

    Institute of Scientific and Technical Information of China (English)

    Jiang I. Wu

    2012-01-01

    Mammalian SWI/SNF like Brg1/Brm associated factors (BAF) chromatin-remodeling complexes are able to use energy derived from adenosine triphosphate (ATP) hydrolysis to change chromatin structures and regulate nuclear processes such as transcription.BAF complexes contain multiple subunits and the diverse subunit compositions provide functional specificities to BAF complexes.In this review,we summarize the functions of BAF subunits during mammalian development and in progression of various cancers.The mechanisms underlying the functional diversity and specificities of BAF complexes will be discussed.

  5. Calculation of structurally related properties of bulk and surface Si

    International Nuclear Information System (INIS)

    The self-consistent pseudopotential method is applied to study the bulk and surface structurally related properties of Si. Equilibrium configurations are determined by minimizing the total energy of the system; the calculated bulk properties and the surface relaxation of Si are found to be in good agreement with experiment. The surface energy and the surface reconstruction of Si are briefly discussed

  6. Relation between the geometrical and the electronic structures of buckyonions

    Institute of Scientific and Technical Information of China (English)

    王志坚; 李文铸; 曹志良; 韩汝珊

    1995-01-01

    An original scheme to represent all icosahedral fullerenes is set up. On the basis of realistic tight-binding approximate calculations, It is predicted that all icosahedral fullerenes can be classified into two classes: "metallic" balls and moderate gap "semiconductor" balls. There exists a very simple relation between these dasses and their structures specified by our representative scheme.

  7. Learning Queries for Relational, Semi-structured, and Graph Databases

    OpenAIRE

    Ciucanu, Radu

    2013-01-01

    International audience Web applications store their data within various database models, such as relational, semi-structured, and graph data models to name a few. We study learning algorithms for queries for the above mentioned models. As a further goal, we aim to apply the results to learning cross-model database mappings, which can also be seen as queries across different schemas.

  8. Modulation of Higher Order Chromatin Conformation in Mammalian Cell Nuclei Can Be Mediated by Polyamines and Divalent Cations.

    Directory of Open Access Journals (Sweden)

    Ashwat Visvanathan

    Full Text Available The organisation of the large volume of mammalian genomic DNA within cell nuclei requires mechanisms to regulate chromatin compaction involving the reversible formation of higher order structures. The compaction state of chromatin varies between interphase and mitosis and is also subject to rapid and reversible change upon ATP depletion/repletion. In this study we have investigated mechanisms that may be involved in promoting the hyper-condensation of chromatin when ATP levels are depleted by treating cells with sodium azide and 2-deoxyglucose. Chromatin conformation was analysed in both live and permeabilised HeLa cells using FLIM-FRET, high resolution fluorescence microscopy and by electron spectroscopic imaging microscopy. We show that chromatin compaction following ATP depletion is not caused by loss of transcription activity and that it can occur at a similar level in both interphase and mitotic cells. Analysis of both live and permeabilised HeLa cells shows that chromatin conformation within nuclei is strongly influenced by the levels of divalent cations, including calcium and magnesium. While ATP depletion results in an increase in the level of unbound calcium, chromatin condensation still occurs even in the presence of a calcium chelator. Chromatin compaction is shown to be strongly affected by small changes in the levels of polyamines, including spermine and spermidine. The data are consistent with a model in which the increased intracellular pool of polyamines and divalent cations, resulting from depletion of ATP, bind to DNA and contribute to the large scale hyper-compaction of chromatin by a charge neutralisation mechanism.

  9. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P;

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  10. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding.

    Science.gov (United States)

    Floer, Monique; Wang, Xin; Prabhu, Vidya; Berrozpe, Georgina; Narayan, Santosh; Spagna, Dan; Alvarez, David; Kendall, Jude; Krasnitz, Alexander; Stepansky, Asya; Hicks, James; Bryant, Gene O; Ptashne, Mark

    2010-04-30

    How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.

  11. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.

    Science.gov (United States)

    Ricci, Maria Aurelia; Manzo, Carlo; García-Parajo, María Filomena; Lakadamyali, Melike; Cosma, Maria Pia

    2015-03-12

    Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.

  12. Nuclear and chromatin reorganization during cell senescence and aging - a mini-review.

    Science.gov (United States)

    Shin, Dong-Myung; Kucia, Magda; Ratajczak, Mariusz Z

    2011-01-01

    Genetic material in the nucleus governs mechanisms related to cell proliferation, differentiation, and function. Thus, senescence and aging are directly tied to the change of nuclear function and structure. The most important mechanisms that affect cell senescence are: (i) telomere shortening; (ii) environmental stress-mediated accumulation of DNA mutations, and (iii) the intrinsically encoded biological clock that dictates lifespan events of any particular cell type. Overall, these changes lead to modification of the expression of genes that are responsible for: (i) organization of the nuclear structure; (ii) integrity of transcriptionally inactive heterochromatin, and (iii) epigenetic modification of chromosomes due to DNA methylation and/or histone modifications. These aging-related nuclear alterations do not only affect somatic cells. More importantly, they affect stem cells, which are responsible for proper tissue rejuvenation. In this review, we focus on epigenetic changes in the chromatin structure and their impact on the biology and function of adult cells as they age. We will also address aging-related changes in a compartment of the most primitive pluripotent stem cells that were recently identified by our team and named 'very small embryonic/epiblast-like stem cells'. PMID:20134149

  13. Keystone Symposia on Epigenomics and Chromatin Dynamics

    DEFF Research Database (Denmark)

    Ravnskjær, Kim

    2012-01-01

    Keystone Symposia kicked off the start of 2012 with two joint meetings on Epigenomics and Chromatin Dynamics and a star-studded list of speakers. Held in Keystone, CO, January 17-22, and organized by Steven Jacobsen and Steven Henikoff and by Bradley Cairns and Geneviève Almouzni, respectively, t......, there was plenty happening in these sessions that it did not seem to matter that the ski-slope conditions were not ideal....

  14. Identification of alternative topological domains in chromatin

    OpenAIRE

    Filippova, Darya; Patro, Rob; Duggal, Geet; Kingsford, Carl

    2014-01-01

    Chromosome conformation capture experiments have led to the discovery of dense, contiguous, megabase-sized topological domains that are similar across cell types and conserved across species. These domains are strongly correlated with a number of chromatin markers and have since been included in a number of analyses. However, functionally-relevant domains may exist at multiple length scales. We introduce a new and efficient algorithm that is able to capture persistent domains across various r...

  15. Multiscale Identification of Topological Domains in Chromatin

    OpenAIRE

    Filippova, Darya; Patro, Rob; Duggal, Geet; Kingsford, Carl

    2013-01-01

    Recent chromosome conformation capture experiments have led to the discovery of dense, contiguous, megabase-sized topological domains that are similar across cell types and conserved across species. These domains are strongly correlated with a number of chromatin markers and have since been included in a number of analyses. However, functionally-relevant domains may exist at multiple length scales. We introduce a new and efficient algorithm that is able to capture persistent domains across va...

  16. Structural studies of human glioma pathogenesis-related protein 1

    International Nuclear Information System (INIS)

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn2+ complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn2+ similarly to snake-venom CRISPs, which are involved in Zn2+-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1

  17. Structural studies of human glioma pathogenesis-related protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States); Koski, Raymond A.; Bonafé, Nathalie [L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511 (United States); College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  18. Chemical composition in relation with biomass ash structure

    Science.gov (United States)

    Holubcik, Michal; Jandacka, Jozef

    2014-08-01

    Biomass combustion can be more complicated like combustion of fossil fuels because it is necessary to solve problems with lower ash melting temperature. It can cause a lot of problems during combustion process. Chemical composition of biomass ash has great impact on sinters and slags creation in ash because it affects structure of heated ash. In this paper was solved relation between chemical composition and structure of heated ash from three types of biomass (spruce wood, miscanthus giganteus and wheat straw). Amount of SiO2, CaO, MgO, Al2O3 and K2O was determined. Structure of heated ash was optically determined after heating to 1000 °C or 1200 °C. Results demonstrated that chemical composition has strong effect on structure and color of heated ash.

  19. Titration and hysteresis in epigenetic chromatin silencing

    International Nuclear Information System (INIS)

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs. (paper)

  20. Critical electrolyte concentration of silk gland chromatin of the sugarcane borer Diatraea saccharalis, induced using agrochemicals.

    Science.gov (United States)

    Santos, S A; Fermino, F; Moreira, B M T; Araujo, K F; Falco, J R P; Ruvolo-Takasusuki, M C C

    2014-01-01

    The sugarcane borer Diatraea saccharalis is widely known as the main pest of sugarcane crop, causing increased damage to the entire fields. Measures to control this pest involve the use of chemicals and biological control with Cotesia flavipes wasps. In this study, we evaluated the insecticides fipronil (Frontline; 0.0025%), malathion (Malatol Bio Carb; 0.4%), cipermetrina (Galgotrin; 10%), and neem oil (Natuneem; 100%) and the herbicide nicosulfuron (Sanson 40 SC; 100%) in the posterior region silk glands of 3rd- and 5th-instar D. saccharalis by studying the variation in the critical electrolyte concentration (CEC). Observations of 3rd-instar larvae indicated that malathion, cipermetrina, and neem oil induced increased chromatin condensation that may consequently disable genes. Tests with fipronil showed no alteration in chromatin condensation. With the use of nicosulfuron, there was chromatin and probable gene decompaction. In the 5th-instar larvae, the larval CEC values indicated that malathion and neem oil induced increased chromatin condensation. The CEC values for 5th-instar larvae using cipermetrina, fipronil, and nicosulfuron indicated chromatin unpacking. These observations led us to conclude that the quantity of the pesticide does not affect the mortality of these pests, can change the conformation of complexes of DNA, RNA, and protein from the posterior region of silk gland cells of D. saccharalis, activating or repressing the expression of genes related to the defense mechanism of the insect and contributing to the selection and survival of resistant individuals. PMID:25299111

  1. Tagged Chromosomal Insertion Site System: A Method to Study Lamina-Associated Chromatin.

    Science.gov (United States)

    Harr, Jennifer C; Reddy, Karen L

    2016-01-01

    The three-dimensional (3D) organization of the genome is important for chromatin regulation. This organization is nonrandom and appears to be tightly correlated with or regulated by chromatin state and scaffolding proteins. To understand how specific DNA and chromatin elements contribute to the functional organization of the genome, we developed a new tool-the tagged chromosomal insertion site (TCIS) system-to identify and study minimal DNA sequences that drive nuclear compartmentalization and applied this system to specifically study the role of cis elements in targeting DNA to the nuclear lamina. The TCIS system allows Cre-recombinase-mediated site-directed integration of any DNA fragment into a locus tagged with lacO arrays, thus enabling both functional molecular studies and positional analysis of the altered locus. This system can be used to study the minimal DNA sequences that target the nuclear periphery (or other nuclear compartments), allowing researchers to understand how genome-wide results obtained, for example, by DNA adenine methyltransferase identification, chromosome conformation capture (HiC), or related methods, connect to the actual organization of DNA and chromosomes at the single-cell level. Finally, TCIS allows one to test roles for specific proteins in chromatin reorganization and to determine how changes in nuclear environment affect chromatin state and gene regulation at a single locus.

  2. Structure of the lepidopteran proboscis in relation to feeding guild.

    Science.gov (United States)

    Lehnert, Matthew S; Beard, Charles E; Gerard, Patrick D; Kornev, Konstantin G; Adler, Peter H

    2016-02-01

    Most butterflies and moths (Lepidoptera) use modified mouthparts, the proboscis, to acquire fluids. We quantified the proboscis architecture of five butterfly species in three families to test the hypothesis that proboscis structure relates to feeding guild. We used scanning electron microscopy to elucidate the fine structure of the proboscis of both sexes and to quantify dimensions, cuticular patterns, and the shapes and sizes of sensilla and dorsal legulae. Sexual dimorphism was not detected in the proboscis structure of any species. A hierarchical clustering analysis of overall proboscis architecture reflected lepidopteran phylogeny, but did not produce a distinct group of flower visitors or of puddle visitors within the flower visitors. Specific characters of the proboscis, nonetheless, can indicate flower and nonflower visitors, such as the configuration of sensilla styloconica, width of the lower branches of dorsal legulae, presence or absence of dorsal legulae at the extreme apex, and degree of proboscis tapering. We suggest that the overall proboscis architecture of Lepidoptera reflects a universal structural organization that promotes fluid uptake from droplets and films. On top of this fundamental structural organization, we suggest that the diversity of floral structure has selected for structural adaptations that facilitate entry of the proboscis into floral tubes. PMID:26589780

  3. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  4. Relative displacement method for track-structure interaction.

    Science.gov (United States)

    Schanack, Frank; Ramos, Óscar Ramón; Reyes, Juan Patricio; Pantaleón, Marcos J

    2014-01-01

    The track-structure interaction effects are usually analysed with conventional FEM programs, where it is difficult to implement the complex track-structure connection behaviour, which is nonlinear, elastic-plastic and depends on the vertical load. The authors developed an alternative analysis method, which they call the relative displacement method. It is based on the calculation of deformation states in single DOF element models that satisfy the boundary conditions. For its solution, an iterative optimisation algorithm is used. This method can be implemented in any programming language or analysis software. A comparison with ABAQUS calculations shows a very good result correlation and compliance with the standard's specifications. PMID:24634610

  5. Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase

    DEFF Research Database (Denmark)

    Maiolica, Alessio; de Medina-Redondo, Maria; Schoof, Erwin;

    2014-01-01

    Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr3 of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date...... protein- protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg2 and Lys4 adjacent to the Haspin phosphorylated threonine......, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin- associated proteins and identified a Haspin...

  6. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    CERN Document Server

    Teif, Vladimir B

    2010-01-01

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibriums measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quant...

  7. Transformation of Wiktionary entry structure into tables and relations in a relational database schema

    CERN Document Server

    Krizhanovsky, A A

    2010-01-01

    This paper addresses the question of automatic data extraction from the Wiktionary, which is a multilingual and multifunctional dictionary. Wiktionary is a collaborative project working on the same principles as the Wikipedia. The Wiktionary entry is a plain text from the text processing point of view. Wiktionary guidelines prescribe the entry layout and rules, which should be followed by editors of the dictionary. The presence of the structure of a Wiktionary article and formatting rules allows transforming the Wiktionary entry structure into tables and relations in a relational database schema, which is a part of a machine-readable dictionary (MRD). The paper describes how the flat text of the Wiktionary entry was extracted, converted, and stored in the specially designed relational database. The MRD contains the definitions, semantic relations, and translations extracted from the English and Russian Wiktionaries. The parser software is released under the open source license agreement (GPL), to facilitate i...

  8. Stacked thin layers of metaphase chromatin explain the geometry of chromosome rearrangements and banding.

    Science.gov (United States)

    Daban, Joan-Ramon

    2015-10-08

    The three-dimensional organization of tightly condensed chromatin within metaphase chromosomes has been one of the most challenging problems in structural biology since the discovery of the nucleosome. This study shows that chromosome images obtained from typical banded karyotypes and from different multicolour cytogenetic analyses can be used to gain information about the internal structure of chromosomes. Chromatin bands and the connection surfaces in sister chromatid exchanges and in cancer translocations are planar and orthogonal to the chromosome axis. Chromosome stretching produces band splitting and even the thinnest bands are orthogonal and well defined, indicating that short stretches of DNA can occupy completely the chromosome cross-section. These observations impose strong physical constraints on models that attempt to explain chromatin folding in chromosomes. The thin-plate model, which consists of many stacked layers of planar chromatin perpendicular to the chromosome axis, is compatible with the observed orientation of bands, with the existence of thin bands, and with band splitting; it is also compatible with the orthogonal orientation and planar geometry of the connection surfaces in chromosome rearrangements. The results obtained provide a consistent interpretation of the chromosome structural properties that are used in clinical cytogenetics for the diagnosis of hereditary diseases and cancers.

  9. Convergent evolution of chromatin modification by structurally distinct enzymes: comparative enzymology of histone H3 Lys²⁷ methylation by human polycomb repressive complex 2 and vSET.

