WorldWideScience

Sample records for chp unit optimering

  1. Optimal integrated sizing and planning of hubs with midsize/large CHP units considering reliability of supply

    International Nuclear Information System (INIS)

    Moradi, Saeed; Ghaffarpour, Reza; Ranjbar, Ali Mohammad; Mozaffari, Babak

    2017-01-01

    Highlights: • New hub planning formulation is proposed to exploit assets of midsize/large CHPs. • Linearization approaches are proposed for two-variable nonlinear CHP fuel function. • Efficient operation of addressed CHPs & hub devices at contingencies are considered. • Reliability-embedded integrated planning & sizing is formulated as one single MILP. • Noticeable results for costs & reliability-embedded planning due to mid/large CHPs. - Abstract: Use of multi-carrier energy systems and the energy hub concept has recently been a widespread trend worldwide. However, most of the related researches specialize in CHP systems with constant electricity/heat ratios and linear operating characteristics. In this paper, integrated energy hub planning and sizing is developed for the energy systems with mid-scale and large-scale CHP units, by taking their wide operating range into consideration. The proposed formulation is aimed at taking the best use of the beneficial degrees of freedom associated with these units for decreasing total costs and increasing reliability. High-accuracy piecewise linearization techniques with approximation errors of about 1% are introduced for the nonlinear two-dimensional CHP input-output function, making it possible to successfully integrate the CHP sizing. Efficient operation of CHP and the hub at contingencies is extracted via a new formulation, which is developed to be incorporated to the planning and sizing problem. Optimal operation, planning, sizing and contingency operation of hub components are integrated and formulated as a single comprehensive MILP problem. Results on a case study with midsize CHPs reveal a 33% reduction in total costs, and it is demonstrated that the proposed formulation ceases the need for additional components/capacities for increasing reliability of supply.

  2. Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: • Stochastic model is proposed for coordinated scheduling of renewable energy sources. • The effect of combined heat and power is considered. • Uncertainties of wind speed, solar radiation and electricity market price are considered. • Profit maximization, emission and AENS minimization are considered as objective functions. • Modified firefly algorithm is employed to solve the problem. - Abstract: Nowadays the operation of renewable energy sources and combined heat and power (CHP) units is increased in micro grids; therefore, to reach optimal performance, optimal scheduling of these units is required. In this regard, in this paper a micro grid consisting of proton exchange membrane fuel cell-combined heat and power (PEMFC-CHP), wind turbines (WT) and photovoltaic (PV) units, is modeled to determine the optimal scheduling state of these units by considering uncertain behavior of renewable energy resources. For this purpose, a scenario-based method is used for modeling the uncertainties of electrical market price, the wind speed, and solar irradiance. It should be noted that the hydrogen storage strategy is also applied in this study for PEMFC-CHP units. Market profit, total emission production, and average energy not supplied (AENS) are the objective functions considered in this paper simultaneously. Consideration of the above-mentioned objective functions converts the proposed problem to a mixed integer nonlinear programming. To solve this problem, a multi-objective firefly algorithm is used. The uncertainties of parameters convert the mixed integer nonlinear programming problem to a stochastic mixed integer nonlinear programming problem. Moreover, optimal coordinated scheduling of renewable energy resources and thermal units in micro-grids improve the value of the objective functions. Simulation results obtained from a modified 33-bus distributed network as a micro grid illustrates the effectiveness of the proposed method.

  3. Survey of controllability in decentralized CHP plants. Optimal operation of priority production units; Kortlaegning af decentrale kraftvarmevaerkers regulerbarhed. Optimal drift af prioriterede anlaeg - Teknologisk grundlag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    The present report presents results from two closely related projects, carried out in parallel, under the PSO-F and U 2002. The one project is 'Survey of controllability in de-centralized combined heat and power plants' project number PSO 4724 and is fully reported here. The other project: 'Optimal operation of priority production units, project number PSO 4712, only the part project 'Technological foundations is reported here. In project 4724 the technical conditions that matter regarding controllability of electricity production in de-centralized heat and power stations are surveyed. In this context the term controllability means how fast and to which extent the load factors of the plants can be changed. Also, is has been investigated which options are available for improving the controllability, their potentials and estimates on required investments associated. The investigation covers CHP plants having a production capacity of up to 30 MW of electricity. The main part of the de-centralized CHP plants are based on spark ignited internal combustion engines (Otto engines). Most of these engines are fuelled by natural gas and a smaller part by biogas. A minor number are gas turbines fuelled by natural gas and steam turbines in industrial applications, waste incineration plants or in combined cycle power plants. The mapping has among others consisted of a number of visits on selected different types of plants including interview with people responsible for the daily operation. From these interviews data on the actual operating strategy and technical data have been provided. In addition suppliers of engines and other equipment involved have been contacted for technical information or recommendations regarding possible changes in operation strategy. Searching the Internet has been widely used for identification of technical investigations concerning e.g. operation and maintenance of relevant equipment. Finally, substantial statistical data from

  4. Optimal design of integrated CHP systems for housing complexes

    International Nuclear Information System (INIS)

    Fuentes-Cortés, Luis Fabián; Ponce-Ortega, José María; Nápoles-Rivera, Fabricio; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2015-01-01

    Highlights: • An optimization formulation for designing domestic CHP systems is presented. • The operating scheme, prime mover and thermal storage system are optimized. • Weather conditions and behavior demands are considered. • Simultaneously economic and environmental objectives are considered. • Two case studies from Mexico are presented. - Abstract: This paper presents a multi-objective optimization approach for designing residential cogeneration systems based on a new superstructure that allows satisfying the demands of hot water and electricity at the minimum cost and the minimum environmental impact. The optimization involves the selection of technologies, size of required units and operating modes of equipment. Two residential complexes in different cities of the State of Michoacán in Mexico were considered as case studies. One is located on the west coast and the other one is in the mountainous area. The results show that the implementation of the proposed optimization method yields significant economic and environmental benefits due to the simultaneous reduction in the total annual cost and overall greenhouse gas emissions

  5. Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment

    International Nuclear Information System (INIS)

    Zhang, Di; Evangelisti, Sara; Lettieri, Paola; Papageorgiou, Lazaros G.

    2015-01-01

    As an alternative to current centralised energy generation systems, microgrids are adopted to provide local energy with lower energy expenses and gas emissions by utilising distributed energy resources (DER). Several micro combined heat and power technologies have been developed recently for applications at domestic scale. The optimal design of DERs within CHP-based microgrids plays an important role in promoting the penetration of microgrid systems. In this work, the optimal design of microgrids with CHP units is addressed by coupling environmental and economic sustainability in a multi-objective optimisation model which integrates the results of a life cycle assessment of the microgrids investigated. The results show that the installation of multiple CHP technologies has a lower cost with higher environmental saving compared with the case when only a single technology is installed in each site, meaning that the microgrid works in a more efficient way when multiple technologies are selected. In general, proton exchange membrane (PEM) fuel cells are chosen as the basic CHP technology for most solutions, which offers lower environmental impacts at low cost. However, internal combustions engines (ICE) and Stirling engines (SE) are preferred if the heat demand is high. - Highlights: • Optimal design of microgrids is addressed by coupling environmental and economic aspects. • An MILP model is formulated based on the ε-constraint method. • The model selects a combination of CHP technologies with different technical characteristics for optimum scenarios. • The global warming potential (GWP) and the acidification potential (AP) are determined. • The output of LCA is used as an input for the optimisation model

  6. Annual energy balances of CHP-units supplying households; Jahresenergiebilanzen von KWK-Anlagen zur Hausenergieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, B.; Muehlbacher, H. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik

    2008-07-01

    A method to balance CHP-units for use in households on an annual basis has been developed. Seasonal as well as intraday fluctuations of the CHP-units are accounted for in the model. The results of this new method were validated in a test facility for certain days. Together with experimentally obtained data from a CHP-unit, the potential for technical improvements and a more favourable operational mode can be derived from the model. (orig.)

  7. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    International Nuclear Information System (INIS)

    Lund, H.; Andersen, A.N.

    2005-01-01

    Combined Heat and Power production (CHP) are essential for implementation of the climate change response objectives in many countries. In an introduction period, small CHP plants have typically been offered fixed electricity prices, but in many countries, such pricing conditions are now being replaced by spot market prices. Consequently, new methodologies and tools for the optimisation of small CHP plant designs are needed. The small CHP plants in Denmark are already experienced in optimising their electricity production against the triple tariff, which has existed for almost 10 years. Consequently, the CHP plants have long term experience in organising when to switch on and off the CHP units in order to optimise their profit. Also, the CHP owners have long term experience in designing their plants. For instance, small CHP plants in Denmark have usually invested in excess capacity on the CHP units in combination with heat storage capacity. Thereby, the plants have increased their performance in order to optimise revenues. This paper presents the Danish experience with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff. Moreover, the changes in such methodologies and tools in order to optimise performance in a market with fluctuating electricity prices are presented and discussed

  8. Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Tichi, S.G.; Ardehali, M.M.; Nazari, M.E.

    2010-01-01

    The current subsidized energy prices in Iran are proposed to be gradually eliminated over the next few years. The objective of this study is to examine the effects of current and future energy price policies on optimal configuration of combined heat and power (CHP) and combined cooling, heating, and power (CCHP) systems in Iran, under the conditions of selling and not-selling electricity to utility. The particle swarm optimization algorithm is used for minimizing the cost function for owning and operating various CHP and CCHP systems in an industrial dairy unit. The results show that with the estimated future unsubsidized utility prices, CHP and CCHP systems operating with reciprocating engine prime mover have total costs of 5.6 and $2.9x10 6 over useful life of 20 years, respectively, while both systems have the same capital recovery periods of 1.3 years. However, for the same prime mover and with current subsidized prices, CHP and CCHP systems require 4.9 and 5.2 years for capital recovery, respectively. It is concluded that the current energy price policies hinder the promotion of installing CHP and CCHP systems and, the policy of selling electricity to utility as well as eliminating subsidies are prerequisites to successful widespread utilization of such systems.

  9. Optimal economic dispatch of FC-CHP based heat and power micro-grids

    International Nuclear Information System (INIS)

    Nazari-Heris, Morteza; Abapour, Saeed; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • The multi objective economic/environmental heat and power MG dispatch is solved. • The heat and power MG include FC, CHP, boiler, storage system, and heat buffer tank. • Multi objective scheduling of heat and power MG is solved using ε-constraint method. • DR program is employed in the stochastic programming of heat and power MG dispatch. • The uncertainties for load demand and price signals are taken into account. - Abstract: Micro-grids (MGs) are introduced as a solution for distributed energy resource (DER) units and energy storage systems (ESSs) to participate in providing the required electricity demand of controllable and non-controllable loads. In this paper, the authors study the short-term scheduling of grid-connected industrial heat and power MG which contains a fuel cell (FC) unit, combined heat and power (CHP) generation units, power-only unit, boiler, battery storage system, and heat buffer tank. The paper is aimed to solve the multi-objective MG dispatch problem containing cost and emission minimization with the considerations of demand response program and uncertainties. A probabilistic framework based on a scenario method, which is considered for load demand and price signals, is employed to overcome the uncertainties in the optimal energy management of the MG. In order to reduce operational cost, time-of-use rates of demand response programs have been modeled, and the effects of such programs on the load profile have been discussed. To solve the multi-objective optimization problem, the ε-constraint method is used and a fuzzy satisfying approach has been employed to select the best compromise solution. Three cases are studied in this research to confirm the performance of the proposed method: islanded mode, grid-connected mode, and the impact of time of the use-demand response program on MG scheduling.

  10. A Stochastic Unit Commitment Model for a Local CHP Plant

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2005-01-01

    Local CHP development in Denmark has during the 90’s been characterised by large growth primarily due to government subsidies in the form of feed-in tariffs. In line with the liberalisation process in the EU, Danish local CHPs of a certain size must operate on market terms from 2005. This paper...

  11. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo

    2014-01-01

    under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability...... of the micro-CHP to cover the heat and electricity demand of a 70 m2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed...

  12. Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and wind power units

    Energy Technology Data Exchange (ETDEWEB)

    Piperagkas, G.S.; Anastasiadis, A.G.; Hatziargyriou, N.D. [National Technical University of Athens, School of Electrical and Computer Engineering, Electric Power Division, 9, Iroon Polytechneiou Str., GR-15773 Zografou, Athens (Greece)

    2011-01-15

    In this paper an extended stochastic multi-objective model for economic dispatch (ED) is proposed, that incorporates in the optimization process heat and power from CHP units and expected wind power. Stochastic restrictions for the CO{sub 2}, SO{sub 2} and NO{sub x} emissions are used as inequality constraints. The ED problem is solved using a multi-objective particle swarm optimization technique. The available wind power is estimated from a transformation of the wind speed considered as a random variable to wind power. Simulations are performed on the modified IEEE 30 bus network with 2 cogeneration units and actual wind data. Results concerning minimum cost and emissions reduction options are finally drawn. (author)

  13. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  14. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2012-01-01

    A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas...

  15. Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems

    International Nuclear Information System (INIS)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał; Piotrowski, Robert

    2016-01-01

    Highlights: • New method for long distance heat transportation system effectivity evaluation. • Decision model formulation which reflects time and spatial structure of the problem. • Multi-criteria and complex approach to solving the decision-making problem. • Solver based on simulation-optimization approach with two-phase optimization method. • Sensitivity analysis of the optimization procedure elements. - Abstract: Cogeneration or Combined Heat and Power (CHP) for power plants is a method of putting to use waste heat which would be otherwise released to the environment. This allows the increase in thermodynamic efficiency of the plant and can be a source of environmental friendly heat for District Heating (DH). In the paper CHP for Nuclear Power Plant (NPP) is analyzed with the focus on heat transportation. A method for effectivity and feasibility evaluation of the long distance, high power Heat Transportation System (HTS) between the NPP and the DH network is proposed. As a part of the method the multi-criteria decision-making problem, having the structure of the mathematical programming problem, for optimized selection of design and operating parameters of the HTS is formulated. The constraints for this problem include a static model of HTS, that allows considerations of system lifetime, time variability and spatial topology. Thereby variation of annual heat demand within the DH area, variability of ground temperature, insulation and pipe aging and/or terrain elevation profile can be taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. In general, the analyzed optimization problem is multi-criteria, hybrid and nonlinear. The two-phase optimization based on optimization-simulation framework is proposed to solve the decision-making problem. The solver introduces a number of assumptions concerning the optimization process. Methods for problem decomposition

  16. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    For biomass fuelled CHP in sizes below 100 kW, Stirling engines are the only feasible alternative today. Using wood powder as fuel, the Stirling engine can be heated directly by the flame like when using a gaseous or liquid fuel burner. However, the combustion chamber will have to be much larger...... recirculation (CGR) a smaller air preheater can be used, while system efficiency will increase compared with using excess air for flame cooling. In a three-year project, a wood powder fuelled Stirling engine CHP unit will be developed and run in field test. The project will use the double-acting four......-cylinder Stirling engine SM3D with an electric output of 35 kW. This engine is a further development of the engine SM3B that has been developed at the Technical University of Denmark. The engine heater is being adapted for use with wood powder as fuel. During a two-year period a combustion system for this engine...

  17. Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    A 1 kWe micro combined heat and power (CHP) system based on high temperature proton exchange membrane fuel cell (PEMFC) technology is modeled and optimized by formulation and application of a process integration methodology. The system can provide heat and electricity for a singlefamily household...

  18. Optimization of operation for combined heat and power plants - CHP plants - with heat accumulators using a MILP formulation

    Energy Technology Data Exchange (ETDEWEB)

    Grue, Jeppe; Bach, Inger [Aalborg Univ. (Denmark). Inst. of Energy Technology]. E-mails: jeg@iet.auc.dk; ib@iet.auc.dk

    2000-07-01

    The power generation system in Denmark is extensively based on small combined heat and power plants (CHP plants), producing both electricity and district heating. This project deals with smaller plants spread throughout the country. Often a heat accumulator is used to enable electricity production, even when the heat demand is low. This system forms a very complex problem, both for sizing, designing and operation of CHP plants. The objective of the work is the development of a tool for optimisation of the operation of CHP plants, and to even considering the design of the plant. The problem is formulated as a MILP-problem. An actual case is being tested, involving CHP producing units to cover the demand. The results from this project show that it is of major importance to consider the operation of the plant in detail already in the design phase. It is of major importance to consider the optimisation of the plant operation, even at the design stage, as it may cause the contribution margin to rise significantly, if the plant is designed on the basis of a de-tailed knowledge of the expected operation. (author)

  19. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    heat-to-power load ratio. Therefore, the aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70m2...... demand. Numerical simulations are conducted in Matlab environment. System design trade-offs are discussed to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria...

  20. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    DEFF Research Database (Denmark)

    Lund, Henrik; Andersen, A.N.

    2005-01-01

    The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff.......The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff....

  1. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    International Nuclear Information System (INIS)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku

    2010-01-01

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO 2 -intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO 2 -intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  2. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  3. Optimal fuel-mix in CHP plants under a stochastic permit price: Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli, E-mail: pauli.lappi@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikka, Kimmo, E-mail: kimmo.ollikka@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikainen, Markku, E-mail: markku.ollikainen@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion.

  4. Hydrocarbon emissions from gas engine CHP-units. 2011 measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, G.H.J. [KEMA, Arnhem (Netherlands)

    2012-06-15

    In December 2009, the Ministry of Infrastructure and Environment (IandM) issued the Decree on Emission Limits for Middle Sized Combustion Installations (BEMS). This decree imposes a first-time emission limit value (ELV) of 1500 mg C/m{sup 3}{sub o} at 3% O{sub 2} for hydrocarbons emitted by gas engines. IandM used the findings of two hydrocarbon emission measurement programs, executed in 2007 and 2009, as a guideline for this initial ELV. The programs did reveal substantial variation in the hydrocarbon emissions of the gas engines tested. This variation, and especially the uncertainty as to the role of engine and/or other parameters causing such variation, was felt to hamper further policy development. IandM therefore commissioned KEMA to perform follow-up measurements on ten gas engine CHP-units in 2011. Aim of this 2011 program is to assess hydrocarbon emission variation in relation to engine parameters and process conditions including maintenance status, and to atmospheric conditions. The 2011 program comprised two identical measurement sessions, one in spring and one in winter.

  5. Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2014-10-01

    Full Text Available A comprehensive thermodynamic study is conducted of a diesel based Combined Heat and Power (CHP system, based on a diesel engine and an Organic Rankine Cycle (ORC. Present research covers both energy and exergy analyses along with a multi-objective optimization. In order to determine the irreversibilities in each component of the CHP system and assess the system performance, a complete parametric study is performed to investigate the effects of major design parameters and operating conditions on the system’s performance. The main contribution of the current research study is to conduct both exergy and multi-objective optimization of a system using different working fluid for low-grade heat recovery. In order to conduct the evolutionary based optimization, two objective functions are considered in the optimization; namely the system exergy efficiency, and the total cost rate of the system, which is a combination of the cost associated with environmental impact and the purchase cost of each component. Therefore, in the optimization approach, the overall cycle exergy efficiency is maximized satisfying several constraints while the total cost rate of the system is minimized. To provide a better understanding of the system under study, the Pareto frontier is shown for multi-objective optimization and also an equation is derived to fit the optimized point. In addition, a closed form relationship between exergy efficiency and total cost rate is derived.

  6. Economic, energy and GHG emissions performance evaluation of a WhisperGen Mk IV Stirling engine μ-CHP unit in a domestic dwelling

    International Nuclear Information System (INIS)

    Conroy, G.; Duffy, A.; Ayompe, L.M.

