WorldWideScience

Sample records for chromatin facilitates proper

  1. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle....... The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results...

  2. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    Science.gov (United States)

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  3. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  4. Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair

    Directory of Open Access Journals (Sweden)

    Nidhi Nair

    2017-07-01

    Full Text Available Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage.

  5. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding.

    Science.gov (United States)

    Floer, Monique; Wang, Xin; Prabhu, Vidya; Berrozpe, Georgina; Narayan, Santosh; Spagna, Dan; Alvarez, David; Kendall, Jude; Krasnitz, Alexander; Stepansky, Asya; Hicks, James; Bryant, Gene O; Ptashne, Mark

    2010-04-30

    How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.

  6. Intelligent Decisional Assistant that Facilitate the Choice of a Proper Computer System Applied in Busines

    Directory of Open Access Journals (Sweden)

    Nicolae MARGINEAN

    2009-01-01

    Full Text Available The choice of a proper computer system is not an easy task for a decider. One reason could be the present market development of computer systems applied in business. The big number of the Romanian market players determines a big number of computerized products, with a multitude of various properties. Our proposal tries to optimize and facilitate this decisional process within an e-shop where are sold IT packets applied in business, building an online decisional assistant, a special component conceived to facilitate the decision making needed for the selection of the pertinent IT package that fits the requirements of one certain business, described by the decider. The user interacts with the system as an online buyer that visit an e-shop where are sold IT package applied in economy.

  7. Extremely Long-Range Chromatin Loops Link Topological Domains to Facilitate a Diverse Antibody Repertoire

    Directory of Open Access Journals (Sweden)

    Lindsey Montefiori

    2016-02-01

    Full Text Available Early B cell development is characterized by large-scale Igh locus contraction prior to V(DJ recombination to facilitate a highly diverse Ig repertoire. However, an understanding of the molecular architecture that mediates locus contraction remains unclear. We have combined high-resolution chromosome conformation capture (3C techniques with 3D DNA FISH to identify three conserved topological subdomains. Each of these topological folds encompasses a major VH gene family that become juxtaposed in pro-B cells via megabase-scale chromatin looping. The transcription factor Pax5 organizes the subdomain that spans the VHJ558 gene family. In its absence, the J558 VH genes fail to associate with the proximal VH genes, thereby providing a plausible explanation for reduced VHJ558 gene rearrangements in Pax5-deficient pro-B cells. We propose that Igh locus contraction is the cumulative effect of several independently controlled chromatin subdomains that provide the structural infrastructure to coordinate optimal antigen receptor assembly.

  8. Facilitates Chromatin Transcription Complex Is an “Accelerator” of Tumor Transformation and Potential Marker and Target of Aggressive Cancers

    Directory of Open Access Journals (Sweden)

    Henry Garcia

    2013-07-01

    Full Text Available The facilitates chromatin transcription (FACT complex is involved in chromatin remodeling during transcription, replication, and DNA repair. FACT was previously considered to be ubiquitously expressed and not associated with any disease. However, we discovered that FACT is the target of a class of anticancer compounds and is not expressed in normal cells of adult mammalian tissues, except for undifferentiated and stem-like cells. Here, we show that FACT expression is strongly associated with poorly differentiated aggressive cancers with low overall survival. In addition, FACT was found to be upregulated during in vitro transformation and to be necessary, but not sufficient, for driving transformation. FACT also promoted survival and growth of established tumor cells. Genome-wide mapping of chromatin-bound FACT indicated that FACT’s role in cancer most likely involves selective chromatin remodeling of genes that stimulate proliferation, inhibit cell death and differentiation, and regulate cellular stress responses.

  9. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  10. upSET, the Drosophila homologue of SET3, Is Required for Viability and the Proper Balance of Active and Repressive Chromatin Marks

    Science.gov (United States)

    McElroy, Kyle A.; Jung, Youngsook L.; Zee, Barry M.; Wang, Charlotte I.; Park, Peter J.; Kuroda, Mitzi I.

    2017-01-01

    Chromatin plays a critical role in faithful implementation of gene expression programs. Different post-translational modifications (PTMs) of histone proteins reflect the underlying state of gene activity, and many chromatin proteins write, erase, bind, or are repelled by, these histone marks. One such protein is UpSET, the Drosophila homolog of yeast Set3 and mammalian KMT2E (MLL5). Here, we show that UpSET is necessary for the proper balance between active and repressed states. Using CRISPR/Cas-9 editing, we generated S2 cells that are mutant for upSET. We found that loss of UpSET is tolerated in S2 cells, but that heterochromatin is misregulated, as evidenced by a strong decrease in H3K9me2 levels assessed by bulk histone PTM quantification. To test whether this finding was consistent in the whole organism, we deleted the upSET coding sequence using CRISPR/Cas-9, which we found to be lethal in both sexes in flies. We were able to rescue this lethality using a tagged upSET transgene, and found that UpSET protein localizes to transcriptional start sites (TSS) of active genes throughout the genome. Misregulated heterochromatin is apparent by suppressed position effect variegation of the wm4 allele in heterozygous upSET-deleted flies. Using nascent-RNA sequencing in the upSET-mutant S2 lines, we show that this result applies to heterochromatin genes generally. Our findings support a critical role for UpSET in maintaining heterochromatin, perhaps by delimiting the active chromatin environment. PMID:28064188

  11. upSET, the Drosophila homologue of SET3, Is Required for Viability and the Proper Balance of Active and Repressive Chromatin Marks

    Directory of Open Access Journals (Sweden)

    Kyle A. McElroy

    2017-02-01

    Full Text Available Chromatin plays a critical role in faithful implementation of gene expression programs. Different post-translational modifications (PTMs of histone proteins reflect the underlying state of gene activity, and many chromatin proteins write, erase, bind, or are repelled by, these histone marks. One such protein is UpSET, the Drosophila homolog of yeast Set3 and mammalian KMT2E (MLL5. Here, we show that UpSET is necessary for the proper balance between active and repressed states. Using CRISPR/Cas-9 editing, we generated S2 cells that are mutant for upSET. We found that loss of UpSET is tolerated in S2 cells, but that heterochromatin is misregulated, as evidenced by a strong decrease in H3K9me2 levels assessed by bulk histone PTM quantification. To test whether this finding was consistent in the whole organism, we deleted the upSET coding sequence using CRISPR/Cas-9, which we found to be lethal in both sexes in flies. We were able to rescue this lethality using a tagged upSET transgene, and found that UpSET protein localizes to transcriptional start sites (TSS of active genes throughout the genome. Misregulated heterochromatin is apparent by suppressed position effect variegation of the wm4 allele in heterozygous upSET-deleted flies. Using nascent-RNA sequencing in the upSET-mutant S2 lines, we show that this result applies to heterochromatin genes generally. Our findings support a critical role for UpSET in maintaining heterochromatin, perhaps by delimiting the active chromatin environment.

  12. Knockdown Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells

    Science.gov (United States)

    The SWI/SNF (SWItch/Sucrose NonFermentable or BAF, Brg/Brahma-associated factors) complexes are epigenetic modifiers of chromatin structure and undergo progressive changes in subunit composition during cellular differentiation. For example, in embryonic stem cells (ESCs) esBAF contains Brg1 and Baf...

  13. Chromatin assembly factor 1, subunit A (P150 facilitates cell proliferation in human hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Xu M

    2016-07-01

    Full Text Available Meng Xu, Yuli Jia, Zhikui Liu, Linglong Ding, Run Tian, Hua Gu, Yufeng Wang, Hongyong Zhang, Kangsheng Tu, Qingguang Liu Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China Abstract: Several studies have revealed that the abnormal expression of chromatin assembly factor 1, subunit A (P150 (CHAF1A was involved in the development of some types of malignant tumors. However, CHAF1A expression and its role in hepatocellular carcinoma (HCC remain poorly characterized. In this study, we first investigated CHAF1A expression in six cell lines and 116 pairs of HCC and matched normal tumor-adjacent tissues to evaluate the clinicopathological characteristics of CHAF1A in HCC. Then, we detected the proliferation and apoptosis in HCC cells. In addition, a subcutaneous tumor model in nude mice was performed to evaluate tumor growth in vivo. We found that the expression of CHAF1A was significantly higher in HCC tissues than that in adjacent nontumor tissues (P<0.01. Clinical analysis indicated that CHAF1A expression was significantly correlated with the tumor–node–metastasis stage, tumor number, and tumor differentiation in HCC tissues (P<0.05, respectively. We also found that CHAF1A may potentially function as a poor prognostic indicator for 5-year overall and disease-free survival in patients with HCC (P<0.05, respectively. The elevated expression of CHAF1A was also observed in HCC cell lines compared with that in normal LO2 hepatic cell line (P<0.01. HCC cancer cells exhibited inhibition of cell growth, reduction in colony-formation ability, increased cell apoptosis rate, and impaired tumorigenicity in nude mice after CHAF1A knockdown. Collectively, we propose that CHAF1A by potentially mediating cancer cell proliferation plays an important role in promoting the development of HCC and may serve as a potential therapeutic target in HCC. Keywords: CHAF1A, hepatocellular

  14. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin).

    Science.gov (United States)

    Duan, Ming-Rui; Smerdon, Michael J

    2014-03-21

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.

  15. The histone H4 lysine 20 monomethyl mark, set by PR-Set7 and stabilized by L(3mbt, is necessary for proper interphase chromatin organization.

    Directory of Open Access Journals (Sweden)

    Ayako Sakaguchi

    Full Text Available Drosophila PR-Set7 or SET8 is a histone methyltransferase that specifically monomethylates histone H4 lysine 20 (H4K20. L(3MBT has been identified as a reader of methylated H4K20. It contains several conserved domains including three MBT repeats binding mono- and dimethylated H4K20 peptides. We find that the depletion of PR-Set7 blocks de novo H4K20me1 resulting in the immediate activation of the DNA damage checkpoint, an increase in the size of interphase nuclei, and drastic reduction of cell viability. L(3mbt on the other hand stabilizes the monomethyl mark, as L(3mbt-depleted S2 cells show a reduction of more than 60% of bulk monomethylated H4K20 (H4K20me1 while viability is barely affected. Ploidy and basic chromatin structure show only small changes in PR-Set7-depleted cells, but higher order interphase chromatin organization is significantly affected presumably resulting in the activation of the DNA damage checkpoint. In the absence of any other known functions of PR-Set7, the setting of the de novo monomethyl mark appears essential for cell viability in the presence or absence of the DNA damage checkpoint, but once newly assembled chromatin is established the monomethyl mark, protected by L(3mbt, is dispensable.

  16. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements

    DEFF Research Database (Denmark)

    Grøntved, Lars; John, Sam; Baek, Songjoon

    2013-01-01

    Mechanisms regulating transcription factor interaction with chromatin in intact mammalian tissues are poorly understood. Exploiting an adrenalectomized mouse model with depleted endogenous glucocorticoids, we monitor changes of the chromatin landscape in intact liver tissue following glucocorticoid...... injection. Upon activation of the glucocorticoid receptor (GR), proximal regions of activated and repressed genes are remodelled, and these remodelling events correlate with RNA polymerase II occupancy of regulated genes. GR is exclusively associated with accessible chromatin and 62% percent of GR...... remodelling specifically at sites co-occupied by GR and C/EBPβ. Collectively, we demonstrate a highly cooperative mechanism by which C/EBPβ regulates selective GR binding to the genome in liver tissue. We suggest that selective targeting of GR in other tissues is likely mediated by the combined action of cell...

  17. Reprogramming chromatin

    DEFF Research Database (Denmark)

    Ehrensberger, Andreas Hasso; Svejstrup, Jesper Qualmann

    2012-01-01

    attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming...... and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors...

  18. Chromatin computation.

    Directory of Open Access Journals (Sweden)

    Barbara Bryant

    Full Text Available In living cells, DNA is packaged along with protein and RNA into chromatin. Chemical modifications to nucleotides and histone proteins are added, removed and recognized by multi-functional molecular complexes. Here I define a new computational model, in which chromatin modifications are information units that can be written onto a one-dimensional string of nucleosomes, analogous to the symbols written onto cells of a Turing machine tape, and chromatin-modifying complexes are modeled as read-write rules that operate on a finite set of adjacent nucleosomes. I illustrate the use of this "chromatin computer" to solve an instance of the Hamiltonian path problem. I prove that chromatin computers are computationally universal--and therefore more powerful than the logic circuits often used to model transcription factor control of gene expression. Features of biological chromatin provide a rich instruction set for efficient computation of nontrivial algorithms in biological time scales. Modeling chromatin as a computer shifts how we think about chromatin function, suggests new approaches to medical intervention, and lays the groundwork for the engineering of a new class of biological computing machines.

  19. Concordant and opposite roles of DNA-PK and the "facilitator of chromatin transcription" (FACT in DNA repair, apoptosis and necrosis after cisplatin

    Directory of Open Access Journals (Sweden)

    Calkins Anne S

    2011-06-01

    Full Text Available Abstract Background Platinum-containing chemotherapy produces specific DNA damage and is used to treat several human solid tumors. Tumors initially sensitive to platinum-based drugs frequently become resistant. Inhibition of DNA repair is a potential strategy to enhance cisplatin effectiveness. After cisplatin treatment, a balance between repair and apoptosis determines whether cancer cells proliferate or die. DNA-dependent protein kinase (DNA-PK binds to DNA double strand breaks (DSBs through its Ku subunits and initiates non-homologous end joining. Inhibition of DNA-PK sensitizes cancer cells to cisplatin killing. The goal of this study is to elucidate the mechanism underlying the effects of DNA-PK on cisplatin sensitivity. Results Silencing the expression of the catalytic subunit of DNA-PK (DNA-PKcs increased sensitivity to cisplatin and decreased the appearance of γH2AX after cisplatin treatment. We purified DNA-PK by its Ku86 subunit and identified interactors by tandem mass spectrometry before and after cisplatin treatment. The structure specific recognition protein 1 (SSRP1, Spt16 and γH2AX appeared in the Ku86 complex 5 hours after cisplatin treatment. SSRP1 and Spt16 form the facilitator of chromatin transcription (FACT. The cisplatin-induced association of FACT with Ku86 and γH2AX was abrogated by DNase treatment. In living cells, SSRP1 and Ku86 were recruited at sites of DSBs induced by laser beams. Silencing SSRP1 expression increased sensitivity to cisplatin and decreased γH2AX appearance. However, while silencing SSRP1 in cisplatin-treated cells increased both apoptosis and necrosis, DNA-PKcs silencing, in contrast, favored necrosis over apoptosis. Conclusions DNA-PK and FACT both play roles in DNA repair. Therefore both are putative targets for therapeutic inhibition. Since DNA-PK regulates apoptosis, silencing DNA-PKcs redirects cells treated with cisplatin toward necrosis. Silencing FACT however, allows both apoptosis and

  20. Vernalization-mediated chromatin changes.

    Science.gov (United States)

    Zografos, Brett R; Sung, Sibum

    2012-07-01

    Proper flowering time is vital for reproductive fitness in flowering plants. In Arabidopsis, vernalization is mediated primarily through the repression of a MADS box transcription factor, FLOWERING LOCUS C (FLC). The induction of a plant homeodomain-containing protein, VERNALIZATION INSENSITIVE 3 (VIN3), by vernalizing cold is required for proper repression of FLC. One of a myriad of changes that occurs after VIN3 is induced is the establishment of FLC chromatin at a mitotically repressed state due to the enrichment of repressive histone modifications. VIN3 induction by cold is the earliest known event during the vernalization response and includes changes in histone modifications at its chromatin. Here, the current understanding of the vernalization-mediated chromatin changes in Arabidopsis is discussed, with a focus on the roles of shared chromatin-modifying machineries in regulating VIN3 and FLC gene family expression during the course of vernalization.

  1. Proper tea drinking habits facilitate teenagers' healthy growth%科学饮茶有利于青少年健康成长

    Institute of Scientific and Technical Information of China (English)

    郭雅敏

    2011-01-01

    本文针对青少年大量饮用碳酸饮料的现状,阐述了科学饮茶有利于青少年身体健康、修身养性、培养高尚的道德情操,提出了青少年如何科学合理饮茶、泡好茶,并希望茶产业推出更多适合青少年口味、绿色而又时尚的茶饮品。%Based on the current situation that teenagers drinking too much carbonated beverages, the article illustrates the benefits of proper tea drinking habits to teenagers' mental and physical health. The paper introduces the healthy ways for tea brewing and drinking, and suggests that more teenager - targeted tea products be developed in the marketplace.

  2. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...

  3. The role of chromatin-associated protein Hbsu in beta-mediated DNA recombination is to facilitate the joining of distant recombination sites.

    Science.gov (United States)

    Alonso, J C; Gutierrez, C; Rojo, F

    1995-11-01

    The beta recombinase is unable to mediate in vitro DNA recombination between two directly oriented recombination sites unless a bacterial chromatin-associated protein (Bacillus subtilis Hbsu or Escherichia [correction of Eschrichia] coli HU] is provided. By electron microscopy, we show that the role of Hbsu is to help in joining the recombination sites to form a stable synaptic complex. Some evidence supports the fact that Hbsu works by recognizing and stabilizing a DNA structure at the recombination site, rather than by serving as a bridge between beta recombinase dimers through a protein-protein interaction. We show that the mammalian HMG1 protein, which shares neither sequence nor structural homology with Hbsu, can also stimulate beta-mediated recombination. These chromatin-associated proteins share the property of binding to DNA in a relatively non-specific fashion, bending it, and having a marked preference for altered DNA structures. Hbsu, HU or HMG1 proteins probably bind specifically at the crossing-over region, since at limiting protein-DNA molar ratios they could not be outcompeted by an excess of a DNA lacking the crossing over site. Distamycin, a minor groove binder that induces local distortions in DNA, did not affect the binding of beta protein to DNA, but inhibited the formation of the synaptic complex.

  4. Efficient cell migration requires global chromatin condensation.

    Science.gov (United States)

    Gerlitz, Gabi; Bustin, Michael

    2010-07-01

    Cell migration is a fundamental process that is necessary for the development and survival of multicellular organisms. Here, we show that cell migration is contingent on global condensation of the chromatin fiber. Induction of directed cell migration by the scratch-wound assay leads to decreased DNaseI sensitivity, alterations in the chromatin binding of architectural proteins and elevated levels of H4K20me1, H3K27me3 and methylated DNA. All these global changes are indicative of increased chromatin condensation in response to induction of directed cell migration. Conversely, chromatin decondensation inhibited the rate of cell migration, in a transcription-independent manner. We suggest that global chromatin condensation facilitates nuclear movement and reshaping, which are important for cell migration. Our results support a role for the chromatin fiber that is distinct from its known functions in genetic processes.

  5. Chromatin Remodelers: From Function to Dysfunction

    Directory of Open Access Journals (Sweden)

    Gernot Längst

    2015-06-01

    Full Text Available Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.

  6. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  7. ATP-dependent chromatin remodeling in the DNA-damage response

    Science.gov (United States)

    2012-01-01

    The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways. PMID:22289628

  8. Chromatin is wonderful stuff.

    NARCIS (Netherlands)

    R. van Driel

    2007-01-01

    Chromatin molecules have properties that set them aside from all other biomacromolecules in the cell. (i) Chromosomes, which are single chromatin molecules, are the largest macromolecules in eukaryotic cells. (ii) Chromatin molecules carry the cell's genetic and epigenetic information and all contro

  9. Chromatin Structure and Function

    CERN Document Server

    Wolffe, Alan P

    1999-01-01

    The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active

  10. ATP-Dependent Chromatin Remodeling Factors and Their Roles in Affecting Nucleosome Fiber Composition

    Directory of Open Access Journals (Sweden)

    Alexandra Lusser

    2011-10-01

    Full Text Available ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.

  11. Proper orientation of cacti

    OpenAIRE

    Araujo, Julio; Havet, Frédéric; Linhares Sales, Claudia; Silva, Ana

    2016-01-01

    International audience; An orientation of a graph G is proper if two adjacent vertices have different in-degrees. The proper-orientation number − → χ (G) of a graph G is the minimum maximum in-degree of a proper orientation of G. In [1], the authors ask whether the proper orientation number of a planar graph is bounded. We prove that every cactus admits a proper orientation with maximum in-degree at most 7. We also prove that the bound 7 is tight by showing a cactus having no proper orientati...

  12. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock.

    Science.gov (United States)

    Perales, Mariano; Más, Paloma

    2007-07-01

    Circadian clocks rhythmically coordinate biological processes in resonance with the environmental cycle. The clock function relies on negative feedback loops that generate 24-h rhythms in multiple outputs. In Arabidopsis thaliana, the clock component TIMING OF CAB EXPRESSION1 (TOC1) integrates the environmental information to coordinate circadian responses. Here, we use chromatin immunoprecipitation as well as physiological and luminescence assays to demonstrate that proper photoperiodic phase of TOC1 expression is important for clock synchronization of plant development with the environment. Our studies show that TOC1 circadian induction is accompanied by clock-controlled cycles of histone acetylation that favor transcriptionally permissive chromatin structures at the TOC1 locus. At dawn, TOC1 repression relies on the in vivo circadian binding of the clock component CIRCADIAN CLOCK ASSOCIATED1 (CCA1), while histone deacetylase activities facilitate the switch to repressive chromatin structures and contribute to the declining phase of TOC1 waveform around dusk. The use of cca1 late elongated hypocotyl double mutant and CCA1-overexpressing plants suggests a highly repressing function of CCA1, antagonizing H3 acetylation to regulate TOC1 mRNA abundance. The chromatin remodeling activities relevant at the TOC1 locus are distinctively modulated by photoperiod, suggesting a mechanism by which the clock sets the phase of physiological and developmental outputs.

  13. MYC and Chromatin

    Directory of Open Access Journals (Sweden)

    Lance R. Thomas

    2015-03-01

    Full Text Available MYC proteins are a family of oncogene-encoded transcriptional regulators that feature prominently in cancer. They are aberrantly expressed in a majority of human malignancies, and derive their extraordinary oncogenic potential from the ability to control expression of genes linked to cell growth, proliferation, metabolism, and genomic instability. MYC proteins are also highly-validated targets for anti-cancer therapies. Over 30 years of research into MYC has revealed the importance of chromatin in regulating both the production of MYC proteins and their ability to recognize target genes and to function as modulators of transcription. Here, we review contemporary understanding of the MYC–chromatin connection, focusing on how the encasement of DNA into chromatin impacts expression of MYC genes, and how MYC responds to and modulates chromatin to exert its transcriptional effects. We also describe ways in which chromatin structure and function are being manipulated by drug-like molecules to inhibit MYC-driven cancers.

  14. Histone chaperone networks shaping chromatin function

    DEFF Research Database (Denmark)

    Hammond, Colin; Strømme, Caroline Bianchi; Huang, Hongda

    2017-01-01

    and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone...... chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin....

  15. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation......Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  16. Chromatin deregulation in disease.

    Science.gov (United States)

    Mirabella, Anne C; Foster, Benjamin M; Bartke, Till

    2016-03-01

    The regulation of chromatin by epigenetic mechanisms plays a central role in gene expression and is essential for development and maintenance of cell identity and function. Aberrant chromatin regulation is observed in many diseases where it leads to defects in epigenetic gene regulation resulting in pathological gene expression programmes. These defects are caused by inherited or acquired mutations in genes encoding enzymes that deposit or remove DNA and histone modifications and that shape chromatin architecture. Chromatin deregulation often results in neurodevelopmental disorders and intellectual disabilities, frequently linked to physical and developmental abnormalities, but can also cause neurodegenerative diseases, immunodeficiency, or muscle wasting syndromes. Epigenetic diseases can either be of monogenic origin or manifest themselves as complex multifactorial diseases such as in congenital heart disease, autism spectrum disorders, or cancer in which mutations in chromatin regulators are contributing factors. The environment directly influences the epigenome and can induce changes that cause or predispose to diseases through risk factors such as stress, malnutrition or exposure to harmful chemicals. The plasticity of chromatin regulation makes targeting the enzymatic machinery an attractive strategy for therapeutic intervention and an increasing number of small molecule inhibitors against a variety of epigenetic regulators are in clinical use or under development. In this review, we will give an overview of the molecular lesions that underlie epigenetic diseases, and we will discuss the impact of the environment and prospects for epigenetic therapies.

  17. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  18. A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin.

    Science.gov (United States)

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Fedisch, Andreas; Schilcher, Pierre; Schmidt, Andreas; Imhof, Axel

    2016-03-01

    The structure of chromatin is critical for many aspects of cellular physiology and is considered to be the primary medium to store epigenetic information. It is defined by the histone molecules that constitute the nucleosome, the positioning of the nucleosomes along the DNA and the non-histone proteins that associate with it. These factors help to establish and maintain a largely DNA sequence-independent but surprisingly stable structure. Chromatin is extensively disassembled and reassembled during DNA replication, repair, recombination or transcription in order to allow the necessary factors to gain access to their substrate. Despite such constant interference with chromatin structure, the epigenetic information is generally well maintained. Surprisingly, the mechanisms that coordinate chromatin assembly and ensure proper assembly are not particularly well understood. Here, we use label free quantitative mass spectrometry to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos. The use of a data independent acquisition method for proteome wide quantitation allows a time resolved comparison of in vitro chromatin assembly. A comparison of our in vitro data with proteomic studies of replicative chromatin assembly in vivo reveals an extensive overlap showing that the in vitro system can be used for investigating the kinetics of chromatin assembly in a proteome-wide manner. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Principles of Proper Validation

    DEFF Research Database (Denmark)

    Esbensen, Kim; Geladi, Paul

    2010-01-01

    Validation in chemometrics is presented using the exemplar context of multivariate calibration/prediction. A phenomenological analysis of common validation practices in data analysis and chemometrics leads to formulation of a set of generic Principles of Proper Validation (PPV), which is based...

  20. PROMOTIONS: PROper MOTION Software

    Science.gov (United States)

    Caleb Wherry, John; Sahai, R.

    2009-05-01

    We report on the development of a software tool (PROMOTIONS) to streamline the process of measuring proper motions of material in expanding nebulae. Our tool makes use of IDL's widget programming capabilities to design a unique GUI that is used to compare images of the objects from two epochs. The software allows us to first orient and register the images to a common frame of reference and pixel scale, using field stars in each of the images. We then cross-correlate specific morphological features in order to determine their proper motions, which consist of the proper motion of the nebula as a whole (PM-neb), and expansion motions of the features relative to the center. If the central star is not visible (quite common in bipolar nebulae with dense dusty waists), point-symmetric expansion is assumed and we use the average motion of high-quality symmetric pairs of features on opposite sides of the nebular center to compute PM-neb. This is then subtracted out to determine the individual movements of these and additional features relative to the nebular center. PROMOTIONS should find wide applicability in measuring proper motions in astrophysical objects such as the expanding outflows/jets commonly seen around young and dying stars. We present first results from using PROMOTIONS to successfully measure proper motions in several pre-planetary nebulae (transition objects between the red giant and planetary nebula phases), using images taken 7-10 years apart with the WFPC2 and ACS instruments on board HST. The authors are grateful to NASA's Undergradute Scholars Research Program (USRP) for supporting this research.

  1. Reprogramming the chromatin landscape

    DEFF Research Database (Denmark)

    Miranda, Tina B; Voss, Ty C; Sung, Myong-Hee;

    2013-01-01

    , mechanistic details defining the cellular interactions between ER and GR are poorly understood. We investigated genome-wide binding profiles for ER and GR upon coactivation and characterized the status of the chromatin landscape. We describe a novel mechanism dictating the molecular interplay between ER...... and GR. Upon induction, GR modulates access of ER to specific sites in the genome by reorganization of the chromatin configuration for these elements. Binding to these newly accessible sites occurs either by direct recognition of ER response elements or indirectly through interactions with other factors...

  2. Henig Proper Efficient Points and Generalized Henig Proper Efficient Points

    Institute of Scientific and Technical Information of China (English)

    Jing Hui QIU

    2009-01-01

    Applying the theory of locally convex spaces to vector optimization,we investigate the relationship between Henig proper efficient points and generalized Henig proper efficient points. In particular,we obtain a sufficient and necessary condition for generalized Henig proper efficient points to be Henig proper efficient points. From this,we derive several convenient criteria for judging Henig proper efficient points.

  3. Proper Islamic Consumption

    DEFF Research Database (Denmark)

    Fischer, Johan

    '[T]his book is an excellent study that is lucidly written, strongly informed by theory, rich in ethnography, and empirically grounded. It has blazed a new trail in employing the tools of both religious studies and cultural studies to dissect the complex subject of “proper Islamic consumption...... because it is the Malay‐dominated state which has been crucial in generating and shaping a particular kind of modernity in order to address the problems posed for nation‐building by a quite radical form of ethnic pluralism.' Reviewed by V.T. (Terry) King, University of Leeds, ASEASUK News 46, 2009   'In...... spite of a long line of social theory analyzing the spiritual in the economic, and vice versa, very little of the recent increase in scholarship on Islam addresses its relationship with capitalism. Johan Fischer’s book,Proper Islamic Consumption, begins to fill this gap. […] Fischer’s detailed...

  4. Spectral proper orthogonal decomposition

    CERN Document Server

    Sieber, Moritz; Paschereit, Christian Oliver

    2015-01-01

    The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods fail when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these "rigid" approaches, we propose a new method termed Spectral Proper Orthogonal Decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically ...

  5. Global chromatin fibre compaction in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Charlotte [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Hayward, Richard L. [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Gilbert, Nick, E-mail: Nick.Gilbert@ed.ac.uk [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom)

    2011-11-04

    linker histones. We suggest that following DSB formation, although there is localised chromatin unfolding to facilitate repair, the bulk genome becomes rapidly compacted protecting cells from further damage.

  6. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  7. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  8. Chromatin dynamics in plants

    NARCIS (Netherlands)

    Fransz, P.F.; Jong, de J.H.

    2002-01-01

    Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large

  9. Chromatin dynamics in plants

    NARCIS (Netherlands)

    Fransz, P.F.; Jong, de J.H.

    2002-01-01

    Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large netwo

  10. Chromatin dynamics: interplay between remodeling enzymes and histone modifications.

    Science.gov (United States)

    Swygert, Sarah G; Peterson, Craig L

    2014-08-01

    Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Chromatin assembly using Drosophila systems.

    Science.gov (United States)

    Fyodorov, Dmitry V; Levenstein, Mark E

    2002-05-01

    To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.

  12. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  13. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  14. Proper Islamic Consumption

    DEFF Research Database (Denmark)

    Fischer, Johan

    ”. It is a must-read for researchers and students alike, especially those who want to pursue their study on the middle class, Islam and consumption.' Reviewed by Prof. Abdul Rahman Embong, Asian Anthropology    'This volume does make an important contribution to our understanding of the responses of socially...... spite of a long line of social theory analyzing the spiritual in the economic, and vice versa, very little of the recent increase in scholarship on Islam addresses its relationship with capitalism. Johan Fischer’s book,Proper Islamic Consumption, begins to fill this gap. […] Fischer’s detailed...

  15. Characterizations of proper actions

    Science.gov (United States)

    Biller, Harald

    2004-03-01

    Three kinds of proper actions of increasing strength are defined. We prove that the three definitions specialize to the definitions by Bourbaki, by Palais and by Baum, Connes and Higson in their respective settings. The third of these, which thus turns out to be the strongest, originally only concerns actions of second countable locally compact groups on metrizable spaces. In this situation, it is shown to coincide with the other two definitions if the total space locally has the Lindelöf property and the orbit space is regular.

  16. Calculating proper transfer prices

    Energy Technology Data Exchange (ETDEWEB)

    Dorkey, F.C. (Meliora Research Associates, Rochester, NY (United States)); Jarrell, G.A. (Univ. of Rochester, NY (United States))

    1991-01-01

    This article deals with developing a proper transfer pricing method. Decentralization is as American as baseball. While managers laud the widespread benefits of both decentralization and baseball, they often greet the term transfer price policy with a yawn. Since transfer prices are as critical to the success of decentralized firms as good pitchers are to baseball teams, this is quite a mistake on the part of our managers. A transfer price is the price charged to one division for a product or service that another division produced or provided. In many, perhaps most, decentralized organizations, the transfer pricing policies actually used are grossly inefficient and sacrifice the potential advantages of decentralization. Experience shows that far too many companies have transfer pricing policies that cost them significantly in foregone growth and profits.

  17. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Wioletta Czaja

    2012-09-01

    Full Text Available DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo.

  18. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uppal, Timsy [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Jha, Hem C. [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Verma, Subhash C. [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Robertson, Erle S., E-mail: erle@mail.med.upenn.edu [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)

    2015-01-14

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.

  19. Understanding the chromatin remodeling code.

    Science.gov (United States)

    Ha, Misook

    2013-10-01

    Remodeling a chromatin structure enables the genetic elements stored in a genome to function in a condition-specific manner and predisposes the interactions between cis-regulatory elements and trans-acting factors. A chromatin signature can be an indicator of the activity of the underlying genetic elements. This paper reviews recent studies showing that the combination and arrangements of chromatin remodeling marks play roles as chromatin code affecting the activity of genetic elements. This paper also reviews recent studies inferring the primary DNA sequence contexts associated with chromatin remodeling that suggest interactions between genetic and epigenetic factors. We conclude that chromatin remodeling, which provides accurate models of gene expression and morphological variations, may help to find the biological marks that cannot be detected by genome-wide association study or genetic study. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX

    Directory of Open Access Journals (Sweden)

    Gaudino Giovanni

    2009-06-01

    Full Text Available Abstract Background Modulation of chromatin structure has emerged as a critical molecular device to control gene expression. Histones undergo different post-translational modifications that increase chromatin accessibility to a number of regulatory factors. Among them, histone ubiquitination appears relevant in nuclear processes that govern gene silencing, either by inhibiting or activating transcription, and maintain genome stability, acting as scaffold to properly organize the DNA damage response. Thus, it is of paramount importance the identification and the characterization of new ubiquitin ligases that address histones. Results We identified and characterized RNF168, a new chromatin-associated RING finger protein. We demonstrated that RNF168 is endowed with ubiquitin ligase activity both in vitro and in vivo, which targets histones H2A and H2AX, but not H2B, forming K63 polyubiquitin chains. We previously described the presence within RNF168 sequence of two MIU domains, responsible for the binding to ubiquitinated proteins. Here we showed that inactivation of the MIUs impairs ubiquitin binding ability in vitro and reduces chromatin association of RNF168 in vivo. Moreover, upon formation of DNA double strand breaks induced by chemical and physical agents, RNF168 is recruited to the DNA damage foci, where it co-localizes with γH2AX and 53BP1. The localization of RNF168 at the site of damage highly increases the local concentration of ubiquitinated proteins and determines the prolonged ubiquitination signal. Conclusion The RING finger protein RNF168 is a new ubiquitin ligase that functions as chromatin modifier, through histone ubiquitination. We hypothesize a dual function for RNF168. In normal condition RNF168 modifies chromatin structure by modulating ubiquitination of histone H2A. Upon DNA lesions, RNF168 is recruited to DNA damage response foci where it contributes to increase the amount of ubiquitinated proteins, thereby facilitating

  1. RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX.

    Science.gov (United States)

    Pinato, Sabrina; Scandiuzzi, Cristina; Arnaudo, Nadia; Citterio, Elisabetta; Gaudino, Giovanni; Penengo, Lorenza

    2009-06-05

    Modulation of chromatin structure has emerged as a critical molecular device to control gene expression. Histones undergo different post-translational modifications that increase chromatin accessibility to a number of regulatory factors. Among them, histone ubiquitination appears relevant in nuclear processes that govern gene silencing, either by inhibiting or activating transcription, and maintain genome stability, acting as scaffold to properly organize the DNA damage response. Thus, it is of paramount importance the identification and the characterization of new ubiquitin ligases that address histones. We identified and characterized RNF168, a new chromatin-associated RING finger protein. We demonstrated that RNF168 is endowed with ubiquitin ligase activity both in vitro and in vivo, which targets histones H2A and H2AX, but not H2B, forming K63 polyubiquitin chains. We previously described the presence within RNF168 sequence of two MIU domains, responsible for the binding to ubiquitinated proteins. Here we showed that inactivation of the MIUs impairs ubiquitin binding ability in vitro and reduces chromatin association of RNF168 in vivo. Moreover, upon formation of DNA double strand breaks induced by chemical and physical agents, RNF168 is recruited to the DNA damage foci, where it co-localizes with gammaH2AX and 53BP1. The localization of RNF168 at the site of damage highly increases the local concentration of ubiquitinated proteins and determines the prolonged ubiquitination signal. The RING finger protein RNF168 is a new ubiquitin ligase that functions as chromatin modifier, through histone ubiquitination. We hypothesize a dual function for RNF168. In normal condition RNF168 modifies chromatin structure by modulating ubiquitination of histone H2A. Upon DNA lesions, RNF168 is recruited to DNA damage response foci where it contributes to increase the amount of ubiquitinated proteins, thereby facilitating the downstream signalling cascade.

  2. Cas9 Functionally Opens Chromatin.

    Directory of Open Access Journals (Sweden)

    Amira A Barkal

    Full Text Available Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding.

  3. Adaptive changes in the kinetochore architecture facilitate proper spindle assembly.

    Science.gov (United States)

    Magidson, Valentin; Paul, Raja; Yang, Nachen; Ault, Jeffrey G; O'Connell, Christopher B; Tikhonenko, Irina; McEwen, Bruce F; Mogilner, Alex; Khodjakov, Alexey

    2015-09-01

    Mitotic spindle formation relies on the stochastic capture of microtubules at kinetochores. Kinetochore architecture affects the efficiency and fidelity of this process with large kinetochores expected to accelerate assembly at the expense of accuracy, and smaller kinetochores to suppress errors at the expense of efficiency. We demonstrate that on mitotic entry, kinetochores in cultured human cells form large crescents that subsequently compact into discrete structures on opposite sides of the centromere. This compaction occurs only after the formation of end-on microtubule attachments. Live-cell microscopy reveals that centromere rotation mediated by lateral kinetochore-microtubule interactions precedes the formation of end-on attachments and kinetochore compaction. Computational analyses of kinetochore expansion-compaction in the context of lateral interactions correctly predict experimentally observed spindle assembly times with reasonable error rates. The computational model suggests that larger kinetochores reduce both errors and assembly times, which can explain the robustness of spindle assembly and the functional significance of enlarged kinetochores.

  4. Chromatin Flavors: Chromatin composition and domain organization in Drosophila melanogaster

    NARCIS (Netherlands)

    J.G. van Bemmel (Joke)

    2012-01-01

    textabstractChromatin was originally identified by W. Flemming in 1882 as not much more than the stainable substance of the cell nucleus. Flemming named this substance according to the Greek word “chroma”, meaning color. In 1911 chromatin was characterized as proteins, named histones, that were atta

  5. Chromatin Flavors: Chromatin composition and domain organization in Drosophila melanogaster

    NARCIS (Netherlands)

    J.G. van Bemmel (Joke)

    2012-01-01

    textabstractChromatin was originally identified by W. Flemming in 1882 as not much more than the stainable substance of the cell nucleus. Flemming named this substance according to the Greek word “chroma”, meaning color. In 1911 chromatin was characterized as proteins, named histones, that

  6. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    -repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated...

  7. Optical tweezers stretching of chromatin

    NARCIS (Netherlands)

    Pope, L.H.; Bennink, Martin L.; Greve, Jan

    2003-01-01

    Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,

  8. Epigenetics & chromatin: Interactions and processes

    NARCIS (Netherlands)

    S. Henikoff (Steven); F.G. Grosveld (Frank)

    2013-01-01

    textabstractOn 11 to 13 March 2013, BioMed Central will be hosting its inaugural conference, Epigenetics & Chromatin: Interactions and Processes, at Harvard Medical School, Cambridge, MA, USA. Epigenetics & Chromatin has now launched a special article series based on the general themes of the

  9. Epigenetics & chromatin: Interactions and processes

    NARCIS (Netherlands)

    S. Henikoff (Steven); F.G. Grosveld (Frank)

    2013-01-01

    textabstractOn 11 to 13 March 2013, BioMed Central will be hosting its inaugural conference, Epigenetics & Chromatin: Interactions and Processes, at Harvard Medical School, Cambridge, MA, USA. Epigenetics & Chromatin has now launched a special article series based on the general themes of the confer

  10. Chromatin modifications and the DNA damage response to ionizing radiation

    Science.gov (United States)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response. PMID:23346550

  11. Structure of chromatin in spermatozoa.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2014-01-01

    The specialized structure of the sperm chromatin has a dual function - first to protect the DNA from damage during storage and transport to the oocyte, and then to enable a rapid and complete unpacking of the undamaged paternal genome in the ooplasm. It is evident that zinc has a pivotal role in maintaining the structural stability and in enabling a rapid decondensation at the appropriate time. It is important for the sperm chromatin structure that the spermatozoa are ejaculated together with the zinc-rich prostatic secretion. Early exposure to zinc-binding seminal vesicular fluid can deplete the sperm chromatin of zinc and most likely induce surplus formation of disulfide bridges, likely to cause incomplete and delayed decondensation of the sperm chromatin in the oocyte. A premature decrease in sperm chromatin structure stability is likely to increase the risk for damage to the DNA due to increased access to the genome for DNA damaging compounds. The status of the sperm chromatin structure can vary in vitro depending on the exposure to zinc-depleting conditions when spermatozoa are stored in semen after ejaculation. When sperm DNA damage tests are evaluated and validated, it is therefore essential to also take into account the dynamics of zinc-dependent and zinc-independent sperm chromatin stability.

  12. Mesoscale Modeling of Chromatin Folding

    Science.gov (United States)

    Schlick, Tamar

    2009-03-01

    Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.

  13. Decoding chromatin goes high tech.

    Science.gov (United States)

    Levy, Dan; Gozani, Or

    2010-09-17

    Identifying proteins that recognize histone methylation is critical for understanding chromatin function. Vermeulen et al. (2010) now describe a cutting-edge strategy to identify and characterize several nuclear proteins and complexes that recognize five major histone trimethyl marks.

  14. Interplay of Dynamic Transcription and Chromatin Remodeling: Lessons from Yeast

    Directory of Open Access Journals (Sweden)

    Eva Klopf

    2011-07-01

    Full Text Available Regulation of transcription involves dynamic rearrangements of chromatin structure. The budding yeast Saccharomyces cerevisiae has a variety of highly conserved factors necessary for these reconstructions. Chromatin remodelers, histone modifiers and histone chaperones directly associate to promoters and open reading frames of exposed genes and facilitate activation and repression of transcription. We compare two distinct patterns of induced transcription: Sustained transcribed genes switch to an activated state where they remain as long as the induction signal is present. In contrast, single pulsed transcribed genes show a quick and strong induction pulse resulting in high transcript levels followed by adaptation and repression to basal levels. We discuss intensively studied promoters and coding regions from both groups for their co-factor requirements during transcription. Interplay between chromatin restructuring factors and dynamic transcription is highly variable and locus dependent.