    Science.gov (United States)

    Swalm, Brooke M; Hallenbeck, Kenneth K; Majer, Christina R; Jin, Lei; Scott, Margaret Porter; Moyer, Mikel P; Copeland, Robert A; Wigle, Tim J

    2013-07-15

    H3K27 (histone H3 Lys27) methylation is an important epigenetic modification that regulates gene transcription. In humans, EZH (enhancer of zeste homologue) 1 and EZH2 are the only enzymes capable of catalysing methylation of H3K27. There is great interest in understanding structure-function relationships for EZH2, as genetic alterations in this enzyme are thought to play a causal role in a number of human cancers. EZH2 is challenging to study because it is only active in the context of the multi-subunit PRC2 (polycomb repressive complex 2). vSET is a viral lysine methyltransferase that represents the smallest protein unit capable of catalysing H3K27 methylation. The crystal structure of this minimal catalytic protein has been solved and researchers have suggested that vSET might prove useful as an EZH2 surrogate for the development of active site-directed inhibitors. To test this proposition, we conducted comparative enzymatic analysis of human EZH2 and vSET and report that, although both enzymes share similar preferences for methylation of H3K27, they diverge in terms of their permissiveness for catalysing methylation of alternative histone lysine sites, their relative preferences for utilization of multimeric macromolecular substrates, their active site primary sequences and, most importantly, their sensitivity to inhibition by drug-like small molecules. The cumulative data led us to suggest that EZH2 and vSET have very distinct active site structures, despite the commonality of the reaction catalysed by the two enzymes. Hence, the EZH2 and vSET pair of enzymes represent an example of convergent evolution in which distinct structural solutions have developed to solve a common catalytic need.

  10. Structured IR illumination for relative depth sensing in virtual interfaces

    Science.gov (United States)

    Kress, Bernard; Raulot, Victorien; Grossman, Michel

    2012-06-01

    Depth mapping or depth sensing has become a popular field, applied not only to automotive sensing for collision avoidance (radar) but also to gesture sensing for gaming and virtual interfaces (optical). Popular gesture sensing devices such as the Kinect from Microsoft's Xbox gaming device produce a full absolute depth map, which is in most cases not adapted to the task on hand (relative gesture sensing). We propose in this paper a new gesture sensing technique through structured IR illumination to provide a relative depth mapping rather than an absolute one, and this reducing the requirements on computing power and therefore enabling this technology for wearable computing such as see through display.

  11. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models are......The composition of glass can be varied continuously within their glass-forming regions. This compositional flexibility makes it possible to tailor the properties of a glass for a variety of specific uses. In the industry such tailoring is done on a trial-and-error basis with only the intuition of a...... proposed based on topological selection rules and experimentally verified. The relation between structure and properties is evaluated using topological constraint theory, which in its essence is a theory that quantifies the two intuitions of the glass scientist. The end result is a quantitative model...

  12. Material relation to assess the crashworthiness of ship structures

    OpenAIRE

    Ehlers, Sören

    2009-01-01

    A ship collision accident can result in severe environmental damage and loss of life. Therefore the non-linear finite element method with shell elements is used to assess the crashworthiness of ship steel structures through collision simulations. However, a non-linear finite element-based benchmark revealed inconsistencies and inaccuracies in the results of collision analysis using current material relations and failure criteria. To overcome these problems in this thesis, the steel material's...

  13. The optimal industry structure in a vertically related market

    OpenAIRE

    Fiocco, Raffaele

    2010-01-01

    We consider a vertically related market characterized by down- stream imperfect competition and by the monopolistic provision of an essential facility-based input, whose price is set by a social-welfare maximizing regulator. Our model shows that the regulatory knowl- edge about the cost for providing the monopolistic input crucially af- fects the design of the optimal industry structure. In particular, we compare ownership separation, which prevents a single company from having the control of...

  14. Structure - property relations of high-temperature composite polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, R.J.; Jurek, R.J.; Larive, D.E. [Michigan Molecular Institute, Midland, MI (United States); Tung, C.M. [Northrop Corp., Hawthorne, CA (United States); Donnellan, T. [Naval Air Development Center, Warminster, PA (United States)

    1993-12-31

    The structure-deformation-failure mode-mechanical property relations of high-temperature thermoplastic polyimide and thermoset bismaleimide (BMI) polymeric matrices and their composites will be discussed. In the case of polyimides, the effects of test temperature, thermal history, strain rate, type of filler, and filler volume fraction on structure - property relations will be discussed. For BMIs we report systematic Fourier transform infrared spectroscopy and differential scanning calorimetry studies of the cure reactions as a function of chemical composition and time - temperature cure conditions and then describe the resultant cross-linked network structure based on our understanding of the cure reactions. The optimization of the BMI matrix toughness will be considered in terms of network structure and process-induced matrix microcracking. We also describe optimization of composite prepreg, lamination and postcure conditions based on cure kinetics, and their relationship to the BMI viscosity-time-temperature profiles. The critical processing-performance limitations of high-temperature polymer matrices will be critically discussed, and toughening approaches to address these limitations, such as toughness over a wide temperature range, will be presented. 7 refs., 2 figs., 1 tab.

  15. Chemical and physical structures of proteinoids and related polyamino acids

    Science.gov (United States)

    Mita, Hajime; Kuwahara, Yusuke; Nomoto, Shinya

    Studies of polyamino acid formation pathways in the prebiotic condition are important for the study of the origins of life. Several pathways of prebiotic polyamino acid formation have been reported. Heating of monoammonium malate [1] and heating of amino acids in molten urea [2] are important pathways of the prebiotic peptide formation. The former case, globular structure called proteinoid microsphere is formed in aqueous conditions. The later case, polyamino acids are formed from unrestricted amino acid species. Heating of aqueous aspargine is also interesting pathway for the prebiotic polyamino acid formation, because polyamino acid formation proceeds in aqueous condition [3]. In this study, we analyzed the chemical structure of the proteinoids and related polyamino acids formed in the above three pathways using with mass spectrometer. In addition, their physical structures are analyzed by the electron and optical microscopes, in order to determine the self-organization abilities. We discuss the relation between the chemical and the physical structures for the origins of life. References [1] Harada, K., J. Org. Chem., 24, 1662 (1959), Fox, S. W., Harada, K., and Kendrick, J., Science, 129, 1221 (1959). [2] Terasaki, M., Nomoto, S., Mita, H., and Shimoyama, A., Chem. Lett., 480 (2002), Mita, H., Nomoto, S., Terasaki, M., Shimoyama, A., and Yamamoto, Y., Int. J. Astrobiol., 4, 145 (2005). [3] Kovacs, K and Nagy, H., Nature, 190, 531 (1961), Munegumi, T., Tanikawa, N., Mita, H. and Harada, K., Viva Origino, 22, 109 (1994).

  16. Diffusion-driven looping provides a consistent framework for chromatin organization.

    Directory of Open Access Journals (Sweden)

    Manfred Bohn

    Full Text Available Chromatin folding inside the interphase nucleus of eukaryotic cells is done on multiple scales of length and time. Despite recent progress in understanding the folding motifs of chromatin, the higher-order structure still remains elusive. Various experimental studies reveal a tight connection between genome folding and function. Chromosomes fold into a confined subspace of the nucleus and form distinct territories. Chromatin looping seems to play a dominant role both in transcriptional regulation as well as in chromatin organization and has been assumed to be mediated by long-range interactions in many polymer models. However, it remains a crucial question which mechanisms are necessary to make two chromatin regions become co-located, i.e. have them in spatial proximity. We demonstrate that the formation of loops can be accomplished solely on the basis of diffusional motion. The probabilistic nature of temporary contacts mimics the effects of proteins, e.g. transcription factors, in the solvent. We establish testable quantitative predictions by deriving scale-independent measures for comparison to experimental data. In this Dynamic Loop (DL model, the co-localization probability of distant elements is strongly increased compared to linear non-looping chains. The model correctly describes folding into a confined space as well as the experimentally observed cell-to-cell variation. Most importantly, at biological densities, model chromosomes occupy distinct territories showing less inter-chromosomal contacts than linear chains. Thus, dynamic diffusion-based looping, i.e. gene co-localization, provides a consistent framework for chromatin organization in eukaryotic interphase nuclei.

  17. Minor Loops in Major Folds: Enhancer-Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease.

    Science.gov (United States)

    Matharu, Navneet; Ahituv, Nadav

    2015-12-01

    The organization and folding of chromatin within the nucleus can determine the outcome of gene expression. Recent technological advancements have enabled us to study chromatin interactions in a genome-wide manner at high resolution. These studies have increased our understanding of the hierarchy and dynamics of chromatin domains that facilitate cognate enhancer-promoter looping, defining the transcriptional program of different cell types. In this review, we focus on vertebrate chromatin long-range interactions as they relate to transcriptional regulation. In addition, we describe how the alteration of boundaries that mark discrete regions in the genome with high interaction frequencies within them, called topological associated domains (TADs), could lead to various phenotypes, including human diseases, which we term as "TADopathies." PMID:26632825

  18. Minor Loops in Major Folds: Enhancer-Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease.

    Directory of Open Access Journals (Sweden)

    Navneet Matharu

    2015-12-01

    Full Text Available The organization and folding of chromatin within the nucleus can determine the outcome of gene expression. Recent technological advancements have enabled us to study chromatin interactions in a genome-wide manner at high resolution. These studies have increased our understanding of the hierarchy and dynamics of chromatin domains that facilitate cognate enhancer-promoter looping, defining the transcriptional program of different cell types. In this review, we focus on vertebrate chromatin long-range interactions as they relate to transcriptional regulation. In addition, we describe how the alteration of boundaries that mark discrete regions in the genome with high interaction frequencies within them, called topological associated domains (TADs, could lead to various phenotypes, including human diseases, which we term as "TADopathies."

  19. Incorporating double copies of a chromatin insulator into lentiviral vectors results in less viral integrants

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Jakobsson, Johan; Rosenqvist, Nina;

    2009-01-01

    BACKGROUND: Lentiviral vectors hold great promise as gene transfer vectors in gene therapeutic settings. However, problems related to the risk of insertional mutagenesis, transgene silencing and positional effects have stalled the use of such vectors in the clinic. Chromatin insulators are boundary...

  20. Prevalence of X-chromatin in Jordanian women

    International Nuclear Information System (INIS)

    This study was conducted to evaluate the distribution of X-chromatin among Jordanian women at different age groups. Results will be compared with other studies for possible racial and environmental effects on X-chromatin distribution. Blood samples were drawn from all women subjected to this study by finger prick and stained with Wright's stain. X-chromatin positive polymorphonuclear cells were counted and corrected for percentage. Samples were taken during the late 2002 and early 2003 from healthy women attending routine checkup in health centers in Northern Jordan. The number of X-chromatin was highest in the 50 and above years age group. The number of X-chromatin was 14-18% in other age groups. These results were in accordance with other studies. It seems that racial and environmental factors are ineffective on distribution of X-chromatin in Jordanian women. These data could be used as as reference for further studies. (author)

  1. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  2. The Gd14Ag51 structure type and its relation to some complex amalgam structures

    International Nuclear Information System (INIS)

    Highlights: • The Gd14Ag51 structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd14Ag51 shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE14Ag51 structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd14Ag51 structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd14Ag51). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE14Ag51 structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd14Ag51 structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd14Ag51 structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd14Ag51, the parent compound of this structure family

  3. Structure-Based Alignment and Consensus Secondary Structures for Three HIV-Related RNA Genomes.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2015-05-01

    Full Text Available HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple regions of these genomes participate in critical steps in the viral replication cycle, and the functions of many RNA elements are dependent on the formation of defined structures. The structures of these elements are still not fully understood, and additional functional elements likely exist that have not been identified. In this work, we compared three full-length HIV-related viral genomes: HIV-1NL4-3, SIVcpz, and SIVmac (the latter two strains are progenitors for all HIV-1 and HIV-2 strains, respectively. Model-free RNA structure comparisons were performed using whole-genome structure information experimentally derived from nucleotide-resolution SHAPE reactivities. Consensus secondary structures were constructed for strongly correlated regions by taking into account both SHAPE probing structural data and nucleotide covariation information from structure-based alignments. In these consensus models, all known functional RNA elements were recapitulated with high accuracy. In addition, we identified multiple previously unannotated structural elements in the HIV-1 genome likely to function in translation, splicing and other replication cycle processes; these are compelling targets for future functional analyses. The structure-informed alignment strategy developed here will be broadly useful for efficient RNA motif discovery.

  4. Elucidation of operon structures across closely related bacterial genomes.

    Science.gov (United States)

    Zhou, Chuan; Ma, Qin; Li, Guojun

    2014-01-01

    About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG) and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i) a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii) a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components.

  5. Elucidation of operon structures across closely related bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Chuan Zhou

    Full Text Available About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components.

  6. Abstract numeric relations and the visual structure of algebra.

    Science.gov (United States)

    Landy, David; Brookes, David; Smout, Ryan

    2014-09-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.

  7. Combinatorial epigenetic patterns as quantitative predictors of chromatin biology

    OpenAIRE

    Cieślik, Marcin; Bekiranov, Stefan

    2014-01-01

    Background Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is the most widely used method for characterizing the epigenetic states of chromatin on a genomic scale. With the recent availability of large genome-wide data sets, often comprising several epigenetic marks, novel approaches are required to explore functionally relevant interactions between histone modifications. Computational discovery of "chromatin states" defined by such combinatorial interactions enabled desc...

  8. Hydrogen peroxide mediates higher order chromatin degradation.

    Science.gov (United States)

    Bai, H; Konat, G W

    2003-01-01

    Although a large body of evidence supports a causative link between oxidative stress and neurodegeneration, the mechanisms are still elusive. We have recently demonstrated that hydrogen peroxide (H(2)O(2)), the major mediator of oxidative stress triggers higher order chromatin degradation (HOCD), i.e. excision of chromatin loops at the matrix attachment regions (MARs). The present study was designed to determine the specificity of H(2)O(2) in respect to HOCD induction. Rat glioma C6 cells were exposed to H(2)O(2) and other oxidants, and the fragmentation of genomic DNA was assessed by field inversion gel electrophoresis (FIGE). S1 digestion before FIGE was used to detect single strand fragmentation. The exposure of C6 cells to H(2)O(2) induced a rapid and extensive HOCD. Thus, within 30 min, total chromatin was single strandedly digested into 50 kb fragments. Evident HOCD was elicited by H(2)O(2) at concentrations as low as 5 micro M. HOCD was mostly reversible during 4-8h following the removal of H(2)O(2) from the medium indicating an efficient relegation of the chromatin fragments. No HOCD was induced by H(2)O(2) in isolated nuclei indicating that HOCD-endonuclease is activated indirectly by cytoplasmic signal pathways triggered by H(2)O(2). The exposure of cells to a synthetic peroxide, i.e. tert-butyrylhydroperoxide (tBH) also induced HOCD, but to a lesser extent than H(2)O(2). Contrary to the peroxides, the exposure of cells to equitoxic concentration of hypochlorite and spermine NONOate, a nitric oxide generator, failed to induce rapid HOCD. These results indicate that rapid HOCD is not a result of oxidative stress per se, but is rather triggered by signaling cascades initiated specifically by H(2)O(2). Furthermore, the rapid and extensive HOCD was observed in several rat and human cell lines challenged with H(2)O(2), indicating that the process is not restricted to glial cells, but rather represents a general response of cells to H(2)O(2). PMID:12421592

  9. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  10. Proteins of the origin recognition complex (ORC and DNA topoisomerases on mammalian chromatin

    Directory of Open Access Journals (Sweden)

    Baack Martina

    2009-04-01

    Full Text Available Abstract Background The process of DNA replication requires the separation of complementary DNA strands. In this process, the unwinding of circularly closed or long DNA duplices leads to torsional tensions which must be released by topoisomerases. So topoisomerases play an important role in DNA replication. In order to provide more information about topoisomerases in the initiation of mammalian replication, we investigated whether topoisomerases occur close to ORC in the chromatin of cultured human HeLa cells. Results We have used different cell fractionation procedures, namely salt and nuclease treatment of isolated nuclei as well as formaldehyde-mediated cross-linking of chromatin, to investigate the distribution of topoisomerases and proteins of the origin recognition complex (ORC in the chromatin of human HeLa cells. First we obtained no evidence for a physical interaction of either topoisomerase I or topoisomerase II with ORC. Then we found, however, that (Orc1-5 and topo II occurred together on chromatin fragments of 600 and more bp lengths. At last we showed that both topo II and Orc2 protein are enriched near the origin at the human MCM4 gene, and at least some of the topo II at the origin is active in proliferating HeLa cells. So taken together, topoisomerase II, but not topoisomerase I, is located close to ORC on chromatin. Conclusion Topoisomerase II is more highly expressed than ORC proteins in mammalian cells, so only a small fraction of total chromatin-bound topoisomerase II was found in the vicinity of ORC. The precise position of topo II relative to ORC may differ among origins.

  11. Genome-wide Association of Yorkie with Chromatin and Chromatin-Remodeling Complexes

    Directory of Open Access Journals (Sweden)

    Hyangyee Oh

    2013-02-01

    Full Text Available The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie’s association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF, the Brahma complex, and the Mediator complex as Yorkie-associated nuclear protein complexes. All three are required for Yorkie’s transcriptional activation of downstream genes, and GAF and the Brahma complex subunit Moira interact directly with Yorkie. Genome-wide chromatin-binding experiments identify thousands of Yorkie sites, most of which are associated with elevated transcription, based on genome-wide analysis of messenger RNA and histone H3K4Me3 modification. Chromatin binding also supports extensive functional overlap between Yorkie and GAF. Our studies suggest a widespread role for Yorkie as a regulator of transcription and identify recruitment of the chromatin-modifying GAF protein and BRM complex as a molecular mechanism for transcriptional activation by Yorkie.