    2014-01-01

    Highlights: • The performance of a Stirling engine MK IV micro-CHP unit was evaluated in a domestic dwelling in Ireland. • The performance of the micro-CHP was compare to that of a condensing gas boiler. • The micro-CHP unit resulted in an annual cost saving of €180 compared to the condensing gas boiler. • Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. • The micro-CHP unit used 2889 kW h of gas more than the condensing gas boiler during one year of operation. - Abstract: This paper presents an assessment of the energy, economic and greenhouse gas emissions performances of a WhisperGen Mk IV Stirling engine μ-CHP unit for use in a conventional house in the Republic of Ireland. The energy performance data used in this study was obtained from a field trial carried out in Belfast, Northern Ireland during the period June 2004–July 2005 by Northern Ireland Electricity and Phoenix Gas working in collaboration with Whispertech UK. A comparative performance analysis between the μ-CHP unit and a condensing gas boiler revealed that the μ-CHP unit resulted in an annual cost saving of €180 with an incremental simple payback period of 13.8 years when compared to a condensing gas boiler. Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. The μ-CHP unit used 2889 kW h of gas more than the condensing gas boiler

  7. Development of HT-PEMFC components and stack for CHP unit

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf; Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Terkelsen, C.; Rudbech, H.C.; Steenberg, T. (Danish Power System Aps, Charlottenlund (Denmark)); Thibault de Rycke (IRD Fuel Cell A/S, Svendborg (Denmark))

    2009-10-15

    The aim of the project has been to further develop components for an all Danish high temperature PEM fuel cells stack for application in combined heat and power units (CHP units). The final product aimed at was a 1.5-2 kW stack for operation at 150-200 deg. C. The project follows the previous PSO project 4760, 'High Temperature PEM Fuel Cell'. The project has addressed the HT-PEM fuel cells form a components point of view and the materials here for. The main areas were polymer and membrane development, electrode and MEA development (MEA = membrane electrode assembly, i.e. the cells.) and stack development. The membrane development begins with the polymer. The polymerization technique was improved significantly in two ways. Better understanding of the process and the critical issues has led to more reproducible results with repeated high molecular weights. The molecular weight is decisive for the membrane strength and durability. The process was also scaled up to 100-200 g polymer pr. batch in a new polymerization facility build during the project. It is dimensioned for larger batches too, but this was not verified during the project. The polymer cannot be purchased in the right quality for fuel cell membranes and it is important that it manufacture is not a limiting factor at the present state. Experiments with other membrane casting techniques were also made. The traditional PBI doped with phosphoric acid is still the state of art membrane for the HT-PEM fuel cells, but progress was also made with modified membranes. Different variants of PBI were synthesized and tested. Electrodes have been manufactured by a spray technique in contrast to the previously applied tape casting. The hand held spray gun previously led to an improvement of the electrodes, but the reproducibility was limited. Subsequently the construction of a semi automated spray machine was started and results like of the best hand sprayed electrodes were obtained. A viable way of MEA rim

  8. Should a small combined heat and power plant (CHP) open to its regional power and heat networks? Integrated economic, energy, and emergy evaluation of optimization plans for Jiufa CHP

    International Nuclear Information System (INIS)

    Peng, T.; Lu, H.F.; Wu, W.L.; Campbell, D.E.; Zhao, G.S.; Zou, J.H.; Chen, J.

    2008-01-01

    The development of industrial ecology has led company managers to increasingly consider their company's niche in the regional system, and to develop optimization plans. We used emergy-based, ecological-economic synthesis to evaluate two optimization plans for the Jiufa Combined Heat and Power (CHP) Plant, Shandong China. In addition, we performed economic input-output analysis and energy analysis on the system. The results showed that appropriately incorporating a firm with temporary extra productivity into its regional system will help maximize the total productivity and improve ecological-economic efficiency and benefits to society, even without technical optimization of the firm itself. In addition, developing a closer relationship between a company and its regional system will facilitate the development of new optimization opportunities. Small coal-based CHP plants have lower-energy efficiency, higher environmental loading, and lower sustainability than large fossil fuel and renewable energy-based systems. The emergy exchange ratio (EER) proved to be an important index for evaluating the vitality of highly developed ecological-economic systems

  9. Benefits of CHP Partnership

    Science.gov (United States)

    Learn about the benefits of being a EPA CHP Partner, which include expert advice and answers to questions, CHP news, marketing resources, publicity and recognition, and being associated with EPA through a demonstrated commitment to CHP.

  10. The design of Chp plants

    International Nuclear Information System (INIS)

    Tomassetti, G.

    2001-01-01

    Chp is considered with a bottom-up view, as the most efficient way to satisfy the needs of the users. In order to achieve optimal results a particular care must be used in analyzing the thermal and electrical loads and their interactions. On this basis and taking into account the relationships among the user and the suppliers of electricity, fuels and heat, the energy market structure, the cost of energy and the tax assessment it is possible to properly design Chp plants with benefits for the users [it

  11. Optimally Locating MARFORRES Units

    OpenAIRE

    Salmeron, Javier; Dell, Rob

    2015-01-01

    Javier Salmeron and Rob Dell The U.S. Marine Forces Reserve (USMCR, MARFORRES) is conducting realignment studies where discretionary changes may benefit from formal mathematical analysis. This study has developed an optimization tool to guide and/or support Commander, MARFORRES (CMFR) decisions. A prototype of the optimization tool has been tested with data from the units and Reserve Training Centers (RTCs) in the San Francisco, CA and Sacramento, CA areas. Prepared for: MARFORRES, POC:...

  12. A Geothermal Energy Supported Gas-steam Cogeneration Unit as a Possible Replacement for the Old Part of a Municipal CHP Plant (TEKO

    Directory of Open Access Journals (Sweden)

    L. Böszörményi

    2001-01-01

    Full Text Available The need for more intensive utilization of local renewable energy sources is indisputable. Under the current economic circumstances their competitiveness in comparison with fossil fuels is rather low, if we do not take into account environmental considerations. Integrating geothermal sources into combined heat and power production in a municipal CHP plant would be an excellent solution to this problem. This concept could lead to an innovative type of power plant - a gas-steam cycle based, geothermal energy supported cogeneration unit.

  13. Computer experimental analysis of the CHP performance of a 100 kW e SOFC Field Unit by a factorial design

    Science.gov (United States)

    Calì, M.; Santarelli, M. G. L.; Leone, P.

    Gas Turbine Technologies (GTT) and Politecnico di Torino, both located in Torino (Italy), have been involved in the design and installation of a SOFC laboratory in order to analyse the operation, in cogenerative configuration, of the CHP 100 kW e SOFC Field Unit, built by Siemens-Westinghouse Power Corporation (SWPC), which is at present (May 2005) starting its operation and which will supply electric and thermal power to the GTT factory. In order to take the better advantage from the analysis of the on-site operation, and especially to correctly design the scheduled experimental tests on the system, we developed a mathematical model and run a simulated experimental campaign, applying a rigorous statistical approach to the analysis of the results. The aim of this work is the computer experimental analysis, through a statistical methodology (2 k factorial experiments), of the CHP 100 performance. First, the mathematical model has been calibrated with the results acquired during the first CHP100 demonstration at EDB/ELSAM in Westerwoort. After, the simulated tests have been performed in the form of computer experimental session, and the measurement uncertainties have been simulated with perturbation imposed to the model independent variables. The statistical methodology used for the computer experimental analysis is the factorial design (Yates' Technique): using the ANOVA technique the effect of the main independent variables (air utilization factor U ox, fuel utilization factor U F, internal fuel and air preheating and anodic recycling flow rate) has been investigated in a rigorous manner. Analysis accounts for the effects of parameters on stack electric power, thermal recovered power, single cell voltage, cell operative temperature, consumed fuel flow and steam to carbon ratio. Each main effect and interaction effect of parameters is shown with particular attention on generated electric power and stack heat recovered.

  14. Kyoto commitments: CHP will help the UK

    International Nuclear Information System (INIS)

    Knowles, Michael

    1998-01-01

    In order to meet the United Kingdom's targets for carbon dioxide emissions reduction, agreed at the Kyoto Summit, the UK Government is promoting the use of combined heat and power (CHP) plants. Such schemes need to offer over 70% efficiency, have on-site or nearby heat uses, and allow flexibility for the export of electricity where this is appropriate. Electricity trading arrangements will need to be re-organised in line with similar commodities, in order to facilitate and promote the growth of CHP and renewable energy schemes. Financial incentives and regulation of electricity prices will also contribute to the promotion of CHP schemes, ultimately leading to reduced CO 2 pollution as a result of the growth in the UK's CHP capacity. (UK)

  15. CHP Partnership Partners

    Science.gov (United States)

    Partners of EPA's Combined Heat and Power Partnership include federal, state, and local government agencies and private organizations such as energy users, energy service companies, CHP project developers and consultants, and equipment manufacturers.

  16. Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle

    International Nuclear Information System (INIS)

    Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.; Peultier, P.

    2013-01-01

    The micro combined heat and electrical power systems (micro-CHP) with hot air engines are well adapted for solid biomass upgrading, in particular, the Ericsson engines working with an open cycle and an external combustion. This paper presents a model of an Ericsson engine with a compression and an expansion cylinder which allows a thermodynamic optimization of the engine performances in a global approach. A sensitive analysis on the influent parameters is carried out in order to determine the optimal working conditions of the engine: temperature and pressure range, expansion cycle shape with a late intake valve closing or an early exhaust valve closing, heat transfers through the wall of the cylinders. This study, focused on thermodynamic aspects, is a first step in the design of an Ericsson engine. -- Highlights: ► A model of Ericsson engine working with a Joule or Ericsson cycle is presented. ► Influent factors on the engine performances are investigated. ► The heat exchanges in the cylinder wall must be avoided to improve the performances. ► Closing the intake valve late and the exhaust valve early enhances the performances. ► Efficiency, indicated mean pressure, specific work are thermodynamically optimized.

  17. A study on electricity export capability of the μCHP system with spot price

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    of the muCHP unit, which influence the export capability of muCHP system, is firstly carried out in the intraday case study, followed by the annual case study which explores the annual system performance. The results show that the electricity export capability of a muCHP system is closely related to its...

  18. Methodology for evaluation of industrial CHP production

    International Nuclear Information System (INIS)

    Pavlovic, Nenad V.; Studovic, Milovan

    2000-01-01

    At the end of the century industry switched from exclusive power consumer into power consumer-producer which is one of the players on the deregulated power market. Consequently, goals of industrial plant optimization have to be changed, making new challenges that industrial management has to be faced with. In the paper is reviewed own methodology for evaluation of industrial power production on deregulated power market. The methodology recognizes economic efficiency of industrial CHP facilities as a main criterion for evaluation. Energy and ecological efficiency are used as additional criteria, in which implicit could be found social goals. Also, methodology recognizes key and limit factors for CHP production in industry. It could be successful applied, by use of available commercial software for energy simulation in CHP plants and economic evaluation. (Authors)

  19. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    Science.gov (United States)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  20. An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom

    International Nuclear Information System (INIS)

    Kelly, Scott; Pollitt, Michael

    2010-01-01

    As global fuel reserves are depleted, alternative and more efficient forms of energy generation and delivery will be required. Combined heat and power with district heating (CHP-DH) provides an alternative energy production and delivery mechanism that is less resource intensive, more efficient and provides greater energy security than many popular alternatives. It will be shown that the economic viability of CHP-DH networks depends on several principles, namely (1) the optimisation of engineering and design principles; (2) organisational and regulatory frameworks; (3) financial and economic factors. It was found that in the long term DH is competitive with other energy supply and distribution technologies such as electricity and gas. However, in the short to medium term it is shown that economic risk, regulatory uncertainty and lock-in of existing technology are the most significant barriers to CHP-DH development. This research suggests that under the present regulatory and economic paradigm, the infrastructure required for DH networks remains financially prohibitive; the implementation of government policies are complicated and impose high transaction costs, while engineering solutions are frequently not implemented or economically optimised. If CHP-DH is going to play any part in meeting climate change targets then collaboration between public and private organisations will be required. It is clear from this analysis that strong local government involvement is therefore necessary for the co-ordination, leadership and infrastructural deployment of CHP-DH.

  1. Cogeneration of heat and electricity from rape oil with a little CHP unit in a car wash

    International Nuclear Information System (INIS)

    Pilz, H.D.; Thomas, S.; Zeilinger, J.

    2002-01-01

    Environmentally friendly energy supply system for smaller houses is described. In Elsbett system the so-called multi fuel engine starts the combined electricity and heat production unit. In such a system one can use also natural fuels, animal oils and fats besides heating oil. Therefore no additional CO 2 is produced, but it will be brought to the balanced natural circle

  2. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  3. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...... the two remaining can be located at positions with availability of high temperature sources by utilising the DH network to distribute the heat. A large amount of operational and economic constraints limit the applicability of HPs operated with natural working fluids, which may be the only feasible choice...... representation allows infeasible production. Using MIP or NLP optimisation, the number of operation hours and the total production of heat from HPs are significantly increased, as the HPs may be used to shave the load patterns of CHP units in significantly constrained energy systems. A MIP energy system model...

  4. Experimental development, 1D CFD simulation and energetic analysis of a 15 kw micro-CHP unit based on reciprocating internal combustion engine

    International Nuclear Information System (INIS)

    Muccillo, M.; Gimelli, A.

    2014-01-01

    Cogeneration is commonly recognized as one of the most effective solutions to achieve the increasingly stringent reduction in primary energy consumption and greenhouse emissions. This characteristic led to the adoption of specific directives promoting this technique. In addition, a strategic role in power reliability is recognized to distributed generation. The study and prototyping of cogeneration plants, therefore, has involved many research centres. This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant based on a LPG reciprocating engine designed, built and grid connected. The plant consists of a heat recovery system characterized by a single water circuit recovering heat from exhaust gases, from engine coolant and from the energy radiated by the engine within the shell hosting the plant. Some tests were carried out at whole open throttle and the experimental data were collected. However it was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. As the heat actually recovered depends on the user's thermal load, particularly from the required temperature's level, a comparison of the results for six types of users were performed: residential, hospital, office, commercial, sports, hotel. Both Italian legislative indexes IRE and LT were evaluated, as defined by A.E.E.G resolution n. 42/02 and subsequent updates, as well as the plant's total Primary Energy Saving. - Highlights: • This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant. • The 15 kW micro-CHP plant is based on a GPL reciprocating engine designed, built and grid connected. • Some tests were carried out at whole open throttle and the experimental data were collected. • It was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. • The analysed solution is particularly suited for

  5. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  6. Future market relevance of CHP installations with electrical ratings from 1 to 1000 kW

    International Nuclear Information System (INIS)

    Eicher, H.; Rigassi, R.

    2003-12-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the future market relevance of combined heat and power (CHP) installations with electrical ratings from 1 to 1000 kW. Developments over the past ten years are reviewed. Important reductions in the price of motor-driven CHP units and the price of the electrical power produced are noted and commented on. The technical market potential of CHP units and the degree to which this potential has been implemented are commented on. Work done, including CHP implementation in the industrial, commercial and residential areas, is commented on. Future developments both in the technical area as well as in commercial areas are commented on. Micro-gas-turbine based CHP systems are also discussed, as are fuel-cell based systems in both the higher and lower capacity power generation area. The prospects for CHP systems in general in the electricity generation area are discussed

  7. SOFC/TEG hybrid mCHP system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-15

    The starting point for this project have been the challenge has been to develop a cost effective solution with long term stability. This is where a focused effort in a strong consortium covering material research, module development and manufacture as well as device design and optimization can make a real difference. In March 2010 the SOFTEG phase II project was initiated and a cooperation organization was established to implement the project as a development and demonstration project involving the staff from all project partners. The project is now completed with excellent and documented outcome. The final results by Alpcon have been demonstration as a TEG-based mCHP system calls CHP Dual Engine Power System, which will be applicable as both a standalone TEG-CHP hybrid system, but also as an auxiliary power unit and power booster for the SOFC system. However the SOFC system cannot cover the household's heat demand alone so it is necessary to combine a SOFC system together with a water heater/boiler system to cover the peak heat demand of a residential house or a complex building. The SOFTEG project partners achieved significant results that mainly can be outlined as following: 1) University of Aarhus has improved the thermal stability of ZnSb by optimizing the concentration of Nano composite material. 2) The grain size and its influence on the sintering process by spark plasma method are investigated by Aarhus University, but further work seems to be necessary. 3) The TE material is going to commercialization by Aarhus University. 4) Aalborg University has prepared simulation tools for complex thermoelectric simulation in non-steady state condition. 5) The new type DCDC interleaved converter using the MPPT system for optimal power tracing is designed, build and tested by Aalborg University in cooperation with Alpcon. This task is included overall system design, control system implementation and power electronic control design. 6) Full scale practical

  8. Multi-Objective Analysis of a CHP Plant Integrated Microgrid in Pakistan

    Directory of Open Access Journals (Sweden)

    Asad Waqar

    2017-10-01

    Full Text Available In developing countries like Pakistan, the capacity shortage (CS of electricity is a critical problem. The frequent natural gas (NG outages compel consumers to use electricity to fulfill the thermal loads, which ends up as an increase in electrical load. In this scenario, the authors have proposed the concept of a combined heat & power (CHP plant to be a better option for supplying both electrical and thermal loads simultaneously. A CHP plant-based microgrid comprising a PV array, diesel generators and batteries (operating in grid-connected as well as islanded modes has been simulated using the HOMER Pro software. Different configurations of distributed generators (DGs with/without batteries have been evaluated considering multiple objectives. The multiple objectives include the minimization of the total net present cost (TNPC, cost of generated energy (COE and the annual greenhouse gas (GHG emissions, as well as the maximization of annual waste heat recovery (WHR of thermal units and annual grid sales (GS. These objectives are subject to the constraints of power balance, battery operation within state of charge (SOC limits, generator operation within capacity limits and zero capacity shortage. The simulations have been performed on six cities including Islamabad, Lahore, Karachi, Peshawar, Quetta and Gilgit. The simulation results have been analyzed to find the most optimal city for the CHP plant integrated microgrid.

  9. Combined Heat and Power (CHP) Partnership

    Science.gov (United States)

    The CHP Partnership seeks to reduce air pollution and water usage associated with electric power generation by promoting the use of CHP. The Partnership works to remove policy barriers and to facilitate the development of new projects.

  10. Decentralised CHP in a competitive market

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article agues that decentralised CHP plants is an important part of energy supply in Denmark.......The article agues that decentralised CHP plants is an important part of energy supply in Denmark....

  11. Economic dispatch of a single micro-gas turbine under CHP operation

    International Nuclear Information System (INIS)

    Rist, Johannes F.; Dias, Miguel F.; Palman, Michael; Zelazo, Daniel; Cukurel, Beni

    2017-01-01

    Highlights: •Economic dispatch of a micro gas turbine is considered for smart grid integration. •A detailed thermodynamic cycle analysis is conducted for variable load CHP operation. •Benefits are shown for case studies with real demand profiles and energy tariffs. •Optimal unit schedule can be electricity, heat, revenue or maintenance-cost driven. -- Abstract: This work considers the economic dispatch of a single micro-gas turbine under combined heat and power (CHP) operation. A detailed thermodynamic cycle analysis is conducted on a representative micro-gas turbine unit with non-constant component efficiencies and recuperator bypass. Based on partial and full load configurations, an accurate optimization model is developed for solving the economic dispatch problem of integrating the turbine into the grid. The financial benefit and viability of this approach is then examined on four detailed scenarios using real data on energy demand profiles and electricity tariffs. The analysis considers the optimal operation in a large hotel, a full-service restaurant, a small hotel, and a residential neighborhood during various seasons. The optimal schedule follows four fundamental economic drivers which are electricity, heat, revenue, and maintenance-cost driven.

  12. Islanded house operation using a micro CHP

    NARCIS (Netherlands)

    Molderink, Albert; Bakker, Vincent; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2007-01-01

    The µCHP is expected as the successor of the conventional high-efficiency boiler producing next to heat also electricity with a comparable overall efficiency. A µCHP appliance saves money and reduces greenhouse gas emission. An additional functionality of the µCHP is using the appliance as a

  13. Topology optimization of inertia driven dosing units

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2017-01-01

    This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization...

  14. Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Rossi, Mosè

    2016-01-01

    Starting from PES (primary energy saving) and CSR (cost saving ratio) definitions the work pinpoints a “grey area” in which CHP (combined heat and power – cogeneration) units can operate with profit and negative PES. In this case, CHP can be profitably operated with lower efficiency with respect to separate production of electrical and thermal energy. The work defines the R-index as the ratio between the cost of fuel and electricity. The optimal value of R-index for which CHP units operate with both environmental benefit (PES > 0) and economic profitability (CSR > 0) is the reference value of electrical efficiency, η_e_l_-_r_e_f, of separate production (national power grid mix). As a consequence, optimal R-index varies from Country to Country. The work demonstrates that the value of R corresponds to the minimum value of electrical efficiency for which any power generator operates with profit. The paper demonstrates that, with regard to the profitability of cogeneration, the ratio between the cost of commodities is more important than their absolute value so that different taxation of each commodity can be a good leverage for energy policy makers to promote high efficiency cogeneration, even in the absence of an incentive mechanism. The final part of the study presents an analysis on micro-CHP technologies payback times for different European Countries. - Highlights: • Investigation of the grey area where CHP profitably operates also with negative PES. • Study starts from definition of primary energy saving PES and cost saving ratio CSR. • Definition of the R-index as the ratio between the cost of fuel and electricity. • The optimal value of R for which the “grey area” disappears is R = η_e_l_-_r_e_f. • R is also the value of η_e_l for which any electric generator profitably operates.

