WorldWideScience

Sample records for chromate stress response

  1. Pupillary responses to chromatic stimulus

    Science.gov (United States)

    Suaste-Gomez, Ernesto; Rodriguez Guzman, M. C. Ma. Dolores A.; Druzgalski, Christopher

    2000-06-01

    Pupillary responses of the subjects under chromatic visual stimulation were filmed with video-oculography systems (VOG). Specifically, programmable chromatic visual stimuli were displayed on the monitor of a personal computer (PC) and responses tested in several normal subjects and those with ophthalmic pathologic conditions. Visual excitation utilized a reversal stimulus checkerboard pattern. Image processing techniques were applied in order to evaluate the pupil variations due to chromatic stimulation. In particular, the studies determined a relationship between pupillary response (PR) and steady-state retinal sensitivity (photopic vision). Finally, the retinal illuminance in trolands (td), as a product of the pupil area in mm2 and luminance in cd/m2 to full-field chromatic stimulation (FFCS) and checkerboard pattern reversal chromatic stimulation (CPRCS) was determined.

  2. Proteomics reveals a core molecular response of Pseudomonas putida F1 to acute chromate challenge

    Directory of Open Access Journals (Sweden)

    McCarthy Andrea T

    2010-05-01

    Full Text Available Abstract Background Pseudomonas putida is a model organism for bioremediation because of its remarkable metabolic versatility, extensive biodegradative functions, and ubiquity in contaminated soil environments. To further the understanding of molecular pathways responding to the heavy metal chromium(VI [Cr(VI], the proteome of aerobically grown, Cr(VI-stressed P. putida strain F1 was characterized within the context of two disparate nutritional environments: rich (LB media and minimal (M9L media containing lactate as the sole carbon source. Results Growth studies demonstrated that F1 sensitivity to Cr(VI was impacted substantially by nutrient conditions, with a carbon-source-dependent hierarchy (lactate > glucose >> acetate observed in minimal media. Two-dimensional HPLC-MS/MS was employed to identify differential proteome profiles generated in response to 1 mM chromate under LB and M9L growth conditions. The immediate response to Cr(VI in LB-grown cells was up-regulation of proteins involved in inorganic ion transport, secondary metabolite biosynthesis and catabolism, and amino acid metabolism. By contrast, the chromate-responsive proteome derived under defined minimal growth conditions was characterized predominantly by up-regulated proteins related to cell envelope biogenesis, inorganic ion transport, and motility. TonB-dependent siderophore receptors involved in ferric iron acquisition and amino acid adenylation domains characterized up-regulated systems under LB-Cr(VI conditions, while DNA repair proteins and systems scavenging sulfur from alternative sources (e.g., aliphatic sulfonates tended to predominate the up-regulated proteome profile obtained under M9L-Cr(VI conditions. Conclusions Comparative analysis indicated that the core molecular response to chromate, irrespective of the nutritional conditions tested, comprised seven up-regulated proteins belonging to six different functional categories including transcription, inorganic ion

  3. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    Science.gov (United States)

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-10-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors.

  4. Effects of iron stress on chromatic adaptation by natural phytoplankton communities in the Southern Ocean

    NARCIS (Netherlands)

    van Leeuwe, M.A.; Timmermans, K.R.; Witte, H.J.; Kraay, G.W.; Veldhuis, M.J.W.; de Baar, H.J.W.

    1998-01-01

    Effects of iron stress on chromatic adaptation were studied in natural phytoplankton communities collected in the Pacific region of the Southern Ocean. Iron enrichment experiments (48 to 72 h) were performed, incubating plankton communities under white, green and blue light respectively, with and wi

  5. Pupillary response to direct and consensual chromatic light stimuli

    DEFF Research Database (Denmark)

    Traustason, Sindri; Brondsted, Adam Elias; Sander, Birgit;

    2016-01-01

    Medical, Copenhagen), which is capable of both direct and consensual pupillometry measurements. The device uses a pair of dual monochromatic narrow bandwidth LED light sources, red (660 nm) and blue (470 nm). Pupil light responses were recorded with infrared video cameras and analysed using custom-made circuitry...... and software. Subjects were randomized to receive light stimuli at either the right or left eye after 5 min of dark adaptation. Pupil light responses were recorded in both eyes for 10 seconds before illumination, during illumination and 50 seconds after illumination with red and blue light. Three variables...... were defined for the recorded pupil responses: the maximal constriction amplitude (CAmax ), the pupil response during illumination and postillumination pupil response (PIPR). RESULTS: No difference was found in the pupil response to blue light. With red light, the pupil response during illumination...

  6. Seeing red: affect modulation and chromatic color responses on the Rorschach.

    Science.gov (United States)

    Malone, Johanna C; Stein, Michelle B; Slavin-Mulford, Jenelle; Bello, Iruma; Sinclair, S Justin; Blais, Mark A

    2013-01-01

    Psychoanalytic theories suggest that color perception on the Rorschach relates to affective modulation. However, this idea has minimal empirical support. Using a clinical sample, the authors explored the cognitive and clinical correlates of Rorschach color determinants and differences among four affective modulation subtypes: Controlled, Balanced, Under-Controlled, and Flooded. Subtypes were differentiated by measures of affective regulation, reality testing/confusion, and personality traits. Initial support for the relationship of chromatic color response styles and affective modulation was found. PMID:23428172

  7. Reconstruction of a chromatic response system in Escherichia coli.

    Science.gov (United States)

    Sugie, Yoshimi; Hori, Mayuko; Oka, Shunsuke; Ohtsuka, Hokuto; Aiba, Hirofumi

    2016-07-14

    Two-component signal transduction systems (TCS) are involved in widespread cellular responses to diverse signals from bacteria to plants. Cyanobacteria have evolved photoperception systems for efficient photosynthesis, and some histidine kinases are known to function as photosensors. In this study, we attempt to reconstruct the photoperception system in Escherichia coli to make an easily controllable ON/OFF switch for gene expressions. For this purpose, a CcaS-CcaR two-component system from Nostoc punctiforme was expressed with phycocyanobilin (PCB) producing enzymes in E. coli which carries a G-box-controlled reporter gene. We succeeded to endow E. coli with a gene activation switch that is regulated in a light-color dependent manner. The possibility of such a switch for the development of synthetic biology is pointed out. PMID:27246537

  8. Comparative Temporal Proteomics of a Response Regulator (SO2426)-Deficient Strain and Wild-Type Shewanella oneidensis MR-1 During Chromate Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Thompson, Melissa R [ORNL; Shah, Manesh B [ORNL; Zhang, Bing [ORNL; Verberkmoes, Nathan C [ORNL; Thompson, Dorothea K. [Purdue University; Hettich, Robert {Bob} L [ORNL

    2009-01-01

    Predicted orphan response regulators encoded in the Shewanella oneidensis MR-1 genome are poorly understood from a cellular function perspective. Our previous transcriptomic and proteomic analyses demonstrated that an annotated DNA-binding response regulator, SO2426, was significantly up-regulated in wild-type S. oneidensis cells at both themRNAand protein levels in response to acute chromate [Cr(VI)] challenge, suggesting a potential regulatory role for this protein in metal stress pathways. To investigate the impact of SO2426 activity on chromate stress response at a genome-wide scale, we describe here comparative and temporal proteome characterizations using multidimensional HPLC-MS/MS and statistical analysis to identify differentially expressed proteins in biological replicates of wild-type S. oneidensis MR-1 and a so2426 deletion ( so2426) strain, which exhibited an impaired Cr(VI) transformation rate compared to that of the parental strain. Global protein profiles were examined at different time intervals (0, 1, 3, 4 h) following exogenous chromate challenge. Results indicated that deletion of the so2426 gene negatively affected expression of a small protein subset (27 proteins) including those with annotated functions in siderophore biosynthesis (SO3032), Fe uptake (SO4743), intracellular Fe storage (Bfr1), and other transport processes. Cr(VI) exposure and subsequent ransformation dramatically increased the number of differentially expressed proteins detected,with up-regulated bundance patterns observed largely for proteins involved in general stress protection and detoxification trategies, cell motility, and protein fate. In addition, the proteome data sets were mined for amino acids with otential post-translational modifications (PTMs) indicative of a level of gene expression regulation extending eyond the transcriptional control imposed by SO2426.

  9. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.

    Directory of Open Access Journals (Sweden)

    Ralph W Pridmore

    Full Text Available This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0 in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones. Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.

  10. Suppression of mutants aberrant in light intensity responses of complementary chromatic adaptation.

    OpenAIRE

    Casey, E S; Kehoe, D M; Grossman, A R

    1997-01-01

    Complementary chromatic adaptation is a process in which cyanobacteria alter the pigment protein (phycocyanin and phycoerythrin) composition of their light-harvesting complexes, the phycobilisomes, to help optimize the absorbance of prevalent wavelengths of light in the environment. Several classes of mutants that display aberrant complementary chromatic adaptation have been isolated. One of the mutant classes, designated "blue" or FdB, accumulates high levels of the blue chromoprotein phycoc...

  11. Pupillary responses of chromatic stimulus in the visible spectrum 400 nm of 650 nm, in the stable state

    Science.gov (United States)

    Guzman, D. R.; Lopez, A. Z.; Gomez, E. S.

    2005-08-01

    an instrumental methodology was implemented to analyze the pupillary responses in the dilation and contraction process elicited by chromatic stimulus. Chromatic stimuli were employed in the visible spectrum from 400 nm to 650 nm. Three different stimulation software was developed and used in order to obtain a contrasted pupillary response PG0, PG12 and PG20. This test was applied to 39 subjects (29 male, 9 female and I child, 22-52 years and 6 years), 10 of them were stimulated with PG0, 21 were stimulated with PG12 and 16 with PG20. 6 subjects participate at least in 2 tests. Ishihara plates were exhibited to the Subjects before the stimulation, 37 of the present a normal vision color, I present deuteranopy.

  12. The surgically induced stress response.

    Science.gov (United States)

    Finnerty, Celeste C; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A; Herndon, David N

    2013-09-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes that induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Burn injuries provide an extreme model of trauma induced stress responses that can be used to study the long-term effects of a prolonged stress response. Although the stress response to acute trauma evolved to confer improved chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246

  13. The Surgically Induced Stress Response

    OpenAIRE

    Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N

    2013-01-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress respo...

  14. The Surgically Induced Stress Response

    Science.gov (United States)

    Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N.

    2013-01-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Although the stress response to acute trauma evolved to improve chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246

  15. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses...... include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review...... the responses of neurons to various physiological stressors at the molecular and cellular level....

  16. Color of scents: chromatic stimuli modulate odor responses in the human brain.

    Science.gov (United States)

    Osterbauer, Robert A; Matthews, Paul M; Jenkinson, Mark; Beckmann, Christian F; Hansen, Peter C; Calvert, Gemma A

    2005-06-01

    Color has a profound effect on the perception of odors. For example, strawberry-flavored drinks smell more pleasant when colored red than green and descriptions of the "nose" of a wine are dramatically influenced by its color. Using functional magnetic resonance imaging, we demonstrate a neurophysiological correlate of these cross-modal visual influences on olfactory perception. Subjects were scanned while exposed either to odors or colors in isolation or to color-odor combinations that were rated on the basis of how well they were perceived to match. Activity in caudal regions of the orbitofrontal cortex and in the insular cortex increased progressively with the perceived congruency of the odor-color pairs. These findings demonstrate the neuronal correlates of olfactory response modulation by color cues in brain areas previously identified as encoding the hedonic value of smells. PMID:15689393

  17. Neuronal responses to physiological stress

    Directory of Open Access Journals (Sweden)

    Konstantinos eKagias

    2012-10-01

    Full Text Available Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. Physiological stress can be divided into three different aspects: environmental stress, intrinsic developmental stress and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature and redox state for example, trigger molecular events that enable an organism to adapt, survive and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, which result from an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.

  18. Neuronal responses to physiological stress.

    Science.gov (United States)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  19. Auxin response under osmotic stress.

    Science.gov (United States)

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment. PMID:27052306

  20. Auxin response under osmotic stress.

    Science.gov (United States)

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.

  1. Hyperemic responses of the optic nerve head blood flow to chromatic equiluminant flicker are reduced by ocular hypertension and early glaucoma

    Science.gov (United States)

    Falsini, Benedetto; Riva, Charles E.; Salgarello, Tommaso; Logean, Eric; Colotto, Alberto; Giudiceandrea, Andrea

    2014-06-01

    We evaluated in ocular hypertension (OHT) and early glaucoma (EOAG) patients the optic nerve head (ONH) blood flow response (RF) to chromatic equiluminant flicker. This stimulus generates neural activity dominated by the parvo-cellular system. Eleven EOAG, 20 OHT patients, and 8 age-matched control subjects were examined. The blood flow (F) at the neuroretinal rim was continuously monitored by laser Doppler flowmetry before, during, and after a 60-s exposure to a 4 Hz, red-green equiluminant flicker stimulus (30 deg field). RF was expressed as percentage F-change during the last 20 s of flicker relative to baseline F. Responses were collected at a number of temporal sites. The highest RF value was used for subsequent analysis. As compared to controls, both OHT and EOAG patients showed a decrease (p<0.01) in mean RF. We conclude that RF elicited by chromatic equiluminant flicker is abnormally reduced in OHT and EOAG patients indicating an impairment of the parvo-cellular-mediated vasoactivity. This decrease of vascular response may occur independently of neural activity loss early in the disease process.

  2. Chromatic adaptation performance of different RGB sensors

    Science.gov (United States)

    Susstrunk, Sabine E.; Holm, Jack M.; Finlayson, Graham D.

    2000-12-01

    Chromatic adaptation transforms are used in imaging system to map image appearance to colorimetry under different illumination sources. In this paper, the performance of different chromatic adaptation transforms (CAT) is compared with the performance of transforms based on RGB primaries that have been investigated in relation to standard color spaces for digital still camera characterization and image interchange. The chromatic adaptation transforms studied are von Kries, Bradford, Sharp, and CMCCAT2000. The RGB primaries investigated are ROMM, ITU-R BT.709, and 'prime wavelength' RGB. The chromatic adaptation model used is a von Kries model that linearly scales post-adaptation cone response with illuminant dependent coefficients. The transforms were evaluated using 16 sets of corresponding color dat. The actual and predicted tristimulus values were converted to CIELAB, and three different error prediction metrics, (Delta) ELab, (Delta) ECIE94, and (Delta) ECMC(1:1) were applied to the results. One-tail Student-t tests for matched pairs were calculated to compare if the variations in errors are statistically significant. For the given corresponding color data sets, the traditional chromatic adaptation transforms, Sharp CAT and CMCCAT2000, performed best. However, some transforms based on RGB primaries also exhibit good chromatic adaptation behavior, leading to the conclusion that white-point independent RGB spaces for image encoding can be defined. This conclusion holds only if the linear von Kries model is considered adequate to predict chromatic adaptation behavior.

  3. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  4. Hyperglycemic stress response in Crustacea

    Directory of Open Access Journals (Sweden)

    S Lorenzon

    2005-09-01

    Full Text Available Blood glucose level in crustaceans is controlled by the crustacean Hyperglycemic Hormone (cHH,released from the eyestalk neuroendocrine centres both under physiological and environmental stressconditions. Hyperglycemia is a typical response of many aquatic animals to pollutants and stress and,in crustaceans, increased circulating cHH and hyperglycemia are reported to result from exposure toseveral environmental stressors. Biogenic amines and enkephalin have been found to mediate therelease of several neurohormones from crustacean neuroendocrine tissue and a model of thecontrolling network is proposed.

  5. Monitoring Plant Hormones During Stress Responses

    OpenAIRE

    Engelberth, Marie J.; Engelberth, Jurgen

    2009-01-01

    Plant hormones and related signaling compounds play an important role in the regulation of plant responses to various environmental stimuli and stresses. Among the most severe stresses are insect herbivory, pathogen infection, and drought stress. For each of these stresses a specific set of hormones and/or combinations thereof are known to fine-tune the responses, thereby ensuring the plant's survival. The major hormones involved in the regulation of these responses are jasmonic acid (JA), sa...

  6. Cleaning of Chromate Manufacture Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Sodium chromate solubility is determined in the range of NaOH concentrations from 450 to 810 g/L and solution temperatures from 30 to 110 ℃. The optimized conditions to separate sodium chromate from NaOH in leached solution are resolved. It is first found the method to efficiently separate sodium chromate from NaOH and sodium aluminate in crude sodium chromate. Bench-scale studies on the separating are performed. Finally, good separation results are achieved.

  7. Chromatic polynomials for simplicial complexes

    DEFF Research Database (Denmark)

    Møller, Jesper Michael; Nord, Gesche

    2016-01-01

    In this note we consider s s -chromatic polynomials for finite simplicial complexes. When s=1 s=1 , the 1 1 -chromatic polynomial is just the usual graph chromatic polynomial of the 1 1 -skeleton. In general, the s s -chromatic polynomial depends on the s s -skeleton and its value at r r is the n...

  8. Sumo and the cellular stress response

    OpenAIRE

    Enserink, Jorrit M.

    2015-01-01

    The ubiquitin family member Sumo has important functions in many cellular processes including DNA repair, transcription and cell division. Numerous studies have shown that Sumo is essential for maintaining cell homeostasis when the cell encounters endogenous or environmental stress, such as osmotic stress, hypoxia, heat shock, genotoxic stress, and nutrient stress. Regulation of transcription is a key component of the Sumo stress response, and multiple mechanisms have been described by which ...

  9. Transgenerational response to stress in Arabidopsis thaliana

    OpenAIRE

    Boyko, Alex; Kovalchuk, Igor

    2010-01-01

    Plants exposed to stress pass the memory of exposure to stress to the progeny. Previously, we showed that the phenomenon of transgenerational memory of stress is of epigenetic nature and depends on the function of Dicer-like (DCL) 2 and DCL3 proteins. Here, we discuss a possible role of DNA methylation and function of small RNAs in establishing and maintaining transgenerational responses to stress. Our new data report that memory of stress is passed to the progeny predominantly through the fe...

  10. Agreeableness, Extraversion, Stressor and Physiological Stress Response

    OpenAIRE

    Xiaoyuan Chu; Zhentao Ma; Yuan Li; Jing Han

    2015-01-01

    Based on the theoretical analysis, with first-hand data collection and using multiple regression models, this study explored the relationship between agreeableness, extraversion, stressor and stress response and figured out interactive effect of agreeableness, extraversion, and stressor on stress response. We draw on the following conclusions: (1) the interaction term of stressor (work) and agreeableness can negatively predict physiological stress response; (2) the interaction term of stresso...

  11. Neuronal responses to physiological stress

    OpenAIRE

    Konstantinos eKagias; Camilla eNehammer; Roger ePocock

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. Physiological stress can be divided into three different aspects: environmental stress, intrinsic developmental stress and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature and redox state for example, trigger molecular events that enable an organism to adapt, survive and reproduce...

  12. Color constancy by characterization of illumination chromaticity

    Science.gov (United States)

    Nikkanen, Jarno T.

    2011-05-01

    Computational color constancy algorithms play a key role in achieving desired color reproduction in digital cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall colour cast in the image that will be easily detected by human observers. A new algorithm is presented for computational color constancy. Low computational complexity and low memory requirement make the algorithm suitable for resource-limited camera devices, such as consumer digital cameras and camera phones. Operation of the algorithm relies on characterization of the range of possible illumination chromaticities in terms of camera sensor response. The fact that only illumination chromaticity is characterized instead of the full color gamut, for example, increases robustness against variations in sensor characteristics and against failure of diagonal model of illumination change. Multiple databases are used in order to demonstrate the good performance of the algorithm in comparison to the state-of-the-art color constancy algorithms.

  13. Stress responses and pre-eclampsia.

    Science.gov (United States)

    Redman, C W G

    2013-04-01

    Biological stress may affect individual cells, tissues or whole organisms, arising from disturbed homoeostasis of any cause. Stress is rarely localised. Because biological systems are closely integrated, it spreads to involve other systems. Stress responses are highly integrated and work to restore homoeostasis. Different response pathways overlap and interlink. If the responses fail or decompensate, distress ensues, of which the end-stage is death. Pre-eclampsia results from a series of biological stresses, possibly from conception, which become established by abnormal placentation and affect the mother, her foetus and her placenta. The stresses involve dialogue between mother and placenta. Even a normal placenta imposes substantial stress on maternal systems. When placental growth and perfusion is abnormal (poor placentation) then the placenta, particularly its outer trophoblast layer, becomes stressed - loosely denoted hypoxic damage or oxidative stress. Signals from the placenta spread the stress to the mother, who develops signs of pre-eclampsia. Cellular stress sensors initiate stress responses. Different stresses may trigger similar responses in specific cell types. The first cell response is reduced protein synthesis. However some synthetic pathways are spared or activated to produce stress signals. In relation to pre-eclampsia and the placenta, an excessive release of sFlt-1 a soluble decoy receptor for vascular endothelial growth factor (VEGF) is a trophoblast related stress signal. SFlt1 perturbs the angiogenic balance in the maternal circulation and is considered to cause many of the specific features of the maternal syndrome in pre-eclampsia. Three key points will be emphasised. First, multiple stressors, not simply hypoxia, stimulate the release of sFlt-1 from trophoblast. Second, sFlt-1 is only one of the group of stress signals delivered by trophoblast to the mother. Third, sFlt-1 is not the only trophoblast derived factor to perturb the maternal

  14. Neuronal Responses to Physiological Stress

    OpenAIRE

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition t...

  15. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    OpenAIRE

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths’ relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a measure assessing interpersonal stress responses; youth and caregivers completed semi-structured interviews assessing youths’ life stress and psychopatho...

  16. General Stress Responses in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Naïla Even

    2012-12-01

    Full Text Available The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine, neuropeptides (allatostatin, corazonin and metabolic hormones (adipokinetic hormone, diuretic hormone. Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop. We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.

  17. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco;

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), ...

  18. Role of auxin-responsive genes in biotic stress responses

    OpenAIRE

    Ghanashyam, Challa; Jain, Mukesh

    2009-01-01

    Although the phytohormone auxin has been implicated primarily in developmental processes, some recent studies suggest its involvement in stress/defense responses as well. Recently, we identified auxin-responsive genes and reported their comprehensive transcript profiling during various stages of development and abiotic stress responses in crop plant rice. The analysis revealed tissue-specific and overlapping expression profiles of auxin-responsive genes during various stages of reproductive d...

  19. Process Control Minitoring by Stress Response

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Stahl, David A.

    2006-04-17

    Environmental contamination with a variety of pollutants hasprompted the development of effective bioremediation strategies. But howcan these processes be best monitored and controlled? One avenue underinvestigation is the development of stress response systems as tools foreffective and general process control. Although the microbial stressresponse has been the subject of intensive laboratory investigation, theenvironmental reflection of the laboratory response to specific stresseshas been little explored. However, it is only within an environmentalcontext, in which microorganisms are constantly exposed to multiplechanging environmental stresses, that there will be full understanding ofmicrobial adaptive resiliency. Knowledge of the stress response in theenvironment will facilitate the control of bioremediation and otherprocesses mediated by complex microbial communities.

  20. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    Science.gov (United States)

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd. PMID:27417874

  1. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  2. Neuroendocrine Stress Response after Burn Trauma

    OpenAIRE

    Lindahl, Andreas

    2013-01-01

    Some aspects of the stress response during acute intensive care for severe burns are described and quantified by measuring hormonal and neuroendocrine patterns and relating these to organ function in the short term. This includes an assessment of whether there are markers for the severity of stress that are better than conventional descriptors of the severity of a burn in predicting failing organ function. P-CgA after a major burn injury is an independent and better predictor of organ dysfunc...

  3. Prenatal Stress Enhances Responsiveness to Cocaine

    OpenAIRE

    Kippin, Tod E.; Szumlinski, Karen K.; Kapasova, Zuzana; Rezner, Betsy; See, Ronald E.

    2007-01-01

    Early environmental events have profound influences on a wide range of adult behavior. In the current study, we assessed the influence of maternal stress during gestation on psychostimulant and neurochemical responsiveness to cocaine, cocaine self-administration, and reinstatement of cocaine-seeking in adult offspring. Pregnant, female Sprague–Dawley rats were subjected to either no treatment or to restraint stress three times per day for the last 7 days of gestation and cocaine-related behav...

  4. Endocannabinoids and the cardiovascular response to stress.

    Science.gov (United States)

    O'Sullivan, Saoirse E; Kendall, Patrick J; Kendall, David A

    2012-01-01

    Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS), resulting in cardiovascular responses. The endocannabinoid system (ECS), a ubiquitously expressed lipid signalling system, modulates both HPA and SNS activity. The purpose of this review is to explore the possible involvement/role of the ECS in the cardiovascular response to stress. The ECS has numerous cardiovascular effects including modulation of blood pressure, heart rate, the baroreflex, and direct vascular actions. It is also involved in a protective manner in response to stressors in cardiac preconditioning, and various stressors (for example, pain, orthostasis and social stress) increase plasma levels of endocannabinoids. Given the multitude of vascular effects of endocannabinoids, this is bound to have consequences. Beneficial effects of ECS upregulation could include cardioprotection, vasodilatation, CB(2)-mediated anti-inflammatory effects and activation of peroxisome proliferator-activated receptors. Negative effects of endocannabinoids could include mediation of the effects of glucocorticoids, CB(1)-mediated metabolic changes, and metabolism to vasoconstrictor products. It is also likely that there is a central role for the ECS in modulating cardiovascular activity via the HPA and SNS. However, much more work is required to fully integrate the role of the ECS in mediating many of the physiological responses to stress, including cardiovascular responses.

  5. Dysfunctional stress responses in chronic pain.

    Science.gov (United States)

    Woda, Alain; Picard, Pascale; Dutheil, Frédéric

    2016-09-01

    Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. PMID:27262345

  6. Dynamics of active cellular response under stress

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  7. Corporate Responsibility for Systemic Occupational Stress Prevention

    Directory of Open Access Journals (Sweden)

    R. Kasperczyk

    2014-09-01

    Full Text Available The purpose of this paper is twofold: to highlight the increased focus on corporate governance responsibility for managing employees’ psychological health, and to present an argument for a systemic approach to prevention of occupational stress. The paper commences with a brief description of the problem posed by occupational stress as a threat to organisational effectiveness. It then discusses the types of currently observed organisational responses to this issue and the extent to which they are shaped by beliefs about occupational stress. There are two fundamental approaches to dealing with work stress, one aimed at the individual and the other, at the organisation. The more comprehensive approaches have been increasingly reported to be more effective. The argument for a systemic approach to its prevention is then developed, in line with the risk management framework currently being adopted by Government jurisdictions governing Occupational Health and Safety in Australia and New Zealand. As the stress issue is now couched in health and safety terms, it is a moral and legal duty of the Board to satisfy itself that it is effectively addressed.

  8. Optimizing Chromatic Coupling Measurement in the LHC

    CERN Document Server

    Persson, Tobias

    2016-01-01

    Optimizing chromatic coupling measurement in the LHC Chromatic coupling introduces a dependency of transverse coupling with energy. LHC is equipped with skew sextupoles to compensate the possible adverse effects of chromatic coupling. In 2012 a beam-based correction was calculated and applied successfully for the fist time. However, the method used to reconstruct the chromatic coupling was dependent on stable tunes and equal chromaticities between the horizontal and vertical planes. In this article an improved method to calculate the chromatic coupling without these constraints is presented.

  9. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  10. Stressed out? Associations between perceived and physiological stress responses in adolescents: The TRAILS study

    OpenAIRE

    Oldehinkel, Albertine J.; Ormel, Johan; Bosch, Nienke M.; Bouma, Esther M. C.; Van Roon, Arie M.; Rosmalen, Judith G. M.; Riese, Harriette

    2011-01-01

    Studies regarding the interrelation of perceived and physiological stress indices have shown diverging results. Using a population sample of adolescents (N=715, 50.9% girls, mean age 16.11 years, SD=0.59), we tested three hypotheses: (1) perceived responses during social stress covary with concurrent physiological stress responses; (2) high pretest levels of perceived stress predict large physiological responses; and (3) large physiological responses to social stress predict low posttest perc...

  11. Neural and cardiovascular responses to emotional stress in humans

    OpenAIRE

    Carter, Jason R.; Durocher, John J.; Kern, Rosalie P.

    2008-01-01

    Sympathetic neural responses to mental stress are well documented but controversial, whereas sympathetic neural responses to emotional stress are unknown. The purpose of this study was to investigate neural and cardiovascular responses to emotional stress evoked by negative pictures and reexamine the relationship between muscle sympathetic nerve activity (MSNA) and perceived stress. Mean arterial pressure (MAP), heart rate (HR), MSNA, and perceived stress levels were recorded in 18 men during...

  12. Stress response and apoptosis in pro- and antiinflammatory macrophages.

    Science.gov (United States)

    Malyshev, I Yu; Kruglov, S V; Bakhtina, L Yu; Malysheva, E V; Zubin, M; Norkin, M

    2004-08-01

    We showed that stress response and apoptosis in macrophages depend on the phenotype of their secretory activity and specific biological and physical characteristics of the factor inducing stress-response or apoptosis.

  13. Immune responses to stress after stress management training in patients with rheumatoid arthritis

    OpenAIRE

    de Brouwer, Sabine JM; van Middendorp, Henriët; Kraaimaat, Floris W.; Radstake, Timothy RDJ; Joosten, Irma; Donders, A Rogier T; Eijsbouts, Agnes; Koulil, Saskia Spillekom-van; van Riel, Piet LCM; Evers, Andrea WM

    2013-01-01

    Introduction Psychological stress may alter immune function by activating physiological stress pathways. Building on our previous study, in which we report that stress management training led to an altered self-reported and cortisol response to psychological stress in patients with rheumatoid arthritis (RA), we explored the effects of this stress management intervention on the immune response to a psychological stress task in patients with RA. Methods In this study, 74 patients with RA, who w...

  14. The early stress responses in fish larvae.

    Science.gov (United States)

    Pederzoli, Aurora; Mola, Lucrezia

    2016-05-01

    During the life cycle of fish the larval stages are the most interesting and variable. Teleost larvae undergo a daily increase in adaptability and many organs differentiate and become active. These processes are concerted and require an early neuro-immune-endocrine integration. In larvae communication among the nervous, endocrine and immune systems utilizes several known signal molecule families which could be different from those of the adult fish. The immune-neuroendocrine system was studied in several fish species, among which in particular the sea bass (Dicentrarchus labrax), that is a species of great commercial interest, very important in aquaculture and thus highly studied. Indeed the immune system of this species is the best known among marine teleosts. In this review the data on main signal molecules of stress carried out on larvae of fish are considered and discussed. For sea bass active roles in the early immunological responses of some well-known molecules involved in the stress, such as ACTH, nitric oxide, CRF, HSP-70 and cortisol have been proposed. These molecules and/or their receptors are biologically active mainly in the gut before complete differentiation of gut-associated lymphoid tissue (GALT), probably acting in an autocrine/paracrine way. An intriguing idea emerges from all results of these researches; the molecules involved in stress responses, expressed in the adult cells of the hypothalamic-pituitary axis, during the larval life of fish are present in several other localizations, where they perform probably the same role. It may be hypothesized that the functions performed by hypothalamic-pituitary system are particularly important for the survival of the larva and therefore they comprises several other localizations of body. Indeed the larval stages of fish are very crucial phases that include many physiological changes and several possible stress both internal and environmental. PMID:26968620

  15. Cannibalism stress response in Bacillus subtilis.

    Science.gov (United States)

    Höfler, Carolin; Heckmann, Judith; Fritsch, Anne; Popp, Philipp; Gebhard, Susanne; Fritz, Georg; Mascher, Thorsten

    2016-01-01

    When faced with carbon source limitation, the Gram-positive soil organism Bacillus subtilis initiates a survival strategy called sporulation, which leads to the formation of highly resistant endospores that allow B. subtilis to survive even long periods of starvation. In order to avoid commitment to this energy-demanding and irreversible process, B. subtilis employs another strategy called 'cannibalism' to delay sporulation as long as possible. Cannibalism involves the production and secretion of two cannibalism toxins, sporulation delaying protein (SDP) and sporulation killing factor (SKF), which are able to lyse sensitive siblings. The lysed cells are thought to then provide nutrients for the cannibals to slow down or even prevent them from entering sporulation. In this study, we uncovered the role of the cell envelope stress response (CESR), especially the Bce-like antimicrobial peptide detoxification modules, in the cannibalism stress response during the stationary phase. SDP and SKF specifically induce Bce-like systems and some extracytoplasmic function σ factors in stationary-phase cultures, but only the latter provide some degree of protection. A full Bce response is only triggered by mature toxins, and not by toxin precursors. Our study provides insights into the close relationship between stationary-phase survival and the CESR of B. subtilis. PMID:26364265

  16. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result is...

  17. Combinatorial stress responses: direct coupling of two major stress responses in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Daniel R. Brown

    2014-09-01

    Full Text Available Nitrogen is an essential element for all life, and this is no different for the bacterial cell. Numerous cellular macromolecules contain nitrogen, including proteins, nucleic acids and cell wall components. In Escherichia coli and related bacteria, the nitrogen stress (Ntr response allows cells to rapidly sense and adapt to nitrogen limitation by scavenging for alternative nitrogen sources through the transcriptional activation of transport systems and catabolic and biosynthetic operons by the global transcriptional regulator NtrC. Nitrogen-starved bacterial cells also synthesize the (pppGpp effector molecules of a second global bacterial stress response - the stringent response. Recently, we showed that the transcription of relA, the gene which encodes the major (pppGpp synthetase in E. coli, is activated by NtrC during nitrogen starvation. Our results revealed that in E. coli and related bacteria, NtrC functions in combinatorial stress and serves to couple two major stress responses, the Ntr response and stringent response.

  18. Job stress factors, stress response, and social support in association with insomnia of Japanese male workers.

    Science.gov (United States)

    Nishitani, Naoko; Sakakibara, Hisataka

    2010-01-01

    The aim of the present study was to examine the relation of insomnia with job stress factors, stress response, and social support. A self-completed questionnaire survey was conducted in 212 male Japanese workers at a synthetic fiber plant. With regard to insomnia, subjects were asked the first 5 of the 8 questions on the Athens Insomnia Scale (AIS). Job stress factors, stress response and social support were assessed using the Job Stress Questionnaire. Multiple regression analyses showed that psychological job stress factors of poor appropriateness of work and high qualitative workload were associated with insomnia. The psychological stress response of depression and physical stress responses were also related with insomnia. Depression was also related to appropriateness of work. The present results showed that insomnia was closely related with the psychological job stress factor of appropriateness of work and the psychological response of depression. These mutual relationships between insomnia and poor mental health need be investigated further. PMID:20424348

  19. Hydration state controls stress responsiveness and social behavior

    OpenAIRE

    Krause, Eric G.; de Kloet, Annette D.; Flak, Jonathan N.; Smeltzer, Michael D.; Solomon, Matia B.; Evanson, Nathan K.; Woods, Stephen C; Sakai, Randall R.; Herman, James P.

    2011-01-01

    Life stress frequently occurs within the context of homeostatic challenge, requiring integration of physiological and psychological need into appropriate hormonal, cardiovascular and behavioral responses. To test neural mechanisms underlying stress integration within the context of homeostatic adversity, we evaluated the impact of a pronounced physiological (hypernatremia) challenge on hypothalamic-pituitary-adrenal (HPA), cardiovascular and behavioral responses to an acute psychogenic stress...

  20. What is stress?: dose-response effects in commonly used in vitro stress assays

    OpenAIRE

    Claeys, Hannes; Van Landeghem, Sofie; Dubois, Marieke; Maleux, Katrien; Inzé, Dirk

    2014-01-01

    In vitro stress assays are commonly used to study the responses of plants to abiotic stress and to assess stress tolerance. A literature review reveals that most studies use very high stress levels and measure criteria such as germination, plant survival, or the development of visual symptoms such as bleaching. However, we show that these parameters are indicators of very severe stress, and such studies thus only provide incomplete information about stress sensitivity in Arabidopsis (Arabidop...

  1. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    OpenAIRE

    de Brouwer, Sabine J. M.; Kraaimaat, Floris W.; Sweep, Fred C. G. J.; Donders, Rogier T.; Agnes Eijsbouts; Saskia van Koulil; van Riel, Piet L C M; Evers, Andrea W. M.

    2011-01-01

    BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA). METHODS: Seventy-four patients with RA, who were randomly assigned to either a control group or a group that received short-term stress management training, performed a standardized psychosocial stress task (Trier Socia...

  2. Semantics of color in chromatism

    Science.gov (United States)

    Serov, Nikolai V.

    2002-06-01

    The aim of this investigation is to describe the semantics of color in chromatism (from the ancient Greek triune notion of >: (1) color as ideal (Id- plan), psychic; (2) tint as physical, verbal; material (M- plan), physiological, syntonic (S-plan), and (3) emotion as their informative-energetic correlation). Being a new field of science, chromatism links humanitarian and natural subjects by means of interdiscipline investigation of a real (f-m) man living in a real (color) surrounding environment. According to the definition for >, color may be considered to be the most universal notion, permitting to assume the unity of both a man and an environment. Due to this assumption, we may give models of human intellect.

  3. Understanding the responses of rice to environmental stress using proteomics.

    Science.gov (United States)

    Singh, Raksha; Jwa, Nam-Soo

    2013-11-01

    Diverse abiotic and biotic stresses have marked effects on plant growth and productivity. To combat such stresses, plants have evolved complex but not well understood responses. Common effects upon perception of environmental stress are differential expression of the plant proteome and the synthesis of novel regulatory proteins for protection from and acclimation to stress conditions. Plants respond differently in terms of activation of stress-responsive signaling pathways depending upon the type and nature of the stresses to which they are exposed. Progress in proteomics and systems biology approaches has made it possible to identify the novel proteins and their interactions that function in abiotic stress responses. This will enable elucidation of the functions of individual proteins and their roles in signaling networks. Proteomic analysis of the responses to various stress conditions is performed most commonly using 2D gel electrophoresis and high-throughput identification by LC-MS/MS. Because of recent developments in proteomics techniques, numerous proteomics studies of rice under abiotic stress conditions have been performed. In this review, proteomics studies addressing rice responses to the major environmental stresses--including cold, heat, drought, salt, heavy metals, minerals, UV radiation, and ozone--are discussed. Unique or common protein responses to these stress conditions are summarized and interpreted according to their possible physiological responses in each stress. Additionally, proteomics studies on various plant systems under various abiotic stress conditions are compared to provide deeper understanding of specific and common proteome responses in rice and other plant systems, which will further contribute to the identification of abiotic stress tolerance factor at protein level. Functional analysis of stress-responsive proteins will provide new research objectives with the aim of achieving stable crop productivity in the face of the

  4. Stress responses in probiotic Lactobacillus casei.

    Science.gov (United States)

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics.

  5. Exploring a chromatic oblique effect.

    OpenAIRE

    Curran, Paul G.

    1997-01-01

    Approved for public release; distribution is unlimited For centuries, military forces have used camouflage to obscure potential targets from the enemy. Because the eye is fairly adept at picking out edges, colors, and bright areas, camouflage is often used to degrade these qualities from human detection. The purpose of this thesis was to investigate the role of certain spatial, temporal, and chromatic features on the human visual system and how these features may aid the quest for better c...

  6. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    Science.gov (United States)

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  7. The plant heat stress transcription factors (HSFs: structure, regulation and function in response to abiotic stresses

    Directory of Open Access Journals (Sweden)

    Meng eGuo

    2016-02-01

    Full Text Available Abiotic stresses such as high temperature, salinity and drought adversely affect the survival, growth and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs, including heat stress transcription factors (HSFs. HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps. In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  8. Epigenetic regulation of stress responses in plants

    OpenAIRE

    Chinnusamy, Viswanathan; Zhu, Jian-Kang

    2009-01-01

    Gene expression driven by developmental and stress cues often depends on nucleosome histone post-translational modifications and sometimes on DNA methylation. A number of studies have shown that these DNA and histone modifications play a key role in gene expression and plant development under stress. Most of these stress-induced modifications are reset to the basal level once the stress is relieved, while some of the modifications may be stable, that is, may be carried forward as ‘stress memo...

  9. Biotechnological Approaches to Study Plant Responses to Stress

    OpenAIRE

    Pérez-Clemente, Rosa M; Vicente Vives; Zandalinas, Sara I.; López-Climent, María F.; Valeria Muñoz; Aurelio Gómez-Cadenas

    2013-01-01

    Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upre...

  10. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    Science.gov (United States)

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  11. Neurovascular responses to mental stress in prehypertensive humans

    OpenAIRE

    Schwartz, Christopher E.; Durocher, John J.; Carter, Jason R.

    2010-01-01

    Neurovascular responses to mental stress have been linked to several cardiovascular diseases, including hypertension. Mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), and forearm vascular responses to mental stress are well documented in normotensive (NT) subjects, but responses in prehypertensive (PHT) subjects remain unclear. We tested the hypothesis that PHT would elicit a more dramatic increase of MAP during mental stress via augmented MSNA and blunted forearm vascu...

  12. Plasma transcortin influences endocrine and behavioral stress responses in mice

    OpenAIRE

    Richard, Elodie M.; Helbling, Jean-Christophe; Tridon, Claudine; Desmedt, Aline; Minni, Amandine; Cador, Martine; Pourtau, Line; Konsman, Jan Peter; Mormède, Pierre; Moisan, Marie-Pierre

    2010-01-01

    Glucocorticoids are released after hypothalamus-pituitary-adrenal axis stimulation by stress and act both in the periphery and in the brain to bring about adaptive responses that are essential for life. Dysregulation of the stress response can precipitate psychiatric diseases, in particular depression. Recent genetic studies have suggested that the glucocorticoid carrier transcortin, also called corticosteroid-binding globulin (CBG), may have an important role in stress response. We have inve...

  13. Origins of asymmetric stress-strain response in phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sehitoglu, H.; Gall, K. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  14. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  15. Immune responses to stress in rheumatoid arthritis and psoriasis

    NARCIS (Netherlands)

    Brouwer, S.J. dr; Middendorp, H. van; Stormink, C.; Kraaimaat, F.W.; Joosten, I.; Radstake, T.R.; Jong, E.M. de; Schalkwijk, J.; Donders, A.R.; Eijsbouts, A.M.M.; Kerkhof, P.C.M. van de; Riel, P.L.C.M. van; Evers, A.W.

    2014-01-01

    OBJECTIVE: Stress is one of the factors that may exacerbate the progression of chronic inflammatory diseases such as RA and psoriasis. We exploratively compared the effects of acute stress on levels of circulating cytokines involved in disease progression and/or the stress response in patients with

  16. The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus

    Science.gov (United States)

    Zhang, Feng; Xu, Gaopo; Geng, Longpo; Lu, Xiaoyan; Yang, Kunlong; Yuan, Jun; Nie, Xinyi; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    This study focused on AflSkn7, which is a stress response regulator in the aflatoxin-producing Aspergillus flavus. The ΔAflSkn7 mutants exhibited partially defective conidial formation and a complete inability to generate sclerotia, indicating AflSkn7 affects A. flavus asexual and sexual development. The mutants tolerated osmotic stress but were partially susceptible to the effects of cell wall stress. Additionally, the ΔAflSkn7 mutants were especially sensitive to oxidative stress. These observations confirmed that AflSkn7 influences oxidative stress responses rather than osmotic stress responses. Additionally, AflSkn7 was observed to increase aflatoxin biosynthesis and seed infection rates. These results indicate AflSkn7 affects A. flavus morphological development, stress response, aflatoxin production, and pathogenicity. The results of this study may facilitate the development of new methods to manage A. flavus infections. PMID:27399770

  17. Cellular stress responses for monitoring and modulating ageing

    DEFF Research Database (Denmark)

    Demirovic, Dino; Schnebert, Sylvianne; Nizard, Carine;

    2013-01-01

    protectors and stimulators of homeodynamics, and create a kind of “gold-standard” for monitoring the efficacy of other potential antiageing and pro-survival natural and synthetic compounds. We have so far standardised an effective method for detecting all seven stress response pathways, by several......Cellular stress response is a crucial factor in maintaining efficient homeodynamics for survival, health and longevity. Both the immediate and delayed responses to external and internal stressors effectively determine the molecular biochemical and physiological stability in a dynamic...... and interactive manner. There are three main aspects of stress responses: (i) immediate stress response involving extra- and intra-cellular signaling during the period of disturbance and exposure to the stressors; (ii) delayed stress response involving sensors and modulators in the presence of stressors or after...