  12. Isolation of In Vivo SUMOylated Chromatin-Bound Proteins.

    Science.gov (United States)

    Bawa-Khalfe, Tasneem

    2016-01-01

    SUMO posttranslational modification directs gene transcription and epigenetic programming to support normal cell function. The dynamic nature of SUMO-modification makes it difficult to identify endogenous protein substrates. Isolation of chromatin-bound SUMO targets is exceptionally challenging, as conventional immunoprecipitation assays are inefficient at concentrating this protein population. This chapter describes a protocol that effectively precipitates chromatin-associated fractions of SUMOylated heterochromatin protein 1α in cultured cells. Techniques to enrich endogenous SUMO substrates at the chromatin are also demonstrated and discussed. This approach could be adapted to evaluate chromatin-bound SUMO targets in additional in vivo systems. PMID:27631808

  13. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    International Nuclear Information System (INIS)

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome. (paper)

  14. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation

    Directory of Open Access Journals (Sweden)

    He Shuying

    2010-11-01

    Full Text Available Abstract Background Brahma-related gene 1 (Brg1, also known as Smarca4 and Snf2β encodes an adenosine-5'-triphosphate (ATP-dependent catalytical subunit of the (switch/sucrose nonfermentable (SWI/SNF chromatin remodeling complexes. SWI/SNF complexes are recruited to chromatin through multiple mechanisms, including specific DNA-binding factors (for example, heat shock transcription factor 4 (Hsf4 and paired box gene 6 (Pax6, chromatin structural proteins (for example, high-mobility group A1 (HMGA1 and/or acetylated core histones. Previous studies have shown that a single amino acid substitution (K798R in the Brg1 ATPase domain acts via a dominant-negative (dn mechanism. Genetic studies have demonstrated that Brg1 is an essential gene for early (that is, prior implantation mouse embryonic development. Brg1 also controls neural stem cell maintenance, terminal differentiation of multiple cell lineages and organs including the T-cells, glial cells and limbs. Results To examine the roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific αA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (that is, denucleation of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in embryonic day 15.5 (E15.5 wild-type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous and Hsf4 homozygous lenses identified multiple genes coregulated by Brg1, Hsf4 and Pax6. DNase IIβ, a key enzyme required for lens fiber cell denucleation, was found to be downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that

  15. Chromatin Dynamics in Vivo: A Game of Musical Chairs

    Directory of Open Access Journals (Sweden)

    Daniël P. Melters

    2015-08-01

    Full Text Available Histones are a major component of chromatin, the nucleoprotein complex fundamental to regulating transcription, facilitating cell division, and maintaining genome integrity in almost all eukaryotes. In addition to canonical, replication-dependent histones, replication-independent histone variants exist in most eukaryotes. In recent years, steady progress has been made in understanding how histone variants assemble, their involvement in development, mitosis, transcription, and genome repair. In this review, we will focus on the localization of the major histone variants H3.3, CENP-A, H2A.Z, and macroH2A, as well as how these variants have evolved, their structural differences, and their functional significance in vivo.

  16. Relations Between Stabilities and Structures of Closo Borane Dianions

    Institute of Scientific and Technical Information of China (English)

    LI Ping

    2006-01-01

    An effective method to investigate the stabilities of a series of new closo-BnHn2-(n = 12, 14, 16, 18, 20, 22, 24, 30) was put forward with the aid of G96PW91/SHC calculations. Stabilities are related to the relative stabilized energies (RSE) and the 2e3c bound geometries of closo-BnHn2-. The structures in which a boron atom connects to four atoms up to seven are stable and appear in many borides because of the lower relative stabilized energy. In geometries, both triangular and quadrangular faces are in favor of forming the structures of closo-BnHn2-. The energies of optimized geometries support the existence of these new compounds. By employing both RSE and ▲E per boron atom in cage, the stabilities were studied to predict the probabilities of unknown clusters in existence. The electron-deficient clusters can be understood that the positive holes should be disperse to every triangular face and lead to share the holes, wherever there are not enough electrons to occupy them. The negative charges which anions carry distribute to 2e3c bonds to increase the stabilities.

  17. Word recognition and phonetic structure acquisition: Possible relations

    Science.gov (United States)

    Morgan, James

    2002-05-01

    Several accounts of possible relations between the emergence of the mental lexicon and acquisition of native language phonological structure have been propounded. In one view, acquisition of word meanings guides infants' attention toward those contrasts that are linguistically significant in their language. In the opposing view, native language phonological categories may be acquired from statistical patterns of input speech, prior to and independent of learning at the lexical level. Here, a more interactive account will be presented, in which phonological structure is modeled as emerging consequentially from the self-organization of perceptual space underlying word recognition. A key prediction of this model is that early native language phonological categories will be highly context specific. Data bearing on this prediction will be presented which provide clues to the nature of infants' statistical analysis of input.

  18. Deterioration of Safety Related Concrete Structures in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young Chul; Cho, Myung Sug; Suh, Young Pyue; Jung, Hyung Jin; Pang, Gi Sung [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, Jang Hwa; Kim, Keung Hwan; Park, Heung Seik; You, Young Chan; Kim, Do Gyeum; Jeong, Youn Ju; Lee, Jong Suk [Korea Institute of Construction Technology (Korea, Republic of)

    1996-12-31

    In general, the Safety Related Concrete Structures(SRCS) in nuclear power plants are progressively deteriorated as the total service life is increased. The deterioration of SRCS becomes major concern in the maintenance of the nuclear power plants since the failure of SRCS can cause safety problems. To ensure safety of SRCS, the maintenance of SRCS should be conducted according to the reliable maintenance techniques. For this reason, this study to evaluate the soundness of the existing SRCS and to develop an advanced maintenance technique which is named Structural Aging Maintenance System(SAMS), especially for the efficient treatment of deteriorated SRCS. SAMS can handle input/output and search/control of the results, detection of deterioration causes by using Deterioration Diagnosis System(DDS), and establishment of the maintenance plan which including repairs and retrofit. (author). 82 refs., 46 figs.

  19. ISINN-2. Neutron spectroscopy, nuclear structure and related topics

    International Nuclear Information System (INIS)

    The proceedings contain the materials presented at the Second International Seminar on Neutron-Nucleus Interactions (ISINN-2) dealing with the problems of neutron spectroscopy, nuclear structure and related topics. The Seminar took place in Dubna on April 26-28, 1994. Over 120 scientists from Belgium, Bulgaria, Czech Republic, Germany, Holland, Italy, Japan, Latvia, Mexico, Poland, Slovakia, Slovenia, Ukraine, US and about 10 Russian research institutes took part in the Seminar. The main problems discussed are the following: P-odd and P-even angular correlation and T-reversal invariance in neutron reactions, nuclear structure investigations by neutron capture, the mechanism of neutron reactions, nuclear fission processes, as well as neutron data for nuclear astrophysics

  20. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films. PMID:25879999

  1. Age-related changes in brain structural covariance networks

    Directory of Open Access Journals (Sweden)

    Xinwei eLi

    2013-03-01

    Full Text Available Previous neuroimaging studies have suggested that cerebral changes over normal aging are not simply characterized by regional alterations, but rather by the reorganization of cortical connectivity patterns. The investigation of structural covariance networks (SCNs using voxel-based morphometry is an advanced approach to examining the pattern of covariance in gray matter volumes among different regions of the human cortex. To date, how the organization of critical SCNs change during normal aging remains largely unknown. In this study, we used an SCN mapping approach to investigate eight large-scale networks in 240 healthy participants aged 18–89 years. These participants were subdivided into young (18–23 years, middle aged (30–58 years, and older (61–89 years subjects. Eight seed regions were chosen from widely reported functional intrinsic connectivity networks. The voxels showing significant positive associations with these seed regions were used to describe the topological organization of an SCN. All of these networks exhibited non-linear patterns in their spatial extent that were associated with normal aging. These networks, except the primary motor network, had a distributed topology in young participants, a sharply localized topology in middle aged participants, and were relatively stable in older participants. The structural covariance derived using the primary motor cortex was limited to the ipsilateral motor regions in the young and older participants, but included contralateral homologous regions in the middle aged participants. In addition, there were significant between-group differences in the structural networks associated with language-related speech and semantics processing, executive control, and the default-mode network. Taken together, the results of this study demonstrate age-related changes in the topological organization of SCNs, and provide insights into normal aging of the human brain.

  2. Constraining cosmological ultra-large scale structure using numerical relativity

    CERN Document Server

    Braden, Jonathan; Peiris, Hiranya V; Aguirre, Anthony

    2016-01-01

    Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultra-large scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultra-large scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full General Relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically significant number of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given...

  3. Relating reconnection rate, exhaust structure and effective resistivity

    International Nuclear Information System (INIS)

    The magnetic reconnection structure consists of a central diffusion region (CDR) and a cone or wedge shaped reconnection exhaust containing accelerated plasma flows and electromagnetic fluctuations. We predict here the relationship among the exhaust half-cone angle (θe), the half width (w) of the CDR, the outflow velocity Vo, and the effective resistivity (ηeff), which includes the effects of all the nonideal terms in the generalized Ohm's law. The effective resistivity is defined as the ratio of reconnection electric field Erec to the current density Jy at the X point and it essentially represents the loss of momentum from the current-carrying plasma particles due to scattering by waves, their inertia or outflux from the CDR. The relation is checked against relevant results previously reported from laboratory experiments, space observations, and simulations, showing excellent agreement. The relation can be used for estimating the ad-hoc effective resistivity often used in magnetohydrodynamic modeling of reconnection

  4. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    DEFF Research Database (Denmark)

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom;

    2011-01-01

    to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response...... element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3...

  5. Nuclear envelope proteins and chromatin arrangement: a pathogenic mechanism for laminopathies

    Directory of Open Access Journals (Sweden)

    NM Maraldi

    2009-06-01

    Full Text Available The involvement of the nuclear envelope in the modulation of chromatin organization is strongly suggested by the increasing number of human diseases due to mutations of nuclear envelope proteins. A common feature of these diseases, named laminopathies, is the occurrence of major chromatin defects. Laminopathies share in some instances their clinical features, but each of them is characterized by a phenotype that involves one or multiple tissues.We previously reported that cells from laminopathic patients show an altered nuclear profile, and loss or detachment of heterochromatin from the nuclear envelope. Recent evidence indicates that processing of the lamin A precursor is altered in laminopathies featuring pre-mature aging and/or lipodystrophy phenotype. In these cases, pre-lamin A is accumulated in the nucleus and heterochromatin is severely disorganized. Moreover, altered distribution and solubility properties of heterochromatin-associated proteins such as HP1 are observed. These findings indicate that defects of chromatin remodeling are involved in the cascade of epigenetic events leading to the laminopathic phenotypes. Here we report evidence indicating that pre-lamin A is mis-localized in the nuclei of Emery-Dreifuss muscular dystrophy fibroblasts, either bearing lamin A/C or emerin mutations. Abnornal pre-lamin A-containing structures are formed following treatment with a farnesyl-transferase inhibitor, a drug that causes accumulation of non-farnesylated pre-lamin A. Pre-lamin A-labeled structures co-localize with heterochromatin clumps. These data indicate that in almost all laminopathies the expression of the mutant lamin A precursor disrupts the organization of heterochromatin domains so that affected cells are unable to maintain the silenced chromatin state capable to allow/preserve terminal differentiation. Our results further show that the absence of emerin expression alters the distribution of pre-lamin A and of heterochromatin

  6. The Nuclear Oncogene SET Controls DNA Repair by KAP1 and HP1 Retention to Chromatin

    Directory of Open Access Journals (Sweden)

    Alkmini Kalousi

    2015-04-01

    Full Text Available Cells experience damage from exogenous and endogenous sources that endanger genome stability. Several cellular pathways have evolved to detect DNA damage and mediate its repair. Although many proteins have been implicated in these processes, only recent studies have revealed how they operate in the context of high-ordered chromatin structure. Here, we identify the nuclear oncogene SET (I2PP2A as a modulator of DNA damage response (DDR and repair in chromatin surrounding double-strand breaks (DSBs. We demonstrate that depletion of SET increases DDR and survival in the presence of radiomimetic drugs, while overexpression of SET impairs DDR and homologous recombination (HR-mediated DNA repair. SET interacts with the Kruppel-associated box (KRAB-associated co-repressor KAP1, and its overexpression results in the sustained retention of KAP1 and Heterochromatin protein 1 (HP1 on chromatin. Our results are consistent with a model in which SET-mediated chromatin compaction triggers an inhibition of DNA end resection and HR.

  7. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    International Nuclear Information System (INIS)

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) and can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression

  8. Put your 3D glasses on: plant chromatin is on show

    KAUST Repository

    Rodriguez-Granados, Natalia Y.

    2016-04-30

    The three-dimensional organization of the eukaryotic nucleus and its chromosomal conformation have emerged as important features in the complex network of mechanisms behind gene activity and genome connectivity dynamics, which can be evidenced in the regionalized chromosomal spatial distribution and the clustering of diverse genomic regions with similar expression patterns. The development of chromatin conformation capture (3C) techniques has permitted the elucidation of commonalities between the eukaryotic phyla, as well as important differences among them. The growing number of studies in the field performed in plants has shed light on the structural and regulatory features of these organisms. For instance, it has been proposed that plant chromatin can be arranged into different conformations such as Rabl, Rosette-like, and Bouquet, and that both short- and long-range chromatin interactions occur in Arabidopsis. In this review, we compile the current knowledge about chromosome architecture characteristics in plants, as well as the molecular events and elements (including long non-coding RNAs, histone and DNA modifications, chromatin remodeling complexes, and transcription factors) shaping the genome three-dimensional conformation. Furthermore, we discuss the developmental outputs of genome topology-mediated gene expression regulation. It is becoming increasingly clear that new tools and techniques with higher resolution need to be developed and implemented in Arabidopsis and other model plants in order to better understand chromosome architecture dynamics, from an integrative perspective with other fields of plant biology such as development, stress biology, and finally agriculture. © 2016 The Author 2016.

  9. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.

    2014-08-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  10. Influence of oncogenic transcription factors on chromatin conformation and implications in prostate cancer

    Directory of Open Access Journals (Sweden)

    Yang YA

    2014-05-01

    Full Text Available Yeqing Angela Yang,1 Jung Kim,1 Jindan Yu1,21Division of Hematology/Oncology, Department of Medicine, 2Robert H Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USAAbstract: In recent years, facilitated by rapid technological advances, we are becoming more adept at probing the molecular processes, which take place in the nucleus, that are crucial for the hierarchical regulation and organization of chromatin architecture. With an unprecedented level of resolution, a detailed atlas of chromosomal structures (histone displacement, variants, modifications, chromosome territories, and DNA looping and mechanisms underlying their establishment, provides invaluable insight into physiological as well as pathological phenomena. In this review, we will focus on prostate cancer, a prevalent malignancy in men worldwide, and for which a curative treatment strategy is yet to be attained. We aim to catalog the most frequently observed oncogenic alterations associated with chromatin conformation, while emphasizing the TMPRSS2-ERG fusion, which is found in more than one-half of prostate cancer patients and its functions in compromising the chromatin landscape in prostate cancer.Keywords: chromatin conformation, ERG, prostate cancer

  11. New insights into protamine-like component organization in Mytilus galloprovincialis' sperm chromatin.

    Science.gov (United States)

    Vassalli, Quirino Attilio; Caccavale, Filomena; Avagnano, Stefano; Murolo, Alessandra; Guerriero, Giulia; Fucci, Laura; Ausió, Juan; Piscopo, Marina

    2015-03-01

    We have analyzed Mytilus galloprovincialis' sperm chromatin, which consists of three protamine-like proteins, PL-II, PL-III, and PL-IV, in addition to a residual amount of the four core histones. We have probed the structure of this sperm chromatin through digestion with micrococcal nuclease (MNase) in combination with salt fractionation. Furthermore, we used the electrophoretic mobility shift assay to define DNA-binding mode of PL-II and PL-III and turbidimetric assays to determine their self-association ability in the presence of sodium phosphate. Although in literature it is reported that M. galloprovincialis' sperm chromatin lacks nucleosomal organization, our results obtained by MNase digestion suggest the existence of a likely unusual organization, in which there would be a more accessible location of PL-II/PL-IV when compared with PL-III and core histones. So, we hypothesize that in M. galloprovincialis' sperm chromatin organization DNA is wrapped around a PL-III protein core and core histones and PL-II and PL-IV are bound to the flanking DNA regions (similarly to somatic histone H1). Furthermore, we propose that PL's K/R ratio affects their DNA-binding mode and self-association ability as reported previously for somatic and sperm H1 histones.