  15. METHODS IN MOLECULAR BIOLOGY: ASSAYING CHROMATIN SIRTUINS

    Science.gov (United States)

    Silberman, Dafne M.; Sebastian, Carlos; Mostoslavsky, Raul

    2015-01-01

    Summary Most of the sirtuins’ nuclear substrates indentified so far are histones or other chromatin-associated proteins and, thus, it is of special relevance the development of good biochemical techniques to analyze the biology of these proteins in the context of chromatin. Here, we describe several of the chromatin-based techniques to identify sirtuins’ substrates, including a chromatin immunoprecipitation (ChIP) protocol, an acid-extraction protocol, and a nucleosomal immunoprecipitation protocol to analyze putative sirtuin chromatin interactors. PMID:24014405

  16. Yuan Exchange Rate 'Properly Adjusted'

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

      The currency exchange rate was "properly adjusted" this year and takes into account effects on the country's neighbors and the world, Premier Wen Jiabao said at a regional meeting in Malaysia.……

  17. Chromatin Modifications and the DNA Damage Response to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Tej K Pandita

    2013-01-01

    Full Text Available In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double strand breaks (DSBs, that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: 1 non-homologous end-joining (NHEJ, which re-ligates the broken ends of the DNA and 2 homologous recombination (HR, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but posttranslational modification (PTMs of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modification by t

  18. Evolution and genetic architecture of chromatin accessibility and function in yeast.

    Directory of Open Access Journals (Sweden)

    Caitlin F Connelly

    2014-07-01

    Full Text Available Chromatin accessibility is an important functional genomics phenotype that influences transcription factor binding and gene expression. Genome-scale technologies allow chromatin accessibility to be mapped with high-resolution, facilitating detailed analyses into the genetic architecture and evolution of chromatin structure within and between species. We performed Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq to map chromatin accessibility in two parental haploid yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus and their diploid hybrid. We show that although broad-scale characteristics of the chromatin landscape are well conserved between these species, accessibility is significantly different for 947 regions upstream of genes that are enriched for GO terms such as intracellular transport and protein localization exhibit. We also develop new statistical methods to investigate the genetic architecture of variation in chromatin accessibility between species, and find that cis effects are more common and of greater magnitude than trans effects. Interestingly, we find that cis and trans effects at individual genes are often negatively correlated, suggesting widespread compensatory evolution to stabilize levels of chromatin accessibility. Finally, we demonstrate that the relationship between chromatin accessibility and gene expression levels is complex, and a significant proportion of differences in chromatin accessibility might be functionally benign.

  19. On the Crab Proper Motion

    CERN Document Server

    Caraveo, P A; Caraveo, Patrizia A; Mignani, Roberto

    1998-01-01

    Owing to the dramatic evolution of telescopes as well as optical detectors in the last 20 yrs, we are now able to measure anew the proper motion of the Crab pulsar, after the classical result of Wyckoff and Murray (1977) in a time span 40 times shorter. The proper motion is aligned with the axis of symmetry of the inner Crab nebula and, presumably, with the pulsar spin axis.

  20. Spreading chromatin into chemical biology.

    Science.gov (United States)

    Allis, C David; Muir, Tom W

    2011-01-24

    Epigenetics, broadly defined as the inheritance of non-Mendelian phenotypic traits, can be more narrowly defined as heritable alterations in states of gene expression ("on" versus "off") that are not linked to changes in DNA sequence. Moreover, these alterations can persist in the absence of the signals that initiate them, thus suggesting some kind of "memory" to epigenetic forms of regulation. How, for example, during early female mammalian development, is one X chromosome selected to be kept in an active state, while the genetically identical sister X chromosome is "marked" to be inactive, even though they reside in the same nucleus, exposed to the same collection of shared trans-factors? Once X inactivation occurs, how are these contrasting chromatin states maintained and inherited faithfully through subsequent cell divisions? Chromatin states, whether active (euchromatic) or silent (heterochromatic) are established, maintained, and propagated with remarkable precision during normal development and differentiation. However, mistakes made in establishing and maintaining these chromatin states, often executed by a variety of chromatin-remodeling activities, can lead to mis-expression or mis-silencing of critical downstream gene targets with far-reaching implications for human biology and disease, notably cancer. Though chromatin biologists have identified many of the "inputs" that are important for controlling chromatin states, the detailed mechanisms by which these processes work remain largely opaque, in part due to the staggering complexity of the chromatin polymer, the physiologically relevant form of our genome. The primary objective of this article is to serve as a "call to arms" for chemists to contribute to the development of the precision tools needed to answer pressing molecular problems in this rapidly moving field.

  1. Single Molecule Studies of Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  2. Chromatin analysis of occluded genes

    Science.gov (United States)

    Lee, Jae Hyun; Gaetz, Jedidiah; Bugarija, Branimir; Fernandes, Croydon J.; Snyder, Gregory E.; Bush, Eliot C.; Lahn, Bruce T.

    2009-01-01

    We recently described two opposing states of transcriptional competency. One is termed ‘competent’ whereby a gene is capable of responding to trans-acting transcription factors of the cell, such that it is active if appropriate transcriptional activators are present, though it can also be silent if activators are absent or repressors are present. The other is termed ‘occluded’ whereby a gene is silenced by cis-acting, chromatin-based mechanisms in a manner that blocks it from responding to trans-acting factors, such that it is silent even when activators are present in the cellular milieu. We proposed that gene occlusion is a mechanism by which differentiated cells stably maintain their phenotypic identities. Here, we describe chromatin analysis of occluded genes. We found that DNA methylation plays a causal role in maintaining occlusion for a subset of occluded genes. We further examined a variety of other chromatin marks typically associated with transcriptional silencing, including histone variants, covalent histone modifications and chromatin-associated proteins. Surprisingly, we found that although many of these marks are robustly linked to silent genes (which include both occluded genes and genes that are competent but silent), none is linked specifically to occluded genes. Although the observation does not rule out a possible causal role of these chromatin marks in occlusion, it does suggest that these marks might be secondary effect rather than primary cause of the silent state in many genes. PMID:19380460

  3. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  4. The chromatin response to DNA breaks: leaving a mark on genome integrity.

    Science.gov (United States)

    Smeenk, Godelieve; van Attikum, Haico

    2013-01-01

    Genetic, biochemical, and cellular studies have uncovered many of the molecular mechanisms underlying the signaling and repair of chromosomal DNA breaks. However, efficient repair of DNA damage is complicated in that genomic DNA is packaged, through histone and nonhistone proteins, into chromatin. The DNA repair machinery has to overcome this physical barrier to gain access to damaged DNA and repair DNA lesions. Posttranslational modifications of chromatin as well as ATP-dependent chromatin remodeling factors help to overcome this barrier and facilitate access to damaged DNA by altering chromatin structure at sites of DNA damage. Here we review and discuss our current knowledge of and recent advances in chromatin changes induced by chromosome breakage in mammalian cells and their implications for genome stability and human disease.

  5. Analysis of chromatin structure at meiotic DSB sites in yeasts.

    Science.gov (United States)

    Hirota, Kouji; Fukuda, Tomoyuki; Yamada, Takatomi; Ohta, Kunihiro

    2009-01-01

    One of the major features of meiosis is a high frequency of homologous recombination that not only confers genetic diversity to a successive generation but also ensures proper segregation of chromosomes. Meiotic recombination is initiated by DNA double-strand breaks that require many proteins including the catalytic core, Spo11. In this regard, like transcription and repair, etc., recombination is hindered by a compacted chromatin structure because trans-acting factors cannot easily access the DNA. Such inhibitory effects must be alleviated prior to recombination initiation. Indeed, a number of groups showed that chromatin around recombination hotspots is less condensed, by using nucleases as a probe to assess local DNA accessibility. Here we describe a method to analyze chromatin structure of a recombination hotspot in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This method, combining micrococcal nuclease (MNase) digestion ofchromatin DNA and subsequent Southern blotting, is expected to provide information as to chromatin context around a hotspot. Moreover, by virtue of MNase preferentially targeting linker DNA, positions of several nucleosomes surrounding a hotspot can also be determined. Our protocol is a very powerful way to analyze several-kb regions of interest and can be applied to other purposes.

  6. Epigenetic regulation and chromatin remodeling in learning and memory

    Science.gov (United States)

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-01

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms. PMID:28082740

  7. Global Quantitative Modeling of Chromatin Factor Interactions

    Science.gov (United States)

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  8. VVV High Proper Motion Survey

    CERN Document Server

    Gromadzki, M; Folkes, S; Beamin, J C; Ramirez, K Pena; Borissova, J; Pinfield, D; Jones, H; Minniti, D; Ivanov, V D

    2013-01-01

    Here we present survey of proper motion stars towards the Galactic Bulge and an adjacent plane region base on VISTA-VVV data. The searching method based on cross-matching photometric Ks-band CASU catalogs. The most interesting discoveries are shown.

  9. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair.

    Science.gov (United States)

    Chambers, Anna L; Downs, Jessica A

    2012-01-01

    In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.

  10. The telomere binding protein TRF2 induces chromatin compaction.

    Directory of Open Access Journals (Sweden)

    Asmaa M Baker

    Full Text Available Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.

  11. Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model.

    Science.gov (United States)

    Liu, Baohua; Wang, Zimei; Ghosh, Shrestha; Zhou, Zhongjun

    2013-04-01

    ATM-mediated phosphorylation of KAP-1 triggers chromatin remodeling and facilitates the loading and retention of repair proteins at DNA lesions. Mouse embryonic fibroblasts (MEFs) derived from Zmpste24(-/-) mice undergo early senescence, attributable to delayed recruitment of DNA repair proteins. Here, we show that ATM-Kap-1 signaling is compromised in Zmpste24(-/-) MEFs, leading to defective DNA damage-induced chromatin remodeling. Knocking down Kap-1 rescues impaired chromatin remodeling, defective DNA repair and early senescence in Zmpste24(-/-) MEFs. Thus, ATM-Kap-1-mediated chromatin remodeling plays a critical role in premature aging, carrying significant implications for progeria therapy.

  12. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications...

  13. Guarding against Collateral Damage during Chromatin Transactions

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Lukas, Jiri

    2013-01-01

    Signal amplifications are vital for chromatin function, yet they also bear the risk of transforming into unrestrained, self-escalating, and potentially harmful responses. Examples of inbuilt limitations are emerging, revealing how chromatin transactions are confined within physiological boundaries....

  14. Biophysical studies of cholesterol effects on chromatin.

    Science.gov (United States)

    Silva, Isabel T G; Fernandes, Vinicius; Souza, Caio; Treptow, Werner; Santos, Guilherme Martins

    2017-03-22

    Changes in chromatin structure regulate gene expression and genome maintenance. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Previous work indicated that cholesterol, a ubiquitous cellular lipid, may bind to chromatin in vivo, suggesting a potential function for lipids in modulating chromatin architecture. However, the molecular mechanisms of cholesterol action on chromatin structure have remained unclear. Here, we explored the biophysical impact of cholesterol on nucleosome and chromatin fibers reconstituted in vitro and characterized in silico the cholesterol binding to nucleosome. Our findings support that cholesterol assists 10nm and 30nm chromatin formation and induces folding of long chromatin fibers as a result of direct interaction of the cholesterol to six nucleosomal binding sites.

  15. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  16. MUTATION ON WD DIPEPTIDE MOTIFS OF THE p48 SUBUNIT OF CHROMATIN ASSEMBLY FACTOR-1 CAUSING VIABILITY AND GROWTH OF DT40 CHICKEN B CELL LINE

    Directory of Open Access Journals (Sweden)

    Ahyar Ahmad

    2010-07-01

    Full Text Available Chromatin assembly factor-1 (CAF-1, a protein complex consisting of three subunits, p150, p60, and p48, is highly conserved from yeast to humans and facilitated nucleosome assembly of newly replicated DNA. The p48 subunit, CAF-1p48 (p48, with seven WD (Trp-Asp repeat motifs, is a member of the WD protein family. The immunoprecipitation experiment revealed that ß-propeller structure of p48 was less stringent for it's binding to HDAC-1, but more stringent for its binding to both histones H4 and CAF-1p60 but not to ASF-1, indicating that the proper ß-propeller structure of p48 is essential for the binding to these two proteins histone H4 and CAF-1p60. Complementation experiments, involving missense and truncated mutants of FLAG-tagged p48, revealed that mutations of every of seven WD dipeptide motifs, like both the N-terminal and C-terminal truncated mutations, could not rescue for the tet-induced lethality. These results indicate not only that p48 is essential for the viability of vertebrate cells, although the yeast p48 homolog is nonessential, but also that all the seven WD dipeptide motifs are necessary for the maintenance of the proper structure of p48 that is fundamentally important for cell viability.   Keywords: Chromatin assembly factor-1, complementation experiments, viability

  17. The Chd Family of Chromatin Remodelers

    OpenAIRE

    Marfella, Concetta G.A.; Imbalzano, Anthony N.

    2007-01-01

    Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic,...

  18. Impact of chromatin structure on PR signaling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Hager, Gordon L

    2012-01-01

    The progesterone receptor (PR) interacts with chromatin in a highly dynamic manner that requires ongoing chromatin remodeling, interaction with chaparones and activity of the proteasome. Here we discuss dynamic interaction of steroid receptor with chromatin, with special attention not only to PR ...

  19. Early aberrations in chromatin dynamics in embryos produced under In vitro conditions

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Strejcek, Frantisek;

    2012-01-01

    In vitro production of porcine embryos by means of in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) is limited by great inefficienciy. The present study investigated chromatin and nucleolar dynamics in porcine embryos developed in vivo (IV) and compared this physiological...... standard to that of embryos produced by IVF, parthenogenetic activation (PA), or SCNT. In contrast to IV embryos, chromatin spatial and temporal dynamics in PA, IVF, and SCNT embryos were altered; starting with aberrant chromatin-nuclear envelope interactions at the two-cell stage, delayed chromatin...... decondensation and nucleolar development at the four-cell stage, and ultimately culminating in failure of proper first lineage segregation at the blastocyst stage, demonstrated by poorly defined inner cell mass. Interestingly, in vitro produced (IVP) embryos also lacked a heterochromatin halo around nucleolar...

  20. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling.

    Science.gov (United States)

    Toiber, Debra; Erdel, Fabian; Bouazoune, Karim; Silberman, Dafne M; Zhong, Lei; Mulligan, Peter; Sebastian, Carlos; Cosentino, Claudia; Martinez-Pastor, Barbara; Giacosa, Sofia; D'Urso, Agustina; Näär, Anders M; Kingston, Robert; Rippe, Karsten; Mostoslavsky, Raul

    2013-08-22

    DNA damage is linked to multiple human diseases, such as cancer, neurodegeneration, and aging. Little is known about the role of chromatin accessibility in DNA repair. Here, we find that the deacetylase sirtuin 6 (SIRT6) is one of the earliest factors recruited to double-strand breaks (DSBs). SIRT6 recruits the chromatin remodeler SNF2H to DSBs and focally deacetylates histone H3K56. Lack of SIRT6 and SNF2H impairs chromatin remodeling, increasing sensitivity to genotoxic damage and recruitment of downstream factors such as 53BP1 and breast cancer 1 (BRCA1). Remarkably, SIRT6-deficient mice exhibit lower levels of chromatin-associated SNF2H in specific tissues, a phenotype accompanied by DNA damage. We demonstrate that SIRT6 is critical for recruitment of a chromatin remodeler as an early step in the DNA damage response, indicating that proper unfolding of chromatin plays a rate-limiting role. We present a unique crosstalk between a histone modifier and a chromatin remodeler, regulating a coordinated response to prevent DNA damage.

  1. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...

  2. Organisation of subunits in chromatin.

    Science.gov (United States)

    Carpenter, B G; Baldwin, J P; Bradbury, E M; Ibel, K

    1976-07-01

    There is considerable current interest in the organisation of nucleosomes in chromatin. A strong X-ray and neutron semi-meridional diffraction peak at approximately 10 nm had previously been attributed to the interparticle specing of a linear array of nucleosomes. This diffraction peak could also result from a close packed helical array of nucleosomes. A direct test of these proposals is whether the 10 nm peak is truly meridional as would be expected for a linear array of nucleosomes or is slightly off the meridian as expected for a helical array. Neutron diffraction studies of H1-depleted chromatin support the latter alternative. The 10 nm peak has maxima which form a cross-pattern with semi-meridional angle of 8 to 9 degrees. This is consistent with a coil of nucleosomes of pitch 10 nm and outer diameter of approximately 30 nm. These dimensions correspond to about six nucleosomes per turn of the coli.

  3. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration.

    Science.gov (United States)

    Matysiak, Julien; Lesbats, Paul; Mauro, Eric; Lapaillerie, Delphine; Dupuy, Jean-William; Lopez, Angelica P; Benleulmi, Mohamed Salah; Calmels, Christina; Andreola, Marie-Line; Ruff, Marc; Llano, Manuel; Delelis, Olivier; Lavigne, Marc; Parissi, Vincent

    2017-07-28

    Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome.

  4. Host-viral effects of chromatin assembly factor 1 interaction with HCMV IE2

    Institute of Scientific and Technical Information of China (English)

    Sung-Bau Lee; Li-Jung Juan; Chung-Fan Lee; Derick S-C Ou; Kalpana Dulal; Liang-Hao Chang; Chen-Han Ma; Chien-Fu Huang; Hua Zhu; Young-Sun Lin

    2011-01-01

    Chromatin assembly factor 1 (CAF1) consisting of p150, p60 and p48 is known to assemble histones onto newly synthesized DNA and thus maintain the chromatin structure. Here, we show that CAF1 expression was induced in human cytomegalovirus (HCMV)-infected cells, concomitantly with global chromatin decondensation. This apparent conflict was thought to result, in part, from CAF1 mislocalization to compartments of HCMV DNA synthesis through binding of its largest subunit p150 to viral immediate-early protein 2 (IE2). p150 interaction with p60 and IE2 facilitated HCMV DNA synthesis. The IE2Q548R mutation, previously reported to result in impaired HCMV growth with unknown mechanism, disrupted IE2/p150 and IE2/histones association in our study. Moreover, IE2 interaction with histones partly depends on p150, and the HCMV-induced chromatin decondensation was reduced in cells ectopically expressing the p150 mutant defective in IE2 binding. These results not only indicate that CAF1 was hijacked by IE2 to facilitate the replication of the HCMV genome, suggesting chromatin assembly plays an important role in herpesviral DNA synthesis, but also provide a model of the virus-induced chromatin instability through CAF1.

  5. Signaling to the circadian clock: plasticity by chromatin remodeling.

    Science.gov (United States)

    Nakahata, Yasukazu; Grimaldi, Benedetto; Sahar, Saurabh; Hirayama, Jun; Sassone-Corsi, Paolo

    2007-04-01

    Circadian rhythms govern several fundamental physiological functions in almost all organisms, from prokaryotes to humans. The circadian clocks are intrinsic time-tracking systems with which organisms can anticipate environmental changes and adapt to the appropriate time of day. In mammals, circadian rhythms are generated in pacemaker neurons within the suprachiasmatic nuclei (SCN), a small area of the hypothalamus, and are entrained by environmental cues, principally light. Disruption of these rhythms can profoundly influence human health, being linked to depression, insomnia, jet lag, coronary heart disease and a variety of neurodegenerative disorders. It is now well established that circadian clocks operate via transcriptional feedback autoregulatory loops that involve the products of circadian clock genes. Furthermore, peripheral tissues also contain independent clocks, whose oscillatory function is orchestrated by the SCN. The complex program of gene expression that characterizes circadian physiology involves dynamic changes in chromatin transitions. These remodeling events are therefore of great importance to ensure the proper timing and extent of circadian regulation. How signaling influences chromatin remodeling through histone modifications is therefore highly relevant in the context of circadian oscillation. Recent advances in the field have revealed unexpected links between circadian regulators, chromatin remodeling and cellular metabolism.

  6. Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein.

    Science.gov (United States)

    Kurat, Christoph F; Lambert, Jean-Philippe; van Dyk, Dewald; Tsui, Kyle; van Bakel, Harm; Kaluarachchi, Supipi; Friesen, Helena; Kainth, Pinay; Nislow, Corey; Figeys, Daniel; Fillingham, Jeffrey; Andrews, Brenda J

    2011-12-01

    The cell cycle-regulated expression of core histone genes is required for DNA replication and proper cell cycle progression in eukaryotic cells. Although some factors involved in histone gene transcription are known, the molecular mechanisms that ensure proper induction of histone gene expression during S phase remain enigmatic. Here we demonstrate that S-phase transcription of the model histone gene HTA1 in yeast is regulated by a novel attach-release mechanism involving phosphorylation of the conserved chromatin boundary protein Yta7 by both cyclin-dependent kinase 1 (Cdk1) and casein kinase 2 (CK2). Outside S phase, integrity of the AAA-ATPase domain is required for Yta7 boundary function, as defined by correct positioning of the histone chaperone Rtt106 and the chromatin remodeling complex RSC. Conversely, in S phase, Yta7 is hyperphosphorylated, causing its release from HTA1 chromatin and productive transcription. Most importantly, abrogation of Yta7 phosphorylation results in constitutive attachment of Yta7 to HTA1 chromatin, preventing efficient transcription post-recruitment of RNA polymerase II (RNAPII). Our study identified the chromatin boundary protein Yta7 as a key regulator that links S-phase kinases with RNAPII function at cell cycle-regulated histone gene promoters.

  7. Proteomics of a fuzzy organelle: interphase chromatin

    Science.gov (United States)

    Kustatscher, Georg; Hégarat, Nadia; Wills, Karen L H; Furlan, Cristina; Bukowski-Wills, Jimi-Carlo; Hochegger, Helfrid; Rappsilber, Juri

    2014-01-01

    Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology. PMID:24534090

  8. Chromatin remodeling and human disease.

    Science.gov (United States)

    Huang, Cheng; Sloan, Emily A; Boerkoel, Cornelius F

    2003-06-01

    In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.

  9. Chromatin remodeling in cardiovascular development and physiology

    OpenAIRE

    Han, Pei; Hang, Calvin T.; Yang, Jin; Chang, Ching-Pin

    2011-01-01

    Chromatin regulation provides an important means of controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various tran...

  10. Chromatin Modification and Remodeling in Heart Development

    Directory of Open Access Journals (Sweden)

    Paul Delgado-Olguín

    2006-01-01

    Full Text Available In organogenesis, cell types are specified from determined precursors as morphogenetic patterning takes place. These events are largely controlled by tissue-specific transcription factors. These transcription factors must function within the context of chromatin to activate or repress target genes. Recent evidence suggests that chromatin-remodeling and -modifying factors may have tissue-specific function. Here we review the potential roles for chromatin-remodeling and -modifying proteins in the development of the mammalian heart.

  11. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1999-01-01

    In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism in eukar......In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism...... in eukaryotic organisms. Here we show that the yeast chromatin-remodeling complex, RSC (remodels the structure of chromatin), isolated on the basis of homology to the SWI/SNF complex, is required for proper transcriptional regulation and nucleosome positioning in the highly inducible CHA1 promoter...... of the CHA1 promoter is disrupted, an architectural change normally only observed during transcriptional induction. In addition, deletion of the gene-specific activator Cha4p did not affect derepression of CHA1 in cells depleted for Swh3p. Thus, CHA1 constitutes a target for the RSC complex, and we propose...

  12. Advances in chromatin remodeling and human disease.

    Science.gov (United States)

    Cho, Kyoung Sang; Elizondo, Leah I; Boerkoel, Cornelius F

    2004-06-01

    Epigenetic factors alter phenotype without changing genotype. A primary molecular mechanism underlying epigenetics is the alteration of chromatin structure by covalent DNA modifications, covalent histone modifications, and nucleosome reorganization. Remodeling of chromatin structure regulates DNA methylation, replication, recombination, and repair as well as gene expression. As these functions would predict, dysfunction of the proteins that remodel chromatin causes an array of multi-system disorders and neoplasias. Insights from these diseases suggest that during embryonic and fetal life, environmental distortions of chromatin remodeling encode a 'molecular memory' that predispose the individual to diseases in adulthood.

  13. Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Morales Torres, Cristina; Laugesen, Anne; Helin, Kristian

    2013-01-01

    Embryonic development requires chromatin remodeling for dynamic regulation of gene expression patterns to ensure silencing of pluripotent transcription factors and activation of developmental regulators. Demethylation of H3K27me3 by the histone demethylases Utx and Jmjd3 is important for the acti...... our results show that Utx is required for proper formation of ectoderm and mesoderm in vitro, and that Utx, similar to its C.elegans homologue, has demethylase dependent and independent functions....

  14. The architects of crenarchaeal chromatin : A biophysical characterization of chromatin proteins from Sulfolobus solfataricus

    NARCIS (Netherlands)

    Driessen, Rosalie Paula Catharina

    2014-01-01

    Understanding of chromatin organization and compaction in Archaea is currently limited. The genome of several megabasepairs long is folded by a set of small chromatin proteins to fit into the micron-sized cell. A first step in understanding archaeal chromatin organization is to study the action of i

  15. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components

    DEFF Research Database (Denmark)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Po

    2014-01-01

    To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use nascent chromatin capture (NCC) to profile chromatin proteome dynamics durin...

  16. Proper alignment of the microscope.

    Science.gov (United States)

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights

  17. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    Science.gov (United States)

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.

  18. A Long-Distance Chromatin Affair

    NARCIS (Netherlands)

    Denker, Annette; de Laat, Wouter

    2015-01-01

    Changes in transcription factor binding sequences result in correlated changes in chromatin composition locally and at sites hundreds of kilobases away. New studies demonstrate that this concordance is mediated via spatial chromatin interactions that constitute regulatory modules of the human genome

  19. A microscopic analysis of Arabidopsis chromatin

    NARCIS (Netherlands)

    Willemse, J.J.

    2007-01-01

    Genetic information of eukaryotic organisms is stored as DNA in the nuclei of their cells. Nuclear DNA is associated with several proteins, which together form chromatin. The most abundant chromatin proteins arehistones,they arrange the initial packaging step of the DNA. DNA

  20. Chromatin dynamics resolved with force spectroscopy

    NARCIS (Netherlands)

    Chien, Fan-Tso

    2011-01-01

    In eukaryotic cells, genomic DNA is organized in chromatin fibers composed of nucleosomes as structural units. A nucleosome contains 1.7 turns of DNA wrapped around a histone octamer and is connected to the adjacent nucleosomes with linker DNA. The folding of chromatin fibers effectively increases t

  1. Expression-dependent folding of interphase chromatin.

    Directory of Open Access Journals (Sweden)

    Hansjoerg Jerabek

    Full Text Available Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology.

  2. Chromatin roadblocks to reprogramming 50 years on.

    Science.gov (United States)

    Skene, Peter J; Henikoff, Steven

    2012-10-29

    A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon.

  3. Chromatin domain boundaries: insulators and beyond

    Institute of Scientific and Technical Information of China (English)

    Gong Hong WEI; De Pei LIU; Chih Chuan LIANG

    2005-01-01

    The eukaryotic genome is organized into functionally and structurally distinct domains, representing regulatory units for gene expression and chromosome behavior. DNA sequences that mark the border between adjacent domains are the insulators or boundary elements, which are required in maintenance of the function of different domains. Some insulators need others enable to play insulation activity. Chromatin domains are defined by distinct sets of post-translationally modified histones. Recent studies show that these histone modifications are also involved in establishment of sharp chromatin boundaries in order to prevent the spreading of distinct domains. Additionally, in some loci, the high-order chromatin structures for long-range looping interactions also have boundary activities, suggesting a correlation between insulators and chromatin loop domains. In this review, we will discuss recent progress in the field of chromatin domain boundaries.

  4. Chromatin remodeling in cardiovascular development and physiology.

    Science.gov (United States)

    Han, Pei; Hang, Calvin T; Yang, Jin; Chang, Ching-Pin

    2011-02-04

    Chromatin regulation provides an important means for controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease.

  5. Interactions of transcription factors with chromatin.

    Science.gov (United States)

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  6. Chromatin mobility is increased at sites of DNA double-strand breaks

    NARCIS (Netherlands)

    P.M. Krawczyk (Przemek); T. Borovski (Tijana); J. Stap (Jan); T. Cijsouw (Tony); R. ten Cate (Rebecca); J.P. Medema (Jan Paul); R. Kanaar (Roland); N.A.P. Franken (Nicolaas); J.A. Aten (Jacob)

    2012-01-01

    textabstractDNA double-strand breaks (DSBs) can efficiently kill cancer cells, but they can also produce unwanted chromosome rearrangements when DNA ends from different DSBs are erroneously joined. Movement of DSB-containing chromatin domains might facilitate these DSB interactions and promote the f

  7. 7 CFR 29.112 - Proper light.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Proper light. 29.112 Section 29.112 Agriculture... INSPECTION Regulations Inspectors, Samplers, and Weighers § 29.112 Proper light. Tobacco shall not be inspected or sampled for the purposes of the Act except when displayed in proper light for correct...

  8. Computational strategies to address chromatin structure problems

    Science.gov (United States)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  9. Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes

    Directory of Open Access Journals (Sweden)

    Dasgupta Dipayan

    2005-05-01

    Full Text Available Abstract Background Global regulatory mechanisms involving chromatin assembly and remodelling in the promoter regions of genes is implicated in eukaryotic transcription control especially for genes subjected to spatial and temporal regulation. The potential to utilise global regulatory mechanisms for controlling gene expression might depend upon the architecture of the chromatin in and around the gene. In-silico analysis can yield important insights into this aspect, facilitating comparison of two or more classes of genes comprising of a large number of genes within each group. Results In the present study, we carried out a comparative analysis of chromatin characteristics in terms of the scaffold/matrix attachment regions, nucleosome formation potential and the occurrence of repetitive sequences, in the upstream regulatory regions of housekeeping and tissue specific genes. Our data show that putative scaffold/matrix attachment regions are more abundant and nucleosome formation potential is higher in the 5' regions of tissue specific genes as compared to the housekeeping genes. Conclusion The differences in the chromatin features between the two groups of genes indicate the involvement of chromatin organisation in the control of gene expression. The presence of global regulatory mechanisms mediated through chromatin organisation can decrease the burden of invoking gene specific regulators for maintenance of the active/silenced state of gene expression. This could partially explain the lower number of genes estimated in the human genome.

  10. New Common Proper-Motion Pairs From the PPMX Catalog

    CERN Document Server

    Caballero, Rafael; Pozuelo-González, Sara; Fernández-Sánchez, Antonio

    2010-01-01

    We use data mining techniques for finding 82 previously unreported common proper motion pairs from the PPM-Extended catalogue. Special-purpose software automating the different phases of the process has been developed. The software simplifies the detection of the new pairs by integrating a set of basic operations over catalogues. The operations can be combined by the user in scripts representing different filtering criteria. This procedure facilitates testing the software and employing the same scripts for different projects.

  11. A Global Correction to PPMXL Proper Motions

    CERN Document Server

    Vickers, John J; Grebel, Eva K

    2016-01-01

    In this paper we notice that extragalactic sources seem to have non-zero proper motions in the PPMXL proper motion catalog. We collect a large, all-sky sample of extragalactic objects and fit their reported PPMXL proper motions to an ensemble of spherical harmonics in magnitude shells. A magnitude dependent proper motion correction is thus constructed. This correction is applied to a set of fundamental radio sources, quasars, and is compared to similar corrections to assess its utility. We publish, along with this paper, code which may be used to correct proper motions in the PPMXL catalog over the full sky which have 2 Micron All Sky Survey photometry.

  12. Embryonic stem cell differentiation: a chromatin perspective.

    Science.gov (United States)

    Rasmussen, Theodore P

    2003-11-13

    Embryonic stem (ES) cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.

  13. Embryonic stem cell differentiation: A chromatin perspective

    Directory of Open Access Journals (Sweden)

    Rasmussen Theodore P

    2003-11-01

    Full Text Available Abstract Embryonic stem (ES cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.

  14. SIRT6 recruits SNF2H to sites of DNA breaks, preventing genomic instability through chromatin remodeling

    Science.gov (United States)

    Toiber, Debra; Erdel, Fabian; Bouazoune, Karim; Silberman, Dafne M.; Zhong, Lei; Mulligan, Peter; Sebastian, Carlos; Cosentino, Claudia; Martinez-Pastor, Barbara; Giacosa, Sofia; D’Urso, Agustina; Näär, Anders M.; Kingston, Robert; Rippe, Karsten; Mostoslavsky, Raul

    2013-01-01

    Summary DNA damage is linked to multiple human diseases, such as cancer, neurodegeneration and senescence. Little is known about the role of chromatin accessibility in DNA repair. Here, we find that the histone deacetylase SIRT6 is one of the earliest factors recruited to sites of Double-Strand Breaks (DSBs). SIRT6 recruits the ISWI-chromatin remodeler SNF2H to DSBs, and deacetylates focally histone H3K56. Lack of SIRT6 and SNF2H impairs chromatin remodeling, increasing sensitivity to genotoxic damage and recruitment of downstream factors, such as 53BP1, BRCA1 and RPA. Remarkably, SIRT6 deficient mice exhibit lower levels of chromatin-associated SNF2H in specific tissues, a phenotype accompanied by increased DNA damage. We demonstrate that SIRT6 is critical for recruitment of a chromatin remodeler as an early step in the DNA damage response, indicating that proper unfolding of chromatin plays a rate-limiting role. We present a novel crosstalk between a histone modifier and a chromatin remodeler, regulating a coordinated response to prevent DNA damage. PMID:23911928

  15. Chromatin remodelling initiation during human spermiogenesis

    Directory of Open Access Journals (Sweden)

    Marieke De Vries

    2012-03-01

    During the last phase of spermatogenesis, spermiogenesis, haploid round spermatids metamorphose towards spermatozoa. Extensive cytoplasmic reduction and chromatin remodelling together allow a dramatic decrease of cellular, notably nuclear volume. DNA packing by a nucleosome based chromatin structure is largely replaced by a protamine based one. At the cytoplasmic level among others the acrosome and perinuclear theca (PNT are formed. In this study we describe the onset of chromatin remodelling to occur concomitantly with acrosome and PNT development. In spread human round spermatid nuclei, we show development of a DAPI-intense doughnut-like structure co-localizing with the acrosomal sac and sub acrosomal PNT. At this structure we observe the first gradual decrease of nucleosomes and several histones. Histone post-translational modifications linked to chromatin remodelling such as H4K8ac and H4K16ac also delineate the doughnut, that is furthermore marked by H3K9me2. During the capping phase of acrosome development, the size of the doughnut-like chromatin domain increases, and this area often is marked by uniform nucleosome loss and the first appearance of transition protein 2 and protamine 1. In the acrosome phase at nuclear elongation, chromatin remodelling follows the downward movement of the marginal ring of the acrosome. Our results indicate that acrosome development and chromatin remodelling are interacting processes. In the discussion we relate chromatin remodelling to the available data on the nuclear envelope and the linker of nucleoskeleton and cytoskeleton (LINC complex of spermatids, suggesting a signalling route for triggering chromatin remodelling.

  16. Activation of DNA damage response signaling by condensed chromatin.

    Science.gov (United States)

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  17. Chromatin Fiber Dynamics under Tension and Torsion

    Directory of Open Access Journals (Sweden)

    Christophe Lavelle

    2010-04-01

    Full Text Available Genetic and epigenetic information in eukaryotic cells is carried on chromosomes, basically consisting of large compact supercoiled chromatin fibers. Micromanipulations have recently led to great advances in the knowledge of the complex mechanisms underlying the regulation of DNA transaction events by nucleosome and chromatin structural changes. Indeed, magnetic and optical tweezers have allowed opportunities to handle single nucleosomal particles or nucleosomal arrays and measure their response to forces and torques, mimicking the molecular constraints imposed in vivo by various molecular motors acting on the DNA. These challenging technical approaches provide us with deeper understanding of the way chromatin dynamically packages our genome and participates in the regulation of cellular metabolism.

  18. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    Chromatin-modifying proteins mold the genome into areas that are accessible for transcriptional activity and areas that are transcriptionally silent. This epigenetic gene regulation allows for different transcriptional programs to be conducted in different cell types at different timepoints......-despite the fact that all cells in the organism contain the same genetic information. A large amount of data gathered over the last decades has demonstrated that deregulation of chromatin-modifying proteins is etiologically involved in the development and progression of cancer. Here we discuss how epigenetic...... alterations influence cancer development and review known cancer-associated alterations in chromatin-modifying proteins....

  19. Extensive Variation in Chromatin States Across Humans

    KAUST Repository

    Kasowski, M.

    2013-10-17

    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

  20. Unraveling chromatin structure using magnetic tweezers

    Science.gov (United States)

    van Noort, John

    2010-03-01

    The compact, yet dynamic organization of chromatin plays an essential role in regulating gene expression. Although the static structure of chromatin fibers has been studied extensively, the controversy about the higher order folding remains. The compaction of eukaryotic DNA into chromatin has been implicated in the regulation of all DNA processes. To understand the relation between gene regulation and chromatin structure it is essential to uncover the mechanisms by which chromatin fibers fold and unfold. We used magnetic tweezers to probe the mechanical properties of individual nucleosomes and chromatin fibers consisting of a single, well-defined array of 25 nucleosomes. From these studies five major features appeared upon forced extension of chromatin fibers: the elastic stretching of chromatin's higher order structure, the breaking of internucleosomal contacts, unwrapping of the first turn of DNA, unwrapping of the second turn of DNA, and the dissociation of histone octamers. These events occur sequentially at the increasing force. Neighboring nucleosomes stabilize DNA folding into a nucleosome relative to isolated nucleosomes. When an array of nucleosomes is folded into a 30 nm fiber, representing the first level of chromatin condensation, the fiber stretched like a Hookian spring at forces up to 4 pN. Together with a nucleosome-nucleosome stacking energy of 14 kT this points to a solenoid as the underlying topology of the 30 nm fiber. Surprisingly, linker histones do not affect the length or stiffness of the fibers, but stabilize fiber folding up to forces of 7 pN. The stiffness of the folded chromatin fiber points at histone tails that mediate nucleosome stacking. Fibers with a nucleosome repeat length of 167 bp instead of 197 bp are significantly stiffer, consistent with a two-start helical arrangement. The extensive thermal breathing of the chromatin fiber that is a consequence of the observed high compliance provides a structural basis for understanding the

  1. Chromatin targeting drugs in cancer and immunity.

    Science.gov (United States)

    Prinjha, Rab; Tarakhovsky, Alexander

    2013-08-15

    Recent advances in the enzymology of transcription and chromatin regulation have led to the discovery of proteins that play a prominent role in cell differentiation and the maintenance of specialized cell functions. Knowledge about post-synthetic DNA and histone modifications as well as information about the rules that guide the formation of multimolecular chromatin-bound complexes have helped to delineate gene-regulating pathways and describe how these pathways are altered in various pathological conditions. The present review focuses on the emerging area of therapeutic interference with chromatin function for the purpose of cancer treatment and immunomodulation.

  2. Standardizing chromatin research: a simple and universal method for ChIP-seq.

    Science.gov (United States)

    Arrigoni, Laura; Richter, Andreas S; Betancourt, Emily; Bruder, Kerstin; Diehl, Sarah; Manke, Thomas; Bönisch, Ulrike

    2016-04-20

    Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a key technique in chromatin research. Although heavily applied, existing ChIP-seq protocols are often highly fine-tuned workflows, optimized for specific experimental requirements. Especially the initial steps of ChIP-seq, particularly chromatin shearing, are deemed to be exceedingly cell-type-specific, thus impeding any protocol standardization efforts. Here we demonstrate that harmonization of ChIP-seq workflows across cell types and conditions is possible when obtaining chromatin from properly isolated nuclei. We established an ultrasound-based nuclei extraction method (NEXSON: Nuclei EXtraction by SONication) that is highly effective across various organisms, cell types and cell numbers. The described method has the potential to replace complex cell-type-specific, but largely ineffective, nuclei isolation protocols. By including NEXSON in ChIP-seq workflows, we completely eliminate the need for extensive optimization and sample-dependent adjustments. Apart from this significant simplification, our approach also provides the basis for a fully standardized ChIP-seq and yields highly reproducible transcription factor and histone modifications maps for a wide range of different cell types. Even small cell numbers (∼10,000 cells per ChIP) can be easily processed without application of modified chromatin or library preparation protocols.

  3. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  4. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...

  5. The stem cell--chromatin connection.

    Science.gov (United States)

    Sang, Yi; Wu, Miin-Feng; Wagner, Doris

    2009-12-01

    Stem cells self-renew and give rise to all differentiated cell types of the adult body. They are classified as toti-, pluri- or multi-potent based on the number of different cell types they can give rise to. Recently it has become apparent that chromatin regulation plays a critical role in determining the fate of stem cells and their descendants. In this review we will discuss the role of chromatin regulators in maintenance of stem cells and their ability to give rise to differentiating cells in both the animal and plant kingdom. We will highlight similarities and differences in chromatin-mediated control of stem cell fate in plants and animals. We will consider possible reasons why chromatin regulators play a central role in pluripotency in both kingdoms given that multicellularity evolved independently in each.

  6. Chromatin roadblocks to reprogramming 50 years on

    Directory of Open Access Journals (Sweden)

    Skene Peter J

    2012-10-01

    Full Text Available Abstract A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon. See research article: http://www.epigeneticsandchromatin.com/content/5/1/17

  7. Chromatin Dynamics During DNA Replication and Uncharacterized Replication Factors determined by Nascent Chromatin Capture (NCC) Proteomics

    Science.gov (United States)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Bau; Kustatscher, Georg; Nakamura, Kyosuke; de Lima Alves, Flavia; Menard, Patrice; Mejlvang, Jakob; Rappsilber, Juri; Groth, Anja

    2014-01-01

    SUMMARY To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use Nascent Chromatin Capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity-purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3995 proteins. The replication machinery and 485 chromatin factors like CAF-1, DNMT1, SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, while H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance. PMID:24561620

  8. Genetic landscape of open chromatin in yeast.

    Directory of Open Access Journals (Sweden)

    Kibaick Lee

    Full Text Available Chromatin regulation underlies a variety of DNA metabolism processes, including transcription, recombination, repair, and replication. To perform a quantitative genetic analysis of chromatin accessibility, we obtained open chromatin profiles across 96 genetically different yeast strains by FAIRE (formaldehyde-assisted isolation of regulatory elements assay followed by sequencing. While 5∼10% of open chromatin region (OCRs were significantly affected by variations in their underlying DNA sequences, subtelomeric areas as well as gene-rich and gene-poor regions displayed high levels of sequence-independent variation. We performed quantitative trait loci (QTL mapping using the FAIRE signal for each OCR as a quantitative trait. While individual OCRs were associated with a handful of specific genetic markers, gene expression levels were associated with many regulatory loci. We found multi-target trans-loci responsible for a very large number of OCRs, which seemed to reflect the widespread influence of certain chromatin regulators. Such regulatory hotspots were enriched for known regulatory functions, such as recombinational DNA repair, telomere replication, and general transcription control. The OCRs associated with these multi-target trans-loci coincided with recombination hotspots, telomeres, and gene-rich regions according to the function of the associated regulators. Our findings provide a global quantitative picture of the genetic architecture of chromatin regulation.