  18. Regulation of Stress Responses and Translational Control by Coronavirus

    Science.gov (United States)

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  19. Regulation of Stress Responses and Translational Control by Coronavirus

    Directory of Open Access Journals (Sweden)

    To Sing Fung

    2016-07-01

    Full Text Available Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.

  20. Atom lens without chromatic aberrations

    CERN Document Server

    Efremov, Maxim A; Schleich, Wolfgang P

    2012-01-01

    We propose a lens for atoms with reduced chromatic aberrations and calculate its focal length and spot size. In our scheme a two-level atom interacts with a near-resonant standing light wave formed by two running waves of slightly different wave vectors, and a far-detuned running wave propagating perpendicular to the standing wave. We show that within the Raman-Nath approximation and for an adiabatically slow atom-light interaction, the phase acquired by the atom is independent of the incident atomic velocity.

  1. Chromatic Polynomials of Mixed Hypercycles

    Directory of Open Access Journals (Sweden)

    Allagan Julian A.

    2014-08-01

    Full Text Available We color the vertices of each of the edges of a C-hypergraph (or cohypergraph in such a way that at least two vertices receive the same color and in every proper coloring of a B-hypergraph (or bihypergraph, we forbid the cases when the vertices of any of its edges are colored with the same color (monochromatic or when they are all colored with distinct colors (rainbow. In this paper, we determined explicit formulae for the chromatic polynomials of C-hypercycles and B-hypercycles

  2. Relation between stress-precipitated seizures and the stress response in childhood epilepsy.

    Science.gov (United States)

    van Campen, Jolien S; Jansen, Floor E; Pet, Milou A; Otte, Willem M; Hillegers, Manon H J; Joels, Marian; Braun, Kees P J

    2015-08-01

    The majority of patients with epilepsy report that seizures are sometimes triggered or provoked. Stress is the most frequently self-reported seizure-precipitant. The mechanisms underlying stress-sensitivity of seizures are currently unresolved. We hypothesized that stress-sensitivity of seizures relates to alteration of the stress response, which could affect neuronal excitability and hence trigger seizures. To study this, children with epilepsy between 6 and 17 years of age and healthy controls, with similar age, sex and intelligence, were exposed to a standardized acute psychosocial stressor (the Trier Social Stress Test for Children), during which salivary cortisol and sympathetic parameters were measured. Beforehand, the relation between stress and seizures in children with epilepsy was assessed by (i) a retrospective questionnaire; and (ii) a prospective 6-week diary on stress and seizure occurrence. Sixty-four children with epilepsy and 40 control subjects were included in the study. Of all children with epilepsy, 49% reported that seizures were precipitated by acute stress. Diary analysis showed a positive association between acute stress and seizures in 62% of children who experienced at least one seizure during the diary period. The acute social stress test was completed by 56 children with epilepsy and 37 control subjects. Children with sensitivity of seizures for acute stress, either determined by the questionnaire or by the prospective diary, showed a blunted cortisol response to stress compared with patients without acute stress-precipitated seizures and healthy controls (questionnaire-based F = 2.74, P = 0.018; diary-based F = 4.40, P = 0.007). No baseline differences in cortisol were observed, nor differences in sympathetic stress response. The relation between acute stress-sensitivity of seizures and the cortisol response to stress remained significant in multivariable analysis (β = -0.30, P = 0.03). Other variables associated with the acute stress

  3. Psychophysiological responses to stress after stress management training in patients with rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Sabine J M de Brouwer

    Full Text Available BACKGROUND: Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA. METHODS: Seventy-four patients with RA, who were randomly assigned to either a control group or a group that received short-term stress management training, performed a standardized psychosocial stress task (Trier Social Stress Test; TSST 1 week after the stress management training and at a 9-week follow-up. Psychological and physical functioning, and the acute psychophysiological response to the stress test were assessed. RESULTS: Patients in the intervention group showed significantly lower psychological distress levels of anxiety after the training than did the controls. While there were no between-group differences in stress-induced tension levels, and autonomic (α-amylase or endocrine (cortisol responses to the stress test 1 week after the intervention, levels of stress-induced tension and cortisol were significantly lower in the intervention group at the 9-week follow-up. Overall, the response to the intervention was particularly evident in a subgroup of patients with a psychological risk profile. CONCLUSION: A relatively short stress management intervention can improve psychological functioning and influences the psychophysiological response to stress in patients with RA, particularly those psychologically at risk. These findings might help understand how stress can affect health and the role of individual differences in stress responsiveness. TRIAL REGISTRATION: TrialRegister.nl NTR1193.

  4. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  5. An overview of stress response proteomes in Listeria monocytogenes

    OpenAIRE

    Soni, K A; Nannapaneni, R; Tasara, T

    2011-01-01

    Listeria monocytogenes adapts to diverse stress conditions including cold, osmotic, heat, acid, and alkali stresses encountered during food processing and preservation which is a serious food safety threat. In this review, we have presented the major findings on this bacterium’s stress response proteomes to date along with the different approaches used for its proteomic analysis. The key proteome findings on cold, heat shock, salt, acid, alkaline and HHP stresses illustrate that the cellular ...

  6. Stress in university students and cardiovascular response to academic stressors

    OpenAIRE

    Guimarães, Teresa; Silva, Ana Patrícia; Monteiro, Iolanda; Gomes, Rui

    2014-01-01

    Introduction: University students are frequently exposed to events that can cause stress and anxiety, producing elevated cardiovascular responses. Repeated exposure to academic stress has implications to students’ success and well-being and may contribute to the development of long-term health problems. Objective: To identify stress levels and coping strategies in university students and assess the impact of stress experience in heart rate variability (HRV). Methods: 17 university students, 1...

  7. Proteomic studies of drought stress response in Fabaceae

    OpenAIRE

    Zadražnik, Tanja; Jelka ŠUŠTAR-VOZLIČ

    2015-01-01

    Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role...

  8. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.;

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout......Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  9. Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: Azo dye as electron donor for chromate reduction

    International Nuclear Information System (INIS)

    Chromate [Cr(VI)] and azo dyes are common pollutants which may co-exist in some industrial effluents. Hence studies of biological treatment of industrial wastewater should include investigation of the co-removal of these two pollutants. Brevibacterium casei, which can reduce Cr(VI) in the presence of the azo dye Acid Orange 7 (AO7) under nutrient-limiting condition, was isolated from a sewage sludge sample of a dyeing factory. Response surface methodology, which is commonly used to optimize growth conditions for food microorganisms to maximize product(s) yield, was used to determine the optimal conditions for chromate reduction and dye decolourization by B. casei. The optimal conditions were 0.24 g/L glucose, 3.0 g/L (NH4)2SO4 and 0.2 g/L peptone at pH 7 and 35 deg. C. The predicted maximum chromate reduction efficiencies and dye decolourization were 83.4 ± 0.6 and 40.7 ± 1.7%, respectively. A new mechanism was proposed for chromate reduction coupling with AO7 decolourization by B. casei. Under nutrient-limiting condition, AO7 was used as an e- donor by the reduction enzyme(s) of B. casei for the reduction of Cr(VI). The resulted Cr(III) then complexed with the oxidized AO7 to form a purple coloured intermediate.

  10. Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: Azo dye as electron donor for chromate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Tsz Wai; Cai Qinhong [Department of Biology, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wong, Chong-Kim [Department of Biology, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Environmental Science Programme, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Chow, Alex T. [Department of Biosystems Engineering, Clemson University, SC 29634 (United States); Department of Forestry and Natural Resources, Clemson University, SC 29634 (United States); Wong, Po-Keung, E-mail: pkwong@cuhk.edu.hk [Department of Biology, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Environmental Science Programme, Chinese University of Hong Kong, Shatin, N.T. (Hong Kong)

    2010-10-15

    Chromate [Cr(VI)] and azo dyes are common pollutants which may co-exist in some industrial effluents. Hence studies of biological treatment of industrial wastewater should include investigation of the co-removal of these two pollutants. Brevibacterium casei, which can reduce Cr(VI) in the presence of the azo dye Acid Orange 7 (AO7) under nutrient-limiting condition, was isolated from a sewage sludge sample of a dyeing factory. Response surface methodology, which is commonly used to optimize growth conditions for food microorganisms to maximize product(s) yield, was used to determine the optimal conditions for chromate reduction and dye decolourization by B. casei. The optimal conditions were 0.24 g/L glucose, 3.0 g/L (NH{sub 4}){sub 2}SO{sub 4} and 0.2 g/L peptone at pH 7 and 35 deg. C. The predicted maximum chromate reduction efficiencies and dye decolourization were 83.4 {+-} 0.6 and 40.7 {+-} 1.7%, respectively. A new mechanism was proposed for chromate reduction coupling with AO7 decolourization by B. casei. Under nutrient-limiting condition, AO7 was used as an e{sup -} donor by the reduction enzyme(s) of B. casei for the reduction of Cr(VI). The resulted Cr(III) then complexed with the oxidized AO7 to form a purple coloured intermediate.

  11. Context and strain-dependent behavioral response to stress

    OpenAIRE

    Baum Amber E; Ahmadiyeh Nasim; Andrus Brian M; Dennis Kristen; Nosek Katarzyna; Woods Leah; Redei Eva E

    2008-01-01

    Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344) and Wistar Kyoto (WKY) rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelt...

  12. CIRCULAR CHROMATIC NUMBER AND MYCIELSKI GRAPHS

    Institute of Scientific and Technical Information of China (English)

    Liu Hongmei

    2006-01-01

    For a general graph G, M(G) denotes its Mycielski graph. This article gives a number of new sufficient conditions for G to have the circular chromatic number xc (M(G))equals to the chromatic number x(M(G)), which have improved some best sufficient conditions published up to date.

  13. Quantum chromatic numbers via operator systems

    OpenAIRE

    Paulsen, Vern I.; Todorov, Ivan G.

    2013-01-01

    We define several new types of quantum chromatic numbers of a graph and characterise them in terms of operator system tensor products. We establish inequalities between these chromatic numbers and other parameters of graphs studied in the literature and exhibit a link between them and non-signalling correlation boxes.

  14. CHROMATIC ZEROS AND THE GOLDEN RATIO

    Directory of Open Access Journals (Sweden)

    Yee-hock Peng

    2009-02-01

    Full Text Available In this note, we investigate $au^n$, where au=fracc{1+sqrt{5}}{2}$is the golden ratio as chro-matic roots. Using some properties of {sc Fibonacci} numbers, we prove that $au^n (nin mathbb{N}$, cannot be roots of any chromatic polynomial.

  15. High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes

    Directory of Open Access Journals (Sweden)

    Thompson Dorothea K

    2009-09-01

    Full Text Available Abstract Background The genome of Arthrobacter sp. strain FB24 contains a chromate resistance determinant (CRD, consisting of a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone oxidoreductase, a functionally unknown protein with a WD40 repeat domain and a lipoprotein. To delineate the contribution of the CRD genes to the FB24 chromate [Cr(VI] response, we evaluated the growth of mutant strains bearing regions of the CRD and transcript expression levels in response to Cr(VI challenge. Results A chromate-sensitive mutant (strain D11 was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their possible regulatory roles. Conclusion Our findings indicate that chromate resistance in Arthrobacter sp. strain FB24 is due to chromate efflux through the ChrA transport protein. More importantly, new genes have been identified as having significant roles in chromate resistance. Collectively, the functional predictions of these additional genes suggest the

  16. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  17. Effects of orthostasis on endocrine responses to psychosocial stress.

    Science.gov (United States)

    Nater, Urs M; Ditzen, Beate; Strahler, Jana; Ehlert, Ulrike

    2013-12-01

    Standardized psychological procedures have been designed to induce physiological stress responses. However, the impact of standing (orthostasis) on the physiological reaction after psychological stress remains unclear. The purpose of the current analysis was to examine and quantify the relative contribution of orthostasis to the physiological stress response by comparing a "standing with stress" to a "standing without stress" condition. We investigated the effect of standing with and without stress on responses of the sympathetic-adrenomedullary (SAM) system and the hypothalamic-pituitary-adrenal (HPA) axis using a standardized psychosocial stress protocol (Trier Social Stress Test) and a non-stress condition in a repeated measures design. Subjects (N=30) were exposed to both conditions in randomized order and had to maintain a standing, upright position for 10minutes. In the "standing with stress" condition, significant increases in repeatedly assessed plasma norepinephrine (NE) and epinephrine (EP), as well as in saliva cortisol were found, while in the "standing without stress" condition, no significant changes in plasma epinephrine and saliva cortisol were observed. Calculations of the relative contribution of orthostasis to physiological stress responses revealed that 25.61% of the NE increase, 82.94% of the EP increase, and 68.91% of the cortisol increase, could be attributed to psychosocial stress adjusted for the effects of orthostasis and basal endocrine output. Although these results are indicative for a marked endocrine reaction that is caused by psychosocial stress alone, our findings show that the contribution of orthostasis must be taken into account when interpreting endocrine data collected in a psychosocial stress test.

  18. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both pschizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia.

  19. Molecular Mechanism of Rice in Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    E Zhi-guo; ZHANG Li-jing; WANG Lei

    2011-01-01

    Rice is moderately sensitive to salinity,and the response to salt stress is a complex process,including the perception and transduction of salt stress signal,the activation of specific transcriptional factors and the expression of downstream stress-responsive genes.The functions of Na+ transporters which are involved in the maintenance and reconstruction of the ion homeostasis,transcriptional regulators and osmotic regulation genes were reviewed.Salt tolerance of plants are enhanced by Na+ vacuolar compartmentation or efflux or high levels of osmoprotectants accumulation in cytoplasm.%Rice is moderately sensitive to salinity,and the response to salt stress is a complex process,including the perception and transduction of salt stress signal,the activation of specific transcriptional factors and the expression of downstream stress-respon

  20. Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress

    OpenAIRE

    Carvalho-Netto, Eduardo F.; Myers, Brent; Jones, Kenneth; Solomon, Matia B.; Herman, James P.

    2011-01-01

    Increased stress responsiveness is implicated in the etiology of mood and anxiety disorders, including depression and post-traumatic stress disorder. Additionally, stress-related affective disorders have a higher incidence in women than men. Chronic stress in rodents produces numerous neuromorphological changes in a variety of limbic brain regions. Here, we examined the sex-dependent differences in presynaptic innervation of the paraventricular nucleus of the hypothalamus (PVN), prefrontal co...

  1. Molecular mechanisms of the plant heat stress response

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China); Zhu, Cheng, E-mail: pzhch@cjlu.edu.cn [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  2. Post-stress rumination predicts HPA axis responses to repeated acute stress.

    Science.gov (United States)

    Gianferante, Danielle; Thoma, Myriam V; Hanlin, Luke; Chen, Xuejie; Breines, Juliana G; Zoccola, Peggy M; Rohleder, Nicolas

    2014-11-01

    Failure of the hypothalamus-pituitary-adrenal (HPA) axis to habituate to repeated stress exposure is related with adverse health outcomes, but our knowledge of predictors of non-habituation is limited. Rumination, defined as repetitive and unwanted past-centered negative thinking, is related with exaggerated HPA axis stress responses and poor health outcomes. The aim of this study was to test whether post-stress rumination was related with non-habituation of cortisol to repeated stress exposure. Twenty-seven participants (n=13 females) were exposed to the Trier Social Stress Test (TSST) twice on consecutive afternoons. Post-stress rumination was measured after the first TSST, and HPA axis responses were assessed by measuring salivary cortisol 1 min before, and 1, 10, 20, 60, and 120 min after both TSSTs. Stress exposure induced HPA axis activation on both days, and this activation showed habituation indicated by lower responses to the second TSST (F=3.7, p=0.015). Post-stress rumination after the first TSST was associated with greater cortisol reactivity after the initial stress test (r=0.45, pHPA axis responses. This finding implicates rumination as one possible mechanism mediating maladaptive stress response patterns, and it might also offer a pathway through which rumination might lead to negative health outcomes.

  3. Involvement of Histone Modifications in Plant Abiotic Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Lianyu Yuan; Xuncheng Liu; Ming Luo; Songguang Yang; Keqiang Wu

    2013-01-01

    As sessile organisms, plants encounter various environmental stimuli including abiotic stresses during their lifecycle. To survive under adverse conditions, plants have evolved intricate mechanisms to perceive external signals and respond accordingly. Responses to various stresses largely depend on the plant capacity to modulate the transcriptome rapidly and specifically. A number of studies have shown that the molecular mechanisms driving the responses of plants to environmental stresses often depend on nucleosome histone post-translational modifications including histone acetylation, methylation, ubiquitination, and phosphorylation. The combined effects of these modifications play an essential role in the regulation of stress responsive gene expression. In this review, we highlight our current understanding of the epigenetic mechanisms of histone modifications and their roles in plant abiotic stress response.

  4. Nitric Oxide Signaling in Plant Responses to Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    Weihua Qiao; LiuMin Fan

    2008-01-01

    Nitric oxide (NO) plays important roles in diverse physiological processes In plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  5. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  6. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory.

    Science.gov (United States)

    Nguyen, Duy; Rieu, Ivo; Mariani, Celestina; van Dam, Nicole M

    2016-08-01

    Adaptive plant responses to specific abiotic stresses or biotic agents are fine-tuned by a network of hormonal signaling cascades, including abscisic acid (ABA), ethylene, jasmonic acid (JA) and salicylic acid. Moreover, hormonal cross-talk modulates plant responses to abiotic stresses and defenses against insect herbivores when they occur simultaneously. How such interactions affect plant responses under multiple stresses, however, is less understood, even though this may frequently occur in natural environments. Here, we review our current knowledge on how hormonal signaling regulates abiotic stress responses and defenses against insects, and discuss the few recent studies that attempted to dissect hormonal interactions occurring under simultaneous abiotic stress and herbivory. Based on this we hypothesize that drought stress enhances insect resistance due to synergistic interactions between JA and ABA signaling. Responses to flooding or waterlogging involve ethylene signaling, which likely reduces plant resistance to chewing herbivores due to its negative cross-talk with JA. However, the outcome of interactions between biotic and abiotic stress signaling is often plant and/or insect species-dependent and cannot simply be predicted based on general knowledge on the involvement of signaling pathways in single stress responses. More experimental data on non-model plant and insect species are needed to reveal general patterns and better understand the molecular mechanisms allowing plants to optimize their responses in complex environments. PMID:27095445

  7. Dynamical theory of active cellular response to external stress.

    Science.gov (United States)

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  8. Dynamical theory of active cellular response to external stress

    Science.gov (United States)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  9. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    we present the implementation of a complete calibration method for an accurate colour texture measurement device called VMX2000, the calibration for uneven laser sheet illumination in a flow measuring system and the use of automatic detection of calibration targets for a DLT/warping in a 3D PIV......The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how...

  10. Extracytoplasmic Stress Responses Induced by Antimicrobial Cationic Polyethylenimines

    OpenAIRE

    Lander, Blaine A.; Checchi, Kyle D.; Koplin, Stephen A.; Smith, Virginia F.; Domanski, Tammy L.; Isaac, Daniel D.; Lin, Shirley

    2012-01-01

    The ability of an antimicrobial, cationic polyethylenimine (PEI+) to induce the three known extracytoplasmic stress responses of Escherichia coli was quantified. Exposure of E. coli to PEI+ in solution revealed specific, concentration-dependent induction of the Cpx extracytoplasmic cellular stress response, ~2.0-2.5 fold at 320 μg/mL after 1.5 hours without significant induction of the σE or Bae stress responses. In comparison, exposure of E. coli to a non-antimicrobial polymer, polyethylene ...

  11. Regulation of dopamine system responsivity and its adaptive and pathological response to stress

    OpenAIRE

    Belujon, Pauline; Grace, Anthony A.

    2015-01-01

    Although, historically, the norepinephrine system has attracted the majority of attention in the study of the stress response, the dopamine system has also been consistently implicated. It has long been established that stress plays a crucial role in the pathogenesis of psychiatric disorders. However, the neurobiological mechanisms that mediate the stress response and its effect in psychiatric diseases are not well understood. The dopamine system can play distinct roles in stress and psychiat...

  12. Stress Response and Translation Control in Rotavirus Infection.

    Science.gov (United States)

    López, Susana; Oceguera, Alfonso; Sandoval-Jaime, Carlos

    2016-01-01

    The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle. PMID:27338442

  13. Stress Response and Translation Control in Rotavirus Infection

    Directory of Open Access Journals (Sweden)

    Susana López

    2016-06-01

    Full Text Available The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle.

  14. Stress Response and Translation Control in Rotavirus Infection

    Science.gov (United States)

    López, Susana; Oceguera, Alfonso; Sandoval-Jaime, Carlos

    2016-01-01

    The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle. PMID:27338442

  15. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    Science.gov (United States)

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths' relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a…

  16. Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1

    Directory of Open Access Journals (Sweden)

    He Minyan

    2010-08-01

    Full Text Available Abstract Background Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI and Cr(III. Chromate [Cr(VI] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI to less-toxic Cr(III by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by Bacillus cereus SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence. Results Bacillus cereus SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI resistance with a minimal inhibitory concentration (MIC of 30 mM when induced with Cr(VI. A complete bacterial reduction of 1 mM Cr(VI was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, chrIA1, and two additional chrA genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene azoR and four nitroreductase genes nitR possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR technology, it was shown that expression of adjacent genes chrA1 and chrI was induced in response to Cr(VI but expression of the other two chromate transporter genes chrA2 and chrA3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of chrIA1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of chrIA1 in B. cereus SJ1 implied the possibility of recent horizontal gene transfer. Conclusion Our results indicate that expression of the chromate

  17. Antioxidant responses of wheat plants under stress

    Directory of Open Access Journals (Sweden)

    Andréia Caverzan

    2016-03-01

    Full Text Available Abstract Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L., which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS, which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2 signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.

  18. Effects of regional analgesia on stress responses to pediatric surgery.

    Science.gov (United States)

    Wolf, Andrew R

    2012-01-01

    Invasive surgery induces a combination of local response to tissue injury and generalized activation of systemic metabolic and hormonal pathways via afferent nerve pathways and the central nervous system. The local inflammatory responses and the parallel neurohumoral responses are not isolated but linked through complex signaling networks, some of which remain poorly understood. The magnitude of the response is broadly related to the site of injury (greater in regions with visceral pain afferents such as abdomen and thorax) and the extent of the trauma. The changes include alterations in metabolic, hormonal, inflammatory, and immune systems that can be collectively termed the stress response. Integral to the stress responses are the effects of nociceptive afferent stimuli on systemic and pulmonary vascular resistance, heart rate, and blood pressure, which are a combination of efferent autonomic response and catecholamine release via the adrenal medulla. Therefore, pain responses, cardiovascular responses, and stress responses need to be considered as different aspects of a combined bodily reaction to surgery and trauma. It is important at the outset to understand that not all components of the stress response are suppressed together and that this is important when discussing different analgesic modalities (i.e. opioids vs regional anesthesia). For example, in terms of the use of fentanyl in the infant, the dose required to provide analgesia (1-5 mcg·kg(-1)) is less than that required for hemodynamic stability in response to stimuli (5-10 mcg·kg(-1)) (1) and that this in turn is less than that required to suppress most aspects of the stress response (25-50 mcg·kg(-1)) (2). In contrast to this considerable dose dependency, central local anesthetic blocks allow blockade of the afferent and efferent sympathetic pathways at relatively low doses resulting in profound suppression of hemodynamic and stress responses to surgery. PMID:21999144

  19. Measurement of Stratospheric Chromatic Scintillation with the AMON-RA Balloonborne Spectrometer.

    Science.gov (United States)

    Renard, J B; Dalaudier, F; Hauchecorne, A; Robert, C; Lemaire, T; Pirre, M; Bertaux, J L

    2001-08-20

    The balloonborne instrument AMON (which is a French acronym for Absorption par les Minoritaires Ozone et NO(x)) has been modified to record chromatic scintillation during stellar occultation by the Earth's atmosphere. A 14-channel spectrophotometer with a sampling rate of 10 Hz was added, and the modified instrument, AMON-RA, performed successful measurements of the setting star Alnilam during the third European Stratospheric Experiment on Ozone (THESEO) project. Unambiguous records of the chromatic scintillation were obtained, to our knowledge for the first time from above the atmosphere, and some of its basic properties are reported. The properties of atmospheric structures that are responsible for this chromatic scintillation were found to be consistent with those of previous monochromatic measurements performed from space. A maximum chromatic delay of 2.5 s was observed for widely different wavelengths.

  20. Modulation of immune responses in stress by Yoga

    OpenAIRE

    Arora Sarika; Bhattacharjee Jayashree

    2008-01-01

    Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary syste...

  1. Sympathetic neural responses to mental stress during acute simulated microgravity

    OpenAIRE

    Durocher, John J.; Schwartz, Christopher E.; Carter, Jason R.

    2009-01-01

    Neural and cardiovascular responses to mental stress and acute 6° head-down tilt (HDT) were examined separately and combined. We hypothesized sympathoexcitation during mental stress, sympathoinhibition during HDT, and an additive neural interaction during combined mental stress and HDT. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded in 16 healthy subjects (8 men, 8 women) in the supine position during three randomized trials: 1) menta...

  2. Acute Stress Reduces Reward Responsiveness: Implications for Depression

    OpenAIRE

    Bogdan, Ryan; Pizzagalli, Diego

    2006-01-01

    Background: Stress, one of the strongest risk factors for depression, has been linked to "anbedonic" behavior and dysfunctional reward-related neural circuitry in preclinical models. Methods: To test if acute stress reduces reward responsiveness (i.e., the ability to modulate behavior as a function of past reward), a signal-detection task coupled with a differential reinforcement schedule was utilized. Eighty female participants completed the task under both a stress condition, either threat-...

  3. The Teenage Brain: The Stress Response and the Adolescent Brain

    OpenAIRE

    Romeo, Russell D.

    2013-01-01

    Adolescence is a time of many psychosocial and physiological changes. One such change is how an individual responds to stressors. Specifically, adolescence is marked by significant shifts in hypothalamic-pituitary-adrenal (HPA) axis reactivity, resulting in heightened stress-induced hormonal responses. It is presently unclear what mediates these changes in stress reactivity and what impacts they may have on an adolescent individual. However, stress-sensitive limbic and corti...

  4. Habitual Response to Stress in Recovering Adolescent Anorexic Patients

    Science.gov (United States)

    Miller, Samantha P.; Erickson, Sarah J.; Branom, Christina; Steiner, Hans

    2009-01-01

    Objective: Although previous research has investigated the stress response in acutely anorexic patients, there is currently little research addressing this response in recovering adolescent anorexic girls. Therefore, this study investigated partially and fully weight-restored anorexic adolescent girls' psychological and physiological response to a…

  5. Chromate conversion coatings and their current application

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-04-01

    Full Text Available This paper describes formation, composition and possible production technologies of application chromate coatings. Summation of common examples of applications of these coatings in corrosion protection of metals and alloys is provided. Individual chromate coatings are divided by their dominant anions either with CrVI or CrIII. Restrictions of chromate coatings with dominantly CrVI and related toxicity of hexavalent chromium is discussed in detail. In conclusion, examples of both chromium and other, alternative coatings are summed up. Application of these coatings as a protection for concrete hot-dip galvanized reinforcement is also reviewed.

  6. Quantification of Bacillus cereus stress responses

    NARCIS (Netherlands)

    Besten, den H.M.W.

    2010-01-01

    The microbial stability and safety of minimally processed foods is controlled by a deliberate combination of preservation hurdles. However, this preservation strategy is challenged by the ability of spoilage bacteria and food-borne pathogens to adapt to stressing environments providing cell robustne

  7. Acute Stress Response in Critically Ill Children

    NARCIS (Netherlands)

    M. den Brinker (Marieke)

    2006-01-01

    textabstractThe understanding of the endocrine changes in critically ill children is important, as it provides insights in the pathophysiology of the acute stress in children and its differences compared with adults. Furthermore, it delineates prognostic factors for survival and supports the rati

  8. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  9. Personality, Stressful Life Events, and Treatment Response in Major Depression

    Science.gov (United States)

    Bulmash, Eric; Harkness, Kate L.; Stewart, Jeremy G.; Bagby, R. Michael

    2009-01-01

    The current study examined whether the personality traits of self-criticism or dependency moderated the effect of stressful life events on treatment response. Depressed outpatients (N = 113) were randomized to 16 weeks of cognitive-behavioral therapy, interpersonal psychotherapy, or antidepressant medication (ADM). Stressful life events were…

  10. Quorum Sensing Enhances the Stress Response in Vibrio cholerae▿

    OpenAIRE

    Joelsson, Adam; Kan, Biao; Jun ZHU

    2007-01-01

    Vibrio cholerae lives in aquatic environments and causes cholera. Here, we show that quorum sensing enhances V. cholerae viability under certain stress conditions by upregulating the expression of RpoS, and this regulation acts through HapR, suggesting that a quorum-sensing-enhanced stress response plays a role in V. cholerae environmental survival.

  11. Traumatic Experience in Infancy: How Responses to Stress Affect Development

    Science.gov (United States)

    Witten, Molly Romer

    2010-01-01

    Responses to traumatic stress during the earliest years of life can change quickly and can be difficult to identify because of the young child's rapid rate of development. The symptoms of traumatic stress will depend on the child's developmental level and individual coping styles, as well as the quality and nature of the child's most important…

  12. The psychophysiological stress response in psoriasis and rheumatoid arthritis

    NARCIS (Netherlands)

    Brouwer, S.J.M. de; Middendorp, H. van; Stormink, C.; Kraaimaat, F.W.; Sweep, F.C.; Jong, E.M.G.J. de; Schalkwijk, J.; Eijsbouts, A.M.M.; Donders, A.R.T.; Kerkhof, P.C.M. van de; Riel, P.L.C.M. van; Evers, A.W.M.

    2014-01-01

    BACKGROUND: Psychosocial stress can be a risk factor for the maintenance and exacerbation of chronic inflammatory diseases, such as psoriasis and rheumatoid arthritis (RA). OBJECTIVES: To gain insight into the specificity of the psychophysiological stress response during chronic inflammation, we ass

  13. Differentiating anticipatory from reactive cortisol responses to psychosocial stress

    NARCIS (Netherlands)

    Engert, V.; Efanov, S.I.; Duchesne, A.; Vogel, S.; Corbo, V.; Pruessner, J.C.

    2013-01-01

    Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no "bes

  14. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms

    OpenAIRE

    Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa

    2015-01-01

    In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this rev...

  15. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the...

  16. [The effect of stressor experiences and optimism upon stress responses].

    Science.gov (United States)

    Tonan, K; Sonoda, A

    1994-10-01

    The present studies investigated whether or not optimism/pessimism is a cognitive mediator of future depression for people who have experienced many negative life events. Subjects were administered optimism scales, stress response scales at Time 1. They then completed the stressor scale and stress response scales at Time 2, about six weeks later. The results showed the interaction of stressor experiences and optimistic diathesis: Subjects who have higher stressor experiences and higher stable and global explanatory style for negative events showed higher depressive responses. Other indices of optimistic diathesis--Life Orientation, Cognitive Style, and Internality dimension of Attributional Style--did not produce this interaction effect. Moreover, this interaction did not appear in the psychological stress response other than depression. These results were consistent with diathesis-stress model of depression. PMID:7861687

  17. Stability analysis of Reynolds stress response functional candidates

    Energy Technology Data Exchange (ETDEWEB)

    Dafinger, M.; Hallatschek, K. [Max-Planck-Institute for Plasma Physics, EURATOM-IPP Association, Garching (Germany); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2013-04-15

    Complete information on the behavior of zonal flows in turbulence systems is coded in the turbulent stress response to the respective flow pattern. We show that turbulence stress response functionals containing only the linear first order wavenumber dependence on the flow pattern result in unstable structures up to the system size. A minimal augmentation to reproduce the flow patterns observed in turbulence simulations is discussed.

  18. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women.

    Science.gov (United States)

    Lupis, Sarah B; Lerman, Michelle; Wolf, Jutta M

    2014-11-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6±1.7 yr) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p>.23). Increases in self-reported fear predicted blunted cortisol responses in men (β=0.41, p=.04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β=0.67 p=.004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β=0.51, p=.033; β=0.46, p=.066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p>.23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health-promoting ways of

  19. STIFDB2: An Updated Version of Plant Stress-Responsive TranscrIption Factor DataBase with Additional Stress Signals, Stress-Responsive Transcription Factor Binding Sites and Stress-Responsive Genes in Arabidopsis and Rice

    OpenAIRE

    Naika, Mahantesha; Shameer, Khader; Mathew, Oommen K; Gowda, Ramanjini; Sowdhamini, Ramanathan

    2013-01-01

    Understanding the principles of abiotic and biotic stress responses, tolerance and adaptation remains important in plant physiology research to develop better varieties of crop plants. Better understanding of plant stress response mechanisms and application of knowledge derived from integrated experimental and bioinformatics approaches are gaining importance. Earlier, we showed that compiling a database of stress-responsive transcription factors and their corresponding target binding sites in...

  20. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  1. Low-stress and high-stress singing have contrasting effects on glucocorticoid response

    Directory of Open Access Journals (Sweden)

    Daisy eFancourt

    2015-09-01

    Full Text Available Performing music in public is widely recognised as a potentially stress-inducing activity. However, despite the interest in music performance as an acute psychosocial stressor, there has been relatively little research on the effects of public performance on the endocrine system. This study examined the impact of singing in a low-stress performance situation and a high-stress live concert on levels of glucocorticoids (cortisol and cortisone in 15 professional singers. The results showed a significant decrease in both cortisol and cortisone across the low-stress condition, suggesting that singing in itself is a stress-reducing (and possibly health-promoting activity, but significant increases across the high-stress condition. This is the first study to demonstrate that singing affects glucocorticoid responses and that these responses are modulated by the conditions of performance.

  2. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  3. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  4. Diffractive elements performance in chromatic confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, J; Duque, D; Alean, A; Toledo, M [Grupo de Optica y EspectroscopIa, Centro de Ciencia Basica, Universidad Pontificia Bolivariana. Medellin (Colombia); Meneses, J [Laboratorio de Optica y Tratamiento de Senales, Instituto de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia); Gharbi, T, E-mail: jgarzonr10@une.net.co [Laboratoire d' Optique P. M. Duffieux, UMR-6603 CNR/Universite de Franche-Comte. 16 route de Gray, 25030 Besancon Cedex (France)

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  5. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  6. Sex differences in the stress response in SD rats.

    Science.gov (United States)

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. PMID:25687843

  7. Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kho, Chang Won; Lee, Phil Young; Bae, Kwang-Hee; Kang, Sunghyun; Cho, Sayeon; Lee, Do Hee; Sun, Choong-Hyun; Yi, Gwan-Su; Park, Byoung Chul; Park, Sung Goo

    2008-02-01

    The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for H2O2-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3- dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, H2O2-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1. PMID:18309271

  8. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Glacy Jaqueline da Silva

    2014-01-01

    Full Text Available Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses.

  9. Chromatic effects in long periodic transport channels

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko V. N.; Hao, Y.; Jing, Y.

    2015-05-03

    Long periodic transport channels are frequently used in accelerator complexes and suggested for using in high-energy ERLs for electron-hadron colliders. Without proper chromaticity compensation, such transport channels exhibit high sensitivity to the random orbit errors causing significant emittance growth. Such emittance growth can come from both the correlated and the uncorrelated energy spread. In this paper we present results of our theoretical and numerical studies of such effects and develop a criteria for acceptable chromaticity in such channels.

  10. Chromatic variations suppress suprathreshold brightness variations

    OpenAIRE

    KINGDOM, FREDERICK A.A.; Bell, Jason; Gheorghiu, Elena; Malkoç, Gökhan

    2010-01-01

    Most objects in natural scenes are suprathreshold in both color (chromatic) and luminance contrast. How salient is each dimension? We have developed a novel method employing a stimulus similar to that used by B. C. Regan and J. D. Mollon (1997) who studied the relative saliencies of the two chromatic cardinal directions. Our stimuli consist of left-and right-oblique modulations of color and/or luminance defined within a lattice of circles. In the "separated" condition, the two modulations wer...

  11. [Metabolic response to trauma and stress].

    Science.gov (United States)

    Omerbegović, Meldijana; Durić, Amira; Muratović, Nusreta; Mulalić, Lejla; Hamzanija, Emina

    2003-01-01

    Trauma, surgery, burns and infection are accompanied with catabolic response which is characterized by enhanced protelysis, enhanced excretion of nitrogen, neoglucogenesis and resistance of peripheral tissues to insulin. This catabolic response is mediated through neural pathways and neuroendocrine axis. The purpose of this response is restoration of adequate perfusion and oxygenation and releasing of energy and substrates for the tissues, organs and systems which functions are essential for the survival. Metabolic response to injury and severe infection leads to decomposition of skeletal muscle proteins to amino acids, intensive liver gluconcogenesis from lactate, glycerol and alanin with enhanced oxidation of aminoacids. These substrates are necessary for synthesis of various mediators of protein or lipid nature, which are important for the defense and tissue regeneration. The changes result in negative balance of nitrogen, loss of body weight, and lower plasma concentration of all aminoacids. Patients who were unable to develop this hypercatabolic response have poor prognosis, and the patients with hypercatabolic response rapidly lose their body cell mass and without metabolic and nutritive support have more complications and higher mortality. Although neoglucogenesis, proteolysis and lipolysis are resistant to exogenous nutrients, metabolic support in critical illness improves the chances for survival until the healing of the disease. Casual therapy in such conditions is elimination of "stressors" which maintain abnormal endocrine and metabolic response. Adequate oxygenation, hemostasis, infection control and control of extracellular compartment expansion and low flows, are essential for the efficacy of nutritive support and that is the only way to convalescence and wound healing. PMID:15017867

  12. Crop and medicinal plants proteomics in response to salt stress

    Directory of Open Access Journals (Sweden)

    Keyvan eAghaei

    2013-01-01

    Full Text Available Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects.

  13. Stressed out? Associations between perceived and physiological stress responses in adolescents : The TRAILS study

    NARCIS (Netherlands)

    Oldehinkel, Albertine J.; Ormel, Johan; Bosch, Nienke M.; Bouma, Esther M. C.; Van Roon, Arie M.; Rosmalen, Judith G. M.; Riese, Harriette

    2011-01-01

    Studies regarding the interrelation of perceived and physiological stress indices have shown diverging results. Using a population sample of adolescents (N=715, 50.9% girls, mean age 16.11 years, SD=0.59), we tested three hypotheses: (1) perceived responses during social stress covary with concurren

  14. Hemodynamic responses to mental stress during salt loading

    DEFF Research Database (Denmark)

    Gefke, Maria; Christensen, Niels Juel; Bech, Per;

    2016-01-01

    PURPOSE: The purpose was to examine whether prolonged moderate stress associated with a student exam would increase the blood pressure response to a salt load in young healthy normotensive individuals. METHODS: Ten healthy young subjects were examined at two different occasions in random order (i......) during preparation for a medical exam (prolonged stress) and (ii) outside the exam period (low stress). All subjects consumed a controlled diet for 3 days with low- or high-salt content in randomized order. The subjective stress was measured by Spielberger's State-Trait Anxiety Inventory-Scale, SCL...... Symptom Checklist for stress and the Visual Analogue Scale. On each level of stress, 24-h ambulatory blood pressure and cardiac output (CO) were measured. Furthermore, plasma norepinephrine (NE), epinephrine (E) and plasma renin activity (PRA) were measured. RESULTS: Twenty-four-hour ABP, 24-h heart rate...

  15. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Ines Ben Rejeb

    2014-10-01

    Full Text Available Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. Such an interaction between both types of stress points to a crosstalk between their respective signaling pathways. This crosstalk may be synergistic and/or antagonistic and include among others the involvement of phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS. In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant’s resistance against pathogens. This review aims at giving an insight into cross-tolerance between abiotic and biotic stress, focusing on the molecular level and regulatory pathways.

  16. VIIRS S-NPP Nighttime DNB Spectral Response Function (SRF): The At-launch Characteristics and How the SRF Changes with Time Due to Tungsten Oxides Chromaticity

    Science.gov (United States)

    Guenther, B.; Lei, N.; Moeller, C.

    2015-12-01

    The VIIRS Day-Night Band (DNB) is designed with 3 gain stages: Low (LGS), Mid (MGS) and High (HGS) to span bright daytime to moonlit night earth scene signal levels. The published at-launch DNB relative spectral response (RSR) is based upon the LGS spectral measurements, since it was well measured in the pre-launch test program and the LGS can be calibrated by the on-board solar diffuser (MGS and HGS saturate on the SD). The LGS RSR however does not fully represent the spectral characteristics of nighttime DNB data from the MGS and HGS. Nighttime data users who apply the detailed DNB spectral characteristics in their analyses should use modulated RSR appropriate to the MGS and HGS observations. The RSR modulation is due to spectral darkening of the 4 mirrors of the S-NPP VIIRS telescope, which were contaminated with tungsten oxides in fabrication. These tungsten oxides are 'in family' with transition lenses on eyeglasses that darken when exposed to sunlight but do not recover when VIIRS goes into darkness because VIIRS in space is in a vacuum (transition lenses require atmospheric oxygen to recover). The on-going mirror darkening has caused a time-dependent shift in DNB RSR towards blue wavelengths. This presentation will provide access to the correct RSR to use for S-NPP DNB nighttime data over the mission time on-orbit. The changes in characteristics will be described in engineering terms to facilitate clear user understanding of how to handle RSR for nighttime observations over the mission lifetime.

  17. Plant transcriptomics and responses to environmental stress: an overview

    Indian Academy of Sciences (India)

    Sameen Ruqia Imadi; Alvina Gul Kazi; Mohammad Abass Ahanger; Salih Gucel; Parvaiz Ahmad

    2015-09-01

    Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant’s response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.

  18. the response of plants to drought stress

    Directory of Open Access Journals (Sweden)

    Rys Magdalena

    2015-08-01

    a wider spectrum of compounds scattering the radiation in the leaves tested, and their subsequent comparative analysis. The impact of drought on metabolism of soybean was clearly visible on spectra and confirmed using cluster analysis. The technical problem of the influence of leaf water content on measurements, which appeared in studies, will be discussed. To conclude, FT-Raman spectroscopy may be a good complement to other non-invasive methods, e.g., fluorescent methods, in assessing the stress-induced damage of crops.