  12. Development of a novel flow cytometric approach to evaluate fish sperm chromatin using fixed samples

    Science.gov (United States)

    Jenkins, Jill A.

    2013-01-01

    The integrity of the paternal DNA is essential for the accurate transmission of genetic information, yet fertilization is not inhibited by chromatin breakage. Some methods are available for the sensitive detection of DNA damage and can be applied in studies of environmental toxicology, carcinogenesis, aging, and assisted reproduction techniques in both clinical and experimental settings. Because semen samples obtained from remote locations undergo chromatin damage prior to laboratory assessment, the present study was undertaken to evaluate treatments for effective chromatin staining in the development of a DNA fragmentation assay using fixed milt from yellow perch (Perca flavescens). Similar to the sperm chromatin structure assay (SCSA), susceptibility of nuclear DNA to acid-induced denaturation was measured by flow cytometry (FCM). Use of 10% buffered formalin for milt fixation allowed easier peak discrimination than 4% paraformaldehyde. The effects of time and temperature of incubation in 0.08 N HCl were evaluated in order to determine the ideal conditions for promoting DNA decondensation and making strand breaks more available for staining and detection by FCM. The best results were obtained with incubation at 37°C for 1 minute, followed by cold propidium iodide staining for 30 minutes.

  13. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amrita; Sanyal, Sulagna; Majumder, Parijat [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India); Chakraborty, Payal [Bionivid Technology Pvt Ltd, Kasturi Nagar, Bangalore 560043 (India); Jana, Kuladip [Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal (India); Das, Chandrima, E-mail: chandrima.das@saha.ac.in [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India); Dasgupta, Dipak, E-mail: dipak.dasgupta@saha.ac.in [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India)

    2015-07-10

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) and can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression.

  14. A Method to Study the Epigenetic Chromatin States of Rare Hematopoietic Stem and Progenitor Cells; MiniChIP–Chip

    Directory of Open Access Journals (Sweden)

    Weishaupt Holger

    2010-01-01

    Full Text Available Abstract Dynamic chromatin structure is a fundamental property of gene transcriptional regulation, and has emerged as a critical modulator of physiological processes during cellular differentiation and development. Analysis of chromatin structure using molecular biology and biochemical assays in rare somatic stem and progenitor cells is key for understanding these processes but poses a great challenge because of their reliance on millions of cells. Through the development of a miniaturized genome-scale chromatin immunoprecipitation method (miniChIP–chip, we have documented the genome-wide chromatin states of low abundant populations that comprise hematopoietic stem cells and immediate progeny residing in murine bone marrow. In this report, we describe the miniChIP methodology that can be used for increasing an understanding of the epigenetic mechanisms underlying hematopoietic stem and progenitor cell function. Application of this method will reveal the contribution of dynamic chromatin structure in regulating the function of other somatic stem cell populations, and how this process becomes perturbed in pathological conditions. Additional file 1 Click here for file

  15. The Structure of Relations among Neighbours in Croatia

    Directory of Open Access Journals (Sweden)

    Barbara Tołłoczko

    2015-12-01

    Full Text Available The Structure of Relations among Neighbours in CroatiaThe article discusses the study carried out by Croatian researchers from the Institute of Social Sciences Ivo Pilar. The research was realized through face-to-face interviews conducted between March and May 2014. It’s goal was to investigate the structure of local social relations by exploring the frequency and density of interactions between neighbours. Obtained data was analysed according to the demographic and socioeconomic background of the responders. The article includes a short introduction into the issue of neighbourhood patterns in Croatia which is described in the context of broader, global changes. After reviewing the research theoretical and methodological assumptions I present and discuss its findings. The summary suggests some problems and inspirations for further exploration in the matter of neighbourhood relations. Struktura relacji międzysąsiedzkich w ChorwacjiArtykuł omawia prace przeprowadzone przez badaczy z Instytutu Ivo Pilar w Zagrzebiu. Wykonano serię wywiadów bezpośrednich w okresie od marca do maja 2014 r. Ich celem było przyjrzenie się strukturze lokalnych relacji społecznych poprzez zbadanie częstotliwości i głębokości interakcji między sąsiadami. Otrzymane dane zostały zanalizowane w świetle demograficznego i socjoekonomicznego profilu badanych. Artykuł zawiera krótkie wprowadzenie w problematykę wzorów sąsiedztwa w Chorwacji w szerszym, globalnym kontekście. Po omówieniu teoretycznych i metodologicznych założeń przedstawiono i przedyskutowano rezultaty badania.

  16. Analysis of chromatin integrity and DNA damage of buffalo spermatozoa.

    Science.gov (United States)

    Mahmoud, K Gh M; El-Sokary, A A E; Abdel-Ghaffar, A E; Abou El-Roos, M E A; Ahmed, Y F

    2015-01-01

    This study was conducted to determine chromatin integrity and DNA damage by DNA electrophoresis and comet assays of buffalo fresh and frozen semen. Semen samples were collected from four buffalo bulls and evaluated after freezing for semen motility, viability, sperm abnormalities, chromatin integrity and DNA damage. A significant variation was found in semen parameters after thawing. Highly significant differences (Partificial insemination. PMID:27175169

  17. Rapid genome-scale mapping of chromatin accessibility in tissue

    DEFF Research Database (Denmark)

    Grøntved, Lars; Bandle, Russell; John, Sam;

    2012-01-01

    BACKGROUND: The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on la...

  18. A Broad Set of Chromatin Factors Influences Splicing

    Science.gov (United States)

    Allemand, Eric; Myers, Michael P.; Garcia-Bernardo, Jose; Harel-Bellan, Annick; Krainer, Adrian R.; Muchardt, Christian

    2016-01-01

    Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny. Finally, a direct assessment of the impact of chromatin on splicing using an in vitro co-transcriptional splicing assay with pre-mRNAs transcribed from a nucleosomal template, demonstrated that chromatin impacts nascent pre-mRNP in their competence for splicing. Altogether, our data show that numerous chromatin factors associated or not with the spliceosome can affect the outcome of splicing, possibly as a function of the local chromatin environment that by default interferes with the efficiency of splicing. PMID:27662573

  19. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  20. Data on the kinetics of in vitro assembled chromatin.

    Science.gov (United States)

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Schmidt, Andreas; Imhof, Axel

    2016-09-01

    Here, we use LC-MS/MS and SWATH-MS to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos (DREX). This system allows easy manipulation of distinct aspects of chromatin assembly such as post-translational histone modifications, the levels of histone chaperones and the concentration of distinct DNA binding factors. In total, 480 proteins have been quantified as chromatin enriched factors and their binding kinetics have been monitored in the time course of 15 min, 1 h and 4 h of chromatin assembly. The data accompanying the manuscript on this approach, Völker-Albert et al., 2016 "A quantitative proteomic analysis of in vitro assembled chromatin" [1], has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier submission number PRIDE: PXD002537 and PRIDE: PXD003445. PMID:27331114

  1. Chromatin-based epigenetics of adult subventricular zone neural stem cells

    Directory of Open Access Journals (Sweden)

    Gabriel eGonzales-Roybal

    2013-10-01

    Full Text Available In specific regions of the adult mammalian brain, neural stem cells (NSCs generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs – which possess many characteristics of mature, non-neurogenic astrocytes – maintain a youthful ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long noncoding RNAs (lncRNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain.

  2. Approximation method to compute domain related integrals in structural studies

    Science.gov (United States)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2015-11-01

    Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the

  3. ISINN-3. Neutron spectroscopy, nuclear structure, related topics

    International Nuclear Information System (INIS)

    The proceedings contain the materials presented at the Third International Seminar on Neutron-Nucleus Interactions (ISINN-3) dealing with the problems of neutron spectroscopy, nuclear structure and related topics. The Seminar took place in Dubna on April 26-28, 1995. Over 100 scientists from Belgium, Bulgaria, Czech Republic, Germany, Japan, Latvia, Mexico, Poland, Slovakia, Ukraine, USA and from more than 10 Russian research institutes took part in the Seminar. The Seminar is dedicated to the memory of the founder of the Neutron Physics Laboratory of JINR, the famous soviet scientist Professor Fedor L. Shapiro, whose 80th anniversary is being observed. The main problems discussed are the following: fundamental interactions and symmetries in neutron-induced reactions, fundamental properties of the neutron, properties of excited nuclei after neutron capture and some other ones. Special emphasis is laid upon γ decay and neutron induced nuclear fission as well as upon the methodical aspects of new experiments

  4. Packing regularities in biological structures relate to their dynamics.

    Science.gov (United States)

    Jernigan, Robert L; Kloczkowski, Andrzej

    2007-01-01

    The high packing density inside proteins leads to certain geometric regularities and also is one of the most important contributors to the high extent of cooperativity manifested by proteins in their cohesive domain motions. The orientations between neighboring nonbonded residues in proteins substantially follow the similar geometric regularities, regardless of whether the residues are on the surface or buried, a direct result of hydrophobicity forces. These orientations are relatively fixed and correspond closely to small deformations from those of the face-centered cubic lattice, which is the way in which identical spheres pack at the highest density. Packing density also is related to the extent of conservation of residues, and we show this relationship for residue packing densities by averaging over a large sample or residue packings. There are three regimes: (1) over a broad range of packing densities the relationship between sequence entropy and inverse packing density is nearly linear, (2) over a limited range of low packing densities the sequence entropy is nearly constant, and (3) at extremely low packing densities the sequence entropy is highly variable. These packing results provide important justification for the simple elastic network models that have been shown for a large number of proteins to represent protein dynamics so successfully, even when the models are extremely coarse grained. Elastic network models for polymeric chains are simple and could be combined with these protein elastic networks to represent partially denatured parts of proteins. Finally, we show results of applications of the elastic network model to study the functional motions of the ribosome, based on its known structure. These results indicate expected correlations among its components for the step-wise processing steps in protein synthesis, and suggest ways to use these elastic network models to develop more detailed mechanisms, an important possibility because most

  5. Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context.

    Directory of Open Access Journals (Sweden)

    Artyom A Alekseyenko

    Full Text Available The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE. However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex and female Kc cells (which lack the complex, we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.

  6. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components

    DEFF Research Database (Denmark)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Po;

    2014-01-01

    such as CAF-1, DNMT1 and SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, whereas H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment...

  7. Structure of some relative relation modules of finite p-groups

    International Nuclear Information System (INIS)

    Let G be a finite p-group generated by (gi, 1 ≤ i ≤ d), Gi the cyclic subgroup generated by gi, E the free product of the Gi, 1 ≤ i ≤ d, and S the kernel of the natural epimorphism of E onto G. The largest elementary abelian p-quotient S-circumflex = S/S'Sp, regarded as an IFpG-module via conjugation in E, is called a relative relation module of G. If d is the minimum number of generaters for G, the author has proved that S-circumflex is nonprojective and indecomposable. The aim of this paper is to give an alternative proof for the indecomposability of S-circumflex; the proof here is more informative as it deals with Loewy structure and generating sets of S-circumflex and other associated modules. (author). 9 refs

  8. Hinge Atlas: relating protein sequence to sites of structural flexibility

    Directory of Open Access Journals (Sweden)

    Yang Julie

    2007-05-01

    Full Text Available Abstract Background Relating features of protein sequences to structural hinges is important for identifying domain boundaries, understanding structure-function relationships, and designing flexibility into proteins. Efforts in this field have been hampered by the lack of a proper dataset for studying characteristics of hinges. Results Using the Molecular Motions Database we have created a Hinge Atlas of manually annotated hinges and a statistical formalism for calculating the enrichment of various types of residues in these hinges. Conclusion We found various correlations between hinges and sequence features. Some of these are expected; for instance, we found that hinges tend to occur on the surface and in coils and turns and to be enriched with small and hydrophilic residues. Others are less obvious and intuitive. In particular, we found that hinges tend to coincide with active sites, but unlike the latter they are not at all conserved in evolution. We evaluate the potential for hinge prediction based on sequence. Motions play an important role in catalysis and protein-ligand interactions. Hinge bending motions comprise the largest class of known motions. Therefore it is important to relate the hinge location to sequence features such as residue type, physicochemical class, secondary structure, solvent exposure, evolutionary conservation, and proximity to active sites. To do this, we first generated the Hinge Atlas, a set of protein motions with the hinge locations manually annotated, and then studied the coincidence of these features with the hinge location. We found that all of the features have bearing on the hinge location. Most interestingly, we found that hinges tend to occur at or near active sites and yet unlike the latter are not conserved. Less surprisingly, we found that hinge residues tend to be small, not hydrophobic or aliphatic, and occur in turns and random coils on the surface. A functional sequence based hinge predictor was

  9. Terahertz plasmon dispersion relation in layered semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Dietze, Daniel; Darmo, Juraj; Unterrainer, Karl [TU Wien (Austria). Institut fuer Photonik

    2010-07-01

    Surface guided waves, so-called plasmons, have attracted considerable attention in the past years due to their possible use for sub-wavelength confinement and guiding of terahertz (THz) electromagnetic fields. Fundamental insight into the behavior of plasmons can be obtained from their dispersion relation, which links the in-plane wave vector {beta} to the angular frequency {omega}. In general, the underlying equations are transcendental and stability of the numerical methods becomes an issue in the THz spectral range, as the characteristic frequencies are often separated by orders of magnitude. In our contribution, we present a robust method which does not require any prior knowledge about the dispersion relation or the mode structure. It is based on simplex minimization in three dimensions, a Monte-Carlo approach for the initial values and analytical expressions for the transcendental equations. Additionally, we included the possibility of conducting interfaces, which allows modeling of systems including 2DEG layers, such as HEMTS or graphene based devices. Several examples are presented which are of current technological interest.

  10. Three-Dimensional, Live-Cell Imaging of Chromatin Dynamics in Plant Nuclei Using Chromatin Tagging Systems.

    Science.gov (United States)

    Hirakawa, Takeshi; Matsunaga, Sachihiro

    2016-01-01

    In plants, chromatin dynamics spatiotemporally change in response to various environmental stimuli. However, little is known about chromatin dynamics in the nuclei of plants. Here, we introduce a three-dimensional, live-cell imaging method that can monitor chromatin dynamics in nuclei via a chromatin tagging system that can visualize specific genomic loci in living plant cells. The chromatin tagging system is based on a bacterial operator/repressor system in which the repressor is fused to fluorescent proteins. A recent refinement of promoters for the system solved the problem of gene silencing and abnormal pairing frequencies between operators. Using this system, we can detect the spatiotemporal dynamics of two homologous loci as two fluorescent signals within a nucleus and monitor the distance between homologous loci. These live-cell imaging methods will provide new insights into genome organization, development processes, and subnuclear responses to environmental stimuli in plants. PMID:27557696

  11. Matroidal Structure of Generalized Rough Sets Based on Tolerance Relations

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-01-01

    of the generalized rough set based on the tolerance relation. The matroid can also induce a new relation. We investigate the connection between the original tolerance relation and the induced relation.

  12. The role of chromatin insulators in nuclear architecture and genome function

    OpenAIRE

    Van Bortle, Kevin; Corces, Victor G.

    2013-01-01

    Eukaryotic genomes are intricately arranged into highly organized yet dynamic structures that underlie patterns of gene expression and cellular identity. The recent adaptation of novel genomic strategies for assaying nuclear architecture has significantly extended and accelerated our ability to query the nature of genome organization and the players involved. In particular, recent explorations of physical arrangements and chromatin landscapes in higher eukaryotes have demonstrated that chroma...

  13. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin

    OpenAIRE

    Dambacher, Silvia; Deng, Wen; Hahn, Matthias; Sadic, Dennis; Fröhlich, Jonathan; Nuber, Alexander; Hoischen, Christian; Diekmann, Stephan; Leonhardt, Heinrich; Schotta, Gunnar

    2012-01-01

    Centromeres are important structural constituents of chromosomes that ensure proper chromosome segregation during mitosis by providing defined sites for kinetochore attachment. In higher eukaryotes, centromeres have no specific DNA sequence and thus, they are rather determined through epigenetic mechanisms. A fundamental process in centromere establishment is the incorporation of the histone variant CENP-A into centromeric chromatin, which provides a binding platform for the other centromeric...

  14. Aberrant Neural Stem Cell Proliferation and Increased Adult Neurogenesis in Mice Lacking Chromatin Protein HMGB2

    OpenAIRE

    Abraham, Ariel B; Robert Bronstein; Avanish S Reddy; Mirjana Maletic-Savatic; Adan Aguirre; Tsirka, Stella E.

    2013-01-01

    Neural stem and progenitor cells (NSCs/NPCs) are distinct groups of cells found in the mammalian central nervous system (CNS). Previously we determined that members of the High Mobility Group (HMG) B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2(-/-) mice exhibit SVZ hyperproliferation...