  15. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    Energy Technology Data Exchange (ETDEWEB)

    Mago, Pedro [Mississippi State Univ., Mississippi State, MS (United States); Newell, LeLe [Mississippi State Univ., Mississippi State, MS (United States)

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  16. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    International Nuclear Information System (INIS)

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-01-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications

  17. Market optimization of a cluster of DG-RES, micro-CHP, heat pumps and energy storage within network constraints: The Power Matching City field test

    Energy Technology Data Exchange (ETDEWEB)

    Bliek, F.W.; Van den Noort, A. [KEMA, Arnhem (Netherlands); Roossien, B.; Kamphuis, I.G. [ECN Efficiency and Infrastructure, Petten (Netherlands); De Wit, J.; Van de Velde, J. [HumiQ, Barendrecht (Netherlands); Eijgelaar, M. [Essent, Arnhem (Netherlands)

    2010-10-15

    The share of renewable energy resources for electricity production, in a distributed setting (DG-RES), increases. The amount of energy transported via the electricity grid by substitution of fossil fuels for mobility applications (electric vehicles) and domestic heating (heat pumps) increases as well. Apart from the volume of electricity also the simultaneity factor increases at all grid levels. This poses unprecedented challenges to capacity management of the electricity infrastructure. A solution for tackling this challenge is using more active distribution networks, intelligent coordination of supply and demand using ICT and using the gas distribution network to mitigate electricity distribution bottlenecks. In the EU FP6 Energy Program Integral project, a large scale heterogeneous field test has been designed for application of the software agent based PowerMatcher technology. The test is conducted in a suburb of Groningen, Hoogkerk, and entails approximately 30 homes with either a 'dual fuel' heating system (electrical heat pump with gas-fired peak-burners) or a micro-CHP. Homes also may have PV. Furthermore, a wind production facility and nodes with electricity chargers for EVs and electricity storage are part of the Virtual Power Plant cluster, constructed in this way. Domestic heating systems have intrinsic operational flexibility in comfort management through the thermal mass of the dwellings. Furthermore, the field test comfort systems are equipped with possibilities for hot water storage for central heating as well as for tap-water. Finally, having additional gas-fired heating capacity for electrical heat pumps adds to increasing flexibility by switching the energy source dependent on the status of the electricity grid. Purpose of the field test is using this flexibility to react to phenomena in the electricity system. From a commercial perspective, the aggregated cluster reacts on small-time scale events like real-time portfolio imbalance

  18. Evaluation of an alkaline fuel cell system as a micro-CHP

    International Nuclear Information System (INIS)

    Verhaert, Ivan; Mulder, Grietus; De Paepe, Michel

    2016-01-01

    Highlights: • Sensitivity analysis on system configuration of the AFC as a micro-CHP. • Flow rate in the secondary heating circuit can be used to control water management. • Part load behavior of fuel cells is compared to other micro-CHP technologies. • For future energy demand in buildings fuel cells have the best performance. - Abstract: Micro-cogeneration is an emerging technology to reduce the non-renewable energy demand in buildings and reduce peak load in the grid. Fuel cell based cogeneration (CHP) has interesting prospects for building applications, even at relatively low heat demand. This is due to their partial load behavior which is completely different, compared to other micro-CHP technologies. Within the fuel cell technologies suitable for small scale CHP or micro-CHP, the existing configuration of an alkaline fuel cell system is analyzed. This analysis is based on validated models and offers a control strategy to optimize both water management and energy performance of the alkaline fuel cell system. Finally, the model of the alkaline fuel cell system with optimized control strategy is used to compare its part load behavior to other micro-CHP technologies.

  19. Micro-CHP for self-supply in the housing industry. Profitability and system integration; Mikro-BHKW zur Eigenversorgung in der Wohnungswirtschaft. Wirtschaftlichkeit und Systemintegration

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, Raphael; Buettner, Markus; Erge, Thomas; Wille-Haussmann, Bernhard; Wittwer, Christof [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2011-07-01

    The use of micro-CHP units in multifamily buildings is particularly profitable if the produced electricity - coupled with the thermal energy production - is used directly by the operator or sold locally. To maximize the share of own consumption the use of thermal storages to operate the CHP at times of high electrical demand is necessary. By conducting a field test it is shown that the share of own consumption can be increased by predictive control of CHP with thermal storages. The approach increases the profitability of the CHP operation under today's conditions as well as the system integration of the CHP electricity. (orig.)

  20. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  1. Review of CHP projections tp 2010

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, W.

    2003-07-01

    This report summarises the findings of a study examining market conditions for combined heat and power since 2000 and assessing the commercial position of cogeneration (CHP) in order to provide advice on likely distributed generation in relation to technology, location and commissioning timetables. Details are given of the modelling of the development of 'good quality' CHP by Cambridge Econometrics (CE), and the work carried out by ILEX updating the CE study. Modelling assumptions, market conditions for CHP since the CE study, the effect of market conditions on CE modelling assumptions, justified changes in assumptions, and evaluation of likely CHP capacity to 2010 are discussed.

  2. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  3. Small-scale biomass CHP using gasa turbines: a scoping study

    International Nuclear Information System (INIS)

    James, D.W.; Landen, R.

    1996-01-01

    Various options for small-scale (up to 250 KWe) Combined Heat and Power (CHP) plants evaluated in this scoping study. Plants using small gas turbines, and able to use biomass fuels when available are included. Three detailed case studies of small-scale biomass CHP plants are compared to match specific technical options with customer requirements. The commercial development of such biomass-fired CHP units, using gas turbines, is shown to be economically viable depending on fuel costs and the continuation of existing financial incentives. (UK)

  4. Potential for CHP in Africa

    International Nuclear Information System (INIS)

    Yameogo, Gabriel

    2000-01-01

    It is suggested that many industries in Africa could benefit from biomass-fired cogeneration so long as the correct structures and learning processes are put in place. The article discusses Africa's energy background and gives figures for generation sources and consumption. A profile of Sudan and its energy needs is presented. It is argued that although some barriers do exist, a move to cogeneration is essential. CHP should be particularly attractive for industries able to use thermal energy for drying, heating and cooling: typical areas would be pharmaceutical and chemical plants, textile factories, cement works and steel mills

  5. Reducing the network load and optimization of the economic efficiency of CHP plants by forecast-guided control; Verringerung der Netzbelastung und Optimierung der Wirtschaftlichkeit von KWK-Anlagen durch prognosegefuehrte Steuerung

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Daniel; Adelhardt, Stefan [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Sensorik; beECO GmbH, Erlangen (Germany)

    2012-07-01

    Heat-guided combined heat and power (CHP) plants often cause large compensation energy amounts, additional costs to the operator respectively and another burden on the parent network. The balance energy is caused by errors in the production forecast whose quality heavily depends on the heat load performance. This paper identifies the forecasting problems with heat-guided CHP and reveals how the accompanying cost and the network burden can be reduced. This is achieved by an improvement of the forecast in conjunction with a forecast-guided control without affecting the heat supply. In addition, an outlook on further measures to the earnings with the system is presented. (orig.)

  6. Effect of grid disturbances on fault-ride-through behaviour of MV-connected DG-units, in especially CHP-plants

    NARCIS (Netherlands)

    Coster, E.J.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    In the near future a significant amount of the consumed electrical energy will be generated by distributed generation (DG). Because of the small size these units are normally connected to the local distribution grid [1]. Connection of DG changes the operation of the distribution grid. In order to

  7. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland

    International Nuclear Information System (INIS)

    Rieder, S.; Landis, F.; Lienhard, A.; Marti Locher, F.; Krummenacher, S.

    2009-04-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  8. Design of Biomass Combined Heat and Power (CHP Systems based on Economic Risk using Minimax Regret Criterion

    Directory of Open Access Journals (Sweden)

    Ling Wen Choong

    2018-01-01

    Full Text Available It is a great challenge to identify optimum technologies for CHP systems that utilise biomass and convert it into heat and power. In this respect, industry decision makers are lacking in confidence to invest in biomass CHP due to economic risk from varying energy demand. This research work presents a linear programming systematic framework to design biomass CHP system based on potential loss of profit due to varying energy demand. Minimax Regret Criterion (MRC approach was used to assess maximum regret between selections of the given biomass CHP design based on energy demand. Based on this, the model determined an optimal biomass CHP design with minimum regret in economic opportunity. As Feed-in Tariff (FiT rates affects the revenue of the CHP plant, sensitivity analysis was then performed on FiT rates on the selection of biomass CHP design. Besides, design analysis on the trend of the optimum design selected by model was conducted. To demonstrate the proposed framework in this research, a case study was solved using the proposed approach. The case study focused on designing a biomass CHP system for a palm oil mill (POM due to large energy potential of oil palm biomass in Malaysia.

  9. Risk analysis for CHP decision making within the conditions of an open electricity market

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad; Kozuh, Mitja

    2007-01-01

    Decision making under uncertainty is a difficult task in most areas. Investment decisions for combined heat and power production (CHP) are certainly one of the areas where it is difficult to find an optimal solution since the payback period is several years and parameters change due to different perturbing factors of economic and mostly political nature. CHP is one of the most effective measures for saving primary energy and reduction of greenhouse gas emissions. The implementation of EU directives on the promotion of cogeneration based on useful heat demand in the internal energy market will accelerate CHP installation. The expected number of small CHP installations will be very high in the near future. A quick, reliable and simple tool for economic evaluation of small CHP systems is required. Since evaluation is normally made by sophisticated economic computer models which are rather expensive, a simple point estimate economic model was developed which was later upgraded by risk methodology to give more informative results for better decision making. This paper presents a reliable computer model entitled 'Computer program for economic evaluation analysis of CHP' as a tool for analysis and economic evaluation of small CHP systems with the aim of helping the decision maker. The paper describes two methods for calculation of the sensitivity of the economic results to changes of input parameters and the uncertainty of the results: the classic/static method and the risk method. The computer program uses risk methodology by applying RISK software on an existing conventional economic model. The use of risk methodology for economic evaluation can improve decisions by incorporating all possible information (knowledge), which cannot be done in the conventional economic model due to its limitations. The methodology was tested on the case of a CHP used in a smaller hospital

  10. Micro CHP: implications for energy companies

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Jeremy [EA Technology (United Kingdom); Kolin, Simon; Hestevik, Svein [Sigma Elektroteknisk A/S (Norway)

    2000-08-01

    This article explains how micro combined heat and power (CHP) technology may help UK energy businesses to maintain their customer base in the current climate of liberalisation and competition in the energy market The need for energy companies to adopt new technologies and adapt to changes in the current aggressive environment, the impact of privatisation, and the switching of energy suppliers by customers are discussed. Three potential routes to success for energy companies are identified, namely, price reductions, branding and affinity marketing, and added value services. Details are given of the implementation of schemes to encourage energy efficiency, the impact of the emissions targets set at Kyoto, the advantages of micro CHP generation, business opportunities for CHP, business threats from existing energy companies and others entering the field, and the commercial viability of micro CHP.

  11. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na+/H+ exchanger NHE1

    International Nuclear Information System (INIS)

    Ben Ammar, Youssef; Takeda, Soichi; Sugawara, Mitsuaki; Miyano, Masashi; Mori, Hidezo; Wakabayashi, Shigeo

    2005-01-01

    Crystallization of the human CHP2–NHE1 binding domain complex. Calcineurin homologous protein (CHP) is a Ca 2+ -binding protein that directly interacts with and regulates the activity of all plasma-membrane Na + /H + -exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 Å and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 Å

  12. Modeling work of a small scale gasifier/SOFC CHP system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Aravind, P.V.; Qu, Z.; Woudstra, N.; Verkooijen, A.H.M. [Delft University of Technology (Netherlands). Dept. of Mechanical Engineering], Emails: ming.liu@tudelft.nl, p.v.aravind@tudelft.nl, z.qu@tudelft.nl, n.woudstra@tudelft.nl, a. h. m. verkooijen@tudelft.nl; Cobas, V.R.M. [Federal University of Itajuba (UNIFEI), Pinheirinhos, MG (Brazil). Dept. of Mechanical Engineering], E-mail: vlad@unifei.edu.br

    2009-07-01

    For a highly efficient biomass gasification/Solid Oxide Fuel Cell (SOFC) Combined Heat and Power (CHP) generation system, the gasifier, the accompanying gas cleaning technologies and the CHP unit must be carefully designed as an integrated unit. This paper describes such a system involving a two-stage fixed-bed down draft gasifier, a SOFC CHP unit and a gas cleaning system. A gas cleaning system with both low temperature and high temperature sections is proposed for coupling the gasifier and the SOFC. Thermodynamic modeling was carried out for the gasifier/SOFC system with the proposed gas cleaning system. The net AC electrical efficiency of this system is around 30% and the overall system efficiency is around 60%. This paper also describes various exergy losses in the system and the future plans for integrated gasifier-GCU-SOFC experiments from which the results will be used to validate the modeling results of this system. (author)

  13. Management of fluctuations in wind power and CHP comparing two possible Danish strategies

    International Nuclear Information System (INIS)

    Lund, H.; Clark, W.W.

    2002-01-01

    Both CHP (combined heat and power production) and wind power are important elements of Danish energy policy. Today, approximately 50% of both the Danish electricity and heat demand are produced in CHP and more than 15% of the electricity demand is produced by wind turbines. Both technologies are essential for the implementation of Danish climate change response objectives, and both technologies are intended for further expansion in the coming decade. Meanwhile, the integration of CHP and wind power is subject to fluctuations in electricity production. Wind turbines depend on the wind, and CHP depends on the heat demand. This article discusses and analyses two different national strategies for solving this problem. One strategy, which is the current official government policy known as the export strategy, proposes to take advantage of the Nordic and European markets for selling and buying electricity. In this case, surplus electricity from wind power and CHP simply will be sold to neighbouring countries. Another strategy, the self-supply strategy, runs the CHP units to meet both demand and the fluctuations in the wind scheduling. In this case, investments in heat storages are necessary and heat pumps have to be added to the CHP units. Based on official Danish energy policy and energy plans, this article quantifies the problem for the year 2015 in terms of the amount of surplus electricity, and investments in heat pumps, etc. needed to solve the problem are calculated. Based on these results between the two different strategies, the conclusion is that the self-supply strategy is recommended over the official export strategy. (author)

  14. Micro-CHP systems for residential applications

    International Nuclear Information System (INIS)

    Paepe, Michel de; D'Herdt, Peter; Mertens, David

    2006-01-01

    Micro-CHP systems are now emerging on the market. In this paper, a thorough analysis is made of the operational parameters of 3 types of micro-CHP systems for residential use. Two types of houses (detached and terraced) are compared with a two storey apartment. For each building type, the energy demands for electricity and heat are dynamically determined. Using these load profiles, several CHP systems are designed for each building type. Data were obtained for two commercially available gas engines, two Stirling engines and a fuel cell. Using a dynamic simulation, including start up times, these five system types are compared to the separate energy system of a natural gas boiler and buying electricity from the grid. All CHP systems, if well sized, result in a reduction of primary energy use, though different technologies have very different impacts. Gas engines seem to have the best performance. The economic analysis shows that fuel cells are still too expensive and that even the gas engines only have a small internal rate of return (<5%), and this only occurs in favourable economic circumstances. It can, therefore, be concluded that although the different technologies are technically mature, installation costs should at least be reduced by 50% before CHP systems become interesting for residential use. Condensing gas boilers, now very popular in new homes, prove to be economically more interesting and also have a modest effect on primary energy consumption

  15. Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas

    International Nuclear Information System (INIS)

    Savola, Tuula; Fogelholm, Carl-Johan

    2006-01-01

    In this paper, we present a systematic study of process changes for increased power production in 1-20 MW e combined heat and power (CHP) plants. The changes are simulated, and their economic feasibility evaluated by using existing small scale CHP case plants. Increasing power production in decentralised CHP plants that operate according to a certain heat demand could reduce the fuel consumption and CO 2 emissions per power unit produced and improve the feasibility of CHP plant investments. The CHP plant process changes were simulated under design and off design conditions and an analysis of power and heat production, investment costs and CO 2 emissions was performed over the whole annual heat demand. The results show that using biomass fuels, there are profitable possibilities to increase the current power to heat ratios, 0.23-0.48, of the small scale CHP plants up to 0.26-0.56, depending on the size of the plant. The profitable changes were a two stage district heat exchanger and the addition of a steam reheater and a feed water preheater. If natural gas is used as an additional fuel, the power to heat ratio may be increased up to 0.35-0.65 by integrating a gas engine into the process. If the CO 2 savings from the changes are also taken into account, the economic feasibility of the changes increases. The results of this work offer useful performance simulation and investment cost knowledge for the development of more efficient and economically feasible small scale CHP processes

  16. Deployment of FlexCHP System

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David [Gas Technology Inst., Des Plaines, IL (United States)

    2015-11-01

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissions standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.

  17. Modelling Danish local CHP on market conditions

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2004-01-01

    with the liberalisation process of the energy sectors of the EU countries, it is however anticipated that Danish local CHP are to begin operating on market conditions within the year 2005. This means that the income that the local CHPs previously gained from selling electricity at the feed-in tariff is replaced in part...... the consequences of acting in a liberalised market for a given CHP plant, based on the abovementioned bottom-up model. The key assumption determining the bottom line is the electricity spot price. The formation of the spot price in the Nordic area depends heavily upon the state of the water reservoirs in Norway...

  18. 330 kWe Packaged CHP System with Reduced Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Plahn, Paul [Cummins Power Generation, Minneapolis, MN (United States); Keene, Kevin [Cummins Power Generation, Minneapolis, MN (United States); Pendray, John [Cummins Power Generation, Minneapolis, MN (United States)

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  19. Contribution of wind power and CHP to exports from Western Denmark during 2000-2004

    International Nuclear Information System (INIS)

    Mignard, D.; Harrison, G.P.; Pritchard, C.L.

    2007-01-01

    The experience of Denmark is used by the United Kingdom's anti-wind lobby to demonstrate that intermittency and inaccuracies in wind forecasting make wind power ineffective and expensive. A further assertion is that most of the power is 'unwanted' since up to 80% of it is exported. Here, available data for Danish energy production for 2000-2004 is used to assess the link between wind generation and exports and test the validity of these claims. Net exports in Western Denmark showed good correlation with wind production. However, they were more significantly correlated with the production from local combined heat and power (CHP) plants. In order to test the 80% export claim, a simple technique was devised to correlate and rank hourly net exports and generation from wind and local CHP. In the case where net exports were primarily attributed to (or blamed on) wind, 44-84% of annual wind production was deemed to be exported, with wind 'causing' 57-79% of net annual exports. For this extreme scenario, the percentage values are in line with those of critics. However, under the opposite extreme scenario in which exports are attributed to local CHP, 77-94% of exports were caused by CHP and only 4-32% of wind production was exported. Overall, this study shows that there is some degree of correlation between net exports and wind power, but that the claim that 80% is exported is unwarranted since it ignores the demonstrably stronger influence of local CHP. (author)

  20. Distributed Control in a Network of Households with microCHP

    NARCIS (Netherlands)

    Larsen, Gunn; Scherpen, Jacquelien M.A.; van Foreest, Nicolaas

    2011-01-01

    This is an application of a dynamic price mechanism to distributed optimization of a network of houses which are both producers and consumers of electricity. One possibility for domestic generation is the Micro Combined Heat Power system (µCHP). We use a pricing mechanism based on dual

  1. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  2. Optimal design of unit hydrographs using probability distribution and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    optimization formulation is solved using binary-coded genetic algorithms. The number of variables to ... Unit hydrograph; rainfall-runoff; hydrology; genetic algorithms; optimization; probability ..... Application of the model. Data derived from the ...

  3. Grid Interaction of MV-connected CHP-plants during disturbances

    NARCIS (Netherlands)

    Coster, E.J.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    Nowadays the amount of distributed generation (DG) units is increasing rapidly. Most dominant are combined heat and power (CHP) plants and wind turbines. At this moment, in most systems, there are no requirements defined for short-circuit behavior of such generators connected to the medium voltage

  4. Future market relevance of CHP installations with electrical ratings from 1 to 1000 kW; Zukuenftige Marktbedeutung von WKK-Anlagen mit 1 - 1000 kW elektrischer Leistung

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R.

    2003-12-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the future market relevance of combined heat and power (CHP) installations with electrical ratings from 1 to 1000 kW. Developments over the past ten years are reviewed. Important reductions in the price of motor-driven CHP units and the price of the electrical power produced are noted and commented on. The technical market potential of CHP units and the degree to which this potential has been implemented are commented on. Work done, including CHP implementation in the industrial, commercial and residential areas, is commented on. Future developments both in the technical area as well as in commercial areas are commented on. Micro-gas-turbine based CHP systems are also discussed, as are fuel-cell based systems in both the higher and lower capacity power generation area. The prospects for CHP systems in general in the electricity generation area are discussed

  5. Validation of a HT-PEMFC stack for CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, S.; Ulleberg, Oe. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Bujlo, P. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Electrotechnical Institute Wroclaw Division (Poland); Scholta, J. [Centre for Solar Energy and Hydrogen Research (ZSW) (Germany)

    2010-07-01

    Fuel cell systems are very attractive for stationary co-generation applications as they can produce heat and electricity efficiently in a decentralized and environmentally friendly manner. PEMFC stacks operating at temperatures above 120 C, specifically in the range of 140-180 C, are ideal for co-generation purposes. In this study, preliminary results from a HTPEMFC stack designed for CHP applications is presented and discussed. A short, five-cell, HT-PEMFC stack was assembled with Celtec- P-2100 MEAs and validated in terms of electrical performance. The stack was operated with hydrogen and air at 160 C and the utilization curves for anode and cathode were recorded for a wide range of gas utilization at a current density of 0.52 A/cm{sup 2}. The current voltage characteristic was measured at optimal utilization values at 160 C. A 1kW stack is assembled and is currently being validated for its performance under various operating conditions for use in CHP applications. (orig.)