  9. Etiology and Evaluation of Sperm Chromatin Anomalies

    Directory of Open Access Journals (Sweden)

    Marziyeh Tavalaee

    2008-01-01

    Full Text Available Evidence suggests that human sperm chromatin anomalies adversely affect reproductive outcomesand infertile men possess substantially amount of sperm with chromatin anomalies than fertilemen.Routine semen analysis evaluates parameters such as sperm motility and morphology, but doesnot examine the nuclear DNA integrity of spermatozoa. It has been suggested that altered nuclearchromatin structure or damaged DNA in spermatozoa could modify the special cellular functionsof human spermatozoa, and thereby affect the fertility potential. Intra-cytoplasmic sperm injection(ICSI bypass the barriers to fertilization for such a sperm, then the effect of chromatin anomalies onthe development remains a concern. Therefore, it is essential to develop and use accurate diagnostictests, which may provide better prognostic capabilities than the standard sperm assessments. Thisreview discusses our current understanding of the structure and organization of sperm DNA,the different procedures for assessment of sperm chromatin anomalies including comet assay,Chromomycin A3 (CMA3, sperm chromatin structure assay (SCSA, acridine orange test (AOT,terminal TdT-mediated dUTP-nick-end labelling (TUNEL assay, aniline blue and sperm chromatindispersion (SCD test and the impact of chromatin anomalies on reproductive outcome.

  10. Chromatin insulation by a transcriptional activator.

    Science.gov (United States)

    Sutter, Nathan B; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I K

    2003-02-04

    In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression.

  11. Nucleosome occupancy as a novel chromatin parameter for replication origin functions

    Science.gov (United States)

    Rodriguez, Jairo; Lee, Laura; Lynch, Bryony; Tsukiyama, Toshio

    2017-01-01

    Eukaryotic DNA replication initiates from multiple discrete sites in the genome, termed origins of replication (origins). Prior to S phase, multiple origins are poised to initiate replication by recruitment of the pre-replicative complex (pre-RC). For proper replication to occur, origin activation must be tightly regulated. At the population level, each origin has a distinct firing time and frequency of activation within S phase. Many studies have shown that chromatin can strongly influence initiation of DNA replication. However, the chromatin parameters that affect properties of origins have not been thoroughly established. We found that nucleosome occupancy in G1 varies greatly around origins across the S. cerevisiae genome, and nucleosome occupancy around origins significantly correlates with the activation time and efficiency of origins, as well as pre-RC formation. We further demonstrate that nucleosome occupancy around origins in G1 is established during transition from G2/M to G1 in a pre-RC-dependent manner. Importantly, the diminished cell-cycle changes in nucleosome occupancy around origins in the orc1-161 mutant are associated with an abnormal global origin usage profile, suggesting that proper establishment of nucleosome occupancy around origins is a critical step for regulation of global origin activities. Our work thus establishes nucleosome occupancy as a novel and key chromatin parameter for proper origin regulation. PMID:27895110

  12. Genesis of chromatin and transcription dynamics in the origin of species.

    Science.gov (United States)

    Koster, Maria J E; Snel, Berend; Timmers, H Th Marc

    2015-05-07

    Histone proteins compact and stabilize the genomes of Eukarya and Archaea. By forming nucleosome(-like) structures they restrict access of DNA-binding transcription regulators to cis-regulatory DNA elements. Dynamic competition between histones and transcription factors is facilitated by different classes of proteins including ATP-dependent remodeling enzymes that control assembly, access, and editing of chromatin. Here, we summarize the knowledge on dynamics underlying transcriptional regulation across the domains of life with a focus on ATP-dependent enzymes in chromatin structure or in TATA-binding protein activity. These insights suggest directions for future studies on the evolution of transcription regulation and chromatin dynamics. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A remark on proper partitions of unity

    CERN Document Server

    Calcines, Jose M Garcia

    2011-01-01

    In this paper we introduce, by means of the category of exterior spaces and using a process that generalizes the Alexandroff compactification, an analogue notion of numerable covering of a space in the proper and exterior setting. An application is given for fibrewise proper homotopy equivalences.

  14. Spinfoam Cosmology with the Proper Vertex

    Science.gov (United States)

    Vilensky, Ilya

    2017-01-01

    A modification of the EPRL vertex amplitude in the spin-foam framework of quantum gravity - so-called ``proper vertex amplitude'' - has been developed to enable correct semi-classical behavior to conform to the classical Regge calculus. The proper vertex amplitude is defined by projecting to the single gravitational sector. The amplitude is recast into an exponentiated form and we derive the asymptotic form of the projector part of the action. This enables us to study the asymptotics of the proper vertex by applying extended stationary phase methods. We use the proper vertex amplitude to investigate transition amplitudes between coherent quantum boundary states of cosmological geometries. In particular, Hartle-Hawking no-boundary states are computed in the proper vertex framework. We confirm that in the classical limit the Hartle-Hawking wavefunction satisfies the Hamiltonian constraint. Partly supported by NSF grants PHY-1205968 and PHY-1505490.

  15. KINERJA PENGELOLAAN LIMBAH HOTEL PESERTA PROPER DAN NON PROPER DI KABUPATEN BADUNG, PROVINSI BALI

    Directory of Open Access Journals (Sweden)

    Putri Nilakandi Perdanawati Pitoyo

    2016-07-01

    Full Text Available Bali tourism development can lead to positive and negative impacts that threatening environmental sustainability. This research evaluates the hotel performance of the waste management that includes management of waste water, emission, hazardous, and solid waste by hotel that participate at PROPER and non PROPER. Research using qualitative descriptive method. Not all of non PROPER doing test on waste water quality, chimney emissions quality, an inventory of hazardous waste and solid waste sorting. Wastewater discharge of PROPER hotels ranged from 290.9 to 571.8 m3/day and non PROPER ranged from 8.4 to 98.1 m3/day with NH3 parameter values that exceed the quality standards. The quality of chimney emissions were still below the quality standard. The volume of the hazardous waste of PROPER hotels ranged from 66.1 to 181.9 kg/month and non PROPER ranged from 5.003 to 103.42 kg/month. Hazardous waste from the PROPER hotel which has been stored in the TPS hazardous waste. The volume of the solid waste of PROPER hotel ranged from 342.34 to 684.54 kg/day and non PROPER ranged from 4.83 to 181.51 kg/day. The PROPER and non PROPER hotel not sort the solid waste. The hotel performance in term of wastewater management, emission, hazardous, and solid waste is better at the PROPER hotel compared to non PROPER participants.

  16. Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation.

    Science.gov (United States)

    Kieffer-Kwon, Kyong-Rim; Nimura, Keisuke; Rao, Suhas S P; Xu, Jianliang; Jung, Seolkyoung; Pekowska, Aleksandra; Dose, Marei; Stevens, Evan; Mathe, Ewy; Dong, Peng; Huang, Su-Chen; Ricci, Maria Aurelia; Baranello, Laura; Zheng, Ying; Tomassoni Ardori, Francesco; Resch, Wolfgang; Stavreva, Diana; Nelson, Steevenson; McAndrew, Michael; Casellas, Adriel; Finn, Elizabeth; Gregory, Charles; St Hilaire, Brian Glenn; Johnson, Steven M; Dubois, Wendy; Cosma, Maria Pia; Batchelor, Eric; Levens, David; Phair, Robert D; Misteli, Tom; Tessarollo, Lino; Hager, Gordon; Lakadamyali, Melike; Liu, Zhe; Floer, Monique; Shroff, Hari; Aiden, Erez Lieberman; Casellas, Rafael

    2017-08-17

    50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells. Published by Elsevier Inc.

  17. A computer lab exploring evolutionary aspects of chromatin structure and dynamics for an undergraduate chromatin course*.

    Science.gov (United States)

    Eirín-López, José M

    2013-01-01

    The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a vast body of knowledge to the classroom. With this aim, the present work describes a multidisciplinary computer lab designed to introduce undergraduate students to the dynamic nature of chromatin, within the context of the one semester course "Chromatin: Structure, Function and Evolution." This exercise is organized in three parts including (a) molecular evolutionary biology of histone families (using the H1 family as example), (b) histone structure and variation across different animal groups, and (c) effect of histone diversity on nucleosome structure and chromatin dynamics. By using freely available bioinformatic tools that can be run on common computers, the concept of chromatin dynamics is interactively illustrated from a comparative/evolutionary perspective. At the end of this computer lab, students are able to translate the bioinformatic information into a biochemical context in which the relevance of histone primary structure on chromatin dynamics is exposed. During the last 8 years this exercise has proven to be a powerful approach for teaching chromatin structure and dynamics, allowing students a higher degree of independence during the processes of learning and self-assessment. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  18. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell

    2013-01-01

    the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly...

  19. Chromatin proteins: key responders to stress.

    Directory of Open Access Journals (Sweden)

    Karen T Smith

    Full Text Available Environments can be ever-changing and stresses are commonplace. In order for organisms to survive, they need to be able to respond to change and adapt to new conditions. Fortunately, many organisms have systems in place that enable dynamic adaptation to immediate stresses and changes within the environment. Much of this cellular response is coordinated by modulating the structure and accessibility of the genome. In eukaryotic cells, the genome is packaged and rolled up by histone proteins to create a series of DNA/histone core structures known as nucleosomes; these are further condensed into chromatin. The degree and nature of the condensation can in turn determine which genes are transcribed. Histones can be modified chemically by a large number of proteins that are thereby responsible for dynamic changes in gene expression. In this Primer we discuss findings from a study published in this issue of PLoS Biology by Weiner et al. that highlight how chromatin structure and chromatin binding proteins alter transcription in response to environmental changes and stresses. Their study reveals the importance of chromatin in mediating the speed and amplitude of stress responses in cells and suggests that chromatin is a critically important component of the cellular response to stress.

  20. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  1. Chromatin associations in Arabidopsis interphase nuclei

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2014-11-01

    Full Text Available The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analysed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fibre movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns.Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its ten centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  2. Chromatin ring formation at plant centromeres

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2016-02-01

    Full Text Available We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

  3. Reshaping chromatin after DNA damage: the choreography of histone proteins.

    Science.gov (United States)

    Polo, Sophie E

    2015-02-13

    DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.

  4. Computation of Asteroid Proper Elements: Recent Advances

    Science.gov (United States)

    Knežević, Z.

    2017-06-01

    The recent advances in computation of asteroid proper elements are briefly reviewed. Although not representing real breakthroughs in computation and stability assessment of proper elements, these advances can still be considered as important improvements offering solutions to some practical problems encountered in the past. The problem of getting unrealistic values of perihelion frequency for very low eccentricity orbits is solved by computing frequencies using the frequency-modified Fourier transform. The synthetic resonant proper elements adjusted to a given secular resonance helped to prove the existence of Astraea asteroid family. The preliminary assessment of stability with time of proper elements computed by means of the analytical theory provides a good indication of their poorer performance with respect to their synthetic counterparts, and advocates in favor of ceasing their regular maintenance; the final decision should, however, be taken on the basis of more comprehensive and reliable direct estimate of their individual and sample average deviations from constancy.

  5. Proper Handling and Storage of Human Milk

    Science.gov (United States)

    ... Breastfeeding Micronutrient Malnutrition State and Local Programs Proper Handling and Storage of Human Milk Recommend on Facebook ... sure to wash your hands before expressing or handling breast milk. When collecting milk, be sure to ...

  6. Identifying Proper Names Based on Association Analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The issue of proper names recognition in Chinese text was discussed. An automatic approach based on association analysis to extract rules from corpus was presented. The method tries to discover rules relevant to external evidence by association analysis, without additional manual effort. These rules can be used to recognize the proper nouns in Chinese texts. The experimental result shows that our method is practical in some applications.Moreover, the method is language independent.

  7. Proper holomorphic mappings between hyperbolic product manifolds

    CERN Document Server

    Janardhanan, Jaikrishnan

    2011-01-01

    We generalize a result of Remmert and Stein, on proper holomorphic mappings between domains that are products of certain planar domains, to finite proper holomorphic mappings between complex manifolds that are products of hyper- bolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, our proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.

  8. Functions of the Proteasome on Chromatin

    Science.gov (United States)

    McCann, Tyler S.; Tansey, William P.

    2014-01-01

    The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome. PMID:25422899

  9. Functions of the Proteasome on Chromatin

    Directory of Open Access Journals (Sweden)

    Tyler S. McCann

    2014-11-01

    Full Text Available The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome.

  10. Doxorubicin, DNA torsion, and chromatin dynamics

    Science.gov (United States)

    Yang, Fan; Teves, Sheila S.; Kemp, Christopher J.; Henikoff, Steven

    2014-01-01

    Doxorubicin is one of the most important anti-cancer chemotherapeutic drugs, being widely used for the treatment of solid tumors and acute leukemias. The action of doxorubicin and other anthracycline drugs has been intensively investigated during the last several decades, but the mechanisms that have been proposed for cell killing remain disparate and controversial. In this review, we examine the proposed models for doxorubicin action from the perspective of the chromatin landscape, which is altered in many types of cancer due to recurrent mutations in chromatin modifiers. We highlight recent evidence for effects of anthracyclines on DNA torsion and chromatin dynamics that may underlie basic mechanisms of doxorubicin-mediated cell death and suggest new therapeutic strategies for cancer treatment. PMID:24361676

  11. Chromatin Regulators in Pancreas Development and Diabetes.

    Science.gov (United States)

    Campbell, Stephanie A; Hoffman, Brad G

    2016-03-01

    The chromatin landscape of a cell is dynamic and can be altered by chromatin regulators that control nucleosome placement and DNA or histone modifications. Together with transcription factors, these complexes help dictate the transcriptional output of a cell and, thus, balance cell proliferation and differentiation while restricting tissue-specific gene expression. In this review, we describe current research on chromatin regulators and their roles in pancreas development and the maintenance of mature β cell function, which, once elucidated, will help us better understand how β cell differentiation occurs and is maintained. These studies have so far implicated proteins from several complexes that regulate DNA methylation, nucleosome remodeling, and histone acetylation and methylation that could become promising targets for diabetes therapy and stem cell differentiation.

  12. Chromatin Dynamics in Vivo: A Game of Musical Chairs

    Directory of Open Access Journals (Sweden)

    Daniël P. Melters

    2015-08-01

    Full Text Available Histones are a major component of chromatin, the nucleoprotein complex fundamental to regulating transcription, facilitating cell division, and maintaining genome integrity in almost all eukaryotes. In addition to canonical, replication-dependent histones, replication-independent histone variants exist in most eukaryotes. In recent years, steady progress has been made in understanding how histone variants assemble, their involvement in development, mitosis, transcription, and genome repair. In this review, we will focus on the localization of the major histone variants H3.3, CENP-A, H2A.Z, and macroH2A, as well as how these variants have evolved, their structural differences, and their functional significance in vivo.

  13. CHD chromatin remodelers and the transcription cycle.

    Science.gov (United States)

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  14. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...... is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation...

  15. Dynamics of Histone Tails within Chromatin

    Science.gov (United States)

    Bernier, Morgan; North, Justin; Page, Michael; Jaroniec, Christopher; Hammel, Christopher; Poirier, Michael

    2012-02-01

    Genetic information in humans is encoded within DNA molecules that is wrapped around histone octamer proteins and compacted into a highly conserved structural polymer, chromatin. The physical and material properties of chromatin appear to influence gene expression by altering the accessibility of proteins to the DNA. The tails of the histones are flexible domains that are thought to play a role in regulating DNA accessibility and compaction; however the molecular mechanisms for these phenomena are not understood. I will present CW-EPR studies on site directed spin labeled nucleosomes that probe the structure and dynamics of these histone tails within nucleosomes.

  16. Epigenetic phenomena, chromatin dynamics, and gene expression. New theoretical approaches in the study of living systems.

    Science.gov (United States)

    Boi, Luciano

    2008-01-01

    This paper is aimed at exploring the genome at the level beyond that of DNA sequence alone. We stress the fact that the level of genes is not the sole "reality" in the living world, for there are different epigenetic processes that profoundly affect change in living systems. Moreover, epigenetics very likely influences the course of evolution and the unfolding of life. We further attempt to investigate how the genome is dynamically organized into the nuclear space within the cell. We mainly focus on analyses of higher order nuclear architecture and the dynamic interactions of chromatin with other nuclear components. We especially want to know how epigenetic phenomena influences genes expression and chromosome functions. The proper understanding of these processes require new concepts and approaches be introduced and developed. In particular, we think that research in biology has to shift from only describing molecular and local features of living systems to studying the regulatory networks of interactions among gene pathways, the folding and dynamics of chromatin structure and how environmental factors affects the behavior of organisms. There are essential components of biological information on living organisms which cannot be portrayed in the DNA sequence alone. In a post-genomic era, the importance of chromatin/epigenetic interface has become increasingly apparent. One of the purposes of current research should be to highlight the enormous impact of chromatin organization and dynamics on epigenetic phenomena, and, conversely, to emphasize the important role that epigenetic phenomena play in gene expression and cell regulation.

  17. Mutations in chromatin regulators functionally link Cornelia de Lange syndrome and clinically overlapping phenotypes.

    Science.gov (United States)

    Parenti, Ilaria; Teresa-Rodrigo, María E; Pozojevic, Jelena; Ruiz Gil, Sara; Bader, Ingrid; Braunholz, Diana; Bramswig, Nuria C; Gervasini, Cristina; Larizza, Lidia; Pfeiffer, Lutz; Ozkinay, Ferda; Ramos, Feliciano; Reiz, Benedikt; Rittinger, Olaf; Strom, Tim M; Watrin, Erwan; Wendt, Kerstin; Wieczorek, Dagmar; Wollnik, Bernd; Baquero-Montoya, Carolina; Pié, Juan; Deardorff, Matthew A; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J

    2017-03-01

    The coordinated tissue-specific regulation of gene expression is essential for the proper development of all organisms. Mutations in multiple transcriptional regulators cause a group of neurodevelopmental disorders termed "transcriptomopathies" that share core phenotypical features including growth retardation, developmental delay, intellectual disability and facial dysmorphism. Cornelia de Lange syndrome (CdLS) belongs to this class of disorders and is caused by mutations in different subunits or regulators of the cohesin complex. Herein, we report on the clinical and molecular characterization of seven patients with features overlapping with CdLS who were found to carry mutations in chromatin regulators previously associated to other neurodevelopmental disorders that are frequently considered in the differential diagnosis of CdLS. The identified mutations affect the methyltransferase-encoding genes KMT2A and SETD5 and different subunits of the SWI/SNF chromatin-remodeling complex. Complementary to this, a patient with Coffin-Siris syndrome was found to carry a missense substitution in NIPBL. Our findings indicate that mutations in a variety of chromatin-associated factors result in overlapping clinical phenotypes, underscoring the genetic heterogeneity that should be considered when assessing the clinical and molecular diagnosis of neurodevelopmental syndromes. It is clear that emerging molecular mechanisms of chromatin dysregulation are central to understanding the pathogenesis of these clinically overlapping genetic disorders.

  18. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination.

    Science.gov (United States)

    Reddy, Kirthi C; Villeneuve, Anne M

    2004-08-20

    Initiation of meiotic recombination by double-strand breaks (DSBs) must occur in a controlled fashion to avoid jeopardizing genome integrity. Here, we identify chromatin-associated protein HIM-17 as a link between chromatin state and DSB formation during C. elegans meiosis. Dependencies of several meiotic prophase events on HIM-17 parallel those seen for DSB-generating enzyme SPO-11: HIM-17 is essential for DSB formation but dispensable for homolog synapsis. Crossovers and chiasmata are eliminated in him-17 null mutants but are restored by artificially induced DSBs, indicating that all components required to convert DSBs into chiasmata are present. Unlike SPO-11, HIM-17 is also required for proper accumulation of histone H3 methylation at lysine 9 on meiotic prophase chromosomes. HIM-17 shares structural features with three proteins that interact genetically with LIN-35/Rb, a known component of chromatin-modifying complexes. Furthermore, DSB levels and incidence of chiasmata can be modulated by loss of LIN-35/Rb. These and other data suggest that chromatin state governs the timing of DSB competence.

  19. Antibody to poly(adenosine diphosphate-ribose) polymerase and its use in chromatin analysis.

    OpenAIRE

    1982-01-01

    To facilitate investigations on the organization of poly (ADP-Rib) polymerase in chromatin, and to elucidate its biological function, polymerase purified from HeLa nuclei was used to elicit antibodies in mice. The anti-polymerase sera was found to be specific by multiple criteria. The association of polymerase with oligonucleosomes of differing chain size was determined by the specific binding of polymerase antibody (and as control, anti-histone H3) to nitrocellulose transfers of native elect...

  20. Nonspecific interactions of chromatin with immunoglobulin G and protein A, and their impact on purification performance.

    Science.gov (United States)

    Gagnon, Pete; Nian, Rui; Lee, Jeremy; Tan, Lihan; Latiff, Sarah Maria Abdul; Lim, Chiew Ling; Chuah, Cindy; Bi, Xuezhi; Yang, Yuansheng; Zhang, Wei; Gan, Hui Theng

    2014-05-02

    Chromatin released from dead host cells during in vitro production of IgG monoclonal antibodies exists mostly in complex hetero-aggregates consisting of nucleosomal arrays (DNA+histone proteins), non-histone proteins, and aberrant forms of IgG. They bind immobilized protein A more aggressively than IgG, through their nucleosomal histone components, and hinder access of IgG to Fc-specific binding sites, thereby reducing dynamic binding capacity. The majority of host cell contaminants in eluted IgG are leachates from chromatin hetero-aggregates that remain bound to protein A. Formation of turbidity in eluted IgG during pH titration is caused by neutral-pH insolubility of chromatin hetero-aggregates. NaOH is required at 500 mM to remove accumulated chromatin. A chromatin-directed clarification method removed 99% of histones, 90% of non-histone proteins, achieved a 6 log reduction of DNA, 4 log reduction of lipid-enveloped virus, and 5 log reduction of non-enveloped retrovirus, while conserving 98% of the native IgG. This suspended most of performance compromises imposed on protein A. IgG binding capacity increased ~20%. Host protein contamination was reduced about 100-fold compared to protein A loaded with harvest clarified by centrifugation and microfiltration. Aggregates were reduced to less than 0.05%. Turbidity of eluted IgG upon pH neutralization was nearly eliminated. Column cleaning was facilitated by minimizing the accumulation of chromatin.

  1. Spinfoam cosmology with the proper vertex amplitude

    CERN Document Server

    Vilensky, Ilya

    2016-01-01

    The proper vertex amplitude is derived from the EPRL vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics.

  2. Proper conformal symmetries in SD Einstein spaces

    CERN Document Server

    Chudecki, Adam

    2014-01-01

    Proper conformal symmetries in self-dual (SD) Einstein spaces are considered. It is shown, that such symmetries are admitted only by the Einstein spaces of the type [N]x[N]. Spaces of the type [N]x[-] are considered in details. Existence of the proper conformal Killing vector implies existence of the isometric, covariantly constant and null Killing vector. It is shown, that there are two classes of [N]x[-]-metrics admitting proper conformal symmetry. They can be distinguished by analysis of the associated anti-self-dual (ASD) null strings. Both classes are analyzed in details. The problem is reduced to single linear PDE. Some general and special solutions of this PDE are presented.

  3. Rapid genome-scale mapping of chromatin accessibility in tissue

    DEFF Research Database (Denmark)

    Grøntved, Lars; Bandle, Russell; John, Sam;

    2012-01-01

    BACKGROUND: The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant...

  4. Chromatin compaction protects genomic DNA from radiation damage.

    Directory of Open Access Journals (Sweden)

    Hideaki Takata

    Full Text Available Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.

  5. CTCF Binding Polarity Determines Chromatin Looping

    NARCIS (Netherlands)

    de Wit, Elzo; Vos, Erica S M; Holwerda, Sjoerd J B|info:eu-repo/dai/nl/344682218; Valdes-Quezada, Christian; Verstegen, Marjon J A M; Teunissen, Hans; Splinter, Erik; Wijchers, Patrick J; Krijger, Peter H L; de Laat, Wouter|info:eu-repo/dai/nl/169934497

    2015-01-01

    CCCTC-binding factor (CTCF) is an architectural protein involved in the three-dimensional (3D) organization of chromatin. In this study, we assayed the 3D genomic contact profiles of a large number of CTCF binding sites with high-resolution 4C-seq. As recently reported, our data also suggest that ch

  6. EBV latency types adopt alternative chromatin conformations.

    Directory of Open Access Journals (Sweden)

    Italo Tempera

    2011-07-01

    Full Text Available Epstein-Barr Virus (EBV can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp or type III (Cp gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.

  7. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  8. Chromatin conformation capture strategies in molecular diagnostics

    NARCIS (Netherlands)

    Vree, P.J.P. de

    2015-01-01

    In this thesis I have explored the clinical potential of the 4C-technology and worked on development of a novel chromatin conformation capture based technology, called TLA. In chapter 2 I describe how the 4C-technology can be applied as a targeted strategy to identify putative fusion-genes or chromo

  9. Histone variants: key players of chromatin.

    Science.gov (United States)

    Biterge, Burcu; Schneider, Robert

    2014-06-01

    Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.

  10. Chromatin Modifications Associated With Diabetes and Obesity.

    Science.gov (United States)

    Schones, Dustin E; Leung, Amy; Natarajan, Rama

    2015-07-01

    The incidence of obesity across the globe has doubled over the past several decades, leading to escalating rates of diabetes mellitus, cardiovascular disease, and other complications. Given this dramatic rise in disease incidence, understanding the cause of these diseases is therefore of paramount importance. Metabolic diseases, such as obesity and diabetes mellitus, result from a multitude of genetic and environmental factors. Although the genetic basis of these diseases has been extensively studied, the molecular pathways whereby environmental factors influence disease progression are only beginning to be understood. One manner by which environmental factors can contribute to disease progression is through modifications to chromatin. The highly structured packaging of the genome into the nucleus through chromatin has been shown to be fundamental to tissue-specific gene regulation. Modifications to chromatin can regulate gene expression and are involved in a myriad of biological functions, and hence, disruption of these modifications is central to many human diseases. These modifications can furthermore be epigenetic in nature, thereby contributing to prolonged disease risk. Recent work has demonstrated that modifications to chromatin are associated with the progression of both diabetes mellitus and obesity, which is the subject of this review. © 2015 American Heart Association, Inc.

  11. Research Discovers Frequent Mutations of Chromatin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the support of National Natural Science Foundation of China, BGI, the largest genomics organization in the world, and Peking University Shenzhen Hospital, published online in Nature Geneticsics that the study on frequent mutations of chromatin remodeling genes in transitional cell carcinoma (TCC) of thebladder on August 8th, 2011. Their study provides a valuable genetic basis for future studies on TCC,

  12. Chromatin and epigenetics in all their states

    NARCIS (Netherlands)

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Gall, Le Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-01-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a

  13. Epigenetic chromatin silencing: bistability and front propagation

    Science.gov (United States)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  14. Chromatin and epigenetics in all their states

    NARCIS (Netherlands)

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Gall, Le Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-01-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meetin

  15. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging.

    Science.gov (United States)

    Cherstvy, A G; Teif, V B

    2013-06-01

    Chromatin domains formed in vivo are characterized by different types of 3D organization of interconnected nucleosomes and architectural proteins. Here, we quantitatively test a hypothesis that the similarities in the structure of chromatin fibers (which we call "structural homology") can affect their mutual electrostatic and protein-mediated bridging interactions. For example, highly repetitive DNA sequences in heterochromatic regions can position nucleosomes so that preferred inter-nucleosomal distances are preserved on the surfaces of neighboring fibers. On the contrary, the segments of chromatin fiber formed on unrelated DNA sequences have different geometrical parameters and lack structural complementarity pivotal for stable association and cohesion. Furthermore, specific functional elements such as insulator regions, transcription start and termination sites, and replication origins are characterized by strong nucleosome ordering that might induce structure-driven iterations of chromatin fibers. We propose that shape-specific protein-bridging interactions facilitate long-range pairing of chromatin fragments, while for closely-juxtaposed fibers electrostatic forces can in addition yield fine-tuned structure-specific recognition and pairing. These pairing effects can account for some features observed for mitotic and inter-phase chromatins.

  16. Evaluation of proper height for squatting stool.

    Science.gov (United States)

    Jung, Hwa S; Jung, Hyung-Shik

    2008-05-01

    Many jobs and activities in people's daily lives have them in squatting postures. Jobs such as housekeeping, farming and welding require various squatting activities. It is speculated that prolonged squatting without any type of supporting stool would gradually and eventually impose musculoskeletal injuries on workers. This study aims to examine the proper height of the stool according to the position of working materials for the squatting worker. A total of 40 male and female college students and 10 female farmers participated in the experiment to find the proper stool height. Student participants were asked to sit and work in three different positions: floor level of 50 mm; ankle level of 200 mm; and knee level of 400 mm. They were then provided with stools of various heights and asked to maintain a squatting work posture. For each working position, they were asked to write down their thoughts on a preferred stool height. A Likert summated rating method as well as pairwise ranking test was applied to evaluate user preference for provided stools under conditions of different working positions. Under a similar experimental procedure, female farmers were asked to indicate their body part discomfort (BPD) on a body chart before and after performing the work. Statistical analysis showed that comparable results were found from both evaluation measures. When working position is below 50 mm, the proper stool height is 100 or should not be higher than 150 mm. When working position is 200 mm, the proper stool height is 150 mm. When working position is 400 mm, the proper stool height is 200 mm. Thus, it is strongly recommended to use proper height of stools with corresponding working position. Moreover, a wearable chair prototype was designed so that workers in a squatting posture do not have to carry and move the stool from one place to another. This stool should ultimately help to relieve physical stress and hence promote the health of squatting workers. This study sought

  17. Isometric Isomorphisms in Proper CQ*-algebras

    Institute of Scientific and Technical Information of China (English)

    Choonkil PARK; Jong Su AN

    2009-01-01

    In this paper,we prove the Hyers-Ulam-Rassias stability of isometric homomorphisms in proper CQ*-algebras for the following Cauchy-Jensen additive mapping:2f(x1+x2/2+y)=f(x1)+f(x2)+2f(y).The concept of Hyers-Ulam-Rassias stability originated from the Th.M.Rassias' stability theorem that appeared in the paper: On the stability of the linear mapping in Banach spaces,Proc.Amer.Math.Soc.,72 (1978),297-300.This is applied to investigate isometric isomorphisms between proper CQ*-algebras.

  18. Epigenetic marks in zebrafish sperm: insights into chromatin compaction, maintenance of pluripotency, and the role of the paternal genome after fertilization

    Institute of Scientific and Technical Information of China (English)

    Douglas T Carrell

    2011-01-01

    @@ Human sperm chromatin, and the sperm of most mammals, undergoes extensive remodeling during spermiogenesis during which 85%-95% of the histones are removed and replaced with protamines.The replacement of most histones with protamines facilitates a tighter packaging of the chromatin that is necessary for normal sperm function, and may help protect sperm DNA from damage during transport.1 An intriguing question has been why the replacement of histones with protamines is not complete,and if the histones that remain in human sperm chromatin could have a programmatic role in regulating gene expression post-fertilization?

  19. A study of the interaction between ethidium bromide and rye chromatin: comparison with calf thymus chromatin.

    Science.gov (United States)

    LaRue, H; Pallotta, D

    1976-09-01

    We studied the interaction of ethidium bromide with rye and calf thymus chromatin. Both types of chromatin have the same dye accessibility, which is about 50% of that of DNA. From this result we conclude that the molecular structure of these two chromatins is similar. For rye, the extraction of H1 produces no change in the binding of ethidium bromide. The subsequent extraction of H2A and H2B produces a 14% increase in the binding, and the removal of H3 and H4, another 54% increase. At this stage, the number of binding sites is still less than that of DNA. This is presumably due to the presence of some tightly bound non-histones. Thus, the arginine-rich histones and the tightly bound non-histones are most responsible for limiting the binding of ethidium bromide to rye chromatin.

  20. Direct Chromatin PCR (DC-PCR): Hypotonic Conditions Allow Differentiation of Chromatin States during Thermal Cycling

    Science.gov (United States)

    Vatolin, Sergei; Khan, Shahper N.; Reu, Frederic J.

    2012-01-01

    Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR) on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90°C, 41 of 61 tested 5′ sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34) were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB) even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR. PMID:22984542

  1. Direct chromatin PCR (DC-PCR: hypotonic conditions allow differentiation of chromatin states during thermal cycling.

    Directory of Open Access Journals (Sweden)

    Sergei Vatolin

    Full Text Available Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90 °C, 41 of 61 tested 5' sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34 were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR.

  2. PROPER: Performance visualization for optimizing and comparing ranking classifiers in MATLAB.

    Science.gov (United States)

    Jahandideh, Samad; Sharifi, Fatemeh; Jaroszewski, Lukasz; Godzik, Adam

    2015-01-01

    One of the recent challenges of computational biology is development of new algorithms, tools and software to facilitate predictive modeling of big data generated by high-throughput technologies in biomedical research. To meet these demands we developed PROPER - a package for visual evaluation of ranking classifiers for biological big data mining studies in the MATLAB environment. PROPER is an efficient tool for optimization and comparison of ranking classifiers, providing over 20 different two- and three-dimensional performance curves.

  3. Chromatin Dynamics of the mouse β-globin locus

    NARCIS (Netherlands)

    M.P.C. van de Corput (Mariëtte); E. de Boer (Ernie); T.A. Knoch (Tobias); W.A. van Cappellen (Gert); M. Lesnussa (Michael); H.J.F.M.M. Eussen (Bert)

    2010-01-01

    textabstractLately it has become more clear that (subtle) changes in 3D organization of chromatin can either trigger transcription or silence genes or gene clusters. It has also been postulated that due to changes in chromatin structure, a change in chromatin accessibility of transcription factors

  4. Chromatin Dynamics of the mouse β-globin locus

    NARCIS (Netherlands)

    M.P.C. van de Corput (Mariëtte); E. de Boer (Ernie); T.A. Knoch (Tobias); W.A. van Cappellen (Gert); M. Lesnussa (Michael); H.J.F.M.M. Eussen (Bert)

    2010-01-01

    textabstractLately it has become more clear that (subtle) changes in 3D organization of chromatin can either trigger transcription or silence genes or gene clusters. It has also been postulated that due to changes in chromatin structure, a change in chromatin accessibility of transcription factors

  5. The many faces of plant chromatin: Meeting summary of the 4th European workshop on plant chromatin 2015, Uppsala, Sweden.

    Science.gov (United States)

    Mozgová, Iva; Köhler, Claudia; Gaudin, Valérie; Hennig, Lars

    2015-01-01

    In June 2015, the fourth European Workshop on Plant Chromatin took place in Uppsala, Sweden, bringing together 80 researchers studying various aspects of plant chromatin and epigenetics. The intricate relationships between plant chromatin dynamics and gene expression change, chromatin organization within the plant cell nucleus, and the impact of chromatin structure on plant development were discussed. Among the main highlights of the meeting were an ever-growing list of newly identified players in chromatin structure establishment and the development of novel tools and approaches to foster our understanding of chromatin-mediated gene regulation, taking into account the context of the plant cell nucleus and its architecture. In this report, we summarize some of the main advances and prospects of plant chromatin research presented at this meeting.

  6. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae.

    Science.gov (United States)

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J

    2014-04-01

    The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.

  7. Strategy Guideline. Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  8. Strategy Guideline: Proper Water Heater Selection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation, Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States); German, A. [Alliance for Residential Building Innovation, Davis, CA (United States); Staller, J. [Alliance for Residential Building Innovation, Davis, CA (United States); Zhang, Y. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  9. The Essentials of Proper Wine Service.

    Science.gov (United States)

    Manago, Gary H.

    This instructional unit was designed to assist the food services instructor and/or the restaurant manager in training students and/or staff in the proper procedure for serving wines to guests. The lesson plans included in this unit focus on: (1) the different types of wine glasses and their uses; (2) the parts of a wine glass; (3) the proper…

  10. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Beckman, J., E-mail: tere@astro.unam.mx, E-mail: leonel@astro.unam.mx, E-mail: wsteffen@astro.unam.mx, E-mail: jal@astro.unam.mx, E-mail: jeb@iac.es [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain)

    2015-01-10

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  11. Isometry groups of proper metric spaces

    CERN Document Server

    Niemiec, Piotr

    2012-01-01

    Given a locally compact Polish space X, a necessary and sufficient condition for a group G of homeomorphisms of X to be the full isometry group of (X,d) for some proper metric d on X is given. It is shown that every locally compact Polish group G acts freely on GxY as the full isometry group of GxY with respect to a certain proper metric on GxY, where Y is an arbitrary locally compact Polish space with (card(G),card(Y)) different from (1,2). Locally compact Polish groups which act effectively and almost transitively on complete metric spaces as full isometry groups are characterized. Locally compact Polish non-Abelian groups on which every left invariant metric is automatically right invariant are characterized and fully classified. It is demonstrated that for every locally compact Polish space X having more than two points the set of proper metrics d such that Iso(X,d) = {id} is dense in the space of all proper metrics on X.

  12. A proper subclass of Maclane's class

    Directory of Open Access Journals (Sweden)

    May Hamdan

    1999-01-01

    paper, we define a subclass ℛ of consisting of those functions that have asymptotic values at a dense subset of the unit circle reached along rectifiable asymptotic paths. We also show that the class ℛ is a proper subclass of by constructing a function f∈ that admits no asymptotic paths of finite length.

  13. Effectiveness of the self-inflating bulb for verification of proper placement of the Esophageal Tracheal Combitube

    National Research Council Canada - National Science Library

    Wafai, Y; Salem, M R; Baraka, A; Joseph, N J; Czinn, E A; Paulissian, R

    1995-01-01

    ... in the trachea. This investigation was designed to test the reliability of the self-inflating bulb (SIB) in identifying the location of the ETC and facilitating its proper positioning in anesthetized patients. In Group 1 (n = 26...

  14. Effectiveness of the Self-Inflating Bulb for Verification of Proper Placement of the Esophageal Tracheal Combitube Registered Trademark

    National Research Council Canada - National Science Library

    Wafai, Yaser; Salem, M. Ramez; Baraka, Anis; Joseph, Ninos J; Czinn, Edward A; Paulissian, Robert

    1995-01-01

    ... in the trachea. This investigation was designed to test the reliability of the self-inflating bulb (SIB) in identifying the location of the ETC and facilitating its proper positioning in anesthetized patients. In Group 1 (n = 26...

  15. Reading the Epigenetic State of Chromatin Alters its Accessibility

    Science.gov (United States)

    Gibson, Matthew D.

    The eukaryotic genome is organized into a structural polymer called chromatin. Ultimately, all access to genetic information is regulated by chromatin including access required for DNA replication, transcription, and repair. The basic repeating unit of chromatin is the nucleosome which is comprised of ˜147 bp of DNA tightly wrapped around a protein histone octamer core. The histone octamer is made up of eight proteins: two each of histones H2A, H2B, H3, and H4. Many mechanisms exist to regulate access to DNA but one of pivotal importance is the creation of unique nucleosomes through i) integration of histone variants and ii) deposition of post translational modifications (PTMs). These modifications help comprise the epigenome of a cell. Classically, the two mechanisms by which they function have been through a direct regulation of nucleosome dynamics, or through third party proteins which are able to recognize the variants or PTMs and facilitate work. The library of potential PTMs therefore forms a sort of histone code which regulates access to DNA. This thesis investigates the intersection of these mechanisms to determine whether the act of recognizing epigenetic information alters DNA accessibility. The primary method used to determine changes in DNA accessibility is though observing the effective binding affinity of a transcription factor to its target site buried within a recombinantly prepared nucleosome which has been modified to carry a PTM and to report on its wrapping state. We find different regulation depending both on the PTM we investigate and the specific PTM-binding protein. We first investigate the H3K36me3-binding protein PHF1 and find that while the PTM it recognizes, H3K36me3, does not alter DNA accessibility, the binding of its recognition domain and N-terminal domain can illicit a change of DNA accessibility of 8 +/- 2-fold. This means that 8 times less DNA binding protein is required to occupy its target site if the nucleosome is bound by PHF

  16. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Science.gov (United States)

    Stypula-Cyrus, Yolanda; Damania, Dhwanil; Kunte, Dhananjay P; Cruz, Mart Dela; Subramanian, Hariharan; Roy, Hemant K; Backman, Vadim

    2013-01-01

    Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC) family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC). However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs) interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA) targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS) to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  17. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Yolanda Stypula-Cyrus

    Full Text Available Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC. However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  18. Boltzmann babies in the proper time measure

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng

    2007-12-20

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  19. Proper motions of the HH 1 jet

    Science.gov (United States)

    Raga, A. C.; Reipurth, B.; Esquivel, A.; Castellanos-Ramírez, A.; Velázquez, P. F.; Hernández-Martínez, L.; Rodríguez-González, A.; Rechy-García, J. S.; Estrella-Trujillo, D.; Bally, J.; González-Gómez, D.; Riera, A.

    2017-10-01

    We describe a new method for determining proper motions of extended objects, and a pipeline developed for the application of this method. We then apply this method to an analysis of four epochs of [S II] HST images of the HH 1 jet (covering a period of ≈20 yr). We determine the proper motions of the knots along the jet, and make a reconstruction of the past ejection velocity time-variability (assuming ballistic knot motions). This reconstruction shows an "acceleration" of the ejection velocities of the jet knots, with higher velocities at more recent times. This acceleration will result in an eventual merging of the knots in ≈450 yr and at a distance of ≈80'' from the outflow source, close to the present-day position of HH 1.

  20. Physical properties of unacetylated chromatin as examined by magnetic tweezers

    Science.gov (United States)

    McGill, Kerry; Dunlap, David; Lucchesi, John

    2011-10-01

    As the source of genetic material, DNA is involved in a variety of biological processes like transcription, cell replication, and more. In these processes, DNA is manipulated into different structures and is subjected to different levels of physical force on a molecular scale. When tension is applied to one hierarchical structure called chromatin, it appears to behave like a Hookian spring. The base component of chromatin is a nucleosome, which is constructed when DNA coils around octamers of histone proteins. The histones can become acetylated---a chemical process in which an acetyl functional group attaches to amino acids of the histones, often lysines. Acetylation may loosen chromatin's coils and therefore lower the amount of tension required to stretch the chromatin. Comparing the levels of tension required to stretch acetylated chromatin could reveal, directly, physical differences in the chromatin fiber that bear ion the function of the DNA molecule. Work presented will be the investigation of unacetylated chromatin.