  15. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia

    OpenAIRE

    Guenther, Matthew G.; Lawton, Lee N.; Rozovskaia, Tatiana; Frampton, Garrett M.; Levine, Stuart S.; Thomas L Volkert; Croce, Carlo M.; Nakamura, Tatsuya; Canaani, Eli; Young, Richard A.

    2008-01-01

    Mixed-lineage leukemia (MLL) fusion proteins are potent inducers of leukemia, but how these proteins generate aberrant gene expression programs is poorly understood. Here we show that the MLL-AF4 fusion protein occupies developmental regulatory genes important for hematopoietic stem cell identity and self-renewal in human leukemia cells. These MLL-AF4-bound regions have grossly altered chromatin structure, with histone modifications catalyzed by trithorax group proteins and DOT1 extending acr...

  16. Phosphorylation-Dependent Targeting of Tetrahymena HP1 to Condensed Chromatin.

    Science.gov (United States)

    Yale, Katerina; Tackett, Alan J; Neuman, Monica; Bulley, Emily; Chait, Brian T; Wiley, Emily

    2016-01-01

    The evolutionarily conserved proteins related to heterochromatin protein 1 (HP1), originally described in Drosophila, are well known for their roles in heterochromatin assembly and gene silencing. Targeting of HP1 proteins to specific chromatin locales is mediated, at least in part, by the HP1 chromodomain, which binds to histone H3 methylated at lysine 9 that marks condensed regions of the genome. Mechanisms that regulate HP1 targeting are emerging from studies with yeast and metazoans and point to roles for posttranslational modifications. Here, we report that modifications of an HP1 homolog (Hhp1) in the ciliate model Tetrahymena thermophila correlated with the physiological state and with nuclear differentiation events involving the restructuring of chromatin. Results support the model in which Hhp1 chromodomain binds lysine 27-methylated histone H3, and we show that colocalization with this histone mark depends on phosphorylation at a single Cdc2/Cdk1 kinase site in the "hinge region" adjacent to the chromodomain. These findings help elucidate important functional roles of reversible posttranslational modifications of proteins in the HP1 family, in this case, regulating the targeting of a ciliate HP1 to chromatin regions marked with methylated H3 lysine 27. IMPORTANCE Compacting the genome to various degrees influences processes that use DNA as a template, such as gene transcription and replication. This project was aimed at learning more about the cellular mechanisms that control genome compaction. Posttranslational modifications of proteins involved in genome condensation are emerging as potentially important points of regulation. To help elucidate protein modifications and how they affect the function of condensation proteins, we investigated the phosphorylation of the chromatin protein called Hhp1 in the ciliated protozoan Tetrahymena thermophila. This is one of the first functional investigations of these modifications of a nonhistone chromatin

  17. Characteristics of thymine dimer excision from xeroderma pigmentosum chromatin

    International Nuclear Information System (INIS)

    We investigated thymine dimer excision from xeroderma pigmentosum (XP) chromatin in the cell-free reconstruction system. The normal-cell extract performed specific dimer excision from native chromatin and DNA isolated from 100 J/m2-irradiated cells. Such an excision in vitro was rapid and required high concentrations of extract. The extracts of XP group A, C and G cells were unable to excise from their own native-chromatin, but capable of excising from chromatin deprived of loosely bound nonhistone proteins with 0.35 M NaCl, as were from purified DNA. Thus, group A, C and G cells are most likely to be defective in the specific XP factors facilitating the excising activity under multicomponent regulation at the chromatin level. Further, either of group A, C and G extracts successfully complemented the native chromatin of the alternative groups. Uniquely, the XP group D extract excised dimers from native chromatin in the normal fashion under the condition. These results suggest that XP group A, C, D and G cells examined may not be defective in the dimer specific endonuclease and exonuclease per se. 19 references, 3 figures, 2 tables

  18. Anti-chromatin antibodies in juvenile rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    V. Gerloni

    2011-09-01

    Full Text Available Objective: to evaluate the prevalence and clinical significance of anti-chromatin antibodies (Abs in juvenile rheumatoid arthritis (JRA. Methods: IgG anti-chromatin Abs were detected by an enzyme-linked immunosorbent assay (ELISA, in sera of 94 children with JRA (10 children with systemic, 38 with polyarticular and 46 with oligoarticular disease onset. As control group, 33 age- and-sex-matched healthy children (HC were also examined. Results: Abs to chromatin were detected in 24/94 (25,5% of children suffering from JRA. Particularly, the higher prevalence of anti-chromatin Abs has been found in children with oligoarticular (30,4% and polyarticular (23,7% onset JRA. In these groups Abs titers were significantly higher compared to systemic JRA and HC (p=0.003. Anti-chromatin Abs were observed more frequently in patients with oligoarticular disease and chronic uveitis (21,7%. Furthermore, higher levels of anti-chromatin Abs has been found in all the patients treated with anti-TNFα therapy (p<0.0001. Conclusions: our results confirm previous data about the prevalence of anti-chromatin Abs in JRA. These Abs were significantly higher in the group of patients with oligoarticular onset with past or present hystory of ocular involvement and in the group with polyarticular JRA treated with biologic therapy. A long-term follow-up study could be useful to evaluate the potential utility of these autoantibodies.

  19. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.

    Science.gov (United States)

    Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T; Wilczynski, Grzegorz M; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun

    2015-12-17

    Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.

  20. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Treffers, Louise W; Verlaan-de Vries, Matty;

    2015-01-01

    dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO......-targeted ubiquitin ligase RNF4 and degraded by the proteasome in response to DNA damage, JARID1C was SUMOylated and recruited to the chromatin to demethylate histone H3K4....

  1. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Science.gov (United States)

    Wiechens, Nicola; Singh, Vijender; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-03-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements. PMID:27019336

  2. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Nicola Wiechens

    2016-03-01

    Full Text Available Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  3. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Science.gov (United States)

    Wiechens, Nicola; Singh, Vijender; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-03-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  4. Relation of the Serbian cultural club related to the structure of the population of Vojvodina

    Directory of Open Access Journals (Sweden)

    Marković Saša

    2010-01-01

    Full Text Available The Serbian Cultural Club is an organization founded in mid-January 1937. The Club pretended to be an non-party entity with the idea of cultural renaissance and broader national homogenization of the Serbian nation in The Kingdom of Yugoslavia, as an answer to the tendency for the political division of the country according to the national basis which was realized by the Cvetković-Maček Agreement from August 26, 1939. On the basis of that Agreement, formation of the Banat of Croatia started the division of the territories and federalization of the country along the ethnic principle. Since the borders between the constitutional nations of Yugoslavia were not clear in the territory and the theoretical pretensions were very conflicting. The Serbian Cultural Club tried to answer the challenge of the newly created situation. Its activity was specially visible in Vojvodina, having in mind the structure of the population, and there was also a numerous, nationally still not completely determined group of the Bunjevci and Šokci population. In an attempt to define their attitude to Vojvodina, intellectuals from The Serbian Cultural Club discussed all 'burning' issues related to the structure of the population, too. This paper would deal with his interesting and controversial topic. .

  5. Relations between constructive peculiarities and structural behavior in Venice buildings

    Directory of Open Access Journals (Sweden)

    Doglioni, F.

    2012-12-01

    Full Text Available Here we are synthetically describing some constructive peculiarities of Venice civil buildings, analyzing the relation with the features of their structural decay and behavior in the long run. We suppose Venetian buildings, especially those parts which are conceived to suit the lagoon environment, to have undergone an evolution made of some adjustments, which were based on the observation of damages in previous buildings. That is we suppose ancient builders to rely on their awareness of the behavior of structures yet to come, and to be able to forecast it in part. This process brought some building contrivances to perfection, as exclusive and enduring features of Venice, overcoming changes in style and architectural layout, till they grew into essential elements of a whole and adaptable “device”. This writing is meant for a concise interpretation of this device, which is the result of some research works carried out at Venice IUAV University.

    En este texto, se describen sintéticamente algunas peculiaridades de la edificación residencial de Venecia, analizando su relación con el abanico de problemas estructurales que caracterizan el comportamiento estructural del edificio a lo largo del tiempo. Se aventura la hipótesis que las construcciones venecianas y, en particular, algunos de sus detalles, concebidos específicamente para la laguna donde se enclava, han sido objeto de una adaptación evolutiva a través de la observación de los problemas estructurales de los edificios precedentes. Los alarifes venecianos aprendieron a tener en cuenta el comportamiento estructural posterior del edificio, que previeron en cierta medida. Este proceso ha llevado a perfeccionar algunos detalles constructivos exclusivos de Venecia que han perdurado en el tiempo, que han resistido impertérritos a mutaciones de estilo y de configuración arquitectónica, hasta constituir elementos esenciales de un aparato indivisible y adaptable cuya interpretaci

  6. Effect of different thawing temperatures on the viability, in vitro fertilizing capacity and chromatin condensation of frozen boar semen packaged in 5 ml straws.

    Science.gov (United States)

    Córdova-Izquierdo, A; Oliva, J H; Lleó, B; García-Artiga, C; Corcuera, B D; Pérez-Gutiérrez, J F

    2006-03-01

    The effect of two different thawing temperatures on frozen boar semen viability, in vitro fertilizing capacity and chromatin condensation and stability was studied. Freeze-thaw motility, normal apical ridge (NAR), in vitro fertilizing (IVF) capacity and chromatin condensation and stability were evaluated after thawing at 42 degrees C, 40s and 50 degrees C, 40s. Chromatin condensation degree was determined by flow cytometry, using propidium iodide as fluorochrome intercalating agent, and chromatin stability was evaluated by the same procedure after inducing sperm chromatin decondensation with ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS). The results showed that thawing straws at 42 degrees C, 40s significantly reduced motility compared to straws thawed at 50 degrees C, 40s. NAR, penetration, monospermy and polyspermy were not different between the two groups of samples thawed at different temperatures. Chromatin was significantly more compact when thawing was performed at 50 degrees C, but its stability did not show any difference relative to thawing at 42 degrees C. It is suggested that the interactions involved in chromatin overcondensation had a non-covalent nature. PMID:15975744

  7. Nucleosome Stability at the Yeast PHO5 and PHO8 Promoters Correlates with Differential Cofactor Requirements for Chromatin Opening

    OpenAIRE

    Hertel, Christina Bech; Längst, Gernot; Hörz, Wolfram; Korber, Philipp

    2005-01-01

    The coregulated PHO5 and PHO8 genes in Saccharomyces cerevisiae provide typical examples for the role of chromatin in promoter regulation. It has been a long-standing question why the cofactors Snf2 and Gcn5 are essential for full induction of PHO8 but dispensable for opening of the PHO5 promoter. We show that this discrepancy may result from different stabilities of the two promoter chromatin structures. To test this hypothesis, we used our recently established yeast extract in vitro chromat...

  8. Lamin C and chromatin organization in Drosophila

    Indian Academy of Sciences (India)

    B. V. Gurudatta; L. S. Shashidhara; Veena K. Parnaik

    2010-04-01

    Drosophila lamin C (LamC) is a developmentally regulated component of the nuclear lamina. The lamC gene is situated in the fifth intron of the essential gene tout velu (ttv). We carried out genetic analysis of lamC during development. Phenotypic analyses of RNAi-mediated downregulation of lamC expression as well as targeted misexpression of lamin C suggest a role for lamC in cell survival. Of particular interest in the context of laminopathies is the caspase-dependent apoptosis induced by the overexpression of lamin C. Interestingly, misexpression of lamin C in the central nervous system, where it is not normally expressed, did not affect organization of the nuclear lamina. lamC mutant alleles suppressed position effect variegation normally displayed at near-centromeric and telomeric regions. Further, both downregulation and misexpression of lamin C affected the distribution of heterochromatin protein 1. Our results suggest that Drosophila lamC has a tissue-specific role during development and is required for chromatin organization.

  9. Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro.

    Science.gov (United States)

    Kuryan, Benjamin G; Kim, Jessica; Tran, Nancy Nga H; Lombardo, Sarah R; Venkatesh, Swaminathan; Workman, Jerry L; Carey, Michael

    2012-02-01

    ATPases and histone chaperones facilitate RNA polymerase II (pol II) elongation on chromatin. In vivo, the coordinated action of these enzymes is necessary to permit pol II passage through a nucleosome while restoring histone density afterward. We have developed a biochemical system recapitulating this basic process. Transcription through a nucleosome in vitro requires the ATPase remodels structure of chromatin (RSC) and the histone chaperone nucleosome assembly protein 1 (NAP1). In the presence of NAP1, RSC generates a hexasome. Despite the propensity of RSC to evict histones, NAP1 reprograms the reaction such that the hexasome is retained on the template during multiple rounds of transcription. This work has implications toward understanding the mechanism of pol II elongation on chromatin.

  10. Gender and sexual orientation in relation to hypothalamic structures.

    Science.gov (United States)

    Swaab, D F; Gooren, L J; Hofman, M A

    1992-01-01

    Animal experiments have provided evidence for the presence of sex differences from the synaptic level up to behaviour. Although sex differences in the human brain may have been presumed implicitly since the days of Aristotle, research on the presence of functional and structural sex differences of the human brain started only relatively recently. The most conspicuous sex difference in the mammalian brain was described by Gorski et al. [1978] in the preoptic area (POA) of the rat hypothalamus. We found that the volume of a putative homologue of this sexually dimorphic nucleus (SDN) in the adult human hypothalamus was more than twice as large in men as in women and contained about twice as many cells. Recently a similar sex difference and volume has been described for the human bed nucleus of the stria terminalis and 'interstitial nuclei of the hypothalamus' (INAH). Sexual differentiation of the hypothalamus was generally believed to take place between 4 and 7 months of gestation. A life span study on the SDN of more than 100 subjects revealed, however, that only after the age of 2-4 years postnatally sexual differentiation becomes manifest by a decrease in volume and cell number in the female SDN. If sexual differentiation of the brain indeed takes place postnatally, not only chemical and hormonal factors may influence this process but also social factors. A prominent theory on the development of sexual orientation is that it develops as a result of an interaction between the developing brain and sex hormones. According to Dörner's hypothesis, male homosexuals have a female differentiation of the hypothalamus. This hypothesis was not supported by our observations on the SDN. Neither the SDN volume nor the cell number in the hypothalamus of homosexual men differed from that of heterosexual men. However, a difference in SCN cell number was observed in relation to sexual orientation. The volume and cell number of the SCN of homosexual men was twice as large as that of

  11. Could carnosine or related structures suppress Alzheimer's disease?

    Science.gov (United States)

    Hipkiss, Alan R

    2007-05-01

    Reactive oxygen species, reactive nitrogen species, copper and zinc ions, glycating agents and reactive aldehydes, protein cross-linking and proteolytic dysfunction may all contribute to Alzheimer's disease (AD). Carnosine (beta-alanyl-L-histidine) is a naturally-occurring, pluripotent, homeostatic agent. The olfactory lobe is normally enriched in carnosine and zinc. Loss of olfactory function and oxidative damage to olfactory tissue are early symptoms of AD. Amyloid peptide aggregates in AD brain are enriched in zinc ions. Carnosine can chelate zinc ions. Protein oxidation and glycation are integral components of the AD pathophysiology. Carnosine can suppress amyloid-beta peptide toxicity, inhibit production of oxygen free-radicals, scavenge hydroxyl radicals and reactive aldehydes, and suppresses protein glycation. Glycated protein accumulates in the cerebrospinal fluid (CSF) of AD patients. Homocarnosine levels in human CSF dramatically decline with age. CSF composition and turnover is controlled by the choroid plexus which possesses a specific transporter for carnosine and homocarnosine. Carnosine reacts with protein carbonyls and suppress the reactivity of glycated proteins. Carbonic anhydrase (CA) activity is diminished in AD patient brains. Administration of CA activators improves learning in animals. Carnosine is a CA activator. Protein cross-links (gamma-glutamyl-epsilon-amino) are present in neurofibrillary tangles in AD brain. gamma-Glutamyl-carnosine has been isolated from biological tissue. Carnosine stimulates vimentin expression in cultured human fibroblasts. The protease oxidised-protein-hydrolase is co-expressed with vimentin. Carnosine stimulates proteolysis in cultured myocytes and senescent cultured fibroblasts. These observations suggest that carnosine and related structures should be explored for therapeutic potential towards AD and other neurodegenerative disorders. PMID:17522447

  12. Human Lymphoid Translocation Fragile Zones Are Hypomethylated and Have Accessible Chromatin

    OpenAIRE

    Lu, Zhengfei; Lieber, Michael R.; Tsai, Albert G.; Pardo, Carolina E.; Müschen, Markus; Kladde, Michael P.; Hsieh, Chih-Lin

    2015-01-01

    Chromosomal translocations are a hallmark of hematopoietic malignancies. CG motifs within translocation fragile zones (typically 20 to 600 bp in size) are prone to chromosomal translocation in lymphomas. Here we demonstrate that the CG motifs in human translocation fragile zones are hypomethylated relative to the adjacent DNA. Using a methyltransferase footprinting assay on isolated nuclei (in vitro), we find that the chromatin at these fragile zones is accessible. We also examined in vivo ac...