  6. Techno, Economic and Environmental Assessment of a Combined Heat and Power (CHP System—A Case Study for a University Campus

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2018-05-01

    Full Text Available Universities in the United Kingdom that have installed Combined Heat and Power (CHP technology are making good moves towards achieving their CO2 reduction targets. However, CHP may not always be an economical option for a university campus due to numerous factors. Identification of such factors is highly important before making an investment decision. A detailed technical, economic, and environmental feasibility of CHP is, therefore, indispensable. This study aims to undertake a detailed assessment of CHP for a typical university campus and attempts to highlight the significance of such factors. Necessary data and information were collected through site visits, whereas the CHP sizing was performed using the London South Bank University (LSBU CHP model. The results suggest that there is a strong opportunity of installing a 230 kW CHP that will offset grid electricity and boilers thermal supply by 47% and 75%, respectively, and will generate financial and environmental yearly savings of £51k and 395 t/CO2, respectively. A wider spark gap decreases the payback period of the project and vice versa. The capital cost of the project could affect the project’s economics due to factors, such as unavailability of space for CHP, complex existing infrastructure, and unavailability of a gas connection.

  7. Generic model of a community-based microgrid integrating wind turbines, photovoltaics and CHP generations

    International Nuclear Information System (INIS)

    Ma, Xiandong; Wang, Yifei; Qin, Jianrong

    2013-01-01

    Highlights: ► Proposes a generic microgrid model comprising hybrid distributed generation units. ► Examines DG performance due to both environmental condition changes and electrical faults. ► Addresses island and grid connected modes of operation for DG units. ► We demonstrate the feasibility of the proposed residential microgrid system. - Abstract: Development and deployment of low-carbon energy technologies has been a national strategy of both the UK and China for a number of years, including the use of renewable generation technologies and the improvement of energy efficiency of operations and activities. The paper addresses several issues of generic importance to a residential microgrid system such as network modelling, advanced control and integration of intelligent monitoring techniques. The system, comprising representative distributed generation technologies of photovoltaics, wind turbines and combined heat and power, has been simulated by PSCAD/EMTDC under different operational scenarios. Studies include the effect of environmental condition changes, control systems and power electronics on wind turbines and PV cells, and the mixture of wind/solar/CHP energy generation under dominance of each technology. The performance and dynamics of the system are examined against symmetrical and asymmetrical electrical faults to seek an optimal isolation and restoration of the distributed generation unit from the connected grid system. Modelling these system interactions has demonstrated the feasibility of the proposed residential microgrid system

  8. Optimal portfolio selection between different kinds of Renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Zakerinia, MohammadSaleh; Piltan, Mehdi; Ghaderi, Farid

    2010-09-15

    In this paper, selection of the optimal energy supply system in an industrial unit is taken into consideration. This study takes environmental, economical and social parameters into consideration in modeling along with technical factors. Several alternatives which include renewable energy sources, micro-CHP systems and conventional system has been compared by means of an integrated model of linear programming and three multi-criteria approaches (AHP, TOPSIS and ELECTRE III). New parameters like availability of sources, fuels' price volatility, besides traditional factors are considered in different scenarios. Results show with environmental preferences, renewable sources and micro-CHP are good alternatives for conventional systems.

  9. MICRO-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  10. CHP plant Legionowo Poland - Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    In 1997, a new Energy Law was passed in Poland. An important element of the law is that local energy planning is made obligatory. The law describes obligatory tasks and procedures for Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law of 1997, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for the Energy Supply Plans in these municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continues/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the Combined Cycle type should be investigated. The present report is the final Master Plan based on the following reports: Master Plan for Legionowo - Status Report; Master Plan for Legionowo - Hydraulic Analysis; CHP Plant Legionowo Poland - CHP Feasibility Analysis. The final Master Plan describes the status in the DH Company in Legionowo, possible improvements and an investment plan for the selected scenario. (BA)

  11. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na{sup +}/H{sup +} exchanger NHE1

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ammar, Youssef [Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Takeda, Soichi [Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Sugawara, Mitsuaki; Miyano, Masashi [Structural Biophysics Laboratory, RIKEN Harima Institute at SPring-8, Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan); Mori, Hidezo [Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Wakabayashi, Shigeo, E-mail: wak@ri.ncvc.go.jp [Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan)

    2005-10-01

    Crystallization of the human CHP2–NHE1 binding domain complex. Calcineurin homologous protein (CHP) is a Ca{sup 2+}-binding protein that directly interacts with and regulates the activity of all plasma-membrane Na{sup +}/H{sup +}-exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 Å and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 Å.

  12. Analysis and optmization of CHP, CCHP, CHP-ORC, and CCHP-ORC systems

    Science.gov (United States)

    Hueffed, Anna Kathrine

    Increased demand for energy, rising energy costs, and heightened environmental concerns are driving forces that continually press for the improvement and development of new technologies to promote energy savings and emissions reduction. Combined heating and power (CHP), combined cooling, heating, and power (CCHP), and organic Rankine cycles (ORC) are a few of the technologies that promise to reduce primary energy consumption (PEC), cost, and emissions. CHP systems generate electricity at or near the place of consumption using a prime mover, e.g. a combustion engine or a turbine, and utilize the accompanying exhaust heat that would otherwise be wasted to satisfy the building's thermal demand. In the case of CCHP systems, exhaust heat also goes to satisfy a cooling load. An organic Rankine cycle (ORC) combined with a CHP or CCHP system can generate electricity from any surplus low-grade heat, thereby reducing the total primary energy, cost, and emissions.

  13. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  14. ANALYSIS OF CHP POTENTIAL AT FEDERAL SITES

    Energy Technology Data Exchange (ETDEWEB)

    HADLEY, S.W.

    2002-03-11

    This document was prepared at the request of the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) under its Technical Guidance and Assistance and Project Financing Programs. The purpose was to provide an estimate of the national potential for combined heat and power (also known as CHP; cogeneration; or cooling, heating, and power) applications at federal facilities and the associated costs and benefits including energy and emission savings. The report provides a broad overview for the U.S. Department of Energy (DOE) and other agencies on when and where CHP systems are most likely to serve the government's best interest. FEMP's mission is to reduce the cost to and environmental impact of the federal government by advancing energy efficiency and water conservation, promoting the use of renewable energy, and improving utility management decisions at federal sites. FEMP programs are driven by its customers: federal agency sites. FEMP monitors energy efficiency and renewable energy technology developments and mounts ''technology-specific'' programs to make technologies that are in strong demand by agencies more accessible. FEMP's role is often one of helping the federal government ''lead by example'' through the use of advanced energy efficiency/renewable energy (EERE) technologies in its own buildings and facilities. CHP was highlighted in the Bush Administration's National Energy Policy Report as a commercially available technology offering extraordinary benefits in terms of energy efficiencies and emission reductions. FEMP's criteria for emphasizing a technology are that it must be commercially available; be proven but underutilized; have a strong constituency and momentum; offer large energy savings and other benefits of interest to federal sites and FEMP mission; be in demand; and carry sufficient federal market potential. As discussed in the report, CHP meets all

  15. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  16. Small scale CHP: Alternative integration forms in the Danish energy system

    International Nuclear Information System (INIS)

    Boeg, Rasmus; Gatautis, Ramunas; Engberg Pedersen, Thomas; Schmidt, Rune; Ravn, Hans F.

    2003-01-01

    In Denmark, introduction of small scale combined heat and power (CHP) plants were part of the energy policy during the 1990's. Thus, the installed electricity capacity on this type of units multiplied approximately ten times during this decade, to constitute more than 2000 MW in 2000, or around 20% of total installed electricity capacity. The motivation for this development was mainly energy savings due to the relatively high thermal efficiency in combined production, and the associated reduction of emissions. The remuneration for the electricity delivered to the electrical network was in part based on a feed in tariff. The construction of the tariff reflected estimated benefits to the electrical system. With the liberalisation of the electricity markets this arrangement has been questioned, and it has been suggested that the differentiated payment to local CHP should be based on electricity market prising. For Denmark this would imply that the local CHP should trade the electricity on the Nordpool electricity spot market. This paper analyses parts of these two alternative ways of economic arrangements in relation to small scale CHP. First it describes the development and status till now. Then it analyses the production patterns and associated economic consequences of a change from the tariff based system to a market system. (BA)

  17. Dynamic analysis of PEMFC-based CHP systems for domestic application

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A.

    2012-01-01

    Highlights: ► Dynamic model of a CHP energy system based on a PEM fuel cell was developed. ► The CHP system behavior at variable electrical and thermal load was investigated. ► The optimal RH value was assessed maximizing PEMFC performance through simulations. ► The system best operating conditions are characterized by a RH value equal to 50%. -- Abstract: Fuel cell-based CHP systems for distributed residential power generation represent an interesting alternative to traditional thermoelectric plants. This is mainly due to the high efficiency obtainable in the production of electricity and heat in a decentralised, quiet and environmental friendly way. The current paper focuses on the development, in Matlab®Simulink environment, of a complete dynamic model of a residential cogenerative (CHP) energy system consisting of the Proton Exchange Membrane fuel cell (PEMFC), fuel processor, heat exchangers, humidifier and auxiliary hot water boiler. The target of the study is the investigation through such a model of the behavior of CHP systems based on fuel cell (FC) at variable electrical and thermal load, in reference to typical load curves of residential users. With the aim to evaluate the system performance (efficiency, fuel consumption, hot water production, response time) and then to characterize its better operating conditions with particular attention to air relative humidity, suitable simulations were carried out. They are characterized by the following of a typical electrical load trend and in relation to two different thermal load profiles. The dynamic model presented in this paper has allowed to observe the fully functioning of the FC based system under variable loads and it has permitted to design appropriate control logics for this system.

  18. Simulation and optimization of an industrial PSA unit

    Directory of Open Access Journals (Sweden)

    Barg C.

    2000-01-01

    Full Text Available The Pressure Swing Adsorption (PSA units have been used as a low cost alternative to the usual gas separation processes. Its largest commercial application is for hydrogen purification systems. Several studies have been made about the simulation of pressure swing adsorption units, but there are only few reports on the optimization of such processes. The objective of this study is to simulate and optimize an industrial PSA unit for hydrogen purification. This unit consists of six beds, each of them have three layers of different kinds of adsorbents. The main impurities are methane, carbon monoxide and sulfidric gas. The product stream has 99.99% purity in hydrogen, and the recovery is around 90%. A mathematical model for a commercial PSA unit is developed. The cycle time and the pressure swing steps are optimized. All the features concerning with complex commercial processes are considered.

  19. Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo; Järvinen, Mika; Fogelholm, Carl-Johan

    2013-01-01

    Highlights: ► We simulate CHP-integrated production of wood pellets, torrefied wood pellets and pyrolysis slurry. ► Integration increases operation hours and district heat output by up to 38% and 22%. ► Additionally installed equipment reduces yearly power generation by up to 7%. ► Wood pellet production performs best energetically and environmentally. ► Integrated concepts substantially reduce fuel consumption and CO 2 emissions. - Abstract: In order to react on future expected increased competition on restricted biomass resources, communal combined heat and power (CHP) plants can be integrated with biomass upgrading processes that add valuable products to the portfolio. In this paper, outgoing from a base case, the retrofit integration of production of wood pellets (WPs), torrefied wood pellets (TWPs) and wood fast pyrolysis slurry (PS) with an existing wood-fired CHP plant was simulated. Within the integration concept, free boiler capacity during times of low district heat demands is used to provide energy for the upgrading processes. By detailed part-load modelling, critical process parameters are discussed. With help of a multiperiod model of the heat duration curve, the work further shows the influence of the integration on plant operating hours, electricity production and biomass throughput. Environmental and energetic performance is assessed according to European standard EN 15603 and compared to the base case as well as to stand-alone production in two separate units. The work shows that all three integration options are well possible within the operational limits of the CHP plant. Summarising, this work shows that integration of WP, TWP and PS production from biomass with a CHP plant by increasing the yearly boiler workload leads to improved primary energy efficiency, reduced CO 2 emissions, and, when compared to stand-alone production, also to substantial fuel savings

  20. Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis

    International Nuclear Information System (INIS)

    Westner, Günther; Madlener, Reinhard

    2012-01-01

    In this paper, we apply a spread-based real options approach to analyze the decision-making problem of an investor who has the choice between an irreversible investment in a condensing power plant without heat utilization and a plant with combined heat-and-power (CHP) generation. Our investigation focuses on large-scale fossil-fueled generation technologies and is based on a stochastic model that uses copula functions to provide the input parameters of the real options model. We define the aggregated annual spread as assessment criteria for our investigation since it contains all relevant volatile input parameters that have an impact on the evaluation of investment decisions. We show that the specific characteristics of CHP plants, such as additional revenues from heat sales, promotion schemes, specific operational features, and a beneficial allocation of CO 2 allowances, have a significant impact on the option value and therefore on the optimal timing for investment. For the two fossil-fueled CHP technologies investigated (combined-cycle gas turbine and steam turbine), we conclude from our analysis that a high share of CHP generation reduces the risk exposure for the investor. The maximal possible CHP generation depends significantly on the local heat demand in the surroundings of the power plant. Considering this, the size of the heat sink available could gain more relevance in the future selection process of sites for new large-scale fossil power plants.

  1. An energetic-exergetic analysis of a residential CHP system based on PEM fuel cell

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A.

    2011-01-01

    Highlights: → A zero-dimensional of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) has been developed. → The electrochemical model has been validated with experimental data. → The performances of this CHP system have been evaluated through a series of simulations. → An energy/exergy analysis of the simulation results has allowed to define the PEMFC optimal operating conditions. → The PEMFC optimal operating conditions detected are: 1 atm, 353.15 K and 100% RH. -- Abstract: The use of fuel cell systems for distributed residential power generation represents an interesting alternative to traditional thermoelectric plants due to their high efficiency and the potential recovering of the heat generated by the internal electrochemical reactions. In this paper the study of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) is reported. With the aim to evaluate the performance and then the feasibility of this non-conventional energy system, in consideration of thermal and electrical basic demand of a multifamily apartment blocks, a zero-dimensional PEMFC model in Aspen Plus environment has been developed. A simulations sequence has been carried out at different operating conditions of the fuel cell (varying temperature, pressure and relative humidity). Subsequently, on the basis of the obtained results, an energy/exergy analysis has been conducted to define the optimal operating conditions of the PEMFC that ensures the most efficient use of the energy and exergy inputs.

  2. Generic Combined Heat and Power (CHP Model for the Concept Phase of Energy Planning Process

    Directory of Open Access Journals (Sweden)

    Satya Gopisetty

    2016-12-01

    Full Text Available Micro gas turbines (MGTs are regarded as combined heat and power (CHP units which offer high fuel utilization and low emissions. They are applied in decentralized energy generation. To facilitate the planning process of energy systems, namely in the context of the increasing application of optimization techniques, there is a need for easy-to-parametrize component models with sufficient accuracy which allow a fast computation. In this paper, a model is proposed where the non-linear part load characteristics of the MGT are linearized by means of physical insight of the working principles of turbomachinery. Further, it is shown that the model can be parametrized by the data usually available in spec sheets. With this model a uniform description of MGTs from several manufacturers covering an electrical power range from 30 k W to 333 k W can be obtained. The MGT model was implemented by means of Modelica/Dymola. The resulting MGT system model, comprising further heat exchangers and hydraulic components, was validated using the experimental data of a 65 k W MGT from a trigeneration energy system.

  3. THE BREAKEVEN POINT GIVEN LIMIT COST USING BIOMASS CHP PLANT

    Directory of Open Access Journals (Sweden)

    Paula VOICU

    2015-06-01

    Full Text Available Biomass is a renewable source, non-fossil, from which can be obtained fuels, which can be used in power generation systems. The main difference of fossil fuels is the availability biomass in nature and that it is in continue "reproduction". The use its enable the use of materials that could be destined destruction, as a source of energy "renewable", though result with many ecological values. In this paper we will study, applying a calculation model in view optimal sizing of the cogeneration plant based on biomass, biomass cost limit for the net present value is zero. It will consider that in cogeneration systems and in heating peak systems using biomass. After applying the mathematical model for limit value of biomass cost will determine the nominal optimal coefficient of cogeneration, for which discounted net revenue value is zero. Optimal sizing of CHP plants based on using biomass will be given by optimum coefficient of cogeneration determined following the application of the proposed mathematical model.

  4. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland; Beseitigung von Hemmnissen bei der Verbreitung von Waermekraftkopplung (WKK) in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, S.; Landis, F. [Interface Politikstudien Forschung Beratung, Luzern (Switzerland); Lienhard, A.; Marti Locher, F. [Universitaet Bern, Kompetenzzentrum fuer Public Management (KPM), Bern (Switzerland); Krummenacher, S. [Enerprice Partners AG, Technopark Luzern, Root Laengenbold (Switzerland)

    2009-04-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  5. CHP plant Legionowo Poland. Description of the electricity market in Poland/CHP-feasibility analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    In 1997, a new energy law was passed in Poland. An important element of the law is that local energy is made obligatory. The law describes obligatory tasks and procedures for the Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for energy supply plans in the three municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continued/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the combined cycle type should be investigated. The present report describes the electricity market in Poland, the market in which a CHP plant in Legionowo will have to operate. Furthermore the report presents the results of the feasibility analysis carried out for a new CHP plant in Legionowo. (BA)

  6. Optimal operation of cogeneration units. State of art and perspective

    International Nuclear Information System (INIS)

    Polimeni, S.

    2001-01-01

    Optimal operation of cogeneration plants and of power plant fueling waste products is a complex challenge as they have to fulfill, beyond the contractual obligation of electric power supply, the constraints of supplying the required thermal energy to the user (for cogeneration units) or to burn completely the by-products of the industrial complex where they are integrated. Electrical power market evolution is pushing such units to a more and more volatile operation caused by uncertain selling price levels. This work intends to pinpoint the state of art in the optimization of these units outlining the important differences among the different size and cycles. The effect of the market liberalization on the automation systems and the optimization algorithms will be discussed [it

  7. Putney Basketville Site Biomass CHP Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  8. Penempatan Optimal Phasor Measurement Unit (PMU) Dengan Integer Programming

    OpenAIRE

    Amrulloh, Yunan Helmy

    2013-01-01

    Phasor Measurement Unit (PMU) merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP) yang akan memberikan variabel dengan pilihan nilai (0,1) yang menu...

  9. Stirling Energy Module (SEM) as Micro-CHP; Stirling Energy Module (SEM) als Mini-BHKW

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, A.

    2006-07-01

    Since many years, a lot of effort is being put into the development of combined heat and power units (CHP) for the decentralised production of electric power. For long time, the main focus was on fuel cells. In the meantime, the Stirling technology, which is based upon classical mechanical engineering and innovative technical concepts, proceeded in its development as well. The following article describes the technology and the actual state of the development of the Stirling Energy Module (SEM) for the application as Micro-CHP in one-family-houses. SEM is based on a free-piston engine with a linear power generator, producing electric power while heating. The Stirling engine is planned the be introduced into the market as a replacement for the conventional heating systems within a couple of years. (author)

  10. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    Energy Technology Data Exchange (ETDEWEB)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system

  11. The Significance of a Building’s Energy Consumption Profiles for the Optimum Sizing of a Combined Heat and Power (CHP System—A Case Study for a Student Residence Hall

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2018-06-01

    Full Text Available University buildings, such as student residence halls with year-round consistent energy demands, offer strong opportunities for Combined Heat and Power (CHP systems. The economic and environmental feasibility of a CHP project is strongly linked with its optimum sizing. This study aims to undertake such an assessment for a CHP system for a student residence hall located in London, the United Kingdom (UK. The study also aims to undertake a sensitivity analysis to investigate the effect of different parameters on the project’s economics. Necessary data are collected via interviews with the University’s Energy Manager. Modeling of the CHP system is performed using the London South Bank University (LSBU, London, the UK CHP model. Results demonstrate that optimum sizing of CHP is crucial for achieving higher economic and environmental benefits and strongly depends on the authenticity of the energy consumption data, based on which the CHP is being sized. Use of incorrect energy data could result in an undersized or oversized CHP system, where an oversized system will result in higher negative results compared to an undersized system. Finally, Monto Carlo statistical analysis shows that electricity price is the significant factor that could affect the project’s economics. With an increasing spark gap, the payback period decreases, and vice versa.

  12. Dynamic optimization of a FCC converter unit: numerical analysis

    Directory of Open Access Journals (Sweden)

    E. Almeida Nt

    2011-03-01

    Full Text Available Fluidized-bed Catalytic Cracking (FCC is a process subject to frequent variations in the operating conditions (including feed quality and feed rate. The production objectives usually are the maximization of LPG and gasoline production. This fact makes the FCC converter unit an excellent opportunity for real-time optimization. The present work aims to apply a dynamic optimization in an industrial FCC converter unit, using a mechanistic dynamic model, and to carry out a numerical analysis of the solution procedure. A simultaneous approach was used to discretize the system of differential-algebraic equations and the resulting large-scale NLP problem was solved using the IPOPT solver. This study also does a short comparison between the results obtained by a potential dynamic real-time optimization (DRTO against a possible steady-state real-time optimization (RTO application. The results demonstrate that the application of dynamic real-time optimization of a FCC converter unit can bring significant benefits in production.