  19. Involvement of endoplasmic reticulum stress response in orofacial inflammatory pain.

    Science.gov (United States)

    Yang, Eun Sun; Bae, Jin Young; Kim, Tae Heon; Kim, Yun Sook; Suk, Kyoungho; Bae, Yong Chul

    2014-12-01

    Endoplasmic reticulum (ER) stress is involved in many neurological diseases and inflammatory responses. Inflammatory mediators induce neuronal damage and trigger the neuropathic or inflammatory pain. But there is very little data on the role of the ER stress response in pain mechanisms. In this study, we explored whether the ER stress response is involved in orofacial inflammatory pain by using a complete Freund's adjuvant (CFA)-injected rat model. The thermal pain hypersensitivity increased significantly after CFA injection. We found that the protein and mRNA levels of ER stress response genes, GRP78/Bip and p-eIF2α, increased significantly in trigeminal ganglion (TG) of CFA-injected rats compared to control animals. In immunofluorescence analysis, a significant increase of GRP78 and p-eIF2α immunopositive neurons was observed in CFA-injected TG compared to control TG. When we administered an ER stress modulator, salubrinal, CFA-induced thermal pain hypersensitivity was temporally reduced. Thus, our study suggests that ER stress responses in TG neurons contribute to CFA-induced inflammatory pain, and may comprise an important molecular mechanism underlying the orofacial inflammatory pain pathway. PMID:25548537

  20. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    Science.gov (United States)

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  1. Contrasting urban and rural heat stress responses to climate change

    Science.gov (United States)

    Fischer, E. M.; Oleson, K. W.; Lawrence, D. M.

    2012-02-01

    Hot temperatures in combination with high humidity cause human discomfort and may increase morbidity and mortality. A global climate model with an embedded urban model is used to explore the urban-rural contrast in the wet-bulb globe temperature, a heat stress index accounting for temperature and humidity. Wet-bulb globe temperatures are calculated at each model time step to resolve the heat stress diurnal cycle. The model simulates substantially higher heat stress in urban areas compared to neighbouring rural areas. Urban humidity deficit only weakly offsets the enhanced heat stress due to the large night-time urban heat island. The urban-rural contrast in heat stress is most pronounced at night and over mid-latitudes and subtropics. During heatwaves, the urban heat stress amplification is particularly pronounced. Heat stress strongly increases with doubled CO2 concentrations over both urban and rural surfaces. The tropics experience the greatest increase in number of high-heat-stress nights, despite a relatively weak ˜2°C warming. Given the lack of a distinct annual cycle and high relative humidity, the modest tropical warming leads to exceedance of the present-day record levels during more than half of the year in tropical regions, where adaptive capacity is often low. While the absolute urban and rural heat stress response to 2 × CO2 is similar, the occurrence of nights with extremely high heat stress increases more in cities than surrounding rural areas.

  2. Effects of Chromate and Non-Chromate Coating Systems on Environmentally Assisted Fatigue of an Aluminum Alloy

    Science.gov (United States)

    Schubbe, Joel J.; Westmoreland, Sophoria N.

    2014-10-01

    Fatigue crack growth testing of 2024-T3 Aluminum plate was performed using compact tension (CT) specimens with chromate and non-chromate primer paint systems to evaluate the effects of the coatings on fatigue crack growth rates. The tests were conducted in lab air and sea water environments for each of the coating systems. Standard E399 CT specimens were tested to determine the influence level of environmentally assisted cracking (corrosion fatigue) on crack growth rates and cyclic count to prescribed pre-crack and final crack lengths. Increasing stress range (Δ K) tests were conducted at 10 Hz in the range of 6.5 to 26.5 MPa. It was determined that the coated specimens exhibited a 12% shorter total life, on average, than the bare specimens for the lab air cases. In the case of salt water exposure, the coated specimens exhibited approximately 10% life increase over the bare specimens. The number of cycles to the 2.54 mm pre-crack length for the coated specimens was all less than the cycle count for the bare tests. In each case (coated or bare), there was an increased growth rate at the lower stress ranges in the salt water environment, with the chromate system case displaying the smallest change (increase). It can be concluded that the coated specimens initiate cracks and propagate faster than the bare specimens for short cracks at low stress range, but the environmental influence on the specimens is quickly overshadowed as the cracks elongate and the rate of growth increases. The coated specimens exhibited a higher total life cycle count to final crack length for this testing.

  3. Molecular and biochemical responses of Volvox carteri to oxidative stress

    Science.gov (United States)

    Lingappa, U.; Rankin-Gee, E. K.; Lera, M.; Bebour, B.; Marcu, O.

    2014-03-01

    Understanding the intracellular response to environmental stresses is a key aspect to understanding the limits of habitability for life as we know it. A wide range of relevant stressors, from heat shock to radiation, result in the intracellular production of reactive oxygen species (ROS). ROS are used physiologically as signaling molecules to cause changes in gene expression and metabolism. However, ROS, including superoxide (O2-) and peroxides, are also highly reactive molecules that cause oxidative damage to proteins, lipids and DNA. Here we studied stress response in the multicellular, eukaryotic green alga Volvox carteri, after exposure to heat shock conditions. We show that the ROS response to heat stress is paralleled by changes in photosynthetic metabolism, antioxidant enzyme activity and gene expression, and fluctuations in the elemental composition of cells. Metabolism, as measured by pulse amplitude modulated (PAM) fluorometry over two hours of heat stress, showed a linear decrease in the photosynthetic efficiency of Volvox. ROS quantification uncovered an increase in ROS in the culture medium, paralleled by a decrease in ROS within the Volvox colonies, suggesting an export mechanism is utilized to mitigate stress. Enzyme kinetics indicated an increase in superoxide dismutase (SOD) activity over the heat stress timecourse. Using X-ray fluorescence (XRF) at the Stanford Synchrotron Radiation Lightsource, we show that these changes coincide with cell-specific import/export and intracellular redistribution of transition elements and halides, suggesting that the cellular metallome is also engaged in mediating oxidative stress in Volvox.

  4. Mechanistic insights into aging, cell cycle progression, and stress response

    Directory of Open Access Journals (Sweden)

    Troy Anthony Alan Harkness

    2012-06-01

    Full Text Available The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomyces cerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC, an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox transcription factor family also regulate stress responses. The yeast Fox orthologues Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell cycle regulation with stress responses.

  5. Gene Response to Salt Stress in Populus euphratica

    Institute of Scientific and Technical Information of China (English)

    Shen Xin; Thomas Teichmenn; Wang Yiqin; Bai Genben; Yu Guangjun; Wang Shasheng

    2003-01-01

    Through construction of a subtracted cDNA library and library screening, a number of salt-induced cDNA fragmentshave been cloned from Populus euphratica. Based on the results of DNA sequencing and Northern analysis, the gene response ofPopulus euphratica to salt stress is discussed. It is indicated that in response to salt treatment the transcription level for some genes ofPopulus euphratica increases by about 1.5 times and significant difference between the responses to osmotic stress and to ion stresshas been observed in gene activity.

  6. Keratins Are Altered in Intestinal Disease-Related Stress Responses

    Science.gov (United States)

    Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  7. Keratins Are Altered in Intestinal Disease-Related Stress Responses.

    Science.gov (United States)

    Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  8. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    Full Text Available BACKGROUND: Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability. PRINCIPAL FINDINGS: Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity. CONCLUSIONS: H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  9. Responses of marine plankton to pollutant stress

    DEFF Research Database (Denmark)

    Hjorth, M.

    The thesis analyses effects of pollutants on natural plankton communities on the basis of three independent mesocosm experiments and a series of laboratory experiments performed in Denmark and Greenland. The work focus on integrating functional and structural measures of community responses to...

  10. Individual differences in cortisol stress response predict increases in voice pitch during exam stress.

    Science.gov (United States)

    Pisanski, Katarzyna; Nowak, Judyta; Sorokowski, Piotr

    2016-09-01

    Despite a long history of empirical research, the potential vocal markers of stress remain unclear. Previous studies examining speech under stress most consistently report an increase in voice pitch (the acoustic correlate of fundamental frequency, F0), however numerous studies have failed to replicate this finding. In the present study we tested the prediction that these inconsistencies are tied to variation in the severity of the stress response, wherein voice changes may be observed predominantly among individuals who show a cortisol stress response (i.e., an increase in free cortisol levels) above a critical threshold. Voice recordings and saliva samples were collected from university psychology students at baseline and again immediately prior to an oral examination. Voice recordings included both read and spontaneous speech, from which we measured mean, minimum, maximum, and the standard deviation in F0. We observed an increase in mean and minimum F0 under stress in both read and spontaneous speech, whereas maximum F0 and its standard deviation showed no systematic changes under stress. Our results confirmed that free cortisol levels increased by an average of 74% (ranging from 0 to 270%) under stress. Critically, increases in cortisol concentrations significantly predicted increases in mean F0 under stress for both speech types, but did not predict variation in F0 at baseline. On average, stress-induced increases in voice pitch occurred only when free cortisol levels more than doubled their baseline concentrations. Our results suggest that researchers examining speech under stress should control for individual differences in the magnitude of the stress response. PMID:27188981

  11. Chloroplast retrograde regulation of heat stress responses in plants

    Directory of Open Access Journals (Sweden)

    Ai-Zhen eSun

    2016-03-01

    Full Text Available It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the primary susceptible targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. In recent years several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS and organellar gene expression (OGE in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation and cellular coordination in plants.

  12. Physiological roles of plastid terminal oxidase in plant stress responses

    Indian Academy of Sciences (India)

    Xin Sun; Tao Wen

    2011-12-01

    The plastid terminal oxidase (PTOX) is a plastoquinol oxidase localized in the plastids of plants. It is able to transfer electrons from plastoquinone (PQ) to molecular oxygen with the formation of water. Recent studies have suggested that PTOX is beneficial for plants under environmental stresses, since it is involved in the synthesis of photoprotective carotenoids and chlororespiration, which could potentially protect the chloroplast electron transport chain (ETC) from over-reduction. The absence of PTOX in plants usually results in photo-bleached variegated leaves and impaired adaptation to environment alteration. Although PTOX level and activity has been found to increase under a wide range of stress conditions, the functions of plant PTOX in stress responses are still disputed now. In this paper, the possible physiological roles of PTOX in plant stress responses are discussed based on the recent progress.

  13. Dynamic modeling of cellular response to DNA damage based on p53 stress response networks

    Institute of Scientific and Technical Information of China (English)

    Jinpeng Qi; Yongsheng Ding; Shihuang Shao

    2009-01-01

    Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MDM2 feedback loop, as well as toxins elimination triggered by p53 stress response networks. Especially, the model can predict the plausible outcomes of cellular response under different IR dose regimes.

  14. Identification of Drought-Responsive Universal Stress Proteins in Viridiplantae

    OpenAIRE

    Isokpehi, Raphael D.; Simmons, Shaneka S.; Cohly, Hari H. P.; Ekunwe, Stephen I.N.; Begonia, Gregorio B.; Ayensu, Wellington K.

    2011-01-01

    Genes encoding proteins that contain the universal stress protein (USP) domain are known to provide bacteria, archaea, fungi, protozoa, and plants with the ability to respond to a plethora of environmental stresses. Specifically in plants, drought tolerance is a desirable phenotype. However, limited focused and organized functional genomic datasets exist on drought-responsive plant USP genes to facilitate their characterization. The overall objective of the investigation was to identify diver...

  15. Historical Temperature Variability Affects Coral Response to Heat Stress

    OpenAIRE

    Jessica Carilli; Donner, Simon D.; Hartmann, Aaron C.

    2012-01-01

    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of...

  16. Mutation as a Stress Response and the Regulation of Evolvability

    OpenAIRE

    Galhardo, Rodrigo S.; Hastings, P. J.; Rosenberg, Susan M.

    2007-01-01

    Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the...

  17. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    OpenAIRE

    Yuanyuan Zhang; Li Wang; Soumyadeep Dey; Mawadda Alnaeeli; Sukanya Suresh; Heather Rogers; Ruifeng Teng; Constance Tom Noguchi

    2014-01-01

    Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vas...

  18. Empathy and stress related neural responses in maternal decision making

    OpenAIRE

    Ho, S. Shaun; Konrath, Sara; Brown, Stephanie; Swain, James E.

    2014-01-01

    Mothers need to make caregiving decisions to meet the needs of children, which may or may not result in positive child feedback. Variations in caregivers' emotional reactivity to unpleasant child-feedback may be partially explained by their dispositional empathy levels. Furthermore, empathic response to the child's unpleasant feedback likely helps mothers to regulate their own stress. We investigated the relationship between maternal dispositional empathy, stress reactivity, and neural correl...

  19. Empathy and Stress Related Neural Responses in Maternal Decision Making

    OpenAIRE

    SaraKonrath; StephanieBrown; JamesESwain

    2014-01-01

    Mothers need to make caregiving decisions to meet the needs of children, which may or may not result in positive child feedback. Variations in caregivers’ emotional reactivity to unpleasant child-feedback may be partially explained by their dispositional empathy levels. Furthermore, empathic response to the child’s unpleasant feedback likely helps mothers to regulate their own stress. We investigated the relationship between maternal dispositional empathy, stress reactivity, and neural corre...

  20. Forearm vascular responses to mental stress in healthy older adults

    OpenAIRE

    Heffernan, Matthew J.; Patel, Hardikkumar M.; Muller, Matthew D.

    2013-01-01

    Abstract Forearm vascular conductance (FVC) increases in response to mental stress (verbal mental arithmetic) in young people. However, the effect of healthy aging and mental stress on FVC is unknown. In this study, we tested the hypothesis that FVC and cutaneous vascular conductance (CVC) would be attenuated in older adults compared to young adults. In 13 young (27 ± 1 year) and 11 older (62 ± 1 year) subjects, we quantified heart rate (HR), mean arterial pressure (MAP), FVC (Doppler ultraso...

  1. Response of Serum Prolactin to Thermal Stress During Water Immersion

    OpenAIRE

    Matsumoto, Takaaki; Kosaka, Mitsuo; Yamauchi, Masaki; Nakamura, Koichi; Yamashita, Shunichi; Izumi, Motomori; Nagataki, Shigenobu

    1988-01-01

    Physiological action of prolactin is not well-known in human except those concerning pregnancy and lactation. Elevated serum prolactin level due to various stresses such as heat load, physical exercise, surgery, gastroscopy has been reported. In order to elucidate the response of serum prolactin to thermal stress, preliminary experiments were done in a male subject. Three different thermal stimuli were applied by head-out water immersion (water temperature: 28.5, 34 and 40℃, respectively) for...

  2. Stress response and mode of ventilation in preterm infants

    OpenAIRE

    Quinn, M.; de Boer, R C; Ansari, N.; Baumer, J

    1998-01-01

    AIM—To assess the change in stress response in preterm babies changed from patient triggered ventilation (PTV) to conventional mandatory ventilation (CMV) and vice versa; to determine outcome in relation to stress hormone concentrations.
METHODS—A randomised controlled study was conducted in two district general hospital neonatal intensive care units. Thirty babies, treated initially with CMV, were randomly assigned to remain on CMV or to change to PTV. A second group of 29 ...

  3. Stress, Roles and Responsibilities of Single Mothers in Malaysia

    OpenAIRE

    Mohd Hashim Intan Hashimah; Azmawati Azman Azwan; Endut Noraida

    2015-01-01

    Life as a single mother is often associated with great demands and many challenges. This study examines how a group of single mothers in Malaysia views sources of stress and challenges in their lives. It also investigates perceived roles and responsibilities of single mothers. Three hundred single mothers from all over Malaysia were interviewed in this study. Single mothers reported relatively low level of stress that was mostly related to financial (insufficient pay) and day-to-day living. T...

  4. The behavioural effects of predator-induced stress responses in the cricket (Gryllus texensis): the upside of the stress response.

    Science.gov (United States)

    Adamo, Shelley A; Kovalko, Ilya; Mosher, Brianna

    2013-12-15

    Predator-induced stress responses are thought to reduce an animal's risk of being eaten. Therefore, these stress responses should enhance anti-predator behaviour. We found that individual insects (the cricket Gryllus texensis) show reliable behavioural responses (i.e. behavioural types) in a plus-shaped maze. An individual's behaviour in the plus maze remained consistent for at least 1/2 of its adult life. However, after exposure to a model predator, both male and female crickets showed a reduced period of immobility and an increased amount of time spent under shelter compared with controls. These changes could be mimicked by injections of the insect stress neurohormone octopamine. These behavioural changes probably aid crickets in evading predators. Exposure to a model predator increased the ability of crickets to escape a live predator (a bearded dragon, Pogona vitticeps). An injection of octopamine had the same effect, showing that stress hormones can reduce predation. Using crickets to study the fitness consequences of predator-induced stress responses will help integrate ecological and biomedical concepts of 'stress'. PMID:24307711

  5. Neonatal handling alters maternal emotional response to stress.

    Science.gov (United States)

    Reis, Adolfo R; Jacobs, Silvana; Menegotto, Pâmela R; Silveira, Patrícia P; Lucion, Aldo B

    2016-07-01

    Neonatal handling is an experimental procedure used to analyze the effects of environmental interventions during early postpartum days (PPD). Long-lasting effects of repeated stress exposure in the neonatal period on the maternal side are poorly studied in this model. The aim of this study was to verify if handling the pups induces enduring effects on damśstress responses, increasing their risk for depression. Dams were divided into two groups (NH-Non-handled and H-Handled) based on the handling procedure (pups were handled for 1 min/per day from PPD1-PPD10) and then subdivided into four groups (NH, NH + S, H, and H + S) based on the exposure or not to restraint stress after weaning (1 hr/per day for 7 days, PPD22-PPD28). We analyzed damśbehavior in the forced swimming test (FST PPD29-PPD30), plasma basal corticosterone and BDNF levels, as well as adrenal weight (PPD31). The results show that handling alters the stress response of dams to acute and chronic stress, as evidenced by dams of the H group having increased immobility in the first day of FST (p handling may induce a long-lasting effect on maternal stress response; these changes in the damśemotional reactivity increase their susceptibility for the development of psychiatric disorders such as depression. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 614-622, 2016. PMID:27020142

  6. Pharmacological modification of the perioperative stress response in noncardiac surgery.

    Science.gov (United States)

    Priebe, Hans-Joachim

    2016-06-01

    The perioperative period is associated with alterations in the neuroendocrine, metabolic, and immune systems, referred to as "stress response." The resultant increased sympathetic activity and elevated serum concentrations of catecholamines may adversely affect the cardiovascular system, resulting in cardiovascular instability (hypertension, tachycardia, and arrhythmia), morbidity (myocardial ischemia, myocardial infarction, and stroke), and mortality (cardiac death and fatal stroke), particularly in patients at an elevated cardiovascular risk and with reduced cardiovascular reserve. Various strategies have been used to ameliorate the adverse perioperative cardiovascular sequelae of the perioperative stress response. Effective pharmacologic blunting of the stress response plays a crucial role in perioperative cardiac risk reduction strategies. In this context, the role of beta-adrenoceptor blockers, alpha2-adrenoceptor agonists, and statins has been extensively examined. This chapter evaluates the available evidence with respect to treatment efficacy of these commonly prescribed drugs in patients undergoing noncardiac surgery. PMID:27396805

  7. Orientational Polarizability and Stress Response of Biological Cells

    Science.gov (United States)

    Safran, S. A.; de, R.; Zemel, A.

    We present a theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes random forces as well as forces that arise from the deformation of the matrix and those due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate both the static and high frequency limits of the orientational response in terms of the cellular polarizability. For systems in which the forces due to regulation and activity dominate the mechanical forces, we show that there is a non-linear dynamical response which, in the high frequency limit, causes the cell to orient nearly perpendicular to the direction of the applied stress.

  8. Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response.

    Science.gov (United States)

    Kim, Hyun-Eui; Grant, Ana Rodrigues; Simic, Milos S; Kohnz, Rebecca A; Nomura, Daniel K; Durieux, Jenni; Riera, Celine E; Sanchez, Melissa; Kapernick, Erik; Wolff, Suzanne; Dillin, Andrew

    2016-09-01

    Defects in mitochondrial metabolism have been increasingly linked with age-onset protein-misfolding diseases such as Alzheimer's, Parkinson's, and Huntington's. In response to protein-folding stress, compartment-specific unfolded protein responses (UPRs) within the ER, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small-molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding. PMID:27610574

  9. Transcriptional responses of Arabidopsis thaliana plants to As (V stress

    Directory of Open Access Journals (Sweden)

    Yuan Joshua S

    2008-08-01

    Full Text Available Abstract Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V] and phosphate (Pi. Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD (at2g28190, Cu/Zn SOD (at1g08830, as well as an SOD copper chaperone (at1g12520. On the other hand, Fe SODs were strongly repressed in response to As (V stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

  10. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect.

    Science.gov (United States)

    Piiroinen, Saija; Lyytinen, Anne; Lindström, Leena

    2013-02-01

    Adaptation to stressful environments is one important factor influencing species invasion success. Tolerance to one stress may be complicated by exposure to other stressors experienced by the preceding generations. We studied whether parental temperature stress affects tolerance to insecticide in the invasive Colorado potato beetle Leptinotarsa decemlineata. Field-collected pyrethroid-resistant beetles were reared under either stressful (17°C) or favourable (23°C) insecticide-free environments for three generations. Then, larvae were exposed to pyrethroid insecticides in common garden conditions (23°C). Beetles were in general tolerant to stress. The parental temperature stress alone affected beetles positively (increased adult weight) but it impaired their tolerance to insecticide exposure. In contrast, offspring from the favourable temperature regime showed compensatory weight gain in response to insecticide exposure. Our study emphasizes the potential of cross-generational effects modifying species stress tolerance. When resistant pest populations invade benign environments, a re-application of insecticides may enhance their performance via hormetic effects. In turn, opposite effects may arise if parental generations have been exposed to temperature stress. Thus, the outcome of management practices of invasive pest species is difficult to predict unless we also incorporate knowledge of the evolutionary and recent (preceding generations) stress history of the given populations into pest management. PMID:23467574

  11. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  12. Formaldehyde Stress Responses in Bacterial Pathogens.

    Science.gov (United States)

    Chen, Nathan H; Djoko, Karrera Y; Veyrier, Frédéric J; McEwan, Alastair G

    2016-01-01

    Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed. PMID:26973631

  13. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    N.J. Paine; C. Ring; S. Aldred; J.A. Bosch; A.J. Wadley; J.J.C.S. Veldhuijzen van Zanten

    2013-01-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male

  14. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.

  15. Transcriptional Regulation of Arabidopsis in Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Zhulong Chan

    2012-01-01

    Salt stress is a major factor limiting agricultural productivity worldwide.Adaptations to salt stress include avoidance by reduced sodium uptake,sequestration of toxic sodium ions away from the cytoplasm,or production of compatible solutes or osmoprotectants to reduce molecular disruption.Approaches to engineer salt stress resistance have included regulation of ion transport through introduction of Na+/H+ antiporter; synthesis of compatible solutes; or the introduction of transcription factors regulating expression of stress-responsive genes.On the other hand,naturally occurring variation among wild-type populations of plants also can be used to understand plant adaptive responses to their environments.In this study,we compared phenotypic and transcriptomic effects of constitutive expression of genes intended to confer salt stress tolerance by three different mechanisms:a transcription factor,CBF3/DREB1a; a metabolic gene,M6PR,for mannitol biosynthesis; and the Na+/H+ antiporter,SOS1.In the absence of salt,M6PR and SOS1 lines performed comparably with wild type; CBF3 lines exhibited dwarfing as reported previously.All three transgenes conferred fitness advantage when subjected to 100 mmol/L NaCI in the growth chamber.CBF3 and M6PR affected transcription of numerous abiotic stress-related genes as measured by Affymetrix microarray analysis.M6PR additionally modified expression of biotic stress and oxidative stress genes.Transcriptional effects of SOS1 were smaller and primarily limited to redox-related genes.In addition,we compared natural variations in salt tolerance between Ler and Sha ecotypes based on their responses to salt treatments and the results indicated that Ler was salt-sensitive,but Sha,which obtained a truncated RAS1 protein,was salt-tolerant.Transcriptome analysis revealed that many genes involved in secondary metabolism,photosynthesis,and protein synthesis were mainly down-regulated by salinity effects,while transposable element genes,microRNA and

  16. Response to stress in Drosophila is mediated by gender, age and stress paradigm.

    Science.gov (United States)

    Neckameyer, Wendi S; Nieto-Romero, Andres R

    2015-01-01

    All living organisms must maintain equilibrium in response to internal and external challenges within their environment. Changes in neural plasticity (alterations in neuronal populations, dendritic remodeling, and synaptic turnover) are critical components of the homeostatic response to stress, which has been strongly implicated in the onset of affective disorders. However, stress is differentially perceived depending on the type of stress and its context, as well as genetic background, age and sex; therefore, an individual's maintenance of neuronal homeostasis must differ depending upon these variables. We established Drosophila as a model to analyze homeostatic responses to stress. Sexually immature and mature females and males from an isogenic wild-type strain raised under controlled environmental conditions were exposed to four reproducible and high-throughput translatable stressors to facilitate the analysis of a large number of animals for direct comparisons. These animals were assessed in an open-field arena, in a light-dark box, and in a forced swim test, as well as for sensitivity to the sedative effects of ethanol. These studies establish that immature and mature females and males represent behaviorally distinct populations under control conditions as well as after exposure to different stressors. Therefore, the neural substrates mediating the stress response must be differentially expressed depending upon the hormonal status of the brain. In addition, an adaptive response to a given stressor in one paradigm was not predictive for outcomes in other paradigms.

  17. Stress effects on mood, HPA axis, and autonomic response: comparison of three psychosocial stress paradigms.

    Science.gov (United States)

    Giles, Grace E; Mahoney, Caroline R; Brunyé, Tad T; Taylor, Holly A; Kanarek, Robin B

    2014-01-01

    Extensive experimental psychology research has attempted to parse the complex relationship between psychosocial stress, mood, cognitive performance, and physiological changes. To do so, it is necessary to have effective, validated methods to experimentally induce psychosocial stress. The Trier Social Stress Test (TSST) is the most commonly used method of experimentally inducing psychosocial stress, but it is resource intensive. Less resource intense psychosocial stress tasks include the Socially Evaluative Cold Pressor Task (SECPT) and a computerized mental arithmetic task (MAT). These tasks effectively produce a physiological and psychological stress response and have the benefits of requiring fewer experimenters and affording data collection from multiple participants simultaneously. The objective of this study was to compare the magnitude and duration of these three experimental psychosocial stress induction paradigms. On each of four separate days, participants completed either a control non-stressful task or one of the three experimental stressors: the TSST, SECPT, or MAT. We measured mood, working memory performance, salivary cortisol and alpha-amylase (AA), and heart rate. The TSST and SECPT exerted the most robust effects on mood and physiological measures. TSST effects were generally evident immediately post-stress as well as 10- and 20-minutes after stress cessation, whereas SECPT effects were generally limited to the duration of the stressor. The stress duration is a key determinant when planning a study that utilizes an experimental stressor, as researchers may be interested in collecting dependent measures prior to stress cessation. In this way, the TSST would allow the investigator a longer window to administer tasks of interest.

  18. Inhibiting influence of testosterone on stress responsiveness during adolescence.

    Science.gov (United States)

    Lürzel, Stephanie; Kaiser, Sylvia; Krüger, Christine; Sachser, Norbert

    2011-11-01

    The maturation of the hypothalamo-pituitary-adrenal (HPA) axis is a key-component of the changes that occur during adolescence. In guinea pigs, HPA responsiveness during late adolescence depends strongly on the quantity and quality of social interactions: Males that lived in a large mixed-sex colony over the course of adolescence exhibit a lower stress response than males that were kept in pairs (one male/one female). Since colony-housed males have higher testosterone (T) levels than pair-housed males, and inhibiting effects of T on HPA function are well known, we tested the hypothesis that the decrease in stress responsiveness found in colony-housed males is due to their high T concentrations. We manipulated T levels in two experiments: 1) gonadectomy/sham-gonadectomy of colony-housed males (which usually have high T levels), 2) application of T undecanoate/vehicle to pair-housed males (which usually have low T levels). As expected, gonadectomized males showed a significantly increased stress response in comparison with sham-gonadectomized males, and T-injected males had a significantly lower stress response than vehicle-injected males. Both experiments thus confirm an inhibiting effect of T on HPA responsiveness during adolescence, which can mediate the influence of social interactions. The reduction in stress responsiveness is hypothesized to have a biologically adaptive value: A sudden increase in glucocorticoid concentrations can enhance aggressive behavior. Thus, pair-housed males might be adapted to aggressively defend their female ('resource defense strategy'), whereas colony-housed males display little aggressive behavior and are capable of integrating themselves into a colony ('queuing strategy'). PMID:21983230

  19. Stress response of brown pelican nestlings to ectoparasite infestation

    Science.gov (United States)

    Eggert, L.M.F.; Jodice, P.G.R.; O'Reilly, K. M.

    2010-01-01

    Measurement of corticosterone has become a useful tool for assessing the response of individuals to ecological stressors of interest. Enhanced corticosterone levels can promote survival of stressful events; however, in situations where a stressor persists and corticosterone levels remain elevated, the adrenocortical response can be detrimental. A potential ecological stressor for wild birds is parasitism by ectoparasites. We studied the stress response of 11-23-day-old brown pelican (Pelecanus occidentalis) nestlings by measuring plasma corticosterone levels in relation to the presence of the soft tick Carios capensis at two colonies in South Carolina in 2005. We expected to see higher baseline and stress-induced levels of corticosterone for parasitized chicks compared to those nestlings with no ticks. Although nestlings mounted a response to capture stress, tick category was not associated with corticosterone levels at either colony. Our results appear to contrast those of previous studies and indicate that the adrenocortical response of the host is likely dependent on the type of ectoparasite and the degree of infestation. ?? 2009 Elsevier Inc.

  20. Renal Function and Cardiovascular Response to Mental Stress

    Science.gov (United States)

    Seliger, Stephen L.; Katzel, Leslie I.; Fink, Jeffrey C.; Weir, Matthew R.; Waldstein, Shari R.

    2008-01-01

    Background/Aims Cardiovascular reactivity (CVR), defined as an exaggerated hemodynamic response to mental stress, is a putative vascular risk factor and may reflect sympathetic hyperactivity. Chronic kidney disease (CKD) is also associated with sympathetic hyperactivity and vascular risk, but its relationship with CVR is unknown. Methods CVR was assessed in 107 individuals without overt cardiovascular disease or diabetes. Blood pressure and heart rate responses were elicited by three experimental tasks designed to evoke mental stress. Glomerular filtration rate (eGFR) was estimated using the MDRD formula. General linear models estimated the association between renal function and CVR, adjusting for potential confounders. Results Mean age was 66 years and 11% had eGFR of <60 ml/min/1.73 m2. After multivariate adjustment, a low eGFR was associated with a greater stress response of systolic blood pressure, heart rate, and pulse pressure. Associations were only partially attenuated after adjustment for lipids and glucose tolerance. When considered as a continuous variable, lower eGFR was associated with a greater blood pressure response after adjustment for glycemia. Conclusion Although there were relatively few participants with CKD, these results suggest a relationship between CKD and greater CVR. Further investigation is warranted into factors that mediate this relationship and potential clinical consequences of this exaggerated response to stress in CKD. PMID:18025779

  1. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  2. Early life stress dampens stress responsiveness in adolescence: Evaluation of neuroendocrine reactivity and coping behavior.

    Science.gov (United States)

    Hsiao, Young-Ming; Tsai, Tsung-Chih; Lin, Yu-Ting; Chen, Chien-Chung; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2016-05-01

    Stressful experiences during early life (ELS) can affect brain development, thereby exerting a profound and long-lasting influence on mental development and psychological health. The stress inoculation hypothesis presupposes that individuals who have early experienced an attenuated form of stressors may gain immunity to its more virulent forms later in life. Increasing evidence demonstrates that ELS may promote the development of subsequent stress resistance, but the mechanisms underlying such adaptive changes are not fully understood. The present study evaluated the impact of fragmented dam-pup interactions by limiting the bedding and nesting material in the cage during postnatal days 2-9, a naturalistic animal model of chronic ELS, on the physiological and behavioral responses to different stressors in adolescent mice and characterized the possible underlying mechanisms. We found that ELS mice showed less social interaction deficits after chronic social defeat stress and acute restraint-tailshock stress-induced impaired long-term potentiation (LTP) and enhanced long-term depression (LTD) in hippocampal CA1 region compared with control mice. The effects of ELS on LTP and LTD were rescued by adrenalectomy. While ELS did not cause alterations in basal emotional behaviors, it significantly enhanced stress coping behaviors in both the tail suspension and the forced swimming tests. ELS mice exhibited a significant decrease in corticosterone response and trafficking of glucocorticoid receptors to the nucleus in response to acute restraint stress. Altogether, our data support the hypothesis that stress inoculation training, via early exposure to manageable stress, may enhance resistance to other unrelated extreme stressors in adolescence. PMID:26881834

  3. Reactive oxygen species in response of plants to gravity stress

    Science.gov (United States)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  4. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour.

    Science.gov (United States)

    Snyder, Jason S; Soumier, Amélie; Brewer, Michelle; Pickel, James; Cameron, Heather A

    2011-08-03

    Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness. In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis. Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking. Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioural components of the stress response. Using either transgenic or radiation methods to inhibit adult neurogenesis specifically, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice than intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Relative to controls, neurogenesis-deficient mice also showed increased food avoidance in a novel environment after acute stress, increased behavioural despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.

  5. Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice

    Institute of Scientific and Technical Information of China (English)

    Ji-Ping Gao; Dai-Yin Chao; Hong-Xuan Lin

    2007-01-01

    Abiotic stress is the main factor negatively affecting crop growth and productivity worldwide. The advances in physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to stresses. Rice plants are sensitive to various abiotic stresses. In this short review, we present recent progresses in adaptation of rice to salinity, water deficit and submergence. Many studies show that salt tolerance is tightly associated with the ability to maintain ion homeostasis under salinity. Na+ transporter SKC1 unloads NaMrom xylem, plasma membrane NaVHTantiporter SOS1 excludes sodium out of cytosol and tonoplast Na+/H+antiporter NHX1 sequesters Na+ into the vacuole. Silicon deposition in exodermis and endodermis of rice root reduces sodium transport through the apoplastic pathway. A number of transcription factors regulate stress-inducible gene expression that leads to initiating stress responses and establishing plant stress tolerance. Overexpression of some transcription factors, including DREB/CBF and MAC, enhances salt, drought, and cold tolerance in rice. A variant of one of ERF family genes, Sub1A-1, confers immersion tolerance to lowland rice. These findings and their exploitation will hold promise for engineering breeding to protect crop plants from certain abiotic stresses.

  6. Neural regulation of the stress response: glucocorticoid feedback mechanisms

    Directory of Open Access Journals (Sweden)

    J.P. Herman

    2012-04-01

    Full Text Available The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and to restore homeostasis after the immediate challenge has subsided. Release of glucocorticoids is mediated by the hypothalamo-pituitary-adrenal (HPA axis, driven by a neural signal originating in the paraventricular nucleus (PVN. Stress levels of glucocorticoids bind to glucocorticoid receptors in multiple body compartments, including the brain, and consequently have wide-reaching actions. For this reason, glucocorticoids serve a vital function in negative feedback inhibition of their own secretion. Negative feedback inhibition is mediated by a diverse collection of mechanisms, including fast, non-genomic feedback at the level of the PVN, stress-shut-off at the level of the limbic system, and attenuation of ascending excitatory input through destabilization of mRNAs encoding neuropeptide drivers of the HPA axis. In addition, there is evidence that glucocorticoids participate in stress activation via feed-forward mechanisms at the level of the amygdala. Feedback deficits are associated with numerous disease states, underscoring the necessity for adequate control of glucocorticoid homeostasis. Thus, rather than having a single, defined feedback ‘switch’, control of the stress response requires a wide-reaching feedback ‘network’ that coordinates HPA activity to suit the overall needs of multiple body systems.

  7. Proteomic Analysis of Tomato Seedlings Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Xue Zhao; Feng Han; Shihua Shen

    2012-01-01

    The two species (Solanum pimpinellifolium-PI and S.lycopersicum-MM) of tomato showed marked differences in their responses to NaCI stress.PI appeared to be more tolerant to salt than MM.Comparative two-dimensional electrophoresis revealed that 187 and 110 protein spots were differentially expressed in the roots of PI and MM,respectively,in response to salt stress.Out of these spots,a total of 96 and 61 proteins were identified by MALDI-TOF MS analysis.The proteins identified included many previously characterized stress-responsive proteins and others related to processes including scavenging for reactive species; metabolism of energy,signal transduction; protein synthesis,cell growth and differentiation et al.The role of some of the proteins involved in the antioxidant defense mechanism,ion transport and compartmentalization of ions,and cell signaling pathways were discussed.Collectively,this work suggest that PI has more efficient antioxidant and defense machinery than MM,and that this is important for adapting to salt stress and for withstanding the oxidative stress imposed by high salt levels.

  8. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  9. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  10. Response and energy dissipation of rock under stochastic stress waves

    Institute of Scientific and Technical Information of China (English)

    DENG Jian; BIAN Li

    2007-01-01

    The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis When the stochastic stress waves transnut through rocks,the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods.The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods.The results show the harder the rock, the less absorption of energy,the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock.When the whole stress energy doubles either by doubling the duration time or byincreasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to me whole stress energy (i.e.energy dissipation ratio)is decreased to 10%-15%. When doubling the duration time.the cutoff frequency to fracture rock remains constant.However, with the increase of the amplitude of stress wave. the cutoff frequency increases accordingly.

  11. REM SLEEP REBOUND AS AN ADAPTIVE RESPONSE TO STRESSFUL SITUATIONS

    Directory of Open Access Journals (Sweden)

    Deborah eSuchecki

    2012-04-01

    Full Text Available Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a form to cope with the adverse stimuli. Chronic stress, conversely, has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders. These outcomes are dependent on individual psychobiological characteristics, which confer more complexity to the stress-sleep relationship. Its neurobiology has only recently begun to be explored, through animal models, which are also valuable for the development of potential therapeutic agents and preventive actions. This review seeks to present data on the effects of stress on sleep and the different approaches used to study this relationship as well as possible neurobiological underpinnings and mechanisms involved. The results of numerous studies in humans and animals indicate that increased sleep, especially the REM phase, following a stressful situation is an important adaptive behavior for recovery. However, this endogenous advantage appears to be impaired in human beings and rodent strains that exhibit high levels of anxiety and anxiety-like behavior.

  12. Chromatic corrections for large storage rings

    International Nuclear Information System (INIS)

    The use of achromat concept (1) to facilitate chromatic corrections in large storage rings is illustrated. The example given in this report is a lattice for a 75 GeV/c ring with six interaction regions having a beta x = 1.6 m, a beta y = 0.1 m and a luminosity of 1.4 1032 cm-2s-1. The chromatic corrections are done with four families of sextupoles, two for each transverse plane, the strengths of which are determined by the solution of four linear equations in four unknowns. The basic simplicity of the method allows on-line control of the sextupole adjustments

  13. Structure and Growth Mechanism of Lanthanum Chromate

    Institute of Scientific and Technical Information of China (English)

    Li Shengli; Liu Weiming; Ling Ziyu; Sun Liangcheng; Ao Qing; Fu Guifu

    2005-01-01

    The unit cell of lanthanum chromate was constructed by calculating equivalent points. By means of calculation of the hole octahedrally surrounded by O2- ions, it was considered that the sintered property of lanthanum chromate and the stability of Cr-O octahedron might be promoted by mixing a little Ca2+ ions. The growth mechanism was discussed in terms of structural ledge observed by SEM, the surfaces of the structural ledges parallel to (001), (010) and (110) planes, respectively. The misfit between (110) and (001) planes is only 0.0021 on common atomic plane, and the interconnection of the structured ledge may occur during crystal growth.

  14. Preliminary studies of a chromaticity tracker

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Cheng-Yang; /Fermilab

    2006-03-01

    A chromaticity tracker based on a method by D. McGinnis is proposed. This method starts with the slow modulation of the accelerating RF which causes the beam to respond to it. This beam modulation can be detected transversely with a Schottky pickup which after phase demodulation, the chromaticity can be calculated from it. However, to perform phase demodulation, the carrier frequency which is the betatron tune needs to be identified. The identification of the carrier frequency falls naturally onto the phase locked loop tune tracker which when locked to the betatron tune outputs this value in real time.

  15. Total dominator chromatic number of a graph

    Directory of Open Access Journals (Sweden)

    Adel P. Kazemi

    2015-06-01

    Full Text Available Given a graph $G$, the total dominator coloring problem seeks a proper coloring of $G$ with the additional property that every vertex in the graph is adjacent to all vertices of a color class. We seek to minimize the number of color classes. We initiate to study this problem on several classes of graphs, as well as finding general bounds and characterizations. We also compare the total dominator chromatic number of a graph with the chromatic number and the total domination number of it.

  16. The chromatic polynomial and list colorings

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2009-01-01

    We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph.......We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph....

  17. ADRENERGIC RESPONSES TO STRESS: TRANSCRIPTIONAL AND POST-TRANSCRIPTIONAL CHANGES

    OpenAIRE

    Wong, Dona L.; Tai, T. C.; Wong-Faull, David C.; Claycomb, Robert; Kvetnansky, Richard

    2008-01-01

    Stress effects on adrenergic responses in rats were examined in adrenal medulla, the primary source of circulating epinephrine (Epi). Irrespective of duration, immobilization (IMMO) increased adrenal corticosterone to the same extent. In contrast, epinephrine changed little, suggesting that Epi synthesis replenishes adrenal pools and sustains circulating levels for the heightened alertness and physiological changes required of the "flight or fight" response. IMMO also induced the epinephrine-...

  18. Husbandry of zebrafish, Danio rerio, and the cortisol stress response.

    Science.gov (United States)

    Pavlidis, Michail; Digka, Nikoletta; Theodoridi, Antonia; Campo, Aurora; Barsakis, Konstantinos; Skouradakis, Gregoris; Samaras, Athanasios; Tsalafouta, Alexandra

    2013-12-01

    The effect of common husbandry conditions (crowding, social environment, water quality, handling, and background color) on the cortisol stress response in adult zebrafish, Danio rerio, was investigated to check the usefulness of zebrafish as a model organism in aquaculture research. In addition, a noninvasive methodology for assessing stress was evaluated. Zebrafish showed a fast cortisol response with high values at 30 min that returned to basal levels within 2 h of poststress. There was a significant positive correlation between trunk cortisol concentrations and the free water cortisol rate (r(2)=0.829-0.850, pzebrafish. It is concluded that adult laboratory zebrafish had a preference for a transparent or black background aquarium, at a number of 10 individuals per 2 L of available water volume, to express their normal behavior and avoid increased cortisol stress reaction.

  19. Enterovirus Control of Translation and RNA Granule Stress Responses

    Directory of Open Access Journals (Sweden)

    Richard E. Lloyd

    2016-03-01

    Full Text Available Enteroviruses such as poliovirus (PV and coxsackievirus B3 (CVB3 have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs and processing bodies (P-bodies, PBs, which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  20. Enterovirus Control of Translation and RNA Granule Stress Responses

    Science.gov (United States)

    Lloyd, Richard E.

    2016-01-01

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation. PMID:27043612

  1. Stress and fear responses in the teleost pallium

    DEFF Research Database (Denmark)

    Silva, Patricia Isabel da Mota E.; Martins, C.I.M.; Khan, Uniza Wahid;

    2015-01-01

    largely unknown. In the present study the involvement of Dl and Dm in such responses was investigated by exposing Nile tilapia (Oreochromis niloticus) to a standardized confinement stress and to skin extract from conspecifics. Nile tilapia develops a characteristic anticipatory behaviour to hand feeding...

  2. Behaviour and stress responses in horses with gastric ulceration

    DEFF Research Database (Denmark)

    Malmkvist, Jens; Poulsen, Janne Møller; Luthersson, Nanna;

    2012-01-01

    Only little is known about behaviour and stress responses in horses with gastric ulceration, despite the high prevalence of this condition. Our objectives in the present study was to (i) describe the severity of gastric ulceration in horses, housed under relatively standardised conditions, and (ii...... may be e.g. trained differently dependent on breeding line. Ulcer horses pawed more (P biting...