  13. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism

    OpenAIRE

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Dong WANG; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism....

  14. Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres

    OpenAIRE

    Folco, Hernan Diego; Pidoux, Alison L.; Urano, Takeshi; Allshire, Robin C.

    2008-01-01

    Heterochromatin is defined by distinct posttranslational modifications on histones, such as methylation of histone H3 at lysine 9 (H3K9), which allows heterochromatin protein 1 (HP1)-related chromodomain proteins to bind. Heterochromatin is frequently found near CENP-A chromatin, which is the key determinant of kinetochore assembly. We have discovered that the RNA interference (RNAi)-directed heterochromatin flanking the central kinetochore domain at fission yeast centromeres is required to p...

  15. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  16. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  17. Does seminal fluid viscosity influence sperm chromatin integrity?

    Science.gov (United States)

    Gopalkrishnan, K; Padwal, V; Balaiah, D

    2000-01-01

    A retrospective study was undertaken to investigate whether viscosity alters sperm chromatin integrity. Semen samples were obtained from 269 men attending the infertility clinic. The viscosity was measured quantitatively by needle and syringe method and the viscosity ratio was calculated against distilled water. The chromatin integrity was evaluated by in vitro decondensation test using 1% SDS and 6 mM EDTA. According to the viscosity ratios the samples were divided into 2 groups: I, normal (ratio 9, n = 30) viscosity. Chromatin integrity was significantly lower in the group with higher viscosity. Significant decrease in sperm count and motility were seen in group II as compared to group I. Thus, hyperviscosity of seminal fluid alters the sperm chromatin integrity. PMID:11028927

  18. DNA methylation topology: potential of a chromatin landmark for epigenetic drug toxicology.

    Science.gov (United States)

    Tajbakhsh, Jian

    2011-12-01

    Targeting chromatin and its basic components through epigenetic drug therapy has become an increased focus in the treatment of complex diseases. This boost calls for the implementation of high-throughput cell-based assays that exploit the increasing knowledge about epigenetic mechanisms and their interventions for genotoxicity testing of epigenetic drugs. 3D quantitative DNA methylation imaging is a novel approach for detecting drug-induced DNA demethylation and concurrent heterochromatin decondensation/reorganization in cells through the analysis of differential nuclear distribution patterns of methylcytosine and gDNA visualized by fluorescence and processed by machine-learning algorithms. Utilizing 3D DNA methylation patterns is a powerful precursor to a series of fully automatable assays that employ chromatin structure and higher organization as novel pharmacodynamic biomarkers for various epigenetic drug actions.

  19. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; John, Sam;

    2011-01-01

    Adipogenesis is tightly controlled by a complex network of transcription factors acting at different stages of differentiation. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) family members are key regulators of this process. We have employed DNase I...... hypersensitive site analysis to investigate the genome-wide changes in chromatin structure that accompany the binding of adipogenic transcription factors. These analyses revealed a dramatic and dynamic modulation of the chromatin landscape during the first hours of adipocyte differentiation that coincides...... with cooperative binding of multiple early transcription factors (including glucocorticoid receptor, retinoid X receptor, Stat5a, C/EBPβ and -δ) to transcription factor 'hotspots'. Our results demonstrate that C/EBPβ marks a large number of these transcription factor 'hotspots' before induction of differentiation...

  20. A chromatin link to caste identity in the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Simola, Daniel F; Ye, Chaoyang; Mutti, Navdeep S; Dolezal, Kelly; Bonasio, Roberto; Liebig, Jürgen; Reinberg, Danny; Berger, Shelley L

    2013-03-01

    In many ant species, sibling larvae follow alternative ontogenetic trajectories that generate striking variation in morphology and behavior among adults. These organism-level outcomes are often determined by environmental rather than genetic factors. Therefore, epigenetic mechanisms may mediate the expression of adult polyphenisms. We produced the first genome-wide maps of chromatin structure in a eusocial insect and found that gene-proximal changes in histone modifications, notably H3K27 acetylation, discriminate two female worker and male castes in Camponotus floridanus ants and partially explain differential gene expression between castes. Genes showing coordinated changes in H3K27ac and RNA implicate muscle development, neuronal regulation, and sensory responses in modulating caste identity. Binding sites of the acetyltransferase CBP harbor the greatest caste variation in H3K27ac, are enriched with motifs for conserved transcription factors, and show evolutionary expansion near developmental and neuronal genes. These results suggest that environmental effects on caste identity may be mediated by differential recruitment of CBP to chromatin. We propose that epigenetic mechanisms that modify chromatin structure may help orchestrate the generation and maintenance of polyphenic caste morphology and social behavior in ants. PMID:23212948

  1. Impaired methylation modifications of FZD3 alter chromatin accessibility and are involved in congenital hydrocephalus pathogenesis.

    Science.gov (United States)

    Wang, Li; Shangguan, Shaofang; Chang, Shaoyan; Wang, Zhen; Lu, Xiaolin; Wu, Lihua; Li, Rui; Bao, Yihua; Qiu, Zhiyong; Niu, Bo; Zhang, Ting

    2014-06-20

    Congenital hydrocephalus is heterogeneous in its etiology, and in addition to a genetic component, has been shown to be caused by environmental factors. Until now, however, no methylation alterations of target genes have been connected with congenital hydrocephalus in humans. Frizzled 3(FZD3) is a planar cell polarity (PCP) gene required for PCP signaling. Partial restoration of frizzled 3 activities in FZD3 mutant mice results in hydrocephalus. To analyze the possible roles of epigenetic modifications of the FZD3 gene in congenital hydrocephalus pathogenesis, DNA methylation in the promoter region of FZD3 was assayed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Gene expression and chromatin accessibility were also determined to assess the role of methylation alterations. Our study found methylation levels of the FZD3 gene were increased in congenital hydrocephalus, especially in males (10.57 ± 3.90 vs. 7.08 ± 0.94, p=0.001). Hypermethylation of FZD3 increased congenital hydrocephalus risk, with an odds ratio of 10.125 (p=0.003). Aberrant methylation modification of FZD3 altered both chromatin structure in this region and FZD3 expression levels. Totally, aberrant methylation modification of the FZD3 gene increases the risk of congenital hydrocephalus by altering chromatin structure and disturbing gene expression.

  2. Impaired methylation modifications of FZD3 alter chromatin accessibility and are involved in congenital hydrocephalus pathogenesis.

    Science.gov (United States)

    Wang, Li; Shangguan, Shaofang; Chang, Shaoyan; Wang, Zhen; Lu, Xiaolin; Wu, Lihua; Li, Rui; Bao, Yihua; Qiu, Zhiyong; Niu, Bo; Zhang, Ting

    2014-06-20

    Congenital hydrocephalus is heterogeneous in its etiology, and in addition to a genetic component, has been shown to be caused by environmental factors. Until now, however, no methylation alterations of target genes have been connected with congenital hydrocephalus in humans. Frizzled 3(FZD3) is a planar cell polarity (PCP) gene required for PCP signaling. Partial restoration of frizzled 3 activities in FZD3 mutant mice results in hydrocephalus. To analyze the possible roles of epigenetic modifications of the FZD3 gene in congenital hydrocephalus pathogenesis, DNA methylation in the promoter region of FZD3 was assayed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Gene expression and chromatin accessibility were also determined to assess the role of methylation alterations. Our study found methylation levels of the FZD3 gene were increased in congenital hydrocephalus, especially in males (10.57 ± 3.90 vs. 7.08 ± 0.94, p=0.001). Hypermethylation of FZD3 increased congenital hydrocephalus risk, with an odds ratio of 10.125 (p=0.003). Aberrant methylation modification of FZD3 altered both chromatin structure in this region and FZD3 expression levels. Totally, aberrant methylation modification of the FZD3 gene increases the risk of congenital hydrocephalus by altering chromatin structure and disturbing gene expression. PMID:24796881

  3. A chromatin link to caste identity in the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Simola, Daniel F; Ye, Chaoyang; Mutti, Navdeep S; Dolezal, Kelly; Bonasio, Roberto; Liebig, Jürgen; Reinberg, Danny; Berger, Shelley L

    2013-03-01

    In many ant species, sibling larvae follow alternative ontogenetic trajectories that generate striking variation in morphology and behavior among adults. These organism-level outcomes are often determined by environmental rather than genetic factors. Therefore, epigenetic mechanisms may mediate the expression of adult polyphenisms. We produced the first genome-wide maps of chromatin structure in a eusocial insect and found that gene-proximal changes in histone modifications, notably H3K27 acetylation, discriminate two female worker and male castes in Camponotus floridanus ants and partially explain differential gene expression between castes. Genes showing coordinated changes in H3K27ac and RNA implicate muscle development, neuronal regulation, and sensory responses in modulating caste identity. Binding sites of the acetyltransferase CBP harbor the greatest caste variation in H3K27ac, are enriched with motifs for conserved transcription factors, and show evolutionary expansion near developmental and neuronal genes. These results suggest that environmental effects on caste identity may be mediated by differential recruitment of CBP to chromatin. We propose that epigenetic mechanisms that modify chromatin structure may help orchestrate the generation and maintenance of polyphenic caste morphology and social behavior in ants.

  4. Relation between native ensembles and experimental structures of proteins

    DEFF Research Database (Denmark)

    Best, R. B.; Lindorff-Larsen, Kresten; DePristo, M. A.;

    2006-01-01

    Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest......Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of "high-sequence similarity Protein Data Bank" (HSP) structures and consider the extent to which such ensembles represent the structural...

  5. Factors related to the capital structures of small new ventures

    NARCIS (Netherlands)

    Harms, R.; Breitenecker, R.; Schwartz, E.J.; Wdowiak, M.A.

    2012-01-01

    In the literature, there exists evidence on the capital structure determinants for small ventures, but empirical research for new ventures is limited. We seek to address this gap by presenting a confirmatory analysis of determinants of capital structure of a sample of small new ventures in Austria.

  6. Electronic structure of palladium and its relation to uv spectroscopy

    DEFF Research Database (Denmark)

    Christensen, N.E.

    1976-01-01

    The electronic-energy-band structure of palladium has been calculated by means of the relativistic augmented-plane-wave method covering energies up to 30 eV above the Fermi level. The optical interband transitions producing structure in the dielectric function up to photon energies of 25 eV have...

  7. Chromatin and Cell Wall Staining of Schizosaccharomyces pombe.

    Science.gov (United States)

    Hagan, Iain M

    2016-01-01

    Fission yeasts grow by tip extension, maintaining a constant width until they reach a critical size threshold and divide. Division by medial fission-which gives these yeast their name-generates a new end that arises from the site of cytokinesis. The old end, which was produced during the previous cell cycle, initiates progression of the new cell cycle, and in G2, the new end is activated in a process termed new-end takeoff (NETO). In this protocol, the fluorescent stains calcofluor and 4',6-diamidino-2-phenylindole (DAPI) are used to give a rapid and informative assessment of morphogenesis and cell-cycle progression in the fission yeast Schizosaccharomyces pombe Calcofluor reveals the timing of NETO because it stains the birth scars that are generated at new ends by cytokinesis less efficiently than the rest of the cell wall. Intense calcofluor staining of the septum and measurement of cell length are also widely used to identify dividing cells and to gauge the timing of mitotic commitment. Staining nuclei with DAPI identifies mono- and binucleated cells and complements the calcofluor staining procedure to evaluate the stages of the cell cycle and identify mitotic errors. Equally simple DAPI staining procedures reveal chromatin structure in higher resolution, facilitating more accurate staging of mitotic progression and characterization of mitotic errors. PMID:27250942

  8. HJURP is involved in the expansion of centromeric chromatin.

    Science.gov (United States)

    Perpelescu, Marinela; Hori, Tetsuya; Toyoda, Atsushi; Misu, Sadahiko; Monma, Norikazu; Ikeo, Kazuho; Obuse, Chikashi; Fujiyama, Asao; Fukagawa, Tatsuo

    2015-08-01

    The CENP-A-specific chaperone HJURP mediates CENP-A deposition at centromeres. The N-terminal region of HJURP is responsible for binding to soluble CENP-A. However, it is unclear whether other regions of HJURP have additional functions for centromere formation and maintenance. In this study, we generated chicken DT40 knockout cell lines and gene replacement constructs for HJURP to assess the additional functions of HJURP in vivo. Our analysis revealed that the middle region of HJURP associates with the Mis18 complex protein M18BP1/KNL2 and that the HJURP-M18BP1 association is required for HJURP function. In addition, on the basis of the analysis of artificial centromeres induced by ectopic HJURP localization, we demonstrate that HJURP exhibits a centromere expansion activity that is separable from its CENP-A-binding activity. We also observed centromere expansion surrounding natural centromeres after HJURP overexpression. We propose that this centromere expansion activity reflects the functional properties of HJURP, which uses this activity to contribute to the plastic establishment of a centromeric chromatin structure. PMID:26063729

  9. Gray level co-occurrence matrix algorithm as pattern recognition biosensor for oxidopamine-induced changes in lymphocyte chromatin architecture.

    Science.gov (United States)

    Pantic, Igor; Dimitrijevic, Draga; Nesic, Dejan; Petrovic, Danica

    2016-10-01

    We demonstrate that a proapoptotic chemical agent, oxidopamine, induces dose dependent changes in chromatin textural patterns which can be quantified using the Gray level co-occurrence matrix (GLCM) method. Peripheral blood (heparin-pretreated) samples were treated with oxidopamine (6-OHDA, 6-hydroxydopamine) to achieve effective concentrations of 100, 200 and 300µM. The samples were smeared on microscope slides and fixated in methanol. The smears were stained using a modification of Feulgen method for DNA visualization. For each stained smear, a sample of 30 lymphocyte chromatin structures were visualized and analyzed. This way, textural parameters for a total of 120 nuclei micrographs were calculated. For each chromatin structure, five different GLCM features were calculated: angular second moment, GLCM entropy, inverse difference moment, GLCM correlation, and GLCM variance. Oxidopamine induced the rise of the values of GLCM entropy and variance, and the reduction of angular second moment, correlation, and inverse difference moment. The trends for GLCM parameter changes were found to be highly significant (palgorithm might be successfully used in detection and evaluation of discrete early apoptotic structural changes in Feulgen-stained chromatin of peripheral blood lymphocytes that are not detectable using conventional microscopy/cell biology techniques. PMID:27424557

  10. ELECTRONIC PROPERTIES OF MOS 2 MONOLAYER AND RELATED STRUCTURES

    OpenAIRE

    ENYASHIN A.N.; Seifert, G.

    2014-01-01

    The present review provides an overview of the transition metal dichalcogenides discovered newly at the level of two dimensions. A special emphasis is given to the electronic structure of semiconducting representatives of this family, which can depend on many factors like thickness, environment, mechanical strain and structural imperfections of the layers. Both calculations and experimental data available to date on example of MoS 2 compound evidence that, semiconducting dichalcogenide layers...

  11. Improvements in or relating to the inspection of underwater structures

    International Nuclear Information System (INIS)

    A radiation detector is described, for use in the inspection of underwater structures, which is capable of withstanding high pressures and arduous marine conditions. The ingress of water into the body of the radiation detector tube is prevented by the use of a resilient waterproof compound. Marine structures incorporating such radiation detectors are described, whereby the presence or density of flowing cement grout in the legs of an offshore platform may be determined. (U.K.)

  12. Transthyretin and the transthyretin-related protein: A structural study

    OpenAIRE

    Lundberg, Erik

    2006-01-01

    Transthyretin (TTR) is one of several proteins involved in amyloid disease in humans. Unknown conformational changes of the native state of TTR result in aggregation of TTR molecules into amyloid fibrils, which accumulate in extracellular tissues. This may result in different clinical symptoms, e.g. polyneuropathy or cardiomyopathy, depending on their site of accumulation. Our long-term goal is to identify structural changes associated with amyloid formation. For this work, structural charact...