  13. Dicty_cDB: CHP827 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP827 (Link to dictyBase) - - - Contig-U15898-1 - (Link to Or...iginal site) CHP827F 148 - - - - - - Show CHP827 Library CH (Link to library) Clone ID CHP827 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15898-1 Original site URL http://dictycdb.b...ments: (bits) Value N AC116984 |AC116984.2 Dictyostelium discoideum chromosome 2 map 2567470-3108875 strain ...18q21 clone:RP11-866E20, WORKING DRAFT SEQUENCE, 18 unordered pieces. 42 0.073 4 CK406764 |CK406764.1 AUF_IfLvr_212_c09 Ict

  14. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  15. Combustion Turbine CHP System for Food Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  16. Analysis of the impact of Heat-to-Power Ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Brandon, Nigel

    2011-01-01

    In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single-family hous......In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single...... according to the summer energy demand. The winter energy demand shows a Heat-to-Power Ratio which cannot be covered by the mCHP unit alone. To ensure that the mCHP system meets both the thermal and electrical energy demand over the entire year, an auxiliary boiler and a hot water storage tank need...

  17. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants. This paper presents the results of an economic analysis aimed at comparing three cases of CHP plants, one without an integrated CCS installation and two with such installations. The same steam cycle structure for all variants was adopted. The cases of integrated CHP plants differ from each other in the manner in which they recover heat. For the evaluation of the respective solutions, the break-even price of electricity and avoided emission cost were used. - Highlights: • The simulations of operation of CHP plants under changing load have been realized. • For analyzed cases sensitivity analyses of economic indices have been conducted. • Conditions of competitiveness for integration with CCS units have been identified. • Integration can be profitable if prices of allowance will reach high values, exceeding 50 €/MgCO 2 . • Others important factors are the investment costs and operation and maintenance costs

  18. Experimental study on a project with CHP system basing on absorption cycles

    International Nuclear Information System (INIS)

    Sun, Jian; Fu, Lin; Sun, Fangtian; Zhang, Shigang

    2014-01-01

    A new heat recovery system for the CHP (combined heating and power) is presented, and HRU (heat recovery unit) and AHE (absorption heat exchanger) are invented to improve the total energy efficiency of the conventional CHP system by more than 20%, which are installed at the thermal power plant and the heating substation separately. The HRU could recover the low grade heat of exhausted steam from the turbine directly, and the AHE could decrease the temperature of back water of primary pipe to a lower temperature than that of secondary pipe without changing the flow rate of secondary pipe. A large demonstration project employing this technology has been built in Datong of China. And experimental results of HRU and AHE are presented to evaluate this system. - Highlights: • The total energy efficiency of CHP could by increased by more than 20%. • Temperature of back water of primary pipe could be lower than that of secondary pipe. • Heating capacity of primary pipe could be increased significantly. • Low grade heat of exhausted steam from turbine could be recovered directly

  19. Optimal scheduling of coproduction with a storage

    International Nuclear Information System (INIS)

    Ravn, H.F.; Rygard, J.M.

    1993-02-01

    We consider the problem of optimal scheduling of a system with combined heat and heat (CHP) units and a heat storege. The purpose of the heat storage is to permit a partial decoupling of the variations in the demand for heat and electrical power. We formulate the problem of optimal scheduling as that of minimizing the total costs over the planning period. The heat demand from the district heating system and the ''shadow prices'' for the electrical power system are taken as externally given parameters. The resulting model is solved by dynamic programming. We describe implementation details and we give examples of result of the optimization. (au) (12 refs.)

  20. Hybrid robust predictive optimization method of power system dispatch

    Science.gov (United States)

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  1. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jiaxi Wang

    2016-01-01

    Full Text Available The shunting schedule of electric multiple units depot (SSED is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality.

  2. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    Science.gov (United States)

    Jin, Junchen

    2016-01-01

    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998

  3. Seeking optimal renal replacement therapy delivery in intensive care units.

    Science.gov (United States)

    Kocjan, Marinka; Brunet, Fabrice P

    2010-01-01

    Globally, critical care environments within health care organizations strive to provide optimal quality renal replacement therapy (RRT), an artificial replacement for lost kidney function. Examination of RRT delivery model literature and a case study review of the multidisciplinary-mixed RRT delivery model utilized within a closed medical surgical intensive care unit illustrates the organizational and clinical management of specialized resource and multidisciplinary roles. The successful utilization of a specific RRT delivery model is dependent upon resource availability.

  4. Penempatan Optimal Phasor Measurement Unit (PMU dengan Integer Programming

    Directory of Open Access Journals (Sweden)

    Yunan Helmy Amrulloh

    2013-09-01

    Full Text Available Phasor Measurement Unit (PMU merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik  dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP yang akan memberikan variabel dengan pilihan nilai (0,1 yang menunjukkan tempat yang harus dipasang PMU. Dalam tugas akhir ini, BIP diterapkan untuk menyelesaikan masalah penempatan PMU secara optimal pada sistem tenaga listrik  Jawa-Bali 500 KV yang selanjutnya diterapkan dengan penambahan konsep incomplete observability. Hasil simulasi menunjukkan bahwa penerapan BIP pada sistem dengan incomplete observability memberikan jumlah PMU yang lebih sedikit dibandingkan dengan sistem tanpa konsep incomplete observability.

  5. Stockholm CHP potential - An opportunity for CO2 reductions?

    International Nuclear Information System (INIS)

    Danestig, Maria; Gebremehdin, Alemayehu; Karlsson, Bjoern

    2007-01-01

    The potential for combined heat and power (CHP) generation in Stockholm is large and a total heat demand of about 10 TWh/year can be met in a renewed large district heating system. This model of the Stockholm district heating system shows that CHP generation can increase from 8% in 2004 to 15.5% of the total electricity generation in Sweden. Increased electricity costs in recent years have awakened an interest to invest in new electricity generation. Since renewable alternatives are favoured by green certificates, bio-fuelled CHP is most profitable at low electricity prices. Since heat demand in the district heating network sets the limit for possible electricity generation, a CHP alternative with a high electricity to heat ratio will be more profitable at when electricity prices are high. The efficient energy use in CHP has the potential to contribute to reductions in carbon dioxide emissions in Europe, when they are required and the European electricity market is working perfectly. The potential in Stockholm exceeds Sweden's undertakings under the Kyoto protocol and national reduction goals. (author)

  6. Large-area landslide susceptibility with optimized slope-units

    Science.gov (United States)

    Alvioli, Massimiliano; Marchesini, Ivan; Reichenbach, Paola; Rossi, Mauro; Ardizzone, Francesca; Fiorucci, Federica; Guzzetti, Fausto

    2017-04-01

    A Slope-Unit (SU) is a type of morphological terrain unit bounded by drainage and divide lines that maximize the within-unit homogeneity and the between-unit heterogeneity across distinct physical and geographical boundaries [1]. Compared to other terrain subdivisions, SU are morphological terrain unit well related to the natural (i.e., geological, geomorphological, hydrological) processes that shape and characterize natural slopes. This makes SU easily recognizable in the field or in topographic base maps, and well suited for environmental and geomorphological analysis, in particular for landslide susceptibility (LS) modelling. An optimal subdivision of an area into a set of SU depends on multiple factors: size and complexity of the study area, quality and resolution of the available terrain elevation data, purpose of the terrain subdivision, scale and resolution of the phenomena for which SU are delineated. We use the recently developed r.slopeunits software [2,3] for the automatic, parametric delineation of SU within the open source GRASS GIS based on terrain elevation data and a small number of user-defined parameters. The software provides subdivisions consisting of SU with different shapes and sizes, as a function of the input parameters. In this work, we describe a procedure for the optimal selection of the user parameters through the production of a large number of realizations of the LS model. We tested the software and the optimization procedure in a 2,000 km2 area in Umbria, Central Italy. For LS zonation we adopt a logistic regression model implemented in an well-known software [4,5], using about 50 independent variables. To select the optimal SU partition for LS zonation, we want to define a metric which is able to quantify simultaneously: (i) slope-unit internal homogeneity (ii) slope-unit external heterogeneity (iii) landslide susceptibility model performance. To this end, we define a comprehensive objective function S, as the product of three

  7. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    OpenAIRE

    Dongmin Yu; Yuanzhu Meng; Gangui Yan; Gang Mu; Dezhi Li; Simon Le Blond

    2017-01-01

    Many combined heat and power (CHP) units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity ...

  8. Demonstration Stirling Engine based Micro-CHP with ultra-low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, Rolf; Olsson, Fredrik [Carl Bro Energikonsult AB (Sweden); Paalsson, Magnus [Lund Inst. of Technology (Sweden)

    2004-03-01

    This project has been initiated in order to develop a new type of natural gas fired low emission combustion system for a Stirling engine CHP-unit, and to demonstrate and evaluate the unit with the newly developed combustion system in a CHP application. The Stirling engine technology is well developed, but mostly used in special applications and CHP-applications are scarce. The very low exhaust emissions with the new combustion system would make the Stirling engine very suitable for installation in as a CHP-unit in domestic areas. The Stirling engine used in the project has been a V161 engine produced by Solo Kleinmotoren GmbH in Sindelfingen. The unit has a nominal output of 7,5 kW{sub el} and 20 kW{sub heat} (Hot water). The new combustion system was developed at Lund University and the very strict emission targets that were set up could be achieved, both in the laboratory tests and during the site-testing period. Typical performance and emission figures measured at the site installation are: Generator output (kW): 7,3; Hot water output (kW): 15; El. efficiency (%): 25,4; Total efficiency (%): 77,8; NO{sub x} (ppm): 14; CO (ppm): 112; HC (ppm): < 1; O{sub 2} (%): 8,0; Noise level 1 m from the unit (dBA): 83. The NO{sub x} emissions were reduced with almost 97 % as compared to a standard Stirling combustion system. The emission figures are considerably lower than what could be achieved in an internal combustion engine of similar size with an oxidation catalyst (report SGC 106), while the performance figures are similar for the two technologies. The site testing was carried out during a period of 1,5 year at a site owned by Goeteborg Energi. The site comprises a building structure with workshops, offices etc. covering a ground area of 2,500 m{sup 2}. A gas fired boiler with an output of 250 kW supplies hot water to a local grid for heating and tap water. The annual heat demand is typically 285 MWh and the hot water temperatures are normally 60-80 deg C. The site

  9. Long-term optimization of cogeneration systems in a competitive market environment

    International Nuclear Information System (INIS)

    Thorin, E.; Brand, H.; Weber, C.

    2005-01-01

    A tool for long-term optimization of cogeneration systems is developed that is based on mixed integer linear-programming and Lagrangian relaxation. We use a general approach without heuristics to solve the optimization problem of the unit commitment problem and load dispatch. The possibility to buy and sell electric power at a spot market is considered as well as the possibility to provide secondary reserve. The tool has been tested on a demonstration system based on an existing combined heat-and-power (CHP) system with extraction-condensing steam turbines, gas turbines, and boilers for heat production and district-heating networks. The key feature of the model for obtaining solutions within reasonable times is a suitable division of the whole optimization period into overlapping sub-periods. Using Lagrangian relaxation, the tool can be applied to large CHP systems. For the demonstration model, almost optimal solutions were found. (author)

  10. DEVELOPMENT OF THE CHP-THERMAL SCHEMES IN CONTEXTS OF THE CONSOLIDATED ENERGY SYSTEM OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper deals with the structural specifics of the Belarus Consolidated Energy System capacities in view of their ongoing transfer to the combined-cycle technology, building the nuclear power plant and necessity for the generating capacity regulation in compliance with the load diagram. With the country’s economic complex energy utilization pattern being preserved, the generating capacities are subject to restructuring and the CHP characteristics undergo enhancement inter alia a well-known increase of the specific electricity production based on the heat consumption. Because of this the steam-turbine condensation units which are the traditional capacity regulators for the energy systems with heat power plants dominance are being pushed out of operation. In consequence of this complex of changes the issue of load diagram provision gains momentum which in evidence is relevant to the Consolidated Energy System of Belarus. One of the ways to alleviate acuteness of the problem could be the specific electric energy production cut on the CHP heat consumption with preserving the heat loads and without their handover to the heat generating capacities of direct combustion i.e. without fuel over-burning. The solution lies in integrating the absorption bromous-lithium heat pump units into the CHP thermal scheme. Through their agency low-temperature heat streams of the generator cooling, the lubrication and condensation heat-extraction of steam minimal passing to the condenser systems are utilized. As a case study the authors choose one of the CHPs in the conditions of which the corresponding employment of the said pumps leads to diminution of the fuel-equivalent specific flow-rate by 20−25 g for 1 kW⋅h production and conjoined electric energy generation capacity lowering. The latter will be handed over to other generating capacities, and the choice of them affects economic expediency of the absorption bromous-lithium heat pump-units installation

  11. CHP systems to save money and cut carbon.

    Science.gov (United States)

    Hopkins, Ian

    2014-10-01

    According to Ian Hopkins, a director of ENER-G Combined Power--which has delivered more than 50 CHP-led energy services contracts within the healthcare sector, having, for the past 30 years, designed and manufactured CHP systems at its global headquarters and R&D centre in Salford--'the energy cost and carbon-saving benefits of combined heat and power are difficult to match where there is a large heating/cooling demand over extended periods'. In this article, he explains how hospitals and other busy healthcare facilities thus 'make ideal bedfellows' for CHP, and outlines the key criteria and considerations, such as sizing, for healthcare engineers, when looking to specify such a system.

  12. Multi-criteria evaluation for CHP system options

    International Nuclear Information System (INIS)

    Pilavachi, P.A.; Roumpeas, C.P.; Minett, S.; Afgan, N.H.

    2006-01-01

    Several Combined Heat and Power (CHP) system options have been considered for evaluation with respect to the end-user requirements. These included Internal Combustion Engines (Otto and Diesel), Gas Turbines, Steam Turbines and Combined Cycles covering a wide range of electrical output. Data have been obtained from literature and the CHP systems have been evaluated using different criteria such as overall efficiency, investment cost, fuel cost, electricity cost, heat cost, CO 2 production and footprint. A multi-criteria method is used with an agglomeration function based on the statistical evaluation of weight factors. The technical, economic and social aspects of each system have been evaluated in an integrated manner and the results have been compared by means of the Sustainability Index. Based on the above criteria and depending on the user requirements, the best CHP system options have been established

  13. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  14. An Optimal Calibration Method for a MEMS Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2014-02-01

    Full Text Available An optimal calibration method for a micro-electro-mechanical inertial measurement unit (MIMU is presented in this paper. The accuracy of the MIMU is highly dependent on calibration to remove the deterministic errors of systematic errors, which also contain random errors. The overlapping Allan variance is applied to characterize the types of random error terms in the measurements. The calibration model includes package misalignment error, sensor-to-sensor misalignment error and bias, and a scale factor is built. The new concept of a calibration method, which includes a calibration scheme and a calibration algorithm, is proposed. The calibration scheme is designed by D-optimal and the calibration algorithm is deduced by a Kalman filter. In addition, the thermal calibration is investigated, as the bias and scale factor varied with temperature. The simulations and real tests verify the effectiveness of the proposed calibration method and show that it is better than the traditional method.

  15. CHP as a Boiler Replacement Opportunity (Webinar) – April 30, 2013

    Science.gov (United States)

    This webinar provides information about the benefits of replacing a boiler with a CHP system, describes CHP project analysis and delivery processes, and highlights a case study at Penn State University.

  16. A Study of a Diesel Engine Based Micro-CHP System

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual

  17. Optimal Placement of Phasor Measurement Units with New Considerations

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2010-01-01

    Conventional phasor measurement unit (PMU) placement methods normally use the number of PMU installations as the objective function which is to be minimized. However, the cost of one installation of PMU is not always the same in different locations. It depends on a number of factors. One of these......Conventional phasor measurement unit (PMU) placement methods normally use the number of PMU installations as the objective function which is to be minimized. However, the cost of one installation of PMU is not always the same in different locations. It depends on a number of factors. One...... of these factors is taken into account in the proposed PMU placement method in this paper, which is the number of adjacent branches to the PMU located buses. The concept of full topological observability is adopted and a version of binary particle swarm optimization (PSO) algorithm is utilized. Results from...

  18. Ising Processing Units: Potential and Challenges for Discrete Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Coffrin, Carleton James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagarajan, Harsha [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bent, Russell Whitford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-05

    The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, presents new opportunities for hybrid-optimization algorithms that leverage these kinds of specialized hardware. In this work, we propose the idea of an Ising processing unit as a computational abstraction for these emerging tools. Challenges involved in using and bench- marking these devices are presented, and open-source software tools are proposed to address some of these challenges. The proposed benchmarking tools and methodology are demonstrated by conducting a baseline study of established solution methods to a D-Wave 2X adiabatic quantum computer, one example of a commercially available Ising processing unit.

  19. CHP and District Cooling: An Assessment of Market and Policy Potential in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report contains an assessment of India's CHP/DC status and recommendations for addressing barriers to allow India to meet its energy efficiency targets. Such barriers include a lack of governmental emphasis on CHP, the absence of a clear methodology for calculating CO2 emission reductions from CHP/DHC, and a tax and duty structure for CHP capital equipment that is not as attractive as for other renewable energy technologies.

  20. Optimal maintenance of a multi-unit system under dependencies

    Science.gov (United States)

    Sung, Ho-Joon

    The availability, or reliability, of an engineering component greatly influences the operational cost and safety characteristics of a modern system over its life-cycle. Until recently, the reliance on past empirical data has been the industry-standard practice to develop maintenance policies that provide the minimum level of system reliability. Because such empirically-derived policies are vulnerable to unforeseen or fast-changing external factors, recent advancements in the study of topic on maintenance, which is known as optimal maintenance problem, has gained considerable interest as a legitimate area of research. An extensive body of applicable work is available, ranging from those concerned with identifying maintenance policies aimed at providing required system availability at minimum possible cost, to topics on imperfect maintenance of multi-unit system under dependencies. Nonetheless, these existing mathematical approaches to solve for optimal maintenance policies must be treated with caution when considered for broader applications, as they are accompanied by specialized treatments to ease the mathematical derivation of unknown functions in both objective function and constraint for a given optimal maintenance problem. These unknown functions are defined as reliability measures in this thesis, and theses measures (e.g., expected number of failures, system renewal cycle, expected system up time, etc.) do not often lend themselves to possess closed-form formulas. It is thus quite common to impose simplifying assumptions on input probability distributions of components' lifetime or repair policies. Simplifying the complex structure of a multi-unit system to a k-out-of-n system by neglecting any sources of dependencies is another commonly practiced technique intended to increase the mathematical tractability of a particular model. This dissertation presents a proposal for an alternative methodology to solve optimal maintenance problems by aiming to achieve the

  1. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    Directory of Open Access Journals (Sweden)

    Ivanova P.

    2018-02-01

    Full Text Available In the research, the influence of optimised combined cycle gas turbine unit – according to the previously developed EM & OM approach with its use in the intraday market – is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  2. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    Science.gov (United States)

    Ivanova, P.; Grebesh, E.; Linkevics, O.

    2018-02-01

    In the research, the influence of optimised combined cycle gas turbine unit - according to the previously developed EM & OM approach with its use in the intraday market - is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  3. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA

    DEFF Research Database (Denmark)

    Christensen, S.K.; Pedersen, K.; Hansen, Flemming G.

    2003-01-01

    Prokaryotic chromosomes encode toxin-antitoxin loci, often in multiple copies. In most cases, the function of these genes is not known. The chpA (mazEF) locus of Escherichia coli has been described as a cell killing module that induces bacterial apoptosis during nutritional stress. However, we...... found recently that ChpAK (MazF) does not confer cell killing but rather, induces a bacteriostatic condition from which the cells could be resuscitated. Results presented here yield a mechanistic explanation for the detrimental effect on cell growth exerted by ChpAK and the homologous ChpBK protein of E......AK cleaved tmRNA in its coding region. Thus, ChpAK and ChpBK inhibit translation by a mechanism very similar to that of E. coli RelE. On the basis of these results, we propose a model that integrates TA loci into general prokaryotic stress physiology....

  4. Development of Next Generation micro-CHP System

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    Novel proposals for the modeling and operation of a micro-CHP (combined-heat-andpower) residential system based on HT-PEMFC (High Temperature-Proton Exchange Membrane Fuel Cell) technology are described and analyzed to investigate the technical feasibility of such systems. The proposed systems must...

  5. IVO`s CHP know-how: experience, inventions, patents

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Ohtonen, V. [ed.