  1. Quantification of chromatin condensation level by image processing.

    Science.gov (United States)

    Irianto, Jerome; Lee, David A; Knight, Martin M

    2014-03-01

    The level of chromatin condensation is related to the silencing/activation of chromosomal territories and therefore impacts on gene expression. Chromatin condensation changes during cell cycle, progression and differentiation, and is influenced by various physicochemical and epigenetic factors. This study describes a validated experimental technique to quantify chromatin condensation. A novel image processing procedure is developed using Sobel edge detection to quantify the level of chromatin condensation from nuclei images taken by confocal microscopy. The algorithm was developed in MATLAB and used to quantify different levels of chromatin condensation in chondrocyte nuclei achieved through alteration in osmotic pressure. The resulting chromatin condensation parameter (CCP) is in good agreement with independent multi-observer qualitative visual assessment. This image processing technique thereby provides a validated unbiased parameter for rapid and highly reproducible quantification of the level of chromatin condensation.

  2. Proper time method in de Sitter space

    CERN Document Server

    Das, Ashok K

    2015-01-01

    We use the proper time formalism to study a (non-self-interacting) massive Klein-Gordon theory in the two dimensional de Sitter space. We determine the exact Green's function of the theory by solving the DeWitt-Schwinger equation as well as by calculating the operator matrix element. We point out how the one parameter family of arbitrariness in the Green's function arises in this method.

  3. Chromatin structure and DNA damage repair

    Directory of Open Access Journals (Sweden)

    Dinant Christoffel

    2008-11-01

    Full Text Available Abstract The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.

  4. VVV IR high proper motion stars

    Science.gov (United States)

    Kurtev, R.; Gromadzki, M.; Beamin, J. C.; Peña, K.; Folkes, S.; Ivanov, V. D.; Borissova, J.; Kuhn, M.; Villanueva, V.; Minniti, D.; Mendez, R.; Lucas, P.; Smith, L.; Pinfield, D.; Antonova, A.

    2015-10-01

    We used the VISTA Variables en Vía Láctea (VVV) survey to search for large proper motion (PM) objects in the zone of avoidance in the Milky Way bulge and southern Galactic disk. This survey is multi-epoch and already spans a period of more than four years, giving us an excellent opportunity for proper motion and parallax studies. We found around 1700 PM objects with PM>30 mas yr(-1) . The majority of them are early and mid M-dwarfs. There are also few later spectral type objects, as well as numerous new K- and G-dwarfs. 75 of the stars have PM>300 mas (-1) and 189 stars have PM>200 mas (-1) . There are only 42 previously known stars in the VVV area with proper motion PM>200 mas (-1) . We also found three dM+WD binaries and new members of the immediate solar vicinity of 25 pc. We generated a catalog which will be a complementary to the existing catalogs outside this zone.

  5. Assessing patient awareness of proper hand hygiene.

    Science.gov (United States)

    Busby, Sunni R; Kennedy, Bryan; Davis, Stephanie C; Thompson, Heather A; Jones, Jan W

    2015-05-01

    The authors hypothesized that patients may not understand the forms of effective hand hygiene employed in the hospital environment. Multiple studies demonstrate the importance of hand hygiene in reducing healthcare-associated infections (HAIs). Extensive research about how to improve compliance has been conducted. Patients' perceptions of proper hand hygiene were evaluated when caregivers used soap and water, waterless hand cleaner, or a combination of these. No significant differences were observed, but many patients reported they did not notice whether their providers cleaned their hands. Educating patients and their caregivers about the protection afforded by proper, consistent hand hygiene practices is important. Engaging patients to monitor healthcare workers may increase compliance, reduce the spread of infection, and lead to better overall patient outcomes. This study revealed a need to investigate the effects of patient education on patient perceptions of hand hygiene. Results of this study appear to indicate a need to focus on patient education and the differences between soap and water versus alcohol-based hand sanitizers as part of proper hand hygiene. Researchers could be asking: "Why have patients not been engaged as members of the healthcare team who have the most to lose?"

  6. [Morphology of neurons of human subiculum proper].

    Science.gov (United States)

    Stanković-Vulović, Maja; Zivanović-Macuzić, Ivana; Sazdanović, Predrag; Jeremić, Dejan; Tosevski, Jovo

    2010-01-01

    Subiculum proper is an archicortical structure of the subicular complex and presents the place of origin of great majority of axons of the whole hippocampal formation. In contrast to the hippocampus which has been intensively studied, the data about human subiculum proper are quite scarce. The aim of our study was to identify morphological characteristics of neurons of the human subiculum proper. The study was performed on 10 brains of both genders by using Golgi impregnation and Nissl staining. The subiculum has three layers: molecular, pyramidal and polymorphic layer. The dominant cell type in the pyramidal layer was the pyramidal neurons, which had pyramidal shaped soma, multiple basal dendrites and one apical dendrite. The nonpyramidal cells were scattered among the pyramidal cells of the pyramidal layer. The nonpyramidal cells were classified on: multipolar, bipolar and neurons with triangular-shaped soma. The neurons of the molecular layer of the human subiculum were divided into groups: bipolar and multipolar neurons. The most numerous cells of the polymorphic layer were bipolar and multipolar neurons.

  7. THE PROPER MOTION OF THE LMC

    Directory of Open Access Journals (Sweden)

    R. A. Méndez

    2009-01-01

    Full Text Available We have determined the proper motion of the Large Magellanic Cloud (LMC relative to a background quasistellar object, using observations carried out in seven epochs (six years of base time. Our proper motion value agrees well with most results obtained by other authors and indicates that the LMC is not a member of a proposed stream of galaxies with similar orbits around our galaxy. Using published values of the radial velocity for the center of the LMC, in combination with the transverse velocity vector derived from our measured proper motion, we have calculated the absolute space velocity of the LMC. This value, along with some assumptions regarding the mass distribution of the Galaxy, has in turn been used to calculate the mass of the latter. This work is part of a program to study the space motion of the Magellanic Clouds system and its relationship to the Milky Way (MW. This knowledge is essential to understand the nature, origin and evolution of this system as well as the origin and evolution of the outer parts of the MW.

  8. The polymorphisms of the chromatin fiber

    Science.gov (United States)

    Boulé, Jean-Baptiste; Mozziconacci, Julien; Lavelle, Christophe

    2015-01-01

    In eukaryotes, the genome is packed into chromosomes, each consisting of large polymeric fibers made of DNA bound with proteins (mainly histones) and RNA molecules. The nature and precise 3D organization of this fiber has been a matter of intense speculations and debates. In the emerging picture, the local chromatin state plays a critical role in all fundamental DNA transactions, such as transcriptional control, DNA replication or repair. However, the molecular and structural mechanisms involved remain elusive. The purpose of this review is to give an overview of the tremendous efforts that have been made for almost 40 years to build physiologically relevant models of chromatin structure. The motivation behind building such models was to shift our representation and understanding of DNA transactions from a too simplistic ‘naked DNA’ view to a more realistic ‘coated DNA’ view, as a step towards a better framework in which to interpret mechanistically the control of genetic expression and other DNA metabolic processes. The field has evolved from a speculative point of view towards in vitro biochemistry and in silico modeling, but is still longing for experimental in vivo validations of the proposed structures or even proof of concept experiments demonstrating a clear role of a given structure in a metabolic transaction. The mere existence of a chromatin fiber as a relevant biological entity in vivo has been put into serious questioning. Current research is suggesting a possible reconciliation between theoretical studies and experiments, pointing towards a view where the polymorphic and dynamic nature of the chromatin fiber is essential to support its function in genome metabolism.

  9. Keystone Symposia on Epigenomics and Chromatin Dynamics

    DEFF Research Database (Denmark)

    Ravnskjær, Kim

    2012-01-01

    Keystone Symposia kicked off the start of 2012 with two joint meetings on Epigenomics and Chromatin Dynamics and a star-studded list of speakers. Held in Keystone, CO, January 17-22, and organized by Steven Jacobsen and Steven Henikoff and by Bradley Cairns and Geneviève Almouzni, respectively, t......, there was plenty happening in these sessions that it did not seem to matter that the ski-slope conditions were not ideal....

  10. Chromatin fiber allostery and the epigenetic code

    Science.gov (United States)

    Lesne, Annick; Foray, Nicolas; Cathala, Guy; Forné, Thierry; Wong, Hua; Victor, Jean-Marc

    2015-02-01

    The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level. At a higher scale, different epigenetic constraints delineate different statistically dominant subsets of accessible chromatin fiber conformations, which each favors the assembly of dedicated regulatory complexes, as detailed on the emblematic example of the mouse Igf2-H19 gene locus and its parental imprinting. This physical view offers a mechanistic and spatially structured explanation of the observed correlation between transcriptional activity and histone modifications. The evolutionary origin of allosteric control supports to speak of an ‘epigenetic code’, by which events involved in transcriptional regulation are encoded in histone modifications in a context-dependent way.

  11. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  12. Plant chromatin warms up in Madrid: meeting summary of the 3rd European Workshop on Plant Chromatin 2013, Madrid, Spain.

    Science.gov (United States)

    Jarillo, José A; Gaudin, Valérie; Hennig, Lars; Köhler, Claudia; Piñeiro, Manuel

    2014-04-01

    The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC.

  13. Reversible phosphorylation and regulation of mammalian oocyte meiotic chromatin remodeling and segregation.

    Science.gov (United States)

    Swain, J E; Smith, G D

    2007-01-01

    The mammalian oocyte is notorious for high rates of chromosomal abnormalities. This results in subsequent embryonic aneuploidy, resulting in infertility and congenital defects. Therefore, understanding regulatory mechanisms involved in chromatin remodeling and chromosome segregation during oocyte meiotic maturation is imperative to fully understand the complex process and establish potential therapies. This review will focus on major events occurring during oocyte meiosis, critical to ensure proper cellular ploidy. Mechanistic and cellular events such as chromosome condensation, meiotic spindle formation, as well as cohesion of homologues and sister chromatids will be discussed, focusing on the role of reversible phosphorylation in control of these processes.

  14. Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro.

    Science.gov (United States)

    Kuryan, Benjamin G; Kim, Jessica; Tran, Nancy Nga H; Lombardo, Sarah R; Venkatesh, Swaminathan; Workman, Jerry L; Carey, Michael

    2012-02-01

    ATPases and histone chaperones facilitate RNA polymerase II (pol II) elongation on chromatin. In vivo, the coordinated action of these enzymes is necessary to permit pol II passage through a nucleosome while restoring histone density afterward. We have developed a biochemical system recapitulating this basic process. Transcription through a nucleosome in vitro requires the ATPase remodels structure of chromatin (RSC) and the histone chaperone nucleosome assembly protein 1 (NAP1). In the presence of NAP1, RSC generates a hexasome. Despite the propensity of RSC to evict histones, NAP1 reprograms the reaction such that the hexasome is retained on the template during multiple rounds of transcription. This work has implications toward understanding the mechanism of pol II elongation on chromatin.

  15. Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility

    Science.gov (United States)

    Rueedi, Rico

    2017-01-01

    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors. PMID:28118358

  16. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  17. PTEN Interacts with Histone H1 and Controls Chromatin Condensation

    Directory of Open Access Journals (Sweden)

    Zhu Hong Chen

    2014-09-01

    Full Text Available Chromatin organization and dynamics are integral to global gene transcription. Histone modification influences chromatin status and gene expression. PTEN plays multiple roles in tumor suppression, development, and metabolism. Here, we report on the interplay of PTEN, histone H1, and chromatin. We show that loss of PTEN leads to dissociation of histone H1 from chromatin and decondensation of chromatin. PTEN deletion also results in elevation of histone H4 acetylation at lysine 16, an epigenetic marker for chromatin activation. We found that PTEN and histone H1 physically interact through their C-terminal domains. Disruption of the PTEN C terminus promotes the chromatin association of MOF acetyltransferase and induces H4K16 acetylation. Hyperacetylation of H4K16 impairs the association of PTEN with histone H1, which constitutes regulatory feedback that may reduce chromatin stability. Our results demonstrate that PTEN controls chromatin condensation, thus influencing gene expression. We propose that PTEN regulates global gene transcription profiling through histones and chromatin remodeling.

  18. Impact of chromatin structures on DNA processing for genomic analyses.

    Directory of Open Access Journals (Sweden)

    Leonid Teytelman

    Full Text Available Chromatin has an impact on recombination, repair, replication, and evolution of DNA. Here we report that chromatin structure also affects laboratory DNA manipulation in ways that distort the results of chromatin immunoprecipitation (ChIP experiments. We initially discovered this effect at the Saccharomyces cerevisiae HMR locus, where we found that silenced chromatin was refractory to shearing, relative to euchromatin. Using input samples from ChIP-Seq studies, we detected a similar bias throughout the heterochromatic portions of the yeast genome. We also observed significant chromatin-related effects at telomeres, protein binding sites, and genes, reflected in the variation of input-Seq coverage. Experimental tests of candidate regions showed that chromatin influenced shearing at some loci, and that chromatin could also lead to enriched or depleted DNA levels in prepared samples, independently of shearing effects. Our results suggested that assays relying on immunoprecipitation of chromatin will be biased by intrinsic differences between regions packaged into different chromatin structures - biases which have been largely ignored to date. These results established the pervasiveness of this bias genome-wide, and suggested that this bias can be used to detect differences in chromatin structures across the genome.

  19. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  20. Facilitering som styringsredskab

    OpenAIRE

    Jørgensen, Karen Overgaard

    2006-01-01

    #This thesis surveys facilitation as a new tool of steering within the public sector in Denmark. It is explored how facilitation is articulated and practiced among facilitators from the public, private and voluntary sector. Furthermore, the facilitator’s challenges by using facilitation are examined. The thesis is based on the presumption that facilitation is articulated by rationalities, which influence how facilitation is practiced and performed. Also, a facilitator is seen as a performer a...

  1. Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling.

    Directory of Open Access Journals (Sweden)

    Mariliis Tark-Dame

    2014-10-01

    Full Text Available Folding of the chromosomal fibre in interphase nuclei is an important element in the regulation of gene expression. For instance, physical contacts between promoters and enhancers are a key element in cell-type-specific transcription. We know remarkably little about the principles that control chromosome folding. Here we explore the view that intrachromosomal interactions, forming a complex pattern of loops, are a key element in chromosome folding. CTCF and cohesin are two abundant looping proteins of interphase chromosomes of higher eukaryotes. To investigate the role of looping in large-scale (supra Mb folding of human chromosomes, we knocked down the gene that codes for CTCF and the one coding for Rad21, an essential subunit of cohesin. We measured the effect on chromosome folding using systematic 3D fluorescent in situ hybridization (FISH. Results show that chromatin becomes more compact after reducing the concentration of these two looping proteins. The molecular basis for this counter-intuitive behaviour is explored by polymer modelling usingy the Dynamic Loop model (Bohn M, Heermann DW (2010 Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS ONE 5: e12218.. We show that compaction can be explained by selectively decreasing the number of short-range loops, leaving long-range looping unchanged. In support of this model prediction it has recently been shown by others that CTCF and cohesin indeed are responsible primarily for short-range looping. Our results suggest that the local and the overall changes in of chromosome structure are controlled by a delicate balance between short-range and long-range loops, allowing easy switching between, for instance, open and more compact chromatin states.

  2. [Knowledge regarding Proper Use Guidelines for Benzodiazepines].

    Science.gov (United States)

    Inada, Ken

    2016-01-01

      Benzodiazepines (BZs) work by agonising gamma-aminobutyric acid (GABA)-BZ-receptor complex and thereby produce sedation and anti-anxiety effects. BZs are commonly used in several clinical areas as hypnotics or anti-anxiety drugs. However, these drugs once supplied by medical institutions often lead to abuse and dependence. Thus it is important for institutions to supply and manage BZs properly. At Tokyo Women's Medical University Hospital educational activities about proper use of BZs are performed by not only medical doctors but also pharmacists. We coordinate distribution of leaflets and run an educational workshop. As a result of these activities, the number of patients receiving BZ prescriptions was reduced. Performing these activities, pharmacists were required to work for patients, doctors, and nurses; they acquired knowledge about BZs such as action mechanisms, efficacy, adverse effects, problems about co-prescription, and methods of discontinuing BZs, as well as information on coping techniques other than medication. The most important point to attend the patients is to answer their anxieties.

  3. IC-Finder: inferring robustly the hierarchical organization of chromatin folding.

    Science.gov (United States)

    Haddad, Noelle; Vaillant, Cédric; Jost, Daniel

    2017-01-26

    The spatial organization of the genome plays a crucial role in the regulation of gene expression. Recent experimental techniques like Hi-C have emphasized the segmentation of genomes into interaction compartments that constitute conserved functional domains participating in the maintenance of a proper cell identity. Here, we propose a novel method, IC-Finder, to identify interaction compartments (IC) from experimental Hi-C maps. IC-Finder is based on a hierarchical clustering approach that we adapted to account for the polymeric nature of chromatin. Based on a benchmark of realistic in silico Hi-C maps, we show that IC-Finder is one of the best methods in terms of reliability and is the most efficient numerically. IC-Finder proposes two original options: a probabilistic description of the inferred compartments and the possibility to explore the various hierarchies of chromatin organization. Applying the method to experimental data in fly and human, we show how the predicted segmentation may depend on the normalization scheme and how 3D compartmentalization is tightly associated with epigenomic information. IC-Finder provides a robust and generic 'all-in-one' tool to uncover the general principles of 3D chromatin folding and their influence on gene regulation. The software is available at http://membres-timc.imag.fr/Daniel.Jost/DJ-TIMC/Software.html.

  4. Involvement of chromatin and histone acetylation in theregulation of HIV-LTR by thyroid hormone receptor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology.Numerous host factors have been shown to participate in the regulation of the LTR promoter.Among them is the thyroid hormone (T3) receptor (TR).TR has been shown to bind to the critical region of the promoter that contain the NFκB and Sp1 binding sites.Interestingly,earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation,likely due to the use of different cell types and/or lack of proper chromatin organization.Here,using the frog oocyte as a model system that allows replication-coupled chromatin assembly,mimicking that in somatic cells,we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter.More importantly,we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner.

  5. Dynamic Long-Range Chromatin Interaction Controls Expression of IL-21 in CD4+ T Cells.

    Science.gov (United States)

    Park, Joo-Hong; Choi, Yeeun; Song, Min-Ji; Park, Keunhee; Lee, Jong-Joo; Kim, Hyoung-Pyo

    2016-05-15

    IL-21, a pleiotropic cytokine strongly linked with autoimmunity and inflammation, regulates diverse immune responses. IL-21 can be potently induced in CD4(+) T cells by IL-6; however, very little is known about the mechanisms underlying the transcriptional regulation of the Il21 gene at the chromatin level. In this study, we demonstrated that a conserved noncoding sequence located 49 kb upstream of the Il21 gene contains an enhancer element that can upregulate Il21 gene expression in a STAT3- and NFAT-dependent manner. Additionally, we identified enhancer-blocking insulator elements in the Il21 locus, which constitutively bind CTCF and cohesin. In naive CD4(+) T cells, these upstream and downstream CTCF binding sites interact with each other to make a DNA loop; however, the Il21 promoter does not interact with any cis-elements in the Il21 locus. In contrast, stimulation of CD4(+) T cells with IL-6 leads to recruitment of STAT3 to the promoter and novel distal enhancer region. This induces dynamic changes in chromatin configuration, bringing the promoter and the regulatory elements in close spatial proximity. The long-range interaction between the promoter and distal enhancer region was dependent on IL-6/STAT3 signaling pathway but was disrupted in regulatory T cells, where IL-21 expression was repressed. Thus, our work uncovers a novel topological chromatin framework underlying proper transcriptional regulation of the Il21 gene.

  6. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus.

    Science.gov (United States)

    Yoshida, Junko; Akagi, Keiko; Misawa, Ryo; Kokubu, Chikara; Takeda, Junji; Horie, Kyoji

    2017-03-02

    DNA transposons and retroviruses are versatile tools in functional genomics and gene therapy. To facilitate their application, we conducted a genome-wide insertion site profiling of the piggyBac (PB), Tol2 and Sleeping Beauty (SB) transposons and the murine leukemia virus (MLV) in mouse embryonic stem cells (ESCs). PB and MLV preferred highly expressed genes, whereas Tol2 and SB preferred weakly expressed genes. However, correlations with DNase I hypersensitive sites were different for all vectors, indicating that chromatin accessibility is not the sole determinant. Therefore, we analysed various chromatin states. PB and MLV highly correlated with Cohesin, Mediator and ESC-specific transcription factors. Notably, CTCF sites were correlated with PB but not with MLV, suggesting MLV prefers smaller promoter-enhancer loops, whereas PB insertion encompasses larger chromatin loops termed topologically associating domains. Tol2 also correlated with Cohesin and CTCF. However, correlations with ESC-specific transcription factors were weaker, suggesting that Tol2 prefers transcriptionally weak chromatin loops. Consistently, Tol2 insertions were associated with bivalent histone modifications characteristic of silent and inducible loci. SB showed minimum preference to all chromatin states, suggesting the least adverse effect on adjacent genes. These results will be useful for vector selection for various applications.

  7. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles.

    Science.gov (United States)

    Chen, Yong; Wang, Yunfei; Xuan, Zhenyu; Chen, Min; Zhang, Michael Q

    2016-06-20

    Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by the Hi-C technology, but also provide additional novel details of chromosomal organizations. We predicted the chromatin interaction frequencies, topological domains and their states (e.g. active or repressive) for 98 additional cell types from Roadmap Epigenomics and ENCODE projects. A total of 131 protein-coding genes located near 78 preserved boundaries among 100 cell types are found to be significantly enriched in functional categories of the nucleosome organization and chromatin assembly. CITD and its predicted results can be used for complementing the topological domains derived from limited Hi-C data and facilitating the understanding of spatial principles underlying the chromosomal organization.

  8. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus

    Science.gov (United States)

    Yoshida, Junko; Akagi, Keiko; Misawa, Ryo; Kokubu, Chikara; Takeda, Junji; Horie, Kyoji

    2017-01-01

    DNA transposons and retroviruses are versatile tools in functional genomics and gene therapy. To facilitate their application, we conducted a genome-wide insertion site profiling of the piggyBac (PB), Tol2 and Sleeping Beauty (SB) transposons and the murine leukemia virus (MLV) in mouse embryonic stem cells (ESCs). PB and MLV preferred highly expressed genes, whereas Tol2 and SB preferred weakly expressed genes. However, correlations with DNase I hypersensitive sites were different for all vectors, indicating that chromatin accessibility is not the sole determinant. Therefore, we analysed various chromatin states. PB and MLV highly correlated with Cohesin, Mediator and ESC-specific transcription factors. Notably, CTCF sites were correlated with PB but not with MLV, suggesting MLV prefers smaller promoter–enhancer loops, whereas PB insertion encompasses larger chromatin loops termed topologically associating domains. Tol2 also correlated with Cohesin and CTCF. However, correlations with ESC-specific transcription factors were weaker, suggesting that Tol2 prefers transcriptionally weak chromatin loops. Consistently, Tol2 insertions were associated with bivalent histone modifications characteristic of silent and inducible loci. SB showed minimum preference to all chromatin states, suggesting the least adverse effect on adjacent genes. These results will be useful for vector selection for various applications. PMID:28252665

  9. Inverstigation of chromatin folding patterns by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANGYi; OUYANGZhenqian; 等

    1999-01-01

    The chromatin folding patterns in air and liquid were studied by atomic force microscopy(AFM),A gentle water-air interface method was adopted to spread chromatin from interphase nucleus of chicken erythrocyte.The chromatin was absorbed on APS-mica surface and studied with AFM,Beads-on a-string were observed and many higher-order structrues such as superbeads with dimensions 40-60nm in diameter and 4-7nm in height were found to string together to make chromation fibers.When sample spreading and absorbing time were shortened.higher-order chromatin fibers with 60-120nm in width were observed in air as well as under water environment.These chromatin structures may reflect chromatin folding patterns in the living cells.

  10. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  11. Long Noncoding RNAs, Chromatin, and Development

    Directory of Open Access Journals (Sweden)

    Daniel P. Caley

    2010-01-01

    Full Text Available The way in which the genome of a multicellular organism can orchestrate the differentiation of trillions of cells and many organs, all from a single fertilized egg, is the subject of intense study. Different cell types can be defined by the networks of genes they express. This differential expression is regulated at the epigenetic level by chromatin modifications, such as DNA and histone methylation, which interact with structural and enzymatic proteins, resulting in the activation or silencing of any given gene. While detailed mechanisms are emerging on the role of different chromatin modifications and how these functions are effected at the molecular level, it is still unclear how their deposition across the epigenomic landscape is regulated in different cells. A raft of recent evidence is accumulating that implicates long noncoding RNAs (lncRNAs in these processes. Most genomes studied to date undergo widespread transcription, the majority of which is not translated into proteins. In this review, we will describe recent work suggesting that lncRNAs are more than transcriptional "noise", but instead play a functional role by acting as tethers and guides to bind proteins responsible for modifying chromatin and mediating their deposition at specific genomic locations. We suggest that lncRNAs are at the heart of developmental regulation, determining the epigenetic status and transcriptional network in any given cell type, and that they provide a means to integrate external differentiation cues with dynamic nuclear responses through the regulation of a metastable epigenome. Better characterization of the lncRNA-protein "interactome" may eventually lead to a new molecular toolkit, allowing researchers and clinicians to modulate the genome at the epigenetic level to treat conditions such as cancer.

  12. Assaying chromatin structure and remodeling by restriction enzyme accessibility

    OpenAIRE

    Trotter, Kevin W.; Archer, Trevor K.

    2012-01-01

    The packaging of eukaryotic DNA into nucleosomes, the fundamental unit of chromatin, creates a barrier to nuclear processes, such as transcription, DNA replication, recombination, and repair(1). This obstructive nature of chromatin can be overcome by the enzymatic activity of chromatin remodeling complexes which creates a more favorable environment for the association of essential factors and regulators to sequences within target genes. Here we describe a detailed approach for analyzing chrom...

  13. Chromatin remodeling regulated by steroid and nuclear receptors

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Coactivators and corepressors regulate transcription by controlling interactions between sequence-specific transcription factors,the basal transcriptional machinery and the chromatin environment,This review consider the access of nuclear and steroid receptors to chromatin,their use of corepressors and coactivators to modify chromatin structure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures and targeted histone modification emerge as central controlling elements for gene expression.

  14. NET23/STING promotes chromatin compaction from the nuclear envelope.

    Directory of Open Access Journals (Sweden)

    Poonam Malik

    Full Text Available Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173, strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.

  15. Transcriptional and Chromatin Dynamics of Muscle Regeneration After Severe Trauma

    Science.gov (United States)

    2016-10-12

    Transcriptional and Chromatin Dynamics of Muscle Regeneration After Severe Trauma Carlos A. Aguilar1,*, Ramona Pop2, Anna Shcherbina1, Alain... trauma . Next, we use chromatin immuno-precipitation followed by sequencing (ChIP-Seq) to evaluate the chromatin state of cis-regulatory elements...regulatory elements11 after severe muscle trauma provides a powerful method to understand the molecular determinants of healing progression and can provide

  16. On the proper motion of auroral arcs

    Energy Technology Data Exchange (ETDEWEB)

    Haerendel, G.; Raaf, B.; Rieger, E. (Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany)); Buchert, S. (EISCAT Scientific Association, Kiruna (Sweden)); Hoz, C. la (Univ. of Tromso (Norway))

    1993-04-01

    The authors report on a series of measurements of the proper motion of auroral arcs, made using the EISCAT incoherent scatter radar. Radar measurements are correlated with auroral imaging from the ground to observe the arcs and sense their motion. The authors look at one to two broad classes of auroral arcs, namely the slow (approximately 100 m/s) class which are observed to move either poleward or equatorward. The other class is typically much faster, and observed to move poleward, and represents the class of events most studied in the past. They fit their observations to a previous model which provides a potential energy source for these events. The observations are consistent with the model, though no clear explanation for the actual cause of the motion can be reached from these limited measurements.

  17. Tracking magnetogram proper motions by multiscale regularization

    Science.gov (United States)

    Jones, Harrison P.

    1995-01-01

    Long uninterrupted sequences of solar magnetograms from the global oscillations network group (GONG) network and from the solar and heliospheric observatory (SOHO) satellite will provide the opportunity to study the proper motions of magnetic features. The possible use of multiscale regularization, a scale-recursive estimation technique which begins with a prior model of how state variables and their statistical properties propagate over scale. Short magnetogram sequences are analyzed with the multiscale regularization algorithm as applied to optical flow. This algorithm is found to be efficient, provides results for all the spatial scales spanned by the data and provides error estimates for the solutions. It is found that the algorithm is less sensitive to evolutionary changes than correlation tracking.

  18. The Lorentzian proper vertex amplitude: Asymptotics

    CERN Document Server

    Engle, Jonathan; Zipfel, Antonia

    2015-01-01

    In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semi-classical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the EPRL case by an extra `projector' term which scales linearly with spins only in the asymptotic limit. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a non-degenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.

  19. Survey of stellar associations using proper motions

    Directory of Open Access Journals (Sweden)

    C. Abad

    2001-01-01

    Full Text Available Stellar Proper Motions can be represented as great circles over the Celestial Sphere. This point of view creates a geometry over the sphere where the study of parallelism of the motions is possible in an easy form. Calculus of intersections between circles can detect convergence point of motions. This means parallel spatial motion. The model can be carried out to open stars clusters, identifying convergence points as apex, in order to get membership probabilities or, in a general form, to stars of our galaxy to detect big stellar structures and to infer some details about their kinematics. We present here a short description of the model and some examples using stars of the Hipparcos catalogue.

  20. Genome-wide Association of Yorkie with Chromatin and Chromatin-Remodeling Complexes

    Directory of Open Access Journals (Sweden)

    Hyangyee Oh

    2013-02-01

    Full Text Available The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie’s association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF, the Brahma complex, and the Mediator complex as Yorkie-associated nuclear protein complexes. All three are required for Yorkie’s transcriptional activation of downstream genes, and GAF and the Brahma complex subunit Moira interact directly with Yorkie. Genome-wide chromatin-binding experiments identify thousands of Yorkie sites, most of which are associated with elevated transcription, based on genome-wide analysis of messenger RNA and histone H3K4Me3 modification. Chromatin binding also supports extensive functional overlap between Yorkie and GAF. Our studies suggest a widespread role for Yorkie as a regulator of transcription and identify recruitment of the chromatin-modifying GAF protein and BRM complex as a molecular mechanism for transcriptional activation by Yorkie.

  1. Proper body mechanics from an engineering perspective.

    Science.gov (United States)

    Mohr, Edward G

    2010-04-01

    The economic viability of the manual therapy practitioner depends on the number of massages/treatments that can be given in a day or week. Fatigue or injuries can have a major impact on the income potential and could ultimately reach the point which causes the practitioner to quit the profession, and seek other, less physically demanding, employment. Manual therapy practitioners in general, and massage therapists in particular, can utilize a large variety of body postures while giving treatment to a client. The hypothesis of this paper is that there is an optimal method for applying force to the client, which maximizes the benefit to the client, and at the same time minimizes the strain and effort required by the practitioner. Two methods were used to quantifiably determine the effect of using "poor" body mechanics (Improper method) and "best" body mechanics (Proper/correct method). The first approach uses computer modeling to compare the two methods. Both postures were modeled, such that the biomechanical effects on the practitioner's elbow, shoulder, hip, knee and ankle joints could be calculated. The force applied to the client, along with the height and angle of application of the force, was held constant for the comparison. The second approach was a field study of massage practitioners (n=18) to determine their maximal force capability, again comparing methods using "Improper and Proper body mechanics". Five application methods were tested at three different application heights, using a digital palm force gauge. Results showed that there was a definite difference between the two methods, and that the use of correct body mechanics can have a large impact on the health and well being of the massage practitioner over both the short and long term.

  2. Interaction of sulfur mustard with rat liver salt fractionated chromatin.

    Science.gov (United States)

    Jafari, Mahvash; Nateghi, M; Rabbani, A

    2010-01-01

    In this study, the interaction of an alkylating agent, sulfur mustard (SM) with rat liver active (S1 and S2) and inactive (P2) chromatin was investigated employing UV/vis spectroscopy and gel electrophoreses. The results show that SM affects the chromatin structure in a dose-dependent manner. The binding of SM to fractions is different. At lower concentrations (<500 microM), SM seems to unfold the structure and at higher concentrations, it induces aggregation and condensation of chromatin possibly via forming cross-links between the chromatin components. The extent of condensation in S2 is higher when compared to the P2 fraction.

  3. Distribution of intercalative dye binding sites in chromatin.

    Science.gov (United States)

    Lurquin, P F; Seligy, V L

    1976-04-01

    Actinomycin D (AMD) and ethidium bromide (EB) were found to bind to chromatin isolated from a variety of gander tissues according to a strong and weak process analogous to that found for deproteinized DNA. Distribution of the dye intercalation sites in chromatin and DNA were evaluated at low r-values (dye bound per nucleotide) by following the appearance of free dye released from chromatin and DNA during thermal denaturation. The AMD dissociation profiles closely resembled the DNA or chromatin-DNA denaturation profiles; whereas the EB derivative dissociation profiles, indicated 3 major transitions for transcriptionally active chromatin with the main component corresponding to the single component which characterizes DNA. The DNA-like component was greatly reduced for mature erythrocyte chromatin but could be generated by removal of histone I and V. Removal of residual non acid-soluble proteins from dehistonized chromatin, urea treatment or dissociation and reconstitution of chromatin favoured conversion to the DNA-like component with loss of the other two. This study indicates that more than one type of binding exists generally in chromatin.

  4. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage

    Science.gov (United States)

    Sellou, Hafida; Lebeaupin, Théo; Chapuis, Catherine; Smith, Rebecca; Hegele, Anna; Singh, Hari R.; Kozlowski, Marek; Bultmann, Sebastian; Ladurner, Andreas G.; Timinszky, Gyula; Huet, Sébastien

    2016-01-01

    Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites, but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation. Finally, we demonstrate the involvement of Alc1, a poly(ADP-ribose)- and ATP-dependent remodeler, in the chromatin-relaxation process. Deletion of Alc1 impairs chromatin relaxation after DNA damage, while its overexpression strongly enhances relaxation. Altogether our results identify Alc1 as an important player in the fast kinetics of the NAD+- and ATP-dependent chromatin relaxation upon DNA damage in vivo. PMID:27733626

  5. Cracking the chromatin code: Precise rule of nucleosome positioning

    Science.gov (United States)

    Trifonov, Edward N.

    2011-03-01

    Various aspects of packaging DNA in eukaryotic cells are outlined in physical rather than biological terms. The informational and physical nature of packaging instructions encoded in DNA sequences is discussed with the emphasis on signal processing difficulties - very low signal-to-noise ratio and high degeneracy of the nucleosome positioning signal. As the author has been contributing to the field from its very onset in 1980, the review is mostly focused at the works of the author and his colleagues. The leading concept of the overview is the role of deformational properties of DNA in the nucleosome positioning. The target of the studies is to derive the DNA bendability matrix describing where along the DNA various dinucleotide elements should be positioned, to facilitate its bending in the nucleosome. Three different approaches are described leading to derivation of the DNA deformability sequence pattern, which is a simplified linear presentation of the bendability matrix. All three approaches converge to the same unique sequence motif CGRAAATTTYCG or, in binary form, YRRRRRYYYYYR, both representing the chromatin code.

  6. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    DEFF Research Database (Denmark)

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom;

    2011-01-01

    to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response...... element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3...

  7. Human sperm chromatin stabilization: a proposed model including zinc bridges.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2010-01-01

    The primary focus of this review is to challenge the current concepts on sperm chromatin stability. The observations (i) that zinc depletion at ejaculation allows a rapid and total sperm chromatin decondensation without the addition of exogenous disulfide cleaving agents and (ii) that the human sperm chromatin contains one zinc for every protamine for every turn of the DNA helix suggest an alternative model for sperm chromatin structure may be plausible. An alternative model is therefore proposed, that the human spermatozoon could at ejaculation have a rapidly reversible zinc dependent chromatin stability: Zn(2+) stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism, the formation of zinc bridges with protamine thiols of cysteine and potentially imidazole groups of histidine. Extraction of zinc enables two biologically totally different outcomes: immediate decondensation if chromatin fibers are concomitantly induced to repel (e.g. by phosphorylation in the ooplasm); otherwise freed thiols become committed into disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (normally the first expelled ejaculate fraction) represent the physiological situation. Extraction of chromatin zinc can be accomplished by the seminal vesicular fluid. Collection of the ejaculate in one single container causes abnormal contact between spermatozoa and seminal vesicular fluid affecting the sperm chromatin stability. There are men in infertile couples with low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to decreased access for the assay to the DNA in superstabilized chromatin.

  8. Dicentric chromosome stretching during anaphase reveals roles of Sir2/Ku in chromatin compaction in budding yeast.

    Science.gov (United States)

    Thrower, D A; Bloom, K

    2001-09-01

    We have used mitotic spindle forces to examine the role of Sir2 and Ku in chromatin compaction. Escherichia coli lac operator DNA was placed between two centromeres on a conditional dicentric chromosome in budding yeast cells and made visible by expression of a lac repressor-green fluorescent fusion protein. Centromeres on the same chromatid of a dicentric chromosome attach to opposite poles approximately 50% of the time, resulting in chromosome bridges during anaphase. In cells deleted for yKU70, yKU80, or SIR2, a 10-kb region of the dicentric chromosome stretched along the spindle axis to a length of 6 microm during anaphase. On spindle disassembly, stretched chromatin recoiled to the bud neck and was partitioned to mother and daughter cells after cytokinesis and cell separation. Chromatin immunoprecipitation revealed that Sir2 localizes to the lacO region in response to activation of the dicentric chromosome. These findings indicate that Ku and Sir proteins are required for proper chromatin compaction within regions of a chromosome experiencing tension or DNA damage. The association of Sir2 with the affected region suggests a direct role in this process, which may include the formation of heterochromatic DNA.

  9. Proper Time in Weyl space-time

    CERN Document Server

    Avalos, R; Romero, C

    2016-01-01

    We discuss the question of whether or not a general Weyl structure is a suitable mathematical model of space-time. This is an issue that has been in debate since Weyl formulated his unified field theory for the first time. We do not present the discussion from the point of view of a particular unification theory, but instead from a more general standpoint, in which the viability of such a structure as a model of space-time is investigated. Our starting point is the well known axiomatic approach to space-time given by Elhers, Pirani and Schild (EPS). In this framework, we carry out an exhaustive analysis of what is required for a consistent definition for proper time and show that such a definition leads to the prediction of the so-called "second clock effect". We take the view that if, based on experience, we were to reject space-time models predicting this effect, this could be incorporated as the last axiom in the EPS approach. Finally, we provide a proof that, in this case, we are led to a Weyl integrable ...

  10. Aeroservoelastic modeling with proper orthogonal decomposition

    Science.gov (United States)

    Carlson, Henry A.; Verberg, Rolf; Harris, Charles A.

    2017-02-01

    A physics-based, reduced-order, aeroservoelastic model of an F-18 aircraft has been developed using the method of proper orthogonal decomposition (POD), introduced to the field of fluid mechanics by Lumley. The model is constructed with data from high-dimensional, high-fidelity aeroservoelastic computational fluid dynamics (CFD-ASE) simulations that couple equations of motion of the flow to a modal model of the aircraft structure. Through POD modes, the reduced-order model (ROM) predicts both the structural dynamics and the coupled flow dynamics, offering much more information than typically employed, low-dimensional models based on system identification are capable of providing. ROM accuracy is evaluated through direct comparisons between predictions of the flow and structural dynamics with predictions from the parent, the CFD-ASE model. The computational overhead of the ROM is six orders of magnitude lower than that of the CFD-ASE model—accurately predicting the coupled dynamics from simulations of an F-18 fighter aircraft undergoing flutter testing over a wide range of transonic and supersonic flight speeds on a single processor in 1.073 s.

  11. Proper Treatment of Acute Mesenteric Ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Kwan; Han, Young Min [Dept. of Radiology, Chonbuk National University Hospital and School of Medicine, Jeonju (Korea, Republic of); Kwak, Hyo Sung [Research Institue of Clinical Medicine, Chonbuk National University Hospital and School of Medicine, Jeonju (Korea, Republic of); Yu, Hee Chul [Dept. of Radiology, Chonbuk National University Hospital and School of Medicine, Jeonju (Korea, Republic of)

    2011-10-15

    To evaluate the effectiveness of treatment options for Acute Mesenteric Ischemia and establish proper treatment guidelines. From January 2007 to May 2010, 14 patients (13 men and 1 woman, mean age: 52.1 years) with acute mesenteric ischemia were enrolled in this study. All of the lesions were detected by CT scan and angiography. Initially, 4 patients underwent conservative treatment. Eleven patients were managed by endovascular treatment. We evaluated the therapeutic success and survival rate of each patient. The causes of ischemia included thromboembolism in 6 patients and dissection in 8 patients. Nine patients showed bowel ischemia on CT scans, 4 dissection patients underwent conservative treatment, 3 patients had recurring symptoms, and 5 dissection patients underwent endovascular treatment. Overall success and survival rate was 100%. However, overall success was 83% and survival rate was 40% in the 6 thromboembolism patients. The choice of 20 hours as the critical time in which the procedure is ideally performed was statistically significant (p = 0.0476). A percutaneous endovascular procedure is an effective treatment for acute mesenteric ischemia, especially in patients who underwent treatment within 20 hours. However, further study and a long term follow-up are needed.

  12. Large-scale organization of ribosomal DNA chromatin is regulated by Tip5.

    Science.gov (United States)

    Zillner, Karina; Filarsky, Michael; Rachow, Katrin; Weinberger, Michael; Längst, Gernot; Németh, Attila

    2013-05-01

    The DNase I accessibility and chromatin organization of genes within the nucleus do correlate to their transcriptional activity. Here, we show that both serum starvation and overexpression of Tip5, a key regulator of ribosomal RNA gene (rDNA) repression, dictate DNase I accessibility, facilitate the association of rDNA with the nuclear matrix and thus regulate large-scale rDNA chromatin organization. Tip5 contains four AT-hooks and a TAM (Tip5/ARBP/MBD) domain, which were proposed to bind matrix-attachment regions (MARs) of the genome. Remarkably, the TAM domain of Tip5 functions as nucleolar localization and nuclear matrix targeting module, whereas AT-hooks do not mediate association with the nuclear matrix, but they are required for nucleolar targeting. These findings suggest a dual role for Tip5's AT-hooks and TAM domain, targeting the nucleolus and anchoring to the nuclear matrix, and suggest a function for Tip5 in the regulation of higher-order rDNA chromatin structure.