  13. Functional clustering in hippocampal cultures: relating network structure and dynamics

    International Nuclear Information System (INIS)

    In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures

  14. Dysregulation of select ATP-dependent chromatin remodeling factors in high trait anxiety.

    Science.gov (United States)

    Wille, Alexandra; Amort, Thomas; Singewald, Nicolas; Sartori, Simone B; Lusser, Alexandra

    2016-09-15

    Enhanced anxiety is a salient feature of a number of psychiatric disorders including anxiety disorders, trauma-related disorders and depression. Although aberrant expression of various genes has been detected in patients suffering from persistent high anxiety as well as in high anxiety rodent models, the molecular mechanisms responsible for altered transcription regulation have been poorly addressed. Transcription regulation intimately involves the contribution of chromatin modifying processes, such as histone modification and ATP-dependent chromatin remodeling, yet their role in pathological anxiety is not known. Here, we investigated for the first time if altered levels of several ATP-dependent chromatin remodeling factors (ChRFs) and histone deacetylases (HDACs) may be linked to high trait anxiety in mice. While we found protein levels of the ChRFs SNF2H, ATRX, CHD1, CHD3 and CHD5 and of HDACs 1-3 and 6 to be similar in most of the tested brain areas of mice with high (HAB) versus normal (NAB) anxiety-related behavior, we observed distinctly altered regulation of SNF2H in the amygdala, and of CHD3 and CHD5 in the ventral hippocampus. In particular, CHD3 and CHD5 exhibited altered expression of protein but not of mRNA in HAB mice. Since both proteins are components of NuRD-like complexes, these results may indicate an impaired equilibrium between different NuRD-like complexes in the ventral hippocampus. Overall, our data provide novel evidence for localized differences of specific ATP-dependent chromatin remodeling factors in mice with high trait anxiety that may ultimately contribute to altered transcriptional programs resulting in the manifestation of pathological anxiety. PMID:27208790

  15. Tagging of MADS domain proteins for chromatin immunoprecipitation

    Directory of Open Access Journals (Sweden)

    van Zuijlen Lisette GC

    2007-09-01

    Full Text Available Abstract Background Most transcription factors fulfill their role in complexes and regulate their target genes upon binding to DNA motifs located in upstream regions or introns. To date, knowledge about transcription factor target genes and their corresponding transcription factor binding sites are still very limited. Two related methods that allow in vivo identification of transcription factor binding sites are chromatin immunoprecipitation (ChIP and chromatin affinity purification (ChAP. For ChAP, the protein of interest is tagged with a peptide or protein, which can be used for affinity purification of the protein-DNA complex and hence, the identification of the target gene. Results Here, we present the results of experiments aiming at the development of a generic tagging approach for the Arabidopsis MADS domain proteins AGAMOUS, SEPALLATA3, and FRUITFULL. For this, Arabidopsis wild type plants were transformed with constructs containing a MADS-box gene fused to either a double Strep-tag® II-FLAG-tag, a triple HA-tag, or an eGFP-tag, all under the control of the constitutive double 35S Cauliflower Mosaic Virus (CaMV promoter. Strikingly, in all cases, the number of transformants with loss-of-function phenotypes was much larger than those with an overexpression phenotype. Using endogenous promoters in stead of the 35S CaMV resulted in a dramatic reduction in the frequency of loss-of-function phenotypes. Furthermore, pleiotropic defects occasionally caused by an overexpression strategy can be overcome by using the native promoter of the gene. Finally, a ChAP result is presented using GFP antibody on plants carrying a genomic fragment of a MADS-box gene fused to GFP. Conclusion This study revealed that MADS-box proteins are very sensitive to fusions with small peptide tags and GFP tags. Furthermore, for the expression of chimeric versions of MADS-box genes it is favorable to use the entire genomic region in frame to the tag of choice

  16. Crystal structure of a symbiosis-related lectin from octocoral.

    Science.gov (United States)

    Kita, Akiko; Jimbo, Mitsuru; Sakai, Ryuichi; Morimoto, Yukio; Miki, Kunio

    2015-09-01

    D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N-Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide. PMID:26022515

  17. Energy-complexity relations by structural complexity methods

    OpenAIRE

    R. Ricca

    2011-01-01

    In this paper we shall review some of the most recent developments and results on work on energy-complexity relations and, if time will allow it, we shall provide an analytical proof of eq. (3) below, a fundamental relation between energy and complexity established by numerical experiments.

  18. Abstract Numeric Relations and the Visual Structure of Algebra

    Science.gov (United States)

    Landy, David; Brookes, David; Smout, Ryan

    2014-01-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition,…

  19. Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation.

    Science.gov (United States)

    Chung, Ill-Min; Ketharnathan, Sarada; Kim, Seung-Hyun; Thiruvengadam, Muthu; Rani, Mari Kavitha; Rajakumar, Govindasamy

    2016-01-01

    Proximity ligation assays such as circularized chromosome conformation capture and high-throughput chromosome capture assays have shed light on the structural organization of the interphase genome. Functional topologically associating domains (TADs) that constitute the building blocks of genomic organization are disrupted and reconstructed during the cell cycle. Epigenetic memory, as well as the sequence of chromosomes, regulate TAD reconstitution. Sub-TAD domains that are invariant across cell types have been identified, and contacts between these domains, rather than looping, are speculated to drive chromatin folding. Replication domains are established simultaneously with TADs during the cell cycle and the two correlate well in terms of characteristic features, such as lamin association and histone modifications. CCCTC-binding factor (CTCF) and cohesin cooperate across different cell types to regulate genes and genome organization. CTCF elements that demarcate TAD boundaries are commonly disrupted in cancer and promote oncogene activation. Chromatin looping facilitates interactions between distant promoters and enhancers, and the resulting enhanceosome complex promotes gene expression. Deciphering the chromatin tangle requires comprehensive integrative analyses of DNA- and protein-dependent factors that regulate genomic organization. PMID:27669308

  20. The Costimulatory Receptor OX40 Inhibits Interleukin-17 Expression through Activation of Repressive Chromatin Remodeling Pathways.

    Science.gov (United States)

    Xiao, Xiang; Shi, Xiaomin; Fan, Yihui; Wu, Chenglin; Zhang, Xiaolong; Minze, Laurie; Liu, Wentao; Ghobrial, Rafik M; Lan, Peixiang; Li, Xian Chang

    2016-06-21

    T helper 17 (Th17) cells are prominently featured in multiple autoimmune diseases, but the regulatory mechanisms that control Th17 cell responses are poorly defined. Here we found that stimulation of OX40 triggered a robust chromatin remodeling response and produced a "closed" chromatin structure at interleukin-17 (IL-17) locus to inhibit Th17 cell function. OX40 activated the NF-κB family member RelB, and RelB recruited the histone methyltransferases G9a and SETDB1 to the Il17 locus to deposit "repressive" chromatin marks at H3K9 sites, and consequently repressing IL-17 expression. Unlike its transcriptional activities, RelB acted independently of both p52 and p50 in the suppression of IL-17. In an experimental autoimmune encephalomyelitis (EAE) disease model, we found that OX40 stimulation inhibited IL-17 and reduced EAE. Conversely, RelB-deficient CD4(+) T cells showed enhanced IL-17 induction and exacerbated the disease. Our data uncover a mechanism in the control of Th17 cells that might have important clinic implications. PMID:27317259

  1. An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1

    Directory of Open Access Journals (Sweden)

    Zhi-Min Zhang

    2015-09-01

    Full Text Available The protein stability and chromatin functions of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1 are regulated in a cell-cycle-dependent manner. We report a structural characterization of the complex between UHRF1 and the deubiquitinase USP7. The first two UBL domains of USP7 bind to the polybasic region (PBR of UHRF1, and this interaction is required for the USP7-mediated deubiquitination of UHRF1. Importantly, we find that the USP7-binding site of the UHRF1 PBR overlaps with the region engaging in an intramolecular interaction with the N-terminal tandem Tudor domain (TTD. We show that the USP7-UHRF1 interaction perturbs the TTD-PBR interaction of UHRF1, thereby shifting the conformation of UHRF1 from a TTD-“occluded” state to a state open for multivalent histone binding. Consistently, introduction of a USP7-interaction-defective mutation to UHRF1 significantly reduces its chromatin association. Together, these results link USP7 interaction to the dynamic deubiquitination and chromatin association of UHRF1.

  2. Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation

    Directory of Open Access Journals (Sweden)

    Ill-Min Chung

    2016-09-01

    Full Text Available Proximity ligation assays such as circularized chromosome conformation capture and high-throughput chromosome capture assays have shed light on the structural organization of the interphase genome. Functional topologically associating domains (TADs that constitute the building blocks of genomic organization are disrupted and reconstructed during the cell cycle. Epigenetic memory, as well as the sequence of chromosomes, regulate TAD reconstitution. Sub-TAD domains that are invariant across cell types have been identified, and contacts between these domains, rather than looping, are speculated to drive chromatin folding. Replication domains are established simultaneously with TADs during the cell cycle and the two correlate well in terms of characteristic features, such as lamin association and histone modifications. CCCTC-binding factor (CTCF and cohesin cooperate across different cell types to regulate genes and genome organization. CTCF elements that demarcate TAD boundaries are commonly disrupted in cancer and promote oncogene activation. Chromatin looping facilitates interactions between distant promoters and enhancers, and the resulting enhanceosome complex promotes gene expression. Deciphering the chromatin tangle requires comprehensive integrative analyses of DNA- and protein-dependent factors that regulate genomic organization.

  3. Chromatin Landscape of the IRF Genes and Role of the Epigenetic Reader BRD4.

    Science.gov (United States)

    Bachu, Mahesh; Dey, Anup; Ozato, Keiko

    2016-07-01

    Histone post-translational modification patterns represent epigenetic states of genomic genes and denote the state of their transcription, past history, and future potential in gene expression. Genome-wide chromatin modification patterns reported from various laboratories are assembled in the ENCODE database, providing a fertile ground for understanding epigenetic regulation of any genes of interest across many cell types. The IRF family genes critically control innate immunity as they direct expression and activities of interferons. While these genes have similar structural and functional traits, their chromatin landscapes and epigenetic features have not been systematically evaluated. Here, by mining ENCODE database using an imputational approach, we summarize chromatin modification patterns for 6 of 9 IRF genes and show characteristic features that connote their epigenetic states. BRD4 is a BET bromodomain protein that "reads and translates" epigenetic marks into transcription. We review recent findings that BRD4 controls constitutive and signal-dependent transcription of many genes, including IRF genes. BRD4 dynamically binds to various genomic genes with a spatial and temporal specificity. Of particular importance, BRD4 is shown to critically regulate IRF-dependent anti-pathogen protection, inflammatory responses triggered by NF-κB, and the growth and spread of many cancers. The advent of small molecule inhibitors that disrupt binding of BET bromdomain to acetylated histone marks has opened new therapeutic possibilities for cancer and inflammatory diseases.

  4. Variable Geometry Aircraft Pylon Structure and Related Operation Techniques

    Science.gov (United States)

    Shah, Parthiv N. (Inventor)

    2014-01-01

    An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.

  5. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  6. The structure of the pelagic food web in relation to water column structure in the Skagerrak

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Kaas, H.; Kruse, B.;

    1990-01-01

    by a doming of the pycnocline, with a deep mixed layer along the periphery and a very shallow pycnocline in central parts. Average phytoplankton size increased with the depth of the upper mixed layer, and the central stratified area was characterized by small flagellates while large and chain-forming diatoms...... on particle surface area rather than particle volume or chl a, and showed a distributional pattern that was nearly the inverse of the distribution of copepod activity. That is, peak bacterial growth rates occurred in central, stratified parts and lower rates were found along the margin with a deep mixed layer....... Thus a 'microbial loop' type of food web seemed to be evolving in the central, strongly stratified parts of the Skagerrak, while a shorter 'classical' type of food web appeared to dominate along the margin. The relation between food web structure and vertical mixing processes observed on oceanwide...

  7. Mapping relational database into OWL Structure with data semantic preservation

    CERN Document Server

    Gherabi, Noreddine; Bahaj, Mohamed

    2012-01-01

    This paper proposes a solution for migrating an RDB into Web semantic. The solution takes an existing RDB as input, and extracts its metadata representation (MTRDB). Based on the MTRDB, a Canonical Data Model (CDM) is generated. Finally, the structure of the classification scheme in the CDM model is converted into OWL ontology and the recordsets of database are stored in owl document. A prototype has been implemented, which migrates a RDB into OWL structure, for demonstrate the practical applicability of our approach by showing how the results of reasoning of this technique can help improve the Web systems.

  8. Chromatin perturbations during the DNA damage response in higher eukaryotes.

    Science.gov (United States)

    Bakkenist, Christopher J; Kastan, Michael B

    2015-12-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response

  9. Monoallelic chromatin conformation flanking long-range silenced domains in cancer-derived and normal cells.

    Directory of Open Access Journals (Sweden)

    Domenic Di Paola

    Full Text Available Epigenetic inactivation of chromatin plays an important role in determining cell phenotype in both normal and cancer cells, but our knowledge is still incomplete with respect to any potential monoallelic nature of the phenomenon. We have genotyped DNA isolated from chromatin of two colorectal cancer-derived lines and a culture of normal human intestinal epithelial cells (HIEC, which was immunoprecipitated with antibodies to acetylated vs. methylated histone H3K9, and presented the data as B allele frequency differences over multiple single-nucleotide polymorphism (SNP moving window averages. [B allele is an arbitrary term defined as one of the two alleles at any given SNP, named A and B]. Three different validation tests confirmed that peaks exhibiting differences represented monoallelic domains. These complementary tests confirmed the following: 1 genes in the regions of high B allele frequency difference were expressed monoallelically; 2 in normal cells all five imprinting control regions which carried heterozygous SNPs were characterized by B allele difference peaks; and 3 the haplotypes in the B allele difference peaks were faithfully maintained in the chromatin immunoprecipitated with the respective antibodies. In both samples most of the monoallelic domains were found at the boundaries between regions of open and closed chromatin. With respect to the cancer line, this supports the established concept of conformation spreading, but the results from the normal cells were unexpected. Since these cells were polyclonal, the monoallelic structures were probably not determined by random choice as occurs in X-inactivation, so we propose that epigenetic inactivation in some domains may be heritable and polymorphic in normal human cells.

  10. About Hierarchical XML Structures, Replacement of Relational Data Structures in Construction and Implementation of ERP Systems

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The projects essential objective is to develop a new ERP system, of homogeneous nature, based on XML structures, as a possible replacement for classic ERP systems. The criteria that guide the objective definition are modularity, portability and Web connectivity. This objective is connected to a series of secondary objectives, considering that the technological approach will be filtered through the economic, social and legislative environment for a validation-by-context study. Statistics and cybernetics are to be used for simulation purposes. The homogeneous approach is meant to provide strong modularity and portability, in relation with the n-tier principles, but the main advantage of the model is its opening to the semantic Web, based on a Small enterprise ontology defined with XML-driven languages. Shockwave solutions will be used for implementing client-oriented hypermedia elements and an XML Gate will be de-fined between black box modules, for a clear separation with obvious advantages. Security and the XMLTP project will be an important issue for XML transfers due to the conflict between the open architecture of the Web, the readability of XML data and the privacy elements which have to be preserved within a business environment. The projects finality is oriented on small business but the semantic Web perspective and the surprising new conflict between hierarchical/network data structures and relational ones will certainly widen its scope. The proposed model is meant to fulfill the IT compatibility requirements of the European environment, defined as a knowledge society. The paper is a brief of the contributions of the team re-search at the project type A applied to CNCSIS "Research on the Role of XML in Building Extensible and Homogeneous ERP Systems".

  11. State Confessional Relations: Problem of the Subject Structure

    Directory of Open Access Journals (Sweden)

    Alexandra A. Dorskaya

    2014-06-01

    Full Text Available In the article various existing definitions of the concept "state and confessional relations" are analyzed, also author's definition is offered. Three levels of the state and confessional relations are revealed: conceptual, legislative and administrative-managerial. In the article it is shown that in Russia a tradition of only two subjects of the state and confessional relations – government bodies and the religious organizations allocation exists. It is revealed that at the present stage many researchers are dissatisfied with such situation. Scientific sources of the problem of the state and church relations within the psychological school of the law, which are addressed to the personality and experiences in the legal sphere are studied and revealed. Special attention is paid to scientific heritage of the M.A. Reysner, who was one of the first to begin study of this problem. In the article the question of the school of three subjects of the state and confessional relations allocation formation, what adds the faithful or faithless personality in addition to two traditional subjects is analyzed. The state and confessional relations are considered in the context of the human rights development. The question of new type of the believer possessing high education level and knowledge formation is considered. In the article it is shown that at the present stage relations of any regulation between the state and religious organizations is based on the basis of international legal standards, domestic legislation and norms of canon law.

  12. Relating methanogen community structure and anaerobic digester function.

    Science.gov (United States)

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. PMID:25562581

  13. Protein quaternary structure and aggregation in relation to allergenicity

    NARCIS (Netherlands)

    Boxtel, van E.L.

    2007-01-01

    In order to induce systemic food allergic reactions in humans, proteins after digestion in the human gastro-intestinal tract should still be able to bind IgE. The aim of the work presented in this thesis was to determine the effects of heating on the structure and digestibility of cupin and prolamin

  14. The Intestinal Tract: Structure, Function, Disorders and Related Medication.

    Science.gov (United States)

    Wagner, Dianne M.

    This instructional guide is intended for use within inservice or continuing education programs for people who work in long-term care facilities. This module includes an overview of the normal functions of the small and large intestines and discusses the structures of the intestines, absorption in the intestines, and commonly occurring conditions…

  15. Organizational Structure and the Consequences for Public Relations.

    Science.gov (United States)

    Schneider, Larissa A.