    1997-11-01

    IVO can justly claim mastery in the co-generation of district heat and electricity - CHP. As well as looking at the issue from the viewpoint of planners, builders and operators, IVO`s engineers also view power plants through the eyes of the product developer and inventor. This approach has resulted in successful power plant configurations, inventions and patents and visions

  6. Optimal Residential Load Scheduling Under Utility and Rooftop Photovoltaic Units

    Directory of Open Access Journals (Sweden)

    Ghulam Hafeez

    2018-03-01

    Full Text Available With the rapid advancement in technology, electrical energy consumption is increasing rapidly. Especially, in the residential sector, more than 80% of electrical energy is being consumed because of consumer negligence. This brings the challenging task of maintaining the balance between the demand and supply of electric power. In this paper, we focus on the problem of load balancing via load scheduling under utility and rooftop photovoltaic (PV units to reduce electricity cost and peak to average ratio (PAR in demand-side management. For this purpose, we adopted genetic algorithm (GA, binary particle swarm optimization (BPSO, wind-driven optimization (WDO, and our proposed genetic WDO (GWDO algorithm, which is a hybrid of GA and WDO, to schedule the household load. For energy cost estimation, combined real-time pricing (RTP and inclined block rate (IBR were used. The proposed algorithm shifts load from peak consumption hours to off-peak hours based on combined pricing scheme and generation from rooftop PV units. Simulation results validate our proposed GWDO algorithm in terms of electricity cost and PAR reduction while considering all three scenarios which we have considered in this work: (1 load scheduling without renewable energy sources (RESs and energy storage system (ESS, (2 load scheduling with RESs, and (3 load scheduling with RESs and ESS. Furthermore, our proposed scheme reduced electricity cost and PAR by 22.5% and 29.1% in scenario 1, 47.7% and 30% in scenario 2, and 49.2% and 35.4% in scenario 3, respectively, as compared to unscheduled electricity consumption.

  7. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    OpenAIRE

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    The on-site generation of electricity can offer building owners and occupiers financial benefits as well as social benefits such as reduced grid congestion, improved energy efficiency, and reduced greenhouse gas emissions. Combined heat and power (CHP), or cogeneration, systems make use of the waste heat from the generator for site heating needs. Real-time optimal dispatch of CHP systems is difficult to determine because of complicated electricity tariffs and uncertainty in CHP equipment...

  8. New CHP plant for a rubber products manufacturer

    International Nuclear Information System (INIS)

    Vila, R.; Martí, C.

    2016-01-01

    At the end of 2014 the company Industrias de Hule Galgo decided to undertake the installation project of an efficient CHP plant for its production plant, with the aim of bringing down energy costs and improving the company’s competitive position in the market. The new plant has already started its first operational phase. The project has comprised the installation of a single cycle with gas-powered gensets providing a total electrical capacity of 6.6 MW. This provides the necessary thermal oil for the production plant; covers 100% of the electrical power consumed by the industrial complex; and also generates cooling water, giving improved production capacity by supercooling the extrusion system. To execute these works, Industrias de Hule Galgo contracted the services of engineering company AESA to provide the engineering, procurement and construction of the CHP plant. (Author)

  9. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  10. Utilization of straw in district heating and CHP plants

    International Nuclear Information System (INIS)

    Nikolaisen, L.

    1993-01-01

    In Denmark 64 straw-fired district heating plants and 6 decentral CHP plants have been built since 1980 which are completely or partly straw-fired. The annual straw consumption in the district heating plants is 275,000 tons and in the decentral plants about 200,000 tons. The size of the district heating plants amounts to 0.5 MW - 10 MW and that of the CHP plants to 7 MW - 67 MW heat flow rate. Either whole bales or cut/scarified straw is used for firing. Hesston bales of about 450 kg control the market. The Centre of Biomass Technology is an activity supported 100 % by the Danish Energy Agency with the purpose of increasing the use of straw and wood in the energy supply (orig.)

  11. Load scheduling for decentralized CHP plants

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg, orlov 31.07.2008; Madsen, Henrik; Nielsen, Torben Skov

    ) an interactive decision support tool by which optimal schedules can be found given the forecasts or user-defined modifications of the forecasts, and (iii) an automatic on-line system for monitoring when conditions have changed so that rescheduling is appropriate. In this report the focus is on methods applicable...... be obtained. Furthermore, we believe that all relevant forecasting methods are far too complicated to allow for this integration; both uncertainties originating from the dependence of heat load on climate and from meteorological forecasts need to be taken into account. Instead we suggest that the decision....... By letting the system find optimal schedules for each of these realizations the operator can gain some insight into the importance of the uncertainties. It is shown that with modern personal computers (e.g. 1 GHz Pentium III), operating systems (e.g. RedHat Linux 6.0), and compilers (e.g. GNU C 2...

  12. An Optimized Thermal Analysis of Electronic Unit Used in Aircraft

    International Nuclear Information System (INIS)

    Shah, A.N.; Mir, F.; Farooq, M.; Farooq, M.

    2014-01-01

    In a field where change and growth is inevitable, new electronic packaging problems continuously arise. Smaller, but more powerful devices are prone to overheating causing intermittent system failures, corrupted signals and outright system failure. Current study is focused on the analysis of the optimized working of electronic equipment from thermal point of view. In order to achieve the objective, an approach was developed for the thermal analysis of Printed Circuit Board (PCB) including the heat dissipation of its electronic components and then removal of the heat in a sophisticated manner by considering the conduction and convection modes of heat transfer. Mathematical modeling was carried out for a certain problem to address the thermal design, and then a program was developed in MATLAB for the solution of model by using Newton-Raphson method. The proposed unit is to be mounted on an aircraft having suspected thermal characteristics owing to abrupt changes in pressure and temperature as aircraft moves quickly from a lower altitude to higher altitude. In current study, dominant mode of heat transfer was conduction revealing that the major portion of heat transfer takes place by copper cladding and that heat conduction along the length of PCB can be improved enormously by using even thin layer of copper. The results confirmed that temperatures of all the electronic components were within derated values. Meanwhile, it was known that convection also plays a significant role in the reduction of temperatures of the components. The reduction in nodal temperature was in the range of 13 to 42 %. Furthermore, altitude variation from sea level to 15240 m (above sea level) caused the reduction in pressure from 1atm to 0.1095 atm. Consequently, the temperature of the electronic components increased from 73.25 degree C to 83.83 degree C for first node 'a', and from 66.04 degree C to 68.47 degree C for last node 'n' because of the decrease in the convective heat transfer

  13. Is micro-CHP price controllable under price signal controlled Virtual Power Plants?

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2011-01-01

    As micro-combined heat and power (micro-CHP) systems move towards mass deployment together with other kinds of distributed energy resources (DER), an increasing emphasis has been placed on how to coordinate such a large diversified DER portfolio in an efficient way by the Virtual Power Plant (VPP...... for three different micro-CHP systems to investigate the feasibility of being controlled by price. Such analysis is relevant for both controller designs for micro-CHP systems and VPP related operations. The results indicate that controlling the micro-CHP systems by price is feasible but could result...

  14. Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis

    International Nuclear Information System (INIS)

    Saari, Jussi; Sermyagina, Ekaterina; Kaikko, Juha; Vakkilainen, Esa; Sergeev, Vitaly

    2016-01-01

    Wood-fired combined heat and power (CHP) plants are a proven technology for producing domestic, carbon-neutral heat and power in Nordic countries. One drawback of CHP plants is the low capacity factors due to varying heat loads. In the current economic environment, uncertainty over energy prices creates also uncertainty over investment profitability. Hydrothermal carbonization (HTC) is a promising thermochemical conversion technology for producing an improved, more versatile wood-based fuel. Integrating HTC with a CHP plant allows simplifying the HTC process and extending the CHP plant operating time. An integrated polygeneration plant producing three energy products is also less sensitive to price changes in any one product. This study compares three integration cases chosen from the previous paper, and the case of separate stand-alone plants. The best economic performance is obtained using pressurized hot water from the CHP plant boiler drum as HTC process water. This has the poorest efficiency, but allows the greatest cost reduction in the HTC process and longest CHP plant operating time. The result demonstrates the suitability of CHP plants for integration with a HTC process, and the importance of economic and operational analysis considering annual load variations in sufficient detail. - Highlights: • Integration of wood hydrothermal carbonization with a small CHP plant studied. • Operation and economics of three concepts and stand-alone plants are compared. • Sensitivity analysis is performed. • Results show technical and thermodynamic analysis inadequate and misleading alone. • Minimizing HTC investment, extending CHP operating time important for profitability.

  15. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    Science.gov (United States)

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  16. Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach

    International Nuclear Information System (INIS)

    Wei, F.; Wu, Q.H.; Jing, Z.X.; Chen, J.J.; Zhou, X.X.

    2016-01-01

    This paper proposes a comprehensive framework including a multi-objective interval optimization model and evidential reasoning (ER) approach to solve the unit sizing problem of small-scale integrated energy systems, with uncertain wind and solar energies integrated. In the multi-objective interval optimization model, interval variables are introduced to tackle the uncertainties of the optimization problem. Aiming at simultaneously considering the cost and risk of a business investment, the average and deviation of life cycle cost (LCC) of the integrated energy system are formulated. In order to solve the problem, a novel multi-objective optimization algorithm, MGSOACC (multi-objective group search optimizer with adaptive covariance matrix and chaotic search), is developed, employing adaptive covariance matrix to make the search strategy adaptive and applying chaotic search to maintain the diversity of group. Furthermore, ER approach is applied to deal with multiple interests of an investor at the business decision making stage and to determine the final unit sizing solution from the Pareto-optimal solutions. This paper reports on the simulation results obtained using a small-scale direct district heating system (DH) and a small-scale district heating and cooling system (DHC) optimized by the proposed framework. The results demonstrate the superiority of the multi-objective interval optimization model and ER approach in tackling the unit sizing problem of integrated energy systems considering the integration of uncertian wind and solar energies. - Highlights: • Cost and risk of investment in small-scale integrated energy systems are considered. • A multi-objective interval optimization model is presented. • A novel multi-objective optimization algorithm (MGSOACC) is proposed. • The evidential reasoning (ER) approach is used to obtain the final optimal solution. • The MGSOACC and ER can tackle the unit sizing problem efficiently.

  17. Evaluation of the impact of the liberalisation of the European electricity market on the CHP, District heating and cooling sector; 'Save CHP/DHC'. Final report

    International Nuclear Information System (INIS)

    2000-08-01

    Improved energy efficiency will play a key role in meeting the EU Kyoto target economically. In addition to a significant positive environmental impact, improved energy efficiency will lead to a more sustainable energy policy and enhanced security of supply. The study: 1) Identifies and evaluates parameters and conditions which in relation to the liberalisation of the electricity market will have an impact on the CHP/DHC sector in EU15 and Poland. 2) Establishes an information base on CHP/DHC systems in EU15 and Poland. 3) Analyses the CHP/DHC sector and its ability to meet changing market conditions. 4) Assesses the effect of the liberalised electricity market on electricity production in relation to CHP/district heating and cooling. 5) Identifies threats for the viability of CHP/DHC in a liberalised market and evaluates means and measures to overcome such threats. The study brings forward the goals and commitments in respect of European energy and environmental policy and gives an overview of the present and expected future framework in which CHP/DHC is to operate. The study evaluates the viability of the sector at an overall level and for different groups/categories of CHP/DHC systems in different countries. The effects of existing or proposed national public measures are analysed. The analyses are essential to decision makers in the transition process towards a fully liberalised market. Recognised uncertainties in the market during the transition period may cause either a temporary or a permanent recession for the CHP/DHC sector. Improved understanding and recognition of threats and opportunities is important to all actors just now. The study can be considered a first step of a process to create a market situation, where the energy customers can make their choices under competition rules and where environmentally friendly and efficient CHP and DHC is considered an attractive business opportunity in competition with other energy supplies. (EHS)

  18. The effectiveness of heat pumps as part of CCGT-190/220 Tyumen CHP-1

    Directory of Open Access Journals (Sweden)

    Tretyakova Polina

    2017-01-01

    Full Text Available The article considers the possibility of increasing the energy efficiency of CCGT-190/220 Tyumen CHP-1 due to the utilization of low-grade heat given off in the condenser unit of the steam turbine. To assess the effectiveness of the proposed system, the indexes of thermal efficiency are given. As a result of a research the following conclusions are received: The heat-transfer agent heat pump, when heated uses low-grade heat TPP and increases heat output, but consumes the electricity. Using a heat pump is effective for a small temperature difference between the condenser and the evaporator. Good example is heating water before chemical treatment. This method is more efficient than using a replacement boiler and it is used in steam selection.

  19. Study on the Effect of the Separating Unit Optimization on the Economy of Stable Isotope Separation

    Directory of Open Access Journals (Sweden)

    YANG Kun

    2015-01-01

    Full Text Available An economic criterion called as yearly net profit of single separating unit (YNPSSU was presented to evaluate the influence of structure optimization on the economy. Using YNPSSU as a criterion, economic analysis was carried out for the structure optimization of separating unit in the case of separating SiF4 to obtain the 28Si and 29Si isotope. YNPSSU was calculated and compared with that before optimization. The results showed that YNPSSU was increased by 12.3% by the structure optimization. Therefore, the structure optimization could increase the economy of the stable isotope separation effectively.

  20. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  1. A MATHEMATICAL MODEL OF CHP 2000 TYPE PROGRESSIVE GEAR

    Directory of Open Access Journals (Sweden)

    Paweł Lonkwic

    2016-12-01

    Full Text Available The project of CHP2000 type progressive gear has been presented in the article. The offered solution from its construction point of view differs from the existing solutions due to the application of Belleville springs packets supporting the braking roller cam and achieving a flexible range of the gear loading. The standard concept of the gear loading within a mathematical and a geometrical model has been presented in the article. The proposed solution can be used in the friction lifts with the loading capacity from 8500 up to 20000 N.

  2. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

    Science.gov (United States)

    Ayyoub, Slimani; Achour, Benslama

    2017-08-01

    Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

  3. EPA's Air Quality Rules for Reciprocating Internal Combustion Engines (RICE) and their Application to CHP (Webinar) – June 24, 2014

    Science.gov (United States)

    This webinar discusses the effect of EPA's air quality regulations on CHP facilities and stationary RICE, and describes how CHP systems can comply with air quality regulations by using stationary RICE.

  4. The role of combined heat and power (CHP) in energy and climate policy

    International Nuclear Information System (INIS)

    Conrad, F.

    1993-03-01

    In the energy- and environment context CHP is said to be especially energy saving and climate preserving. This report shows that from the standpoint of energy economics as well as under technical aspects this judgement holds true only under special conditions. Depending on the technical parameters, the concrete circumstances of operation and the characteristics of the power plants and heating systems compared to CHP-plants the range of realistic energy savings turns out to be very large. Related overstimations are to a good extend caused by the traditional practice of granting the energetic advantage of CHP exclusively to the district heating. If this advantage is credited to heat and power as equal shares space heating with cogenerated power of 80% efficiency reveals to be very energy conserving. The uno actu utilization of cogenerated heat and power, for the same purpose could facilitate the expansion of CHP, since the problems related to the feeding of cogenerated power into the grid for general purposes would disappear. The second main issue of this report concerns the abatement of CO 2 -emissions with the aid of CHP. Fuelled with natural gas, CHP-plants are attractive instruments for climate policy. This is especially true if CHP is compared to old coal-based power plants and oil-fuelled old heating systems. In the FRG, however, hard coal, and not natural gas, will be the main fuel for future CHP, lowering its CO 2 -advantage considerably. On the other hand high efficient combi-power plants (gas turbine plus condensing turbine) and gas heating systems have to be included in the comparative analyse. Compared to these advanced systems the CO 2 -characteristics of CHP are inferior. Moreover, the specific CO 2 -advantage of natural gas is better used by such modern mono systems rather than CHP-plants. (orig.) [de

  5. Optimization methods for the Train Unit Shunting Problem

    DEFF Research Database (Denmark)

    Haahr, Jørgen Thorlund; Lusby, Richard Martin; Wagenaar, Joris Camiel

    2017-01-01

    We consider the Train Unit Shunting Problem, an important planning problem for passenger railway operators. This problem entails assigning train units from shunting yards to scheduled train services in such a way that the resulting operations are without conflicts. The problem arises at every...... shunting yard in the railway network and involves matching train units to arriving and departing train services as well as assigning the selected matchings to appropriate shunting yard tracks. We present an extensive comparison benchmark of multiple solution approaches for this problem, some of which...... are novel. In particular, we develop a constraint programming formulation, a column generation approach, and a randomized greedy heuristic. We compare and benchmark these approaches with two existing methods, a mixed integer linear program and a two-stage heuristic. The benchmark contains multiple real...

  6. Optimal selection of Orbital Replacement Unit on-orbit spares - A Space Station system availability model

    Science.gov (United States)

    Schwaab, Douglas G.

    1991-01-01

    A mathematical programing model is presented to optimize the selection of Orbital Replacement Unit on-orbit spares for the Space Station. The model maximizes system availability under the constraints of logistics resupply-cargo weight and volume allocations.

  7. Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells.

    Science.gov (United States)

    Lin, Chenxi; Martínez, Luis Javier; Povinelli, Michelle L

    2013-09-09

    We design silicon membranes with nanohole structures with optimized complex unit cells that maximize broadband absorption. We fabricate the optimized design and measure the optical absorption. We demonstrate an experimental broadband absorption about 3.5 times higher than an equally-thick thin film.

  8. Optimization of the scheduled maintenance on the power units of the nuclear power plants with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Kovrizhkin, Yu.L.; Kolykhanov, V.N.; Kochneva, V.Yu.; Urbanskij, V.V.

    2008-01-01

    The advanced international and domestic experience in the field of the maintenance optimization of the power units of NPPs, as well, as on the base of the planning optimization, the maintenance organization and carrying out, the technical maintenance and repair control system automatization, the testing and monitoring optimization during the service process, the modernization of the technology and technical tools of the maintenance service and control is represented

  9. A microeconomic analysis of decentralized small scale biomass based CHP plants—The case of Germany

    International Nuclear Information System (INIS)

    Wittmann, Nadine; Yildiz, Özgür

    2013-01-01

    Alternative energy sources, such as biomass CHP plants, have recently gained significantly in importance and action is due both on the large scale corporate level and on the small scale. Hence, making the scope and economic outline of such projects easily intelligible without losing relevant details seems a key factor to further promote the necessary developments. The model setup presented in this paper may therefore serve as a starting point for generating numerical results based on real life cases or scenarios. Its focus lies on the economic analysis of decentralized biomass CHP plants. It presents a new approach to analyzing the economic aspects of biomass CHP plants implementing a formal microeconomic approach. As Germany claims a leading role in the market for renewable energy production, the paper also takes a closer look on the effects of German energy policy with respect to biomass CHP plants. - Highlights: • A formal microeconomic model is used to analyse a decentralized biomass CHP plant. • Model setup is used to generate numerical results based on real life scenarios. • Nested CES production function is a new approach to model economics of biomass CHP. • Analysis presents insight into microeconomics and cost drivers of biomass CHP. • Evaluation of energy policy design with respect to environmental policy goals

  10. Analysis of the location for peak heating in CHP based combined district heating systems

    International Nuclear Information System (INIS)

    Wang, Haichao; Lahdelma, Risto; Wang, Xin; Jiao, Wenling; Zhu, Chuanzhi; Zou, Pinghua

    2015-01-01

    Combined heat and power (CHP) is the main technology for providing the base load of district heating in China. However, CHP is not efficient for providing the peak load; instead, a peak boiler with high efficiency could be used to compensate the peak load. This paper studies how the location of the peak boiler can affect the energy efficiency and economic performance of such CHP based combined district heating system. Firstly, the connection mode and the control strategy for different peak heating locations are analyzed. Then the effect of the peak boiler's location on the initial investment of the network and the cost for distributing heat is studied. The objective is to place the peak boiler in a location where the overall costs are the smallest. Following this rule, the results indicate that the peak boiler should be located at the CHP plant if that allows using cheaper ‘self-use electricity’ in CHP for distributing the heat. However, if the market electricity price is used everywhere, or if energy efficiency is more emphasized, the location of the peak boiler should be closer to the users with dense heat loads. - Highlights: • Location for peak heating in the CHP based combined DH system is studied. • Regulation or control strategies for combined DH are summarized. • The heat load duration curve for combined DH is demonstrated. • Network design for combined DH with peak boiler outside of the CHP is analyzed

  11. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions

    International Nuclear Information System (INIS)

    Holzapfel, Dominik; Schneider, Sabine

    2015-01-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  12. Fuel cell power plants for decentralised CHP applications

    International Nuclear Information System (INIS)

    Ohmer, Martin; Mattner, Katja

    2015-01-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO 2 and other emissions (NO x , SO x and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  13. Comparative analysis of organizational obstacles to CHP/DH

    Energy Technology Data Exchange (ETDEWEB)

    Ruedig, W.

    1986-04-01

    An explanation is given of the vast differences between the countries of Western Europe in the adoption of combined heat and power (CHP) for district heating (DH). The history of this technology in FR Germany and the UK is analysed in detail, and experiences of other countries are reviewed. It is concluded that the over centralization of the electricity supply industry is a major obstacle in the widespread adoption of combined heat and power and district heating. Significant improvements of energy efficiency would thus require organizational reforms giving greater powers to local energy organizations. This, however, should not imply total decentralization of energy supply. Instead, a two-tier system is proposed in which central organizations remain responsible for bulk supply but where local or regional bodies are in charge of all gas, electricity and heat supplies to the final user.