  13. Chromatin remodeling complexes in the assembly of long noncoding RNA-dependent nuclear bodies.

    Science.gov (United States)

    Kawaguchi, Tetsuya; Hirose, Tetsuro

    2015-01-01

    Paraspeckles are subnuclear structures that assemble on nuclear paraspeckle assembly transcript 1 (NEAT1) long noncoding (lnc)RNA. Paraspeckle formation requires appropriate NEAT1 biogenesis and subsequent assembly with multiple prion-like domain (PLD) containing RNA-binding proteins. We found that SWI/SNF chromatin remodeling complexes function as paraspeckle components that interact with paraspeckle proteins (PSPs) and NEAT1. SWI/SNF complexes play an essential role in paraspeckle formation that does not require their ATP-dependent chromatin remodeling activity. Instead, SWI/SNF complexes facilitate organization of the PSP interaction network required for intact paraspeckle assembly. SWI/SNF complexes may collectively bind multiple PSPs to recruit them onto NEAT1. SWI/SNF complexes are also required for Sat III (Satellite III) lncRNA-dependent formation of nuclear stress bodies under heat shock conditions. Organization of the lncRNA-dependent omega speckle in Drosophila also depends on the chromatin remodeling complex. These findings raise the possibility that a common mechanism controls the formation of lncRNA-dependent nuclear body architecture.

  14. Accessible chromatin structure permits factors Sp1 and Sp3 to regulate human TGFBI gene expression.

    Science.gov (United States)

    Lee, Jong-Joo; Park, Keunhee; Shin, Myeong Heon; Yang, Wook-Jin; Song, Min-Ji; Park, Joo-Hong; Yong, Tai-Soon; Kim, Eung Kweon; Kim, Hyoung-Pyo

    2011-06-03

    Transforming growth factor beta 1-induced (TGFBI) protein is an extracellular matrix (ECM) protein that is associated with other ECM proteins and functions as a ligand for various types of integrins. In this study, we investigated how human TGFBI expression is regulated in lung and breast cancer cells. We observed that the TGFBI promoter in A549 and MBA-MD-231 cells, which constitutively express TGFBI, existed in an open chromatin conformation associated with transcriptionally permissive histone modifications. Moreover, we found that TGFBI expression required Sp1 transcription elements that can bind transcription factors Sp1 and Sp3 in vitro. Occupancy of the TGFBI promoter by Sp1 and Sp3 in vivo was only observed in TGFBI-expressing cells, indicating that open chromatin conformation might facilitate the binding of Sp1 and Sp3 to the TGFBI promoter region. TGFBI promoter activity was impaired when Sp1 elements were mutated, but was increased when Sp1 or Sp3 factors was overexpressed. Furthermore, Sp1 inhibition in vivo by mithramycin A, as well as knockdown of Sp1 and/or Sp3 expression by short interfering RNA, significantly reduced TGFBI mRNA and protein levels. Thus, our data demonstrated that the expression of TGFBI is well correlated with chromatin conformation at the TGFBI promoter, and that factors Sp1 and Sp3 are the primary determinants for the control of constitutive expression of TGFBI gene. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation

    Directory of Open Access Journals (Sweden)

    Ill-Min Chung

    2016-09-01

    Full Text Available Proximity ligation assays such as circularized chromosome conformation capture and high-throughput chromosome capture assays have shed light on the structural organization of the interphase genome. Functional topologically associating domains (TADs that constitute the building blocks of genomic organization are disrupted and reconstructed during the cell cycle. Epigenetic memory, as well as the sequence of chromosomes, regulate TAD reconstitution. Sub-TAD domains that are invariant across cell types have been identified, and contacts between these domains, rather than looping, are speculated to drive chromatin folding. Replication domains are established simultaneously with TADs during the cell cycle and the two correlate well in terms of characteristic features, such as lamin association and histone modifications. CCCTC-binding factor (CTCF and cohesin cooperate across different cell types to regulate genes and genome organization. CTCF elements that demarcate TAD boundaries are commonly disrupted in cancer and promote oncogene activation. Chromatin looping facilitates interactions between distant promoters and enhancers, and the resulting enhanceosome complex promotes gene expression. Deciphering the chromatin tangle requires comprehensive integrative analyses of DNA- and protein-dependent factors that regulate genomic organization.

  16. Chromatin architecture and gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2004-01-01

    Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli.......Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli....

  17. A Broad Set of Chromatin Factors Influences Splicing

    Science.gov (United States)

    Allemand, Eric; Myers, Michael P.; Garcia-Bernardo, Jose; Harel-Bellan, Annick; Krainer, Adrian R.; Muchardt, Christian

    2016-01-01

    Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny. Finally, a direct assessment of the impact of chromatin on splicing using an in vitro co-transcriptional splicing assay with pre-mRNAs transcribed from a nucleosomal template, demonstrated that chromatin impacts nascent pre-mRNP in their competence for splicing. Altogether, our data show that numerous chromatin factors associated or not with the spliceosome can affect the outcome of splicing, possibly as a function of the local chromatin environment that by default interferes with the efficiency of splicing. PMID:27662573

  18. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging*♦

    Science.gov (United States)

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M.; Johnson, Aaron M.; Ren, Xiaojun

    2015-01-01

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes. PMID:26381410

  19. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging.

    Science.gov (United States)

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M; Johnson, Aaron M; Ren, Xiaojun

    2015-11-20

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.

  20. Data on the kinetics of in vitro assembled chromatin.

    Science.gov (United States)

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Schmidt, Andreas; Imhof, Axel

    2016-09-01

    Here, we use LC-MS/MS and SWATH-MS to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos (DREX). This system allows easy manipulation of distinct aspects of chromatin assembly such as post-translational histone modifications, the levels of histone chaperones and the concentration of distinct DNA binding factors. In total, 480 proteins have been quantified as chromatin enriched factors and their binding kinetics have been monitored in the time course of 15 min, 1 h and 4 h of chromatin assembly. The data accompanying the manuscript on this approach, Völker-Albert et al., 2016 "A quantitative proteomic analysis of in vitro assembled chromatin" [1], has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier submission number PRIDE: PXD002537 and PRIDE: PXD003445.

  1. Rules and regulation in the primary structure of chromatin.

    Science.gov (United States)

    Rando, Oliver J; Ahmad, Kami

    2007-06-01

    Wrapping DNA into a nucleosome influences factor binding to cognate sites, and thus the positions of nucleosomes in eukaryotic genomes contribute to gene regulation. Nucleosome positioning is influenced by DNA sequence, chromatin remodelers and non-histone chromatin factors, and genomic maps of nucleosomes are now being constructed. However, interpretation of these maps requires consideration of chromatin dynamics, as even some positioned nucleosomes appear subject to rapid unwinding and eviction. The dynamic properties of nucleosomes contribute to several processes, including gene regulation, mechanisms of transcription and the inheritance of chromatin states. Understanding the positions and dynamic behavior of nucleosomes promises to shed light on why transcription factors bind so many fewer sites than predicted, how histone variants may be targeted, and how chromatin states are delineated.

  2. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  3. Transcription upregulation via force-induced direct stretching of chromatin

    Science.gov (United States)

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-12-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.

  4. On the mechanochemical machinery underlying chromatin remodeling

    Science.gov (United States)

    Yusufaly, Tahir I.

    This dissertation discuss two recent efforts, via a unique combination of structural bioinformatics and density functional theory, to unravel some of the details concerning how molecular machinery within the eukaryotic cell nucleus controls chromatin architecture. The first, a study of the 5-methylation of cytosine in 5'-CG-3' : 5'-CG-3' base-pair steps, reveals that the methyl groups roughen the local elastic energy landscape of the DNA. This enhances the probability of the canonical B-DNA structure transitioning into the undertwisted A-like and overtwisted C-like forms seen in nucleosomes, or looped segments of DNA bound to histones. The second part focuses on the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. The arginine residues are ob- served to apply a tunable mechanical load to the backbone, enabling precision-controlled activation of DNA deformations.

  5. Chromatin modification and NBS1: their relationship in DNA double-strand break repair.

    Science.gov (United States)

    Saito, Yuichiro; Zhou, Hui; Kobayashi, Junya

    2016-01-01

    The importance of chromatin modification, including histone modification and chromatin remodeling, for DNA double-strand break (DSB) repair, as well as transcription and replication, has been elucidated. Phosphorylation of H2AX to γ-H2AX is one of the first responses following DSB detection, and this histone modification is important for the DSB damage response by triggering several events, including the accumulation of DNA damage response-related proteins and subsequent homologous recombination (HR) repair. The roles of other histone modifications such as acetylation, methylation and ubiquitination have also been recently clarified, particularly in the context of HR repair. NBS1 is a multifunctional protein that is involved in various DNA damage responses. Its recently identified binding partner RNF20 is an E3 ubiquitin ligase that facilitates the monoubiquitination of histone H2B, a process that is crucial for recruitment of the chromatin remodeler SNF2h to DSB damage sites. Evidence suggests that SNF2h functions in HR repair, probably through regulation of end-resection. Moreover, several recent reports have indicated that SNF2h can function in HR repair pathways as a histone remodeler and that other known histone remodelers can also participate in DSB damage responses. On the other hand, information about the roles of such chromatin modifications and NBS1 in non-homologous end joining (NHEJ) repair of DSBs and stalled fork-related damage responses is very limited; therefore, these aspects and processes need to be further studied to advance our understanding of the mechanisms and molecular players involved.

  6. Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kothandapani, Anbarasi [Department of Biochemistry and Cancer Biology, University of Toledo-Health Science Campus, Toledo, OH 43614 (United States); Gopalakrishnan, Kathirvel [Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614 (United States); Kahali, Bhaskar; Reisman, David [Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610 (United States); Patrick, Steve M., E-mail: Stephan.Patrick@utoledo.edu [Department of Biochemistry and Cancer Biology, University of Toledo-Health Science Campus, Toledo, OH 43614 (United States)

    2012-10-01

    Chromatin remodeling complex SWI/SNF plays important roles in many cellular processes including transcription, proliferation, differentiation and DNA repair. In this report, we investigated the role of SWI/SNF catalytic subunits Brg1 and Brm in the cellular response to cisplatin in lung cancer and head/neck cancer cells. Stable knockdown of Brg1 and Brm enhanced cellular sensitivity to cisplatin. Repair kinetics of cisplatin DNA adducts revealed that downregulation of Brg1 and Brm impeded the repair of both intrastrand adducts and interstrand crosslinks (ICLs). Cisplatin ICL-induced DNA double strand break repair was also decreased in Brg1 and Brm depleted cells. Altered checkpoint activation with enhanced apoptosis as well as impaired chromatin relaxation was observed in Brg1 and Brm deficient cells. Downregulation of Brg1 and Brm did not affect the recruitment of DNA damage recognition factor XPC to cisplatin DNA lesions, but affected ERCC1 recruitment, which is involved in the later stages of DNA repair. Based on these results, we propose that SWI/SNF chromatin remodeling complex modulates cisplatin cytotoxicity by facilitating efficient repair of the cisplatin DNA lesions. -- Highlights: Black-Right-Pointing-Pointer Stable knockdown of Brg1 and Brm enhances cellular sensitivity to cisplatin. Black-Right-Pointing-Pointer Downregulation of Brg1 and Brm impedes the repair of cisplatin intrastrand adducts and interstrand crosslinks. Black-Right-Pointing-Pointer Brg1 and Brm deficiency results in impaired chromatin relaxation, altered checkpoint activation as well as enhanced apoptosis. Black-Right-Pointing-Pointer Downregulation of Brg1 and Brm affects recruitment of ERCC1, but not XPC to cisplatin DNA lesions.

  7. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.

    Directory of Open Access Journals (Sweden)

    Asa Thibodeau

    2016-06-01

    Full Text Available Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1 building and visualizing chromatin interaction networks, 2 annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3 querying network components based on gene name or chromosome location, and 4 utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions.QuIN's web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/.

  8. Effect of DNA groove binder distamycin A upon chromatin structure.

    Directory of Open Access Journals (Sweden)

    Parijat Majumder

    Full Text Available BACKGROUND: Distamycin A is a prototype minor groove binder, which binds to B-form DNA, preferentially at A/T rich sites. Extensive work in the past few decades has characterized the binding at the level of double stranded DNA. However, effect of the same on physiological DNA, i.e. DNA complexed in chromatin, has not been well studied. Here we elucidate from a structural perspective, the interaction of distamycin with soluble chromatin, isolated from Sprague-Dawley rat. METHODOLOGY/PRINCIPAL FINDINGS: Chromatin is a hierarchical assemblage of DNA and protein. Therefore, in order to characterize the interaction of the same with distamycin, we have classified the system into various levels, according to the requirements of the method adopted, and the information to be obtained. Isothermal titration calorimetry has been employed to characterize the binding at the levels of chromatin, chromatosome and chromosomal DNA. Thermodynamic parameters obtained thereof, identify enthalpy as the driving force for the association, with comparable binding affinity and free energy for chromatin and chromosomal DNA. Reaction enthalpies at different temperatures were utilized to evaluate the change in specific heat capacity (ΔCp, which, in turn, indicated a possible binding associated structural change. Ligand induced structural alterations have been monitored by two complementary methods--dynamic light scattering, and transmission electron microscopy. They indicate compaction of chromatin. Using transmission electron microscopy, we have visualized the effect of distamycin upon chromatin architecture at di- and trinucleosome levels. Our results elucidate the simultaneous involvement of linker bending and internucleosomal angle contraction in compaction process induced by distamycin. CONCLUSIONS/SIGNIFICANCE: We summarize here, for the first time, the thermodynamic parameters for the interaction of distamycin with soluble chromatin, and elucidate its effect on

  9. SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development.

    Science.gov (United States)

    Lei, Ienglam; Gao, Xiaolin; Sham, Mai Har; Wang, Zhong

    2012-07-13

    ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation.

  10. SWI/SNF Protein Component BAF250a Regulates Cardiac Progenitor Cell Differentiation by Modulating Chromatin Accessibility during Second Heart Field Development*

    Science.gov (United States)

    Lei, Ienglam; Gao, Xiaolin; Sham, Mai Har; Wang, Zhong

    2012-01-01

    ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation. PMID:22621927

  11. Defining the multivalent functions of CTCF from chromatin state and three-dimensional chromatin interactions.

    Science.gov (United States)

    Lu, Yiming; Shan, Guangyu; Xue, Jiguo; Chen, Changsheng; Zhang, Chenggang

    2016-07-27

    CCCTC-binding factor (CTCF) is a multi-functional protein that is assigned various, even contradictory roles in the genome. High-throughput sequencing-based technologies such as ChIP-seq and Hi-C provided us the opportunity to assess the multivalent functions of CTCF in the human genome. The location of CTCF-binding sites with respect to genomic features provides insights into the possible roles of this protein. Here we present the first genome-wide survey and characterization of three important functions of CTCF: enhancer insulator, chromatin barrier and enhancer linker. We developed a novel computational framework to discover the multivalent functions of CTCF based on chromatin state and three-dimensional chromatin architecture. We applied our method to five human cell lines and identified ∼46 000 non-redundant CTCF sites related to the three functions. Disparate effects of these functions on gene expression were found and distinct genomic features of these CTCF sites were characterized in GM12878 cells. Finally, we investigated the cell-type specificities of CTCF sites related to these functions across five cell types. Our study provides new insights into the multivalent functions of CTCF in the human genome.

  12. High proper motion X-ray binaries from the Yale Southern Proper Motion Survey

    CERN Document Server

    Maccarone, Thomas J; Casetti-Dinescu, Dana I

    2014-01-01

    We discuss the results of cross-correlating catalogs of bright X-ray binaries with the Yale Southern Proper Motion catalog (version 4.0). Several objects already known to have large proper motions from Hipparcos are recovered. Two additional objects are found which show substantial proper motions, both of which are unusual in their X-ray properties. One is IGR J17544-2619, one of the supergiant fast X-ray transients. Assuming the quoted distances in the literature for this source of about 3 kpc are correct, this system has a peculiar velocity of about 275 km/sec -- greater than the velocity of a Keplerian orbit at its location of the Galaxy, and in line with the expectations formed from suggestions that the supergiant fast X-ray transients should be highly eccentric. We discuss the possibility that these objects may help explain the existence of short gamma-ray bursts outside the central regions of galaxies. The other is the source 2A~1822-371, which is a member of the small class of objects which are low mas...

  13. Proper Nouns in Translation: Should They Be Translated?

    Directory of Open Access Journals (Sweden)

    Rouhollah Zarei

    2014-11-01

    Full Text Available The translation of proper nouns is not as easy as that of other parts of speech as this is more challenging for certain reasons. The present article presents a descriptive study of proper nouns in translation, scrutinizing the challenges and exploring the solutions. Building on some scholars’ approach and suggestions from other researchers, the article clarifies the nature and problems of proper nouns in translation; it seeks to answer three questions: 1 Should proper nouns be translated? 2 What are the problems on the way of translation of the proper nouns? 3 How can the translator overcome such problems? Moreover, strategies applied by the researchers to make their translation easier are also discussed. It follows that translating proper nouns is not simple and there is little flexibility about translating proper nouns. Keywords: proper nouns, translation, strategies

  14. PREDICTION OF CHROMATIN STATES USING DNA SEQUENCE PROPERTIES

    KAUST Repository

    Bahabri, Rihab R.

    2013-06-01

    Activities of DNA are to a great extent controlled epigenetically through the internal struc- ture of chromatin. This structure is dynamic and is influenced by different modifications of histone proteins. Various combinations of epigenetic modification of histones pinpoint to different functional regions of the DNA determining the so-called chromatin states. How- ever, the characterization of chromatin states by the DNA sequence properties remains largely unknown. In this study we aim to explore whether DNA sequence patterns in the human genome can characterize different chromatin states. Using DNA sequence motifs we built binary classifiers for each chromatic state to eval- uate whether a given genomic sequence is a good candidate for belonging to a particular chromatin state. Of four classification algorithms (C4.5, Naive Bayes, Random Forest, and SVM) used for this purpose, the decision tree based classifiers (C4.5 and Random Forest) yielded best results among those we evaluated. Our results suggest that in general these models lack sufficient predictive power, although for four chromatin states (insulators, het- erochromatin, and two types of copy number variation) we found that presence of certain motifs in DNA sequences does imply an increased probability that such a sequence is one of these chromatin states.

  15. Determinants of Sir2-Mediated, Silent Chromatin Cohesion.

    Science.gov (United States)

    Chen, Yu-Fan; Chou, Chia-Ching; Gartenberg, Marc R

    2016-08-01

    Cohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion. In this study, we investigated the molecular basis for Sir2-mediated cohesion. We identified a cluster of charged surface residues of Sir2, collectively termed the EKDK motif, that are required for cohesin function. In addition, we demonstrated that Esc8, a Sir2-interacting factor, is also required for silent chromatin cohesion. Esc8 was previously shown to associate with Isw1, the enzymatic core of ISW1 chromatin remodelers, to form a variant of the ISW1a chromatin remodeling complex. When ESC8 was deleted or the EKDK motif was mutated, cohesin binding at silenced chromatin domains persisted but cohesion of the domains was abolished. The data are not consistent with cohesin embracing both sister chromatids within silent chromatin domains. Transcriptional silencing remains largely intact in strains lacking ESC8 or bearing EKDK mutations, indicating that silencing and cohesion are separable functions of Sir2 and silent chromatin.

  16. Fractal Characterization of Chromatin Decompaction in Live Cells.

    Science.gov (United States)

    Yi, Ji; Stypula-Cyrus, Yolanda; Blaha, Catherine S; Roy, Hemant K; Backman, Vadim

    2015-12-01

    Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy.

  17. Persistent Chromatin Modifications Induced by High Fat Diet.

    Science.gov (United States)

    Leung, Amy; Trac, Candi; Du, Juan; Natarajan, Rama; Schones, Dustin E

    2016-05-13

    Obesity is a highly heritable complex disease that results from the interaction of multiple genetic and environmental factors. Formerly obese individuals are susceptible to metabolic disorders later in life, even after lifestyle changes are made to mitigate the obese state. This is reminiscent of the metabolic memory phenomenon originally observed for persistent complications in diabetic patients, despite subsequent glycemic control. Epigenetic modifications represent a potential mediator of this observed memory. We previously demonstrated that a high fat diet leads to changes in chromatin accessibility in the mouse liver. The regions of greatest chromatin changes in accessibility are largely strain-dependent, indicating a genetic component in diet-induced chromatin alterations. We have now examined the persistence of diet-induced chromatin accessibility changes upon diet reversal in two strains of mice. We find that a substantial fraction of loci that undergo chromatin accessibility changes with a high fat diet remains in the remodeled state after diet reversal in C57BL/6J mice. In contrast, the vast majority of diet-induced chromatin accessibility changes in A/J mice are transient. Our data also indicate that the persistent chromatin accessibility changes observed in C57BL/6J mice are associated with specific transcription factors and histone post-translational modifications. The persistent loci identified here are likely to be contributing to the overall phenotype and are attractive targets for therapeutic intervention.

  18. Anti-chromatin antibodies in juvenile rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    V. Gerloni

    2011-09-01

    Full Text Available Objective: to evaluate the prevalence and clinical significance of anti-chromatin antibodies (Abs in juvenile rheumatoid arthritis (JRA. Methods: IgG anti-chromatin Abs were detected by an enzyme-linked immunosorbent assay (ELISA, in sera of 94 children with JRA (10 children with systemic, 38 with polyarticular and 46 with oligoarticular disease onset. As control group, 33 age- and-sex-matched healthy children (HC were also examined. Results: Abs to chromatin were detected in 24/94 (25,5% of children suffering from JRA. Particularly, the higher prevalence of anti-chromatin Abs has been found in children with oligoarticular (30,4% and polyarticular (23,7% onset JRA. In these groups Abs titers were significantly higher compared to systemic JRA and HC (p=0.003. Anti-chromatin Abs were observed more frequently in patients with oligoarticular disease and chronic uveitis (21,7%. Furthermore, higher levels of anti-chromatin Abs has been found in all the patients treated with anti-TNFα therapy (p<0.0001. Conclusions: our results confirm previous data about the prevalence of anti-chromatin Abs in JRA. These Abs were significantly higher in the group of patients with oligoarticular onset with past or present hystory of ocular involvement and in the group with polyarticular JRA treated with biologic therapy. A long-term follow-up study could be useful to evaluate the potential utility of these autoantibodies.

  19. Individual Bromodomains of Polybromo-1 Contribute to Chromatin Association and Tumor Suppression in Clear Cell Renal Carcinoma.

    Science.gov (United States)

    Porter, Elizabeth G; Dykhuizen, Emily C

    2017-02-17

    The architecture of chromatin is governed, in part, by ATP-dependent chromatin remodelers. These multiprotein complexes contain targeting domains that recognize post-translational marks on histones. One such targeting domain is the bromodomain (BD), which recognizes acetyl-lysines and recruits proteins to sites of acetylation across the genome. Polybromo1 (PBRM1), a subunit of the Polybromo-associated BRG1- or hBRM-associated factors (PBAF) chromatin remodeler, contains six tandem BDs and is frequently mutated in clear cell renal cell carcinoma (ccRCC). Mutations in the PBRM1 gene often lead to the loss of protein expression; however, missense mutations in PBRM1 have been identified and tend to cluster in the BDs, particularly BD2 and BD4, suggesting that individual BDs are critical for PBRM1 function. To study the role of these six BDs, we inactivated each of the six BDs of PBRM1 and re-expressed these mutants in Caki2 cells (ccRCC cells with the loss of function mutation in PBRM1). Four of the six BDs abrogated PBRM1 tumor suppressor function, gene regulation, and chromatin affinity with the degree of importance correlating strongly to the rate of missense mutations in patients. Furthermore, we identified BD2 as the most critical for PBRM1 and confirmed BD2-mediated association to histone H3 peptides acetylated at lysine 14 (H3K14Ac), validating the importance of this specific acetylation mark for PBRM1 binding. From these data, we conclude that four of the BDs act together to target PBRM1 to sites on chromatin; when a single BD is mutated, PBRM1 no longer controls gene expression properly, leading to increased cell proliferation.

  20. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    Science.gov (United States)

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  1. The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription–replication conflicts

    Science.gov (United States)

    Herrera-Moyano, Emilia; Mergui, Xénia; García-Rubio, María L.; Barroso, Sonia; Aguilera, Andrés

    2014-01-01

    FACT (facilitates chromatin transcription) is a chromatin-reorganizing complex that swaps nucleosomes around the RNA polymerase during transcription elongation and has a role in replication that is not fully understood yet. Here we show that recombination factors are required for the survival of yeast FACT mutants, consistent with an accumulation of DNA breaks that we detected by Rad52 foci and transcription-dependent hyperrecombination. Breaks also accumulate in FACT-depleted human cells, as shown by γH2AX foci and single-cell electrophoresis. Furthermore, FACT-deficient yeast and human cells show replication impairment, which in yeast we demonstrate by ChIP–chip (chromatin immunoprecipitation [ChIP] coupled with microarray analysis) of Rrm3 to occur genome-wide but preferentially at highly transcribed regions. Strikingly, in yeast FACT mutants, high levels of Rad52 foci are suppressed by RNH1 overexpression; R loops accumulate at high levels, and replication becomes normal when global RNA synthesis is inhibited in FACT-depleted human cells. The results demonstrate a key function of FACT in the resolution of R-loop-mediated transcription–replication conflicts, likely associated with a specific chromatin organization. PMID:24636987

  2. The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription-replication conflicts.

    Science.gov (United States)

    Herrera-Moyano, Emilia; Mergui, Xénia; García-Rubio, María L; Barroso, Sonia; Aguilera, Andrés

    2014-04-01

    FACT (facilitates chromatin transcription) is a chromatin-reorganizing complex that swaps nucleosomes around the RNA polymerase during transcription elongation and has a role in replication that is not fully understood yet. Here we show that recombination factors are required for the survival of yeast FACT mutants, consistent with an accumulation of DNA breaks that we detected by Rad52 foci and transcription-dependent hyperrecombination. Breaks also accumulate in FACT-depleted human cells, as shown by γH2AX foci and single-cell electrophoresis. Furthermore, FACT-deficient yeast and human cells show replication impairment, which in yeast we demonstrate by ChIP-chip (chromatin immunoprecipitation [ChIP] coupled with microarray analysis) of Rrm3 to occur genome-wide but preferentially at highly transcribed regions. Strikingly, in yeast FACT mutants, high levels of Rad52 foci are suppressed by RNH1 overexpression; R loops accumulate at high levels, and replication becomes normal when global RNA synthesis is inhibited in FACT-depleted human cells. The results demonstrate a key function of FACT in the resolution of R-loop-mediated transcription-replication conflicts, likely associated with a specific chromatin organization.

  3. Transcriptional regulation by histone modifications: towards a theory of chromatin re-organization during stem cell differentiation.

    Science.gov (United States)

    Binder, Hans; Steiner, Lydia; Przybilla, Jens; Rohlf, Thimo; Prohaska, Sonja; Galle, Jörg

    2013-04-01

    Chromatin-related mechanisms, as e.g. histone modifications, are known to be involved in regulatory switches within the transcriptome. Only recently, mathematical models of these mechanisms have been established. So far they have not been applied to genome-wide data. We here introduce a mathematical model of transcriptional regulation by histone modifications and apply it to data of trimethylation of histone 3 at lysine 4 (H3K4me3) and 27 (H3K27me3) in mouse pluripotent and lineage-committed cells. The model describes binding of protein complexes to chromatin which are capable of reading and writing histone marks. Molecular interactions of the complexes with DNA and modified histones create a regulatory switch of transcriptional activity. The regulatory states of the switch depend on the activity of histone (de-) methylases, the strength of complex-DNA-binding and the number of nucleosomes capable of cooperatively contributing to complex-binding. Our model explains experimentally measured length distributions of modified chromatin regions. It suggests (i) that high CpG-density facilitates recruitment of the modifying complexes in embryonic stem cells and (ii) that re-organization of extended chromatin regions during lineage specification into neuronal progenitor cells requires targeted de-modification. Our approach represents a basic step towards multi-scale models of transcriptional control during development and lineage specification.

  4. Nucleosome positioning and composition modulate in silico chromatin flexibility

    Science.gov (United States)

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-02-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ˜150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  5. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    Science.gov (United States)

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  6. Learning facilitating leadership

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2016-01-01

    in teaching facilitation and the literature. These types of skills are most effectively acquired by combining conceptual lectures, classroom exercises and the facilitation of groups in a real-life context. The paper also reflects certain ‘shadow sides’ related to facilitation observed by the students...

  7. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Tuoqi Liu

    2016-05-01

    Full Text Available According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.

  8. Sperm chromatin structure and male fertility: biological and clinical aspects

    Institute of Scientific and Technical Information of China (English)

    J. Erenpreiss; M. Spano; J. Erenpreisa; M. Bungum; A. Giwercman

    2006-01-01

    Aim: Sperm chromatin/DNA integrity is essential for the accurate transmission of paternal genetic information, and normal sperm chromatin structure is important for sperm fertilizing ability. The routine examination of semen, which includes sperm concentration, motility and morphology, does not identify defects in sperm chromatin structure. The origin of sperm DNA damage and a variety of methods for its assessment are described. Evaluation of sperm DNA damage appears to be a useful tool for assessing male fertility potential both in vivo and in vitro. The possible impact of sperm DNA defects on the offspring is also discussed.

  9. Chromatin regulation at the frontier of synthetic biology

    Science.gov (United States)

    Keung, Albert J.; Joung, J. Keith; Khalil, Ahmad S.; Collins, James J.

    2016-01-01

    As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including `epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication. PMID:25668787

  10. Fifty hertz magnetic fields individually affect chromatin conformation in human lymphocytes: dependence on amplitude, temperature, and initial chromatin state.

    Science.gov (United States)

    Sarimov, Ruslan; Alipov, Eugene D; Belyaev, Igor Y

    2011-10-01

    Effects of magnetic field (MF) at 50 Hz on chromatin conformation were studied by the method of anomalous viscosity time dependence (AVTD) in human lymphocytes from two healthy donors. MF within the peak amplitude range of 5-20 µT affected chromatin conformation. These MF effects differed significantly between studied donors, and depended on magnetic flux density and initial condensation of chromatin. While the initial state of chromatin was rather stable in one donor during one calendar year of measurements, the initial condensation varied significantly in cells from another donor. Both this variation and the MF effect depended on temperature during exposure. Despite these variations, the general rule was that MF condensed the relaxed chromatin and relaxed the condensed chromatin. Thus, in this study we show that individual effects of 50 Hz MF exposure at peak amplitudes within the range of 5-20 µT may be observed in human lymphocytes in dependence on the initial state of chromatin and temperature. Copyright © 2011 Wiley-Liss, Inc.

  11. Characterizations of Graphs Having Large Proper Connection Numbers

    Directory of Open Access Journals (Sweden)

    Lumduanhom Chira

    2016-05-01

    Full Text Available Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. If P is a proper u − v path of length d(u, v, then P is a proper u − v geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u, v of distinct vertices of G are connected by a proper u − v path in G, and c is a strong proper-path coloring if every two vertices u and v are connected by a proper u− v geodesic in G. The minimum number of colors required for a proper-path coloring or strong proper-path coloring of G is called the proper connection number pc(G or strong proper connection number spc(G of G, respectively. If G is a nontrivial connected graph of size m, then pc(G ≤ spc(G ≤ m and pc(G = m or spc(G = m if and only if G is the star of size m. In this paper, we determine all connected graphs G of size m for which pc(G or spc(G is m − 1,m − 2 or m − 3.

  12. Chromatin remodelling and the Arabidopsis biological clock.

    Science.gov (United States)

    Más, Paloma

    2008-02-01

    Plants, as sessile organisms, rely on accurate time measurement to synchronize their physiology and development to the most favourable time-of-day or time-of-year. The biological clock is the endogenous mechanism responsible for the integration of the photoperiodic information thus coordinating metabolism in resonance with the environmental cycle. Despite the importance of circadian clock function in plant reproduction and survival, we are still far from understanding the specific molecular mechanisms governing the rhythmic expression of clock components. Recently, we have described a new mechanism of circadian regulation that involves changes in chromatin structure at the TOC1 (TIMING OF CAB EXPRESSION 1) locus. The mechanism is defined by activators and repressors that are precisely coordinated to favor a hyper- or hypo-acetylated state of histones that leads to TOC1 transcriptional activation or repression, respectively. The clockcontrolled rhythms in histone acetylation/deacetylation at the TOC1 promoter are differentially modulated by day-length or photoperiod suggesting a mechanism by which plants ensure the phase of entrainment in physiological and developmental outputs.

  13. Lamin C and chromatin organization in Drosophila

    Indian Academy of Sciences (India)

    B. V. Gurudatta; L. S. Shashidhara; Veena K. Parnaik

    2010-04-01

    Drosophila lamin C (LamC) is a developmentally regulated component of the nuclear lamina. The lamC gene is situated in the fifth intron of the essential gene tout velu (ttv). We carried out genetic analysis of lamC during development. Phenotypic analyses of RNAi-mediated downregulation of lamC expression as well as targeted misexpression of lamin C suggest a role for lamC in cell survival. Of particular interest in the context of laminopathies is the caspase-dependent apoptosis induced by the overexpression of lamin C. Interestingly, misexpression of lamin C in the central nervous system, where it is not normally expressed, did not affect organization of the nuclear lamina. lamC mutant alleles suppressed position effect variegation normally displayed at near-centromeric and telomeric regions. Further, both downregulation and misexpression of lamin C affected the distribution of heterochromatin protein 1. Our results suggest that Drosophila lamC has a tissue-specific role during development and is required for chromatin organization.

  14. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells

    Science.gov (United States)

    Lim, Daniel A.; Huang, Yin-Cheng; Swigut, Tomek; Mirick, Anika L.; Garcia-Verdugo, Jose Manuel; Wysocka, Joanna; Ernst, Patricia; Alvarez-Buylla, Arturo

    2013-01-01

    Epigenetic mechanisms that maintain neurogenesis throughout adult life remain poorly understood1. Trithorax group (trxG) and Polycomb group (PcG) gene products are part of an evolutionarily conserved chromatin remodelling system that activate or silence gene expression, respectively2. Although PcG member Bmi1 has been shown to be required for postnatal neural stem cell self-renewal3,4, the role of trxG genes remains unknown. Here we show that the trxG member Mll1 (mixed-lineage leukaemia 1) is required for neurogenesis in the mouse postnatal brain. Mll1-deficient subventricular zone neural stem cells survive, proliferate and efficiently differentiate into glial lineages; however, neuronal differentiation is severely impaired. In Mll1-deficient cells, early proneural Mash1 (also known as Ascl1) and gliogenic Olig2 expression are preserved, but Dlx2, a key downstream regulator of subventricular zone neurogenesis, is not expressed. Over-expression of Dlx2 can rescue neurogenesis in Mll1-deficient cells. Chromatin immunoprecipitation demonstrates that Dlx2 is a direct target of MLL in subventricular zone cells. In differentiating wild-type subventricular zone cells, Mash1, Olig2 and Dlx2 loci have high levels of histone 3 trimethylated at lysine 4 (H3K4me3), consistent with their transcription. In contrast, in Mll1-deficient subventricular zone cells, chromatin at Dlx2 is bivalently marked by both H3K4me3 and histone 3 trimethylated at lysine 27 (H3K27me3), and the Dlx2 gene fails to properly activate. These data support a model in which Mll1 is required to resolve key silenced bivalent loci in postnatal neural precursors to the actively transcribed state for the induction of neurogenesis, but not for gliogenesis. PMID:19212323

  15. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Baccarini, Leticia; Martínez-Montañés, Fernando; Rossi, Silvia; Proft, Markus; Portela, Paula

    2015-11-01

    Gene expression regulation by intracellular stimulus-activated protein kinases is essential for cell adaptation to environmental changes. There are three PKA catalytic subunits in Saccharomyces cerevisiae: Tpk1, Tpk2, and Tpk3 and one regulatory subunit: Bcy1. Previously, it has been demonstrated that Tpk1 and Tpk2 are associated with coding regions and promoters of target genes in a carbon source and oxidative stress dependent manner. Here we studied five genes, ALD6, SED1, HSP42, RPS29B, and RPL1B whose expression is regulated by saline stress. We found that PKA catalytic and regulatory subunits are associated with both coding regions and promoters of the analyzed genes in a stress dependent manner. Tpk1 and Tpk2 recruitment was completely abolished in catalytic inactive mutants. BCY1 deletion changed the binding kinetic to chromatin of each Tpk isoform and this strain displayed a deregulated gene expression in response to osmotic stress. In addition, yeast mutants with high PKA activity exhibit sustained association to target genes of chromatin-remodeling complexes such as Snf2-catalytic subunit of the SWI/SNF complex and Arp8-component of INO80 complex, leading to upregulation of gene expression during osmotic stress. Tpk1 accumulation in the nucleus was stimulated upon osmotic stress, while the nuclear localization of Tpk2 and Bcy1 showed no change. We found that each PKA subunit is transported into the nucleus by a different β-karyopherin pathway. Moreover, β-karyopherin mutant strains abolished the chromatin association of Tpk1 or Tpk2, suggesting that nuclear localization of PKA catalytic subunits is required for its association to target genes and properly gene expression.

  16. Chromatin remodeling and cancer, Part I: Covalent histone modifications.

    Science.gov (United States)

    Wang, Gang G; Allis, C David; Chi, Ping

    2007-09-01

    Dynamic chromatin remodeling underlies many, if not all, DNA-templated biological processes, including gene transcription; DNA replication and repair; chromosome condensation; and segregation and apoptosis. Disruption of these processes has been linked to the development and progression of cancer. The mechanisms of dynamic chromatin remodeling include the use of covalent histone modifications, histone variants, ATP-dependent complexes and DNA methylation. Together, these mechanisms impart variation into the chromatin fiber, and this variation gives rise to an 'epigenetic landscape' that extends the biological output of DNA alone. Here, we review recent advances in chromatin remodeling, and pay particular attention to mechanisms that appear to be linked to human cancer. Where possible, we discuss the implications of these advances for disease-management strategies.

  17. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  18. Insights into Chromatin Structure and Dynamics in Plants

    Directory of Open Access Journals (Sweden)

    Stefanie Rosa

    2013-11-01

    Full Text Available The packaging of chromatin into the nucleus of a eukaryotic cell requires an extraordinary degree of compaction and physical organization. In recent years, it has been shown that this organization is dynamically orchestrated to regulate responses to exogenous stimuli as well as to guide complex cell-type-specific developmental programs. Gene expression is regulated by the compartmentalization of functional domains within the nucleus, by distinct nucleosome compositions accomplished via differential modifications on the histone tails and through the replacement of core histones by histone variants. In this review, we focus on these aspects of chromatin organization and discuss novel approaches such as live cell imaging and photobleaching as important tools likely to give significant insights into our understanding of the very dynamic nature of chromatin and chromatin regulatory processes. We highlight the contribution plant studies have made in this area showing the potential advantages of plants as models in understanding this fundamental aspect of biology.

  19. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  20. Neutron scattering studies on chromatin higher-order structure

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  1. Control of chromatin structure by long noncoding RNA

    Science.gov (United States)

    Böhmdorfer, Gudrun; Wierzbicki, Andrzej T.

    2015-01-01

    Long noncoding RNA (lncRNA) is a pivotal factor regulating various aspects of genome activity. Genome regulation via DNA methylation and posttranslational histone modifications is a well-documented function of lncRNA in plants, fungi, and animals. Here, we summarize evidence showing that lncRNA also controls chromatin structure including nucleosome positioning and chromosome looping. We focus on data from plant experimental systems, discussed in the context of other eukaryotes. We explain the mechanisms of lncRNA-controlled chromatin remodeling and the implications of the functional interplay between noncoding transcription and several different chromatin remodelers. We propose that the unique properties of RNA make it suitable for controlling chromatin modifications and structure. PMID:26410408

  2. R-loop: an emerging regulator of chromatin dynamics

    Institute of Scientific and Technical Information of China (English)

    Qais Al-Hadid; Yanzhong Yang

    2016-01-01

    The dynamic structure of chromatin,which exists in two conformational states:heterochromatin and euchromatin,alters the accessibility of the DNA to regulatory factors during transcription,replication,recombination,and DNA damage repair.Chemical modifications of histones and DNA,as well as adenosine triphospahate-dependent nucleosome remodeling,have been the major focus of research on chromatin dynamics over the past two decades.However,recent studies using a DNA-RNA hybrid-specific antibody and next-generation seque,ncing approaches have revealed that the formation of R-loops,one of the most common non-canonical DNA structures,is an emerging regulator of chromatin states.This review focuses on recent insights into the interplay between R-loop formation and the epigenetic modifications of chromatin in normal and disease states.

  3. Probing flagellar promoter occupancy in wild-type and mutant Caulobacter crescentus by chromatin immunoprecipitation.

    Science.gov (United States)

    Davis, Nicole J; Viollier, Patrick H

    2011-06-01

    In the asymmetric predivisional cell of Caulobacter crescentus, TipF and TipN mark the cellular pole for future flagellar development. TipF is essential for motility and contains a cyclic-di-GMP phosphodiesterase-like (EAL) domain that is necessary for proper function. TipN is localized to the flagellar pole before TipF and is essential for the proper placement of the flagellum in C. crescentus. Using β-galactosidase promoter-probe assays and quantitative chromatin immunoprecipitation, we investigated the influence of the C. crescentus flagellar assembly regulator TipF on flagellar gene transcription. We compared the transcriptional activity of class II-fliF-lacZ, class III-flgE-lacZ, and class IV-fljL-lacZ fusions in a ΔtipF mutant with that of other flagellar mutants and the wild-type strain. We subsequently verified the in vivo occupancy of the fliF, flgE, and fljL flagellar promoters by the flagellar regulators CtrA, FlbD, and FliX in addition to RNA polymerase. We deduce that TipF contributes to proper expression of flagellar genes in C. crescentus by acting both within and outside of the canonical flagellar gene expression hierarchy.

  4. Slovenian proper names designing living beings and geographical proper names, in tourist brochures and informative booklets translated into French

    Directory of Open Access Journals (Sweden)

    Alenka Paternoster

    2011-12-01

    Full Text Available The article analyses French translations of Slovenian proper names in tourist bro chures and booklets published by the Slovenian Tourist Board and the Government of the Republic of Slovenia, Public Relations and Promotion Office. We analysed the names of living beings (the group of names was expected to be less numerous and above all geographical proper names. While we did not notice any bigger problems when translating proper names of living beings, the same can be said for one word geographical proper names. The opposite holds true for multiword geographical proper names. As we believe that tourist brochures play an important role in representing the coun try abroad, we would expect translators be given more detailed guidelines as far as trans lation of proper names is concerned. We hope that the present article brings forth the hard nuts of translating proper names in a manner to encourage the creation of such guidelines.

  5. The RSC Chromatin Remodeling Complex Bears an Essential Fungal-Specific Protein Module With Broad Functional Roles

    OpenAIRE

    Wilson, Boris; Erdjument-Bromage, Hediye; Tempst, Paul; Bradley R Cairns

    2006-01-01

    RSC is an essential and abundant ATP-dependent chromatin remodeling complex from Saccharomyces cerevisiae. Here we show that the RSC components Rsc7/Npl6 and Rsc14/Ldb7 interact physically and/or functionally with Rsc3, Rsc30, and Htl1 to form a module important for a broad range of RSC functions. A strain lacking Rsc7 fails to properly assemble RSC, which confers sensitivity to temperature and to agents that cause DNA damage, microtubule depolymerization, or cell wall stress (likely via tran...