    J. Hage and F. Hull (1981) developed a typology of organizations based on two major dimensions--scale and complexity. The typology delineates four types of organizations: Type 1, "traditional" organizations, typically small-scale structures with low complexity; Type 2, "mechanical" organizations that are large scale, low complexity structures…

  16. Website on Protein Interaction and Protein Structure Related Work

    Science.gov (United States)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  17. Industrial - Institutional - Structural and Health Related Pest Control Category Manual.

    Science.gov (United States)

    Bowman, James S.; Turmel, Jon P.

    This manual provides information needed to meet the standards for pesticide applicator certification. The emphasis of this document is on the identification of wood-destroying pests and the damage caused by them to the structural components of buildings. The pests discussed include termites, carpenter ants, beetles, bees, and wasps and numerous…

  18. Overall Dynamic Constitutive Relations of Micro-structured Elastic Composites

    CERN Document Server

    Nemat-Nasser, Sia

    2011-01-01

    A method for homogenization of a heterogeneous (finite or periodic) elastic composite is presented. It allows direct, consistent, and accurate evaluation of the averaged overall frequency-dependent dynamic material constitutive relations. It is shown that when the spatial variation of the field variables is restricted by a Bloch-form (Floquet-form) periodicity, then these relations together with the overall conservation and kinematical equations accurately yield the displacement or stress modeshapes and, necessarily, the dispersion relations. It also gives as a matter of course point-wise solution of the elasto-dynamic field equations, to any desired degree of accuracy. The resulting overall dynamic constitutive relations however, are general and need not be restricted by the Bloch-form periodicity. The formulation is based on micro-mechanical modeling of a representative unit cell of the composite proposed by Nemat-Nasser and coworkers; see, e.g., [1] and [2].

  19. A relational structure of voluntary visual-attention abilities

    OpenAIRE

    Skogsberg, KatieAnn; Grabowecky, Marcia; Wilt, Joshua; Revelle, William; Iordanescu, Lucica; Suzuki, Satoru

    2015-01-01

    Many studies have examined attention mechanisms involved in specific behavioral tasks (e.g., search, tracking, distractor inhibition). However, relatively little is known about the relationships among those attention mechanisms. Is there a fundamental attention faculty that makes a person superior or inferior at most types of attention tasks, or do relatively independent processes mediate different attention skills? We focused on individual differences in voluntary visual-attention abilities ...

  20. Relating Chromophoric and Structural Disorder in Conjugated Polymers

    CERN Document Server

    Simine, Lena

    2016-01-01

    The optoelectronic properties of amorphous conjugated polymers are sensitive to conformational disorder and spectroscopy provides the means for structural characterization of the fragments of the chain which interact with light - "chromophores". A faithful interpretation of spectroscopic conformational signatures, however, presents a key challenge. We investigate the relationship between the ground state optical gaps, the properties of the excited states, and the structural features of chromophores of a single molecule poly(3-hexyl)-thiophene (P3HT), using quantum-classical atomistic simulations. Our results demonstrate that chromophoric disorder reflects an interplay between excited state de-localization and electron-hole polarization, and is controlled by torsional disorder that is specifically associated with the presence of side chains. Within this conceptual framework, we predict and explain a counter-intuitive spectral signature of P3HT: a red-shifted absorption, despite shortening of chromophores, with...

  1. The network structure of city-firm relations

    CERN Document Server

    Garas, Antonios; Schweitzer, Frank

    2015-01-01

    How are economic activities linked to geographic locations? To answer this question, we use a data-driven approach that builds on the information about location, ownership and economic activities of the world's 3,000 largest firms and their almost one million subsidiaries. From this information we generate a bipartite network of cities linked to economic activities. Analysing the structure of this network, we find striking similarities with nested networks observed in ecology, where links represent mutualistic interactions between species. This motivates us to apply ecological indicators to identify the unbalanced deployment of economic activities. Such deployment can lead to an over-representation of specific economic sectors in a given city, and poses a significant thread for the city's future especially in times when the over-represented activities face economic uncertainties. If we compare our analysis with external rankings about the quality of life in a city, we find that the nested structure of the cit...

  2. Crystal Structure of Three Compounds Related to Triphenylene and Tetracyanoquinodimethane

    DEFF Research Database (Denmark)

    Andresen, T.L.; Krebs, Frederik C; Larsen, M.;

    1999-01-01

    1 is triclinic, space group P (1) over bar, with a = 7.055(1), b = 11.026(2), c = 17.214(3) Angstrom. alpha = 96.59 (3), beta = 90.34(3), gamma = 91.61(3)degrees. Compound 2 is triclinic, space group P (1) over bar, with a = 12.228(2), b = 12.994(3), c = 13.702(3) Angstrom, alpha = 70.72(3), beta...... = 83.73(3), gamma = 66.06(3)degrees. Compound 3 is monoclinic, space group I2/a (C2/c), with a = 13.692(3), b = 7.7183(15), c = 16.391(3) Angstrom, beta = 99.47(3)degrees. The structures of 1 and 2 consist of mixed stacks of donors and accepters. The structures of 2 and 3 both include 1...

  3. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres.

    Science.gov (United States)

    Folco, Hernan Diego; Pidoux, Alison L; Urano, Takeshi; Allshire, Robin C

    2008-01-01

    Heterochromatin is defined by distinct posttranslational modifications on histones, such as methylation of histone H3 at lysine 9 (H3K9), which allows heterochromatin protein 1 (HP1)-related chromodomain proteins to bind. Heterochromatin is frequently found near CENP-A chromatin, which is the key determinant of kinetochore assembly. We have discovered that the RNA interference (RNAi)-directed heterochromatin flanking the central kinetochore domain at fission yeast centromeres is required to promote CENP-A(Cnp1) and kinetochore assembly over the central domain. The H3K9 methyltransferase Clr4 (Suv39); the ribonuclease Dicer, which cleaves heterochromatic double-stranded RNA to small interfering RNA (siRNA); Chp1, a component of the RNAi effector complex (RNA-induced initiation of transcriptional gene silencing; RITS); and Swi6 (HP1) are required to establish CENP-A(Cnp1) chromatin on naïve templates. Once assembled, CENP-A(Cnp1) chromatin is propagated by epigenetic means in the absence of heterochromatin. Thus, another, potentially conserved, role for centromeric RNAi-directed heterochromatin has been identified. PMID:18174443

  4. Radioiodination of chicken erythrocyte histones H4 and H5 in chromatin.

    Science.gov (United States)

    Griffiths, G R; Huang, P C

    1979-08-25

    The conformational state of histones in isolated chicken erythrocyte chromatin was studied using procedures developed for probing surface proteins on membranes. Under controlled conditions, only exposed tyrosyl residues react with iodide radicals, generated either by the oxidant, chloramine-T (paratoluenesulfonyl chloramide), or the enzyme lactoperoxidase, giving monoidotyrosine. Using 125-iodine, this study compared the reactive tyrosines in free and bound histones H4, and H5. The relative extent of iodination of these histones within (H4) and outside (H5) of the nucleosomes was measured after extraction and gel electrophoresis. Each of the histones was further analyzed for the extent of specific tyrosine iodination by separating the tryptic peptides by high voltage electrophoresis. The identity of the labeled peptide was determined by dansylation of the amino acids present in each hydrolyzed peptide. The results show that there is a difference in the conformational arrangement of these histones on chromatin and in the free forms, since in chromatin not all tyrosine residues are as accessible for iodination as in the denatured state. Residue 53 of histone H5 for instance is more reactive than residues 28 and 58, indicating that the segments containing the latter residues are involved in either protein-DNA or protein-protein interactions. In histone H4, preferential labeling of 2 of the 4 tyrosines present was also observed.

  5. Localizing age-related individual differences in a hierarchical structure

    OpenAIRE

    Salthouse, Timothy A.

    2004-01-01

    Data from 33 separate studies were combined to create an aggregate data set consisting of 16 cognitive variables and 6832 different individuals who ranged between 18 and 95 years of age. Analyses were conducted to determine where in a hierarchical structure of cognitive abilities individual differences associated with age, gender, education, and self-reported health could be localized. The results indicated that each type of individual difference characteristic exhibited a d...

  6. The Hierarchical Structure of Work-Related Maladaptive Personality Traits

    OpenAIRE

    Guenole, Nigel

    2015-01-01

    A brief pathological personality measure, the G-50, was designed to study substantive developments from clinical psychology in occupational settings. Responses to item-pools assessing DSM-5 domain traits were collected from 696 working adults in England, Ireland, Wales and Scotland. Exploratory factor analyses supported a structure comprised of Antagonism, Compulsivity, Detachment, Negative Affect, Disinhibition, and Psychoticism. Gender differences were observed following invariance analyse...

  7. Subcortical representation of speech fine structure relates to reading ability

    OpenAIRE

    Hornickel, Jane; Anderson, Samira; Skoe, Erika; Yi, Han-Gyol; Kraus, Nina

    2012-01-01

    Impaired perception of consonants by poor readers is reflected in poor subcortical encoding of speech timing and harmonics. We assessed auditory brainstem representation of higher harmonics within a consonant-vowel formant transition to identify relationships between speech fine structure and reading. Responses were analyzed in three ways: a single stimulus polarity, adding responses to inverted polarities (emphasizing low harmonics), and subtracting responses to inverted polarities (emphasiz...

  8. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin.

    Science.gov (United States)

    Jeffery, Daniel C B; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly.

  9. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor i with chromatin

    Science.gov (United States)

    Jeffery, Daniel CB; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28–1 mutant and to a lesser extent in a cdc7–1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly. PMID:25602519

  10. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin.

    Science.gov (United States)

    Jeffery, Daniel C B; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly. PMID:25602519

  11. Structure Mapping and Relational Language Support Children's Learning of Relational Categories

    Science.gov (United States)

    Gentner, Dedre; Anggoro, Florencia K.; Klibanoff, Raquel S.

    2011-01-01

    Learning relational categories--whose membership is defined not by intrinsic properties but by extrinsic relations with other entities--poses a challenge to young children. The current work showed 3-, 4- to 5-, and 6-year-olds pairs of cards exemplifying familiar relations (e.g., a nest and a bird exemplifying "home for") and then tested whether…

  12. Circadian rhythms and memory formation: regulation by chromatin remodeling.

    Science.gov (United States)

    Sahar, Saurabh; Sassone-Corsi, Paolo

    2012-01-01

    Epigenetic changes, such as DNA methylation or histone modification, can remodel the chromatin and regulate gene expression. Remodeling of chromatin provides an efficient mechanism of transducing signals, such as light or nutrient availability, to regulate gene expression. CLOCK:BMAL1 mediated activation of clock-controlled genes (CCGs) is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Recent research has demonstrated that chromatin remodeling is at the cross-roads of circadian rhythms and regulation of metabolism and aging. It would be of interest to identify if similar pathways exist in the epigenetic regulation of memory formation. PMID:22470318

  13. Circadian Rhythms and Memory Formation: Regulation by Chromatin Remodeling

    Directory of Open Access Journals (Sweden)

    Saurabh eSahar

    2012-03-01

    Full Text Available Epigenetic changes, such as DNA methylation or histone modification, can remodel the chromatin and regulate gene expression. Remodeling of chromatin provides an efficient mechanism of transducing signals, such as light or nutrient availability, to regulate gene expression. CLOCK:BMAL1 mediated activation of clock-controlled genes (CCGs is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Recent research has demonstrated that chromatin remodeling is at the cross-roads of circadian rhythms and regulation of metabolism and aging. It would be of interest to identify if similar pathways exist in the epigenetic regulation of memory formation.

  14. Angular averaged consistency relations of large-scale structures

    CERN Document Server

    Valageas, Patrick

    2013-01-01

    The cosmological dynamics of gravitational clustering satisfies an approximate invariance with respect to the cosmological parameters that is often used to simplify analytical computations. We describe how this approximate symmetry gives rise to angular averaged consistency relations for the matter density correlations. This allows one to write the $(\\ell+n)$ density correlation, with $\\ell$ large-scale linear wave numbers that are integrated over angles, and $n$ fixed small-scale nonlinear wave numbers, in terms of the small-scale $n$-point density correlation and $\\ell$ prefactors that involve the linear power spectra at the large-scale wave numbers. These relations, which do not vanish for equal-time statistics, go beyond the already known kinematic consistency relations. They could be used to detect primordial non-Gaussianities, modifications of gravity, limitations of galaxy biasing schemes, or to help designing analytical models of gravitational clustering.

  15. Physical relativity space-time structure from a dynamical perspective

    CERN Document Server

    Brown, Harvey R

    2005-01-01

    Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein'streatment of the relativistic behaviour of rigid bodies and clocks in motion in the kinematical part of his great paper, a

  16. The effects of DNA intercalators on chromatin of chicken red blood cells——differential extraction on nonhistone proteins

    Institute of Scientific and Technical Information of China (English)

    WangFan; ZhuJingde

    1990-01-01

    Taking advantage of the effects on DNA secondary structure of two DNA-intercalators,ethidium bromide and chloroquine,we used each of them to treat nuclei from both mature erythrocytes and reticulocytes of chicken,as an alternative approach to study the relationships between DNA secondary structure,nuclear proteins and chromatin structure.We presented results of differential extraction of nuclear proteins from nuclei with DNA-intercalators,as well as preliminary characterization of these proteins.A 45kd protein is the major component in fractions extracted by both intercalators from nuclei from either mature erythrocytes or reticulocytes and seems to be a DNA-binding protein.Furthermore,from current concepts of functional aspects of DNA conformation and structural heterogeneity in chromatin and nuclear proteins,we have discussed both the significance of our results as well as technical aspects of this approach.

  17. The Torsion of Spinor Connections and Related Structures

    Directory of Open Access Journals (Sweden)

    Frank Klinker

    2006-11-01

    Full Text Available In this text we introduce the torsion of spinor connections. In terms of the torsion we give conditions on a spinor connection to produce Killing vector fields. We relate the Bianchi type identities for the torsion of spinor connections with Jacobi identities for vector fields on supermanifolds. Furthermore, we discuss applications of this notion of torsion.

  18. Relation between structure and organisation properties of new amphiphilic cyclodextrins

    International Nuclear Information System (INIS)

    Since a number of years, special attention and efforts have been made to prepare amphiphilic cyclodextrins (CDs) with the objective to use them to obtain supramolecular assemblies as such or in the presence of preformed lipidic structures. The aim of these investigation is in both cases to combine the size specificity of cyclodextrins for guests and the transport properties of phospho-lipidic structures. The final objects could be of importance to transport or target biologically relevant molecules such as drugs using new galenic formulations. In a first step, a new family of amphiphilic CDs was prepared from a pure phospholipids (DMPE) onto cyclodextrins or methylated derivatives through a spacing arm. The afforded compounds (phospholipidyl-cyclodextrins) were fully characterized by high field NMR and high resolution mass spectrometry. The methylated derivatives were shown to self-organize in water with low CMC to form fluctuating micellar fibers retaining the inclusion capacity of the cyclodextrin cavities. The interactions of these compounds with membrane systems were investigated as black films using X-ray reflectivity and by evaluation of their detergent power towards model DMPC liposomes. Their ability to cross over the Blood Brain Barrier was evidenced by a new approach making use of novel immuno-enzymatic assays. In a second step, a new class of amphiphilic cyclodextrins was considered (peptidolipidyl-cyclodextrins). Although they are structurally similar to phospholipidyl-CDs, their preparation overcomes the tedious steps of the later and lead to a considerable versatility in terms of the number of possible molecules to be prepared. Moreover, the stability problems encountered with phospholipids are avoided. Several examples have been prepared, fully characterized and their organization properties investigated by the determination of CMC and by deuterium NMR on a pure and homogeneous mixed peptidolipidyl-CD / DMPC lamellar phase. This novel class of

  19. Muscle structural changes in mitochondrial myopathy relate to genotype

    DEFF Research Database (Denmark)

    Olsen, David B.; Langkilde, Annika Reynberg; Ørngreen, Mette C.;

    2003-01-01

    typically not been associated with mitochondrial disease. We investigated gross and microscopic muscle morphology in thigh muscles by muscle biopsy and MRI in 16 patients with MM, and compared findings with those obtained in muscular dystrophy patients and healthy subjects. Changes of muscle architecture......It is well known that morphological changes at the cellular level occur in muscle of patients with mitochondrial myopathy (MM), but changes in muscle structure with fat infiltration and gross variation of muscle fiber size with giant fibers, normally encountered in the muscular dystrophies, have...

  20. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, M.D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an {alpha}-helix, a {open_quotes}scaffold{close_quotes} region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca{sup 2+}-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of {lambda} Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of {lambda} Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an {alpha}-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded {beta}sheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of {sup 15}N NMR relaxation properties.