  3. Physiological Response to Drought Stress at Different Stages in Peanut

    Science.gov (United States)

    Drought is a major factor in reducing productivity in peanut (Arachis hypogaea L.). The objectives of this study were to: 1) investigate the response patterns of relative water content (RWC), specific leaf area (SLA), and leaf dry mater content (LDMC) to drought stress at three stages of 30 60, and ...

  4. The insect capa neuropeptides impact desiccation and cold stress responses

    Science.gov (United States)

    Background: Insects are so successful because of great resistance to environmental stress, yet little is known about how such responses may be mediated by the neuroendocrine system. Results: We provide evidence that the capability (capa) neuropeptide gene and peptide are critical mediators of desic...

  5. Sympathetic and parasympathetic responses to social stress across adolescence

    NARCIS (Netherlands)

    Hollenstein, T.P.; McNeely, A.; Eastabrook, J.; Mackey, A.; Flynn, J.

    2012-01-01

    Many transformations that occur in adolescence are related to emotion and emotion regulation, yet very little is known about the autonomic underpinnings of these changes. The aim of the study was to document age-related differences in autonomic responses to social stress and relations to emotion reg

  6. CENTRAL AMYGDALOID INVOLVEMENT IN NEUROENDOCRINE CORRELATES OF CONDITIONED STRESS RESPONSES

    NARCIS (Netherlands)

    ROOZENDAAL, B; KOOLHAAS, JM; BOHUS, B

    1992-01-01

    The purpose of this study was to examine the effects of bilateral electrolytic lesions of the central nucleus of the amygdala (CEA) in comparison with sham lesions on neuroendocrine responses during conditioned emotional stress in male Wistar rats. Lesions in the CEA, made either before or after the

  7. Phospholipid signaling responses in salt-stressed rice leaves

    NARCIS (Netherlands)

    E. Darwish; C. Testerink; M. Khalil; O. El-Shihy; T. Munnik

    2009-01-01

    Salinity is one of the major environmental factors limiting growth and productivity of rice plants. In this study, the effect of salt stress on phospholipid signaling responses in rice leaves was investigated. Leaf cuts were radiolabeled with 32 P-orthophosphate and the lipids extracted and analyzed

  8. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    Science.gov (United States)

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  9. Stress response signaling and virulence: insights from entomopathogenic fungi.

    Science.gov (United States)

    Ortiz-Urquiza, Almudena; Keyhani, Nemat O

    2015-08-01

    The Ascomycete fungal insect pathogens, Beauveria and Metarhizium spp. have emerged as model systems with which to probe diverse aspects of fungal growth, stress response, and pathogenesis. Due to the availability of genomic resources and the development of robust methods for genetic manipulation, the last 5 years have witnessed a rapid increase in the molecular characterization of genes and their pathways involved in stress response and signal transduction in these fungi. These studies have been performed mainly via characterization of gene deletion/knockout mutants and have included the targeting of general proteins involved in stress response and/or virulence, e.g. catalases, superoxide dismutases, and osmolyte balance maintenance enzymes, membrane proteins and signaling pathways including GPI anchored proteins and G-protein coupled membrane receptors, MAPK pathways, e.g. (i) the pheromone/nutrient sensing, Fus3/Kss1, (ii) the cell wall integrity, Mpk1, and (iii) the high osmolarity, Hog1, the PKA/adenyl cyclase pathway, and various downstream transcription factors, e.g. Msn2, CreA and Pac1. Here, we will discuss current research that strongly suggests extensive underlying contributions of these biochemical and signaling pathways to both abiotic stress response and virulence. PMID:25113413

  10. Variability of chromatic sensitivity: fundamental studies and clinical applications

    OpenAIRE

    Carmona, M. L. R.

    2006-01-01

    This investigation involved a number of related studies with the principal aim of assessing the variability in chromatic sensitivity in "normal" trichromats and colour deficient observers. An important outcome was the development of a new method for accurate and efficient measurement of chromatic sensitivity and the establishment of reliable statistical limits that describe the distribution of redgreen(RG) and yellow-blue (YB) chromatic sensitivity in normal trichromats. Chromatic sensitivity...

  11. Transactional Associations between Youths' Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    Science.gov (United States)

    Agoston, Anna M.; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict…

  12. Associations Between Paternal Responsiveness and Stress Responsiveness in the Biparental California Mouse, Peromyscus californicus

    OpenAIRE

    Chauke, Miyetani

    2012-01-01

    The mechanistic basis of paternal behavior in mammals is poorly understood. Assuming there are parallels between the factors mediating maternal and paternal behavior, it can be expected that the onset of paternal behavior is facilitated by reductions in stress responsiveness, as occurs in females of several mammalian species. This dissertation describes studies investigating the role of stress responsiveness in the expression of paternal behavior in biparental, monogamous California mice (Per...

  13. On the Star Chromatic Number of Graph Products

    Institute of Scientific and Technical Information of China (English)

    XU Chuan-liang; WANG Yi-ju

    2001-01-01

    The star chromatic number of a graph was introduced by A. Vince, which is a natural generalization of the chromatic number of a graph. In this paper, the star chromatic numbers of graph products G (×) H are discussed in some special cases.

  14. Membrane-associated chromate reductase activity from Enterobacter cloacae.

    OpenAIRE

    P. C. Wang; Mori, T.; Toda, K.; Ohtake, H

    1990-01-01

    Washed cells of Enterobacter cloacae HO1 reduced hexavalent chromium (chromate: CrO4(2-) anaerobically. Chromate reductase activity was preferentially associated with the membrane fraction of the cells. Right-side-out membrane vesicles prepared from E. cloacae cells showed high chromate reductase activities when ascorbate-reduced phenazine methosulfate was added as an electron donor.

  15. Gene Networks in Plant Ozone Stress Response and Tolerance

    Institute of Scientific and Technical Information of China (English)

    Agnieszka Ludwikow; Jan Sadowski

    2008-01-01

    For many plant species ozone stress has become much more severe in the last decade. The accumulating evidence for the significant effects of ozone pollutant on crop and forest yield situate ozone as one of the most important environmental stress factors that limits plant productivity woddwide. Today, transcdptomic approaches seem to give the best coverage of genome level responses. Therefore, microarray serves as an invaluable tool for global gene expression analyses, unravelling new information about gene pathways, in-species and crose-species gene expression comparison, and for the characterization of unknown relationships between genes. In this review we summadze the recent progress in the transcdptomics of ozone to demonstrate the benefits that can be harvested from the application of integrative and systematic analytical approaches to study ozone stress response. We focused our consideration on microarray analyses identifying gene networks responsible for response and tolerance to elevated ozone concentration. From these analyses it is now possible to notice how plant ozone defense responses depend on the interplay between many complex signaling pathways and metabolite signals.

  16. Transgenerational stress memory is not a general response in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ales Pecinka

    Full Text Available Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions.

  17. Time-multiplexed chromatic-controlled axial diffractive optical elements

    Science.gov (United States)

    Martínez-García, Antonio

    2010-07-01

    Programmable diffractive optical elements (DOEs) with axial response have many interesting applications, including diffractive lenses, axicons, and optical tweezers. In all these cases, it is essential to properly select the modulation configuration of the spatial light modulator (SLM) where the DOE is displayed, in order to avoid the undiffracted zero order component that appears on axis and overlaps the desired axial response. However, in general, the chromatic dispersion in liquid crystal SLMs prevents the cancellation of the zero order for a broadband light source, thus limiting the possibilities for polychromatic programmable axial DOEs. We operate a ferroelectric liquid crystal on silicon display with polychromatic illumination and with a specific polarization configuration that provides binary π-phase modulation for all wavelengths. Since this type of modulation cancels the undiffracted zero order, we use this SLM to display DOEs with axial response. Moreover, chromatic control is achieved by time-multiplexing sequences of properly scaled DOEs with the corresponding selection of the input wavelength by means of an electronically controlled color-filter wheel. The presented experimental results include wavelength-controlled diffraction gratings, axicons, and vortex-producing lenses.

  18. Vibrometry using a chromatic confocal sensor

    Science.gov (United States)

    Berkovic, G.; Zilberman, S.; Shafir, E.; Cohen-Sabban, J.

    2014-05-01

    We demonstrate vibrometry using a chromatic confocal sensor which measures displacements with 0.1 μm resolution at a rate of 10 kHz. This technique was used to study the vibration of a musical tuning fork with a resonance at 523 Hz. Other examples presented include vibration of water waves and multiple point vibrometry of a vibrating steel rod.

  19. Chromatic Dispersion Estimation in Digital Coherent Receivers

    DEFF Research Database (Denmark)

    Soriano, Ruben Andres; Hauske, Fabian N.; Guerrero Gonzalez, Neil;

    2011-01-01

    Polarization-diverse coherent demodulation allows to compensate large values of accumulated linear distortion by digital signal processing. In particular, in uncompensated links without optical dispersion compensation, the parameter of the residual chromatic dispersion (CD) is vital to set the ac...

  20. Anti-forensics of chromatic aberration

    Science.gov (United States)

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  1. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... through ubiquitination. The wide range of biotic and abiotic stresses that affect crop plants limits agricultural production....... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  2. Molecular Responses of Groundnut (Arachis hypogea L. to Zinc Stress

    Directory of Open Access Journals (Sweden)

    A. John De Britto

    2013-08-01

    Full Text Available Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecological, evolutionary and environmental reasons. The interference of germination related proteins by heavy metals has not been well documented at the proteomic and genomic level. In the current study, molecular responses of germinating groundnut seeds were investigated under Zinc stress. The SDS-PAGE showed the preliminary changes in the polypeptides patterns under Zinc stress. Restriction digestion banding pattern of EcoRI and Hind III enzymes showed distinct banding pattern in the treated plants.

  3. Chromatic-achromatic perimetry in four clinic cases: Glaucoma and diabetes

    Directory of Open Access Journals (Sweden)

    Inmaculada Cabezos

    2015-01-01

    Full Text Available Background: Some diseases that affect the visual system may show loss of chromatic-achromatic sensitivity before obvious physical signs appear in the usual examination of the eye′s posterior segment. A perimetric study has been conducted with four typical patients with glaucoma and diabetes, at different stages of the disease. Materials and Methods: In addition to the standard white-on-white (standard automated perimetry [SAP], a test battery has been used to study patient′s contrast sensitivity, using stimuli with different chromatic, spatial, and temporal content (multichannel perimetry. The choice of stimuli tries to maximize the response of different visual mechanisms: Achromatic (parvocellular and magnocellular origin; chromatic red-green (parvocellular origin; and chromatic blue-yellow (koniocellular origin. Results: The results seem to indicate losses in the achromatic-parvocellular perimetry and both chromatic perimetry tests, undetected by conventional SAP. Conclusions: Our results illustrate that our patients without visible retinal alterations show signs of suspicion in multichannel perimetry.

  4. Ethylene Response Factor Sl-ERF.B.3 Is Responsive to Abiotic Stresses and Mediates Salt and Cold Stress Response Regulation in Tomato

    Directory of Open Access Journals (Sweden)

    Imen Klay

    2014-01-01

    Full Text Available Sl-ERF.B.3 (Solanum lycopersicum ethylene response factor B.3 gene encodes for a tomato transcription factor of the ERF (ethylene responsive factor family. Our results of real-time RT-PCR showed that Sl-ERF.B.3 is an abiotic stress responsive gene, which is induced by cold, heat, and flooding, but downregulated by salinity and drought. To get more insight into the role of Sl-ERF.B.3 in plant response to separate salinity and cold, a comparative study between wild type and two Sl-ERF.B.3 antisense transgenic tomato lines was achieved. Compared with wild type, Sl-ERF.B.3 antisense transgenic plants exhibited a salt stress dependent growth inhibition. This inhibition was significantly enhanced in shoots but reduced in roots, leading to an increased root to shoot ratio. Furthermore, the cold stress essay clearly revealed that introducing antisense Sl-ERF.B.3 in transgenic tomato plants reduces their cell injury and enhances their tolerance against 14 d of cold stress. All these results suggest that Sl-ERF.B.3 gene is involved in plant response to abiotic stresses and may play a role in the layout of stress symptoms under cold stress and in growth regulation under salinity.

  5. Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato.

    Science.gov (United States)

    Klay, Imen; Pirrello, Julien; Riahi, Leila; Bernadac, Anne; Cherif, Ameur; Bouzayen, Mondher; Bouzid, Sadok

    2014-01-01

    Sl-ERF.B.3 (Solanum lycopersicum ethylene response factor B.3) gene encodes for a tomato transcription factor of the ERF (ethylene responsive factor) family. Our results of real-time RT-PCR showed that Sl-ERF.B.3 is an abiotic stress responsive gene, which is induced by cold, heat, and flooding, but downregulated by salinity and drought. To get more insight into the role of Sl-ERF.B.3 in plant response to separate salinity and cold, a comparative study between wild type and two Sl-ERF.B.3 antisense transgenic tomato lines was achieved. Compared with wild type, Sl-ERF.B.3 antisense transgenic plants exhibited a salt stress dependent growth inhibition. This inhibition was significantly enhanced in shoots but reduced in roots, leading to an increased root to shoot ratio. Furthermore, the cold stress essay clearly revealed that introducing antisense Sl-ERF.B.3 in transgenic tomato plants reduces their cell injury and enhances their tolerance against 14 d of cold stress. All these results suggest that Sl-ERF.B.3 gene is involved in plant response to abiotic stresses and may play a role in the layout of stress symptoms under cold stress and in growth regulation under salinity. PMID:25215313

  6. Stress responses from the endoplasmic reticulum in cancer

    Directory of Open Access Journals (Sweden)

    Hironori eKato

    2015-04-01

    Full Text Available The endoplasmic reticulum (ER is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR. The UPR also contributes to the regulation of various intracellular signalling pathways such as calcium signalling and lipid signalling. More recently, the mitochondria-associated ER membrane (MAM, which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signalling, inflammatory signalling, the autophagic response, and the UPR. Interestingly, in cancer, these signalling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signalling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.

  7. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Science.gov (United States)

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A Lane; Voigt, Thomas; Lee, D K

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  8. Chromaticity measurement during beam energy ramp in Indus-2

    International Nuclear Information System (INIS)

    Chromaticity is one of the important parameters of circular accelerators and plays crucial role in its operation. In Indus-2 storage ring the natural chromaticity is -19 and -12 in horizontal and vertical planes respectively. For the good injection at 550 MeV in Indus-2, chromaticity needs to be kept at (+1, +1). The corrected chromaticity does not remain constant during the energy ramp up to 2.5 GeV. We measured Indus-2 storage ring chromaticity by the conventional RF frequency change method. The measurement method and the result of the measurement are reported in this paper. (author)

  9. Characterization of the physiological stress response in lingcod

    Science.gov (United States)

    Milston, R.H.; Davis, M.W.; Parker, S.J.; Olla, B.L.; Clements, S.; Schreck, C.B.

    2006-01-01

    The goal of this study was to describe the duration and magnitude of the physiological stress response in lingcod Ophiodon elongatus after exposure to brief handling and sublethal air stressors. The response to these stressors was determined during a 24-h recovery period by measuring concentrations of plasma cortisol, lactate, glucose, sodium, and potassium. Lingcod were subjected to brief handling followed by either a 15-min or a 45-min air stressor in the laboratory. After the 15-min stressor, an increase in cortisol or glucose could not be detected until after 5 min of recovery. Peak concentrations were measured after 30 min for cortisol and after 60 min for glucose and lactate. Glucose and lactate had returned to basal levels after 12 h, whereas cortisol did not return to basal levels until after 24 h of recovery. Immediately following a 45-min air stressor, all measured parameters were significantly elevated over levels in prestressor control fish. Cortisol concentrations tended to increase and reached a measured peak after 8 h of recovery, whereas glucose and lactate reached a measured peak after 1 h of recovery. Cortisol and lactate returned to basal levels within 24 h. Glucose, however, remained elevated even after 24 h of recovery. Plasma ions initially increased during the first hour of recovery, and the concentrations then declined to a level below that measured in control fish for the remainder of the 24-h recovery period. In addition, we evaluated the effect of fish size on the stress response. There was no significant difference between the stress response of smaller (41-49-cm [total length] and larger (50-67-cm) lingcod after 45 min air exposure. In general, both the magnitude and duration of the primary and secondary stress responses in lingcod are comparable to those of salmonids. ?? Copyright by the American Fisheries Society 2006.

  10. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  11. EFFECT OF DEXMEDETOMIDINE ON STRESS RESPONSE TO ENDOTRACHEAL INTUBATION

    Directory of Open Access Journals (Sweden)

    Sathee Devi

    2015-03-01

    Full Text Available Laryngoscopy as well as tracheal intubation cause changes in the hemodynamics of the patients. A similar set of hemodynamic events have been noticed by various studies during tracheal extubation also. These responses may produce myocardial ischemia or infarction in susceptible patients. Various agents like lignocaine, e smolol, sodium nitropruside, nitroglycerine etc . have been proved to be effective in attenuating these response. Dexmedetomidine, an alpha 2 agonist have been successfully used for attenuating the sympathetic response during endotracheal extubation. We conducted an observational study to examine the rol e of dexmedetomidine on hemodynamic response during endotracheal intubation. A bolus dose of Dexmedetomidine 0.7 - 1 mcg /kg over 10mts prior to endotracheal intubation provided hemodynamic stability than inj. lignocaine hydrochloride ( G old standard .This c an prove beneficial for patients where the stress response to intubation is highly undesirable.

  12. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress.

    Science.gov (United States)

    Sachs, Benjamin D; Ni, Jason R; Caron, Marc G

    2015-02-24

    Brain serotonin (5-HT) deficiency and exposure to psychosocial stress have both been implicated in the etiology of depression and anxiety disorders, but whether 5-HT deficiency influences susceptibility to depression- and anxiety-like phenotypes induced by psychosocial stress has not been formally established. Most clinically effective antidepressants increase the extracellular levels of 5-HT, and thus it has been hypothesized that antidepressant responses result from the reversal of endogenous 5-HT deficiency, but this hypothesis remains highly controversial. Here we evaluated the impact of brain 5-HT deficiency on stress susceptibility and antidepressant-like responses using tryptophan hydroxylase 2 knockin (Tph2KI) mice, which display 60-80% reductions in brain 5-HT. Our results demonstrate that 5-HT deficiency leads to increased susceptibility to social defeat stress (SDS), a model of psychosocial stress, and prevents the fluoxetine (FLX)-induced reversal of SDS-induced social avoidance, suggesting that 5-HT deficiency may impair antidepressant responses. In light of recent clinical and preclinical studies highlighting the potential of inhibiting the lateral habenula (LHb) to achieve antidepressant and antidepressant-like responses, we also examined whether LHb inhibition could achieve antidepressant-like responses in FLX-insensitive Tph2KI mice subjected to SDS. Our data reveal that using designer receptors exclusively activated by designer drugs (DREADDs) to inhibit LHb activity leads to reduced SDS-induced social avoidance behavior in both WT and Tph2KI mice. This observation provides additional preclinical evidence that inhibiting the LHb might represent a promising alternative therapeutic approach under conditions in which selective 5-HT reuptake inhibitors are ineffective.

  13. The cellular response to curvature-induced stress

    Science.gov (United States)

    Biton, Y. Y.; Safran, S. A.

    2009-12-01

    We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.

  14. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    Science.gov (United States)

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress.

  15. The plant response:stress in the daily environment

    Institute of Scientific and Technical Information of China (English)

    FERGUSON Ian B.

    2004-01-01

    @@STRESS IS NORMAL Like animals, plants have evolved to survive in almost every climatic and environmental niche available. They have, however, evolved more sophisticated and varied methods to enable them to survive environmental changes in light, temperature, atmosphere composition, water and nutrients and salinity. This, in part, is necessary because of the sessile nature of plants; they do not have the ability to move to more favourable environments. Stress conditions that plants encounter are not always as rare or unusual as we might at first think. The most common environmental variables, necessary for growth, can impose significant stresses on the plant. But should we think of these as unusual and extreme or just part of the normal diurnal responses experienced by the plant?

  16. Spatial Light Modulator Based on Surface Plasmon Polaritons for Chromatic Display

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-Quan; HUANG Feng; DU Jing-Lei; GUO Yong-Kang; LUO Xian-Gang; DU Chun-Lei

    2008-01-01

    @@ A spatial light modulator (SLM) based on surface plasmon polaritons (SPPs) that can generate chromatic pattern is demonstrated. The device is composed of a waveguide with a thin silver film and an active material The simulated results show that the SLM can modulate the intensity of three different wavelengths at the same time and combine a colour picture in the image surface. The SLM also owns the characteristics of high sensitivity, high contrast, fast time response etc. This means that the SLM is promising in the chromatic display.

  17. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xuan Liu

    2015-05-01

    Full Text Available Hexavalent chromium (Cr(VI is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI detoxification in mammalian cells.

  18. High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays.

    Science.gov (United States)

    Olson, Jana; Manjavacas, Alejandro; Basu, Tiyash; Huang, Da; Schlather, Andrea E; Zheng, Bob; Halas, Naomi J; Nordlander, Peter; Link, Stephan

    2016-01-26

    Chromatic devices such as flat panel displays could, in principle, be substantially improved by incorporating aluminum plasmonic nanostructures instead of conventional chromophores that are susceptible to photobleaching. In nanostructure form, aluminum is capable of producing colors that span the visible region of the spectrum while contributing exceptional robustness, low cost, and streamlined manufacturability compatible with semiconductor manufacturing technology. However, individual aluminum nanostructures alone lack the vivid chromaticity of currently available chromophores because of the strong damping of the aluminum plasmon resonance in the visible region of the spectrum. In recent work, we showed that pixels formed by periodic arrays of Al nanostructures yield far more vivid coloration than the individual nanostructures. This progress was achieved by exploiting far-field diffractive coupling, which significantly suppresses the scattering response on the long-wavelength side of plasmonic pixel resonances. In the present work, we show that by utilizing another collective coupling effect, Fano interference, it is possible to substantially narrow the short-wavelength side of the pixel spectral response. Together, these two complementary effects provide unprecedented control of plasmonic pixel spectral line shape, resulting in aluminum pixels with far more vivid, monochromatic coloration across the entire RGB color gamut than previously attainable. We further demonstrate that pixels designed in this manner can be used directly as switchable elements in liquid crystal displays and determine the minimum and optimal numbers of nanorods required in an array to achieve good color quality and intensity. PMID:26639191

  19. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Directory of Open Access Journals (Sweden)

    Alessandra da Silva Dantas

    2015-02-01

    Full Text Available Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS, such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen.

  20. Occupational stress among radiographers: the impact of sonography responsibility

    Directory of Open Access Journals (Sweden)

    Mr. Nnaoma Franza Oluware

    2009-01-01

    Full Text Available Role extension in any occupation can affect both psychosocial and biomechanical stress levels and thus, have some consequences on efficiency in service delivery. The study was aimed to determine the impact of role extension of medical radiographers into sonography. 50 self-administered questionnaires were distributed to radiographers and to sonographers (radiographers with sonography responsibility. The questionnaires included questions seeking information on the demographic profile of the radiographer and sonographer, anatomical regions of biomechanical symptoms/stress and visual analogue scale (VAS, which rated job satisfaction and anxiety levels. 96% of the questionnaires were returned and analyzed statistically using SPSS 11.0 software with P< 0.05 indicating level of significance. Sonographers had more prevalence of biomechanical stress symptoms than the radiographers. Job satisfaction for sonographers (58.75% was lower than that for radiographers (64.29%. Anxiety level was higher among sonographers even though this was not statistically significant. Sonography responsibility on radiographers did not have any significant effect on psychosocial stress. A balance in the extended role could aid efficiency in service delivery while improving the social strength of the individual.

  1. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362.

  2. Particle shape effects on the stress response of granular packings.

    Science.gov (United States)

    Athanassiadis, Athanasios G; Miskin, Marc Z; Kaplan, Paul; Rodenberg, Nicholas; Lee, Seung Hwan; Merritt, Jason; Brown, Eric; Amend, John; Lipson, Hod; Jaeger, Heinrich M

    2014-01-01

    We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.

  3. Stress induced hypertensive response: should it be evaluated more carefully?

    Directory of Open Access Journals (Sweden)

    Kucukler Nagehan

    2011-08-01

    Full Text Available Abstract Various diagnostic methods have been used to evaluate hypertensive patients under physical and pharmacological stress. Several studies have shown that exercise hypertension has an independent, adverse impact on outcome; however, other prognostic studies have shown that exercise hypertension is a favorable prognostic indicator and associated with good outcome. Exercise hypertension may be encountered as a warning signal of hypertension at rest and future hypertensive left ventricular hypertrophy. The results of diagnostic stress tests support that hypertensive response to exercise is frequently associated with high rate-pressure product in hypertensives. In addition to the observations on high rate-pressure product and enhanced ventricular contractility in patients with hypertension, evaluation of myocardial contractility by Doppler tissue imaging has shown hyperdynamic myocardial function under pharmacological stress. These recent quantitative data in hypertensives suggest that hyperdynamic myocardial function and high rate-pressure product response to stress may be related to exaggerated hypertension, which may have more importance than that it has been already given in clinical practice.

  4. Peripheral vascular responses to heat stress after hindlimb suspension

    Science.gov (United States)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  5. Low dose radiation induced adaptive response upon salt stress and vacuum stress: a possible mechanism for the effect of saddle-like dose response curve

    International Nuclear Information System (INIS)

    To explore mechanism for the effect of saddle-like dose-response curve, the relationship of irradiation-vacuum stress, and irradiation-salt stress, was investigated with rice seeds irradiated to 60-560 Gy by 60Co γ-rays. The dose-response curve was simulated based on seedling height data, which showed obedient to linear-quadratic model. During germination,the irradiated rice seeds were stressed by 10-3 Pa vacuum, or by NaCl in different concentrations. After that, the dose-response curve manifested a saddle-like shape. The results indicate that while low dose irradiation could retard seedling growth synergistically with vacuum stress and salt stress, it could also induce adaptive response upon vacuum stress and salt stress. Low dose irradiation induced adaptive response upon environmental adverse factors could contribute to the mechanism for the effect of saddle-like dose-response curve. (authors)

  6. Transcriptome Analysis of Enterococcus faecalis in Response to Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Ran eshujun

    2015-08-01

    Full Text Available E. faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing.We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections.

  7. Proteomic Study for Responses to Cadmium Stress in Rice Seedlings

    Institute of Scientific and Technical Information of China (English)

    GE Cai-lin; WANG Ze-gang; WAN Ding-zhen; DING Yan; WANG Yu-long; SHANG Qi; LUO Shi-shi

    2009-01-01

    A proteomic approach including two-dimensional electrophoresis and mass spectrometric (MALDI-TOF MS) analyses was used to investigate the responses to cadmium (Cd) stress in seedlings of rice (Oryza sativa L.) varieties Shanyou 63 and Aizaizhan. Cd stress significantly inhibited root and shoot growth, and affected the global proteome in rice roots and leaves, which induced or upregulated the expression of corresponding proteins in rice roots and leaves when rice seedlings were exposed to 0.1 or 1.0 mmol/L Cd. The Cd-induced proteins are involved in chelation and compartmentation of Cd, elimination of active oxygen free radicals, detoxification of toxic substances, degradation of denatured proteins or inactivated enzymes, regulation of physiologic metabolism and induction of pathogenesis-related proteins. Comparing the Cd-induced proteins between the two varieties, the β-glucosidase and pathogenesis-related protein family 10 proteins were more drastically induced by Cd stress in roots and leaves of Aizaizhan, and the UDP-glucose protein transglucosylase and translational elongation factor Tu were induced by 0.1 mmol/L Cd stress in roots of Shanyou 63. This may be one of the important mechanisms for higher tolerance to Cd stress in Shanyou 63 than in Aizaizhan.

  8. Microbial modulation of behavior and stress responses in zebrafish larvae.

    Science.gov (United States)

    Davis, Daniel J; Bryda, Elizabeth C; Gillespie, Catherine H; Ericsson, Aaron C

    2016-09-15

    The influence of the microbiota on behavior and stress responses is poorly understood. Zebrafish larvae have unique characteristics that are advantageous for neuroimmune research, however, they are currently underutilized for such studies. Here, we used germ-free zebrafish to determine the effects of the microbiota on behavior and stress testing. The absence of a microbiota dramatically altered locomotor and anxiety-related behavior. Additionally, characteristic responses to an acute stressor were also obliterated in larvae lacking exposure to microbes. Lastly, treatment with the probiotic Lactobacillus plantarum was sufficient to attenuate anxiety-related behavior in conventionally-raised zebrafish larvae. These results underscore the importance of the microbiota in communicating to the CNS via the microbiome-gut-brain axis and set a foundation for using zebrafish larvae for neuroimmune research. PMID:27217102

  9. Nitrosative and oxidative stress responses in fungal pathogenicity

    OpenAIRE

    Brown, Alistair JP; Haynes, Ken; Quinn, Janet

    2009-01-01

    Fungal pathogenicity has arisen in polyphyletic manner during evolution, yielding fungal pathogens with diverse infection strategies and with differing degrees of evolutionary adaptation to their human host. Not surprisingly, these fungal pathogens display differing degrees of resistance to the reactive oxygen and nitrogen species used by human cells to counteract infection. Furthermore, whilst evolutionarily conserved regulators, such as Hog1, are central to such stress responses in many fun...

  10. Caenorhabditis elegans stress related gene responses to selected pesticides

    OpenAIRE

    Antoniou-Kourounioti, Melissa

    2010-01-01

    Pesticides are used widely and more than 2 million tons are released in the environment annually (data for 2000-2001, Kiely 2004). Details of their toxicity towards non-target organisms, are not complete for many of these pesticides and serious environmental issues have previously arisen as a result (e.g. effects of DDT on reproduction of wild birds). Unfavourable conditions, including the presence of toxicants, can induce the stress response pathways through which an organism attempts t...

  11. Predicting Performance Under Stressful Conditions Using Galvanic Skin Response

    OpenAIRE

    Mundell, Carter; Vielma, Juan Pablo; Zaman, Tauhid

    2016-01-01

    The rapid growth of the availability of wearable biosensors has created the opportunity for using biological signals to measure worker performance. An important question is how to use such signals to not just measure, but actually predict worker performance on a task under stressful and potentially high risk conditions. Here we show that the biological signal known as galvanic skin response (GSR) allows such a prediction. We conduct an experiment where subjects answer arithmetic questions und...

  12. Epigenetic responses to drought stress in rice (Oryza sativa L.)

    OpenAIRE

    Gayacharan; Joel, A. John

    2013-01-01

    Cytosine methylation polymorphism plays a key role in gene regulation, mainly in expression of genes in crop plants. The differential expression of cytosine methylation over drought stress response was analyzed in rice using drought susceptible but agronomically superior lines IR 20 and CO 43, and drought tolerant genotypes PL and PMK 3 and their F1 hybrids. The parents and hybrids were subjected to two moisture regimes viz., one under drought condition and another under control condition. Th...

  13. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  14. Stress Response of Offshore Structures by Equivalent Polynomial Expansion Techniques

    DEFF Research Database (Denmark)

    Sigurdsson, Gudfinnur; Nielsen, Søren R.K.

    This paper concerns an investigation of the effects of nonlinearity of drag loading on offshore structures excited by 2D wave fields, where the nonlinear term in the Morison equation is replaced by an equivalent cubic expansion. The equivalent cubic expansion coefficients for the equivalent drag...... model are obtained using the least mean square procedure. Numerical results are given. The displacement response and stress response processes obtained using the above loading model are compared with simulation results and those obtained from equivalent linearization of the drag term....

  15. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    substances. Do these same changes in patterns of expression have the ability to mitigate ageing and prolong lifespan? It appears that parts of this response indeed are also associated with extended longevity, whereas some elements are not, due to their high cost or long-term deleterious consequences. Here we...... briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...

  16. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains.

    Science.gov (United States)

    Jennings, Elaine M; Okine, Bright N; Olango, Weredeselam M; Roche, Michelle; Finn, David P

    2016-01-01

    Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.

  17. Differential oxidative stress responses in castor semilooper, Achaea janata.

    Science.gov (United States)

    Pavani, Ayinampudi; Chaitanya, R K; Chauhan, Vinod K; Dasgupta, Anwesha; Dutta-Gupta, Aparna

    2015-11-01

    Balance between reactive oxygen species (ROS) and the antioxidant (AO) defense mechanisms is vital for organism survival. Insects serve as an ideal model to elucidate oxidative stress responses as they are prone to different kinds of stress during their life cycle. The present study demonstrates the modulation of AO enzyme gene expression in the insect pest, Achaea janata (castor semilooper), when subjected to different oxidative stress stimuli. Antioxidant enzymes' (catalase (Cat), superoxide dismutase (Sod), glutathione-S-transferase (GST) and glutathione peroxidase (Gpx)) partial coding sequences were cloned and characterized from larval whole body. Tissue expression studies reveal a unique pattern of AO genes in the larval tissues with maximum expression in the gut and fat body. Ontogeny profile depicts differential expression pattern through the larval developmental stages for each AO gene studied. Using quantitative RT-PCR, the expression pattern of these genes was monitored during sugar-induced (d-galactose feeding), infection-induced (Gram positive, Gram negative and non-pathogenic bacteria) and pesticide-induced oxidative stress (Bt Cry toxin). d-Galactose feeding differentially modulates the expression of AO genes in the larval gut and fat body. Immune challenge with Escherichia coli induces robust upregulation of AO genes when compared to Bacillus coagulans and Bacillus cereus in the larval fat body and gut. Cry toxin feeding predominantly induced GST upregulation in the gut. The current study suggests that though there are multiple ways of generation of oxidative stress in the insect, the organism tailors its response by insult- and tissue-specific recruitment of the antioxidant players and their differential regulation for each inducer.

  18. Differential oxidative stress responses in castor semilooper, Achaea janata.

    Science.gov (United States)

    Pavani, Ayinampudi; Chaitanya, R K; Chauhan, Vinod K; Dasgupta, Anwesha; Dutta-Gupta, Aparna

    2015-11-01

    Balance between reactive oxygen species (ROS) and the antioxidant (AO) defense mechanisms is vital for organism survival. Insects serve as an ideal model to elucidate oxidative stress responses as they are prone to different kinds of stress during their life cycle. The present study demonstrates the modulation of AO enzyme gene expression in the insect pest, Achaea janata (castor semilooper), when subjected to different oxidative stress stimuli. Antioxidant enzymes' (catalase (Cat), superoxide dismutase (Sod), glutathione-S-transferase (GST) and glutathione peroxidase (Gpx)) partial coding sequences were cloned and characterized from larval whole body. Tissue expression studies reveal a unique pattern of AO genes in the larval tissues with maximum expression in the gut and fat body. Ontogeny profile depicts differential expression pattern through the larval developmental stages for each AO gene studied. Using quantitative RT-PCR, the expression pattern of these genes was monitored during sugar-induced (d-galactose feeding), infection-induced (Gram positive, Gram negative and non-pathogenic bacteria) and pesticide-induced oxidative stress (Bt Cry toxin). d-Galactose feeding differentially modulates the expression of AO genes in the larval gut and fat body. Immune challenge with Escherichia coli induces robust upregulation of AO genes when compared to Bacillus coagulans and Bacillus cereus in the larval fat body and gut. Cry toxin feeding predominantly induced GST upregulation in the gut. The current study suggests that though there are multiple ways of generation of oxidative stress in the insect, the organism tailors its response by insult- and tissue-specific recruitment of the antioxidant players and their differential regulation for each inducer. PMID:26455997

  19. Decreased response to social defeat stress in μ-opioid-receptor knockout mice

    OpenAIRE

    Komatsu, Hiroshi; Ohara, Arihisa; Sasaki, Kazumasu; Abe, Hiromi; Hattori, Hisaki; Hall, F Scott; Uhl, George R.; Sora, Ichiro

    2011-01-01

    Substantial evidence exists that opioid systems are involved in stress response and that changes in opioid systems in response to stressors affect both reward and analgesia. Reportedly, mice suffering chronic social defeat stress subsequently show aversion to social contact with unfamiliar mice. To further examine the role of opioid systems in stress response, the behavioral and neurochemical effects of chronic social defeat stress (psychosocial stress) were evaluated in μ-opioid-receptor kno...

  20. A robust and reliable non-invasive test for stress responsivity in mice

    OpenAIRE

    Zimprich, Annemarie; Garrett, Lillian; Deussing, Jan M.; Carsten T. Wotjak; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Wurst, Wolfgang; Hölter, Sabine M.

    2014-01-01

    Stress and an altered stress response have been associated with many multifactorial diseases, such as psychiatric disorders or neurodegenerative diseases. As currently mouse mutants for each single gene are generated and phenotyped in a large-scale manner, it seems advisable also to test these mutants for alterations in their stress responses. Here we present the determinants of a robust and reliable non-invasive test for stress-responsivity in mice. Stress is applied through restraining the ...

  1. Severe Injury Is Associated With Insulin Resistance, Endoplasmic Reticulum Stress Response, and Unfolded Protein Response

    Science.gov (United States)

    Jeschke, Marc G.; Finnerty, Celeste C.; Herndon, David N.; Song, Juquan; Boehning, Darren; Tompkins, Ronald G.; Baker, Henry V.; Gauglitz, Gerd G.

    2012-01-01

    Objective We determined whether postburn hyperglycemia and insulin resistance are associated with endoplasmic reticulum (ER) stress/unfolded protein response (UPR) activation leading to impaired insulin receptor signaling. Background Inflammation and cellular stress, hallmarks of severely burned and critically ill patients, have been causally linked to insulin resistance in type 2 diabetes via induction of ER stress and the UPR. Methods Twenty severely burned pediatric patients were compared with 36 nonburned children. Clinical markers, protein, and GeneChip analysis were used to identify transcriptional changes in ER stress and UPR and insulin resistance–related signaling cascades in peripheral blood leukocytes, fat, and muscle at admission and up to 466 days postburn. Results Burn-induced inflammatory and stress responses are accompanied by profound insulin resistance and hyperglycemia. Genomic and protein analysis revealed that burn injury was associated with alterations in the signaling pathways that affect insulin resistance, ER/sarcoplasmic reticulum stress, inflammation, and cell growth/apoptosis up to 466 days postburn. Conclusion Burn-induced insulin resistance is associated with persistent ER/sarcoplasmic reticulum stress/UPR and subsequent suppressed insulin receptor signaling over a prolonged period of time. PMID:22241293

  2. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  3. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    Science.gov (United States)

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen

    2008-02-10

    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  4. Long Term Salinity Stress Reveals Variety Specific Differences in Root Oxidative Stress Response

    Institute of Scientific and Technical Information of China (English)

    Prasad SENADHEERA; Shamala TIRIMANNE; Frans J M MAATHUIS

    2012-01-01

    Salinity stress induces oxidative stress caused by reactive oxygen species (ROS):superoxide radicals,hydrogen peroxide (H2O2) and hydroxyl radicals.Activities of both enzymatic and non-enzymatic components of the antioxidant system and related growth parameters were studied in the roots of the salt tolerant rice variety FL478 and the sensitive variety IR29 in response to long term stress (12 d) induced by 50 mmol/L NaCl.The comparative study showed that FL478maintained higher relative growth rate and lower Na+/K+ in the roots than IR29 due to a higher membrane stability index that effectively exclude Na+.Lower TBARS (thiobarbituric acid reactive substance) content in FL478 roots indicated that its membrane was relatively unaffected by ROS despite high H2O2 content recorded under the salinity stress.Relatively higher superoxide dismutase activity along with a parallel increase in transcript level of superoxide dismutase (Os07946990) in FL478 indicated that this protein might make a vital contribution to salt stress tolerance.Although the content of ascorbic acid remained unchanged in FL478,the activity of ascorbic peroxidases (APOXs) was reduced comparably in the both varieties.Transcriptomic data showed that a larger number of peroxidase genes were upregulated in FL478 compared to IR29 and several of which might provide engineering targets to improve rice salt tolerance.

  5. Neural network correction of astrometric chromaticity

    CERN Document Server

    Gai, M

    2005-01-01

    In this paper we deal with the problem of chromaticity, i.e. apparent position variation of stellar images with their spectral distribution, using neural networks to analyse and process astronomical images. The goal is to remove this relevant source of systematic error in the data reduction of high precision astrometric experiments, like Gaia. This task can be accomplished thanks to the capability of neural networks to solve a nonlinear approximation problem, i.e. to construct an hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with conveniently chosen moments, evaluated along the y axis. The technique proposed, in the current framework, reduces the initial chromaticity of few milliarcseconds to values of few microarcseconds.

  6. Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii.

    Directory of Open Access Journals (Sweden)

    Hongjun Jin

    Full Text Available Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A result in 90-95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A participating in the coordination of FMN in the active site results in only modest (50% reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.

  7. Structure Determination and Functional Analysis of a Chromate Reductase from Gluconacetobacter hansenii

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hongjun; Zhang, Yanfeng; Buchko, Garry W.; Varnum, Susan M.; Robinson, Howard; Squier, Thomas C.; Long, Philip E.

    2012-08-06

    Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g.,chromate and uranyl) has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductasefrom Gluconacetobacter hansenii (Gh-ChrR) was measured and the crystal structure of the protein determined at 2.25 A°resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN) per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacentsubunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A) result in 90–95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A) participating in the coordination of FMN in the active site results in only modest (50%) reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.

  8. Hormonal response of the premature primate to operative stress.

    Science.gov (United States)

    Taylor, A F; Lally, K P; Chwals, W J; McCurnin, D C; Gerstmann, D R; Shade, R A; deLemos, R A

    1993-06-01

    There are few data on the hormonal response to operation in the premature infant. Studies examining the response of newborn human infants have been performed on patients beyond the first few days of life, where some adaptation to postnatal life has occurred. This study evaluated the response of the newly born premature primate to surgical stress. Premature baboons (75% gestation) were intubated, mechanically ventilated and underwent thoracotomy at 2 hours of life with exposure of the ductus arteriosus (PDA). In group 1, formalin was infiltrated to keep the ductus patent. In group 2, the PDA was ligated. Controls had no operation. Blood was drawn at 0, 6, 24, 48, 72, and 96 hours of age. Echocardiograms were performed to confirm patency or closure of the ductus and to monitor cardiac function. Epinephrine, norepinephrine, renin, and cortisol levels were measured. Cortisol levels rose in all groups. Operation stimulated a marked increase in catecholamine and renin levels in both operative groups, which was more marked in the group with PDA ligation at 24 hours. These data reflect expected pathophysiology since early PDA ligation exerts additional hemodynamic demand on the heart. In conclusion, the premature primate is able to mount a significant and severity-dependent endocrine response to stress. PMID:8331518

  9. "Stress entropic load" as a transgenerational epigenetic response trigger.

    Science.gov (United States)

    Bienertová-Vašků, Julie; Nečesánek, Ivo; Novák, Jan; Vinklárek, Jan; Zlámal, Filip

    2014-03-01

    Epigenetic changes are generally based on the switching of alternative functional or structural states and result in the adaptation of cellular expression patterns during proliferation, differentiation or plastic changes in the adult organism, whereas some epigenetic information can be passed on other generations while other is not. Hence, the principal question is: why is some information reset or resolved during the meiosis process and other is passed from one generation to another, or, in other words: what "adaptation trigger" level initiates transgenerationally transmitted epigenome change? Hereto, we propose a theory which states that stress, or, more specifically, the energy cost of an individual's adaptation to stress, represents a viable candidate for the transgenerational transmission trigger of a given acquired trait. It has been reported recently that the higher lifetime entropy generation of a unit's body mass, the higher the entropy stress level (which is a measure of energy released by a unit's organ mass) and the irreversibility within the organ, resulting in faster organ degradation and consequent health problems for the entire biological system. We therefore suggest a new term: "stress entropic load" will reflect the actual energetic cost of an individual's adaptation and may be used to estimate the probability of inducing transgenerational response once characterized or measured.