  6. Ectopically tethered CP190 induces large-scale chromatin decondensation

    Science.gov (United States)

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.

  7. Minor groove binder distamycin remodels chromatin but inhibits transcription.

    Directory of Open Access Journals (Sweden)

    Parijat Majumder

    Full Text Available The condensed structure of chromatin limits access of cellular machinery towards template DNA. This in turn represses essential processes like transcription, replication, repair and recombination. The repression is alleviated by a variety of energy dependent processes, collectively known as "chromatin remodeling". In a eukaryotic cell, a fine balance between condensed and de-condensed states of chromatin helps to maintain an optimum level of gene expression. DNA binding small molecules have the potential to perturb such equilibrium. We present herein the study of an oligopeptide antibiotic distamycin, which binds to the minor groove of B-DNA. Chromatin mobility assays and circular dichroism spectroscopy have been employed to study the effect of distamycin on chromatosomes, isolated from the liver of Sprague-Dawley rats. Our results show that distamycin is capable of remodeling both chromatosomes and reconstituted nucleosomes, and the remodeling takes place in an ATP-independent manner. Binding of distamycin to the linker and nucleosomal DNA culminates in eviction of the linker histone and the formation of a population of off-centered nucleosomes. This hints at a possible corkscrew type motion of the DNA with respect to the histone octamer. Our results indicate that distamycin in spite of remodeling chromatin, inhibits transcription from both DNA and chromatin templates. Therefore, the DNA that is made accessible due to remodeling is either structurally incompetent for transcription, or bound distamycin poses a roadblock for the transcription machinery to advance.

  8. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes.

    Science.gov (United States)

    Wippo, Christian J; Israel, Lars; Watanabe, Shinya; Hochheimer, Andreas; Peterson, Craig L; Korber, Philipp

    2011-04-01

    Nucleosomes impede access to DNA. Therefore, nucleosome positioning is fundamental to genome regulation. Nevertheless, the molecular nucleosome positioning mechanisms are poorly understood. This is partly because in vitro reconstitution of in vivo-like nucleosome positions from purified components is mostly lacking, barring biochemical studies. Using a yeast extract in vitro reconstitution system that generates in vivo-like nucleosome patterns at S. cerevisiae loci, we find that the RSC chromatin remodelling enzyme is necessary for nucleosome positioning. This was previously suggested by genome-wide in vivo studies and is confirmed here in vivo for individual loci. Beyond the limitations of conditional mutants, we show biochemically that RSC functions directly, can be sufficient, but mostly relies on other factors to properly position nucleosomes. Strikingly, RSC could not be replaced by either the closely related SWI/SNF or the Isw2 remodelling enzyme. Thus, we pinpoint that nucleosome positioning specifically depends on the unique properties of the RSC complex.

  9. Upgrading the GSI beamline microscope with a confocal fluorescence lifetime scanner to monitor charged particle induced chromatin decondensation in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Elham; Taucher-Scholz, Gisela [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Durante, Marco [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Institute for Condensed Matter Physics, Darmstadt University of Technology, 64289 Darmstadt (Germany); Jakob, Burkhard, E-mail: B.Jakob@gsi.de [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany)

    2015-12-15

    We report the upgrade of the GSI beamline microscope coupled to the linear accelerator UNILAC by a confocal FLIM scanner utilizing time correlated single photon counting technique (TCSPC). The system can now be used to address the radiation induced chromatin decondensation in more detail and with higher sensitivity compared to intensity based methods. This decondensation of heterochromatic areas is one of the early DNA damage responses observed after charged particle irradiation and might facilitate the further processing of the induced lesions. We describe here the establishment of different DNA dyes as chromatin compaction probes usable for quantification of the DNA condensation status in living cells utilizing lifetime imaging. In addition, we find an evidence of heterochromatic chromatin decondensation in ion irradiated murine chromocenters detected after subsequent fixation using FLIM measurements.

  10. Learning facilitating leadership

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2016-01-01

    This paper explains how engineering students at a Danish university acquired the necessary skills to become emergent facilitators of organisational development. The implications of this approach are discussed and related to relevant viewpoints and findings in the literature. The methodology deplo....... By connecting the literature, the authors’ and engineering students’ reflections on facilitator skills, this paper adds value to existing academic and practical discussions on learning facilitating leadership....

  11. Visual explorer facilitator's guide

    CERN Document Server

    Palus, Charles J

    2010-01-01

    Grounded in research and practice, the Visual Explorer™ Facilitator's Guide provides a method for supporting collaborative, creative conversations about complex issues through the power of images. The guide is available as a component in the Visual Explorer Facilitator's Letter-sized Set, Visual Explorer Facilitator's Post card-sized Set, Visual Explorer Playing Card-sized Set, and is also available as a stand-alone title for purchase to assist multiple tool users in an organization.

  12. Chromatin domains and prediction of MAR sequences.

    Science.gov (United States)

    Boulikas, T

    1995-01-01

    Polynuceosomes are constrained into loops or domains and are insulated from the effects of chromatin structure and torsional strain from flanking domains by the cross-complexation of matrix-attached regions (MARs) and matrix proteins. MARs or SARs have an average size of 500 bp, are spaced about every 30 kb, and are control elements maintaining independent realms of gene activity. A fraction of MARs may cohabit with core origin replication (ORIs) and another fraction might cohabit with transcriptional enhancers. DNA replication, transcription, repair, splicing, and recombination seem to take place on the nuclear matrix. Classical AT-rich MARs have been proposed to anchor the core enhancers and core origins complexed with low abundancy transcription factors to the nuclear matrix via the cooperative binding to MARs of abundant classical matrix proteins (topoisomerase II, histone H1, lamins, SP120, ARBP, SATB1); this creates a unique nuclear microenvironment rich in regulatory proteins able to sustain transcription, replication, repair, and recombination. Theoretical searches and experimental data strongly support a model of activation of MARs and ORIs by transcription factors. A set of 21 characteristics are deduced or proposed for MAR/ORI sequences including their enrichment in inverted repeats, AT tracts, DNA unwinding elements, replication initiator protein sites, homooligonucleotide repeats (i.e., AAA, TTT, CCC), curved DNA, DNase I-hypersensitive sites, nucleosome-free stretches, polypurine stretches, and motifs with a potential for left-handed and triplex structures. We are establishing Banks of ORI and MAR sequences and have undertaken a large project of sequencing a large number of MARs in an effort to determine classes of DNA sequences in these regulatory elements and to understand their role at the origins of replication and transcriptional enhancers.

  13. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  14. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA.

    Science.gov (United States)

    Sirbu, Bianca M; Couch, Frank B; Cortez, David

    2012-03-01

    Understanding the processes of DNA replication, chromatin assembly and maturation, and the replication stress response requires the ability to monitor protein dynamics at active and damaged replication forks. Detecting protein accumulation at replication forks or damaged sites has primarily relied on immunofluorescence imaging, which is limited in resolution and antibody sensitivity. Here we describe a procedure to isolate proteins on nascent DNA (iPOND) that permits a high-resolution spatiotemporal analysis of proteins at replication forks or on chromatin following DNA replication in cultured cells. iPOND relies on labeling of nascent DNA with the nucleoside analog 5-ethynyl-2'-deoxyuridine (EdU). Biotin conjugation to EdU-labeled DNA using click chemistry facilitates a single-step streptavidin purification of proteins bound to the nascent DNA. iPOND permits an interrogation of any cellular process linked to DNA synthesis using a 3- to 4-d protocol.

  15. Proper Time for Spin 1/2 Particles

    CERN Document Server

    Kudaka, S; Kudaka, Shoju; Matsumoto, Shuichi

    2005-01-01

    We find a quantum mechanical formulation of proper time for spin 1/2 particles within the framework of the Dirac theory. It is shown that the rate of proper time can be represented by an operator called the ` ` tempo operator'', and that the proper time itself be given by the integral of the expectation value of the operator. The tempo operator has some terms involving the Pauli spin matrices, and the evolution of the proper time is influenced by the spin state via these terms. The relation between the tempo operator and the metric tensor is elucidated.

  16. An Algorithm for Variable-Length Proper-Name Compression

    Directory of Open Access Journals (Sweden)

    James L. Dolby

    1970-12-01

    Full Text Available Viable on-line search systems require reasonable capabilities to automatically detect (and hopefully correct variations between request format and stored format. An important requirement is the solution of the problem of matching proper names, not only because both input specifications and storage specifications are subject to error, but also because various transliteration schemes exist and can provide variant proper name forms in the same data base. This paper reviews several proper name matching schemes and provides an updated version of these schemes which tests out nicely on the proper name equivalence classes of a suburban telephone book. An appendix lists the corpus of names used for algorithm test.

  17. Notes on a "printomere" mechanism of cellular memory and ion regulation of chromatin configurations.

    Science.gov (United States)

    Olovnikov, A M

    1999-12-01

    with chromatin proteins is able to pass over the replicative forks during printomere replication and replication of the chromosome. That is why any printomere can be stably retained on the chromosomal body in the course of numerous cell divisions. Owing to printomeres, cellular memory about the proper structure of chromatin decompactions is created, kept, and can be carried through the succession of doublings of differentiated cells.

  18. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    Science.gov (United States)

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  19. PML bodies provide an important platform for the maintenance of telomeric chromatin integrity in embryonic stem cells.

    Science.gov (United States)

    Chang, Fiona T M; McGhie, James D; Chan, F Lyn; Tang, Michelle C; Anderson, Melissa A; Mann, Jeffrey R; Andy Choo, K H; Wong, Lee H

    2013-04-01

    We have previously shown that α-thalassemia mental retardation X-linked (ATRX) and histone H3.3 are key regulators of telomeric chromatin in mouse embryonic stem cells. The function of ATRX and H3.3 in the maintenance of telomere chromatin integrity is further demonstrated by recent studies that show the strong association of ATRX/H3.3 mutations with alternative lengthening of telomeres in telomerase-negative human cancer cells. Here, we demonstrate that ATRX and H3.3 co-localize with the telomeric DNA and associated proteins within the promyelocytic leukemia (PML) bodies in mouse ES cells. The assembly of these telomere-associated PML bodies is most prominent at S phase. RNA interference (RNAi)-mediated knockdown of PML expression induces the disassembly of these nuclear bodies and a telomere dysfunction phenotype in mouse ES cells. Loss of function of PML bodies in mouse ES cells also disrupts binding of ATRX/H3.3 and proper establishment of histone methylation pattern at the telomere. Our study demonstrates that PML bodies act as epigenetic regulators by serving as platforms for the assembly of the telomeric chromatin to ensure a faithful inheritance of epigenetic information at the telomere.

  20. Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization.

    Science.gov (United States)

    Emelyanov, Alexander V; Rabbani, Joshua; Mehta, Monika; Vershilova, Elena; Keogh, Michael C; Fyodorov, Dmitry V

    2014-09-15

    Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine-DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32-null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32, Nlp, and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells.

  1. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin

    Science.gov (United States)

    Zhen, Chao Yu; Tatavosian, Roubina; Huynh, Thao Ngoc; Duc, Huy Nguyen; Das, Raibatak; Kokotovic, Marko; Grimm, Jonathan B; Lavis, Luke D; Lee, Jun; Mejia, Frances J; Li, Yang; Yao, Tingting; Ren, Xiaojun

    2016-01-01

    The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes. DOI: http://dx.doi.org/10.7554/eLife.17667.001 PMID:27723458

  2. The challenges of facilitation

    DEFF Research Database (Denmark)

    Agger, Annika

    and at the same time make closures in order to secure progress in the process? The analysis draws upon theoretical perspectives on deliberative democracy and facilitation. Whereas, the scholarly literature on deliberative democracy is rich in describing potential outcomes and criteria for deliberative processes...... hours transcriptions of three table deliberations; questionnaires of 91 participants, 2 focus group interviews with participants and facilitators....

  3. Training facilitators and supervisors

    DEFF Research Database (Denmark)

    Kjær, Louise Binow; O Connor, Maja; Krogh, Kristian;

    At the Master’s program in Medicine at Aarhus University, Denmark, we have developed a faculty development program for facilitators and supervisors in 4 progressing student modules in communication, cooperation, and leadership. 1) A course for module 1 and 3 facilitators inspired by the apprentic...

  4. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation.

    Directory of Open Access Journals (Sweden)

    Vidya Subramanian

    Full Text Available The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs. Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z(AP3 are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z(AP3 interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z(AP3 was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z(AP3 ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z(AP3 ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z(AP3 displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP. Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z(AP3 mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin

  5. The proper longshore current in a wave basin

    NARCIS (Netherlands)

    Visser, P.J.

    1982-01-01

    This report describes the investigation into a method how to obtain the proper longshore current in a wave basin. In this method the basin geometry is optimized and the proper recirculation flow through openings in the wave guides is determined by minimizing the circulation flow between the wave gui

  6. Participation in "Handwashing University" Promotes Proper Handwashing Techniques for Youth

    Science.gov (United States)

    Fenton, Ginger; Radhakrishna, Rama; Cutter, Catherine Nettles

    2010-01-01

    A study was conducted to assess the effectiveness of the Handwashing University on teaching youth the benefits of proper handwashing. The Handwashing University is an interactive display with several successive stations through which participants move to learn necessary skills for proper handwashing. Upon completion of the Handwashing University,…

  7. 29 CFR 1404.20 - Proper use of expedited arbitration.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Proper use of expedited arbitration. 1404.20 Section 1404... ARBITRATION SERVICES Expedited Arbitration § 1404.20 Proper use of expedited arbitration. (a) FMCS reserves the right to cease honoring request for Expedited Arbitration if a pattern of misuse of this...

  8. Reasons Why Chinese Learners Can not Use English Words Properly

    Institute of Scientific and Technical Information of China (English)

    杨文娟

    2015-01-01

    English has been one of the important major subjects in the system of Chinese education for a long period. However, Chinese learners can not always use English words properly. There are some reasons elucidating this phenomenon. Therefore, reasons why Chinese learners can not use English words properly will be discussed in this paper.

  9. Embeddings of (proper) power graphs of finite groups

    OpenAIRE

    Doostabadi, Alireza; Ghouchan, Mohammad Farrokhi Derakhshandeh

    2014-01-01

    The (proper) power graph of a group is a graph whose vertex set is the set of all (nontrivial) elements of the group and two distinct vertices are adjacent if one is a power of the other. Various kinds of planarity of (proper) power graphs of groups are discussed.

  10. The proper name in the structure of the noun phrase

    Directory of Open Access Journals (Sweden)

    Aleksandra Pronińska

    2013-01-01

    Full Text Available The aim of this paper is to analyse Italian nominal groups containing proper nouns. The article discusses two syntagma types with elliptical structure proper noun> as well as analogical structures where the common and proper nouns are joined by the preposition “di”. The classification and analysis of nominal groups have been carried out on the basis of the function of the proper noun in the syntagma. Two groups of syntagmas have been distinguished: one with the proper noun functioning as a superordinate constituent and one with the proper noun functioning as a modifier. In the former type (where the proper noun is a superordinate constituent, the common noun functions as a descriptive or restrictive appositive. The syntagmas, where the proper noun functions as a modifier, are of particularly diverse character. In such cases, the possibility to paraphrase them by means of the analysed structures constitutes an additional criterion. Consequently, three syntagma types have been distinguished as represented by the following examples: il progetto Leonardo (which does not allow for an alternative synonymous version, *il progetto di Leonardo, il governo Monti (where the prepositional structure il governo di Monti may be used interchangeably and un quadro di Rubens (which does not allow for an alternative synonymous version with the ellipsis of the preposition “di” *un quadro Rubens.

  11. Galactic Dynamics: new proper motions from Gaia and UCAC

    Science.gov (United States)

    Zacharias, Norbert

    2017-06-01

    With the Gaia DR1 we now have proper motions accurate on the 0.1 mas/yr level for about 100,000 Hipparcos stars. The Tycho-Gaia astrometric solution (TGAS) furthermore provides proper motions of about 2 million stars on the 1 to 2 mas/yr level. Using TGAS as reference star catalog, the USNO CCD Astrograph Catalog (UCAC) observations were re-reduced and their about epoch 2001 positions combined with Gaia DR1 to obtain proper motions of over 100 millions stars to about magnitude R=16.5 with a proper motion accuracy of 1 to 5 mas/yr (depending on brightness). This UCAC5 data largely extends the TGAS data for galactic dynamics studies, and thus provides a preview of some more exciting science which will be enabled with the Gaia DR2 in April 2018, when accurate proper motions will become available for a billion stars.

  12. The Southern Proper Motion Program IV. The SPM4 Catalog

    CERN Document Server

    Girard, T M; Zacharias, N; Vieira, K; Casetti-Dinescu, D I; Monet, D G; Lopez, C E

    2011-01-01

    We present the fourth installment of the Yale/San Juan Southern Proper Motion Catalog, SPM4. The SPM4 contains absolute proper motions, celestial coordinates, and (B,V) photometry for over 103 million stars and galaxies between the south celestial pole and -20 deg declination. The catalog is roughly complete to V=17.5 and is based on photographic and CCD observations taken with the Yale Southern Observatory's double-astrograph at Cesco Observatory in El Leoncito, Argentina. The proper-motion precision, for well-measured stars, is estimated to be 2 to 3 mas/yr, depending on the type of second-epoch material. At the bright end, proper motions are on the International Celestial Reference System by way of Hipparcos Catalog stars, while the faint end is anchored to the inertial system using external galaxies. Systematic uncertainties in the absolute proper motions are on the order of 1 mas/yr.

  13. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct AFM visualization of variant chromatin

    CERN Document Server

    Montel, Fabien; Castelnovo, Martin; Bednar, Jan; Dimitrov, Stefan; Angelov, Dimitar; Faivre-Moskalenko, Cendrine

    2009-01-01

    Chromatin organization and dynamics is studied in this work at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique and numerical modeling. We demonstrate that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by AFM, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show ?beads on a string? structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results strongly suggest that higher-order organization of H1-free nucleosomal arrays is mainly determined by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existenc...

  14. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin.

    Science.gov (United States)

    Jeffery, Daniel C B; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly.

  15. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor i with chromatin

    Science.gov (United States)

    Jeffery, Daniel CB; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28–1 mutant and to a lesser extent in a cdc7–1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly. PMID:25602519

  16. Forced unraveling of chromatin fibers with nonuniform linker DNA lengths

    Science.gov (United States)

    Ozer, Gungor; Collepardo-Guevara, Rosana; Schlick, Tamar

    2015-02-01

    The chromatin fiber undergoes significant structural changes during the cell's life cycle to modulate DNA accessibility. Detailed mechanisms of such structural transformations of chromatin fibers as affected by various internal and external conditions such as the ionic conditions of the medium, the linker DNA length, and the presence of linker histones, constitute an open challenge. Here we utilize Monte Carlo (MC) simulations of a coarse grained model of chromatin with nonuniform linker DNA lengths as found in vivo to help explain some aspects of this challenge. We investigate the unfolding mechanisms of chromatin fibers with alternating linker lengths of 26-62 bp and 44-79 bp using a series of end-to-end stretching trajectories with and without linker histones and compare results to uniform-linker-length fibers. We find that linker histones increase overall resistance of nonuniform fibers and lead to fiber unfolding with superbeads-on-a-string cluster transitions. Chromatin fibers with nonuniform linker DNA lengths display a more complex, multi-step yet smoother process of unfolding compared to their uniform counterparts, likely due to the existence of a more continuous range of nucleosome-nucleosome interactions. This finding echoes the theme that some heterogeneity in fiber component is biologically advantageous.

  17. Chromatin dynamics at DNA breaks: what, how and why?

    Directory of Open Access Journals (Sweden)

    Théo Lebeaupin

    2015-09-01

    Full Text Available Chromatin has a complex, dynamic architecture in the interphase nucleus, which regulates the accessibility of the underlying DNA and plays a key regulatory role in all the cellular functions using DNA as a template, such as replication, transcription or DNA damage repair. Here, we review the recent progresses in the understanding of the interplay between chromatin architecture and DNA repair mechanisms. Several reports based on live cell fluorescence imaging show that the activation of the DNA repair machinery is associated with major changes in the compaction state and the mobility of chromatin. We discuss the functional consequences of these changes in yeast and mammals in the light of the different repair pathways utilized by these organisms. In the final section of this review, we show how future developments in high-resolution light microscopy and chromatin modelling by polymer physics should contribute to a better understanding of the relationship between the structural changes in chromatin and the activity of the repair processes.

  18. A Poised Chromatin Platform for TGF-[beta] Access to Master Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Qiaoran; Wang, Zhanxin; Zaromytidou, Alexia-Ileana; Zhang, Xiang H.-F.; Chow-Tsang, Lai-Fong; Liu, Jing X.; Kim, Hyesoo; Barlas, Afsar; Manova-Todorova, Katia; Kaartinen, Vesa; Studer, Lorenz; Mark, Willie; Patel, Dinshaw J.; Massagué, Joan (Michigan); (MSKCC)

    2012-02-07

    Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-{beta} signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compacting factor HP1, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.

  19. Sororin pre-mRNA splicing is required for proper sister chromatid cohesion in human cells.

    Science.gov (United States)

    Watrin, Erwan; Demidova, Maria; Watrin, Tanguy; Hu, Zheng; Prigent, Claude

    2014-09-01

    Sister chromatid cohesion, which depends on cohesin, is essential for the faithful segregation of replicated chromosomes. Here, we report that splicing complex Prp19 is essential for cohesion in both G2 and mitosis, and consequently for the proper progression of the cell through mitosis. Inactivation of splicing factors SF3a120 and U2AF65 induces similar cohesion defects to Prp19 complex inactivation. Our data indicate that these splicing factors are all required for the accumulation of cohesion factor Sororin, by facilitating the proper splicing of its pre-mRNA. Finally, we show that ectopic expression of Sororin corrects defective cohesion caused by Prp19 complex inactivation. We propose that the Prp19 complex and the splicing machinery contribute to the establishment of cohesion by promoting Sororin accumulation during S phase, and are, therefore, essential to the maintenance of genome stability.

  20. Facilitating Understandings of Geometry.

    Science.gov (United States)

    Pappas, Christine C.; Bush, Sara

    1989-01-01

    Illustrates some learning encounters for facilitating first graders' understanding of geometry. Describes some of children's approaches using Cuisenaire rods and teacher's intervening. Presents six problems involving various combinations of Cuisenaire rods and cubes. (YP)

  1. Human pescadillo induces large-scale chromatin unfolding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; FANG Yan; HUANG Cuifen; YANG Xiao; YE Qinong

    2005-01-01

    The human pescadillo gene encodes a protein with a BRCT domain. Pescadillo plays an important role in DNA synthesis, cell proliferation and transformation. Since BRCT domains have been shown to induce chromatin large-scale unfolding, we tested the role of Pescadillo in regulation of large-scale chromatin unfolding. To this end, we isolated the coding region of Pescadillo from human mammary MCF10A cells. Compared with the reported sequence, the isolated Pescadillo contains in-frame deletion from amino acid 580 to 582. Targeting the Pescadillo to an amplified, lac operator-containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity maps to the BRCT domain of Pescadillo. These data provide a new clue to understanding the vital role of Pescadillo.

  2. Sliding and peeling of histone during chromatin remodelling

    CERN Document Server

    Garai, Ashok; Chowdhury, Debashish

    2011-01-01

    ATP-dependent chromatin remodeling enzymes (CRE) are bio-molecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, adenosine triphosphate (ATP). CREs actively participate in many cellular processes that require accessibility of specific stretches of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp $\\sim$ 50 nm of a double stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. We investigate the mechanism of peeling of the histone spool, and its complete detachment, from the dsDNA by a CRE. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechano-chemical cycle of each ATP-dependent CRE. We calculate the mean times for histone detachment. Our predictions on the ATP-dependence of the measurable quantities can be tested by carrying out {\\it in-vitro} experiments.

  3. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  4. Spatial organization of chromatin domains and compartments in single chromosomes.

    Science.gov (United States)

    Wang, Siyuan; Su, Jun-Han; Beliveau, Brian J; Bintu, Bogdan; Moffitt, Jeffrey R; Wu, Chao-ting; Zhuang, Xiaowei

    2016-08-05

    The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation.

  5. SWI/SNF chromatin remodeling and linker histones in plants.

    Science.gov (United States)

    Jerzmanowski, Andrzej

    2007-01-01

    In yeast and mammals, ATP-dependent chromatin remodeling complexes belonging to the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologs of conserved subunits of SWI/SNF-type complexes, including several putative ATPases and other core subunits, have been identified in plants. Here I summarize recent insights in structural organization and functional diversification of putative plant SWI/SNF-type chromatin remodeling complexes and discuss in a broader evolutionary perspective the similarities and differences between plant and yeast/animal SWI/SNF remodeling. I also summarize the current view of localization in nucleosome and dynamic behaviour in chromatin of linker (H1) histones and discuss significance of recent findings indicating that in both plants and mammals histone H1 is involved in determining patterns of DNA methylation at selected loci.

  6. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  7. TALE proteins bind to both active and inactive chromatin.

    Science.gov (United States)

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  8. Three-dimensional architecture of the IgH locus facilitates class switch recombination.

    Science.gov (United States)

    Kenter, Amy L; Feldman, Scott; Wuerffel, Robert; Achour, Ikbel; Wang, Lili; Kumar, Satyendra

    2012-09-01

    Immunoglobulin (Ig) class switch recombination (CSR) is responsible for diversification of antibody effector function during an immune response. This region-specific recombination event, between repetitive switch (S) DNA elements, is unique to B lymphocytes and is induced by activationinduced deaminase (AID). CSR is critically dependent on transcription of noncoding RNAs across S regions. However, mechanistic insight regarding this process has remained unclear. New studies indicate that long-range intrachromosomal interactions among IgH transcriptional elements organize the formation of the S/S synaptosome, as a prerequisite for CSR. This three-dimensional chromatin architecture simultaneously brings promoters and enhancers into close proximity to facilitate transcription. Here, we recount how transcription across S DNA promotes accumulation of RNA polymerase II, leading to the introduction of activating chromatin modifications and hyperaccessible chromatin that is amenable to AID activity.

  9. Facilitating Knowledge Sharing

    DEFF Research Database (Denmark)

    Holdt Christensen, Peter

    Abstract This paper argues that knowledge sharing can be conceptualized as different situations of exchange in which individuals relate to each other in different ways, involving different rules, norms and traditions of reciprocity regulating the exchange. The main challenge for facilitating...... and the intermediaries regulating the exchange, and facilitating knowledge sharing should therefore be viewed as a continuum of practices under the influence of opportunistic behaviour, obedience or organizational citizenship behaviour. Keywords: Knowledge sharing, motivation, organizational settings, situations...

  10. Rapid genome-scale mapping of chromatin accessibility in tissue

    Science.gov (United States)

    2012-01-01

    Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh). The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied across a broad range of

  11. Single-epitope recognition imaging of native chromatin

    Directory of Open Access Journals (Sweden)

    Wang Hongda

    2008-12-01

    Full Text Available Abstract Background Direct visualization of chromatin has the potential to provide important insights into epigenetic processes. In particular, atomic force microscopy (AFM can visualize single nucleosomes under physiological ionic conditions. However, AFM has mostly been applied to chromatin that has been reconstituted in vitro, and its potential as a tool for the dissection of native nucleosomes has not been explored. Recently we applied AFM to native Drosophila chromatin containing the centromere-specific histone 3 (CenH3, showing that it is greatly enriched in smaller particles. Taken together with biochemical analyses of CenH3 nucleosomes, we propose that centromeric nucleosomes are hemisomes, with one turn of DNA wrapped around a particle consisting of one molecule each of centromere-specific CenH3, H4, H2A and H2B. Results Here we apply a recognition mode of AFM imaging to directly identify CenH3 within histone core particles released from native centromeric chromatin. More than 90% of these particles were found to be tetrameric in height. The specificity of recognition was confirmed by blocking with a CenH3 peptide, and the strength of the interaction was quantified by force measurements. These results imply that the particles imaged by AFM are indeed mature CenH3-containing hemisomes. Conclusion Efficient and highly specific recognition of CenH3 in histone core particles isolated from native centromeric chromatin demonstrates that tetramers are the predominant form of centromeric nucleosomes in mature tetramers. Our findings provide proof of principle that this approach can yield insights into chromatin biology using direct and rapid detection of native nucleosomes in physiological salt concentrations.

  12. Rapid genome-scale mapping of chromatin accessibility in tissue

    Directory of Open Access Journals (Sweden)

    Grøntved Lars

    2012-06-01

    Full Text Available Abstract Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh. The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied

  13. Dicer is associated with ribosomal DNA chromatin in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Lasse Sinkkonen

    Full Text Available BACKGROUND: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer(-/- ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. CONCLUSION/SIGNIFICANCE: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since the enzyme is associated with rDNA genes regardless of their transcriptional activity. However, localization of Dicer to the transcribed region suggests that transcription may contribute to the Dicer deposition at rDNA chromatin. We hypothesize that Dicer functions in maintaining integrity of rDNA arrays.

  14. H2A.Z.1 Monoubiquitylation Antagonizes BRD2 to Maintain Poised Chromatin in ESCs.

    Science.gov (United States)

    Surface, Lauren E; Fields, Paul A; Subramanian, Vidya; Behmer, Russell; Udeshi, Namrata; Peach, Sally E; Carr, Steven A; Jaffe, Jacob D; Boyer, Laurie A

    2016-02-09

    Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in embryonic stem cells (ESCs) to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 monoubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1(K3R3)). We show that H2A.Z.1(K3R3) is properly incorporated at target promoters in murine ESCs (mESCs), but loss of monoubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member BRD2, are enriched in H2A.Z.1 chromatin. We further show that BRD2 is gained at de-repressed promoters in H2A.Z.1(K3R3) mESCs, whereas BRD2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and BRD2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs.

  15. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX.

    Science.gov (United States)

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Scott, Caroline; Mitson, Matthew; Taylor, Stephen; Higgs, Douglas R; Gibbons, Richard J

    2015-07-06

    Fifteen per cent of cancers maintain telomere length independently of telomerase by the homologous recombination (HR)-associated alternative lengthening of telomeres (ALT) pathway. A unifying feature of these tumours are mutations in ATRX. Here we show that expression of ectopic ATRX triggers a suppression of the pathway and telomere shortening. Importantly ATRX-mediated ALT suppression is dependent on the histone chaperone DAXX. Re-expression of ATRX is associated with a reduction in replication fork stalling, a known trigger for HR and loss of MRN from telomeres. A G-quadruplex stabilizer partially reverses the effect of ATRX, inferring ATRX may normally facilitate replication through these sequences that, if they persist, promote ALT. We propose that defective telomere chromatinization through loss of ATRX promotes the persistence of aberrant DNA secondary structures, which in turn present a barrier to DNA replication, leading to replication fork stalling, collapse, HR and subsequent recombination-mediated telomere synthesis in ALT cancers.

  16. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  17. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    of the polycomb repressive complexes, PRC1 and PRC2, and the HDAC1- and HDAC2-containing complexes, NuRD, Sin3, and CoREST, in stem cells, development, and cancer, as well as the ongoing efforts to develop therapies targeting these complexes in human cancer. Furthermore, we discuss the role of repressive......The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...... complexes in modulating thresholds for gene activation and their importance for specification and maintenance of cell fate....

  18. The importance of topoisomerases for chromatin regulated genes

    DEFF Research Database (Denmark)

    Fredsøe, Jacob Christian; Pedersen, Jakob Madsen; Rødgaard, Morten Terpager;

    2013-01-01

    DNA topoisomerases are enzymes, which function to relieve torsional stress in the DNA helix by introducing transient breaks into the DNA molecule. By use of Saccharomyces cerevisiae and microarray technology we have previously shown that topoisomerases are required for the activation of chromatin...... topoisomerases for optimal activation, but in contrast to the PHO5 gene, topoisomerases are not required for chromatin remodeling of the GAL1/10 promoter region, indicating a different role of the enzymes. We are currently performing a detailed investigation of the GAL genes to elucidate the precise role...

  19. Chromatin remodelling: the industrial revolution of DNA around histones.

    Science.gov (United States)

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  20. Instability of trinucleotidic repeats during chromatin remodeling in spermatids.

    Science.gov (United States)

    Simard, Olivier; Grégoire, Marie-Chantal; Arguin, Mélina; Brazeau, Marc-André; Leduc, Frédéric; Marois, Isabelle; Richter, Martin V; Boissonneault, Guylain

    2014-11-01

    Transient DNA breaks and evidence of DNA damage response have recently been reported during the chromatin remodeling process in haploid spermatids, creating a potential window of enhanced genetic instability. We used flow cytometry to achieve separation of differentiating spermatids into four highly purified populations using transgenic mice harboring 160 CAG repeats within exon 1 of the human Huntington disease gene (HTT). Trinucleotic repeat expansion was found to occur immediately following the chromatin remodeling steps, confirming the genetic instability of the process and pointing to the origin of paternal anticipation observed in some trinucleotidic repeats diseases.

  1. Retention of the Native Epigenome in Purified Mammalian Chromatin.

    Directory of Open Access Journals (Sweden)

    Andreas H Ehrensberger

    Full Text Available A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.

  2. The human chromosome. Electron microscopic observations on chromatin fiber organization.

    Science.gov (United States)

    Abuelo, J G; Moore, D E

    1969-04-01

    Human lymphocytes were grown in short-term tissue culture and were arrested in metaphase with Colcemid. Their chromosomes were prepared by the Langmuir trough-critical point drying technique and were examined under the electron microscope. In addition, some chromosomes were digested with trypsin, Pronase, or DNase. The chromosomes consist entirely of tightly packed, 240 +/- 50-A chromatin fibers. Trypsin and Pronase treatments induce relaxation of fiber packing and reveal certain underlying fiber arrangements. Furthermore, trypsin treatment demonstrates that the chromatin fiber has a 25-50 A trypsin-resistant core surrounded by a trypsin-sensitive sheath. DNase digestion suggests that this core contains DNA.

  3. SANS spectra of the fractal supernucleosomal chromatin structure models

    Science.gov (United States)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2012-03-01

    The eukaryotic genome consists of chromatin—a nucleoprotein complex with hierarchical architecture based on nucleosomes, the organization of higher-order chromatin structures still remains unknown. Available experimental data, including SANS spectra we had obtained for whole nuclei, suggested fractal nature of chromatin. Previously we had built random-walk supernucleosomal models (up to 106 nucleosomes) to interpret our SANS spectra. Here we report a new method to build fractal supernucleosomal structure of a given fractal dimension or two different dimensions. Agreement between calculated and experimental SANS spectra was significantly improved, especially for model with two fractal dimensions—3 and 2.

  4. Chromatin Structure of Epstein-Barr Virus Latent Episomes.

    Science.gov (United States)

    Lieberman, Paul M

    2015-01-01

    EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.

  5. Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives.

    Science.gov (United States)

    Croken, Matthew M; Nardelli, Sheila C; Kim, Kami

    2012-05-01

    Chromatin structure plays a vital role in epigenetic regulation of protozoan parasite gene expression. Epigenetic gene regulation impacts upon parasite virulence, differentiation and cell-cycle control. Recent work in many laboratories has elucidated the functions of proteins that regulate parasite gene expression by chemical modification of constituent nucleosomes. A major focus of investigation has been the characterization of post-translational modifications (PTMs) of histones and the identification of the enzymes responsible. Despite conserved features and specificity common to all eukaryotes, parasite enzymes involved in chromatin modification have unique functions that regulate unique aspects of parasite biology.

  6. Chromatin versus pathogens: the function of epigenetics in plant immunity

    Directory of Open Access Journals (Sweden)

    Bo eDing

    2015-09-01

    Full Text Available To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed.

  7. Populating a multilingual ontology of proper names from open sources

    Directory of Open Access Journals (Sweden)

    Agata Savary

    2013-11-01

    Full Text Available Even if proper names play a central role in natural language processing (NLP applications they are still under-represented in lexicons, annotated corpora, and other resources dedicated to text processing.  One of the main challenges is both the prevalence and the dynamicity of proper names. At the same time, large and regularly-updated knowledge sources containing partially-structured data, such as Wikipedia or GeoNames, are publicly available and contain large numbers of proper names. We present a method for a semi-automatic enrichment of Prolexbase, an existing multilingual ontology of proper names dedicated to natural language processing, with data extracted from these open sources in three languages: Polish, English and French. Fine-grained data extraction and integration procedures allow the user to enrich previous contents of Prolexbase with new incoming data. All data are manually validated and available under an open licence.

  8. Cataclysmic variables in the SUPERBLINK proper motion survey

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Julie N.; Thorstensen, John R. [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755-3528 (United States); Lépine, Sébastien, E-mail: jns@dartmouth.edu [Department of Physics and Astronomy, Georgia State University, 25 Park Place NE, Atlanta, GA 30303 (United States)

    2014-12-01

    We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas yr{sup −1}. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their near-UV−V and V−K{sub s} colors. We present spectroscopic observations from the 2.4 m Hiltner Telescope at MDM Observatory. The new CV's orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is near 18.2. Additionally, we present a full list of known CVs in the SUPERBLINK catalog.

  9. Proper Use of Audio-Visual Aids: Essential for Educators.

    Science.gov (United States)

    Dejardin, Conrad

    1989-01-01

    Criticizes educators as the worst users of audio-visual aids and among the worst public speakers. Offers guidelines for the proper use of an overhead projector and the development of transparencies. (DMM)

  10. Some Remarks on Bonjour on Warrant, Proper Function, and Defeasibility

    Directory of Open Access Journals (Sweden)

    Colin P. Ruloff

    2000-12-01

    Full Text Available A number of counterexamples have recently been leveled against Alvin Plantinga's Proper Functionalism, counterexamples aimed at showing that Plantinga's theory fads to provide sufficient conditions for warrant — that elusive epistemic property which together with true belief yields knowledge Among these counterexamples, Laurence Bonjour s is perhaps the most formidable and, if successful, shows that Proper Functionalism is simply too weak to serve as an acceptable theory of warrant In this paper, I argue that, contrary to initial appearances, BonJour's counterexample is not successful More exactly, I argue that, once it is recognized that a defeasibility constraint is deeply embedded within Plantinga's proper function condition for warrant — a constraint which says, in effect, that a belief B is warranted for an agent S only of S does not possess any defeaters against B — BonJour's counterexample to Proper Functionalism can be handled quite straightforwardly

  11. A properly adjusted forage harvester can save time and money

    Science.gov (United States)

    A properly adjusted forage harvester can save fuel and increase the realizable milk per ton of your silage. This article details the adjustments necessary to minimize energy while maximizing productivity and forage quality....

  12. Cataclysmic Variables in the SUPERBLINK Proper Motion Survey

    CERN Document Server

    Skinner, Julie N; Lépine, Sébastien

    2014-01-01

    We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas/yr. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their NUV-V and V-K$_{s}$ colors. We present spectroscopic observations from the 2.4m Hiltner Telescope at MDM Observatory. The new CV's orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is near 18.2. Additionally, we present a full list of known CVs in the SUPERBLINK catalog.

  13. The PMA Catalogue: 420 million positions and absolute proper motions

    Science.gov (United States)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-07-01

    We present a catalogue that contains about 420 million absolute proper motions of stars. It was derived from the combination of positions from Gaia DR1 and 2MASS, with a mean difference of epochs of about 15 yr. Most of the systematic zonal errors inherent in the 2MASS Catalogue were eliminated before deriving the absolute proper motions. The absolute calibration procedure (zero-pointing of the proper motions) was carried out using about 1.6 million positions of extragalactic sources. The mean formal error of the absolute calibration is less than 0.35 mas yr-1. The derived proper motions cover the whole celestial sphere without gaps for a range of stellar magnitudes from 8 to 21 mag. In the sky areas where the extragalactic sources are invisible (the avoidance zone), a dedicated procedure was used that transforms the relative proper motions into absolute ones. The rms error of proper motions depends on stellar magnitude and ranges from 2-5 mas yr-1 for stars with 10 mag mas yr-1 for faint ones. The present catalogue contains the Gaia DR1 positions of stars for the J2015 epoch. The system of the PMA proper motions does not depend on the systematic errors of the 2MASS positions, and in the range from 14 to 21 mag represents an independent realization of a quasi-inertial reference frame in the optical and near-infrared wavelength range. The Catalogue also contains stellar magnitudes taken from the Gaia DR1 and 2MASS catalogues. A comparison of the PMA proper motions of stars with similar data from certain recent catalogues has been undertaken.

  14. Fast algorithms for finding proper strategies in game trees

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    We show how to find a normal form proper equilibrium in behavior strategies of a given two-player zero-sum extensive form game with imperfect information but perfect recall. Our algorithm solves a finite sequence of linear programs and runs in polynomial time. For the case of a perfect informatio...... game, we show how to find a normal form proper equilibrium in linear time by a simple backwards induction procedure....

  15. Foundations for proper-time relativistic quantum theory

    Science.gov (United States)

    Gill, Tepper L.; Morris, Trey; Kurtz, Stewart K.

    2015-05-01

    This paper is a progress report on the foundations for the canonical proper-time approach to relativistic quantum theory. We first review the the standard square-root equation of relativistic quantum theory, followed by a review of the Dirac equation, providing new insights into the physical properties of both. We then introduce the canonical proper-time theory. For completeness, we give a brief outline of the canonical proper-time approach to electrodynamics and mechanics, and then introduce the canonical proper-time approach to relativistic quantum theory. This theory leads to three new relativistic wave equations. In each case, the canonical generator of proper-time translations is strictly positive definite, so that it represents a particle. We show that the canonical proper-time extension of the Dirac equation for Hydrogen gives results that are consistently closer to the experimental data, when compared to the Dirac equation. However, these results are not sufficient to account for either the Lamb shift or the anomalous magnetic moment.

  16. Consistent wind Facilitates Vection

    Directory of Open Access Journals (Sweden)

    Masaki Ogawa

    2011-10-01

    Full Text Available We examined whether a consistent haptic cue suggesting forward self-motion facilitated vection. We used a fan with no blades (Dyson, AM01 providing a wind of constant strength and direction (wind speed was 6.37 m/s to the subjects' faces with the visual stimuli visible through the fan. We used an optic flow of expansion or contraction created by positioning 16,000 dots at random inside a simulated cube (length 20 m, and moving the observer's viewpoint to simulate forward or backward self-motion of 16 m/s. we tested three conditions for fan operation, which were normal operation, normal operation with the fan reversed (ie, no wind, and no operation (no wind and no sound. Vection was facilitated by the wind (shorter latency, longer duration and larger magnitude values with the expansion stimuli. The fan noise did not facilitate vection. The wind neither facilitated nor inhibited vection with the contraction stimuli, perhaps because a headwind is not consistent with backward self-motion. We speculate that the consistency between multi modalities is a key factor in facilitating vection.