  14. Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Malik, Tomasz; Liszka, Marcin

    2015-01-01

    Integration of a CHP steam plant with an installation of coal gasification and gas turbine leads to an IGCC-CHP (integrated gasification combined cycle-combined heat and power). Two installations of coal gasification have been analyzed, i.e. pressurized entrained flow gasifier – case 1 and pressurized fluidized bed gasifier with CO_2 recirculation – case 2. Basing on the results of mathematical modelling of an IGCC-CHP plant, the algorithms of calculating typical energy indices have been derived. The following energy indices are considered, i.e. coefficient of heat performance and relative savings of chemical energy of fuels. The results of coefficients of heat performance are contained between 1.87 and 2.37. Values exceeding 1 are thermodynamically justified because the idea of cogeneration of heat and electricity based on combining cycles of the heat engine and heat pump the efficiency of which exceeds 1. Higher values concerning waste heat replace more thermodynamically effective sources of heat in CHP plants. Relative savings of the chemical energy of fuels are similar in both cases of IGCC-CHP plants and are contained between the lower value of the CHP (combined heat and power) plants fuelled with coal and higher value of CHP plants fired with natural gas. - Highlights: • Energy savings of fuel is an adequate measure of cogeneration. • Relative energy savings of IGCC-CHP is near the result of a gas and steam CHP. • COHP (coefficient of heat performance) can help to divide fuel between heat fluxes. • Higher values of COHP in the case of waste heat recovery result from the lower thermal parameters.

  15. PORFLOW Simulations Supporting Saltstone Disposal Unit Design Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hang, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Taylor, G. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-10

    SRNL was requested by SRR to perform PORFLOW simulations to support potential cost-saving design modifications to future Saltstone Disposal Units in Z-Area (SRR-CWDA-2015-00120). The design sensitivity cases are defined in a modeling input specification document SRR-CWDA-2015-00133 Rev. 1. A high-level description of PORFLOW modeling and interpretation of results are provided in SRR-CWDA-2015-00169. The present report focuses on underlying technical issues and details of PORFLOW modeling not addressed by the input specification and results interpretation documents. Design checking of PORFLOW modeling is documented in SRNL-L3200-2015-00146.

  16. Discrete Optimization of Internal Part Structure via SLM Unit Structure-Performance Database

    Directory of Open Access Journals (Sweden)

    Li Tang

    2018-01-01

    Full Text Available The structural optimization of the internal structure of parts based on three-dimensional (3D printing has been recognized as being important in the field of mechanical design. The purpose of this paper is to present a creation of a unit structure-performance database based on the selective laser melting (SLM, which contains various structural units with different functions and records their structure and performance characteristics so that we can optimize the internal structure of parts directly, according to the database. The method of creating the unit structure-performance database was introduced in this paper and several structural units of the unit structure-performance database were introduced. The bow structure unit was used to show how to create the structure-performance database of the unit as an example. Some samples of the bow structure unit were designed and manufactured by SLM. These samples were tested in the WDW-100 compression testing machine to obtain their performance characteristics. After this, the paper collected all data regarding unit structure parameters, weight, performance characteristics, and other data; and, established a complete set of data from the bow structure unit for the unit structure-performance database. Furthermore, an aircraft part was reconstructed conveniently to be more lightweight according to the unit structure-performance database. Its weight was reduced by 36.8% when compared with the original structure, while the strength far exceeded the requirements.

  17. Modeling and simulation of a residential micro-CHP system based on HT-PEMFC technology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Combined-heat-and-power (CHP) technology is a well known and proved method to produce simultaneously power and heat at high efficiencies. This can be further improved by the introduction of a novel micro-CHP residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC......). The HT-PEMFC (based on PBI-membrane technology) operates at temperatures near 200oC, and this can be an ideal match for cogeneration residential systems. The proposed system provides electric power, hot water, and space heating for a typical household (1-5 kWe, 5-10 kWth). The micro-CHP system...

  18. An integrated DEA-COLS-SFA algorithm for optimization and policy making of electricity distribution units

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Omrani, H.; Eivazy, H.

    2009-01-01

    This paper presents an integrated data envelopment analysis (DEA)-corrected ordinary least squares (COLS)-stochastic frontier analysis (SFA)-principal component analysis (PCA)-numerical taxonomy (NT) algorithm for performance assessment, optimization and policy making of electricity distribution units. Previous studies have generally used input-output DEA models for benchmarking and evaluation of electricity distribution units. However, this study proposes an integrated flexible approach to measure the rank and choose the best version of the DEA method for optimization and policy making purposes. It covers both static and dynamic aspects of information environment due to involvement of SFA which is finally compared with the best DEA model through the Spearman correlation technique. The integrated approach would yield in improved ranking and optimization of electricity distribution systems. To illustrate the usability and reliability of the proposed algorithm, 38 electricity distribution units in Iran have been considered, ranked and optimized by the proposed algorithm of this study.

  19. Energy Management for Community Energy Network with CHP Based on Cooperative Game

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    2018-04-01

    Full Text Available Integrated energy system (IES has received increasing attention in micro grid due to the high energy efficiency and low emission of carbon dioxide. Based on the technology of combined heat and power (CHP, this paper develops a novel operation mechanism with community micro turbine and shared energy storage system (ESS for energy management of prosumers. In the proposed framework, micro-grid operator (MGO equipped with micro turbine and ESS provides energy selling business and ESS leasing business for prosumers. Prosumers can make energy trading with public grid and MGO, and ESS will be shared among prosumers when they pay for the rent to MGO. Based on such framework, we adopt a cooperative game for prosumers to determine optimal energy trading strategies from MGO and public grid for the next day. Concretely, a cooperative game model is formulated to search the optimal strategies aiming at minimizing the daily cost of coalition, and then a bilateral Shapley value (BSV is proposed to solve the allocation problem of coalition’s cost among prosumers. To verify the effectiveness of proposed energy management framework, a practical example is conducted with a community energy network containing MGO and 10 residential buildings. Simulation results show that the proposed scheme is able to provide financial benefits to all prosumers, while providing peak load leveling for the grid.

  20. [Diagnosis and the technology for optimizing the medical support of a troop unit].

    Science.gov (United States)

    Korshever, N G; Polkovov, S V; Lavrinenko, O V; Krupnov, P A; Anastasov, K N

    2000-05-01

    The work is devoted to investigation of the system of military unit medical support with the use of principles and states of organizational diagnosis; development of the method allowing to assess its functional activity; and determination of optimization trends. Basing on the conducted organizational diagnosis and expert inquiry the informative criteria were determined which characterize the stages of functioning of the military unit medical support system. To evaluate the success of military unit medical support the complex multi-criteria pattern was developed and algorithm of this process optimization was substantiated. Using the results obtained, particularly realization of principles and states of decision taking theory in machine program it is possible to solve more complex problem of comparison between any number of military units: to dispose them according to priority decrease; to select the programmed number of the best and worst; to determine the trends of activity optimization in corresponding medical service personnel.

  1. Optimized Laplacian image sharpening algorithm based on graphic processing unit

    Science.gov (United States)

    Ma, Tinghuai; Li, Lu; Ji, Sai; Wang, Xin; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah

    2014-12-01

    In classical Laplacian image sharpening, all pixels are processed one by one, which leads to large amount of computation. Traditional Laplacian sharpening processed on CPU is considerably time-consuming especially for those large pictures. In this paper, we propose a parallel implementation of Laplacian sharpening based on Compute Unified Device Architecture (CUDA), which is a computing platform of Graphic Processing Units (GPU), and analyze the impact of picture size on performance and the relationship between the processing time of between data transfer time and parallel computing time. Further, according to different features of different memory, an improved scheme of our method is developed, which exploits shared memory in GPU instead of global memory and further increases the efficiency. Experimental results prove that two novel algorithms outperform traditional consequentially method based on OpenCV in the aspect of computing speed.

  2. Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.

    Science.gov (United States)

    Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric

    2018-03-01

    Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.

  3. Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical CHP plant integrated with a carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Highlights: • Variants of integration of CHP plant with CCS and gas turbine unit were analyzed. • The simulations of operation of plants under changing load were realized. • Conditions of competitiveness for all solutions were identified. • Integration can be profitable if prices of allowance will reach values >60 €/MgCO 2 . - Abstract: This paper presents the results of thermodynamic and economic analyses for eight variants of a combined heat and power (CHP) plant fuelled with coal working under supercritical steam parameters and integrated with a CO 2 capture installation and a gas turbine system. The motivation behind using a gas turbine in the system was to generate steam to supply heat for the stripping process that occurs in the separation installation to regenerate the sorbent. Additional analyses were conducted for the reference case, a CHP unit in which the CO 2 separation process was not conducted, to enable an economic evaluation of the integration of a CHP unit with a CO 2 separation installation according to the variants proposed. The break-even price of electricity and avoided emission costs were used to evaluate the respective solutions. In this paper, the results of the sensitivity analysis of the economic evaluation indicators in terms of the change in the annual operation time, price of emission allowance and heat demand rate for the realization of the stripping process for all cases are presented

  4. Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model

    Directory of Open Access Journals (Sweden)

    Yongpeng Shen

    2016-02-01

    Full Text Available Auxiliary power units (APUs are widely used for electric power generation in various types of electric vehicles, improvements in fuel economy and emissions of these vehicles directly depend on the operating point of the APUs. In order to balance the conflicting goals of fuel consumption and emissions reduction in the process of operating point choice, the APU operating point optimization problem is formulated as a constrained multi-objective optimization problem (CMOP firstly. The four competing objectives of this CMOP are fuel-electricity conversion cost, hydrocarbon (HC emissions, carbon monoxide (CO emissions and nitric oxide (NO x emissions. Then, the multi-objective particle swarm optimization (MOPSO algorithm and weighted metric decision making method are employed to solve the APU operating point multi-objective optimization model. Finally, bench experiments under New European driving cycle (NEDC, Federal test procedure (FTP and high way fuel economy test (HWFET driving cycles show that, compared with the results of the traditional fuel consumption single-objective optimization approach, the proposed multi-objective optimization approach shows significant improvements in emissions performance, at the expense of a slight drop in fuel efficiency.

  5. Optimal dental age estimation practice in United Arab Emirates' children.

    Science.gov (United States)

    Altalie, Salem; Thevissen, Patrick; Fieuws, Steffen; Willems, Guy

    2014-03-01

    The aim of the study was to detect whether the Willems model, developed on a Belgian reference sample, can be used for age estimations in United Arab Emirates (UAE) children. Furthermore, it was verified that if added third molars development information in children provided more accurate age predictions. On 1900 panoramic radiographs, the development of left mandibular permanent teeth (PT) and third molars (TM) was registered according the Demirjian and the Kohler technique, respectively. The PT data were used to verify the Willems model and to develop a UAE model and to verify it. Multiple regression models with PT, TM, and PT + TM scores as independent and age as dependent factor were developed. Comparing the verified Willems- and the UAE model revealed differences in mean error of -0.01 year, mean absolute error of 0.01 year and root mean squared error of 0.90 year. Neglectable overall decrease in RMSE was detected combining PM and TM developmental information. © 2013 American Academy of Forensic Sciences.

  6. Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology - driven algorithm.

    Science.gov (United States)

    Boccaccio, Antonio; Fiorentino, Michele; Uva, Antonio E; Laghetti, Luca N; Monno, Giuseppe

    2018-02-01

    In a context more and more oriented towards customized medical solutions, we propose a mechanobiology-driven algorithm to determine the optimal geometry of scaffolds for bone regeneration that is the most suited to specific boundary and loading conditions. In spite of the huge number of articles investigating different unit cells for porous biomaterials, no studies are reported in the literature that optimize the geometric parameters of such unit cells based on mechanobiological criteria. Parametric finite element models of scaffolds with rhombicuboctahedron unit cell were developed and incorporated into an optimization algorithm that combines them with a computational mechanobiological model. The algorithm perturbs iteratively the geometry of the unit cell until the best scaffold geometry is identified, i.e. the geometry that allows to maximize the formation of bone. Performances of scaffolds with rhombicuboctahedron unit cell were compared with those of other scaffolds with hexahedron unit cells. We found that scaffolds with rhombicuboctahedron unit cell are particularly suited for supporting medium-low loads, while, for higher loads, scaffolds with hexahedron unit cells are preferable. The proposed algorithm can guide the orthopaedic/surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  8. Optimal Scheduling of a Multi-Carrier Energy Hub Supplemented By Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    This paper introduces a management model for optimal scheduling of a multi-carrier energy hub. In the proposed hub, three types of assets are considered: dispersed generating systems (DGs) such as micro-combined heat and power (mCHP) units, storage devices such as battery-based electrical storage...... systems (ESSs), and heating/cooling devices such as electrical heater, heat-pumps and absorption chillers. The optimal scheduling and management of the examined energy hub assets in line with electrical transactions with distribution network is modeled as a mixed-integer non-linear optimization problem....... In this regard, optimal operating points of DG units as well as ESSs are calculated based on a cost-effective strategy. Degradation cost of ESSs is also taken into consideration for short-term scheduling. Simulation results demonstrate that including well-planned energy storage options together with optimal...

  9. Micro-CHP Technologies Roadmap: Meeting 21st Century Residential Energy Needs

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-01

    On June 11-12, 2003, at Greenbelt, Maryland, key stakeholders from industry, government agencies, universities, and others involved in combined heat and power and the residential buildings industry explores solutions to technical, institutional, and market barriers facing micro-combined heat and power systems (mCHP). Participants outlined a desired future for mCHP systems, identified specific interim technology cost and performance targets, and developed actions to achieve the interim targets and vision. This document, The Micro-CHP Technologies Roadmap, is a result of their deliberations. It outlines a set of actions that can be pursued by both the government and industry to develop mCHP appliances for creating a new approach for households to meet their energy needs.

  10. Alternative depreciation policies for promoting combined heat and power (CHP) development in Brazil

    International Nuclear Information System (INIS)

    Soares, Jeferson Borghetti; Szklo, Alexandre Salem; Tolmasquim, Mauricio Tiomno

    2006-01-01

    This paper assessed the economic impact of alternative depreciation methods on the development of combined heat-and-power (CHP) systems in the Brazilian industrial sector. Alternative depreciation methods were proposed and the case study of a Brazilian chemical plant showed that the most effective depreciation method for the promotion of CHP plants in Brazil was the Matheson method with an accelerated depreciation schedule of 7 years. This alternative method was then applied to the Brazilian chemical industry as a whole, increasing its installed capacity in CHP systems by 24%. Therefore, fiscal incentives can be an interesting tool for promoting energy efficiency in the Brazilian industrial sector, promoting the expansion of CHP plants. It reduces government fiscal revenues, but it also induces the technological reposition and improves the feasibility of ventures that are not installed without this kind of incentive

  11. Nonlinear dynamic simulation of optimal depletion of crude oil in the lower 48 United States

    International Nuclear Information System (INIS)

    Ruth, M.; Cleveland, C.J.

    1993-01-01

    This study combines the economic theory of optimal resource use with econometric estimates of demand and supply parameters to develop a nonlinear dynamic model of crude oil exploration, development, and production in the lower 48 United States. The model is simulated with the graphical programming language STELLA, for the years 1985 to 2020. The procedure encourages use of economic theory and econometrics in combination with nonlinear dynamic simulation to enhance our understanding of complex interactions present in models of optimal resource use. (author)

  12. Multiobjective Optimization of a Counterrotating Type Pump-Turbine Unit Operated at Turbine Mode

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Kim

    2014-05-01

    Full Text Available A multiobjective optimization for improving the turbine output and efficiency of a counterrotating type pump-turbine unit operated at turbine mode was carried out in this work. The blade geometry of both the runners was optimized using a hybrid multiobjective evolutionary algorithm coupled with a surrogate model. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model were discretized by finite volume approximations and solved on hexahedral grids to analyze the flow in the pump-turbine unit. As major hydrodynamic performance parameters, the turbine output and efficiency were selected as objective functions with two design variables related to the hub profiles of both the runner blades. These objectives were numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. Response surface approximation models for the objectives were constructed based on the objective function values at the design points. A fast nondominated sorting genetic algorithm for the local search coupled with the response surface approximation models was applied to determine the global Pareto-optimal solutions. The trade-off between the two objectives was determined and described with respect to the Pareto-optimal solutions. The results of this work showed that the turbine outputs and efficiencies of optimized pump-turbine units were simultaneously improved in comparison to the reference unit.

  13. Screening of CHP Potential at Federal Sites in Select Regions of the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Energy Nexus Group, . .

    2002-02-25

    Combined Cooling Heat and Power (CHP) is a master term for onsite power generation technologies that sequentially produce electrical or mechanical energy and useful thermal energy. Some form of CHP has existed for more than 100 years and it is now achieving a greater level of acceptance due to an increasing need for reliable power service and energy cost management. Capturing and using the heat produced as a byproduct of generating electricity from fuel sources increases the usable energy that can be obtained from the original fuel source. CHP technologies have the potential to reduce energy consumption through increased efficiency--decreasing energy bills as well as pollution. The EPA recognizes CHP as a potent climate change mitigation measure. The U.S. Department of Energy (D.O.E.) Federal Energy Management Program (FEMP) is assisting Federal agencies to realize their energy efficiency goals. CHP is an efficiency measure that is receiving growing attention because of its sizable potential to provide efficiency, environmental, and reliability benefits. CHP therefore benefits the host facility, the electric infrastructure, and the U.S. society as a whole. This report and study seeks to make a preliminary inquiry into near term CHP opportunities for federal facilities in selected U.S. regions. It offers to help focus the attention of policy makers and energy facility managers on good candidate facilities for CHP. First, a ranked list of high potential individual sites is identified. Then, several classes of federal facilities are identified for the multiple opportunities they offer as a class. Recommendations are then offered for appropriate next steps for the evaluation and cost effective implementation of CHP. This study was designed to ultimately rank federal facilities in terms of their potential to take advantage of CHP economic and external savings in the near term. In order to best serve the purposes of this study, projections have been expressed in terms of

  14. Process Intensification in Fuel Cell CHP Systems, the ReforCELL Project

    Directory of Open Access Journals (Sweden)

    José Luis Viviente

    2016-10-01

    Full Text Available This paper reports the findings of a FP7/FCH JU project (ReforCELL that developed materials (catalysts and membranes and an advance autothermal membrane reformer for a micro Combined Heat and Power (CHP system of 5 kWel based on a polymer electrolyte membrane fuel cell (PEMFC. In this project, an active, stable and selective catalyst was developed for the reactions of interest and its production was scaled up to kg scale (TRL5 (TRL: Technology Readiness Level. Simultaneously, new membranes for gas separation were developed. In particular, dense supported thin palladium-based membranes were developed for hydrogen separation from reactive mixtures. These membranes were successfully scaled up to TRL4 and used in lab-scale reactors for fluidized bed steam methane reforming (SMR and autothermal reforming (ATR and in a prototype reactor for ATR. Suitable sealing techniques able to integrate the different membranes in lab-scale and prototype reactors were also developed. The project also addressed the design and optimization of the subcomponents (BoP for the integration of the membrane reformer to the fuel cell system.

  15. Optimization in Fuzzy Economic Order Quantity (FEOQ Model with Deteriorating Inventory and Units Lost

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-09-01

    Full Text Available Background: This model presents the effect of deteriorating items in fuzzy optimal instantaneous replenishment for finite planning horizon. Accounting for holding cost per unit per unit time and ordering cost per order have traditionally been the case of modeling inventory systems in fuzzy environment. These imprecise parameters defined on a bounded interval on the axis of real numbers and the physical characteristics of stocked items dictate the nature of inventory policies implemented to manage and control in the production system.   Methods: The modified fuzzy EOQ (FEOQ model is introduced, it assumes that a percentage of the on-hand inventory is wasted due to deterioration and considered as an enhancement to EOQ model to determine the optimal replenishment quantity so that the net profit is maximized. In theoretical analysis, the necessary and sufficient conditions of the existence and uniqueness of the optimal solutions are proved and further the concavity of the fuzzy net profit function is established. Computational algorithm using the software LINGO 13.0 version is developed to find the optimal solution.   Results and conclusions: The results of the numerical analysis enable decision-makers to quantify the effect of units lost due to deterioration on optimizing the fuzzy net profit for the retailer. Finally, sensitivity analyses of the optimal solution with respect the major parameters are also carried out. Furthermore fuzzy decision making is shown to be superior then crisp decision making in terms of profit maximization. 

  16. Optimization in Fuzzy Economic Order Quantity (FEOQ) Model with Deteriorating Inventory and Units Lost

    OpenAIRE

    Monalisha Pattnaik

    2014-01-01

    Background: This model presents the effect of deteriorating items in fuzzy optimal instantaneous replenishment for finite planning horizon. Accounting for holding cost per unit per unit time and ordering cost per order have traditionally been the case of modeling inventory systems in fuzzy environment. These imprecise parameters defined on a bounded interval on the axis of real numbers and the physical characteristics of stocked items dictate the nature of inventory policies implemented ...