  10. Transcriptome response mediated by cold stress in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Pablo Ignacio Calzadilla

    2016-03-01

    Full Text Available Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures

  11. Stress response system and personality in rheumatoid arthritis patients

    Directory of Open Access Journals (Sweden)

    M. Marcenaro

    2011-09-01

    Full Text Available Various factors such as immunogenetic determinants, sex, age and stress paly an important role in the pathogenesis of rheumatoid arthritis (RA. The relationship between stress and RA is still unclear and undefined; however, various lines of research are developing in order to evaluate environmental, psychologic, and biologic stressors as predisposing factors. The aim of our study was to evaluate whether stress-related psychologic factors and personality disorders might be involved in the development of RA, by using a psychometric investigation-methodology in a series of patients. Twenty-three patients underwent a clinical inteview and other specific psychometric tests. Macro and microstressful life-events preceded RA in 83% of the cases. Sixty percent of the patients showed a correlation between flare-ups of the disease and appearance of microevents. An obsessive-compulsive personality was found in 26% of the patients. Anxia was detected in 40% of the patients. Among the group of patients with borderline disorder’s was also detected alexithymia. The high prevalence of major life-events preceding the onset of RA and the presence of personality disorders support the role of the altered stress response system as an importunat pathogenetic factor in the disease.

  12. Schottky signal analysis: tune and chromaticity computation

    CERN Document Server

    Chanon, Ondine

    2016-01-01

    Schottky monitors are used to determine important beam parameters in a non-destructive way. The Schottky signal is due to the internal statistical fluctuations of the particles inside the beam. In this report, after explaining the different components of a Schottky signal, an algorithm to compute the betatron tune is presented, followed by some ideas to compute machine chromaticity. The tests have been performed with offline and/or online LHC data.

  13. Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna

    OpenAIRE

    Heckmann, L. H.; Sibly, R.M; Connon, R.; Hooper, H. L.; Hutchinson, T H; Maund, S.J.; Hill, C. J.; Bouetard, A.; Callaghan, A

    2008-01-01

    Background: Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses of the model crustacean Daphnia magna after exposure to ibuprofen. Results: Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates and inv...

  14. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism

    NARCIS (Netherlands)

    Kissoudis, Christos; Sri Sunarti, Sri; De Wiel, Van Clemens; Visser, Richard G.F.; Linden, van der Gerard; Bai, Yuling

    2016-01-01

    Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effec

  15. Supplementary data: Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and mechanism of resistance

    NARCIS (Netherlands)

    Kissoudis, C.; Sri Sunarti, Sri; Wiel, van de C.C.M.; Visser, R.G.F.; Linden, van der C.G.; Bai, Y.

    2016-01-01

    Stress conditions in agricultural ecosystems can occur in variable intensities. Different resistance mechanisms to abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of

  16. Mitochondrial Composition,Function and Stress Response in Plants

    Institute of Scientific and Technical Information of China (English)

    Richard P.Jacoby; Lei Li; Shaobai Huang; Chun Pong Lee; A.Harvey Millar; Nicolas L.Taylor

    2012-01-01

    The primary function of mitochondria is respiration,where catabolism of substrates is coupled to ATP synthesis via oxidative phosphorylation.In plants,mitochondrial composition is relatively complex and flexible and has specific pathways to support photosynthetic processes in illuminated leaves.This review begins with outlining current models of mitochondrial composition in plant cells,with an emphasis upon the assembly of the complexes of the classical electron transport chain (ETC).Next,we focus upon the comparative analysis of mitochondrial function from different tissue types.A prominent theme in the plant mitochondrial literature involves linking mitochondrial composition to environmental stress responses,and this review then gives a detailed outline of how oxidative stress impacts upon the plant mitochondrial proteome with particular attention to the role of transition metals.This is followed by an analysis of the signaling capacity of mitochondrial reactive oxygen species,which studies the transcriptional changes of stress responsive genes as a framework to define specific signals emanating from the mitochondrion.Finally,specific mitochondrial roles during exposure to harsh environments are outlined,with attention paid to mitochondrial delivery of energy and intermediates,mitochondrial support for photosynthesis,and mitochondrial processes operating within root cells that mediate tolerance to anoxia and unfavorable soil chemistries.

  17. Mcm2 phosphorylation and the response to replicative stress

    Directory of Open Access Journals (Sweden)

    Stead Brent E

    2012-05-01

    Full Text Available Abstract Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm proteins 2 through 7 (Mcm2-7 and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK. In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU and to the base analogue 5-fluorouracil (5-FU but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation

  18. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  19. Sch9 regulates intracellular protein ubiquitination by controlling stress responses

    Directory of Open Access Journals (Sweden)

    Beibei Qie

    2015-08-01

    Full Text Available Protein ubiquitination and the subsequent degradation are important means by which aberrant proteins are removed from cells, a key requirement for long-term survival. In this study, we found that the overall level of ubiquitinated proteins dramatically decreased as yeast cell grew from log to stationary phase. Deletion of SCH9, a gene encoding a key protein kinase for longevity control, decreased the level of ubiquitinated proteins in log phase and this effect could be reversed by restoring Sch9 function. We demonstrate here that the decrease of ubiquitinated proteins in sch9Δ cells in log phase is not caused by changes in ubiquitin expression, proteasome activity, or autophagy, but by enhanced expression of stress response factors and a decreased level of oxidative stress. Our results revealed for the first time how Sch9 regulates the level of ubiquitinated proteins and provides new insight into how Sch9 controls longevity.

  20. A tension stress loading unit designed for characterizing indentation response of single crystal silicon under tension stress

    Science.gov (United States)

    Huang, Hu; Zhao, Hongwei; Shi, Chengli; Hu, Xiaoli; Cui, Tao; Tian, Ye

    2013-09-01

    In this paper, a tension stress loading unit is designed to provide tension stress for brittle materials by combining the piezo actuator and the flexible hinge. The structure of the tension stress loading unit is analyzed and discussed via the theoretical method and finite element simulations. Effects of holding time, the installed specimen and hysteresis of the piezo actuator on output performances of the tension stress loading unit are studied in detail. An experiment system is established by combing the indentation testing unit and the developed tension stress loading unit to characterize indentation response of single crystal silicon under tension stress. Experiment results indicate that tension stress leads to increasing of indentation displacement for the same inden-tation load of single crystal silicon. This paper provides a new tool for studying indentation response of brittle materials under tension stress.

  1. Genomic counter-stress changes induced by the relaxation response.

    Directory of Open Access Journals (Sweden)

    Jeffery A Dusek

    Full Text Available BACKGROUND: Mind-body practices that elicit the relaxation response (RR have been used worldwide for millennia to prevent and treat disease. The RR is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. It is believed to be the counterpart of the stress response that exhibits a distinct pattern of physiology and transcriptional profile. We hypothesized that RR elicitation results in characteristic gene expression changes that can be used to measure physiological responses elicited by the RR in an unbiased fashion. METHODS/PRINCIPAL FINDINGS: We assessed whole blood transcriptional profiles in 19 healthy, long-term practitioners of daily RR practice (group M, 19 healthy controls (group N(1, and 20 N(1 individuals who completed 8 weeks of RR training (group N(2. 2209 genes were differentially expressed in group M relative to group N(1 (p<0.05 and 1561 genes in group N(2 compared to group N(1 (p<0.05. Importantly, 433 (p<10(-10 of 2209 and 1561 differentially expressed genes were shared among long-term (M and short-term practitioners (N(2. Gene ontology and gene set enrichment analyses revealed significant alterations in cellular metabolism, oxidative phosphorylation, generation of reactive oxygen species and response to oxidative stress in long-term and short-term practitioners of daily RR practice that may counteract cellular damage related to chronic psychological stress. A significant number of genes and pathways were confirmed in an independent validation set containing 5 N(1 controls, 5 N(2 short-term and 6 M long-term practitioners. CONCLUSIONS/SIGNIFICANCE: This study provides the first compelling evidence that the RR elicits specific gene expression changes in short-term and long-term practitioners. Our results suggest consistent and constitutive changes in gene expression resulting from RR may relate to long term physiological effects. Our study may stimulate new

  2. Neonatal stress tempers vulnerability of acute stress response in adult socially isolated rats

    Directory of Open Access Journals (Sweden)

    Mariangela Serra

    2014-06-01

    Full Text Available Adverse experiences occurred in early life and especially during childhood and adolescence can have negative impact on behavior later in life and the quality of maternal care is considered a critical moment that can considerably influence the development and the stress responsiveness in offspring. This review will assess how the association between neonatal and adolescence stressful experiences such as maternal separation and social isolation, at weaning, may influence the stress responsiveness and brain plasticity in adult rats. Three hours of separation from the pups (3-14 postnatal days significantly increased frequencies of maternal arched-back nursing and licking-grooming by dams across the first 14 days postpartum and induced a long-lasting increase in their blood levels of corticosterone. Maternal separation, which per sedid not modified brain and plasma allopregnanolone and corticosterone levels in adult rats, significantly reduced social isolation-induced decrease of the levels of these hormones. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were exposed to maternal separation was markedly reduced respect to that observed in socially isolated animals. Our results suggest that in rats a daily brief separation from the mother during the first weeks of life, which per se did not substantially alter adult function and reactivity of hypothalamic-pituitary-adrenal (HPA axis, elicited a significant protection versus the subsequent long-term stressful experience such that induced by social isolation from weaning. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in NeonatologyGuest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  3. Transactional Associations Between Youths’ Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    OpenAIRE

    Agoston, Anna Monica; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict subsequent depression. Youth (M age = 12.41; SD = 1.19; 86 girls, 81 boys) and their maternal caregivers completed semi-structured interviews and question...

  4. Role of mitofusin 2 in the renal stress response.

    Directory of Open Access Journals (Sweden)

    Jonathan M Gall

    Full Text Available The role of mitofusin 2 (MFN2, a key regulator of mitochondrial morphology and function in the renal stress response is unknown. To assess its role, the MFN2 floxed gene was conditionally deleted in the kidney of mice (MFN2 cKO by Pax2 promoter driven Cre expression (Pax2Cre. MFN2 cKO caused severe mitochondrial fragmentation in renal epithelial cells that are critical for normal kidney tubular function. However, despite a small (20% decrease in nephron number, newborn cKO pups had organ or tubular function that did not differ from littermate Cre-negative pups. MFN2 deficiency in proximal tubule epithelial cells in primary culture induced mitochondrial fragmentation but did not significantly alter ATP turnover, maximal mitochondrial oxidative reserve capacity, or the low level of oxygen consumption during cyanide exposure. MFN2 deficiency also did not increase apoptosis of tubule epithelial cells under non-stress conditions. In contrast, metabolic stress caused by ATP depletion exacerbated mitochondrial outer membrane injury and increased apoptosis by 80% in MFN2 deficient vs. control cells. Despite similar stress-induced Bax 6A7 epitope exposure in MFN2 deficient and control cells, MFN2 deficiency significantly increased mitochondrial Bax accumulation and was associated with greater release of both apoptosis inducing factor and cytochrome c. In conclusion, MFN2 deficiency in the kidney causes mitochondrial fragmentation but does not affect kidney or tubular function during development or under non-stress conditions. However, MFN2 deficiency exacerbates renal epithelial cell injury by promoting Bax-mediated mitochondrial outer membrane injury and apoptosis.

  5. Sense of responsibility in health workers source of job stress

    Directory of Open Access Journals (Sweden)

    Nedić Olesja

    2002-01-01

    Full Text Available Job stress is a great problem in developed countries of the world, but in Yugoslavia, it is increased due to additional reasons associated with economic crisis in the society. Health services and health workers are in particulary difficult conditions. The aim of this paper was to examine sources and causes of job stress in health workers. Material and methods The research was undertaken among health workers treated at Health Centre "Hospital" in Novi Sad. The study group included health workers - doctors nurses and laboratory workers, and the control group included the rest of non-medical staff. Adapted Siegrist questionnaire was used. Three factors were examined: extrinsic efforts (disturbances at work, sense of great job responsibility and the need for overtime work; intrinsic efforts (major criticism, thinking about the job from the early morning, getting nervous because of minor problems, discontentment because of unsolved problems at work, relaxation at home and so on, and low reward (respect from the superiors and colleagues, support and security at workplace. Answers were scored indicating intensity (high, moderate, low, not at alt. Statistic analysis included testing the level of significance in health workers in relation to non-medical staff (t test and Fisher's exact test. Results Applying the scoring system it has been established that health workers are exposed to greater job stress, great sense of very high job responsibility and frequent overtime work (p<0,001 than the control group. In regard to answers from the second group - intrinsic effort and low reward, there was no statistical significance between the study and control group. Generally high level of risk factors was established, especially presence of one or more risk factors. Discussion Job stress increases absenteeism, reduces work productivity, causes higher expenses of medical treatment, rehabilitation and staff retraining. It is of great importance to identify factors

  6. Oxidative and nitrosative stress in trichloroethene-mediated autoimmune response

    International Nuclear Information System (INIS)

    Reactive oxygen and nitrogen species (RONS) are implicated in the pathogenesis of several autoimmune diseases. Also, increased lipid peroxidation and protein nitration are reported in systemic autoimmune diseases. Lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind proteins covalently, but their potential to elicit an autoimmune response and contribution to disease pathogenesis remain unclear. Similarly, nitration of protein could also contribute to disease pathogenesis. To assess the status of lipid peroxidation and/or RONS, autoimmune-prone female MRL+/+ mice (5-week old) were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 48 weeks (0.5 mg/ml via drinking water), and formation of antibodies to LPDA-protein adducts was followed in the sera of control and TCE-treated mice. TCE treatment led to greater formation of both anti-MDA- and -HNE-protein adduct antibodies and higher serum iNOS and nitrotyrosine levels. The increase in TCE-induced oxidative stress was associated with increases in anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies. These findings suggest that TCE exposure not only leads to oxidative/nitrosative stress, but is also associated with induction/exacerbation of autoimmune response in MRL+/+ mice. Further interventional studies are needed to establish a causal role of RONS in TCE-mediated autoimmunity

  7. Conditioned stress prevents cue-primed cocaine reinstatement only in stress-responsive rats.

    Science.gov (United States)

    Hadad, Natalie A; Wu, Lizhen; Hiller, Helmut; Krause, Eric G; Schwendt, Marek; Knackstedt, Lori A

    2016-07-01

    Neurobiological mechanisms underlying comorbid posttraumatic stress disorder (PTSD) and cocaine use disorder (CUD) are unknown. We aimed to develop an animal model of PTSD + CUD to examine the neurobiology underlying cocaine-seeking in the presence of PTSD comorbidity. Rats were exposed to cat urine once for 10-minutes and tested for anxiety-like behaviors one week later. Subsequently, rats underwent long-access (LgA) cocaine self-administration and extinction training. Rats were re-exposed to the trauma context and then immediately tested for cue-primed reinstatement of cocaine-seeking. Plasma and brains were collected afterwards for corticosterone assays and real-time qPCR analysis. Urine-exposed (UE; n = 23) and controls not exposed to urine (Ctrl; n = 11) did not differ in elevated plus maze behavior, but UE rats displayed significantly reduced habituation of the acoustic startle response (ASR) relative to Ctrl rats. A median split of ASR habituation scores was used to classify stress-responsive rats. UE rats (n = 10) self-administered more cocaine on Day 1 of LgA than control rats (Ctrl + Coc; n = 8). Re-exposure to the trauma context prevented cocaine reinstatement only in stress-responsive rats. Ctrl + Coc rats had lower plasma corticosterone concentrations than Ctrls, and decreased gene expression of corticotropin releasing hormone (CRH) and Glcci1 in the hippocampus. Rats that self-administered cocaine displayed greater CRH expression in the amygdala that was independent of urine exposure. While we did not find that cat urine exposure induced a PTSD-like phenotype in our rats, the present study underscores the need to separate stressed rats into cohorts based on anxiety-like behavior in order to study individual vulnerability to PTSD + CUD.

  8. Conditioned stress prevents cue-primed cocaine reinstatement only in stress-responsive rats.

    Science.gov (United States)

    Hadad, Natalie A; Wu, Lizhen; Hiller, Helmut; Krause, Eric G; Schwendt, Marek; Knackstedt, Lori A

    2016-07-01

    Neurobiological mechanisms underlying comorbid posttraumatic stress disorder (PTSD) and cocaine use disorder (CUD) are unknown. We aimed to develop an animal model of PTSD + CUD to examine the neurobiology underlying cocaine-seeking in the presence of PTSD comorbidity. Rats were exposed to cat urine once for 10-minutes and tested for anxiety-like behaviors one week later. Subsequently, rats underwent long-access (LgA) cocaine self-administration and extinction training. Rats were re-exposed to the trauma context and then immediately tested for cue-primed reinstatement of cocaine-seeking. Plasma and brains were collected afterwards for corticosterone assays and real-time qPCR analysis. Urine-exposed (UE; n = 23) and controls not exposed to urine (Ctrl; n = 11) did not differ in elevated plus maze behavior, but UE rats displayed significantly reduced habituation of the acoustic startle response (ASR) relative to Ctrl rats. A median split of ASR habituation scores was used to classify stress-responsive rats. UE rats (n = 10) self-administered more cocaine on Day 1 of LgA than control rats (Ctrl + Coc; n = 8). Re-exposure to the trauma context prevented cocaine reinstatement only in stress-responsive rats. Ctrl + Coc rats had lower plasma corticosterone concentrations than Ctrls, and decreased gene expression of corticotropin releasing hormone (CRH) and Glcci1 in the hippocampus. Rats that self-administered cocaine displayed greater CRH expression in the amygdala that was independent of urine exposure. While we did not find that cat urine exposure induced a PTSD-like phenotype in our rats, the present study underscores the need to separate stressed rats into cohorts based on anxiety-like behavior in order to study individual vulnerability to PTSD + CUD. PMID:27181613

  9. Exploring the Response of Plants Grown under Uranium Stress

    Energy Technology Data Exchange (ETDEWEB)

    Doustaly, Fany; Berthet, Serge; Bourguignon, Jacques [CEA, iRTSV, Laboratoire de Physiologie Cellulaire Vegetale, UMR 5168 CEA-CNRS-INRA-Univ. Grenoble Alpes (France); Combes, Florence; Vandenbrouck, Yves [CEA, iRTSV, Laboratoire de Biologie a Grande Echelle, EDyP, CEA-Grenoble (France); Carriere, Marie [CEA, INAC, LAN, UMR E3 CEA-Universite Joseph Fourier, Grenoble (France); Vavasseur, Alain [CEA, IBEB, LBDP, Saint Paul lez Durance, CEA Cadarache (France)

    2014-07-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between uranium speciation and plant response. We analyzed the impact of different uranium (U) treatments on three plant species namely sunflower, oilseed rape and wheat. Using inductively coupled plasma mass spectrometry elemental analysis, together with a panel of imaging techniques including scanning electron microscopy coupled with energy dispersive spectroscopy, transmission electron microscopy and particle-induced X-ray emission spectroscopy, we have recently shown how chemical speciation greatly influences the accumulation and distribution of U in plants. Uranyl (UO{sub 2}{sup 2+} free ion) is the predominant mobile form in soil surface at low pH in absence of ligands. With the aim to characterize the early plant response to U exposure, complete Arabidopsis transcriptome microarray experiments were conducted on plants exposed to 50 μM uranyl nitrate for 2, 6 and 30 h and highlighted a set of 111 genes with modified expression at these three time points. Quantitative real-time RT-PCR experiments confirmed and completed CATMA micro-arrays results allowing the characterization of biological processes perturbed by U. Functional categorization of deregulated genes emphasizes oxidative stress, cell wall biosynthesis and hormone biosynthesis and signaling. We showed that U stress is perceived by plant cells like a phosphate starvation stress since several phosphate deprivation marker genes were deregulated by U and also highlighted perturbation of iron homeostasis by U. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with

  10. Morphogenetic responses ofPopulus alba L. under salt stress

    Institute of Scientific and Technical Information of China (English)

    Mejda Abassi; Khaled Mguis; Zoubeir Béjaoui; Ali Albouchi

    2014-01-01

    The morphogenetic responses to salt stress of TunisianPopu-lus alba clones were studied in order to promote their plantation in dam-aged saline areas. One year-old plants of threeP. alba clones (MA-104, MA-195 and OG) were subjected to progressive salt stress by irrigation during two consecutive years. The plants were grown in a nursery, inside plastic receptacles containing sandy soil and were irrigated with tap water (control) or 3-6 g/l NaCl solution. During this study, leaf epinasty, elongation rate, vigor, internode length, plant architecture, and number of buds were evaluated. Test clone response was highly dependent on the applied treatment and degree of accommodation.The most pronounced alterations were induced under 6g/l of NaCl treatment including leaf epinasty, leaf elongation rate delay, vigor decrease, internode length shortening, and morphogenetic modifications. These responses were less noticeable in the MA-104 clone with respect to the two other clones. The salt effect induced a delay in the leaf elongation rate on the MA-195 and OG clones leading to an early leaf maturity. The vigour and internode length of the MA-104 clone was less affected than the other clones. The OG clone was the most salt-sensitive thus, it developed shorter branches and more buds number than MA-195 and MA-104. The effect of long-term salt stress was to induce early flowering of theP. alba clones which suggests that mechanism of salt accommodation could be devel-oped.

  11. Exploring the Response of Plants Grown under Uranium Stress

    International Nuclear Information System (INIS)

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between uranium speciation and plant response. We analyzed the impact of different uranium (U) treatments on three plant species namely sunflower, oilseed rape and wheat. Using inductively coupled plasma mass spectrometry elemental analysis, together with a panel of imaging techniques including scanning electron microscopy coupled with energy dispersive spectroscopy, transmission electron microscopy and particle-induced X-ray emission spectroscopy, we have recently shown how chemical speciation greatly influences the accumulation and distribution of U in plants. Uranyl (UO22+ free ion) is the predominant mobile form in soil surface at low pH in absence of ligands. With the aim to characterize the early plant response to U exposure, complete Arabidopsis transcriptome microarray experiments were conducted on plants exposed to 50 μM uranyl nitrate for 2, 6 and 30 h and highlighted a set of 111 genes with modified expression at these three time points. Quantitative real-time RT-PCR experiments confirmed and completed CATMA micro-arrays results allowing the characterization of biological processes perturbed by U. Functional categorization of deregulated genes emphasizes oxidative stress, cell wall biosynthesis and hormone biosynthesis and signaling. We showed that U stress is perceived by plant cells like a phosphate starvation stress since several phosphate deprivation marker genes were deregulated by U and also highlighted perturbation of iron homeostasis by U. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with U. (authors)

  12. Individual differences in cortisol responses to a laboratory speech task and their relationship to responses to stressful daily events

    NARCIS (Netherlands)

    van Eck, M; Nicolson, N.A; Berkhof, J.; Sulon, J

    1996-01-01

    A Stress Inducing Speech Task was used to investigate the contribution of perceived stress, individual traits, and current mood states to individual differences in salivary cortisol responses. Additionally, we examined the correspondence between laboratory baseline cortisol levels and overall levels

  13. Understanding Plant Development and Stress Responses through Integrative Approaches

    Institute of Scientific and Technical Information of China (English)

    Katie Dehesh; Chun-Ming Liu

    2010-01-01

    @@ As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible research tools to understand plant growth, development and stress responses in micro- and macro-scales. As part of these efforts, JIPB and Yantai University organized the 1st International Symposium on Integrative Plant Biology in the seaside town of Yantai during August 10-12,2009 (Figure 1). The symposium was co-sponsored by Botanical Society of China, Chinese Society for Cell Biology, Genetics Society of China, and Chinese Society for Plant Physiology.

  14. Quantifying livestock responses for heat stress management: a review

    Science.gov (United States)

    Nienaber, J. A.; Hahn, G. L.; Eigenberg, R. A.

    Hot weather challenges livestock production but technology exists to offset the challenge if producers have made appropriate strategic decisions. Key issues include understanding the hazards of heat stress, being prepared to offer relief from the heat, recognizing when an animal is in danger, and taking appropriate action. This paper describes our efforts to develop biological response functions; assesses climatic probabilities and performs associated risk analyses; provides inputs for computer models used to make environmental management decisions; and evaluates threshold temperatures as estimates of critical temperature limits for swine, cattle and sheep.

  15. Effect of impedance and higher order chromaticity on the measurement of linear chromaticity

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, V.H.; /Tech-X, Boulder; Tan, C.Y.; /Fermilab

    2011-08-01

    The combined effect of impedance and higher order chromaticity can act on the beam in a nontrivial manner which can cause a tune shift which depends on the relative momenta with respect to the 'on momentum' particle ({Delta}p/p). Experimentally, this tune shift affects the measurement of the linear chromaticity which is traditionally measured with a change of {Delta}p/p. The theory behind this effect will be derived in this paper. Computer simulations and experimental data from the Tevatron will be used to support the theory.

  16. Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease.

    Science.gov (United States)

    Calabrese, Vittorio; Sultana, Rukhsana; Scapagnini, Giovanni; Guagliano, Eleonora; Sapienza, Maria; Bella, Rita; Kanski, Jaroslaw; Pennisi, Giovanni; Mancuso, Cesare; Stella, Anna Maria Giuffrida; Butterfield, D A

    2006-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with cognitive and memory decline, personality changes, and synapse loss. Increasing evidence indicates that factors such as oxidative and nitrosative stress, glutathione depletion, and impaired protein metabolism can interact in a vicious cycle, which is central to AD pathogenesis. In the present study, we demonstrate that brains of AD patients undergo oxidative changes classically associated with a strong induction of the so-called vitagenes, including the heat shock proteins (HSPs) heme oxygenase-1 (HO-1), HSP60, and HSP72, as well as thioredoxin reductase (TRXr). In inferior parietal brain of AD patients, a significant increase in the expression of HO-1 and TRXr was observed, whereas HO-2 expression was decreased, compared with controls. TRHr was not increased in AD cerebellum. Plasma GSH was decreased in AD patients, compared with the control group, and was associated with a significant increase in oxidative stress markers (i.e., GSSG, hydroxynonenal, protein carbonyl content, and nitrotyrosine). In AD lymphocytes, we observed an increased expression of inducible nitric oxide synthase, HO-1, Hsp72, HSP60, and TRXr. Our data support a role for nitrative stress in the pathogenesis of AD and indicate that the stress-responsive genes, such as HO-1 and TRXr, may represent important targets for novel cytoprotective strategies.

  17. Transcriptome Analysis of High-Temperature Stress in Developing Barley Caryopses :Early Stress Responses and Effects on Storage Compound Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Elke Mangelsen; Joachim Kilian; Klaus Harter; Christer Jansson; Dierk Wanke; Eva Sundberg

    2011-01-01

    High-temperature stress,like any abiotic stress,impairs the physiology and development of plants,including the stages of seed setting and ripening.We used the Aflymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley(Hordeum vulgare)seeds,termed caryopses,after 0.5,3,and 6 h of heat stress exposure;958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses'early heat stress responses.Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development.Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis.Metadata analysis identified embryo and endosperm as primary locations of heat stress responses,indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis.A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat-and caryopsis-specific stress-responsive genes.Summarized,our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops.

  18. κ Opioid Receptor Antagonism and Prodynorphin Gene Disruption Block Stress-Induced Behavioral Responses

    OpenAIRE

    McLaughlin, Jay P.; Marton-Popovici, Monica; Chavkin, Charles

    2003-01-01

    Previous studies have demonstrated that stress may increase prodynorphin gene expression, and κ opioid agonists suppress drug reward. Therefore, we tested the hypothesis that stress-induced release of endogenous dynorphin may mediate behavioral responses to stress and oppose the rewarding effects of cocaine. C57Bl/6 mice subjected to repeated forced swim testing (FST) using a modified Porsolt procedure at 30°C showed a characteristic stress-induced immobility response and a stress-induced ana...

  19. Enhancement of Latent Inhibition by Chronic Mild Stress in Rats Submitted to Emotional Response Conditioning

    OpenAIRE

    Liana Lins Melo; de Moraes Ferrari, Elenice A.; Nancy Airoldi Teixeira; Guy Sandner

    2003-01-01

    This work evaluated the influence of chronic mild stress on latent inhibition (LI) in rats, using a conditioned emotional response (CER) procedure. Rats were assigned to four groups: a non pre-exposed control group (NPC), a non pre-exposed stressed group (NPS), a preexposed control group (PC), and a pre-exposed stressed group (PS). Stressed animals were submitted to a chronic mild stress (CMS) regimen for three weeks. The off-baseline conditioned emotional response procedure had four phases: ...

  20. Increased oxidative stress and impaired antioxidant response in Lafora disease.

    Science.gov (United States)

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2014-10-01

    Lafora Disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxirredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD. PMID:26461389

  1. Molecular and physiological responses of trees to waterlogging stress.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees.

  2. Effect of transport stress on physiological responses of male bovines.

    Science.gov (United States)

    Chacon, G; Garcia-Belenguer, S; Villarroel, M; Maria, G A

    2005-12-01

    Forty-eight slaughter bulls were transported by road in groups of eight for approximately 30 min, 3 h and 6 h in two replicates. Animal welfare during the transport process was assessed. Loadings and unloadings were evaluated with a scoring method. Heart rates were monitored at the farm before loading and during all stages of transport. Blood samples were taken from all animals a week before transport and at sticking and analysed in terms of haematological values: hematocrit, haemoglobin, red and white blood cells (RBC and WBC), differential WBC counts and neutrophil:lymphocyte ratio. Glucose, creatine kinase, lactate and cortisol were also determined. To evaluate differences in meat quality, pH and water-holding capacity (WHC) were measured 24 h after slaughter. The loading and unloading scores were very low (low stress) but were associated with changes in heart rate, especially loading. Animals recovered their resting heart rate during the journey in medium and long transports. On the other hand, animals transported around 30 min maintained an elevated heart rate during the whole journey. All animals showed a stress response with significantly higher (p Animals transported for 3 and 6 hours had significantly (Pmeat quality. Under good conditions, the transport had a slight effect on welfare, meat quality or physiological parameters related with stress.

  3. Historical temperature variability affects coral response to heat stress.

    Directory of Open Access Journals (Sweden)

    Jessica Carilli

    Full Text Available Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions.

  4. P53 family and cellular stress responses in cancer

    Directory of Open Access Journals (Sweden)

    Johanna ePflaum

    2014-10-01

    Full Text Available p53 is an important tumor suppressor gene, which is stimulated by cellular stress like ionizing radiation, hypoxia, carcinogens and oxidative stress. Upon activation p53 leads to cell cycle arrest and promotes DNA repair or induces apoptosis via several pathways. p63 and p73 are structural homologs of p53 that can act similarly to the protein but also hold functions distinct from p53. Today more than forty different isoforms of the p53 family members are known. They result from transcription via different promoters and alternative splicing. Some isoforms have carcinogenic properties and mediate resistance to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prognostic information in several malignant tumors. Furthermore, the p53 family constitutes a potential target for cancer therapy. Small molecules (e.g. Nutlins, RITA, PRIMA-1, and MIRA-1 among others have been objects of intense research interest in recent years. They restore pro-apoptotic wild-type p53 function and were shown to break chemotherapeutic resistance. Due to p53 family interactions small molecules also influence p63 and p73 activity. Thus, the members of the p53 family are key players in the cellular stress response in cancer and are expected to grow in importance as therapeutic targets.

  5. An Application of Chromatic Prototypes for a Universal Information System

    CERN Document Server

    McCool, Matthew

    2007-01-01

    This paper presents research on color prototypes, categories, and the neuropsychology of color. These data suggest that chromatic prototypes may be useful for thematically organizing information systems.

  6. Infant's physiological response to short heat stress during sauna bath.

    Science.gov (United States)

    Rissmann, A; Al-Karawi, J; Jorch, G

    2002-01-01

    Thermoregulatory response to Finnish sauna bath was investigated in 47 infants (age 3 - 14 month). Before taking a short sauna bath lasting 3 min, the infants stayed in a swimming pool for 15 min. Under these conditions sauna bathing did not increase the rectal temperature. Unexpectedly rectal temperature even decreased by 0.2 degrees C (p sauna bathing. The blood pressure amplitude decreased significantly after the swimming period from 47 mm Hg to 38 mm Hg (p sauna bathing to 42 mm Hg. All infants tolerated short heat exposure in the sauna without side effects. The circulatory adjustment was efficient. Even young infants were able to cope with the acute circulatory changes imposed by heat stress. Adequate thermoregulatory and cardiovascular adaptive responses to sauna bathing could be shown for the first time in infants between 3 and 14 months of age.

  7. Maternal stress and plural breeding with communal care affect development of the endocrine stress response in a wild rodent.

    Science.gov (United States)

    Bauer, Carolyn M; Hayes, Loren D; Ebensperger, Luis A; Ramírez-Estrada, Juan; León, Cecilia; Davis, Garrett T; Romero, L Michael

    2015-09-01

    Maternal stress can significantly affect offspring fitness. In laboratory rodents, chronically stressed mothers provide poor maternal care, resulting in pups with hyperactive stress responses. These hyperactive stress responses are characterized by high glucocorticoid levels in response to stressors plus poor negative feedback, which can ultimately lead to decreased fitness. In degus (Octodon degus) and other plural breeding rodents that exhibit communal care, however, maternal care from multiple females may buffer the negative impact on pups born to less parental mothers. We used wild, free-living degus to test this hypothesis. After parturition, we manipulated maternal stress by implanting cortisol pellets in 0%, 50-75%, or 100% of adult females within each social group. We then sampled pups for baseline and stress-induced cortisol, negative feedback efficacy, and adrenal sensitivity. From groups where all mothers were implanted with cortisol, pups had lower baseline cortisol levels and male pups additionally had weaker negative feedback compared to 0% or 50-75% implanted groups. Contrary to expectations, stress-induced cortisol did not differ between treatment groups. These data suggest that maternal stress impacts some aspects of the pup stress response, potentially through decreased maternal care, but that presence of unstressed mothers may mitigate some of these effects. Therefore, one benefit of plural breeding with communal care may be to buffer post-natal stress.

  8. Neuronatin is a stress-responsive protein of rod photoreceptors.

    Science.gov (United States)

    Shinde, Vishal; Pitale, Priyamvada M; Howse, Wayne; Gorbatyuk, Oleg; Gorbatyuk, Marina

    2016-07-22

    Neuronatin (NNAT) is a small transmembrane proteolipid that is highly expressed in the embryonic developing brain and several other peripheral tissues. This study is the first to provide evidence that NNAT is detected in the adult retina of various adult rod-dominant mammals, including wild-type (WT) rodents, transgenic rodents expressing mutant S334ter, P23H, or T17M rhodopsin, non-human primates, humans, and cone-dominant tree shrews. Immunohistochemical and quantitative real time polymerase chain reaction (qRT-PCR) analyses were applied to detect NNAT. Confocal microscopy analysis revealed that NNAT immunofluorescence is restricted to the outer segments (OSs) of photoreceptors without evidence of staining in other retinal cell types across all mammalian species. Moreover, in tree shrew retinas, we found NNAT to be co-localized with rhodopsin, indicating its predominant expression in rods. The rod-derived expression of NNAT was further confirmed by qRT-PCR in isolated rod photoreceptor cells. We also used these cells to mimic cellular stress in transgenic retinas by treating them with the endoplasmic reticulum stress inducer, tunicamycin. Thus, our data revealed accumulation of NNAT around the nucleus as compared to dispersed localization of NNAT within control cells. This distribution coincided with the partial intracellular mislocalization of NNAT to the outer nuclear layer observed in transgenic retinas. In addition, stressed retinas demonstrated an increase of NNAT mRNA and protein levels. Therefore, our study demonstrated that NNAT is a novel stress-responsive protein with a potential structural and/or functional role in adult mammalian retinas. PMID:27109921

  9. Physiological responses to water stress and waterlogging in Nothofagus species.

    Science.gov (United States)

    Sun, O J; Sweet, G B; Whitehead, D; Buchan, G D

    1995-10-01

    Gas exchange and water relations were investigated in Nothofagus solandri var. cliffortioides (Hook. f.) Poole (mountain beech) and Nothofagus menziesii (Hook. f.) Oerst (silver beech) seedlings in response to water stress and waterlogging. At soil matric potentials (Psi(soil)) above -0.005 MPa, N. solandri had significantly higher photosynthetic rates (A), and stomatal and residual conductances (g(sw) and g(rc)), and lower predawn xylem water potentials (Psi(predawn)) than N. menziesii. The relative tolerance of plants to water stress was defined in terms of critical soil matric potential (Psi(cri)) and lethal xylem water potential (Psi(lethal)). The estimated values of Psi(cri) and Psi(lethal) were -1.2 and -7 MPa, respectively, for N. solandri, and -0.7 and -4 MPa, respectively, for N. menziesii. Photosynthesis was sustained to a xylem water potential (Psi(xylem)) of -7 MPa in N. solandri compared with -4 MPa in N. menziesii. Following rewatering, both A and Psi(xylem) recovered quickly in N. solandri, whereas the two variables recovered more slowly in N. menziesii. During the development of water stress, nonstomatal inhibition significantly affected A in both N. solandri and N. menziesii. Nothofagus menziesii was more susceptible to inhibition of A by waterlogging than N. solandri. However, the tolerance of N. solandri to severe waterlogging was also limited as a result of a failure to form adventitious roots, suggesting a lack of adaptation to these conditions. The differences in tolerance to water stress and waterlogging between the two species are consistent with the distribution patterns of N. solandri and N. menziesii in New Zealand. PMID:14965996

  10. Differential response of hippocampal subregions to stress and learning.

    Directory of Open Access Journals (Sweden)

    Darby F Hawley

    Full Text Available The hippocampus has two functionally distinct subregions-the dorsal portion, primarily associated with spatial navigation, and the ventral portion, primarily associated with anxiety. In a prior study of chronic unpredictable stress (CUS in rodents, we found that it selectively enhanced cellular plasticity in the dorsal hippocampal subregion while negatively impacting it in the ventral. In the present study, we determined whether this adaptive plasticity in the dorsal subregion would confer CUS rats an advantage in a spatial task-the radial arm water maze (RAWM. RAWM exposure is both stressful and requires spatial navigation, and therefore places demands simultaneously upon both hippocampal subregions. Therefore, we used Western blotting to investigate differential expression of plasticity-associated proteins (brain derived neurotrophic factor [BDNF], proBDNF and postsynaptic density-95 [PSD-95] in the dorsal and ventral subregions following RAWM exposure. Lastly, we used unbiased stereology to compare the effects of CUS on proliferation, survival and neuronal differentiation of cells in the dorsal and ventral hippocampal subregions. We found that CUS and exposure to the RAWM both increased corticosterone, indicating that both are stressful; nevertheless, CUS animals had significantly better long-term spatial memory. We also observed a subregion-specific pattern of protein expression following RAWM, with proBDNF increased in the dorsal and decreased in the ventral subregion, while PSD-95 was selectively upregulated in the ventral. Finally, consistent with our previous study, we found that CUS most negatively affected neurogenesis in the ventral (compared to the dorsal subregion. Taken together, our data support a dual role for the hippocampus in stressful experiences, with the more resilient dorsal portion undergoing adaptive plasticity (perhaps to facilitate escape from or neutralization of the stressor, and the ventral portion involved in

  11. A Blm-Recql5 partnership in replication stress response

    Institute of Scientific and Technical Information of China (English)

    Xincheng Lu; Hua Lou; Guangbin Luo

    2011-01-01

    Deficiencies in DNA damage response and repair not only can result in genome instability and cancer predisposition, but also can render the cancer cells intrinsically more vulnerable to certain types of DNA damage insults. Particularly, replication stress is both a hallmark of human cancers and a common instigator for genome instability and cell death. Here, we review our work based on the genetic knockout studies on Blm and Recql5, two members of the mammalian RecQ helicase family. These studies have uncovered a unique partnership between these two helicases in the implementation of proper mitigation strategies under different circumstances to promote DNA replication and cell survival and suppress genome instability and cancer. In particular, current studies have revealed the presence of a novel Recql5/RECQL5-dependent mechanism for suppressing replication fork collapse in response to global replication fork stalling following exposure to camptothecin (CPT), a topoisomerase I inhibitor, and a potent inhibitor of DNA replication. The unique partnership between Blm and Recql5 in coping with the challenge imposed by replication stress is discussed. In addition, given that irinotecan and topotecan, two CPT derivatives, are currently used in clinic for treating human cancer patients with very promising results, the potential implication of the new findings from these studies in anticancer treatments is also discussed.

  12. Assessing Cd-induced stress from plant spectral response

    Science.gov (United States)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  13. Temporal evolution of the Arabidopsis oxidative stress response.

    Science.gov (United States)

    Mahalingam, Ramamurthy; Shah, Nigam; Scrymgeour, Alexandra; Fedoroff, Nina

    2005-03-01

    We have carried out a detailed analysis of the changes in gene expression levels in Arabidopsis thaliana ecotype Columbia (Col-0) plants during and for 6 h after exposure to ozone (O3) at 350 parts per billion (ppb) for 6 h. This O3 exposure is sufficient to induce a marked transcriptional response and an oxidative burst, but not to cause substantial tissue damage in Col-0 wild-type plants and is within the range encountered in some major metropolitan areas. We have developed analytical and visualization tools to automate the identification of expression profile groups with common gene ontology (GO) annotations based on the sub-cellular localization and function of the proteins encoded by the genes, as well as to automate promoter analysis for such gene groups. We describe application of these methods to identify stress-induced genes whose transcript abundance is likely to be controlled by common regulatory mechanisms and summarized our findings in a temporal model of the stress response. PMID:15988565

  14. Empathy and Stress Related Neural Responses in Maternal Decision Making

    Directory of Open Access Journals (Sweden)

    S. Shaun Ho

    2014-06-01

    Full Text Available Mothers need to make caregiving decisions to meet the needs of children, which may or may not result in positive child feedback. Variations in caregivers’ emotional reactivity to unpleasant child-feedback may be partially explained by their dispositional empathy levels. Furthermore, empathic response to the child’s unpleasant feedback likely helps mothers to regulate their own stress. We investigated the relationship between maternal dispositional empathy, stress reactivity, and neural correlates of child feedback to caregiving decisions. In Part 1 of the study, 33 female participants were recruited to undergo a lab-based mild stressor, the Social Evaluation Test (SET, and then in Part 2 of the study, a subset of the participants, fourteen mothers, performed a Parenting Decision Making Task (PDMT in an fMRI setting. Four dimensions of dispositional empathy based on the Interpersonal Reactivity Index were measured in all participants – Personal Distress, Empathic Concern, Perspective Taking, and Fantasy. Overall, we found that the Personal Distress and Perspective Taking were associated with greater and lesser cortisol reactivity, respectively. The four types of empathy were distinctly associated with the negative (versus positive child feedback activation in the brain. Personal Distress was associated with amygdala and hypothalamus activation, Empathic Concern with the left ventral striatum, ventrolateral prefrontal cortex (VLPFC, and supplemental motor area (SMA activation, and Fantasy with the septal area, right SMA and VLPFC activation. Interestingly, hypothalamus-septal coupling during the negative feedback condition was associated with less PDMT-related cortisol reactivity. The roles of distinct forms of dispositional empathy in neural and stress responses are discussed.