  17. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism.

    Science.gov (United States)

    Parnell, Timothy J; Schlichter, Alisha; Wilson, Boris G; Cairns, Bradley R

    2015-01-01

    ISWI family chromatin remodelers typically organize nucleosome arrays, while SWI/SNF family remodelers (RSC) typically disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex or mutations in the 'basic patch' of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. RSC and ISW1a largely co-localize, and genomic nucleosome studies using rsc isw1 mutant combinations revealed opposing functions: promoters classified with a nucleosome-deficient region (NDR) gain nucleosome occupancy in rsc mutants, but this gain is attenuated in rsc isw1 double mutants. Furthermore, promoters lacking NDRs have the highest occupancy of both remodelers, consistent with regulation by nucleosome occupancy, and decreased transcription in rsc mutants. Taken together, we provide the first genetic and genomic evidence for RSC-ISW1a antagonism and reveal different mechanisms at two different promoter architectures.

  18. Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy.

    NARCIS (Netherlands)

    Terry, S.Y.A.; Vallis, K.A.

    2012-01-01

    PURPOSE: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. METHODS AND MATERIALS: Chromatin structure was

  19. Chromatin remodelers in the DNA double strand break response

    NARCIS (Netherlands)

    Smeenk, Godelieve

    2012-01-01

    During my PhD project, I studied the role of several chromatin remodelers in the DNA double strand break (DSB) response. We discovered that both CHD4 and SMARCA5 are required for ubiquitin signaling through the E3 ubiquitin ligases RNF8 and RNF168, which is a central signaling event in the response

  20. Chromatin Structure in Cell Differentiation, Aging and Cancer

    NARCIS (Netherlands)

    S. Kheradmand Kia (Sima)

    2009-01-01

    textabstractChromatin is the structure that the eukaryotic genome is packaged into, allowing over a metre of DNA to fit into the small volume of the nucleus. It is composed of DNA and proteins, most of which are histones. This DNA-protein complex is the template for a number of essential cell proces

  1. Generation of bivalent chromatin domains during cell fate decisions

    Directory of Open Access Journals (Sweden)

    De Gobbi Marco

    2011-06-01

    Full Text Available Abstract Background In self-renewing, pluripotent cells, bivalent chromatin modification is thought to silence (H3K27me3 lineage control genes while 'poising' (H3K4me3 them for subsequent activation during differentiation, implying an important role for epigenetic modification in directing cell fate decisions. However, rather than representing an equivalently balanced epigenetic mark, the patterns and levels of histone modifications at bivalent genes can vary widely and the criteria for identifying this chromatin signature are poorly defined. Results Here, we initially show how chromatin status alters during lineage commitment and differentiation at a single well characterised bivalent locus. In addition we have determined how chromatin modifications at this locus change with gene expression in both ensemble and single cell analyses. We also show, on a global scale, how mRNA expression may be reflected in the ratio of H3K4me3/H3K27me3. Conclusions While truly 'poised' bivalently modified genes may exist, the original hypothesis that all bivalent genes are epigenetically premarked for subsequent expression might be oversimplistic. In fact, from the data presented in the present work, it is equally possible that many genes that appear to be bivalent in pluripotent and multipotent cells may simply be stochastically expressed at low levels in the process of multilineage priming. Although both situations could be considered to be forms of 'poising', the underlying mechanisms and the associated implications are clearly different.

  2. Trichomonas vaginalis: chromatin and mitotic spindle during mitosis.

    Science.gov (United States)

    Gómez-Conde, E; Mena-López, R; Hernández-Jaúregui, P; González-Camacho, M; Arroyo, R

    2000-11-01

    The mitotic phases and the changes that the chromatin and mitotic microtubules undergo during mitosis in the sexually transmitted parasite Trichomonas vaginalis are described. Parasites arrested in the gap 2 phase of the cell cycle by nutrient starvation were induced to mitosis by addition of fresh whole medium. [(3)H] Thymidine labeling of trichomonad parasites for 24 h showed that parasites have at least four synchronic duplications after mitosis induction. Fixed or live and acridine orange (AO)-stained trichomonads analyzed at different times during mitosis by epifluorescence microscopy showed that mitosis took about 45 min and is divided into five stages: prophase, metaphase, early and late anaphase, early and late telophase, and cytokinesis. The AO-stained nucleus of live trichomonads showed green (DNA) and orange (RNA) fluorescence, and the nucleic acid nature was confirmed by DNase and RNase treatment, respectively. The chromatin appeared partially condensed during interphase. At metaphase, it appeared as six condensed chromosomes, as recently reported, which decondensed at anaphase and migrated to the nuclear poles at telophase. In addition, small bundles of microtubules (as hemispindles) were detected only in metaphase with the polyclonal antibody anti-Entamoeba histolytica alpha-tubulin. This antibody showed that the hemispindle and an atractophore-like structure seem to duplicate and polarize during metaphase. In conclusion, T. vaginalis mitosis involves five mitotic phases in which the chromatin undergoes different degrees of condensation, from chromosomes to decondensed chromatin, and two hemispindles that are observed only in the metaphase stage.

  3. CTCF-mediated chromatin loops enclose inducible gene regulatory domains

    NARCIS (Netherlands)

    Oti, M.O.; Falck, J.; Huynen, M.A.; Zhou, Huiqing

    2016-01-01

    BACKGROUND: The CCTC-binding factor (CTCF) protein is involved in genome organization, including mediating three-dimensional chromatin interactions. Human patient lymphocytes with mutations in a single copy of the CTCF gene have reduced expression of enhancer-associated genes involved in response to

  4. Role of chromatin factors in Arabidopsis root stem cell maintenance

    NARCIS (Netherlands)

    Kornet, N.G.|info:eu-repo/dai/nl/311445713

    2008-01-01

    Stem cells replenish the cells present in an organism throughout its lifetime and sustain growth. They have unique characteristics: the capability to self-renew and the potential to differentiate into several cell types. Recently, it has become clear that chromatin factors support these unique

  5. Chromatin structure-dependent conformations of the H1 CTD.

    Science.gov (United States)

    Fang, He; Wei, Sijie; Lee, Tae-Hee; Hayes, Jeffrey J

    2016-11-02

    Linker histones are an integral component of chromatin but how these proteins promote assembly of chromatin fibers and higher order structures and regulate gene expression remains an open question. Using Förster resonance energy transfer (FRET) approaches we find that association of a linker histone with oligonucleosomal arrays induces condensation of the intrinsically disordered H1 CTD in a manner consistent with adoption of a defined fold or ensemble of folds in the bound state. However, H1 CTD structure when bound to nucleosomes in arrays is distinct from that induced upon H1 association with mononucleosomes or bare double stranded DNA. Moreover, the H1 CTD becomes more condensed upon condensation of extended nucleosome arrays to the contacting zig-zag form found in moderate salts, but does not detectably change during folding to fully compacted chromatin fibers. We provide evidence that linker DNA conformation is a key determinant of H1 CTD structure and that constraints imposed by neighboring nucleosomes cause linker DNAs to adopt distinct trajectories in oligonucleosomes compared to H1-bound mononucleosomes. Finally, inter-molecular FRET between H1s within fully condensed nucleosome arrays suggests a regular spatial arrangement for the H1 CTD within the 30 nm chromatin fiber. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Chromatin Structure in Cell Differentiation, Aging and Cancer

    NARCIS (Netherlands)

    S. Kheradmand Kia (Sima)

    2009-01-01

    textabstractChromatin is the structure that the eukaryotic genome is packaged into, allowing over a metre of DNA to fit into the small volume of the nucleus. It is composed of DNA and proteins, most of which are histones. This DNA-protein complex is the template for a number of essential cell

  7. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization

    Directory of Open Access Journals (Sweden)

    Peterhansel Christoph

    2007-09-01

    Full Text Available Abstract Background Chromatin remodeling, histone modifications and other chromatin-related processes play a crucial role in gene regulation. A very useful technique to study these processes is chromatin immunoprecipitation (ChIP. ChIP is widely used for a few model systems, including Arabidopsis, but establishment of the technique for other organisms is still remarkably challenging. Furthermore, quantitative analysis of the precipitated material and normalization of the data is often underestimated, negatively affecting data quality. Results We developed a robust ChIP protocol, using maize (Zea mays as a model system, and present a general strategy to systematically optimize this protocol for any type of tissue. We propose endogenous controls for active and for repressed chromatin, and discuss various other controls that are essential for successful ChIP experiments. We experienced that the use of quantitative PCR (QPCR is crucial for obtaining high quality ChIP data and we explain why. The method of data normalization has a major impact on the quality of ChIP analyses. Therefore, we analyzed different normalization strategies, resulting in a thorough discussion of the advantages and drawbacks of the various approaches. Conclusion Here we provide a robust ChIP protocol and strategy to optimize the protocol for any type of tissue; we argue that quantitative real-time PCR (QPCR is the best method to analyze the precipitates, and present comprehensive insights into data normalization.

  8. Role of chromatin factors in Arabidopsis root stem cell maintenance

    NARCIS (Netherlands)

    Kornet, N.G.

    2008-01-01

    Stem cells replenish the cells present in an organism throughout its lifetime and sustain growth. They have unique characteristics: the capability to self-renew and the potential to differentiate into several cell types. Recently, it has become clear that chromatin factors support these unique featu

  9. Is chromatin remodeling required to build sister-chromatid cohesion?

    NARCIS (Netherlands)

    Riedel, Christian G; Gregan, Juraj; Gruber, Stephan; Nasmyth, Kim

    2004-01-01

    Chromosome segregation during mitosis and meiosis depends on the linkage of sister DNA molecules after replication. These links, known as sister-chromatid cohesion, are provided by a multi-subunit complex called cohesin. Recent papers suggest that chromatin-remodeling complexes also have a role in t

  10. Interaction of maize chromatin-associated HMG proteins with mononucleosomes

    DEFF Research Database (Denmark)

    Lichota, J.; Grasser, Klaus D.

    2003-01-01

    maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA...

  11. Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome

    NARCIS (Netherlands)

    Basson, M. Albert; van Ravenswaaij-Arts, Conny

    2015-01-01

    CHARGE syndrome is a rare genetic syndrome characterised by a unique combination of multiple organ anomalies. Dominant loss-of-function mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is an ATP-dependent chromatin remodeller, have been identified as the cause

  12. Regulation of chromatin structure by poly(ADP-ribosylation

    Directory of Open Access Journals (Sweden)

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  13. Chromatin Structure in Cell Differentiation, Aging and Cancer

    NARCIS (Netherlands)

    S. Kheradmand Kia (Sima)

    2009-01-01

    textabstractChromatin is the structure that the eukaryotic genome is packaged into, allowing over a metre of DNA to fit into the small volume of the nucleus. It is composed of DNA and proteins, most of which are histones. This DNA-protein complex is the template for a number of essential cell proces

  14. Chromatin remodelers in the DNA double strand break response

    NARCIS (Netherlands)

    Smeenk, Godelieve

    2012-01-01

    During my PhD project, I studied the role of several chromatin remodelers in the DNA double strand break (DSB) response. We discovered that both CHD4 and SMARCA5 are required for ubiquitin signaling through the E3 ubiquitin ligases RNF8 and RNF168, which is a central signaling event in the response

  15. Control of the Transition to Flowering by Chromatin Modifications

    Institute of Scientific and Technical Information of China (English)

    Yuehui He

    2009-01-01

    The timing of floral transition is critical to reproductive success in angiosperms and is genetically controlled by a network of flowering genes.In Arabidopsis,expression of certain flowering genes is regulated by various chromatin modifications,among which are two central regulators of flowering,namely FLOWERING LOCUS C(FLC) and FLOWERING LOCUS T(FT).Recent studies have revealed that a number of chromatin-modifying components are involved in activation or repression of FLC expression.Activation of FLC expression is associated with various 'active' chromatin modifications including acetylation of core histone tails,histone H3 lysine-4 (H3K4) methylation,H2B monoubiquitination,H3 lysine-36 (H3K36) di- and tri-methylation and deposition of the histone variant H2A.Z,whereas various 'repressive' histone modifications are associated with FLC repression,including histone deacetylation,H3K4 demethylation,histone H3 lysine-9(H3Kg) and H3 lysine-27 (H3K27) methylation,and histone arginine methylation.In addition,recent studies have revealed that Polycomb group gene-mediated transcriptional-silencing mechanism not only represses FLC expression,but also directly represses FT expression.Regulation of FLC expression provides a paradigm for control of the expression of other developmental genes in plants through chromatin mechanisms.

  16. Environmental car exhaust pollution damages human sperm chromatin and DNA.

    Science.gov (United States)

    Calogero, A E; La Vignera, S; Condorelli, R A; Perdichizzi, A; Valenti, D; Asero, P; Carbone, U; Boggia, B; De Rosa, N; Lombardi, G; D'Agata, R; Vicari, L O; Vicari, E; De Rosa, M

    2011-06-01

    The adverse role of traffic pollutants on male fertility is well known. Aim of this study was to evaluate their effects on sperm chromatin/DNA integrity. To accomplish this, 36 men working at motorway tollgates and 32 unexposed healthy men (controls) were enrolled. All of them were interviewed about their lifestyle. Hormone, semen samples, and environmental and biological markers of pollution were evaluated. Sperm chromatin and DNA integrity were evaluated by flow cytometry following propidium iodide staining and TUNEL assay, respectively. LH, FSH, and testosterone serum levels were within the normal range in tollgate workers. Sperm concentration, total sperm count, total and progressive motility, and normal forms were significantly lower in these men compared with controls. Motorway tollgate workers had a significantly higher percentage of spermatozoa with damaged chromatin and DNA fragmentation, a late sign of apoptosis, compared with controls. A significant direct correlation was found between spermatozoa with damaged chromatin or fragmented DNA and the length of occupational exposure, suggesting a time-dependent relationship. This study showed that car exhaust exposure has a genotoxic effect on human spermatozoa. This may be of relevant importance not only for the reproductive performance of the men exposed, but also for the offspring health.

  17. Discovering enhancers by mapping chromatin features in primary tissue.

    Science.gov (United States)

    Bowman, Sarah K

    2015-09-01

    Enhancers work with promoters to refine the timing, location, and level of gene expression. As they perform these functions, active enhancers generate a chromatin environment that is distinct from other areas of the genome. Therefore, profiling enhancer-associated chromatin features can produce genome-wide maps of potential regulatory elements. This review focuses on current technologies used to produce maps of potential tissue-specific enhancers by profiling chromatin from primary tissue. First, cells are separated from whole organisms either by affinity purification, automated cell sorting, or microdissection. Isolating the tissue prior to analysis ensures that the molecular signature of active enhancers will not become lost in an averaged signal from unrelated cell types. After cell isolation, the molecular feature that is profiled will depend on the abundance and quality of the harvested material. The combination of tissue isolation plus genome-wide chromatin profiling has successfully identified enhancers in several pioneering studies. In the future, the regulatory apparatus of healthy and diseased tissues will be explored in this manner, as researchers use the combined techniques to gain insight into how active enhancers may influence disease progression.

  18. PROPER MOTIONS IN THE GALACTIC BULGE: PLAUT'S WINDOW

    Directory of Open Access Journals (Sweden)

    K. Vieira

    2009-01-01

    Full Text Available A proper motion study of a eld of 20' x20' inside Plaut's low extinction window (l,b=(0 ;-8 , has been completed. Relative proper motions and photographic BV photometry have been derived for -21; 000 stars reaching to V - 20:5 mag, based on the astrometric reduction of 43 photographic plates, spanning over 21 years of epoch di erence. Proper motion errors are typically 1 mas yr-1. Cross-referencing with the 2MASS catalog yielded a sample of - 8700 stars, from which predominantly disk and bulge subsamples were selected photometrically from the JH color-magnitude diagram. The two samples exhibited di erent proper-motion distributions, with the disk displaying the expected re ex solar motion. Galactic rotation was also detected for stars between -2 and -3 kpc from us. The bulge sample, represented by red giants, has an intrinsic proper motion dispersion of (l; b = (3:39; 2:91 = (0:11; 0:09 mas yr-1, which is in good agreement with previous results. A mean distance of 6:37+0:87 -0:77 kpc has been estimated for the bulge sample, based on the observed K magnitude of the horizontal branch red clump. The metallicity [M=H] distribution was also obtained for a subsample of 60 bulge giants stars, based on calibrated photometric indices. The observed [M=H] shows a peak value at [M=H]-0:1 with an extended metal poor tail and around 30% of the stars with supersolar metallicity. No change in proper motion dispersion was observed as a function of [M=H]. We are currently in the process of obtaining CCD UBV RI photometry for the entire proper-motion sample of - 21; 000 stars.

  19. Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Cancer

    OpenAIRE

    Nicholas C. Gomez; Austin J. Hepperla; Raluca Dumitru; Jeremy M. Simon; Fang Fang; Ian J. Davis

    2016-01-01

    Chromatin regulation is critical for differentiation and disease. However, features linking the chromatin environment of stem cells with disease remain largely unknown. We explored chromatin accessibility in embryonic and multipotent stem cells and unexpectedly identified widespread chromatin accessibility at repetitive elements. Integrating genomic and biochemical approaches, we demonstrate that these sites of increased accessibility are associated with well-positioned nucleosomes marked by ...

  20. Complexity of chromatin folding is captured by the strings and binders switch model

    OpenAIRE

    Barbieri, Mariano; Chotalia, Mita; Fraser, James; Lavitas, Liron-Mark; Dostie, Josée; Pombo, Ana; Nicodemi, Mario

    2012-01-01

    Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the “strings and binders switch” model to explain the origin and variety of chromatin behaviors that coexist and dynamically change wi...

  1. Altered chromatin organization and SUN2 localization in mandibuloacral dysplasia are rescued by drug treatment.

    Science.gov (United States)

    Camozzi, Daria; D'Apice, Maria Rosaria; Schena, Elisa; Cenni, Vittoria; Columbaro, Marta; Capanni, Cristina; Maraldi, Nadir M; Squarzoni, Stefano; Ortolani, Michela; Novelli, Giuseppe; Lattanzi, Giovanna

    2012-10-01

    Mandibuloacral dysplasia type A (MADA) is a rare laminopathy characterized by growth retardation, craniofacial anomalies, bone resorption at specific sites including clavicles, phalanges and mandibula, mottled cutaneous pigmentation, skin rigidity, partial lipodystrophy, and insulin resistance. The disorder is caused by recessive mutations of the LMNA gene encoding for A-type lamins. The molecular feature of MADA consists in the accumulation of the unprocessed lamin A precursor, which is detected at the nuclear rim and in intranuclear aggregates. Here, we report the characterization of prelamin A post-translational modifications in MADA cells that induce alterations in the chromatin arrangement and dislocation of nuclear envelope-associated proteins involved in correct nucleo-cytoskeleton relationships. We show that protein post-translational modifications change depending on the passage number, suggesting the onset of a feedback mechanism. Moreover, we show that treatment of MADA cells with the farnesyltransferase inhibitors is effective in the recovery of the chromatin phenotype, altered in MADA, provided that the cells are at low passage number, while at high passage number, the treatment results ineffective. Moreover, the distribution of the lamin A interaction partner SUN2, a constituent of the nuclear envelope, is altered by MADA mutations, as argued by the formation of a highly disorganized lattice. Treatment with statins partially rescues proper SUN2 organization, indicating that its alteration is caused by farnesylated prelamin A accumulation. Given the major role of SUN1 and SUN2 in the nucleo-cytoskeleton interactions and in regulation of nuclear positioning in differentiating cells, we hypothesise that mechanisms regulating nuclear membrane-centrosome interplay and nuclear movement may be affected in MADA fibroblasts.

  2. RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks.

    Science.gov (United States)

    Oum, Ji-Hyun; Seong, Changhyun; Kwon, Youngho; Ji, Jae-Hoon; Sid, Amy; Ramakrishnan, Sreejith; Ira, Grzegorz; Malkova, Anna; Sung, Patrick; Lee, Sang Eun; Shim, Eun Yong

    2011-10-01

    Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.

  3. Citrullination regulates pluripotency and histone H1 binding to chromatin

    Science.gov (United States)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  4. The ING tumor suppressors in cellular senescence and chromatin.

    Science.gov (United States)

    Ludwig, Susann; Klitzsch, Alexandra; Baniahmad, Aria

    2011-07-18

    The Inhibitor of Growth (ING) proteins represent a type II tumor suppressor family comprising five conserved genes, ING1 to ING5. While ING1, ING2 and ING3 proteins are stable components of the mSIN3a-HDAC complexes, the association of ING1, ING4 and ING5 with HAT protein complexes was also reported. Among these the ING1 and ING2 have been analyzed more deeply. Similar to other tumor suppressor factors the ING proteins are also involved in many cellular pathways linked to cancer and cell proliferation such as cell cycle regulation, cellular senescence, DNA repair, apoptosis, inhibition of angiogenesis and modulation of chromatin.A common structural feature of ING factors is the conserved plant homeodomain (PHD), which can bind directly to the histone mark trimethylated lysine of histone H3 (H3K4me3). PHD mutants lose the ability to undergo cellular senescence linking chromatin mark recognition with cellular senescence. ING1 and ING2 are localized in the cell nucleus and associated with chromatin modifying enzymes, linking tumor suppression directly to chromatin regulation. In line with this, the expression of ING1 in tumors is aberrant or identified point mutations are mostly localized in the PHD finger and affect histone binding. Interestingly, ING1 protein levels increase in replicative senescent cells, latter representing an efficient pathway to inhibit cancer proliferation. In association with this, suppression of p33ING1 expression prolongs replicative life span and is also sufficient to bypass oncogene-induced senescence. Recent analyses of ING1- and ING2-deficient mice confirm a tumor suppressive role of ING1 and ING2 and also indicate an essential role of ING2 in meiosis.Here we summarize the activity of ING1 and ING2 as tumor suppressors, chromatin factors and in development.

  5. Facilitation skills for trainers

    Directory of Open Access Journals (Sweden)

    F. Cilliers

    2000-06-01

    Full Text Available This research aims to develop the facilitation skills of trainers. Facilitation is defined form the Person-Centered approach, as providing an opportunity for the trainee to experience personal growth and learning. A facilitation skills workshop was presented to 40 trainers, focussing on enhancing selfactualisation, its intra and inter personal characteristics, and attending and responding behaviour. Measurement with the Personal Orientation Inventory and Carkhuff scales, indicate enhanced cognitive, affective and conative sensitivity and interpersonal skills. A post-interview indicates the trainers experienced empowerment in dealing with the providing of opportunities for growth amongst trainees, in all kinds of training situations. Recommendations are made to enhance facilitation development amongst trainers. Opsomming Hierdie navorsing poog om die fasiliteringsvaardighede van opieiers te ontwikkel. Fasilitering word gedefinieer vanuit die Persoonsgesentreerde benadering as die beskikbaarstelling van 'n geleentheid om persoonlike groei en leer te ervaar. 'n Fasiliteringsvaardighede werkswinkel is aangebied vir 40 opieiers, met die fokus op die stimulering van selfaktualisering, die intra en interpersoonlike kenmerke daarvan, en aandagskenk- en responderings- gedrag. Meting met die Persoonlike Orientasievraelys en die Carkhuff skale, dui op n toename in kognitiewe, affektiewe en konatiewe sensitiwiteit en interpersoonlike vaardighede. n Post-onderhoud dui op die opleier se ervaarde bemagtiging in die beskikbaarstelling van groeigeleenthede vir opleidelinge, in all tipe opleidingsituasies. Aanbevelings word gemaak om die ontwikkeling van fasiliteringsvaardighede by opleiers te verhoog.

  6. From Teaching to Facilitation

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2013-01-01

    A shift from teaching to learning is characteristic of the introduction of Problem Based Learning (PBL) in an existing school. As a consequence the teaching staff has to be trained in skills like facilitating group work and writing cases. Most importantly a change in thinking about teaching...

  7. Facilitation of Adult Development

    Science.gov (United States)

    Boydell, Tom

    2016-01-01

    Taking an autobiographical approach, I tell the story of my experiences facilitating adult development, in a polytechnic and as a management consultant. I relate these to a developmental framework of Modes of Being and Learning that I created and elaborated with colleagues. I connect this picture with a number of related models, theories,…

  8. Facilitation skills for nurses

    Directory of Open Access Journals (Sweden)

    F Cilliers

    2000-09-01

    Full Text Available Using the pcrson-centered approach, facilitation in this study was conceptualised as providing opportunities for personal growth in the patient, and operationalised in a skills workshop for 40 nurses from different hospitals in Gauteng. The first objective was to evaluate the workshop and the second to ascertain its effect on the participant’s experienced performance. A combined quantitative and qualitative research design was used. The quantitative measurement (Personal Orientation Inventory, Carkhuff scales indicated that the workshop stimulated self-actualisation in terms of intrapersonal awareness, and the interpersonal skills of respect, realness, concreteness, empathy, as well as in terms of attending and responding behaviour. The qualitative measurement (a semi-structured interview indicated that the participants were able to empower patients to find their own answers to difficult personal questions. The alternative hypothesis was accepted, namely that this workshop in facilitations skills significantly enhanced the intra- and interpersonal characteristics associated with self-actualisation and the facilitation of growth in patients. The findings highlighted the difference between the two roles of instructor and facilitator, and recommendations to this effect were formulated.

  9. Facilitating leadership team communication

    OpenAIRE

    Hedman, Eerika

    2015-01-01

    The purpose of this study is to understand and describe how to facilitate competent communication in leadership teamwork. Grounded in the premises of social constructionism and informed by such theoretical frameworks as coordinated management of meaning theory (CMM), dialogic organization development (OD), systemic-constructionist leadership, communication competence, and reflexivity, this study seeks to produce further insights into understanding leadership team communicati...

  10. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning.

    Directory of Open Access Journals (Sweden)

    Hsuan Tung

    Full Text Available Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s or factor(s that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and ultimately affect viral replication.

  11. Lick Northern Proper Motion Program. III. Lick NPM2 Catalog

    CERN Document Server

    Hanson, R B; Jones, B F; Monet, D G; Hanson, Robert B.; Klemola, Arnold R.; Jones, Burton F.; Monet, David G.

    2004-01-01

    The Lick Northern Proper Motion (NPM) program, a two-epoch (1947-1988) photographic survey of the northern two-thirds of the sky (Dec. > -23 deg), has measured absolute proper motions, on an inertial system defined by distant galaxies, for 380,000 stars from 8 14) anonymous stars for astrometry and galactic studies, 92,000 bright (B < 14) positional reference stars, and 35,000 special stars chosen for astrophysical interest. The NPM2 proper motions are on the ICRS system, via Tycho-2 stars, to an accuracy of 0.5 mas/yr in each field. RMS proper motion precision is 6 mas/yr. Positional errors average 80 mas at the mean plate epoch 1968, and 200 mas at the NPM2 catalog epoch 2000. NPM2 photographic photometry errors average 0.18 mag in B, and 0.20 mag in B-V. The NPM2 Catalog and the updated (to J2000) NPM1 Catalog are available at the CDS Strasbourg data center and on the NPM WWW site (http://www.ucolick.org/~npm). The NPM2 Catalog completes the Lick Northern Proper Motion program after a half-century of w...

  12. Proper Motion Study of the Magellanic Clouds using SPM material

    CERN Document Server

    Katherine, Vieira; William, van Altena; Norbert, Zacharias; Dana, Casetti-Dinescu; Vladimir, Korchagin; Imants, Platais; David, Monet; Carlos, Lopez

    2010-01-01

    Absolute proper motions are determined for stars and galaxies to V=17.5 over a 450 square-degree area that encloses both Magellanic Clouds. The proper motions are based on photographic and CCD observations of the Yale/San Juan Southern Proper Motion program, which span over a baseline of 40 years. Multiple, local relative proper motion measures are combined in an overlap solution using photometrically selected Galactic Disk stars to define a global relative system that is then transformed to absolute using external galaxies and Hipparcos stars to tie into the ICRS. The resulting catalog of 1.4 million objects is used to derive the mean absolute proper motions of the Large Magellanic Cloud and the Small Magellanic Cloud; $(\\mu_\\alpha\\cos\\delta,\\mu_\\delta)_{LMC}=(1.89,+0.39)\\pm (0.27,0.27)\\;\\;\\{mas yr}^{-1}$ and $(\\mu_\\alpha\\cos\\delta,\\mu_\\delta)_{SMC}=(0.98,-1.01)\\pm (0.30,0.29)\\;\\;\\{mas yr}^{-1}$. These mean motions are based on best-measured samples of 3822 LMC stars and 964 SMC stars. A dominant portion (0....

  13. Proper Motions in the Galactic Bulge: Plaut's Window

    CERN Document Server

    Vieira, Katherine; Mendez, Rene A; Rich, R Michael; Girard, Terrence M; Korchagin, Vladimir I; van Altena, William; Majewski, Steven R; Bergh, Sidney van den

    2007-01-01

    A proper motion study of a field of 20' x 20' inside Plaut's low extinction window (l,b)=(0 deg,-8 deg), has been completed. Relative proper motions and photographic BV photometry have been derived for ~21,000 stars reaching to V~20.5 mag, based on the astrometric reduction of 43 photographic plates, spanning over 21 years of epoch difference. Proper motion errors are typically 1 mas/yr and field dependent systematics are below 0.2 mas/yr. Cross-referencing with the 2MASS catalog yielded a sample of ~8,700 stars, from which predominantly disk and bulge subsamples were selected photometrically from the JH color-magnitude diagram. The two samples exhibited different proper-motion distributions, with the disk displaying the expected reflex solar motion as a function of magnitude. Galactic rotation was also detected for stars between ~2 and ~3 kpc from us. The bulge sample, represented by red giants, has an intrinsic proper motion dispersion of (sigma_l,sigma_b)=(3.39, 2.91)+/-(0.11,0.09) mas/yr, which is in good...

  14. Proper generalized decompositions an introduction to computer implementation with Matlab

    CERN Document Server

    Cueto, Elías; Alfaro, Icíar

    2016-01-01

    This book is intended to help researchers overcome the entrance barrier to Proper Generalized Decomposition (PGD), by providing a valuable tool to begin the programming task. Detailed Matlab Codes are included for every chapter in the book, in which the theory previously described is translated into practice. Examples include parametric problems, non-linear model order reduction and real-time simulation, among others. Proper Generalized Decomposition (PGD) is a method for numerical simulation in many fields of applied science and engineering. As a generalization of Proper Orthogonal Decomposition or Principal Component Analysis to an arbitrary number of dimensions, PGD is able to provide the analyst with very accurate solutions for problems defined in high dimensional spaces, parametric problems and even real-time simulation. .

  15. Compliance of proper safety helmet usage in motorcyclists.

    Science.gov (United States)

    Kulanthayan, S; Umar, R S; Hariza, H A; Nasir, M T; Harwant, S

    2000-03-01

    Motorcyclists make up the largest group of fatalities on Malaysian roads, majority succumbing to head injuries despite the compulsory safety helmet laws in the country. One possible reason for this high fatality is improper usage of safety helmets. This study examines the compliance of proper safety helmet use in motorcyclists in a typical Malaysian town. Five hundred motorcyclists were studied. Only 54.4% of motorcyclists used helmets properly, 21.4% used them improperly; and 24.2% did not wear helmets. Six variables were found to be significant in improper safety helmet use. They were age, gender, race, formal education level, prior accident experience and type of license held. Marital status and riding experience were not significant. Efforts promoting proper use of safety helmets should focus on the young, male, less formally educated, unlicensed rider, who has had a prior accident.

  16. A New HST Measurement of the Crab Pulsar Proper Motion

    CERN Document Server

    Caraveo, P A; Caraveo, Patrizia A.; Mignani, Roberto P.

    1999-01-01

    We have used a set of archived HST/WFPC2 exposures of the inner regions of the Crab Nebula to obtain a new measurement of the pulsar proper motion, the first after the original work of Wyckoff & Murray, more than 20 years ago. Our measurement of the pulsar displacement, mu = 18 +/- 3 mas/yr, agrees well with the value obtained previously. This is noteworthy, since the data we have used span less than 2 years, as opposed to the 77 years required in the previous work. With a position angle of 292 +/- 10 deg, the proper motion vector appears aligned with the axis of symmetry of the inner Crab nebula, as defined by the direction of the X-ray jet observed by ROSAT. Indeed, if the neutron star rotation is to be held responsible both for the X-ray jet and for the observed symmetry, the Crab could provide an example of alignment between spin axis and proper motion.

  17. Retroviruses hijack chromatin loops to drive oncogene expression and highlight the chromatin architecture around proto-oncogenic loci.

    Directory of Open Access Journals (Sweden)

    Jillian M Pattison

    Full Text Available The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene.

  18. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    Science.gov (United States)

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  19. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).

    Science.gov (United States)

    Soyer, Jessica L; Möller, Mareike; Schotanus, Klaas; Connolly, Lanelle R; Galazka, Jonathan M; Freitag, Michael; Stukenbrock, Eva H

    2015-06-01

    The presence or absence of specific transcription factors, chromatin remodeling machineries, chromatin modification enzymes, post-translational histone modifications and histone variants all play crucial roles in the regulation of pathogenicity genes. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) provides an important tool to study genome-wide protein-DNA interactions to help understand gene regulation in the context of native chromatin. ChIP-seq is a convenient in vivo technique to identify, map and characterize occupancy of specific DNA fragments with proteins against which specific antibodies exist or which can be epitope-tagged in vivo. We optimized existing ChIP protocols for use in the wheat pathogen Zymoseptoria tritici and closely related sister species. Here, we provide a detailed method, underscoring which aspects of the technique are organism-specific. Library preparation for Illumina sequencing is described, as this is currently the most widely used ChIP-seq method. One approach for the analysis and visualization of representative sequence is described; improved tools for these analyses are constantly being developed. Using ChIP-seq with antibodies against H3K4me2, which is considered a mark for euchromatin or H3K9me3 and H3K27me3, which are considered marks for heterochromatin, the overall distribution of euchromatin and heterochromatin in the genome of Z. tritici can be determined. Our ChIP-seq protocol was also successfully applied to Z. tritici strains with high levels of melanization or aberrant colony morphology, and to different species of the genus (Z. ardabiliae and Z. pseudotritici), suggesting that our technique is robust. The methods described here provide a powerful framework to study new aspects of chromatin biology and gene regulation in this prominent wheat pathogen.

  20. Correcting for systematic effects in ground-based photographic proper motions: The Southern Proper Motion Program as a case study

    Science.gov (United States)

    van Altena, William F.; Girard, T. M.; Platais, I.; Kozhurina-Platais, V.; López, C. E.

    The derivation of accurate positions and proper motions from ground-based photographic materials requires the minimization of systematic errors due to inaccurate modeling of the telescopes' field-of-view and the magnitude equation. We describe the procedures that have been developed for the Southern Proper Motions Program (SPM) to deal with these important problems. The SPM is based on photographic plates taken at our Carlos Cesco Observatory at El Leoncito, Argentina and will yield absolute proper motions and positions to magnitude B approximately 19 for approximately 1 million stars south of declination -20 degrees. The SPM is a joint program between the Yale Southern Observatory and the Universidad Nacional de San Juan, Argentina. The SPM Catalog 2.0, which is the current version covering the -25 to -40 degree declination zones, provides positions, absolute proper motions, and photographic BV photometry for over 320,000 stars and galaxies. Stars cover the magnitude range 5 astrom/. Our web-side contains several useful plots showing the sky coverage, error distribution, a quick comparison with the Hipparcos proper motions, etc. We would appreciate your comments on the SPM 2.0 and our Web page.

  1. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner

    DEFF Research Database (Denmark)

    Alexiadis, V; Waldmann, T; Andersen, Jens S.

    2000-01-01

    The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology...... is observed with chromatin but not with naked DNA and does not involve dissociation of core histones from chromatin. Moreover, these effects require histone H2A/H2B dimers in addition to histone H3/H4. We additionally tested whether the DEK protein affects DNA-utilizing processes and found that the DEK...

  2. Mindfulness for group facilitation

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine; Krohn, Simon

    2014-01-01

    In this paper, we argue that mindfulness techniques can be used for enhancing the outcome of group performance. The word mindfulness has different connotations in the academic literature. Broadly speaking there is ‘mindfulness without meditation’ or ‘Western’ mindfulness which involves active...... thinking and ‘Eastern’ mindfulness which refers to an open, accepting state of mind, as intended with Buddhist-inspired techniques such as meditation. In this paper, we are interested in the latter type of mindfulness and demonstrate how Eastern mindfulness techniques can be used as a tool for facilitation....... A brief introduction to the physiology and philosophy of Eastern mindfulness constitutes the basis for the arguments of the effect of mindfulness techniques. The use of mindfulness techniques for group facilitation is novel as it changes the focus from individuals’ mindfulness practice...

  3. Facilitating Learning at Conferences

    DEFF Research Database (Denmark)

    Ravn, Ib; Elsborg, Steen

    2011-01-01

    and facilitate a variety of simple learning techniques at thirty one- and two-day conferences of up to 300 participants each. We present ten of these techniques and data evaluating them. We conclude that if conference organizers allocate a fraction of the total conference time to facilitated processes......The typical conference consists of a series of PowerPoint presentations that tend to render participants passive. Students of learning have long abandoned the transfer model that underlies such one-way communication. We propose an al-ternative theory of conferences that sees them as a forum...... for learning, mutual inspiration and human flourishing. We offer five design principles that specify how conferences may engage participants more and hence increase their learning. In the research-and-development effort reported here, our team collaborated with conference organizers in Denmark to introduce...

  4. Program Facilitates Distributed Computing

    Science.gov (United States)

    Hui, Joseph

    1993-01-01

    KNET computer program facilitates distribution of computing between UNIX-compatible local host computer and remote host computer, which may or may not be UNIX-compatible. Capable of automatic remote log-in. User communicates interactively with remote host computer. Data output from remote host computer directed to local screen, to local file, and/or to local process. Conversely, data input from keyboard, local file, or local process directed to remote host computer. Written in ANSI standard C language.

  5. Facilitating Knowledge Sharing

    OpenAIRE

    Holdt Christensen, Peter

    2005-01-01

    Abstract This paper argues that knowledge sharing can be conceptualized as different situations of exchange in which individuals relate to each other in different ways, involving different rules, norms and traditions of reciprocity regulating the exchange. The main challenge for facilitating knowledge sharing is to ensure that the exchange is seen as equitable for the parties involved, and by viewing the problems of knowledge sharing as motivational problems situated in different organization...

  6. Proper Wound Care: How to Minimize a Scar

    Science.gov (United States)

    ... de12", ]; for (var c = 0; c Proper wound care: How to minimize a scar Whenever your skin is injured – whether by accident or from surgery – your body works to repair the wound. As your skin heals, a scar may form, as this is a natural part of the healing process. The appearance of ...

  7. [Maintaining the proper distance for nurses working in the home].

    Science.gov (United States)

    Estève, Sonia

    2016-01-01

    Health professionals must be able to respond to many different situations which require technical knowledge and self-control. Particularly when working in the patient's home, nurses must know how to maintain a proper distance to protect themselves from burnout. In this respect, the practice analysis constitutes an adapted support tool. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. The Yale/San Juan Southern Proper Motion Program

    Science.gov (United States)

    van Altena, W. F.; Girard, T. M.; Platais, I.; Kozhurina-Platais, V.; Ostheimer, J.; Lopez, C. E.; Mendez, R. A.

    1999-09-01

    The SPM is based on photographic plates taken at our observatory at El Leoncito, Argentina and will yield absolute proper motions and positions to magnitude B 19 for approximately 1 million stars south of declination -20 degrees. The SPM is a joint program between the Yale Southern Observatory and the Universidad Nacional de San Juan, Argentina. The SPM Catalog 2.0 provides positions, absolute proper motions, and photographic BV photometry for over 320,000 stars and galaxies. All objects contained in the SPM 1.0 Catalog (the South Galactic Pole region) are also included in this version. Note that SPM 1.0 has been replaced by SPM 1.1 which has slightly different astrometry (mostly proper motions) due to refinement of the magnitude equation correction in the SPM 2.0 Catalog. The Catalog covers an area of 3700 square degrees in an irregularly bounded band between declinations of -43 and -22 degrees, but excluding fields in the plane of the Milky Way. Stars cover the magnitude range 5 astrom/. Our web-site contains several useful plots showing the sky coverage, error distribution, a quick comparison with the Hipparcos proper motions, etc.

  9. Proper Living - Exploring Domestic Ideals in Medieval Denmark

    DEFF Research Database (Denmark)

    Kristiansen, Mette Svart

    2014-01-01

    , and ornaments. This paper addresses ideas of proper living in affluent rural and urban milieus in medieval Denmark, particularly as they are expressed through houses, inventories, and murals, and it also addresses current challenges in understanding the materialized ideas based on excavations and analysis...

  10. Proper comparison among methods using a confusion matrix

    CSIR Research Space (South Africa)

    Salmon, BP

    2015-07-01

    Full Text Available -1 IGARSS 2015, Milan, Italy, 26-31 July 2015 Proper comparison among methods using a confusion matrix 1,2 B.P. Salmon, 2,3 W. Kleynhans, 2,3 C.P. Schwegmann and 1J.C. Olivier 1School of Engineering and ICT, University of Tasmania, Australia 2...

  11. {\\Delta}{\\mu} Binaries among Stars with Large Proper Motions

    CERN Document Server

    Khovritchev, M Yu

    2016-01-01

    Based on observations performed with the Pulkovo normal astrograph in 2008-2015 and data from sky surveys (DSS, 2MASS, SDSS DR12, WISE), we have investigated the motions of 1308 stars with proper motions larger than 300 mas/yr down to magnitude 17. The main idea of our search for binary stars based on this material is reduced to comparing the quasi-mean (POSS2-POSS1; an epoch difference of $\\approx$50 yr) and quasi-instantaneous (2MASS, SDSS, WISE, Pulkovo; an epoch difference of $\\approx$10 yr) proper motions. If the difference is statistically significant compared to the proper motion errors, then the object may be considered as a {\\Delta}{\\mu}-binary candidate. One hundred and twenty one stars from among those included in the observational program satisfy this requirement. Additional confirmations of binarity for a number of stars have been obtained by comparing the calculated proper motions with the data from several programs of stellar trigonometric parallax determinations and by analyzing the asymmetry ...

  12. The Proper Place of Theory in Educational History?

    Science.gov (United States)

    Urban, Wayne J.

    2011-01-01

    In this article, the author talks about the proper place of theory in educational history and shares his comments on the essays by Eileen Tamura, Carolyn Eick, and Roland Coloma. Eileen Tamura's positing of most educational historians as practitioners of narrative history is surely on the mark. She invites historians of education to investigate…

  13. The Semantics of Proper Names and Other Bare Nominals

    Science.gov (United States)

    Izumi, Yu

    2012-01-01

    This research proposes a unified approach to the semantics of the so-called bare nominals, which include proper names (e.g., "Mary"), mass and plural terms (e.g., "water," "cats"), and articleless noun phrases in Japanese. I argue that bare nominals themselves are monadic predicates applicable to more than one…

  14. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.