  15. DNA damage responses and oxidative stress in dyskeratosis congenita.

    Directory of Open Access Journals (Sweden)

    Larisa Pereboeva

    Full Text Available Dyskeratosis congenita (DC is an inherited multisystem disorder of premature aging, cancer predisposition, and bone marrow failure caused by selective exhaustion of highly proliferative cell pools. DC patients also have a poor tolerance to chemo/radiotherapy and bone marrow transplantation. Although critically shortened telomeres and defective telomere maintenance contribute to DC pathology, other mechanisms likely exist. We investigate the link between telomere dysfunction and oxidative and DNA damage response pathways and assess the effects of antioxidants. In vitro studies employed T lymphocytes from DC subjects with a hTERC mutation and age-matched controls. Cells were treated with cytotoxic agents, including Paclitaxel, Etoposide, or ionizing radiation. Apoptosis and reactive oxygen species (ROS were assessed by flow cytometry, and Western blotting was used to measure expression of DNA damage response (DDR proteins, including total p53, p53S15, and p21(WAF. N-acetyl-cysteine (NAC, an antioxidant, was used to modulate cell growth and ROS. In stimulated culture, DC lymphocytes displayed a stressed phenotype, characterized by elevated levels of ROS, DDR and apoptotic markers as well as a proliferative defect that was more pronounced after exposure to cytotoxic agents. NAC partially ameliorated the growth disadvantage of DC cells and decreased radiation-induced apoptosis and oxidative stress. These findings suggest that oxidative stress may play a role in the pathogenesis of DC and that pharmacologic intervention to correct this pro-oxidant imbalance may prove useful in the clinical setting, potentially alleviating untoward toxicities associated with current cytotoxic treatments.

  16. Maternal Sensitivity and Infant Autonomic and Endocrine Stress Responses

    Science.gov (United States)

    Enlow, Michelle Bosquet; King, Lucy; Schreier, Hannah; Howard, Jamie M.; Rosenfield, David; Ritz, Thomas; Wright, Rosalind J.

    2014-01-01

    Background Early environmental exposures may help shape the development of the autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis, influencing vulnerability for health problems across the lifespan. Little is known about the role of maternal sensitivity in influencing the development of the ANS in early life. Aims To examine associations among maternal sensitivity and infant behavioral distress and ANS and HPA axis reactivity to the Repeated Still-Face Paradigm (SFP-R), a dyadic stress task. Study Design Observational repeated measures study. Subjects Thirty-five urban, sociodemographically diverse mothers and their 6-month-old infants. Outcome Measures Changes in infant affective distress, heart rate, respiratory sinus arrhythmia (RSA), and T-wave amplitude (TWA) across episodes of the SFP-R were assessed. A measure of cortisol output (area under the curve) in the hour following cessation of the SFP-R was also obtained. Results Greater maternal insensitivity was associated with greater infant sympathetic activation (TWA) during periods of stress and tended to be associated with greater cortisol output following the SFP-R. There was also evidence for greater affective distress and less parasympathetic activation (RSA) during the SFP-R among infants of predominantly insensitive mothers. Conclusions Caregiving quality in early life may influence the responsiveness of the sympathetic and parasympathetic branches of the ANS as well as the HPA axis. Consideration of the ANS and HPA axis systems together provides a fuller representation of adaptive versus maladaptive stress responses. The findings highlight the importance of supporting high quality caregiving in the early years of life, which is likely to promote later health. PMID:24794304

  17. Listeria monocytogenes Shows Temperature-Dependent and -Independent Responses to Salt Stress, Including Responses That Induce Cross-Protection against Other Stresses

    OpenAIRE

    Bergholz, Teresa M.; Bowen, Barbara; Wiedmann, Martin; Boor, Kathryn J.

    2012-01-01

    The food-borne pathogen Listeria monocytogenes experiences osmotic stress in many habitats, including foods and the gastrointestinal tract of the host. During transmission, L. monocytogenes is likely to experience osmotic stress at different temperatures and may adapt to osmotic stress in a temperature-dependent manner. To understand the impact of temperature on the responses this pathogen uses to adapt to osmotic stress, we assessed genome-wide changes in the L. monocytogenes H7858 transcrip...

  18. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sunyoung Hwang

    Full Text Available CosR (Campylobacter oxidative stress regulator; Cj0355c is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.

  19. Allopregnanolone and social stress: regulation of the stress response in early pregnancy in pigs.

    Science.gov (United States)

    Rault, Jean-Loup; Plush, Kate; Yawno, Tamara; Langendijk, Pieter

    2015-01-01

    This experiment investigated whether allopregnanolone, a neurosteroid metabolite from progesterone, modulates the stress response during early pregnancy. Twenty-five nulliparous sows (Sus scrofa) were allocated to one of three treatments: pregnant, ovariectomized or ovariectomized administered daily intravenously with alfaxalone as a synthetic allopregnanolone analog. On days 5, 12 and 19 of pregnancy, all sows were subjected to social stress by submitting them individually to a resident-intruder test, acting as the intruder. Blood samples were collected to analyze plasma progesterone, allopregnanolone, cortisol and adrenocorticotropic hormone (ACTH) concentrations. On day 26, 10 sows across the three treatments were subjected to a dexamethasone suppression test followed by a corticotrophin-releasing hormone administration to test the functionality of their hypothalamo-pituitary-adrenal (HPA) axis through cortisol release. Pregnant sows returned more rapidly to baseline cortisol concentrations following the resident-intruder test (p = 0.006). However, there were no other differences in cortisol or ACTH concentrations according to treatment or day, or to the HPA responsivity test on day 26. Allopregnanolone concentration in pregnant sows was higher than in ovariectomized sows (p pregnancy. Allopregnanolone concentration was correlated with longer resident-intruder test duration (pregnant: r = 0.66, p = 0.0003; ovariectomized: r = 0.47, p = 0.03), reflecting lower aggressiveness, and with progesterone concentration (r = 0.25, p = 0.03). Alfaxalone administration raised plasma allopregnanolone concentration in alfaxalone-administered sows but resulted in little behavioral and physiological effects. These findings did not support the hypothesis that the stress response of the female pig changes in the first third of pregnancy. Allopregnanolone was associated with lower aggression in social encounters.

  20. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    Science.gov (United States)

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PMID:19123763

  1. The influence of chromatic and achromatic variability on chromatic induction and perceived colour

    NARCIS (Netherlands)

    Brenner, E; Cornelissen, FW

    2002-01-01

    Judgments of the colour of a surface are influenced by the colour of the surrounding. To determine whether only the average colour of the surrounding matters, or also the chromatic variability, judgments in colourful scenes are often compared with ones in which a target is surrounded by a plain back

  2. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Science.gov (United States)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  3. A step towards understanding plant responses to multiple environmental stresses: a genome-wide study.

    Science.gov (United States)

    Sewelam, Nasser; Oshima, Yoshimi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2014-09-01

    In natural habitats, especially in arid areas, plants are often simultaneously exposed to multiple abiotic stresses, such as salt, osmotic and heat stresses. However, most analyses of gene expression in stress responses examine individual stresses. In this report, we compare gene expression in individual and combined stresses. We show that combined stress treatments with salt, mannitol and heat induce a unique pattern of gene expression that is not a simple merge of the individual stress responses. Under multiple stress conditions, expression of most heat and salt stress-responsive genes increased to levels similar to or higher than those measured in single stress conditions, but osmotic stress-responsive genes increased to lower levels. Genes up-regulated to higher levels under multiple stress condition than single stress conditions include genes for heat shock proteins, heat shock regulators and late embryogenesis abundant proteins (LEAs), which protect other proteins from damage caused by stresses, suggesting their importance in multiple stress condition. Based on this analysis, we identify candidate genes for engineering crop plants tolerant to multiple stresses. PMID:24417440

  4. Phloem small RNAs, nutrient stress responses, and systemic mobility

    Directory of Open Access Journals (Sweden)

    Kehr Julia

    2010-04-01

    Full Text Available Abstract Background Nutrient availabilities and needs have to be tightly coordinated between organs to ensure a balance between uptake and consumption for metabolism, growth, and defense reactions. Since plants often have to grow in environments with sub-optimal nutrient availability, a fine tuning is vital. To achieve this, information has to flow cell-to-cell and over long-distance via xylem and phloem. Recently, specific miRNAs emerged as a new type of regulating molecules during stress and nutrient deficiency responses, and miR399 was suggested to be a phloem-mobile long-distance signal involved in the phosphate starvation response. Results We used miRNA microarrays containing all known plant miRNAs and a set of unknown small (s RNAs earlier cloned from Brassica phloem sap 1, to comprehensively analyze the phloem response to nutrient deficiency by removing sulfate, copper or iron, respectively, from the growth medium. We show that phloem sap contains a specific set of sRNAs that is distinct from leaves and roots, and that the phloem also responds specifically to stress. Upon S and Cu deficiencies phloem sap reacts with an increase of the same miRNAs that were earlier characterized in other tissues, while no clear positive response to -Fe was observed. However, -Fe led to a reduction of Cu- and P-responsive miRNAs. We further demonstrate that under nutrient starvation miR399 and miR395 can be translocated through graft unions from wild type scions to rootstocks of the miRNA processing hen1-1 mutant. In contrast, miR171 was not transported. Translocation of miR395 led to a down-regulation of one of its targets in rootstocks, suggesting that this transport is of functional relevance, and that miR395, in addition to the well characterized miR399, could potentially act as a long-distance information transmitter. Conclusions Phloem sap contains a specific set of sRNAs, of which some specifically accumulate in response to nutrient deprivation. From

  5. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    Directory of Open Access Journals (Sweden)

    Ferrari Francesco

    2009-06-01

    Full Text Available Abstract Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS, a Chinese Spring terminal deletion line (CS_5AL-10 and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed in Creso (which lacks the D genome or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region. Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water

  6. The Early Endocrine Stress Response in Experimental Subarachnoid Hemorrhage.

    Directory of Open Access Journals (Sweden)

    Christoffer Nyberg

    Full Text Available In patients with severe illness, such as aneurysmal subarachnoid hemorrhage (SAH, a physiologic stress response is triggered. This includes activation of the hypothalamic-pituitary-adrenal (HPA axis and the sympathetic nervous system. The aim of this study was to investigate the very early responses of these systems.A porcine animal model of aneurysmal SAH was used. In this model, blood is injected slowly to the basal cisterns above the anterior skull base until the cerebral perfusion pressure is 0 mm Hg. Sampling was done from blood and urine at -10, +15, +75 and +135 minutes from time of induction of SAH. Analyses of adrenocorticotropic hormone (ACTH, cortisol, aldosterone, catecholamines and chromogranin-A were performed.Plasma ACTH, serum cortisol and plasma aldosterone increased in the samples following induction of SAH, and started to decline after 75 minutes. Urine cortisol also increased after SAH. Urine catecholamines and their metabolites were found to increase after SAH. Many samples were however below detection level, not allowing for statistical analysis. Plasma chromogranin-A peaked at 15 minutes after SAH, and thereafter decreased.The endocrine stress response after aneurysmal SAH was found to start within 15 minutes in the HPA axis with early peak values of ACTH, cortisol and aldosterone. The fact that the concentrations of the HPA axis hormones decreased 135 minutes after SAH may suggest that a similar pattern exists in SAH patients, thus making it difficult to catch these early peak values. There were also indications of early activation of the sympathetic nervous system, but the small number of valid samples made interpretation difficult.

  7. Feedbacks and tipping points in organismal response to oxidative stress.

    Science.gov (United States)

    Klanjscek, Tin; Muller, Erik B; Nisbet, Roger M

    2016-09-01

    Biological feedbacks play a crucial role in determining effects of toxicants, radiation, and other environmental stressors on organisms. Focusing on reactive oxygen species (ROS) that are increasingly recognized as a crucial mediator of many stressor effects, we investigate how feedback strength affects the ability of organisms to control negative effects of exposure. We do this by developing a general theoretical framework for describing effects of a wide range of stressors and species. The framework accounts for positive and negative feedbacks representing cellular processes: (i) production of ROS due to metabolism and the stressor, (ii) ROS reactions with cellular compounds that cause damage, and (iii) cellular control of both ROS and damage. We suggest functional forms that capture generic properties of cellular control mechanisms constituting the feedbacks, assess stability of equilibrium states in the resulting models, and investigate tipping points at which cellular control breaks down causing unregulated increase of ROS and damage. Depending on the chosen functional forms, the models can have zero, one, or two positive steady states; except in one singular case, the steady state with lowest values of ROS and damage is locally stable. We found two types of tipping points: those induced by changes in the parameters (including the stressor intensity), and those induced by the history of exposure, i.e. ROS and damage levels. The relatively simple models effectively describe several patterns of cellular responses to stress, such as the covariation of ROS and damage, the break-down of cellular control leading to explosion of ROS and/or damage, increase in damage even when ROS is (near)-constant, and the effects of exposure history on the ability of the cell to handle additional stress. The models quantify dynamics of cellular control, and could therefore be used to estimate the metabolic costs of stress and help integrate them into models that use energetic

  8. Infants, Mothers, and Dyadic Contributions to Stability and Prediction of Social Stress Response at 6 Months

    Science.gov (United States)

    Provenzi, Livio; Olson, Karen L.; Montirosso, Rosario; Tronick, Ed

    2016-01-01

    The study of infants' interactive style and social stress response to repeated stress exposures is of great interest for developmental and clinical psychologists. Stable maternal and dyadic behavior is critical to sustain infants' development of an adaptive social stress response, but the association between infants' interactive style and social…

  9. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  10. Chromate reduction is expedited by bacteria engineered to produce the compatible solute trehalose.

    Science.gov (United States)

    Frederick, Tamlyn M; Taylor, Erin A; Willis, Jennifer L; Shultz, Matthew S; Woodruff, Peter J

    2013-08-01

    The toxicity and solubility of chromium(VI) can be decreased by certain microbes that reduce chromium(VI) to chromium(III). However, these bacteria do not escape unscathed from this process. Chromium(VI) reduction damages the essential macromolecules of living systems. Trehalose protects organisms from chemical stress but has not been tested in the context of bioremediation. We engineered bacteria to produce trehalose and found that they then reduced 1 mM chromium(VI) to chromium(III), whereas wild-type cells were only able to reduce half that amount. Thus, by providing bacteria with a biochemical defense against the side-effects of chromate reduction may be a new approach to cleaning up sites that are contaminated with high levels of chromate. PMID:23563698

  11. [Physiological responses of Gracilaria lemaneiformis to copper stress].

    Science.gov (United States)

    Zhu, Xi-Feng; Zou, Ding-Hui; Jian, Jian-Bo; Chen, Wei-Zhou; Liu, Hui-Hui; Du, Hong

    2009-06-01

    Gracilaria lemaneiformis was exposed to 0, 25, 50, 100, 250 and 500 microg x L(-1) of Cu2+ to study its physiological responses to Cu2+ stress. When the Cu2+ concentration was > or = 50 microg x L(-1), the relative growth rate (RGR) of G. lemaneiformis decreased significantly, and the optimal quantum yield (Fv/Fm), the maximum relative electron transfer rate (rETRmax), and the relative electron transfer efficiency (alpha) exhibited the same variation trend, compared with the control. With the increase of Cu2+ concentration, the maximum net photosynthetic rate (Pmax) and light saturation point (LSP) decreased significantly, light compensation point (LCP) had a significant increase, while chlorophyll a, carotenoid, and phycobiliprotein contents decreased after an initial increase. When the Cu2+ concentration reached 500 microg x L(-1), the chlorophyll a, carotenoid, and phycobiliprotein contents decreased significantly. It was suggested that G. lemaneiformis could tolerate low concentration Cu2+ stress, but its physiological activities were inhibited markedly when exposed to > or =50 microg x L(-1) of Cu2+.

  12. Sexual Dimorphism in the Response of Mercurialis annua to Stress

    Directory of Open Access Journals (Sweden)

    Ezra M. Orlofsky

    2016-04-01

    Full Text Available The research presented stemmed from the observations that female plants of the annual dioecious Mercurialis annua outlive male plants. This led to the hypothesis that female plants of M. annua would be more tolerant to stress than male plants. This hypothesis was addressed in a comprehensive way, by comparing morphological, biochemical and metabolomics changes in female and male plants during their development and under salinity. There were practically no differences between the genders in vegetative development and physiological parameters. However, under salinity conditions, female plants produced significantly more new reproductive nodes. Gender-linked differences in peroxidase (POD and glutathione transferases (GSTs were involved in anti-oxidation, detoxification and developmental processes in M. annua. 1H NMR metabolite profiling of female and male M. annua plants showed that under salinity the activity of the TCA cycle increased. There was also an increase in betaine in both genders, which may be explainable by its osmo-compatible function under salinity. The concentration of ten metabolites changed in both genders, while ‘Female-only-response’ to salinity was detected for five metabolites. In conclusion, dimorphic responses of M. annua plant genders to stress may be attributed to female plants’ capacity to survive and complete the reproductive life cycle.

  13. Reexploring the upper bound for the chromatic number of graphs

    Institute of Scientific and Technical Information of China (English)

    LI Shuchao; MAO Jingzhong

    2004-01-01

    The upper bound of the chromatic number of simple graphs is explored. Its original idea comes from Coffman, Hakimi and Schmeichel, who recently studied the chromatic number of graphs with strong conditions. In this paper, corresponding conditions are weakened and the result proves that of Ershov and Kozhukhin's.

  14. 2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Ades

    2011-07-23

    The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. A wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.

  15. Linear and chromatic optics measurements at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Aiba, M.; Calaga, R.; Aiba, M.; Tomas, R.; Vanbavinkove, G.

    2010-05-23

    Measurements of chromatic beta-beating were carried out for the first time in the RHIC accelerator during Run 2009. The analysis package developed for the LHC was used to extract the off-momentum optics for injection and top energy. Results from the beam experiments and compassion to the optics model are presented. The primary goal of the RHIC experiments were execute an on-line measurement of the optics using the tools developed for the LHC. Turn-by-turn BPM trajectories (typically 1000 turns) acquired immediately after an external dipole kick are numerically analyzed to determine the optical parameters at the location of the beam position monitors (BPMs). For chromatic optics, a similar analysis, but on a beam with finite momentum offset(s). Each optical measurement typically is calculated from multiple data sets to capture statistical variations and ensure reproducibility. The procedure of measurement and analysis is detailed in ref [1, 2]. Two dedicated experiments were performed at RHIC with protons during Run 2009. The first at injection energy and optics and the other at 250 GeV and squeezed optics. The basic RHIC parameters relevant for the two experiments are listed in Table 1.

  16. Chromatic variations suppress suprathreshold brightness variations.

    Science.gov (United States)

    Kingdom, Frederick A A; Bell, Jason; Gheorghiu, Elena; Malkoc, Gokhan

    2010-01-01

    Most objects in natural scenes are suprathreshold in both color (chromatic) and luminance contrast. How salient is each dimension? We have developed a novel method employing a stimulus similar to that used by B. C. Regan and J. D. Mollon (1997) who studied the relative saliencies of the two chromatic cardinal directions. Our stimuli consist of left- and right-oblique modulations of color and/or luminance defined within a lattice of circles. In the "separated" condition, the two modulations were presented separately as forced-choice pairs, and the task was to indicate which was more salient. In the "combined" condition, the two orthogonal-in-orientation modulations were added, and the task was to indicate the more salient orientation. The ratio of color to luminance contrast at the PSE was calculated for both conditions. Across color directions, 48% more luminance contrast relative to color contrast was required to achieve a PSE in the "combined" compared to the "separated" condition. A second experiment showed that the PSE difference was due to the luminance being masked by the color, rather than due to superior color grouping. We conclude that suprathreshold brightness variations are masked by suprathreshold color variations. PMID:20884478

  17. Measuring aspheres with a chromatic Fizeau interferometer

    Science.gov (United States)

    Seifert, L.; Pruss, C.; Dörband, B.; Osten, W.

    2009-06-01

    The established method to measure aspherical surfaces is interferometric testing with null optics, but due to economical reasons the applications are limited. A special null optic has to be calculated, fabricated and qualified for each individual type of asphere. This time- and money consuming method is only cost-efficient for large quantities or when tests require high accuracy. We propose a new and flexible technique for measuring an ensemble of different aspheres with only one measurement setup. The main idea is to use the wavelength as a tunable parameter. Because it is possible to change the wavelength without introducing new errors by mechanical movements, the wavelength variation results in a higher measurement flexibility without reducing the measurement accuracy. We present the chromatic Fizeau Interferometer with a diffractive element as null-optic for the measurement of a set of four aspheres. We will show the influence of unwanted diffraction orders and the expected measurement accuracy. As in the monochromatic setup, especially the area around the optical axis is problematic and can not be measured with the desired accuracy. The use of a small aperture stop on the optical axis is recommended because errors in other radial domains are filtered as well. The results show, that the chromatic Fizeau interferometer makes the established monochromatic method far more flexible and that different aspheres can be measured in the same setup.

  18. An Efficient Chronic Unpredictable Stress Protocol to Induce Stress-Related Responses in C57BL/6 Mice

    OpenAIRE

    Monteiro, Susana; Roque, Susana; de Sá-Calçada, Daniela; Sousa, Nuno; Correia-Neves, Margarida; Cerqueira, João José

    2015-01-01

    Exposure to chronic stress can have broad effects on health ranging from increased predisposition for neuropsychiatric disorders to deregulation of immune responses. The chronic unpredictable stress (CUS) protocol has been widely used to study the impact of stress exposure in several animal models and consists in the random, intermittent, and unpredictable exposure to a variety of stressors during several weeks. CUS has consistently been shown to induce behavioral and immunological alteration...

  19. A Stress-Coping Model of Mental Illness Stigma: II. Emotional Stress Responses, Coping Behavior and Outcome

    OpenAIRE

    Rüsch, Nicolas; Corrigan, Patrick W.; Powell, Karina; Rajah, Anita; Olschewski, Manfred; Wilkniss, Sandra; Batia, Karen

    2009-01-01

    Stigma can be a major stressor for people with schizophrenia and other mental illnesses, leading to emotional stress reactions and cognitive coping responses. Stigma is appraised as a stressor if perceived stigma-related harm exceeds an individual’s perceived coping resources. It is unclear, however, how people with mental illness react to stigma stress and how that affects outcomes such as self-esteem, hopelessness and social performance. The cognitive appraisal of stigma stress as well as e...

  20. Oxidative stress response of Inonotus obliquus induced by hydrogen peroxide.

    Science.gov (United States)

    Zheng, Weifa; Zhao, Yanxia; Zhang, Meimei; Wei, Zhiwen; Miao, Kangjie; Sun, Weiguo

    2009-12-01

    While the medicinal fungus Inonotus obliquus produces polyphenols as one of its main metabolites in natural habitats, it accumulates less polyphenols under laboratory conditions. In this study we found that the continuous addition of 1 mM H(2)O(2) at a rate of 1.6 ml/h into a submerged culture of the fungus enhanced its production of mycelia, melanins, flavonoids and hispidin analogs (HA). Simultaneous exposure of the fungus to both H(2)O(2) and arbutin resulted in reduced production of mycelia, glycosylated flavonoids (GF) and HA, and inhibition of melanogenesis. However, superoxide dismutases (SOD) and catalase (CAT) activity were enhanced following the addition of H(2)O(2) or H(2)O(2) plus arbutin. The maximum levels of SOD and CAT activities reached 355.2 U/mg protein and 39.8 U/mg protein respectively in H(2)O(2)-added medium, and 264 U/mg protein and 35.9 U/mg protein respectively in H(2)O(2) plus arbutin medium. Thus, detoxification of H(2)O(2) is conducted mainly by polyphenols under normal physiological conditions, and by both polyphenols and antioxidant enzymes under oxidative stress when melanogenesis is inhibited. Although enhanced HA production occurred after melanogenesis inactivation, total extracellular polyphenol levels were reduced. These findings suggest that enzymatic activities convert superoxide to H(2)O(2), and non-enzymatic mechanisms are largely responsible for detoxifying H(2)O(2). Enhanced production of melanins is the most important non-enzymatic response of this fungus against oxidative stress. PMID:19184774

  1. Plant water stress: Associations between ethylene and abscisic acid response

    Directory of Open Access Journals (Sweden)

    Carolina Salazar

    2015-08-01

    Full Text Available Agriculture is severely impacted by water stress due either to excess (hypoxia/anoxia or deficit of water availability. Hypoxia/anoxia is associated with oxygen (O2 deficiency or depletion, inducing several anatomical, morphological, physiological, and molecular changes. The majority of these alterations are adaptive mechanisms to cope with low O2 availability; among them, alterations in shoot length, aerenchyma formation and adventitious roots have been described in several studies. The aim of this review was to address the association between abscisic acid (ABA and ethylene in function of water availability in plants. The major physiological responses to low O2 are associated with changes in root respiration, stomatal conductance, photosynthesis, and fermentation pathways in roots. In addition, several changes in gene expression have been associated with pathways that are not present under normal O2 supply. The expression of ethylene receptor genes is up-regulated by low O2, and ethylene seems to have a crucial role in anatomical and physiological effects during hypoxia/anoxia. During O2 depletion, ethylene accumulation down-regulates ABA by inhibiting rate-limiting enzymes in ABA biosynthesis and by activating ABA breakdown to phaseic acid. With regard to water deficit, drought is primarily sensed by the roots, inducing a signal cascade to the shoots via xylem causing physiological and morphological changes. Several genes are regulated up or down with osmotic stress; the majority of these responsive genes can be driven by either an ABA-dependent or ABA-independent pathway. Some studies suggest that ethylene shuts down leaf growth very fast after the plant senses limited water availability. Ethylene accumulation can antagonize the control of gas exchange and leaf growth upon drought and ABA accumulation.

  2. On the chromatic number of general Kneser hypergraphs

    DEFF Research Database (Denmark)

    Alishahi, Meysam; Hajiabolhassan, Hossein

    2015-01-01

    In a break-through paper, Lovász [20] determined the chromatic number of Kneser graphs. This was improved by Schrijver [27], by introducing the Schrijver subgraphs of Kneser graphs and showing that their chromatic number is the same as that of Kneser graphs. Alon, Frankl, and Lovász [2] extended...... their chromatic number as an approach to a supposition of Ziegler [35] and a conjecture of Alon, Drewnowski, and Łuczak [3]. In this work, our second main result is to improve this by computing the chromatic number of a large family of Schrijver hypergraphs. Our last main result is to prove the existence...... of a completely multicolored complete bipartite graph in every coloring of a graph which extends a result of Simonyi and Tardos [29].The first two results are proved using a new improvement of the Dol'nikov-Kříž [7,18] bound on the chromatic number of general Kneser hypergraphs....

  3. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    OpenAIRE

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to ...

  4. Xenohormesis: health benefits from an eon of plant stress response evolution

    OpenAIRE

    Hooper, Philip L.; Hooper, Paul L.; Tytell, Michael; Vígh, Lászlo

    2010-01-01

    Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compoun...

  5. Effects of Alcohol Dependence and Withdrawal on Stress Responsiveness and Alcohol Consumption

    OpenAIRE

    Howard C Becker

    2012-01-01

    A complex relationship exists between alcohol-drinking behavior and stress. Alcohol has anxiety-reducing properties and can relieve stress, while at the same time acting as a stressor and activating the body’s stress response systems. In particular, chronic alcohol exposure and withdrawal can profoundly disturb the function of the body’s neuroendocrine stress response system, the hypothalamic–pituitary–adrenocortical (HPA) axis. A hormone, corticotropin-releasing factor (CRF), which is produc...

  6. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  7. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Science.gov (United States)

    Bevilacqua, Caroline Borges; Basu, Supratim; Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  8. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Caroline Borges Bevilacqua

    Full Text Available Rice (Oryza sativa L. cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1 classify the subspecies (ssp. grouping (japonica or indica of 21 accessions; 2 evaluate their sensitivity to cold stress; and 3 analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and

  9. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    Science.gov (United States)

    Sahu, Surasri N; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA. PMID:23894281

  10. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    Science.gov (United States)

    Sahu, Surasri N; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.

  11. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Surasri N Sahu

    Full Text Available Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03% exposure caused stronger global gene expression changes in comparison with low dose (0.003% exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.

  12. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses.

    Science.gov (United States)

    Vlachonasios, Konstantinos E; Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-10-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this Mini-Review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response.

  13. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat

    OpenAIRE

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress cond...

  14. Psychological and physiological responses to stress: a review based on results from PET and MRI studies

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Celia Martins; Cruz, Frederico Alan de Oliveira; Silva, Dilson [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Ciencias Fisiologicas]. E-mail: ccortez@uerj.br

    2008-12-15

    A new application for the nuclear imaging techniques is the study of organic responses to stress. Neuroimaging techniques allow the assessment of brain activation changes in association with the metabolic responses to stress. In this paper, a review of general effects of the stress on organic activity is made, emphasizing important advances introduced by studies using PET and fMRI. The importance of the hypothalamus-pituitary-adrenal axis to onset the adequate psychical and organic responses to sustain the homeostasis during the stress is discussed, as well as the possibility of traumatic stressing experiences have negative effects on the brain. (author)

  15. Role of c-Abl in the DNA damage stress response

    Institute of Scientific and Technical Information of China (English)

    Yosef SHAUL; Merav BEN-YEHOYADA

    2005-01-01

    c-Abl has been implicated in many cellular processes including differentiation, division, adhesion, death, and stress response. c-Abl is a latent tyrosine kinase that becomes activated in response to numerous extra- and intra-cellular stimuli. Here we briefly review the current knowledge about c-Abl involvement in the DNA-damage stress response and its implication on cell physiology.

  16. Chromatic multifocal pupillometer for objective perimetry in patients with macular degeneration (Conference Presentation)

    Science.gov (United States)

    Rotenstreich, Ygal; Ben-Ner, Daniel; Mahajna, Mohamad; Chibel, Ron; Sher, Ifat

    2016-03-01

    Purpose: To objectively assess visual field (VF) defects and retinal cell function in healthy subjects and patients with macular degeneration using a chromatic multifocal pupillometer. Methods: A multifocal chromatic pupillometer (MCP) was used to record pupillary responses (PR) of 17 healthy subjects and 5 Best Vitelliform macular dystrophy patients. Blue and red light stimuli (peak 485nm and 620nm, respectively) were presented at light intensities of 400 and 1000 cd/m2, respectively at 76 different points in a 16.2 degree VF. The PR of patients were compared with their findings on Humphrey's 24-2 perimetry, optical coherence tomography and the PR obtained from healthy subjects. Results: Patients demonstrated reduced percentage of pupillary contraction and slower maximal contraction velocity, more than two standard errors (SE) away from the mean of healthy subjects in response to red light in majority of VF locations. In response to blue light, the percentage of pupillary contraction was lower (by over two SE) compared with normal controls only in central locations. The latency of maximal contraction velocity was shorter in patients compared with healthy subjects in response to both colors. Conclusions: This study demonstrated the advantage of using MCP-based objective VF to assess central scotoma in macular degeneration. Our finding also suggests that chromatic perimetry may differentiate between PR mediated by cones and rods, and can specifically detect defects in macular cones. Different parameters of PR such as latency of maximal contraction velocity may shed light on the pathophysiology of different blinding diseases.

  17. Neuronal modelling of baroreflex response to orthostatic stress

    Science.gov (United States)

    Samin, Azfar

    The accelerations experienced in aerial combat can cause pilot loss of consciousness (GLOC) due to a critical reduction in cerebral blood circulation. The development of smart protective equipment requires understanding of how the brain processes blood pressure (BP) information in response to acceleration. We present a biologically plausible model of the Baroreflex to investigate the neural correlates of short-term BP control under acceleration or orthostatic stress. The neuronal network model, which employs an integrate-and-fire representation of a biological neuron, comprises the sensory, motor, and the central neural processing areas that form the Baroreflex. Our modelling strategy is to test hypotheses relating to the encoding mechanisms of multiple sensory inputs to the nucleus tractus solitarius (NTS), the site of central neural processing. The goal is to run simulations and reproduce model responses that are consistent with the variety of available experimental data. Model construction and connectivity are inspired by the available anatomical and neurophysiological evidence that points to a barotopic organization in the NTS, and the presence of frequency-dependent synaptic depression, which provides a mechanism for generating non-linear local responses in NTS neurons that result in quantifiable dynamic global baroreflex responses. The entire physiological range of BP and rate of change of BP variables is encoded in a palisade of NTS neurons in that the spike responses approximate Gaussian 'tuning' curves. An adapting weighted-average decoding scheme computes the motor responses and a compensatory signal regulates the heart rate (HR). Model simulations suggest that: (1) the NTS neurons can encode the hydrostatic pressure difference between two vertically separated sensory receptor regions at +Gz, and use changes in that difference for the regulation of HR; (2) even though NTS neurons do not fire with a cardiac rhythm seen in the afferents, pulse

  18. Psycological and physiological responses to stress: a review based on results from PET and MRI studies

    OpenAIRE

    Célia Martins Cortez; Frederico Alan de Oliveira Cruz; Dilson Silva

    2008-01-01

    A new application for the nuclear imaging techniques is the study of organic responses to stress. Neuroimaging techniques allow the assessment of brain activation changes in association with the metabolic responses to stress. In this paper, a review of general effects of the stress on organic activity is made, emphasizing important advances introduced by studies using PET and fMRI. The importance of the hypothalamus-pituitary-adrenal axis to onset the adequate psychical and organic responses ...

  19. Prenatal Cocaine Exposure, Gender, and Adolescent Stress Response: A Prospective Longitudinal Study

    OpenAIRE

    Chaplin, Tara M.; Freiburger, Matthew B.; Linda C Mayes; Sinha, Rajita

    2010-01-01

    Prenatal cocaine exposure is associated with alterations in arousal regulation in response to stress in young children. However, relations between cocaine exposure and stress response in adolescence have not been examined. We examined salivary cortisol, self-reported emotion, heart rate, and blood pressure (BP) responses to the Trier Social Stress Test (TSST) in 49 Prenatally Cocaine and other drug Exposed (PCE) and 33 Non Cocaine Exposed (NCE) adolescents. PCE adolescents had higher cortisol...

  20. Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress.

    Science.gov (United States)

    Han, Yanping; Zhou, Dongsheng; Pang, Xin; Zhang, Ling; Song, Yajun; Tong, Zongzhong; Bao, Jingyue; Dai, Erhei; Wang, Jin; Guo, Zhaobiao; Zhai, Junhui; Du, Zongmin; Wang, Xiaoyi; Wang, Jian; Huang, Peitang; Yang, Ruifu

    2005-04-01

    DNA microarray was used as a tool to investigate genome-wide transcriptional responses of Yersinia pestis to hyperosmotic and high-salinity stress. Hyperosmotic stress specifically upregulated genes responsible for ABC-type transport and the cytoplasmic accumulation of certain polysaccharides, while high-salinity stress induced the transcription of genes encoding partition proteins and several global transcriptional regulators. Genes whose transcription was enhanced by both kinds of stress comprised those encoding osmoprotectant transport systems and a set of virulence determinants. The number of genes downregulated by the two kinds of stress was much lower than that of upregulated genes, suggesting that neither kind of stress severely depresses cellular processes in general. Many differentially regulated genes still exist whose functions remain unknown. Y. pestis recognized high-salinity and hyperosmotic stress as different kinds of environmental stimuli, and different mechanisms enabled acclimation to these two kinds of stress, although Y. pestis still executed common mechanisms to accommodate both types of stress.

  1. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  2. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  3. Protein expression in response to folate stress in Escherichia coli.

    OpenAIRE

    Huang, E Y; Mohler, A M; Rohlman, C E

    1997-01-01

    Interruption of folate metabolism by trimethoprim results in the elevated expression of folate stress proteins in Escherichia coli. E. coli grown in culture medium supplemented with the folate-dependent metabolites glycine, methionine, and the purine nucleoside inosine shows reduced expression of folate stress proteins. The folate stress proteins include the universal stress protein, the ferric uptake regulatory repressor, and possibly, lipoamide dehydrogenase, the L protein component of the ...

  4. Stress Effects on Mood, HPA Axis, and Autonomic Response: Comparison of Three Psychosocial Stress Paradigms

    OpenAIRE

    Giles, Grace E.; Mahoney, Caroline R.; Brunyé, Tad T.; Taylor, Holly A.; Kanarek, Robin B.

    2014-01-01

    Extensive experimental psychology research has attempted to parse the complex relationship between psychosocial stress, mood, cognitive performance, and physiological changes. To do so, it is necessary to have effective, validated methods to experimentally induce psychosocial stress. The Trier Social Stress Test (TSST) is the most commonly used method of experimentally inducing psychosocial stress, but it is resource intensive. Less resource intense psychosocial stress tasks include the Socia...

  5. Stress Reactivity and Corticolimbic Response to Emotional Faces in Adolescents

    Science.gov (United States)

    Liu, Jie; Chaplin, Tara M.; Wang, Fei; Sinha, Rajita; Mayes, Linda C.; Blumberg, Hilary P.

    2012-01-01

    Objective: Adolescence is a critical period in the development of lifelong patterns of responding to stress. Understanding underpinnings of variations in stress reactivity in adolescents is important, as adolescents with altered stress reactivity are vulnerable to negative risk-taking behaviors including substance use, and have increased lifelong…

  6. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era.

    Science.gov (United States)

    Hagiwara, Daisuke; Sakamoto, Kazutoshi; Abe, Keietsu; Gomi, Katsuya

    2016-09-01

    Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era." PMID:27007956

  7. Chromatic control in coextruded layered polymer microlenses

    CERN Document Server

    Crescimanno, Michael; Andrews, James H; Zhou, Chuanhong; Petrus, Joshua B; Merlo, Cory; Bagheri, Cameron; Hetzel, Connor; Tancabel, James; Singer, Kenneth D; Baer, Eric

    2015-01-01

    We describe the formation, characterization and theoretical understanding of microlenses comprised of alternating polystyrene and polymethylmethacrylate layers produced by multilayer coextrusion. These lenses are fabricated by photolithography, using a grayscale mask followed by plasma etching, so that the refractive index alternation of the bilayer stack appears across the radius of the microlens. The alternating quarter-wave thick layers form a one-dimensional photonic crystal whose dispersion augments the material dispersion, allowing one to sculpt the chromatic dispersion of the lens by adjusting the layered structure. Using Huygen's principle, we model our experimental measurements of the focal length of these lenses across the reflection band of the multilayer polymer film from which the microlens is fashioned. For a 56 micron diameter multilayered lens of focal length 300 microns, we measured a nearly 25 percent variation in the focal length across a shallow, 50 nm-wide reflection band.

  8. Effect of radiation on hydrotalcites with chromates

    International Nuclear Information System (INIS)

    Nowadays the generation of radioactive wastes is matter of several studies. In this work anion material, chromates, in hydrotalcite are retained which are anion exchangers. It was proposed to heat the hydrotalcite until temperature of 1200 C with the purpose to form the (MgAl2O4) spinel is very stable and in this way to immobilize strongly the anions. The effect of radiation on this compound and in particular the chromium lixiviation with solution 1N NaCl. It was found that in all case, the anions are strongly retained in the spinel formed. The radiation dose used for this was 100 Mrad, the samples were treated with NaCl 1N for studying the Cr lixiviation. The results show that for the calcined samples at 1200 C and irradiated there are not chromium escapes, which indicates that it is strongly retained in the spinel that is the formed structure after of the material calcination. (Author)

  9. Advantages of chromatic-confocal spectral interferometry in comparison to chromatic confocal microscopy

    International Nuclear Information System (INIS)

    Chromatic confocal microscopy (CCM) and spectral interferometry (SI) are established and robust sensor principles. CCM is a focus-based measurement principle, whose lateral and axial resolutions depend on the sensor's numerical aperture (NA), while the measurement range is given by the spectral bandwidth and the chromatic dispersion in the axial direction. Although CCM is a robust principle, its accuracy can be reduced by self-imaging effects or asymmetric illumination of the sensor pupil. Interferometric principles based on the evaluation of the optical path difference, e.g., SI, have proven to be robust against self-imaging. The disadvantage of SI is its measurement range, which is limited by the depth of focus. Hence, the usable NA and the lateral resolution are restricted. Chromatic-confocal spectral interferometry (CCSI) is a combination of SI and CCM, which overcomes these restrictions. The increase of robustness of CCSI compared to CCM due to the interferometric gain has been demonstrated before. In this contribution the advantages of CCSI in comparison to CCM concerning self-imaging artifacts will be demonstrated. Therefore, a new phase-evaluation algorithm with higher resolution concerning classical SI-based evaluation algorithms is presented. For the comparison of different sensor systems, a chirp comparison standard is used. (paper)

  10. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism.

    Science.gov (United States)

    Kissoudis, Christos; Sunarti, Sri; van de Wiel, Clemens; Visser, Richard G F; van der Linden, C Gerard; Bai, Yuling

    2016-09-01

    Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na(+) and Cl(-) accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant's performance under the combination of abiotic and biotic stress.

  11. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism.

    Science.gov (United States)

    Kissoudis, Christos; Sunarti, Sri; van de Wiel, Clemens; Visser, Richard G F; van der Linden, C Gerard; Bai, Yuling

    2016-09-01

    Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na(+) and Cl(-) accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant's performance under the combination of abiotic and biotic stress. PMID:27436279

  12. Parent and Adolescent Responses to Poverty Related Stress: Tests of Mediated and Moderated Coping Models

    Science.gov (United States)

    Wadsworth, Martha E.; Raviv, Tali; Compas, Bruce E.; Connor-Smith, Jennifer K.

    2005-01-01

    We tested several models of the associations among economic strain, life stress, coping, involuntary stress responses, and psychological symptoms in a sample of 57 parent-adolescent dyads from rural, lower-income families. Economic strain and life stress predicted symptoms for both parents and adolescents. Stressor-symptom specificity was found…

  13. Stress and parental care: Prolactin responses to acute stress throughout the breeding cycle in a long-lived bird.

    Science.gov (United States)

    Riou, Samuel; Chastel, Olivier; Lacroix, André; Hamer, Keith C

    2010-08-01

    While the role of corticosterone in mediating the response of birds to acute stress is well established, it has recently been proposed that a decrease in prolactin levels following stress may complement corticosterone in redirecting resources away from breeding activities and towards behaviors promoting immediate survival. Here, for the first time, we detail changes in the prolactin stress response of birds throughout the breeding cycle. We then discuss the modulation of the corticosterone and prolactin stress responses over successive stages of breeding, differing in reproductive value and parental effort. In a long-lived Procellariiform seabird, the Manx shearwater Puffinus puffinus, we found that prolactin levels decreased in response to acute stress during incubation and mid chick-rearing but increased in response to stress during late chick-rearing and in non parenting birds, a pattern similar to that previously described for mammals. The high corticosterone stress response in pre-breeders was consistent with predictions based on reproductive value, but a similar response during late chick-rearing was not. This probably reflected foraging effort and a heightened importance of the parents' own nutritional status at this stage of the season, in advance of post-breeding migration. We also found that baseline prolactin levels were maintained at high levels during chick-rearing and were only slightly lower during late chick-rearing and in failed breeders and non-breeders. These data suggest that prolactin may play a role in nestling care long beyond the brooding phase, that this is not due to birds spending long periods away from the colony and that prolactin secretion may be necessary for nest-guarding behavior.

  14. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    Science.gov (United States)

    Ehrlichman, M. P.

    2016-04-01

    A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  15. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.

    Science.gov (United States)

    Bedi, Sonia; Sengupta, Sourabh; Ray, Anagh; Nag Chaudhuri, Ronita

    2016-09-01

    ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase. PMID:27457990

  16. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    Science.gov (United States)

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions.

  17. A hormone-responsive C1-domain-containing protein At5g17960 mediates stress response in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ravindran Vijay Bhaskar

    Full Text Available Phytohormones play a critical role in mediating plant stress response. They employ a variety of proteins for coordinating such processes. In Arabidopsis thaliana, some members of a Cys-rich protein family known as C1-clan proteins were involved in stress response, but the actual function of the protein family is largely unknown. We studied At5g17960, a C1-clan protein member that possesses three unique C1 signature domains viz. C1_2, C1_3 and ZZ/PHD type. Additionally, we identified 72 other proteins in A. thaliana that contain all three unique signature domains. Subsequently, the 73 proteins were phylogenetically classified into IX subgroups. Promoter motif analysis of the 73 genes identified the presence of hormone-responsive and stress-responsive putative cis-regulatory elements. Furthermore, we observed that transcript levels of At5g17960 were induced in response to different hormones and stress treatments. At1g35610 and At3g13760, two other members of subgroup IV, also showed upregulation upon GA3, biotic and abiotic stress treatments. Moreover, seedlings of independent transgenic A. thaliana lines ectopically expressing or suppressing At5g17960 also showed differential regulation of several abiotic stress-responsive marker genes. Thus, our data suggest that C1-domain-containing proteins have a role to play in plant hormone-mediated stress responses, thereby assigning a putative function for the C1-clan protein family.

  18. [Physiological responses of tubificidae to heavy metal chromium stress].

    Science.gov (United States)

    Lou, Ju-Qing; Yang, Dong-Ye; Cao, Yong-Qing; Sun, Pei-De; Zheng, Ping

    2014-11-01

    Tubificidae is now used in the wastewater treatment systems to successfully minimize the sludge production, which has been proved an effective, economical and sustainable technology. But the excess sludge inevitably contains a variety of heavy metals, especially the sludge from industrial wastewater treatment plant. In order to apply tubificidae to these systems, Chromium was selected as pollutant object and the physiological responses of tubificidae to Chromium were studied in this paper. Acute toxicity was analyzed and Median lethal concentrations (LC50) were determined over 96 h periods for Cr. Results indicated that 24 h LC50 and 96 h LC50 were 7.94 mg x L(-1) and 0.49 mg x L(-1), respectively. The duration f tubificidae in Cr solution decreased with increasing Cr concentration. Under the Cr stress, a highest respiration rate was obtained when the concentration of Cr(VI), temperature, pH and DO was 2.50 mg x L(-1), 26 degrees C, 6.0 and 6.0 mg x L(-1), respectively. The order of these factors was the concerntration of Cr(VI), temperature, DO and pH. The respiration experiments demonstrated that low concentration (< 2.50 mg x L(-1)) of Cr could promote the respiration rate of tubificidaes. On the other hand, when the concentration of Cr was 8.00 mg x L(-1), it could remarkably inhibit the respiratory rates of tubificidae. PMID:25639096

  19. Stress responses of spring rape plants to soil flooding

    Science.gov (United States)

    Balakhnina, T.; Bennicelli, R.; Stêpniewska, Z.; Stêpniewski, W.; Borkowska, A.; Fomina, I.

    2012-10-01

    Stress responses of spring rape to soil hypoxia were investigated during 8-days flooding. Soil air-filled porosity decreased from 25-30% to 0%, oxygen diffusion rate - from 2.6-3.5 to 0.34 μmol O2 m-2 s-1, and redox potential - from 460 to 150mVwithin few hours. Alcohol dehydrogenase activity in roots increased up to 7-fold after one day of flooding and then decreased to 170% of control. Superoxide dismutase activity in roots increased by 27% during first 3 days and then dropped to 60% of control; in the leaves superoxide dismutase activity increased in average by 44%. Ascorbate peroxidase activity in leaves increased by 37% during first 3 days and then decreased to control value. Glutathione reductase activity increased by 45% in roots of flooded plants but did not change in leaves. Proline concentration in leaves increased up to 4-fold on the 3d day of flooding and then decreased to control value. Thus soil flooding induces increase of alcohol dehydrogenase activity and subsequent increase of superoxide dismutase and glutathione reductase activities in roots while the leaves display a few days increase of free proline concentration and ascorbate peroxidase activity, and a long-term increase of superoxide dismutase activity.

  20. Response of the microbial metallome to arsenic stress

    Science.gov (United States)

    Wolfe-Simon, F.; Lancaster, W. A.; Menon, A. L.; Yannone, S. M.; Adams, M. W.; Tainer, J. A.

    2012-12-01

    Life depends on access to nutrients in the environment. While elements such as nitrogen, carbon, sulfur and phosphorus are fundamental to microbial survival, trace nutrient elements like iron, molybdenum and copper show dramatically different profiles depending on environmental conditions. These elements are known nutrients but also can be toxic at higher concentrations. For low or limiting concentrations of one nutrient element, microbes may utilize another element to serve similar functions often, but not always, in similar macromolecular structures. Well-characterized elemental exchanges include manganese for iron and tungsten for molybdenum. Here we report on our preliminary metallomic analyses of the Gammaproteobacterium Halomonas sp. str. GFAJ-1 grown under severe arsenic stress. We analyzed 53 elements by ICP-MS, in order to determine which elements are tightly, weakly or not bound to soluble macromolecules (> 3 kDa). We specifically investigated the changes to the metallome of GFAJ-1cells that were grown in the synthetic minimal medium AML60 supplemented with 50 mM arsenate (As(V)), 50 μM phosphate (P) or 50 mM As(V) plus 50 μM P. Further studies will identify which macromolecules are associated with the various elements. This research extends our understanding of metal assimilation in microbes in response to tandem phosphorus limitation coupled to extreme arsenic concentrations and furthermore contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  1. Response of automated tow placed laminates to stress concentrations

    Science.gov (United States)

    Cairns, Douglas S.; Ilcewicz, Larry B.; Walker, Tom

    1993-01-01

    In this study, the response of laminates with stress concentrations is explored. Automated Tow Placed (ATP, also known as Fiber Placement) laminates are compared to conventional tape layup manufacturing. Previous tensile fracture tests on fiber placed laminates show an improvement in tensile fracture of large notches over 20 percent compared to tape layup laminates. A hierarchial modeling scheme is presented. In this scheme, a global model is developed for laminates with notches. A local model is developed to study the influence of inhomogeneities at the notch tip, which are a consequence of the fiber placement manufacturing technique. In addition, a stacked membrane model was developed to study delaminations and splitting on a ply-by-ply basis. The results indicate that some benefit with respect to tensile fracture (up to 11 percent) can be gained from inhomogeneity alone, but that the most improvement may be obtained with splitting and delaminations which are more severe in the case of fiber placement compared to tape layup. Improvements up to 36 percent were found from the model for fiber placed laminates with damage at the notch tip compared to conventional tape layup.

  2. Managing austerity: rhetorical and real responses to fiscal stress in local government

    NARCIS (Netherlands)

    Overmans, Tom; Noordegraaf, Mirko

    2014-01-01

    Coping with fiscal stress is a major challenge. Four responses can be identified for managing austerity: decline, cutbacks, retrenchment, and downsizing. Responses are primarily fiscally oriented, or organizational; they focus predominantly on stability, or change. Explorative research indicates the

  3. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect

    OpenAIRE

    Piiroinen, Saija; Lyytinen, Anne; Lindström, Leena

    2012-01-01

    Adaptation to stressful environments is one important factor influencing species invasion success. Tolerance to one stress may be complicated by exposure to other stressors experienced by the preceding generations. We studied whether parental temperature stress affects tolerance to insecticide in the invasive Colorado potato beetle Leptinotarsa decemlineata. Field-collected pyrethroid-resistant beetles were reared under either stressful (17°C) or favourable (23°C) insecticide-free environment...

  4. When Does Stress Help or Harm? The Effects of Stress Controllability and Subjective Stress Response on Stroop Performance

    OpenAIRE

    Roselinde Kaiser Henderson; Snyder, Hannah R.; Tina eGupta; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, r...

  5. Factors affecting the dynamic response of pre-stressed anchors after transient excitation

    Institute of Scientific and Technical Information of China (English)

    Xu Huijun; Li Qingfeng

    2011-01-01

    The wide application of pre-stressed bolting technology in coal mine tunnels has made the nondestructive stress wave reflection method of determining bolting quality an important one.The effect of the support plate on the dynamic response of the pre-stressed anchor is of particular interest.A theoreticalanalysis and numerical simulations are used to identify the factors affecting the contact stress between the support plate and the rock wall.A formula allowing the calculation of contact stress is presented.Stress wave propagation through the nut,support plate,and rock wall are predicted.The dynamic response signals were measured in the field using prestressed anchors pre-tightened to different torques.The effects from the support plate on the dynamic response were recorded and the results compared to the predictions of pre-stressed anchor.This work provides a theoretical reference for the signal processing of dynamic reflected wave signals in anchor bolts.

  6. Effect of induction heating stress improvement on ultrasonic response from intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Induction heating stress improvement (IHSI) is often performed for the BWR piping weldments in order to reduce the susceptibility of intergranular stress corrosion cracking (IGSCC). Recently, in an US BWR plant, IGSCC was detected where it was not expected because the plant had implemented IGSCC countermeasures, IHSI. The objective of this work is to experimentally document the effect of IHSI on IGSCC detectability. Two IGSCC pipe samples containing a range of circumferential and axial cracks were fabricated from two 12-inch Type 304 stainless steel pipe weldments by the Creviced Pipe Test. Each sample was documented in detail by UT and PT to establish its IGSCC characteristics prior to application of IHSI and I-(Inverse)IHSI. For each sample two separate UT methods were used. One pipe sample was subjected to normal IHSI, in which the pipe OD surface was heated while the ID surface was kept cool by circulating water. The other pipe was subjected to I-IHSI, in which the pipe was heated from the ID surface followed by rapid cooling from the OD surface with water jet spray. After IHSI treatments, the two IGSCC pipe samples were ultrasonically characterized in the exact manner that was done in the initial characterization to determine if there were any noticeable changes in the UT response of the cracks as indicated by their sizes and signal amplitudes. All of the maximum echo height data from the two samples were compared in terms of the effect of the IHSI treatments. There was no statistically significant difference in the echo height due to the treatments. For both cases, the crack sizes measured after the treatments were reported to be larger than those measured before the treatments. Ultrasonic imaging of cracks was carried out by a laboratory immersion technique coupled with an automated scan probe system. The results are expressed by imaging areas of different echo height levels and of depth

  7. Effect of induction heating stress improvement on ultrasonic response from intergranular stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    Induction heating stress improvement (IHSI) is often performed for the BWR piping weldments in order to reduce the susceptibility of intergranular stress corrosion cracking (IGSCC). Recently, in an US BWR plant, IGSCC was detected where it was not expected because the plant had implemented IGSCC countermeasures, IHSI. The objective of this work is to experimentally document the effect of IHSI on IGSCC detectability. Two IGSCC pipe samples containing a range of circumferential and axial cracks were fabricated from two 12-inch Type 304 stainless steel pipe weldments by the Creviced Pipe Test. Each sample was documented in detail by UT and PT to establish its IGSCC characteristics prior to application of IHSI and I-(Inverse)IHSI. For each sample two separate UT methods were used. One pipe sample was subjected to normal IHSI, in which the pipe OD surface was heated while the ID surface was kept cool by circulating water. The other pipe was subjected to I-IHSI, in which the pipe was heated from the ID surface followed by rapid cooling from the OD surface with water jet spray. After IHSI treatments, the two IGSCC pipe samples were ultrasonically characterized in the exact manner that was done in the initial characterization to determine if there were any noticeable changes in the UT response of the cracks as indicated by their sizes and signal amplitudes. All of the maximum echo height data from the two samples were compared in terms of the effect of the IHSI treatments. There was no statistically significant difference in the echo height due to the treatments. For both cases, the crack sizes measured after the treatments were reported to be larger than those measured before the treatments. Ultrasonic imaging of cracks was carried out by a laboratory immersion technique coupled with an automated scan probe system. The results are expressed by imaging areas of different echo height levels and of depth.

  8. Assessment of Response to Drought Stress of Chickpea (Cicer arietinumL.) Lines Under Rainfed Conditions

    OpenAIRE

    TOKER, Cengiz; ÇAĞIRGAN, M. İlhan

    1998-01-01

    Totally sixty four chickpea lines were grown for assesment of response to drought stress in the stress and non-stress environments under rainfed conditions. The seed yield of the lines when grown under the non-stress condition increased at a rate of 53% over the in stress condition. The line, FLIP 92-154C, was determinated as the best tolerant line to drought stress environment under the field condition. Also, seed yield strongly correlated with biological yield, harvest index, mean produc...

  9. Systemic stress response and hyperglycemia after abdominal surgery in rat and man

    OpenAIRE

    Hager, Peter

    2008-01-01

    Surgical trauma results in a complex neuroendocrine and metabolic response known as the systemic stress response, which is initiated by neuronal and humoral signals from the site of the injury. These signals converge at central sites and result in the activation of the hypothalamicpituitary- adrenal (HPA) axis, the sympathetic nervous system and an inflammatory response. The systemic stress response is crucial for survival and results in metabolic changes in order to provide...

  10. Relation between stress-precipitated seizures and the stress response in childhood epilepsy

    NARCIS (Netherlands)

    Van Campen, Jolien S.; Jansen, Floor E.; Pet, Milou A.; Otte, Willem M.; Hillegers, Manon H J; Joels, Marian; Braun, Kees P J

    2015-01-01

    The majority of patients with epilepsy report that seizures are sometimes triggered or provoked. Stress is the most frequently self-reported seizure-precipitant. The mechanisms underlying stress-sensitivity of seizures are currently unresolved. We hypothesized that stress-sensitivity of seizures rel

  11. Studying stress responses in the post-genomic era: its ecological and evolutionary role

    Indian Academy of Sciences (India)

    Jesper G Sørensen; Volker Loeschcke

    2007-04-01

    Most investigations on the effects of and responses to stress exposures have been performed on a limited number of model organisms in the laboratory. Here much progress has been made in terms of identifying and describing beneficial and detrimental effects of stress, responses to stress and the mechanisms behind stress tolerance. However, to gain further understanding of which genes are involved in stress resistance and how the responses are regulated from an ecological and evolutionary perspective there is a need to combine studies on multiple levels of biological organization from DNA to phenotypes. Furthermore, we emphasize the importance of studying ecologically relevant traits and natural or semi-natural conditions to verify whether the results obtained are representative of the ecological and evolutionary processes in the field. Here, we will review what we currently know about thermal adaptation and the role of different stress responses to thermal challenges in insects, particularly Drosophila. Furthermore, we address some key questions that require future attention.

  12. Epigenetic responses to heat stress at different time scales and the involvement of small RNAs

    OpenAIRE

    Stief, Anna; Brzezinka, Krzysztof; Lämke, Jörn; Bäurle, Isabel

    2014-01-01

    The hypothesis that plants can benefit from a memory of past stress exposure has recently attracted a lot of attention. Here, we discuss two different examples of heat stress memory to elucidate the potential benefits that epigenetic responses may provide at both the level of acclimation of the individual plant and adaptation at a species-wide level. Specifically, we discuss how microRNAs regulate the heat stress memory and thereby increase survival upon a recurring heat stress. Secondly, we ...

  13. Vaccine-induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    N.J. Paine; C. Ring; J.A. Bosch; M.T. Drayson; S. Aldred; J.J.C.S. Veldhuijzen van Zanten

    2014-01-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male

  14. Selective breeding for stress response in common carp (Cyprinus carpio L.) using androgenesis

    NARCIS (Netherlands)

    Tanck, M.

    2000-01-01

    The aim of the thesis was to explore the genetic background of stress response in common carp ( Cyprinus carpio L.) and produce homozygous and heterozygous isogenic strains with divergent stress responses. As stressor a rapid temperature decrease (= cold shock) was used. As a preparatory step, a num

  15. Stress response symptoms in adolescent and young adult children of parents diagnosed with cancer

    NARCIS (Netherlands)

    Huizinga, G.A.; Visser, A.; van der Graaf, W.T.; Hoekstra, H.J.; Klip, E.C.; Pras, E.; Hoekstra-Weebers, J.E.

    2005-01-01

    The aim of this study was to assess stress response symptoms in children of parents diagnosed with cancer 1-5 year prior to study entry. The impact of event scale was used to measure stress response symptoms in terms of intrusion and avoidance; the youth self-report assessed emotional and behavioura

  16. Relationships between Job Stress and Worker Perceived Responsibilities and Job Characteristics

    OpenAIRE

    P. Jacobs; CS Dewa; AH Thompson

    2010-01-01

    Background: Few studies have examined the relationship between perceived responsibilities by workers and job characteristics and experiences of stress.Objective: To examine the relationship between job stress and work responsibilities and job characteristics.Methods: We analyzed data from 2737 adults who were labor force participants in the province of Alberta, Canada. A logistic regression model was employed to examine factors associated with high job stress.Results: About 18% of the studied...

  17. Glucocorticoid receptors in the nucleus of the solitary tract (NTS) decrease endocrine and behavioral stress responses

    OpenAIRE

    Ghosal, Sriparna; Bundzikova-Osacka, Jana; Dolgas, C. Mark; Myers, Brent; Herman, James P.

    2014-01-01

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, leading to adrenocortical secretion of glucocorticoids. The magnitude and duration of the HPA axis response is mediated in large part by the glucocorticoid receptor (GR). The nucleus of the solitary tract (NTS) abundantly expresses the GR and is a key brain region for processing autonomic and endocrine stress responses. This study tests the hypothesis that GR within the NTS plays an important role in inhibiting stress-induced endo...

  18. Biological Adsorption and Accumulation Analysis of Hizikia fusiforme Response to Copper Stress Conditions

    Directory of Open Access Journals (Sweden)

    Lidong LIN

    2015-04-01

    Full Text Available Coastal water pollution is an important environmental problem now days. Hizikia fusiforme is cultivated in coastal water, being considered as a healthy food. However, little information exists concerning on this species responses to copper stress conditions. Experiments were conducted to distinguish biological adsorption and biological accumulation of H. fusiforme in regard to copper stress; it was determined the long-term stress with lower concentrations of copper (0.25 mg/L and 0.50 mg/L and short-term stress with higher concentrations of copper (1.5 mg/L and 3.0 mg/L on H. fusiforme. Results suggested that H. fusiforme has different response to various copper stresses; lower concentration stress could significantly enhance the growth of H. fusiforme, while H. fusiforme growth was inhibited and mitigated injured by 0.25-0.50 mg/L copper stress. Under the highest stress, H. fusiforme was extremely harmed, the biomass loss was significant and dry weight/fresh weight was also significantly decreased. Results suggested that lower and higher concentrations of copper stress have different impacts on H. fusiforme; the biological adsorption amount is lower than that of biological accumulation amount under low copper stress conditions, but the biological adsorption amount is much higher under high concentration copper stress. A better understanding of H. fusiforme responses to heavy metal stress should bring more data about its physiological adaptation mechanism under such conditions.

  19. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress.

    Science.gov (United States)

    Picard, Martin; McManus, Meagan J; Gray, Jason D; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K; Seifert, Erin L; McEwen, Bruce S; Wallace, Douglas C

    2015-12-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism's multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic-pituitary-adrenal axis, sympathetic adrenal-medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  20. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Cuypers, Ann [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Horemans, Nele [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Remans, Tony; Opdenakker, Kelly; Smeets, Karen [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Bello, Daniel Martinez [Hasselt University, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Agoralaan Building D, 3590 Diepenbeek (Belgium); Havaux, Michel [Commissariat a l' Energie Atomique (CEA)/Cadarache, Direction des Sciences du Vivant, Departement d' Ecophysiologie Vegetale et de Microbiologie, Laboratoire d' Ecophysiologie de la Photosynthese, 13108 Saint-Paul-lez-Durance (France); Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2011-06-15

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 {mu}M uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 {mu}M uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress

  1. Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay1[OA

    Science.gov (United States)

    Burke, John J.

    2007-01-01

    Water-deficit stresses preferentially reduce shoot growth, thereby disrupting the flow of carbohydrates from source leaves to the developing sinks. Here, we use a novel stress bioassay to dissect responses of field and greenhouse-grown cotton (Gossypium hirsutum) source leaves to water-deficit stresses. Fifth main stem leaf samples were harvested at sunrise and subjected to a prolonged elevated respiratory demand in the dark. Sucrose levels are lower in nonstressed cotton at sunrise compared to water-deficit stressed cotton, potentially predisposing the nonstressed tissue to succumb more rapidly. Tissue death was determined initially using the cell viability stain 2,3,5-triphenyltetrazolium chloride, but was determined in subsequent experiments by monitoring the decline in chlorophyll fluorescence yield. Fluorescence yield measurements were obtained within minutes of harvesting and individual samples were monitored over the time course of the treatment. Analyses of the time course and magnitude of chlorophyll fluorescence yield decline in samples from irrigated and dryland plots permitted the detection of stress responses within 24 h of the cessation of irrigation. The rate of fluorescence yield decline during the elevated respiratory demand treatment slowed as the water-deficit stress increased. Upon irrigation, the source leaves of the water-stressed plants recovered to prestress values within 4 d. Well-watered cotton overexpressing heat shock protein 101 had identical rates of fluorescence yield decline as nontransgenic cotton. These results suggest that the delayed decline in fluorescence yield of water-stressed tissue exposed to prolonged elevated respiratory demand can be used as a sensitive indicator of water-deficit stress responses. PMID:17071650

  2. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Susana eMonteiro

    2015-02-01

    Full Text Available Exposure to chronic stress can have broad effects on health ranging from increased predisposition for neuropsychiatric disorders to deregulation of immune responses. The chronic unpredictable stress (CUS protocol has been widely used to study the impact of stress exposure in several animal models and consists in the random, intermittent and unpredictable exposure to a variety of stressors during several weeks. CUS has consistently been shown to induce behavioral and immunological alterations typical of the chronic stress response. Unfortunately C57BL/6 mice, one of the most widely used mouse strains, due to the great variety of genetically modified lines, seem to be resistant to the commonly used 4-week-long CUS protocol. The definition of an alternative CUS protocol allowing the use of C57BL/6 mice in chronic stress experiments is a need. Here we show that by extending the CUS protocol to 8 weeks is possible to induce a chronic stress response in C57BL/6 mice, as revealed by abrogated body weight gain, increased adrenals weight and an overactive hypothalamic-pituitary-adrenal (HPA axis with increased levels of serum corticosterone. Moreover, we also observed stress-associated behavioral alterations, including the potentiation of anxious-like and depressive-like behaviors and a reduction of exploratory behavior, as well as subtle stress-related changes in the cell population of the thymus and of the spleen.The present protocol for C57BL/6 mice consistently triggers the spectrum of CUS-induced changes observed in rats and, thus, will be highly useful to researchers that need to use this particular mouse strain as an animal model of neuropsychiatric disorders and/or immune deregulation related to chronic unpredictable stress.

  3. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  4. Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2013-05-01

    Full Text Available Abscisic acid (ABA plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.

  5. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy

    Directory of Open Access Journals (Sweden)

    Ana-Belén eBlázquez

    2014-06-01

    Full Text Available The Flavivirus is a genus of RNA viruses that includes multiple long known human, animal and zoonotic pathogens such as Dengue virus, yellow fever virus, West Nile virus or Japanese encephalitis virus, as well as other less known viruses that represent potential threats for human and animal health such as Usutu or Zika viruses. Flavivirus replication is based on endoplasmic reticulum-derived structures. Membrane remodeling and accumulation of viral factors induce endoplasmic reticulum stress that results in activation of a cellular signaling response termed unfolded protein response (UPR, which can be modulated by the viruses for their own benefit. Concomitant with the activation of the UPR, an upregulation of the autophagic pathway in cells infected with different flaviviruses has also been described. This review addresses the current knowledge of the relationship between endoplasmic reticulum stress, UPR and autophagy in flavivirus-infected cells and the growing evidences for an involvement of these cellular pathways in the replication and pathogenesis of these viruses.

  6. Ionizing radiation causes the stress response in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Potentiality of the stress-reaction arising in Drosophila melanogaster under gamma-irradiation of the source with 137Cs (irradiation dose is 10 Gy , radiation dose rate amounts 180 c Gy/min) is studied. It is shown that radiation induces the stress-reaction in Drosophila resulting in alterations in energetic metabolism (biogenic amines metabolic system) and in reproductive function

  7. Effect of Pre-Stressing on the Acid-Stress Response in Bifidobacterium Revealed Using Proteomic and Physiological Approaches.

    Directory of Open Access Journals (Sweden)

    Junhua Jin

    Full Text Available Weak acid resistance limits the application of Bifidobacteria as a probiotic in food. The acid tolerance response (ATR, caused by pre-stressing cells at a sublethal pH, could improve the acid resistance of Bifidobacteria to subsequent acid stress. In this study, we used Bifidobacterium longum sub. longum BBMN68 to investigate the effect of the ATR on the acid stress response (ASR, and compared the difference between the ATR and the ASR by analyzing the two-dimensional-PAGE protein profiles and performing physiological tests. The results revealed that a greater abundance of proteins involved in carbohydrate metabolism and protein protection was present after the ASR than after the ATR in Bifidobacterium. Pre-stressing cells increased the abundance of proteins involved in energy production, amino acid metabolism, and peptidoglycan synthesis during the ASR of Bifidobacterium. Moreover, after the ASR, the content of ATP, NH3, thiols, and peptidoglycan, the activity of H+-ATPase, and the maintenance of the intracellular pH in the pre-stressed Bifidobacterium cells was significantly higher than in the uninduced cells. These results provide the first explanation as to why the resistance of Bifidobacterium to acid stress improved after pre-stressing.

  8. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    Directory of Open Access Journals (Sweden)

    Arjun Sham

    Full Text Available Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20, encoding for a member of the caleosin (lipid surface protein family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research

  9. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  10. Mutations affecting chromatic adaptation in the cyanobacterium Fremyella diplosiphon.

    OpenAIRE

    Cobley, J G; Miranda, R D

    1983-01-01

    The chromatically adapting cyanobacterium, Fremyella diplosiphon, when grown in cool white fluorescent light, contains phycoerythrin as its predominant phycobiliprotein. When grown on agar plates with cool white illumination, mutant colonies deficient or devoid of phycoerythrin can be visibly distinguished from the wild type. A total of 25 anomalously pigmented strains were isolated and examined for their ability to chromatically adapt. Based on absorption spectra of cell extracts and on fluo...

  11. Uncovering microRNA-mediated response to SO2 stress in Arabidopsis thaliana by deep sequencing.

    Science.gov (United States)

    Li, Lihong; Xue, Meizhao; Yi, Huilan

    2016-10-01

    Sulfur dioxide (SO2) is a major air pollutant and has significant impacts on plants. MicroRNAs (miRNAs) are a class of gene expression regulators that play important roles in response to environmental stresses. In this study, deep sequencing was used for genome-wide identification of miRNAs and their expression profiles in response to SO2 stress in Arabidopsis thaliana shoots. A total of 27 conserved miRNAs and 5 novel miRNAs were found to be differentially expressed under SO2 stress. qRT-PCR analysis showed mostly negative correlation between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during SO2 exposure. The target genes of SO2-responsive miRNAs encode transcription factors and proteins that regulate auxin signaling and stress response, and the miRNAs-mediated suppression of these genes could improve plant resistance to SO2 stress. Promoter sequence analysis of genes encoding SO2-responsive miRNAs showed that stress-responsive and phytohormone-related cis-regulatory elements occurred frequently, providing additional evidence of the involvement of miRNAs in adaption to SO2 stress. This study represents a comprehensive expression profiling of SO2-responsive miRNAs in Arabidopsis and broads our perspective on the ubiquitous regulatory roles of miRNAs under stress conditions. PMID:27232729

  12. Studies on biological reduction of chromate by Streptomyces griseus

    Energy Technology Data Exchange (ETDEWEB)

    Poopal, Ashwini C. [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India); Laxman, R. Seeta, E-mail: rseetalaxman@yahoo.co.in [Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 (India)

    2009-09-30

    Chromium is a toxic heavy metal used in various industries and leads to environmental pollution due to improper handling. The most toxic form of chromium Cr(VI) can be converted to less toxic Cr(III) by reduction. Among the actinomycetes tested for chromate reduction, thirteen strains reduced Cr(VI) to Cr(III), of which one strain of Streptomyces griseus (NCIM 2020) was most efficient showing complete reduction within 24 h. The organism was able to use a number of carbon sources as electron donors. Sulphate, nitrate, chloride and carbonate had no effect on chromate reduction during growth while cations such as Cd, Ni, Co and Cu were inhibitory to varying degrees. Chromate reduction was associated with the bacterial cells and sonication was the best method of cell breakage to release the enzyme. The enzyme was constitutive and did not require presence of chromate during growth for expression of activity. Chromate reduction with cell free extract (CFE) was observed without added NADH. However, addition of NAD(P)H resulted in 2-3-fold increase in activity. Chromate reductase showed optimum activity at 28 deg. C and pH 7.

  13. Effect of Low Amphetamine Doses on Cardiac Responses to Emotional Stress in Aged Rats

    NARCIS (Netherlands)

    Nyakas, Csaba; Buwalda, Bauke; Luiten, Paul G.M.; Bohus, Bela

    1992-01-01

    In young Wistar rats conditioned emotional stress can be characterized by a learned bradycardiac response to an inescapable footshock. In aged rats this bradycardiac response is attenuated and accompanied by suppressed behavioral arousal in response to novelty. In the present study, cardiac response

  14. Child Anxiety Symptoms Related to Longitudinal Cortisol Trajectories and Acute Stress Responses: Evidence of Developmental Stress Sensitization

    Science.gov (United States)

    Laurent, Heidemarie K.; Gilliam, Kathryn S.; Wright, Dorianne B.; Fisher, Philip A.

    2015-01-01

    Cross-sectional research suggests that individuals at risk for internalizing disorders show differential activation levels and/or dynamics of stress-sensitive physiological systems, possibly reflecting a process of stress sensitization. However, there is little longitudinal research to clarify how the development of these systems over time relates to activation during acute stress, and how aspects of such activation map onto internalizing symptoms. We investigated children’s (n=107) diurnal hypothalamic-pituitary-adrenal activity via salivary cortisol (morning and evening levels) across 29 assessments spanning 6+ years, and related longitudinal patterns to acute stress responses at the end of this period (age 9–10). Associations with child psychiatric symptoms at age 10 were also examined to determine internalizing risk profiles. Increasing morning cortisol levels across assessments predicted less of a cortisol decline following interpersonal stress at age 9, and higher cortisol levels during performance stress at age 10. These same profiles of high and/or sustained cortisol elevation during psychosocial stress were associated with child anxiety symptoms. Results suggest developmental sensitization to stress—reflected in rising morning cortisol and eventual hyperactivation during acute stress exposure—may distinguish children at risk for internalizing disorders. PMID:25688433

  15. Intact soft clay’s critical response to dynamic stress paths on different combinations of principal stress orientation

    Institute of Scientific and Technical Information of China (English)

    沈扬; 周建; 龚晓南; 刘汉龙

    2008-01-01

    Comprehensive tests on Hangzhou intact soft clay were performed, which were used to obtain the soils’ critical response to undrained dynamic stress paths under different combinations of principal stress orientation. The different combinations included cyclic principal stress rotation (CPSR for short), cyclic shear with abrupt change of principal stress orientation (CAPSO for short) and cyclic shear with fixed principal stress orientation (CFPSO for short). On one side, under all these stress paths, samples have obvious strain inflection points and shear bands, and the excess pore water pressure is far from the level of initial effective confining pressure at failure. Stress paths of major principal stress orientation (α) alternating from negative and positive have quite different influence on soil’s properties with those in which α is kept negative or positive. On the other side, due to the soil’s strongly initial anisotropy, samples under double-amplitudes CPSR and CAPSO (or single-amplitude CPSR and CFPSO) have similar properties on dynamic shear strength and pore water pressure development tendency when α is kept within ±45°, while have quite different properties when α oversteps ±45°.

  16. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  17. WATER STRESS RESPONSE ON THE ENZYMATIC ACTIVITY IN COWPEA NODULES

    Directory of Open Access Journals (Sweden)

    Figueiredo Márcia do Vale B.

    2001-01-01

    Full Text Available A greenhouse experiment was carried out aiming to study the effect of water stress on metabolic activity of cowpea nodules at different plant development stages. Cowpea plants were grown in pots with yellow latosol soil under three different matric potentials treatments: -7.0 (control-S1, -70.0 (S2 and <-85.0 KPa (S3. The experimental design was randomized blocks with sub-divided plots, each plot containing a different degree of water stress, divided in sub-plots for the four different developmental stages: E1 (0-15, E2 (15-30, E3 (20-35 and E4 (30-45 days after emmergence. Water stress treatments were applied by monitoring soil water potential using a set of porous cups. The effect of water stress was most harmful to cowpea when it was applied at E2 than at other symbiotic process stages. Shoot/root ratio decreased from 2.61 to 2.14 when matric potential treatment was <-85.0 and -70.0 KPa respectively. There was a reduction in the glutamine synthetase activity and phosphoenolpyruvate carboxilase activity with increased stress, while glutamine synthase activity was the enzyme most sensitive to water stress. Glutamate dehydrogenase activity increased in more negative matric potential, indicating that this enzyme is sufficiently activitye under water stress.

  18. Piezoelectric responses of brittle rock mass containing quartz to static stress and exploding stress wave respectively

    Institute of Scientific and Technical Information of China (English)

    WAN Guo-xiang; LI Xi-bing; HONG Liang

    2008-01-01

    The electromagnetic emission (EME) induced from the rock containing piezoelectric materials was investigated under both static stress and exploding stress wave in the view of piezoelectric effect. The results show that the intensity of the EME induced from the rock under static stress increases with increasing stress level and loading rate; the relationship between the amplitude of theme from the rock under different modes of stress wave and elastic parameters and propagation distance was presented. The intensity of the EME relates not only to the strength and elastic moduli of rock masses, but also to the initial damage of the rock. The intensity of EME induced by stress wave reaches the highest at the explosion-center and attenuates with the propagation distance. The intensity of EME increases with increasing the elastic modulus and decreases with increasing initial damage. The results are in good agreement with the experimental results.

  19. Nitric oxide alleviates salt stress inhibited photosynthetic response by interacting with sulfur assimilation in mustard

    Directory of Open Access Journals (Sweden)

    Mehar eFatma

    2016-04-01

    Full Text Available The role of nitric oxide (NO and/or sulfur (S on stomatal and photosynthetic responses was studied in mustard (Brassica juncea L. in presence or absence of salt stress. The combined application of 100 µM NO (as sodium nitroprusside and 200 mg S kg-1 soil (excess-S more prominently influenced stomatal behaviour, photosynthetic and growth responses in the absence of salt stress and alleviated salt stress effects on photosynthesis. Plants receiving combined treatment of NO plus excess-S showed well-developed thylakoid membrane and properly stacked grana lamellae under salt stress, while the chloroplasts from salt-stressed plants had disorganized thylakoids. Moreover, the leaves from the NO and excess-S treated plants exhibited lower superoxide ion accumulation under salt stress, induced activity of ATP-sulfurylase (ATPS, catalase (CAT, ascorbate peroxidase (APX and glutathione reductase (GR and optimized NO generation that helped in minimizing oxidative stress. The enhanced S-assimilation of these plants resulted in increased production of cysteine (Cys and glutathione (GSH reduced. These findings indicated that NO influenced photosynthesis under salt stress by regulating oxidative stress and its effects on S-assimilation, an antioxidant system and NO generation.The results suggest that NO improves photosynthetic responses of plants grown under salt stress more effectively when plants received excess-S. Thus, excess-S conditions may be adopted for higher impact of NO in the reversal of salt stress effects on photosynthesis.

  20. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    Full Text Available All organisms are confronted with dynamic environmental changes that challenge homeostasis, which is the operational definition of stress. Stress produces adaptive behavioral and physiological responses, which, in the Metazoa, are mediated through the actions of various hormones. Based on its associated phenotypes and its expression profiles, a candidate stress hormone in Drosophila is the corazonin neuropeptide. We evaluated the potential roles of corazonin in mediating stress-related changes in target behaviors and physiologies through genetic alteration of corazonin neuronal excitability. Ablation of corazonin neurons confers resistance to metabolic, osmotic, and oxidative stress, as measured by survival. Silencing and activation of corazonin neurons lead to differential lifespan under stress, and these effects showed a strong dependence on sex. Additionally, altered corazonin neuron physiology leads to fundamental differences in locomotor activity, and these effects were also sex-dependent. The dynamics of altered locomotor behavior accompanying stress was likewise altered in flies with altered corazonin neuronal function. We report that corazonin transcript expression is altered under starvation and osmotic stress, and that triglyceride and dopamine levels are equally impacted in corazonin neuronal alterations and these phenotypes similarly show significant sexual dimorphisms. Notably, these sexual dimorphisms map to corazonin neurons. These results underscore the importance of central peptidergic processing within the context of stress and place corazonin signaling as a critical feature of neuroendocrine events that shape stress responses and may underlie the inherent sexual dimorphic differences in stress responses.

  1. Chronicity of depressive problems and the cortisol response to psychosocial stress in adolescents: the TRAILS study.

    Science.gov (United States)

    Booij, Sanne H; Bouma, Esther M C; de Jonge, Peter; Ormel, Johan; Oldehinkel, Albertine J

    2013-05-01

    Clinical and epidemiological studies, further supported by meta-analytic studies, indicate a possible association between chronicity (i.e., persistence or recurrence) of depression and hypothalamic-pituitary-adrenal (HPA) axis responsiveness to psychosocial stress. In the present study, we examined whether and how chronicity of depressive problems predicts cortisol responses to a standardized social stress test in adolescents. Data were collected in a high-risk focus sample (n=351) of the Tracking Adolescents' Individual Lives Survey (TRAILS) cohort, a large prospective population study with bi- to triennial measurements. Depressive problems were assessed around age 11, 13.5, and 16. Cortisol levels were measured in saliva, sampled before, during, and after the Groningen Social Stress Test (GSST), to determine the cortisol response to psychosocial stress. The area under the curve with respect to the increase (AUCi) (i.e., change from baseline) of the cortisol response was used as a measure of HPA axis response. By means of linear regression analysis and repeated-measures analysis of variance, it was examined whether chronicity of depressive problems predicted the cortisol response to the GSST around the age of 16. Chronicity of depressive problems was significantly associated with cortisol stress responses. The relationship was curvilinear, with recent-onset depressive problems predicting an increased cortisol response, and more chronic depressive problems a blunted response. The results of this study suggest that depressive problems initially increase cortisol responses to stress, but that this pattern reverses when depressive problems persist over prolonged periods of time. PMID:22963816

  2. Insect population differentiation in response to enviromental thermal stress

    Institute of Scientific and Technical Information of China (English)

    CHEN Bing; KANG Le

    2005-01-01

    Numerous studies reported the adaptation strategies adopted by ecthotherms to survive under environmental thermal stress. Geographic and seasonal variations in the thermal stress tolerance, which is closely associated with species' climatic adaptation and allopatric speciation, have been extensively investigated in insects. The variation patterns suggest directional selection for species' adaptive straits, and are used to predict the origin, distribution and dynamics of insect populations. These studies are becoming more and more important in the context of global warming. This paper discusses the process of adaptation to environmental thermal stress and the mechanisms underlying the differentiation in related adaptive straits of insect populations.

  3. Response to Jerome Kagan's Essay on Stress (2016).

    Science.gov (United States)

    McEwen, Bruce S; McEwen, Craig A

    2016-07-01

    To be useful, the concept of stress needs to be defined in biological terms linked to a broader framework of allostasis and its role in the adaptation of brain and body to positive and negative life experiences. A clear biological framework helps connect and organize animal and human research on stress. In particular, the concepts of "toxic stress" and "allostatic load and overload" highlight those experiences and situations that, as Kagan says, "compromise an organism's health and capacity to cope with daily challenges" (p. 442). A deeper understanding is needed of the epigenetic influences throughout the life course that contribute both to these negative outcomes and to positive ones. PMID:27474133

  4. Non-Chromate Passivation of Zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, G.

    1993-01-01

    After extensive research and development a method for passivation of electroplated zinc has been optimised to provide the best corrosion resistance. This optimisation has lead to two different treatments both based on mo-lybdate and phosphate (from this point forward referred to as MolyPhos). The......After extensive research and development a method for passivation of electroplated zinc has been optimised to provide the best corrosion resistance. This optimisation has lead to two different treatments both based on mo-lybdate and phosphate (from this point forward referred to as Moly......Phos). The treatments are within the same concentration region, and they have a mutual pat-ent pending. Although some tests still need to be conducted, the following aspects are clear at the present time: The general appearance of the passivated zinc surface is very similar to a standard yellow chromate treatment....... There is no known environmental or health risk involved using the treatments mentioned above. All components used in the baths are non toxic compared to Cr(VI). Alloy coatings such as zinc/nickel, zinc/cobalt, zinc/tin and all types of pure zinc coating (from cyanide, acidic or alkaline baths) have been treated...

  5. Is accommodation colorblind? Focusing chromatic contours.

    Science.gov (United States)

    Wolfe, J M; Owens, D A

    1981-01-01

    Two adjacent regions define an edge if they differ in either color or luminance. If the difference is purely chromatic, the edge is said to be isoluminant. Isoluminant contours are often perceptually unstable. Perhaps some of this instability could be explained if isoluminant contours were difficult to bring into focus. To test this hypothesis, a vernier optometer was used to measure the accuracy of steady-state accommodation for the vertical boundary of a red-green bipartite field. This edge was presented at optical distances of 0, 1.5, 3.0, and 4.5 diopters, with brightness contrasts between the two hemifields of 0% (isoluminant), 15%, 58%, and 100%. Accommodation was essentially unresponsiveness to the isoluminant edge and exhibited increasing focusing accuracy with increased brightness contrast. Control experiments replicated this finding for red-orange, green-blue, and white-white fields. These results imply that luminance contrast is a necessary stimulus for monocular accommodation. Inappropriate accommodation may be a factor contributing to the perceptual instability of isoluminant patterns. PMID:7255083

  6. Refining the multisystem view of the stress response: coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict.

    Science.gov (United States)

    Laurent, Heidemarie K; Powers, Sally I; Granger, Douglas A

    2013-07-01

    This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period ("matched phase coordination"), and association between overall levels of cortisol and sAA in response to conflict ("average level coordination"). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed.

  7. Involvement of lignin and hormones in the response of woody poplar taproots to mechanical stress.

    Science.gov (United States)

    Trupiano, Dalila; Di Iorio, Antonino; Montagnoli, Antonio; Lasserre, Bruno; Rocco, Mariapina; Grosso, Alessandro; Scaloni, Andrea; Marra, Mauro; Chiatante, Donato; Scippa, Gabriella S

    2012-09-01

    Mechanical stress is a widespread condition caused by numerous environmental factors that severely affect plant stability. In response to mechanical stress, plants have evolved complex response pathways able to detect mechanical perturbations and inducing a suite of modifications in order to improve anchorage. The response of woody roots to mechanical stresses has been studied mainly at the morphological and biomechanical level, whereas investigations on the factors triggering these important alterations are still at the initial stage. Populus has been widely used to study the response of stem to different mechanical stresses and, since it has the first forest tree genome to be decoded, represents a model woody plant for addressing questions on the mechanisms controlling adaptation of woody roots to changing environments. In this study, a morphological and physiological analysis was used to investigate factors controlling modifications in Populus nigra woody taproots subjected to mechanical stress. An experimental model analyzing spatial and temporal mechanical force distribution along the woody taproot axis enabled us to compare the events occurring in its above-, central- and below-bending sectors. Different morphogenetic responses and local variations of lignin and plant hormones content have been observed, and a relation with the distribution of the mechanical forces along the stressed woody taproots is hypothesized. We investigated the differences of the response to mechanical stress induction during the time; in this regard, we present data referring to the effect of mechanical stress on plant transition from its condition of winter dormancy to that of full vegetative activity.

  8. The Critical Role of Potassium in Plant Stress Response

    Directory of Open Access Journals (Sweden)

    Min Wang

    2013-04-01

    Full Text Available Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.

  9. ROS Mediated Stress Response in Illuminated Cattle Feces Derived DOM

    Science.gov (United States)

    Bacterial exposure to exogenous reactive oxygen species (ROS) is known to increase theexpression of oxidative stress related genes and has been linked to acquisition of antibioticresistance (AR). ROS, including hydrogen peroxide (H202), singlet oxygen e o 2), andhydroxyl radicals...