    Science.gov (United States)

    Corpet, Armelle; Almouzni, Geneviève

    2009-01-01

    Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.

  15. Allelic reprogramming of 3D chromatin architecture during early mammalian development.

    Science.gov (United States)

    Du, Zhenhai; Zheng, Hui; Huang, Bo; Ma, Rui; Wu, Jingyi; Zhang, Xianglin; He, Jing; Xiang, Yunlong; Wang, Qiujun; Li, Yuanyuan; Ma, Jing; Zhang, Xu; Zhang, Ke; Wang, Yang; Zhang, Michael Q; Gao, Juntao; Dixon, Jesse R; Wang, Xiaowo; Zeng, Jianyang; Xie, Wei

    2017-07-12

    In mammals, chromatin organization undergoes drastic reprogramming after fertilization. However, the three-dimensional structure of chromatin and its reprogramming in preimplantation development remain poorly understood. Here, by developing a low-input Hi-C (genome-wide chromosome conformation capture) approach, we examined the reprogramming of chromatin organization during early development in mice. We found that oocytes in metaphase II show homogeneous chromatin folding that lacks detectable topologically associating domains (TADs) and chromatin compartments. Strikingly, chromatin shows greatly diminished higher-order structure after fertilization. Unexpectedly, the subsequent establishment of chromatin organization is a prolonged process that extends through preimplantation development, as characterized by slow consolidation of TADs and segregation of chromatin compartments. The two sets of parental chromosomes are spatially separated from each other and display distinct compartmentalization in zygotes. Such allele separation and allelic compartmentalization can be found as late as the 8-cell stage. Finally, we show that chromatin compaction in preimplantation embryos can partially proceed in the absence of zygotic transcription and is a multi-level hierarchical process. Taken together, our data suggest that chromatin may exist in a markedly relaxed state after fertilization, followed by progressive maturation of higher-order chromatin architecture during early development.

  16. Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Cancer

    Directory of Open Access Journals (Sweden)

    Nicholas C. Gomez

    2016-11-01

    Full Text Available Chromatin regulation is critical for differentiation and disease. However, features linking the chromatin environment of stem cells with disease remain largely unknown. We explored chromatin accessibility in embryonic and multipotent stem cells and unexpectedly identified widespread chromatin accessibility at repetitive elements. Integrating genomic and biochemical approaches, we demonstrate that these sites of increased accessibility are associated with well-positioned nucleosomes marked by distinct histone modifications. Differentiation is accompanied by chromatin remodeling at repetitive elements associated with altered expression of genes in relevant developmental pathways. Remarkably, we found that the chromatin environment of Ewing sarcoma, a mesenchymally derived tumor, is shared with primary mesenchymal stem cells (MSCs. Accessibility at repetitive elements in MSCs offers a permissive environment that is exploited by the critical oncogene responsible for this cancer. Our data demonstrate that stem cells harbor a unique chromatin landscape characterized by accessibility at repetitive elements, a feature associated with differentiation and oncogenesis.

  17. Genomic and chromatin signals underlying transcription start-site selection.

    Science.gov (United States)

    Valen, Eivind; Sandelin, Albin

    2011-11-01

    A central question in cellular biology is how the cell regulates transcription and discerns when and where to initiate it. Locating transcription start sites (TSSs), the signals that specify them, and ultimately elucidating the mechanisms of regulated initiation has therefore been a recurrent theme. In recent years substantial progress has been made towards this goal, spurred by the possibility of applying genome-wide, sequencing-based analysis. We now have a large collection of high-resolution datasets identifying locations of TSSs, protein-DNA interactions, and chromatin features over whole genomes; the field is now faced with the daunting challenge of translating these descriptive maps into quantitative and predictive models describing the underlying biology. We review here the genomic and chromatin features that underlie TSS selection and usage, focusing on the differences between the major classes of core promoters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Chromatin Assembly in a Yeast Whole-Cell Extract

    Science.gov (United States)

    Schultz, Michael C.; Hockman, Darren J.; Harkness, Troy A. A.; Garinther, Wendy I.; Altheim, Brent A.

    1997-08-01

    A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.

  19. A chromatin-based mechanism for limiting divergent noncoding transcription

    DEFF Research Database (Denmark)

    Marquardt, Sebastian; Escalante-Chong, Renan; Pho, Nam

    2014-01-01

    In addition to their annotated transcript, many eukaryotic mRNA promoters produce divergent noncoding transcripts. To define determinants of divergent promoter directionality, we used genomic replacement experiments. Sequences within noncoding transcripts specified their degradation pathways......, and functional protein-coding transcripts could be produced in the divergent direction. To screen for mutants affecting the ratio of transcription in each direction, a bidirectional fluorescent protein reporter construct was introduced into the yeast nonessential gene deletion collection. We identified chromatin...... assembly as an important regulator of divergent transcription. Mutations in the CAF-I complex caused genome-wide derepression of nascent divergent noncoding transcription. In opposition to the CAF-I chromatin assembly pathway, H3K56 hyperacetylation, together with the nucleosome remodeler SWI...

  20. Synaptic, transcriptional, and chromatin genes disrupted in autism

    Science.gov (United States)

    De Rubeis, Silvia; He, Xin; Goldberg, Arthur P.; Poultney, Christopher S.; Samocha, Kaitlin; Cicek, A Ercument; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarjinder; Klei, Lambertus; Kosmicki, Jack; Fu, Shih-Chen; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F.; Brownfeld, Jessica M.; Cai, Jinlu; Campbell, Nicholas J.; Carracedo, Angel; Chahrour, Maria H.; Chiocchetti, Andreas G.; Coon, Hilary; Crawford, Emily L.; Crooks, Lucy; Curran, Sarah R.; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A.; Gallagher, Louise; Geller, Evan; Guter, Stephen J.; Hill, R. Sean; Ionita-Laza, Iuliana; Gonzalez, Patricia Jimenez; Kilpinen, Helena; Klauck, Sabine M.; Kolevzon, Alexander; Lee, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R.; McInnes, Alison L.; Neale, Benjamin; Owen, Michael J.; Ozaki, Norio; Parellada, Mara; Parr, Jeremy R.; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J.; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Wang, Li-San; Weiss, Lauren A.; Willsey, A. Jeremy; Yu, Timothy W.; Yuen, Ryan K.C.; Cook, Edwin H.; Freitag, Christine M.; Gill, Michael; Hultman, Christina M.; Lehner, Thomas; Palotie, Aarno; Schellenberg, Gerard D.; Sklar, Pamela; State, Matthew W.; Sutcliffe, James S.; Walsh, Christopher A.; Scherer, Stephen W.; Zwick, Michael E.; Barrett, Jeffrey C.; Cutler, David J.; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J.; Buxbaum, Joseph D.

    2014-01-01

    Summary The genetic architecture of autism spectrum disorder involves the interplay of common and rare variation and their impact on hundreds of genes. Using exome sequencing, analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, and a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic, transcriptional, and chromatin remodeling pathways. These include voltage-gated ion channels regulating propagation of action potentials, pacemaking, and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodelers, prominently histone post-translational modifications involving lysine methylation/demethylation. PMID:25363760

  1. Neutron scatter studies of chromatin structures related to functions

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, E.M.

    1992-01-01

    Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  2. Neutron scatter studies of chromatin structures related to functions

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, E.M.

    1992-01-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  3. Proteomics and the genetics of sperm chromatin condensation

    Institute of Scientific and Technical Information of China (English)

    Rafael Oliva; Judit Castillo

    2011-01-01

    Spermatogenesis involves extremely marked cellular, genetic and chromatin changes resulting in the generation of the highly specialized sperm cell. Proteomics allows the identification of the proteins that compose the spermatogenic cells and the study of their function. The recent developments in mass spectrometry (MS) have markedly increased the throughput to identify and to study the sperm proteins. Catalogs of thousands of testis and spermatozoan proteins in human and different model species are becoming available, setting up the basis for subsequent research, diagnostic applications and possibly the future development of specific treatments. The present review intends to summarize the key genetic and chromatin changes at the different stages of spermatogenesis and in the mature sperm cell and to comment on the presently available proteomic studies.

  4. Cellular Fractionation and Isolation of Chromatin-Associated RNA.

    Science.gov (United States)

    Conrad, Thomas; Ørom, Ulf Andersson

    2017-01-01

    In eukaryotic cells, the synthesis, processing, and functions of RNA molecules are confined to distinct subcellular compartments. Biochemical fractionation of cells prior to RNA isolation thus enables the analysis of distinct steps in the lifetime of individual RNA molecules that would be masked in bulk RNA preparations from whole cells. Here, we describe a simple two-step differential centrifugation protocol for the isolation of cytoplasmic, nucleoplasmic, and chromatin-associated RNA that can be used in downstream applications such as qPCR or deep sequencing. We discuss various aspects of this fractionation protocol, which can be readily applied to many mammalian cell types. For the study of long noncoding RNAs and enhancer RNAs in regulation of transcription especially the preparation of chromatin-associated RNA can contribute significantly to further developments.

  5. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Treffers, Louise W; Verlaan-de Vries, Matty

    2015-01-01

    with the DNA damaging agent methyl methanesulfonate (MMS). We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified......Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR). To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment...... dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO...

  6. A quantitative telomeric chromatin isolation protocol identifies different telomeric states

    Science.gov (United States)

    Grolimund, Larissa; Aeby, Eric; Hamelin, Romain; Armand, Florence; Chiappe, Diego; Moniatte, Marc; Lingner, Joachim

    2013-11-01

    Telomere composition changes during tumourigenesis, aging and in telomere syndromes in a poorly defined manner. Here we develop a quantitative telomeric chromatin isolation protocol (QTIP) for human cells, in which chromatin is cross-linked, immunopurified and analysed by mass spectrometry. QTIP involves stable isotope labelling by amino acids in cell culture (SILAC) to compare and identify quantitative differences in telomere protein composition of cells from various states. With QTIP, we specifically enrich telomeric DNA and all shelterin components. We validate the method characterizing changes at dysfunctional telomeres, and identify and validate known, as well as novel telomere-associated polypeptides including all THO subunits, SMCHD1 and LRIF1. We apply QTIP to long and short telomeres and detect increased density of SMCHD1 and LRIF1 and increased association of the shelterins TRF1, TIN2, TPP1 and POT1 with long telomeres. Our results validate QTIP to study telomeric states during normal development and in disease.

  7. ATRX: the case of a peculiar chromatin remodeler.

    Science.gov (United States)

    Ratnakumar, Kajan; Bernstein, Emily

    2013-01-01

    The SWI/SNF-like chromatin remodeler ATRX has recently garnered renewed attention. ATRX mutations were first identified in patients bearing the syndrome after which it is named, alpha thalassemia/mental retardation, X-linked. While ATRX has long been implicated in transcriptional regulation through multiple mechanisms, recent studies have identified a role for ATRX in the regulation of histone variant deposition. In addition, current reports describe ATRX to be mutated at high percentages in multiple tumor types, suggestive of a potential 'driver' role in cancer. Here we discuss the numerous and seemingly diverse roles for ATRX in transcriptional regulation and histone deposition and suggest that ATRX's effects are mediated by its regulation of histones within the chromatin template.

  8. The chromatin remodeller ATRX: a repeat offender in human disease.

    Science.gov (United States)

    Clynes, David; Higgs, Douglas R; Gibbons, Richard J

    2013-09-01

    The regulation of chromatin structure is of paramount importance for a variety of fundamental nuclear processes, including gene expression, DNA repair, replication, and recombination. The ATP-dependent chromatin-remodelling factor ATRX (α thalassaemia/mental retardation X-linked) has emerged as a key player in each of these processes. Exciting recent developments suggest that ATRX plays a variety of key roles at tandem repeat sequences within the genome, including the deposition of a histone variant, prevention of replication fork stalling, and the suppression of a homologous recombination-based pathway of telomere maintenance. Here, we provide a mechanistic overview of the role of ATRX in each of these processes, and propose how they may be connected to give rise to seemingly disparate human diseases.

  9. Lick Northern Proper Motion Program. III. Lick NPM2 Catalog

    Science.gov (United States)

    Hanson, Robert B.; Klemola, Arnold R.; Jones, Burton F.; Monet, David G.

    2004-09-01

    The Lick Northern Proper Motion (NPM) program, a two-epoch (1947-1988) photographic survey of the northern two-thirds of the sky (δ>~-23deg), has measured absolute proper motions, on an inertial system defined by distant galaxies, for 378,360 stars in the magnitude range 8NPM1 Catalog contains 148,940 stars in 899 fields outside the Milky Way's zone of avoidance. The 2003 NPM2 Catalog contains 232,062 stars in the remaining 347 NPM fields near the plane of the Milky Way. This paper describes the NPM2 star selection, plate measurements, astrometric and photometric data reductions, and catalog compilation. The NPM2 Catalog contains 122,806 faint (B>=14) anonymous stars for astrometry and Galactic studies, 91,648 bright (BNPM2 proper motions are on the ICRS system, via Tycho-2 stars, to an accuracy of 0.6 mas yr-1 in each field. The rms proper-motion precision is 6 mas yr-1. Positional errors average 80 mas at the mean plate epoch 1968, and 200 mas at the NPM2 catalog epoch 2000. NPM2 photographic photometry errors average 0.18 mag in B and 0.20 mag in B-V. The NPM2 Catalog and the updated (to J2000.0) NPM1 Catalog are available at the CDS Strasbourg data center and on the NPM Web site. The NPM2 Catalog completes the Lick Northern Proper Motion program after a half-century of work by three generations of Lick Observatory astronomers. The NPM Catalogs will serve as a database for research in Galactic structure, stellar kinematics, and astrometry.

  10. Regulation of DNA transposition by CpG methylation and chromatin structure in human cells.

    Science.gov (United States)

    Jursch, Tobias; Miskey, Csaba; Izsvák, Zsuzsanna; Ivics, Zoltán

    2013-05-15

    /DR elements in the Tc1/mariner superfamily. CpG methylation provokes the formation of a tight chromatin structure at the transposon DNA, likely aiding the formation of a catalytically active complex by facilitating synapsis of sites bound by the transposase.

  11. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches.

    Directory of Open Access Journals (Sweden)

    Ghia M Euskirchen

    2011-03-01

    Full Text Available A systems understanding of nuclear organization and events is critical for determining how cells divide, differentiate, and respond to stimuli and for identifying the causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been implicated in a wide variety of cellular processes including gene expression, nuclear organization, centromere function, and chromosomal stability, and mutations in SWI/SNF components have been linked to several types of cancer. To better understand the biological processes in which chromatin remodeling proteins participate, we globally mapped binding regions for several components of the SWI/SNF complex throughout the human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory elements integral to transcription (e.g. 5' ends, RNA Polymerases II and III, and enhancers as well as regions critical for chromosome organization (e.g. CTCF, lamins, and DNA replication origins. Interestingly we also find that certain configurations of SWI/SNF subunits are associated with transcripts that have higher levels of expression, whereas other configurations of SWI/SNF factors are associated with transcripts that have lower levels of expression. To further elucidate the association of SWI/SNF subunits with each other as well as with other nuclear proteins, we also analyzed SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF factors are associated with their own family members, as well as with cellular constituents such as nuclear matrix proteins, key transcription factors, and centromere components, implying a ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and chromosome organization. Taken together the results from our ChIP and immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and genome function more broadly and through a greater diversity of

  12. Introgression of A- and B-genome of tetraploid triticale chromatin into tetraploid rye.

    Science.gov (United States)

    Wiśniewska, H; Kwiatek, M; Kulak-Książczyk, S; Apolinarska, B

    2013-11-01

    An improvement of rye is one of the mainstream goals of current breeding. Our study is concerned with the introduction of the tetraploid triticale (ABRR) into the 4x rye (RRRR) using classical methods of distant crossing. One hundred fifty BC1F9 hybrid plants [(4x rye × 4x triticales) × 4x rye] obtained from a backcrossing program were studied. The major aim of this work was to verify the presence of an introgressed A- and B- genome chromatin of triticale in a collection of the 4x rye-tiritcale hybrids and to determine their chromosome compositions. In the present study, karyotypes of the previously reported BC1F2s and BC1F3s were compared with that of the BC1F9 generation as obtained after several subsequent open pollinations. The genomic in situ hybridisation (GISH) allowed us to identify 133 introgression forms in which chromosome numbers ranged between 26 and 32. Using four DNA probes (5S rDNA, 25S rDNA, pSc119.2 and pAs1), the fluorescence in situ hybridisation (FISH) was carried out to facilitate an exact chromosome identification in the hybrid plants. The combination of the multi-colour GISH with the repetitive DNA FISH singled out five types of translocated chromosomes: 2A.2R, 4A.4R, 5A.5R, 5B.5R and 7A.7R among the examined BC1F9s. The reported translocation lines could serve as valuable sources of wheat chromatin suitable for further improvements of rye.

  13. Chromatin Memory in the Development of Human Cancers

    OpenAIRE

    Yao, Yixin; Des Marais, Thomas L; Costa, Max

    2014-01-01

    Cancer is a complex disease with acquired genomic and epigenomic alterations that affect cell proliferation, viability and invasiveness. Almost all the epigenetic mechanisms including cytosine methylation and hydroxymethylation, chromatin remodeling and non-coding RNAs have been found associate with carcinogenesis and cancer specific expression profile. Altered histone modification as an epigenetic hallmark is frequently found in tumors. Understanding the epigenetic alterations induced by car...

  14. Chromatin versus pathogens: the function of epigenetics in plant immunity

    OpenAIRE

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin r...

  15. Light scattering measurements supporting helical structures for chromatin in solution.

    Science.gov (United States)

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.

  16. Defining the budding yeast chromatin-associated interactome

    OpenAIRE

    Lambert, Jean-Philippe; Fillingham, Jeffrey; Siahbazi, Mojgan; Greenblatt, Jack; Baetz, Kristin; Figeys, Daniel

    2010-01-01

    The maintenance of cellular fitness requires living organisms to integrate multiple signals into coordinated outputs. Central to this process is the regulation of the expression of the genetic information encoded into DNA. As a result, there are numerous constraints imposed on gene expression. The access to DNA is restricted by the formation of nucleosomes, in which DNA is wrapped around histone octamers to form chromatin wherein the volume of DNA is considerably reduced. As such, nucleosome ...

  17. ATRX: The case of a peculiar chromatin remodeler

    OpenAIRE

    Ratnakumar, Kajan; Bernstein, Emily

    2013-01-01

    The SWI/SNF-like chromatin remodeler ATRX has recently garnered renewed attention. ATRX mutations were first identified in patients bearing the syndrome after which it is named, alpha thalassemia/mental retardation, X-linked. While ATRX has long been implicated in transcriptional regulation through multiple mechanisms, recent studies have identified a role for ATRX in the regulation of histone variant deposition. In addition, current reports describe ATRX to be mutated at high percentages in ...

  18. Facilitative root interactions in intercrops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Jensen, E.S.

    2005-01-01

    Facilitation takes place when plants ameliorate the environment of their neighbours, and increase their growth and survival. Facilitation occurs in natural ecosystems as well as in agroecosystems. We discuss examples of facilitative root interactions in intercropped agroecosystems; including...... intensified cropping systems using chemical and mechanical inputs also show that facilitative interactions definitely can be of significance. It is concluded that a better understanding of the mechanisms behind facilitative interactions may allow us to benefit more from these phenomena in agriculture...

  19. Facilitation as a teaching strategy : experiences of facilitators

    Directory of Open Access Journals (Sweden)

    E Lekalakala-Mokgele

    2006-09-01

    Full Text Available Changes in nursing education involve the move from traditional teaching approaches that are teacher-centred to facilitation, a student centred approach. The studentcentred approach is based on a philosophy of teaching and learning that puts the learner on centre-stage. The aim of this study was to identify the challenges of facilitators of learning using facilitation as a teaching method and recommend strategies for their (facilitators development and support. A qualitative, explorative and contextual design was used. Four (4 universities in South Africa which utilize facilitation as a teaching/ learning process were identified and the facilitators were selected to be the sample of the study. The main question posed during in-depth group interviews was: How do you experience facilitation as a teaching/learning method?. Facilitators indicated different experiences and emotions when they first had to facilitate learning. All of them indicated that it was difficult to facilitate at the beginning as they were trained to lecture and that no format for facilitation was available. They experienced frustrations and anxieties as a result. The lack of knowledge of facilitation instilled fear in them. However they indicated that facilitation had many benefits for them and for the students. Amongst the ones mentioned were personal and professional growth. Challenges mentioned were the fear that they waste time and that they do not cover the content. It is therefore important that facilitation be included in the training of nurse educators.

  20. Rsc4 Connects the Chromatin Remodeler RSC to RNA Polymerases‡

    Science.gov (United States)

    Soutourina, Julie; Bordas-Le Floch, Véronique; Gendrel, Gabrielle; Flores, Amando; Ducrot, Cécile; Dumay-Odelot, Hélène; Soularue, Pascal; Navarro, Francisco; Cairns, Bradley R.; Lefebvre, Olivier; Werner, Michel

    2006-01-01

    RSC is an essential, multisubunit chromatin remodeling complex. We show here that the Rsc4 subunit of RSC interacted via its C terminus with Rpb5, a conserved subunit shared by all three nuclear RNA polymerases (Pol). Furthermore, the RSC complex coimmunoprecipitated with all three RNA polymerases. Mutations in the C terminus of Rsc4 conferred a thermosensitive phenotype and the loss of interaction with Rpb5. Certain thermosensitive rpb5 mutations were lethal in combination with an rsc4 mutation, supporting the physiological significance of the interaction. Pol II transcription of ca. 12% of the yeast genome was increased or decreased twofold or more in a rsc4 C-terminal mutant. The transcription of the Pol III-transcribed genes SNR6 and RPR1 was also reduced, in agreement with the observed localization of RSC near many class III genes. Rsc4 C-terminal mutations did not alter the stability or assembly of the RSC complex, suggesting an impact on Rsc4 function. Strikingly, a C-terminal mutation of Rsc4 did not impair RSC recruitment to the RSC-responsive genes DUT1 and SMX3 but rather changed the chromatin accessibility of DNases to their promoter regions, suggesting that the altered transcription of DUT1 and SMX3 was the consequence of altered chromatin remodeling. PMID:16782880

  1. The accessible chromatin landscape of the human genome.

    Science.gov (United States)

    Thurman, Robert E; Rynes, Eric; Humbert, Richard; Vierstra, Jeff; Maurano, Matthew T; Haugen, Eric; Sheffield, Nathan C; Stergachis, Andrew B; Wang, Hao; Vernot, Benjamin; Garg, Kavita; John, Sam; Sandstrom, Richard; Bates, Daniel; Boatman, Lisa; Canfield, Theresa K; Diegel, Morgan; Dunn, Douglas; Ebersol, Abigail K; Frum, Tristan; Giste, Erika; Johnson, Audra K; Johnson, Ericka M; Kutyavin, Tanya; Lajoie, Bryan; Lee, Bum-Kyu; Lee, Kristen; London, Darin; Lotakis, Dimitra; Neph, Shane; Neri, Fidencio; Nguyen, Eric D; Qu, Hongzhu; Reynolds, Alex P; Roach, Vaughn; Safi, Alexias; Sanchez, Minerva E; Sanyal, Amartya; Shafer, Anthony; Simon, Jeremy M; Song, Lingyun; Vong, Shinny; Weaver, Molly; Yan, Yongqi; Zhang, Zhancheng; Zhang, Zhuzhu; Lenhard, Boris; Tewari, Muneesh; Dorschner, Michael O; Hansen, R Scott; Navas, Patrick A; Stamatoyannopoulos, George; Iyer, Vishwanath R; Lieb, Jason D; Sunyaev, Shamil R; Akey, Joshua M; Sabo, Peter J; Kaul, Rajinder; Furey, Terrence S; Dekker, Job; Crawford, Gregory E; Stamatoyannopoulos, John A

    2012-09-06

    DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.

  2. Histone chaperones link histone nuclear import and chromatin assembly.

    Science.gov (United States)

    Keck, Kristin M; Pemberton, Lucy F

    2013-01-01

    Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  3. Balancing chromatin remodeling and histone modifications in transcription.

    Science.gov (United States)

    Petty, Emily; Pillus, Lorraine

    2013-11-01

    Chromatin remodelers use the energy of ATP hydrolysis to reposition or evict nucleosomes or to replace canonical histones with histone variants. By regulating nucleosome dynamics, remodelers gate access to the underlying DNA for replication, repair, and transcription. Nucleosomes are subject to extensive post-translational modifications that can recruit regulatory proteins or alter the local chromatin structure. Just as extensive crosstalk has been observed between different histone post-translational modifications, there is growing evidence for both coordinated and antagonistic functional relations between nucleosome remodeling and modifying machineries. Defining the combined functions of the complexes that alter nucleosome interactions, position, and stability is key to understanding processes that require access to DNA, particularly with growing appreciation of their contributions to human health and disease. Here, we highlight recent advances in the interactions between histone modifications and the imitation-switch (ISWI) and chromodomain helicase DNA-binding protein 1 (CHD1) chromatin remodelers from studies in budding yeast, fission yeast, flies, and mammalian cells, with a focus on yeast.

  4. Predicting chromatin architecture from models of polymer physics.

    Science.gov (United States)

    Bianco, Simona; Chiariello, Andrea M; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario

    2017-01-09

    We review the picture of chromatin large-scale 3D organization emerging from the analysis of Hi-C data and polymer modeling. In higher mammals, Hi-C contact maps reveal a complex higher-order organization, extending from the sub-Mb to chromosomal scales, hierarchically folded in a structure of domains-within-domains (metaTADs). The domain folding hierarchy is partially conserved throughout differentiation, and deeply correlated to epigenomic features. Rearrangements in the metaTAD topology relate to gene expression modifications: in particular, in neuronal differentiation models, topologically associated domains (TADs) tend to have coherent expression changes within architecturally conserved metaTAD niches. To identify the nature of architectural domains and their molecular determinants within a principled approach, we discuss models based on polymer physics. We show that basic concepts of interacting polymer physics explain chromatin spatial organization across chromosomal scales and cell types. The 3D structure of genomic loci can be derived with high accuracy and its molecular determinants identified by crossing information with epigenomic databases. In particular, we illustrate the case of the Sox9 locus, linked to human congenital disorders. The model in-silico predictions on the effects of genomic rearrangements are confirmed by available 5C data. That can help establishing new diagnostic tools for diseases linked to chromatin mis-folding, such as congenital disorders and cancer.

  5. Repression and activation by multiprotein complexes that alter chromatin structure.

    Science.gov (United States)

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  6. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage.

    Science.gov (United States)

    Ortega-Atienza, Sara; Wong, Victor C; DeLoughery, Zachary; Luczak, Michal W; Zhitkovich, Anatoly

    2016-01-08

    Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA.

  7. Chromatin immunoprecipitation in microfluidic droplets: towards fast and cheap analyses.

    Science.gov (United States)

    Teste, Bruno; Champ, Jerome; Londono-Vallejo, Arturo; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis; Draskovic, Irena; Mottet, Guillaume

    2017-01-31

    Genetic organization is governed by the interaction of DNA with histone proteins, and differential modifications of these proteins is a fundamental mechanism of gene regulation. Histone modifications are primarily studied through chromatin immunoprecipitation (ChIP) assays, however conventional ChIP procedures are time consuming, laborious and require a large number of cells. Here we report for the first time the development of ChIP in droplets based on a microfluidic platform combining nanoliter droplets, magnetic beads (MB) and magnetic tweezers (MT). The droplet approach enabled compartmentalization and improved mixing, while reducing the consumption of samples and reagents in an integrated workflow. Anti-histone antibodies grafted to MB were used as a solid support to capture and transfer the target chromatin from droplets to droplets in order to perform chromatin immunoprecipitation, washing, elution and purification of DNA. We designed a new ChIP protocol to investigate four different types of modified histones with known roles in gene activation or repression. We evaluated the performances of this new ChIP in droplet assay in comparison with conventional methods. The proposed technology dramatically reduces analytical time from a few days to 7 hours, simplifies the ChIP protocol and decreases the number of cells required by 100 fold while maintaining a high degree of sensitivity and specificity. Therefore this droplet-based ChIP assay represents a new, highly advantageous and convenient approach to epigenetic analyses.

  8. Physical studies of chromatin. The recombination of histones with DNA.

    Science.gov (United States)

    Boseley, P G; Bradbury, E M; Butler-Browne, G S; Carpenter, B G; Stephens, R M

    1976-02-02

    Experiments have been carried out to define clearly which histone combinations can induce a higher order structure when combined with DNA. The criterion for a higher order structure being the series of low-angle X-ray diffraction maxima nominally at 5.5 nm, 3.7 nm, 2.7 nm and 2.2 nm. Such a pattern, with resolution similar to that of H1-depleted chromatin, is readily attainable by recombining histones H2A + H2B + H3 + H4 with DNA using a salt-gradient dialysis method. However, the use of urea in the recombination procedure is shown to be detrimental to the production of a higher order structure. Low-angle ring patterns are not obtained by recomgining DNA with single pure histones or any combination of histone pairs exept H3 + H4. The diffraction maxima from the latter are, however, weaker than those from chromatin and there are pronounced semi-equatorial arcs. The presence of a third histone, either H2A or H2B in the H3 + H4 recombination mixture tends to distort the recognised low-angle pattern. It is concluded that the histone pair H3 + H4 is essential for the formation of a regular higher order structure in chromatin, although for a complete structural development the presence of H2A + H2B is also required.

  9. Biphasic Chromatin Structure and FISH Signals Reflect Intranuclear Order

    Directory of Open Access Journals (Sweden)

    Jyoti P. Chaudhuri

    2005-01-01

    Full Text Available Background and Aim: One of the two parental allelic genes may selectively be expressed, regulated by imprinting, X-inactivation or by other less known mechanisms. This study aims to reflect on such genetic mechanisms. Materials and Methods: Slides from short term cultures or direct smears of blood, bone marrow and amniotic fluids were hybridized with FISH probes singly, combined or sequentially. Two to three hundred cells were examined from each preparation. Results and Aignificance: A small number of cells (up to about 5%, more frequent in leukemia cases, showed the twin features: (1 nuclei with biphasic chromatin, one part decondensed and the other condensed; and (2 homologous FISH signals distributed equitably in those two regions. The biphasic chromatin structure with equitable distribution of the homologous FISH signals may correspond to the two sets of chromosomes, supporting observations on ploidywise intranuclear order. The decondensed chromatin may relate to enhanced transcriptions or advanced replications. Conclusions: Transcriptions of only one of the two parental genomes cause allelic exclusion. Genomes may switch with alternating monoallelic expression of biallelic genes as an efficient genetic mechanism. If genomes fail to switch, allelic exclusion may lead to malignancy. Similarly, a genome-wide monoallelic replication may tilt the balance of heterozygosity resulting in aneusomy, initiating early events in malignant transformation and in predicting cancer mortality.

  10. Chromatin structure and ATRX function in mouse oocytes.

    Science.gov (United States)

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M

    2012-01-01

    Differentiation of chromatin structure and function during oogenesis is essential to confer the mammalian oocyte with meiotic and developmental potential. Errors in chromosome segregation during female meiosis and subsequent transmission of an abnormal chromosome complement (aneuploidy) to the early conceptus are one of the leading causes of pregnancy loss in women. The chromatin remodeling protein ATRX (α-thalassemia mental retardation X-linked) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres during meiosis. In mammalian oocytes, ATRX binds to centromeric heterochromatin domains where it is required for accurate chromosome segregation. Loss of ATRX function induces abnormal meiotic chromosome morphology, reduces histone H3 phosphorylation, and promotes a high incidence of aneuploidy associated with severely reduced fertility. The presence of centromeric breaks during the transition to the first mitosis in the early embryo indicates that the role of ATRX in chromosome segregation is mediated through an epigenetic mechanism involving the maintenance of chromatin modifications associated with pericentric heterochromatin (PCH) formation and chromosome condensation. This is consistent with the existence of a potential molecular link between centromeric and PCH in the epigenetic control of centromere function and maintenance of chromosome stability in mammalian oocytes. Dissecting the molecular mechanisms of ATRX function during meiosis will have important clinical implications towards uncovering the epigenetic factors contributing to the onset of aneuploidy in the human oocyte.

  11. Essence: Facilitating Software Innovation

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2008-01-01

      This paper suggests ways to facilitate creativity and innovation in software development. The paper applies four perspectives – Product, Project, Process, and People –to identify an outlook for software innovation. The paper then describes a new facility–Software Innovation Research Lab (SIRL......) – and a new method concept for software innovation – Essence – based on views, modes, and team roles. Finally, the paper reports from an early experiment using SIRL and Essence and identifies further research....

  12. Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression.

    Science.gov (United States)

    Zunder, Rachel M; Rine, Jasper

    2012-11-01

    In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.

  13. Chromatin-mediated regulation of cytomegalovirus gene expression.

    Science.gov (United States)

    Reeves, Matthew B

    2011-05-01

    Following primary infection, whether Human cytomegalovirus (HCMV) enters either the latent or lytic lifecycle is dependent on the phenotype of the cell type infected. Multiple cell types are permissive for lytic infection with HCMV whereas, in contrast, well characterized sites of latency are restricted to a very specific population of CD34+ cells resident in the bone marrow and the immature myeloid cells they give rise to. It is becoming increasingly clear that one of the mechanisms that promote HCMV latency involves the recruitment of histone proteins to the major immediate early promoter (MIEP) which are subject to post-translational modifications that promote a transcriptionally inactive state. Integral to this, is the role of cellular transcriptional repressors that interact with histone modifying enzymes that promote and maintain this repressed state during latency. Crucially, the chromatin associated with the MIEP is dynamically regulated-myeloid cell differentiation triggers the acetylation of histones bound to the MIEP which is concomitant with the reactivation of IE gene expression and re-entry into lytic infection. Interestingly, this dynamic regulation of the MIEP by chromatin structure in latency extends not only into lytic infection but also for the regulation of multiple viral promoters in all phases of infection. HCMV lytic infection is characterised by a timely and co-ordinated pattern of gene expression that now has been shown to correlate with active post-translational modification of the histones associated with early and late promoters. These effects are mediated by the major IE products (IE72 and IE86) which physically and functionally interact with histone modifying enzymes resulting in the efficient activation of viral gene expression. Thus chromatin appears to play an important role in gene regulation in all phases of infection. Furthermore, these studies are highly suggestive that an intrinsic cellular anti-viral response to incoming viral

  14. Dual modified antiphospho (Ser10)-acetyl (Lys14)-histone H3 predominantly mark the pericentromeric chromatin during mitosis in monokinetic plants.

    Science.gov (United States)

    Sharma, Santosh Kumar; Yamamoto, Maki; Mukai, Yasuhiko

    2016-12-01

    Epigenetic regulatory posttranslational histone modification marks not only function individually but also capable to act in combination as a unique pattern. A total of 16 plant species belonging to 11 genera of eight families (five dicots and three monocots) including land plants, epiphytes (orchids) and the holokinetic taxa (Drosera spp.) were analysed for chromosomal distribution of dual modified antiphospho (Ser10)-acetyl (K14)-histone H3 (H3S10phK14ac) to understand the combinatorial chromatin dynamics during mitotic cell division in plants. The anti-H3S10phK14ac evidently mark the pericentromeric chromatin on mitotic chromosomes of the plants excluding the holokinetic Drosera species, which revealed the immunolabelling of whole chromosomes all along the arms. The dual modified immunosignals were absent during early stages of mitosis, appeared intensively at metaphase and remained visible until late-anaphase/telophase however, labelled the whole chromosomes during meiotic metaphase I. Colocalization of anti-H3S10phK14ac with an onion's CENH3 antibody on mitotic chromosomes of Allium revealed the chromosomal location of anti-H3S10phK14ac in the region between signals for CENH3 detection. Overall analysis suggests that the unique localization of combinatorial histone modification mark at pericentromeric chromatin might have attributed through 'phospho-acetyl' cross talk that ultimately facilitate the sister chromatid cohesion at pericentromeres following condensation events in mitotic chromosomes. Here, we propose that dual modified H3S10phK14ac histone may serve as an additional cytogenetic landmark to identify pericentromeric chromatin during mitosis in plants. The plausible role of histone cross talk and future perspectives of combinatorial histone modification marks in plant cytogenetics with special reference to chromatin dynamics have been discussed.

  15. Common Proper Motion Companions to Nearby Stars: Ages and Evolution

    CERN Document Server

    Makarov, V V; Hennessy, G S

    2008-01-01

    A set of 41 nearby stars (closer than 25 pc) is investigated which have very wide binary and common proper motion (CPM) companions at projected separations between 1000 and $200 000$ AU. These companions are identified by astrometric positions and proper motions from the NOMAD catalog. Based mainly on measures of chromospheric and X-ray activity, age estimation is obtained for most of 85 identified companions. Color -- absolute magnitude diagrams are constructed to test if CPM companions are physically related to the primary nearby stars and have the same age. Our carefully selected sample includes three remote white dwarf companions to main sequence stars and two systems (55 Cnc and GJ 777A) of multiple planets and distant stellar companions. Ten new CPM companions, including three of extreme separations, are found. Multiple hierarchical systems are abundant; more than 25% of CPM components are spectroscopic or astrometric binaries or multiples themselves. Two new astrometric binaries are discovered among ne...

  16. Proper definition and evolution of generalized transverse momentum dependent distributions

    Directory of Open Access Journals (Sweden)

    Miguel G. Echevarria

    2016-08-01

    Full Text Available We consider one of the most fundamental sets of hadronic matrix elements, namely the generalized transverse momentum dependent distributions (GTMDs, and argue that their existing definitions lack proper evolution properties. By exploiting the similarity of GTMDs with the much better understood transverse momentum distributions, we argue that the existing definitions of GTMDs have to include an additional dependence on soft gluon radiation in order to render them properly defined. With this, we manage to obtain the evolution kernel of all (unpolarized quark and gluon GTMDs, which turns out to be spin independent. As a byproduct, all large logarithms can be resummed up to next-to-next-to-leading-logarithmic accuracy with the currently known perturbative ingredients.

  17. On high proper motion white dwarfs from photographic surveys

    CERN Document Server

    Reylé, C; Creze, M; Reyle, Celine; Robin, Annie C.; Creze, Michel

    2001-01-01

    The interpretation of high proper motion white dwarfs detected by Oppenheimer et al (2001) was the start of a tough controversy. While the discoverers identify a large fraction of their findings as dark halo members, others interpret the same sample as essentially made of disc and/or thick disc stars. We use the comprehensive description of galactic stellar populations provided by the "Besancon" model to produce a realistic simulation of Oppenheimer et al. data, including all observational selections and calibration biases. The conclusion is unambiguous: Thick disc white dwarfs resulting from ordinary hypotheses on the local density and kinematics are sufficient to explain the observed objects, there is no need for halo white dwarfs. This conclusion is robust to reasonable changes in model ingredients. The main cause of the misinterpretation seems to be that the velocity distribution of a proper motion selected star sample is severely biased in favour of high velocities. This has been neglected in previous an...

  18. Proper Motion of Components in 4C 39.25

    Science.gov (United States)

    Guirado, J. C.; Marcaide, J. M.; Alberdi, A.; Elosegui, P.; Ratner, M. I.; Shapiro, I. I.; Kilger, R.; Mantovani, F.; Venturi, T.; Rius, A.; hide

    1995-01-01

    From a series of simultaneous 8.4 and 2.3 GHz VLBI observations of the quasar 4C 39.25 phase referenced to the radio source 0920+390, carried out in 1990-1992, we have measured the proper motion of component b in 4C 39.25: mu(sub alpha) = 90 +/- 43 (mu)as/yr, mu(sub beta) = 7 +/- 68 (mu)as/yr, where the quoted uncertainties account for the contribution of the statistical standard deviation and the errors assumed for the parameters related to the geometry of the interferometric array, the atmosphere, and the source structure. This proper motion is consistent with earlier interpretations of VLBI hybrid mapping results, which showed an internal motion of this component with respect to other structural components. Our differential astrometry analyses show component b to be the one in motion. Our results thus further constrain models of this quasar.

  19. Proper definition and evolution of generalized transverse momentum dependent distributions

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, Miguel G., E-mail: mgechevarria@icc.ub.edu [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Idilbi, Ahmad, E-mail: ahmad.idilbi@wayne.edu [Department of Physics, Wayne State University, Detroit, MI, 48202 (United States); Kanazawa, Koichi, E-mail: koichi.kanazawa@temple.edu [Department of Physics, SERC, Temple University, Philadelphia, PA 19122 (United States); Lorcé, Cédric, E-mail: cedric.lorce@polytechnique.edu [Centre de Physique Théorique, École polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau (France); Metz, Andreas, E-mail: metza@temple.edu [Department of Physics, SERC, Temple University, Philadelphia, PA 19122 (United States); Pasquini, Barbara, E-mail: barbara.pasquini@pv.infn.it [Dipartimento di Fisica, Università degli Studi di Pavia, I-27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, I-27100 Pavia (Italy); Schlegel, Marc, E-mail: marc.schlegel@uni-tuebingen.de [Institute for Theoretical Physics, Tübingen University, Auf der Morgenstelle 14, 72076 Tübingen (Germany)

    2016-08-10

    We consider one of the most fundamental sets of hadronic matrix elements, namely the generalized transverse momentum dependent distributions (GTMDs), and argue that their existing definitions lack proper evolution properties. By exploiting the similarity of GTMDs with the much better understood transverse momentum distributions, we argue that the existing definitions of GTMDs have to include an additional dependence on soft gluon radiation in order to render them properly defined. With this, we manage to obtain the evolution kernel of all (un)polarized quark and gluon GTMDs, which turns out to be spin independent. As a byproduct, all large logarithms can be resummed up to next-to-next-to-leading-logarithmic accuracy with the currently known perturbative ingredients.

  20. Proper Versus Improper Mixtures in the ESR Model

    CERN Document Server

    Garola, Claudio

    2011-01-01

    The interpretation of mixtures is problematic in quantum mechanics (QM) because of nonobjectivity of properties. The ESR model restores objectivity reinterpreting quantum probabilities as conditional on detection and embodying the mathematical formalism of QM into a broader noncontextual (hence local) framework. We have recently provided a Hilbert space representation of the generalized observables that appear in the ESR model. We show here that each proper mixture is represented by a family of density operators parametrized by the macroscopic properties characterizing the physical system $\\Omega$ that is considered and that each improper mixture is represented by a single density operator which coincides with the operator that represents it in QM. The new representations avoid the problems mentioned above and entail some predictions that differ from the predictions of QM. One can thus contrive experiments for distinguishing empirically proper from improper mixtures, hence for confirming or disproving the ESR...