  10. Proteomic Analysis of Wheat Seed in Response to Drought Stress

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-feng; HUANG Xiu-wen; WANG Li-li; WEI Liu; WU Zhi-hui; YOU Ming-shan; LI Bao-yun

    2014-01-01

    Drought stress is one of the major factors affecting in wheat yield and grain quality. In order to investigate how drought stress might inlfuence wheat quality during grain iflling, three wheat cultivars Gaocheng 8901, Jagger and Nongda 3406 were subjected to drought stress during the grain iflling stage. Neither globulin and glutenin, nor the relative percentage of amylose signiifcantly changed following drought treatments, whereas albumin and gliadin concentrations did. The SDS-sedimentation, which has a strong linear correlation with wheat baking quality was markedly decreased following drought stress. These results indicated that drought had an adverse effect on wheat quality. In order to investigate the protein complexes in the wheat lfour, the data from native PAGE and SDS-PAGE were combined and a total of 14 spots were successfully identiifed, and of these eight protein types were determined to be potential complex forming proteins.

  11. INDIVIDUAL AND POPULATION RESPONSES TO ABIOTIC STRESSES IN ITALIAN RYEGRASS

    Science.gov (United States)

    Expected changes in environmental factors will alter productivity of agroecosystems and influence the distribution of agricultural pests. In addition to the natural factors that cause stress, humans introduce chemical pesticides into the agricultural environment. Weeds persist in...

  12. Sex Differences in Neural Responses to Stress and Alcohol Context Cues

    OpenAIRE

    Seo, Dongju; Jia, Zhiru; Lacadie, Cheryl M.; Tsou, Kristen A; Bergquist, Keri; Sinha, Rajita

    2010-01-01

    Stress and alcohol context cues are each associated with alcohol-related behaviors, yet neural responses underlying these processes remain unclear. The present study investigated the neural correlates of stress and alcohol context cue experiences and examined sex differences in these responses. Using functional magnetic resonance imaging, brain responses were examined while 43 right-handed, socially drinking, healthy individuals (23 females) engaged in brief guided imagery of personalized str...

  13. Importance of the glucocorticoid stress response in a changing world: theory, hypotheses and perspectives.

    Science.gov (United States)

    Angelier, Frédéric; Wingfield, John C

    2013-09-01

    In this perspective paper, we emphasize the importance that integrative mechanisms, and especially the GC (glucocorticoid) stress response, can play in the ability of vertebrates to cope with ongoing global change. The GC stress response is an essential mediator of allostasis (i.e., the responses of an organism to a perturbation) that aims at maintaining stability (homeostasis) despite changing conditions. The GC stress response is a complex mechanism that depends on several physiological components and aims at promoting immediate survival at the expense of other life-history components (e.g., reproduction) when a labile perturbation factor (LPF) occurs. Importantly, this mechanism is somewhat flexible and its degree of activation can be adjusted to the fitness costs and benefits that result from the GC stress response. Therefore, this GC stress response mediates life-history decisions and is involved in the regulation of important life-history trade-offs. By inducing abrupt and rapid changes in the regime of LPFs, we believe that global change can affect the efficiency of the GC stress response to maintain homeostasis and to appropriately regulate these trades-offs. This dysfunction may result in an important mismatch between new LPFs and the associated GC stress response and, thus, in the inability of vertebrates to cope with a changing world. In that context, it is essential to better understand how the GC stress response can be adjusted to new LPFs through micro-evolution, phenotypic plasticity and phenotypic flexibility (habituation and sensitization). This paper sets up a theoretical framework, hypotheses and new perspectives that will allow testing and better understanding how the GC stress response can help or constrain individuals, populations and species to adjust to ongoing global change.

  14. Polyamines in response to abiotic stress tolerance through transgenic approaches

    Science.gov (United States)

    Pathak, Malabika Roy; Teixeira da Silva, Jaime A; Wani, Shabir H

    2014-01-01

    The distribution, growth, development and productivity of crop plants are greatly affected by various abiotic stresses. Worldwide, sustainable crop productivity is facing major challenges caused by abiotic stresses by reducing the potential yield in crop plants by as much as 70%. Plants can generally adapt to one or more environmental stresses to some extent. Physiological and molecular studies at transcriptional, translational, and transgenic plant levels have shown the pronounced involvement of naturally occurring plant polyamines (PAs), in controlling, conferring, and modulating abiotic stress tolerance in plants. PAs are small, low molecular weight, non-protein polycations at physiological pH, that are present in all living organisms, and that have strong binding capacity to negatively charged DNA, RNA, and different protein molecules. They play an important role in plant growth and development by controlling the cell cycle, acting as cell signaling molecules in modulating plant tolerance to a variety of abiotic stresses. The commonly known PAs, putrescine, spermidine, and spermine tend to accumulate together accompanied by an increase in the activities of their biosynthetic enzymes under a range of environmental stresses. PAs help plants to combat stresses either directly or by mediating a signal transduction pathway, as shown by molecular cloning and expression studies of PA biosynthesis-related genes, knowledge of the functions of PAs, as demonstrated by developmental studies, and through the analysis of transgenic plants carrying PA genes. This review highlights how PAs in higher plants act during environmental stress and how transgenic strategies have improved our understanding of the molecular mechanisms at play. PMID:24710064

  15. Some Physiological Responses of Chinese Iris to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    BAI Wen-Bo; LI Pin-Fang; LI Bao-Guo; H. FUJIYAMA; FAN Fen-Cheng

    2008-01-01

    Chinese iris (Iris lactea Pall. Var. Chinensis (Fisch) Koidz.), a robust iridaceous plant, is widesprcad in arid and semiarid regions with high salinity. However, the mechanism of its salt tolerance is not well understood. In this study,plant growth, water status, content and distribution of inorganic ions, cell membrane permeability, and proline content of I. Lactea under salt stress were investigated using nutrient solutions with six NaCl concentrations ranging from 0 to 350 mmol L-1. The results indicated that the biomass, height, fresh weight, K+ content, and K+/Na+ and Ca2+/Na+ratios decreased with increasing NaCl stress, whereas plant water deficit and contents of Na+ and Cl- increased with increasing NaCl stress. In all salt treatments, water deficit of shoots was found to be higher than that of roots and had a positive correlation with salt concentration. When the NaCl concentration was less than 280 mmol L-1, the ion absorption selectivity ratio and the transportation selectivity ratio sharply increased with increasing NaCl stress. Under medium salt stress, I. Lactea exhibited a strong K+ selective absorption and the transportation of K+ from roots to shoots increased, whereas Na+ was not transported and was mostly retained in roots. The plants were able to maintain osmotic adjustment through the accumulation of Na+, Cl-, and proline. On the basis of its biomass production under salt stress,I. Lactea could be considered as a facultative halophyte.

  16. Vascular adaptive responses to physical exercise and to stress are affected differently by nandrolone administration

    Directory of Open Access Journals (Sweden)

    T. Bruder-Nascimento

    2011-04-01

    Full Text Available Androgenic anabolic steroid, physical exercise and stress induce cardiovascular adaptations including increased endothelial function. The present study investigated the effects of these conditions alone and in combination on the vascular responses of male Wistar rats. Exercise was started at 8 weeks of life (60-min swimming sessions 5 days per week for 8 weeks, while carrying a 5% body-weight load. One group received nandrolone (5 mg/kg, twice per week for 8 weeks, im. Acute immobilization stress (2 h was induced immediately before the experimental protocol. Curves for noradrenaline were obtained for thoracic aorta, with and without endothelium from sedentary and trained rats, submitted or not to stress, treated or not with nandrolone. None of the procedures altered the vascular reactivity to noradrenaline in denuded aorta. In intact aorta, stress and exercise produced vascular adaptive responses characterized by endothelium-dependent hyporeactivity to noradrenaline. These conditions in combination did not potentiate the vascular adaptive response. Exercise-induced vascular adaptive response was abolished by nandrolone. In contrast, the aortal reactivity to noradrenaline of sedentary rats and the vascular adaptive response to stress of sedentary and trained rats were not affected by nandrolone. Maximum response for 7-10 rats/group (g: sedentary 3.8 ± 0.2 vs trained 3.0 ± 0.2*; sedentary/stress 2.7 ± 0.2 vs trained/stress 3.1 ± 0.1*; sedentary/nandrolone 3.6 ± 0.1 vs trained/nandrolone 3.8 ± 0.1; sedentary/stress/nandrolone 3.2 ± 0.1 vs trained/stress/nandrolone 2.5 ± 0.1*; *P < 0.05 compared to its respective control. Stress and physical exercise determine similar vascular adaptive response involving distinct mechanisms as indicated by the observation that only the physical exercise-induced adaptive response was abolished by nandrolone.

  17. Regulation of synaptic nlg-1/neuroligin abundance by the skn-1/Nrf stress response pathway protects against oxidative stress.

    Directory of Open Access Journals (Sweden)

    Trisha A Staab

    2014-01-01

    Full Text Available The Nrf family of transcription factors mediates adaptive responses to stress and longevity, but the identities of the crucial Nrf targets, and the tissues in which they function in multicellular organisms to promote survival, are not known. Here, we use whole transcriptome RNA sequencing to identify 810 genes whose expression is controlled by the SKN-1/Nrf2 negative regulator WDR-23 in the nervous system of Caenorhabditis elegans. Among the genes identified is the synaptic cell adhesion molecule nlg-1/neuroligin. We find that the synaptic abundance of NLG-1 protein increases following pharmacological treatments that generate oxidative stress or by the genetic activation of skn-1. Increasing nlg-1 dosage correlates with increased survival in response to oxidative stress, whereas genetic inactivation of nlg-1 reduces survival and impairs skn-1-mediated stress resistance. We identify a canonical SKN-1 binding site in the nlg-1 promoter that binds to SKN-1 in vitro and is necessary for SKN-1 and toxin-mediated increases in nlg-1 expression in vivo. Together, our results suggest that SKN-1 activation in the nervous system can confer protection to organisms in response to stress by directly regulating nlg-1/neuroligin expression.

  18. Pigment chromatic adaptation in Cyclotella caspia Grunow (Bacillariophyta

    Directory of Open Access Journals (Sweden)

    Donato Seiji Abe

    1991-01-01

    Full Text Available The diatom Cyclotella caspia Grunow, isolated from surface waters of the Ubatuba region (São Paulo State, Brazil was submitted to different light spectral distributions for examination of its adaptative response. Growth rate and the photosynthetic pigments chlorophyll a, chlorophyll c, carotenoids and phaeopigments were measured under white, blue and red light of the same intensity (8 and 20 µE.cm-2.s-1. Growth rate increased under blue light while red light increased chl a concentration. The relative proportion of chl a and carotenoids did not change, demonstrating the absence of complementary chromatic adaptation.A diatomácea Cyclotella caspia Grunow, isolada de águas superficiais da região de Ubatuba (Estado de São Paulo, Brasil, foi submetida a diferentes intervalos espectrais de luz com a finalidade de se examinar sua resposta adaptativa. Foram medidos a taxa de crescimento e os pigmentos fotossintéticos clorofila a, clorofila c, carotenóides e feopigmentos, sob luz branca, azul e vermelha de mesmas intensidades (8 e 20 µE.cm-2.s-1. A taxa de crescimento aumentou sob luz azul, sendo que a concentração de clorofila a aumentar sob luz vermelha. A proporção relativa de clα e carotenóides não variou, demonstrando a ausência de adapatação cromática complementar.

  19. Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress

    Directory of Open Access Journals (Sweden)

    Xiuli eHu

    2015-05-01

    Full Text Available Drought and heat stress, especially their combination, greatly affect crop production. Many studies have described transcriptome, proteome and phosphoproteome changes in response of plants to drought or heat stress. However, the study about the phosphoproteomic changes in response of crops to the combination stress is scare. To understand the mechanism of maize responses to the drought and heat combination stress, phosphoproteomic analysis was performed on maize leaves by using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. Five-leaf-stage maize was subjected to drought, heat or their combination, and the leaves were collected. Globally, heat, drought and the combined stress significantly changed the phosphorylation levels of 172, 149 and 144 phosphopeptides, respectively. These phosphopeptides corresponded to 282 proteins. Among them, 23 only responded to the combined stress and could not be predicted from their responses to single stressors; 30 and 75 only responded to drought and heat, respectively. Notably, 19 proteins were phosphorylated on different sites in response to the single and combination stresses. Of the seven significantly enriched phosphorylation motifs identified, two were common for all stresses, two were common for heat and the combined stress, and one was specific to the combined stress. The signaling pathways in which the phosphoproteins were involved clearly differed among the three stresses. Functional characterization of the phosphoproteins and the pathways identified here could lead to new targets for the enhancement of crop stress tolerance, which will be particularly important in the face of climate change and the increasing prevalence of abiotic stressors.

  20. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle.

    Science.gov (United States)

    Albert, Kimberly; Pruessner, Jens; Newhouse, Paul

    2015-09-01

    Although ovarian hormones are thought to have a potential role in the well-known sex difference in mood and anxiety disorders, the mechanisms through which ovarian hormone changes contribute to stress regulation are not well understood. One mechanism by which ovarian hormones might impact mood regulation is by mediating the effect of psychosocial stress, which often precedes depressive episodes and may have mood consequences that are particularly relevant in women. In the current study, brain activity and mood response to psychosocial stress was examined in healthy, normally cycling women at either the high or low estradiol phase of the menstrual cycle. Twenty eight women were exposed to the Montreal Imaging Stress Task (MIST), with brain activity determined through functional magnetic resonance imaging, and behavioral response assessed with subjective mood and stress measures. Brain activity responses to psychosocial stress differed between women in the low versus high estrogen phase of the menstrual cycle: women with high estradiol levels showed significantly less deactivation in limbic regions during psychosocial stress compared to women with low estradiol levels. Additionally, women with higher estradiol levels also had less subjective distress in response to the MIST than women with lower estradiol levels. The results of this study suggest that, in normally cycling premenopausal women, high estradiol levels attenuate the brain activation changes and negative mood response to psychosocial stress. Normal ovarian hormone fluctuations may alter the impact of psychosocially stressful events by presenting periods of increased vulnerability to psychosocial stress during low estradiol phases of the menstrual cycle. This menstrual cycle-related fluctuation in stress vulnerability may be relevant to the greater risk for affective disorder or post-traumatic stress disorder in women.

  1. Boechera species exhibit species-specific responses to combined heat and high light stress.

    Science.gov (United States)

    Gallas, Genna; Waters, Elizabeth R

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species.

  2. Coordination of cortisol response to social evaluative threat with autonomic and inflammatory responses is moderated by stress appraisals and affect.

    Science.gov (United States)

    Laurent, Heidemarie K; Lucas, Todd; Pierce, Jennifer; Goetz, Stefan; Granger, Douglas A

    2016-07-01

    Recent approaches to stress regulation have emphasized coordination among multiple biological systems. This study builds on evidence that hypothalamic-pituitary-adrenal (HPA) axis activity should be considered in coordination with other stress-sensitive biological systems to characterize healthy responses. Healthy African-Americans (n=115) completed the Trier Social Stress Test, and biological responses were assessed through salivary cortisol, dehydroepiandrosterone-sulfate (DHEA-S), alpha amylase (sAA), and C-reactive protein (sCRP). Multilevel modeling demonstrated that cortisol responses typically aligned with changes in DHEA-S, sAA, and sCRP across the session. At the same time, the degree of cortisol coordination with sAA and sCRP varied by participants' subjective stress following the task; participants with higher secondary stress appraisals showed greater cortisol-sAA alignment, whereas those experiencing more negative affect showed greater cortisol-sCRP alignment. Results highlight the importance of a multisystem approach to stress and suggest that positive HPA axis coordination with the autonomic response, but not with the immune/inflammatory response, may be adaptive.

  3. Exogenous prenatal corticosterone exposure mimics the effects of prenatal stress on adult brain stress response systems and fear extinction behavior.

    Science.gov (United States)

    Bingham, Brian C; Sheela Rani, C S; Frazer, Alan; Strong, Randy; Morilak, David A

    2013-11-01

    Exposure to early-life stress is a risk factor for the development of cognitive and emotional disorders later in life. We previously demonstrated that prenatal stress (PNS) in rats results in long-term, stable changes in central stress-response systems and impairs the ability to extinguish conditioned fear responding, a component of post-traumatic stress disorder (PTSD). Maternal corticosterone (CORT), released during prenatal stress, is a possible mediator of these effects. The purpose of the present study was to investigate whether fetal exposure to CORT at levels induced by PNS is sufficient to alter the development of adult stress neurobiology and fear extinction behavior. Pregnant dams were subject to either PNS (60 min immobilization/day from ED 14-21) or a daily injection of CORT (10mg/kg), which approximated both fetal and maternal plasma CORT levels elicited during PNS. Control dams were given injections of oil vehicle. Male offspring were allowed to grow to adulthood undisturbed, at which point they were sacrificed and the medial prefrontal cortex (mPFC), hippocampus, hypothalamus, and a section of the rostral pons containing the locus coeruleus (LC) were dissected. PNS and prenatal CORT treatment decreased glucocorticoid receptor protein levels in the mPFC, hippocampus, and hypothalamus when compared to control offspring. Both treatments also decreased tyrosine hydroxylase levels in the LC. Finally, the effect of prenatal CORT exposure on fear extinction behavior was examined following chronic stress. Prenatal CORT impaired both acquisition and recall of cue-conditioned fear extinction. This effect was additive to the impairment induced by previous chronic stress. Thus, these data suggest that fetal exposure to high levels of maternal CORT is responsible for many of the lasting neurobiological consequences of PNS as they relate to the processes underlying extinction of learned fear. The data further suggest that adverse prenatal environments constitute a

  4. Quantitative Phosphoproteomic Analysis of Arabidopsis in Response to Salt and Hydrogen Peroxide Stresses

    Institute of Scientific and Technical Information of China (English)

    Yanmei Chen

    2012-01-01

    Salinity and oxidative stresses are major factors in affecting and limiting the productivity of agricultural crops.The study of biochemical and molecular responses of plants in response to those stresses is important for crop genetics and breeding.Extensive evidence shows that reversible protein phosphorylation plays a central role in mediating stress-regulated physiological responses,but little is known about its extent and function.Mass spectrometry provides a powerful tool for the in-depth analysis of systems biology.In this study,we performed a global quantitative analysis of the Arabidopsis phosphoproteomics in response to a time course of stress treatments using 15N-metabolic labeling and subcellular fractionation approaches.In total,we found 176 phosphoproteins showed to be regulated under stresses.Nine SnRK2 kinases identified to be differentially phosphorylated at multiple serine/threonine residues in their kinase domains following stress treatments,demonstrating different temporal phosphorylation induction of the various isoforms.K+ and Na+ transporters showed coordinated phosphorylation regulation under salt stress.In particular,nuclear proteins and protein kinases have high phosphorylation site occupancy in response to stress treatment.This suggests that the wide range of signaling and cellular processes that are modulated in this study.

  5. Characterization of wheat miRNAs and their target genes responsive to cadmium stress.

    Science.gov (United States)

    Qiu, ZongBo; Hai, BenZhai; Guo, JunLi; Li, YongFang; Zhang, Liang

    2016-04-01

    A increasing number of microRNAs have been shown to play important regulatory roles in plant responses to various metal stresses. However, little information about miRNAs especially miRNAs responsive to cadmium (Cd) stress is available in wheat. To investigate the role of miRNAs in responses to Cd stress, wheat seedlings were subjected to 250 μM Cd solution for 6, 12, 24 and 48 h, and analyses of morphological and physiological changes as well as the expression of five miRNAs and their corresponding targets were carried out. Our results demonstrated that miRNAs and their targets were differentially expressed in leaves and roots of wheat seedlings exposed to Cd stress. Furthermore, miR398 may involve in oxidative stress tolerance by regulating its target CSD to participate in Cd stress. Among ten miRNA-target pairs studied, nine pairs showed complex regulation relationship in leaves and roots of wheat seedlings exposed to Cd stress. These findings suggested that miRNAs are involved in the mediation of Cd stress signaling responses in wheat. The characterization of the miRNAs and the associated targets in responses to Cd exposure provides a framework for understanding the molecular mechanism of heavy metal tolerance in plants. PMID:26854408

  6. Physiological and photosynthetic response of quinoa to drought stress

    Directory of Open Access Journals (Sweden)

    Rachid Fghire

    2015-06-01

    Full Text Available Water shortage is a critical problem touching plant growth and yield in semi-arid areas, for instance the Mediterranean región. For this reason was studied the physiological basis of drought tolerance of a new, drought tolerant crop quinoa (Chenopodium quinoa Willd. tested in Morocco in two successive seasons, subject to four irrigation treatments (100, 50, and 33%ETc, and rainfed. The chlorophyll a fluorescence transients were analyzed by the JIP-test to transíate stress-induced damage in these transients to changes in biophysical parameter's allowing quantification of the energy flow through the photosynthetic apparatus. Drought stress induced a significant decrease in the maximum quantum yield of primary photochemistry (Φpo = Fv/Fm, and the quantum yield of electron transport (Φeo. The amount of active Photosystem II (PSII reaction centers (RC per excited cross section (RC/CS also decreased when exposed to the highest drought stress. The effective antenna size of active RCs (ABS/RC increased and the effective dissipation per active reaction centers (DIo/RC increased by increasing drought stress during the growth season in comparison to the control. However the performance index (PI, was a very sensitive indicator of the physiological status of plants. Leaf area index, leaf water potential and stomatal conductance decreased as the drought increased. These results indicate that, in quinoa leaf, JIP-test can be used as a sensitive method for measuring drought stress effects.

  7. 2012 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 20-25, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Donohue

    2012-07-25

    The Gordon Research Conference on MICROBIAL STRESS RESPONSE was held at Mount Holyoke College, South Hadley, Massachusetts, July 15-20, 2012. The Conference was well-attended with 180 participants. The 2012 Microbial Stress Responses Gordon Research Conference will provide a forum for the open reporting of recent discoveries on the diverse mechanisms employed by microbes to respond to stress. Approaches range from analysis at the molecular level (how are signals perceived and transmitted to change gene expression or function) to cellular and microbial community responses. Gordon Research Conferences does not permit publication of meeting proceedings.

  8. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    OpenAIRE

    Kim, Jongyun; Malladi, Anish; van Iersel, Marc W.

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were...

  9. Proteomic analyses of the response of cyanobacteria to different stress conditions.

    Science.gov (United States)

    Castielli, Ornella; De la Cerda, Berta; Navarro, José A; Hervás, Manuel; De la Rosa, Miguel A

    2009-06-01

    Cyanobacteria are significant contributors to global photosynthetic productivity, thus making it relevant to study how the different environmental stresses can alter their physiological activities. Here, we review the current research work on the response of cyanobacteria to different kinds of stress, mainly focusing on their response to metal stress as studied by using the modern proteomic tools. We also report a proteomic analysis of plastocyanin and cytochrome c(6) deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803 grown under copper or iron deprivation, as compared to wild-type cells, so as to get a further understanding of the metal homeostasis in cyanobacteria and their response to changing environmental conditions.

  10. Transgenerational Epigenetic Contributions to Stress Responses: Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Eric J Nestler

    2016-03-01

    Full Text Available There has been increasing interest in the possibility that behavioral experience--in particular, exposure to stress--can be passed on to subsequent generations through heritable epigenetic modifications. The possibility remains highly controversial, however, reflecting the lack of standardized definitions of epigenetics and the limited empirical support for potential mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation of gene expression that mediates stress vulnerability. This Perspective provides an overview of the multiple meanings of the term epigenetic, discusses the challenges of studying epigenetic contributions to stress susceptibility--and the experimental evidence for and against the existence of such mechanisms--and outlines steps required for future investigations.

  11. Chronic stress, leukocyte subpopulations, and humoral response to latent viruses

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, W.; Weisse, C.S.; Reynolds, C.P.; Bowles, C.A.; Baum, A. (Uniformed Services Univ. of the Health Sciences, Bethesda, MD (USA))

    1989-01-01

    Psychological stress has been shown to affect immune system status and function, but most studies of this relationship have focused on acute stress and/or laboratory situations. The present study compared total numbers of leukocytes and lymphocyte subpopulations (determined by flow cytometry) and antibody titers to latent and nonlatent viruses among a group of chronically stressed individuals living near the damaged Three Mile Island (TMI) nuclear power plant with those of a demographically comparable control group. Urinary catecholamine and cortisol levels were also examined. Residents of the TMI area exhibited greater numbers of neutrophils, which were positively correlated with epinephrine levels. The TMI group also exhibited fewer B lymphocytes, T-suppressor/cytotoxic lymphocytes, and natural killer cells. Antibody titers to herpes simplex were significantly different across groups as well, whereas titers to nonlatent rubella virus as well as IgG and IgM levels were comparable.

  12. Resistance Responses of Carbon Fiber Cement to Cycled Compressive Stresses

    Institute of Scientific and Technical Information of China (English)

    SHUI Zhonghe; LI Chao; LIAO Weidong

    2005-01-01

    The stress-resistance relationship of carbon fiber cement was studicd. Attention has been paid to explore the improvement of the stress-resistance sensitivity under cycled stress restriction. The prismy carbon fiber cement sensors were pre-fabricated. The factors such as contents of carbon fibers, silica fume, dispersant and the w/ c were taken into account. The electrical resistance variations with the dynamic and static loads were simulated using a strain-controlled test machine. The test results show that there is an optimal fiber content, with which the compression-sensitivity achieves a high level. The addition of silica fume can improve the sensitivity. Urder the optimal test conditions, the measured resistances can greatly correspond with the changes of the load.

  13. Chronic stress, leukocyte subpopulations, and humoral response to latent viruses

    International Nuclear Information System (INIS)

    Psychological stress has been shown to affect immune system status and function, but most studies of this relationship have focused on acute stress and/or laboratory situations. The present study compared total numbers of leukocytes and lymphocyte subpopulations (determined by flow cytometry) and antibody titers to latent and nonlatent viruses among a group of chronically stressed individuals living near the damaged Three Mile Island (TMI) nuclear power plant with those of a demographically comparable control group. Urinary catecholamine and cortisol levels were also examined. Residents of the TMI area exhibited greater numbers of neutrophils, which were positively correlated with epinephrine levels. The TMI group also exhibited fewer B lymphocytes, T-suppressor/cytotoxic lymphocytes, and natural killer cells. Antibody titers to herpes simplex were significantly different across groups as well, whereas titers to nonlatent rubella virus as well as IgG and IgM levels were comparable

  14. Androgenic response to preculture stress in microspore cultures of barley.

    Science.gov (United States)

    Oleszczuk, S; Sowa, S; Zimny, J

    2006-08-01

    Various stresses such as starvation and cold or heat shocks have been identified as triggers in the induction of the microspore embryogenesis. This study attempts to quantify the effects of different pretreatment conditions for successful microspore culture of malting barley (cv. Scarlett). While the sporophytic microspore development could be induced from treated and nontreated microspores, abiotic stress was essential for embryo formation and plant regeneration. The type of stress treatment applied affected the numbers and the ratios of albino and green plants regenerated, as well as their fertility. The highest number of green plants was obtained after the treatment of anthers in 0.3 M mannitol at 32 degrees C for 24 h before microspore culture. PMID:16937060

  15. Membrane regulation of the stress response from prokaryotic models to mammalian cells.

    Science.gov (United States)

    Vigh, Laszlo; Nakamoto, Hitoshi; Landry, Jacques; Gomez-Munoz, Antonio; Harwood, John L; Horvath, Ibolya

    2007-10-01

    "Membrane regulation" of stress responses in various systems is widely studied. In poikilotherms, membrane rigidification could be the first reaction to cold perception: reducing membrane fluidity of membranes at physiological temperatures is coupled with enhanced cold inducibility of a number of genes, including desaturases (see J.L. Harwood's article in this Proceedings volume). A similar role of changes in membrane physical state in heat (oxidative stress, etc.) sensing- and signaling gained support recently from prokaryotes to mammalian cells. Stress-induced remodeling of membrane lipids could influence generation, transduction, and deactivation of stress signals, either through global effects on the fluidity of the membrane matrix, or by specific interactions of boundary (or raft) lipids with receptor proteins, lipases, ion channels, etc. Our data point to membranes not only as targets of stress, but also as sensors in activating a stress response. PMID:17656573

  16. The role of residual stress in the tension and compression response of WC-Ni

    International Nuclear Information System (INIS)

    The interaction of uniaxial applied stress with the thermal residual stress state in a WC-10 wt.% Ni cemented carbide composite was studied. A previously proposed model, based on results for uniaxial compressive loading, explains the observed asymmetric relaxation of the pre-existing thermal residual stress. This model predicts that the sense of the asymmetry would reverse in the case of tensile loading. The main purpose of the present work was to test this prediction. The reversal of signs was observed. The addition of tensile data has enabled the role of thermal residual stress on stress-strain response to be further elucidated. More complex behavior is observed with respect to the response of the variance in residual stresses, as measured by changes in diffraction peak breadths.

  17. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    Organisms survive by maintaining equilibrium with their environment. The stress system is critical to this homeostasis. Glucocorticoids modulate the stress response at a molecular level by altering gene expression, transcription, and translation, among other pathways. The effect is the inhibition of the functions of inflammatory cells, predominantly mediated through inhibition of cytokines, such as IL-1, IL-6, and TNF-alpha. The central effectors of the stress response are the corticotrophin-releasing hormone (CRH) and locus coeruleus-norepinephrine (LC-NE)\\/sympathetic systems. The CRH system activates the stress response and is subject to modulation by cytokines, hormones, and neurotransmitters. Glucocorticoids also modulate the growth, reproductive and thyroid axes. Abnormalities of stress system activation have been shown in inflammatory diseases such as rheumatoid arthritis, as well as behavioural syndromes such as melancholic depression. These disorders are comparable to those seen in rats whose CRH system is genetically abnormal. Thus, the stress response is central to resistance to inflammatory and behavioural syndromes. In this review, we describe the response to stress at molecular, cellular, neuroendocrine and behavioural levels, and discuss the disease processes that result from a dysregulation of this response, as well as recent developments in their treatment.

  18. Expression Profiling of Abiotic Stress-Inducible Genes in response to Multiple Stresses in Rice (Oryza sativa L. Varieties with Contrasting Level of Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Supratim Basu

    2014-01-01

    Full Text Available The present study considered transcriptional profiles and protein expression analyses from shoot and/or root tissues under three abiotic stress conditions, namely, salinity, dehydration, and cold, as well as following exogenous abscisic acid treatment, at different time points of stress exposure in three indica rice varieties, IR-29 (salt sensitive, Pokkali, and Nonabokra (both salt tolerant. The candidate genes chosen for expression studies were HKT-1, SOS-3, NHX-1, SAPK5, SAPK7, NAC-1, Rab16A, OSBZ8, DREBP2, CRT/DREBP, WRKY24, and WRKY71, along with the candidate proteins OSBZ8, SAMDC, and GST. Gene expression profile revealed considerable differences between the salt-sensitive and salt-tolerant rice varieties, as the expression in the latter was higher even at the constitutive level, whereas it was inducible only by corresponding stress signals in IR-29. Whether in roots or shoots, the transcriptional responses to different stressors peaked following 24 h of stress/ABA exposure, and the transcript levels enhanced gradually with the period of exposure. The generality of stress responses at the transcriptional level was therefore time dependent. Heat map data also showed differential transcript abundance in the three varieties, correlating the observation with transcript profiling. In silico analysis of the upstream regions of all the genes represented the existence of conserved sequence motifs in single or multiple copies that are indispensable to abiotic stress response. Overall, the transcriptome and proteome analysis undertaken in the present study indicated that genes/proteins conferring tolerance, belonging to different functional classes, were overrepresented, thus providing novel insight into the functional basis of multiple stress tolerance in indica rice varieties. The present work will pave the way in future to select gene(s for overexpression, so as to generate broad spectrum resistance to multiple stresses simultaneously.

  19. Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress

    DEFF Research Database (Denmark)

    Malmendal, Anders; Sørensen, Jesper Givskov; Overgaard, Johannes;

    2013-01-01

    We investigated the global metabolite response to artificial selection for tolerance to stressful conditions such as cold, heat, starvation, and desiccation, and for longevity in Drosophila melanogaster. Our findings were compared to data from other levels of biological organization, including ge....... The results highlight the extreme complexity of environmental stress adaptation and the difficulty of extrapolating and interpreting responses across levels of biological organization.......We investigated the global metabolite response to artificial selection for tolerance to stressful conditions such as cold, heat, starvation, and desiccation, and for longevity in Drosophila melanogaster. Our findings were compared to data from other levels of biological organization, including gene...... expression, physiological traits, and organismal stress tolerance phenotype. Overall, we found that selection for environmental stress tolerance changes the metabolomic (1)H NMR fingerprint largely in a similar manner independent of the trait selected for, indicating that experimental evolution led...

  20. Influence of Mode Dependent Rayleigh Damping on Transient Stress Response

    OpenAIRE

    Kandge, Ganesh M

    2007-01-01

    Main task of thesis is to study the effect of Mode dependent Rayleigh damping on System response. Damping ratio for the structure is not constant for all modes and it varies mode wise. In present task different damping models are defined and used to obtain responses for transient system. Obtained responses show that there is considerable effect of mode dependent damping on response of the system. This outcome could be used for investigations of noise, harshness and fatigue.

  1. Stress modulates the use of spatial versus stimulus-response learning strategies in humans

    OpenAIRE

    Schwabe, Lars; Oitzl, Melly S.; Philippsen, Christine; Richter, Steffen; Bohringer, Andreas; Wippich, Werner; Schachinger, Hartmut

    2007-01-01

    Animal studies provided evidence that stress modulates multiple memory systems, favoring caudate nucleus-based “habit” memory over hippocampus-based “cognitive” memory. However, effects of stress on learning strategy and memory consolidation were not differentiated. We specifically address the effects of psychosocial stress on the applied learning strategy in humans. We designed a spatial learning task that allowed differentiating spatial from stimulus-response learning strategies during acqu...

  2. The effect of continuous grouping of pigs in large groups on stress response and haematological parameters

    DEFF Research Database (Denmark)

    Damgaard, Birthe Marie; Studnitz, Merete; Jensen, Karin Hjelholt

    2009-01-01

    from weaning at the age of 4 weeks to the age of 18 weeks after weaning. Limited differences were found in stress and haematological parameters between pigs in dynamic and static groups. The cortisol response to the stress test was increasing with the duration of the stress test in pigs from the...... number of neutrophils and an increased N/L-ratio....

  3. Comparison of Esmolol and Lignocaine for Atttenuation of Cardiovascular Stress response to Laryngoscopy and Endotracheal Intubation

    OpenAIRE

    Ajay Gupta, Renu Wakhloo, Vishal Gupta, Anjali Mehta, BB Kapoor

    2009-01-01

    Direct laryngoscopy and endotracheal intubation frequently induces a cardiovascular stress response dueto reflex symbathetic stimulation. This response may be hazardous in patients with Hypertension, Coronaryartery disease, Myocardial disease, cerebrovascular disease. Numerous agents have therefore been utilizedto blunt this response. The present study was undertaken in view of above mentioned facts, to compareeffectiveness of intravenous esmolol and lignocaine in suppressing the cardiovascul...

  4. Chromatically unique 6-bridge graph theta(a,a,a,b,b,c

    Directory of Open Access Journals (Sweden)

    N.S.A. Karim

    2016-04-01

    Full Text Available For a graph $G$, let $P(G,\\lambda$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent if they share the same chromatic polynomial. A graph $G$ is chromatically unique if for any graph chromatically equivalent to $G$ is isomorphic to $G$. In this paper, the chromatically unique of a new family of 6-bridge graph $\\theta(a,a,a,b,b,c$ where $2\\le a\\le b\\le c$ is investigated.

  5. Epithelial-mesenchymal transition induces endoplasmic-reticulum-stress response in human colorectal tumor cells.

    Directory of Open Access Journals (Sweden)

    Evelyn Zeindl-Eberhart

    Full Text Available Tumor cells are stressed by unfavorable environmental conditions like hypoxia or starvation. Driven by the resulting cellular stress tumor cells undergo epithelial-mesenchymal transition. Additionally, cellular stress is accompanied by endoplasmic reticulum-stress which induces an unfolded protein response. It is unknown if epithelial-mesenchymal transition and endoplasmic reticulum-stress are occurring as independent parallel events or if an interrelationship exists between both of them. Here, we show that in colorectal cancer cells endoplasmic reticulum-stress depends on the induction of ZEB-1, which is a main factor of epithelial-mesenchymal transition. In the absence of ZEB-1 colorectal cancer cells cannot mount endoplasmic reticulum-stress as a reaction on cellular stress situations like hypoxia or starvation. Thus, our data suggest that there is a hierarchy in the development of cellular stress which starts with the presence of environmental stress that induces epithelial-mesenchymal transition which allows finally endoplasmic reticulum-stress. This finding highlights the central role of epithelial-mesenchymal transition during the process of tumorigenesis as epithelial-mesenchymal transition is also associated with chemoresistance and cancer stemness. Consequently, endoplasmic reticulum-stress might be a well suited target for chemotherapy of colorectal cancers.

  6. Molecular biology of the stress response in the early embryo and its stem cells.

    Science.gov (United States)

    Puscheck, Elizabeth E; Awonuga, Awoniyi O; Yang, Yu; Jiang, Zhongliang; Rappolee, Daniel A

    2015-01-01

    Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a 'runting model' where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond

  7. Time to Relax: Mechanical Stress Release Guides Stem Cell Responses.

    Science.gov (United States)

    Sommerfeld, Sven D; Elisseeff, Jennifer H

    2016-02-01

    Stem cells integrate spatiotemporal cues, including the mechanical properties of their microenvironment, into their fate decisions. Chaudhuri et al. (2015) show that the ability of the extracellular matrix to dissipate cell-induced forces, referred to as stress-relaxation, is a key mechanical signal influencing stem cell fate and function. PMID:26849301

  8. Plant molecular stress responses face climate change. Trends in Plants

    NARCIS (Netherlands)

    Ahuja, I.; Vos, de R.C.H.; Bones, A.M.; Hall, R.D.

    2010-01-01

    Environmental stress factors such as drought, elevated temperature, salinity and rising CO2 affect plant growth and pose a growing threat to sustainable agriculture. This has become a hot issue due to concerns about the effects of climate change on plant resources, biodiversity and global food secur

  9. Molecular stress response pathways as the basis of hormesis

    DEFF Research Database (Denmark)

    Demirovic, Dino; de Toda, Irene Martinez; Rattan, Suresh

    2014-01-01

    There is now a large amount of data available for human beings showing positive hormetic effects of mild stresses from physical, chemical, nutritional and mental sources. However, these data are dispersed in the literature and not always interpreted as hormetic effects, thus restricting their ful...

  10. Sex differences in stress responses : Focus on ovarian hormones

    NARCIS (Netherlands)

    Ter Horst, Gert J.; Wichmann, Romy; Gerrits, Marjolein; Westenbroek, Christel; Lin, Yanhua

    2009-01-01

    Women in the reproductive age are more vulnerable to develop affective disorders than men. This difference may attribute to anatomical differences, hormonal influences and environmental factors such as stress. However, the higher prevalence in women normalizes once menopause is established, suggesti

  11. Genetic erosion impedes adaptive responses to stressful environments

    NARCIS (Netherlands)

    Bijlsma, R.; Loeschcke, Volker

    2012-01-01

    Biodiversity is increasingly subjected to human-induced changes of the environment. To persist, populations continually have to adapt to these often stressful changes including pollution and climate change. Genetic erosion in small populations, owing to fragmentation of natural habitats, is expected

  12. Metabolomic Characterization of the Salt Stress Response in Streptomyces coelicolor

    NARCIS (Netherlands)

    Kol, Stefan; Merlo, M. Elena; Scheltema, Richard A.; de Vries, Marcel; Vonk, Roel J.; Kikkert, Niels A.; Dijkhuizen, Lubbert; Breitling, Rainer; Takano, Eriko

    2010-01-01

    The humicolous actinomycete Streptomyces coelicolor routinely adapts to a wide variety of habitats and rapidly changing environments. Upon salt stress, the organism is also known to increase the levels of various compatible solutes. Here we report the results of the first high-resolution metabolomic

  13. WATER STRESS RESPONSE ON THE ENZYMATIC ACTIVITY IN COWPEA NODULES

    OpenAIRE

    Figueiredo Márcia do Vale B.; Bezerra-Neto Egídio; Burity Hélio A.

    2001-01-01

    A greenhouse experiment was carried out aiming to study the effect of water stress on metabolic activity of cowpea nodules at different plant development stages. Cowpea plants were grown in pots with yellow latosol soil under three different matric potentials treatments: -7.0 (control-S1), -70.0 (S2) and

  14. Enhanced Cortisol Response to Stress in Children in Autism

    Science.gov (United States)

    Spratt, Eve G.; Nicholas, Joyce S.; Brady, Kathleen T.; Carpenter, Laura A.; Hatcher, Charles R.; Meekins, Kirk A.; Furlanetto, Richard W.; Charles, Jane M.

    2012-01-01

    Children with Autism often show difficulties in adapting to change. Previous studies of cortisol, a neurobiologic stress hormone reflecting hypothalamic-pituitary-adrenal (HPA) axis activity, in children with autism have demonstrated variable results. This study measured cortisol levels in children with and without Autism: (1) at rest; (2) in a…

  15. Transcriptional Analysis of Normal Human Fibroblast Responses to Microgravity Stress

    Institute of Scientific and Technical Information of China (English)

    Yongqing Liu; Eugenia Wang

    2008-01-01

    To understand the molecular mechanism (s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the space flown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several G1-phase cell cycle traverse genes. Other genes showing up regulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.

  16. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

  17. Selection of rainbow trout (Oncorhynchus mykiss) lines for divergent stress responsiveness

    OpenAIRE

    Pottinger, Tom G.

    2007-01-01

    A rationale is provided for undertaking the targeted manipulation of the stress axis in aquacultured fish by selective breeding. The results of a long-term investigation into the consequences of selection for stress responsiveness in rainbow trout are outlined with respect to endocrine characteristics, growth, reproductive performance, behaviour, and cognition. Future and ongoing studies are summarised.

  18. Heritability of cortisol response to confinement stress in European sea bass dicentrarchus labrax

    NARCIS (Netherlands)

    Volckaert, F.A.M.; Hellemans, B.; Batargias, C.; Louro, B.; Massault, C.; Houdt, Van J.K.J.; Haley, C.; Koning, de D.J.; Canario, A.V.M.

    2012-01-01

    Background: In fish, the most studied production traits in terms of heritability are body weight or growth, stress or disease resistance, while heritability of cortisol levels, widely used as a measure of response to stress, is less studied. In this study, we have estimated heritabilities of two gro

  19. The Stress Response and Adolescents' Adjustment: The Impact of Child Maltreatment

    Science.gov (United States)

    Cook, Emily C.; Chaplin, Tara M.; Sinha, Rajita; Tebes, Jacob K.; Mayes, Linda C.

    2012-01-01

    Experience with and management of stress has implications for adolescents' behavioral and socioemotional development. This study examined the relationship between adolescents' physiological response to an acute laboratory stressor (i.e., Trier Social Stress Test; TSST) and anger regulation and interpersonal competence in a sample of 175 low-income…

  20. Hyperglycemia suppresses the sympatho-adrenal response to hypoxia, but not to handling stress

    NARCIS (Netherlands)

    Benthem, L; Taborsky, G.J.

    1998-01-01

    We hypothesized that the ability of prior hyperglycemia to suppress the sympatho-adrenal response would depend on the type of stress. To test this hypothesis, hyperglycemia was induced in chronically catheterized rats, before submitting them to either hypoxia (7.5% O-2) or handling stress. Central v