  17. Integration of torrefaction in CHP plants – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Tomas Aparicio, Elena; Li, Hailong; Dotzauer, Erik

    2015-01-01

    Highlights: • We model the integration of a torrefaction reactor in a CHP plant. • Techno-economic analysis for the system is performed. • Flue gas integration of torrefaction show better performance. • Heat or electricity production is not compromised in the proposed system. - Abstract: Torrefied biomass shows characteristics that resemble those of coal. Therefore, torrefied biomass can be co-combusted with coal in existing coal mills and burners. This paper presents simulation results of a case study where a torrefaction reactor was integrated in an existing combined heat and power plant and sized to replace 25%, 50%, 75% or 100% of the fossil coal in one of the boilers. The simulations show that a torrefaction reactor can be integrated with existing plants without compromising heat or electricity production. Economic and sensitivity analysis show that the additional cost for integrating a torrefaction reactor is low which means that with an emission allowance cost of 37 €/ton CO 2 , the proposed integrated system can be profitable and use 100% renewable fuels. The development of subsidies will affect the process economy. The determinant parameters are electricity and fuel prices

  18. Mathematical model for optimization of multilayer submerged-arc welding of frame equipment of power units

    International Nuclear Information System (INIS)

    Pankov, V.V.; Chernyshev, G.G.; Kozlov, N.E.

    1987-01-01

    A mathematical model for optimization of multilayer submerged arc welding of frame equipment of power units is constructed. The variation-energy method permits to construct the universal mathematical model for strengthening formation of a single bead; the method is reasonable for simulation of a multilayer welded joint. Minimization of the distance between maximum and minimum layer height of a built-up metal is the necessary condition for qualitative formation of the multilayer joint. One can calculate in real time scale the optimal vector of maximally ten parameters under the multilayer welding condition immediately after change in the grooving width using the developed mathematical model of optimization

  19. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  20. Optimal placement and sizing of multiple distributed generating units in distribution

    Directory of Open Access Journals (Sweden)

    D. Rama Prabha

    2016-06-01

    Full Text Available Distributed generation (DG is becoming more important due to the increase in the demands for electrical energy. DG plays a vital role in reducing real power losses, operating cost and enhancing the voltage stability which is the objective function in this problem. This paper proposes a multi-objective technique for optimally determining the location and sizing of multiple distributed generation (DG units in the distribution network with different load models. The loss sensitivity factor (LSF determines the optimal placement of DGs. Invasive weed optimization (IWO is a population based meta-heuristic algorithm based on the behavior of weeds. This algorithm is used to find optimal sizing of the DGs. The proposed method has been tested for different load models on IEEE-33 bus and 69 bus radial distribution systems. This method has been compared with other nature inspired optimization methods. The simulated results illustrate the good applicability and performance of the proposed method.

  1. Structural optimization of the fibre-reinforced composite substructure in a three-unit dental bridge.

    Science.gov (United States)

    Shi, Li; Fok, Alex S L

    2009-06-01

    Failures of fixed partial dentures (FPDs) made of fibre-reinforced composites (FRC) have been reported in many clinical and in vitro studies. The types of failure include debonding at the composite-tooth interface, delamination of the veneering material from the FRC substructure and fracture of the pontic. The design of the FRC substructure, i.e. the position and orientation of the fibres, will affect the fracture resistance of the FPD. The purpose of this study was to find an optimal arrangement of the FRC substructure, by means of structural optimization, which could minimize the failure-initiating stresses in a three-unit FPD. A structural optimization method mimicking biological adaptive growth was developed for orthotropic materials such as FRC and incorporated into the finite element (FE) program ABAQUS. Using the program, optimization of the fibre positions and directions in a three-unit FPD was carried out, the aim being to align the fibre directions with those of the maximum principal stresses. The optimized design was then modeled and analyzed to verify the improvements in mechanical performance of the FPD. Results obtained from the optimization suggested that the fibres should be placed at the bottom of the pontic, forming a U-shape substructure that extended into the connectors linking the teeth and the pontic. FE analyses of the optimized design indicated stress reduction in both the veneering composite and at the interface between the veneer and the FRC substructure. The optimized design obtained using FE-based structural optimization can potentially improve the fracture resistance of FPDs by reducing some of the failure-initiating stresses. Optimization methods can therefore be a useful tool to provide sound scientific guidelines for the design of FRC substructures in FPDs.

  2. Development of a biorefinery optimized biofuel supply curve for the western United States

    Science.gov (United States)

    Nathan Parker; Peter Tittmann; Quinn Hart; Richard Nelson; Ken Skog; Anneliese Schmidt; Edward Gray; Bryan Jenkins

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed...

  3. 76 FR 5832 - International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA...

    Science.gov (United States)

    2011-02-02

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,554] International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA, San Jose, CA; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated November 29, 2010, a worker and a state workforce official...

  4. Multi-Objective Optimization of Start-up Strategy for Pumped Storage Units

    Directory of Open Access Journals (Sweden)

    Jinjiao Hou

    2018-05-01

    Full Text Available This paper proposes a multi-objective optimization method for the start-up strategy of pumped storage units (PSU for the first time. In the multi-objective optimization method, the speed rise time and the overshoot during the process of the start-up are taken as the objectives. A precise simulation platform is built for simulating the transient process of start-up, and for calculating the objectives based on the process. The Multi-objective Particle Swarm Optimization algorithm (MOPSO is adopted to optimize the widely applied start-up strategies based on one-stage direct guide vane control (DGVC, and two-stage DGVC. Based on the Pareto Front obtained, a multi-objective decision-making method based on the relative objective proximity is used to sort the solutions in the Pareto Front. Start-up strategy optimization for a PSU of a pumped storage power station in Jiangxi Province in China is conducted in experiments. The results show that: (1 compared with the single objective optimization, the proposed multi-objective optimization of start-up strategy not only greatly shortens the speed rise time and the speed overshoot, but also makes the speed curve quickly stabilize; (2 multi-objective optimization of strategy based on two-stage DGVC achieves better solution for a quick and smooth start-up of PSU than that of the strategy based on one-stage DGVC.

  5. Modeling and Optimization of the Medium-Term Units Commitment of Thermal Power

    Directory of Open Access Journals (Sweden)

    Shengli Liao

    2015-11-01

    Full Text Available Coal-fired thermal power plants, which represent the largest proportion of China’s electric power system, are very sluggish in responding to power system load demands. Thus, a reasonable and feasible scheme for the medium-term optimal commitment of thermal units (MOCTU can ensure that the generation process runs smoothly and minimizes the start-up and shut-down times of thermal units. In this paper, based on the real-world and practical demands of power dispatch centers in China, a flexible mathematical model for MOCTU that uses equal utilization hours for the installed capacity of all thermal power plants as the optimization goal and that considers the award hours for MOCTU is developed. MOCTU is a unit commitment (UC problem with characteristics of large-scale, high dimensions and nonlinearity. For optimization, an improved progressive optimality algorithm (IPOA offering the advantages of POA is adopted to overcome the drawback of POA of easily falling into the local optima. In the optimization process, strategies of system operating capacity equalization and single station operating peak combination are introduced to move the target solution from the boundary constraints along the target isopleths into the feasible solution’s interior to guarantee the global optima. The results of a case study consisting of nine thermal power plants with 27 units show that the presented algorithm can obtain an optimal solution and is competent in solving the MOCTU with high efficiency and accuracy as well as that the developed simulation model can be applied to practical engineering needs.

  6. A deterministic approach for performance assessment and optimization of power distribution units in Iran

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Omrani, H.

    2009-01-01

    This paper presents a deterministic approach for performance assessment and optimization of power distribution units in Iran. The deterministic approach is composed of data envelopment analysis (DEA), principal component analysis (PCA) and correlation techniques. Seventeen electricity distribution units have been considered for the purpose of this study. Previous studies have generally used input-output DEA models for benchmarking and evaluation of electricity distribution units. However, this study considers an integrated deterministic DEA-PCA approach since the DEA model should be verified and validated by a robust multivariate methodology such as PCA. Moreover, the DEA models are verified and validated by PCA, Spearman and Kendall's Tau correlation techniques, while previous studies do not have the verification and validation features. Also, both input- and output-oriented DEA models are used for sensitivity analysis of the input and output variables. Finally, this is the first study to present an integrated deterministic approach for assessment and optimization of power distributions in Iran

  7. Optimization Solutions for Improving the Performance of the Parallel Reduction Algorithm Using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2012-01-01

    Full Text Available In this paper, we research, analyze and develop optimization solutions for the parallel reduction function using graphics processing units (GPUs that implement the Compute Unified Device Architecture (CUDA, a modern and novel approach for improving the software performance of data processing applications and algorithms. Many of these applications and algorithms make use of the reduction function in their computational steps. After having designed the function and its algorithmic steps in CUDA, we have progressively developed and implemented optimization solutions for the reduction function. In order to confirm, test and evaluate the solutions' efficiency, we have developed a custom tailored benchmark suite. We have analyzed the obtained experimental results regarding: the comparison of the execution time and bandwidth when using graphic processing units covering the main CUDA architectures (Tesla GT200, Fermi GF100, Kepler GK104 and a central processing unit; the data type influence; the binary operator's influence.

  8. Improved Taguchi method based contract capacity optimization for industrial consumer with self-owned generating units

    International Nuclear Information System (INIS)

    Yang, Hong-Tzer; Peng, Pai-Chun

    2012-01-01

    Highlights: ► We propose an improved Taguchi method to determine the optimal contract capacities with SOGUs. ► We solve the highly discrete and nonlinear optimization problem for the contract capacities with SOGUs. ► The proposed improved Taguchi method integrates PSO in Taguchi method. ► The customer using the proposed optimization approach may save up to 12.18% of power expenses. ► The improved Taguchi method can also be well applied to the other similar problems. - Abstract: Contract capacity setting for industrial consumer with self-owned generating units (SOGUs) is a highly discrete and nonlinear optimization problem considering expenditure on the electricity from the utility and operation costs of the SOGUs. This paper proposes an improved Taguchi method that combines existing Taguchi method and particle swarm optimization (PSO) algorithm to solve this problem. Taguchi method provides fast converging characteristics in searching the optimal solution through quality analysis in orthogonal matrices. The integrated PSO algorithm generates new solutions in the orthogonal matrices based on the searching experiences during the evolution process to further improve the quality of solution. To verify feasibility of the proposed method, the paper uses the real data obtained from a large optoelectronics factory in Taiwan. In comparison with the existing optimization methods, the proposed improved Taguchi method has superior performance as revealed in the numerical results in terms of the convergence process and the quality of solution obtained.

  9. Optimal maintenance policy incorporating system level and unit level for mechanical systems

    Science.gov (United States)

    Duan, Chaoqun; Deng, Chao; Wang, Bingran

    2018-04-01

    The study works on a multi-level maintenance policy combining system level and unit level under soft and hard failure modes. The system experiences system-level preventive maintenance (SLPM) when the conditional reliability of entire system exceeds SLPM threshold, and also undergoes a two-level maintenance for each single unit, which is initiated when a single unit exceeds its preventive maintenance (PM) threshold, and the other is performed simultaneously the moment when any unit is going for maintenance. The units experience both periodic inspections and aperiodic inspections provided by failures of hard-type units. To model the practical situations, two types of economic dependence have been taken into account, which are set-up cost dependence and maintenance expertise dependence due to the same technology and tool/equipment can be utilised. The optimisation problem is formulated and solved in a semi-Markov decision process framework. The objective is to find the optimal system-level threshold and unit-level thresholds by minimising the long-run expected average cost per unit time. A formula for the mean residual life is derived for the proposed multi-level maintenance policy. The method is illustrated by a real case study of feed subsystem from a boring machine, and a comparison with other policies demonstrates the effectiveness of our approach.

  10. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch

    International Nuclear Information System (INIS)

    Cheng Chuntian; Liao Shengli; Tang Zitian; Zhao Mingyan

    2009-01-01

    Dynamic programming (DP) is one of classic and sophisticated optimization methods that have successfully been applied to solve the problem of hydro unit load dispatch (HULD). However, DP will be faced with the curse of dimensionality with the increase of unit number and installed generating capacity of hydropower station. With the appearance of the huge hydropower station similar to the Three George with 26 generators of 700 MW, it is hard to apply the DP to large scale HULD problem. It is crucial to seek for other optimization techniques in order to improve the operation quality and efficiency. Different with the most of literature about power generation scheduling that focused on the comparisons of novel PSO algorithms with other techniques, the paper will pay emphasis on comparison study of PSO with DP based on a case hydropower station. The objective of study is to seek for an effective and feasible method for the large scale of hydropower station of the current and future in China. This paper first compares the performance of PSO and DP using a sample load curve of the Wujiangdu hydropower plant located in the upper stream of the Yangtze River in China and contained five units with the installed capacity of 1250 MW. Next, the effect of different load interval and unit number on the optimal results and efficiency of two methods has also been implemented. The comparison results show that the PSO is feasible for HULD. Furthermore, we simulated the effect of the magnitude of unit number and load capacity on the optimal results and cost time. The simulation comparisons show that PSO has a great advantage over DP in the efficiency and will be one of effective methods for HULD problem of huge hydropower stations.

  11. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Chuntian, E-mail: ctcheng@dlut.edu.c [Department of Civil and Hydraulic Engineering, Dalian University of Technology, 116024 Dalian (China); Liao Shengli; Tang Zitian [Department of Civil and Hydraulic Engineering, Dalian University of Technology, 116024 Dalian (China); Zhao Mingyan [Department of Environmental Science and Engineering, Tsinghua University, 100084 Beijing (China)

    2009-12-15

    Dynamic programming (DP) is one of classic and sophisticated optimization methods that have successfully been applied to solve the problem of hydro unit load dispatch (HULD). However, DP will be faced with the curse of dimensionality with the increase of unit number and installed generating capacity of hydropower station. With the appearance of the huge hydropower station similar to the Three George with 26 generators of 700 MW, it is hard to apply the DP to large scale HULD problem. It is crucial to seek for other optimization techniques in order to improve the operation quality and efficiency. Different with the most of literature about power generation scheduling that focused on the comparisons of novel PSO algorithms with other techniques, the paper will pay emphasis on comparison study of PSO with DP based on a case hydropower station. The objective of study is to seek for an effective and feasible method for the large scale of hydropower station of the current and future in China. This paper first compares the performance of PSO and DP using a sample load curve of the Wujiangdu hydropower plant located in the upper stream of the Yangtze River in China and contained five units with the installed capacity of 1250 MW. Next, the effect of different load interval and unit number on the optimal results and efficiency of two methods has also been implemented. The comparison results show that the PSO is feasible for HULD. Furthermore, we simulated the effect of the magnitude of unit number and load capacity on the optimal results and cost time. The simulation comparisons show that PSO has a great advantage over DP in the efficiency and will be one of effective methods for HULD problem of huge hydropower stations.

  12. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Chun-tian Cheng; Sheng-li Liao; Zi-Tian Tang [Dept. of Civil and Hydraulic Engineering, Dalian Univ. of Technology, 116024 Dalian (China); Ming-yan Zhao [Dept. of Environmental Science and Engineering, Tsinghua Univ., 100084 Beijing (China)

    2009-12-15

    Dynamic programming (DP) is one of classic and sophisticated optimization methods that have successfully been applied to solve the problem of hydro unit load dispatch (HULD). However, DP will be faced with the curse of dimensionality with the increase of unit number and installed generating capacity of hydropower station. With the appearance of the huge hydropower station similar to the Three George with 26 generators of 700 MW, it is hard to apply the DP to large scale HULD problem. It is crucial to seek for other optimization techniques in order to improve the operation quality and efficiency. Different with the most of literature about power generation scheduling that focused on the comparisons of novel PSO algorithms with other techniques, the paper will pay emphasis on comparison study of PSO with DP based on a case hydropower station. The objective of study is to seek for an effective and feasible method for the large scale of hydropower station of the current and future in China. This paper first compares the performance of PSO and DP using a sample load curve of the Wujiangdu hydropower plant located in the upper stream of the Yangtze River in China and contained five units with the installed capacity of 1250 MW. Next, the effect of different load interval and unit number on the optimal results and efficiency of two methods has also been implemented. The comparison results show that the PSO is feasible for HULD. Furthermore, we simulated the effect of the magnitude of unit number and load capacity on the optimal results and cost time. The simulation comparisons show that PSO has a great advantage over DP in the efficiency and will be one of effective methods for HULD problem of huge hydropower stations. (author)

  13. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making

  14. Micro scale CHP based on biomass intelligent heat transfer with thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.; Aigenbauer, S.; Heckmann, M.; Friedl, G. (Austrian Bioenergy Centre GmbH, Wieselburg (Austria)); Hofbauer, H. (Institute of Chemical Engineering, Vienna University of Technology (Austria))

    2007-07-01

    Pellet burners need auxiliary electrical power to provide CO{sub 2} balanced heat in a comfortable and environment friendly way. The idea is to produce this and some extra electricity within the device in order to save resources and to gain operation reliability and independency. An option for micro scale CHP is the usage of thermoelectric generators (TEGs). They allow direct conversion of heat into electrical power. They have the advantage of a long maintenance free durability and noiseless operation without moving parts or any working fluid. The useful heat remains almost unaffected and can still be used for heating. TEGs are predestined for the use in micro scale CHP based on solid biomass. In this paper the first results from the fully integrated prototype are presented. The performance of the TEG was observed for different loads and operating conditions in order to realise an optimised micro scale CHP based on solid biomass. (orig.)

  15. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has...... tests on a 265 MW coal-fired power-plant unit reveals that the maximum allowable load gradient that can be imposed on the plant, can be increased from 4 MW/min. to 8 MW/min....

  16. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle

    1998-01-01

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has...... tests on a 265 MW coal-fired power-plant unit reveals that the maximum allowable load gradient that can be imposed on the plant, can be increased from 4 MW/min. to 8 MW/min....

  17. Optimization of Edwards vacuum coating unit model E12E for the production of thin films

    International Nuclear Information System (INIS)

    Ruiz P, H.S.

    1995-01-01

    This work is about an Edwards vacuum coating unit model E12E, it shows the principle of vacuum thermal evaporation, some observations in the operation of vacuum diffusion pumps, mechanical pumps, vacuum gauge, Penning and Pirani, and some equations of leak vacuum, after the modifications and additions of Edwards vacuum coating unit for optimization, the last part contains a concise introduction about thin films and one specific application, it also contains the recommendations and requirements to keep the system in good conditions. (Author)

  18. Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography

    International Nuclear Information System (INIS)

    Lee, H.; Brandyberry, M.; Tudor, A.; Matous, K.

    2009-01-01

    In this paper, we present a systematic approach for characterization and reconstruction of statistically optimal representative unit cells of polydisperse particulate composites. Microtomography is used to gather rich three-dimensional data of a packed glass bead system. First-, second-, and third-order probability functions are used to characterize the morphology of the material, and the parallel augmented simulated annealing algorithm is employed for reconstruction of the statistically equivalent medium. Both the fully resolved probability spectrum and the geometrically exact particle shapes are considered in this study, rendering the optimization problem multidimensional with a highly complex objective function. A ten-phase particulate composite composed of packed glass beads in a cylindrical specimen is investigated, and a unit cell is reconstructed on massively parallel computers. Further, rigorous error analysis of the statistical descriptors (probability functions) is presented and a detailed comparison between statistics of the voxel-derived pack and the representative cell is made.

  19. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    OpenAIRE

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle; Pedersen, Tom Søndergaard

    1998-01-01

    The capability to perform fast load changes has been an important issue in the power market, and will become increasingly more so due to the incresing commercialisation of the European power market. An optimizing control system for improving the load-following capability of power-plant units has therefore been developed. The system is implemented as a complement, producing control signals to be added to those of the existing boiler control system, a concept which has various practical advanta...

  20. Investments in the LNG Value Chain: A Multistage Stochastic Optimization Model focusing on Floating Liquefaction Units

    OpenAIRE

    Røstad, Lars Dybsjord; Erichsen, Jeanette Christine

    2012-01-01

    In this thesis, we have developed a strategic optimization model of investments in infrastructure in the LNG value chain. The focus is on floating LNG production units: when they are a viable solution and what value they add to the LNG value chain. First a deterministic model is presented with focus on describing the value chain, before it is expanded to a multistage stochastic model with uncertain field sizes and gas prices. The objective is to maximize expected discounted profits through op...

  1. Development of a biorefinery optimized biofuel supply curve for the Western United States

    International Nuclear Information System (INIS)

    Parker, Nathan; Tittmann, Peter; Hart, Quinn; Nelson, Richard; Skog, Ken; Schmidt, Anneliese; Gray, Edward; Jenkins, Bryan

    2010-01-01

    A resource assessment and biorefinery siting optimization model was developed and implemented to assess potential biofuel supply across the Western United States from agricultural, forest, urban, and energy crop biomass. Spatial information including feedstock resources, existing and potential refinery locations and a transportation network model is provided to a mixed integer-linear optimization model that determines the optimal locations, technology types and sizes of biorefineries to satisfy a maximum profit objective function applied across the biofuel supply and demand chain from site of feedstock production to the product fuel terminal. The resource basis includes preliminary considerations of crop and residue sustainability. Sensitivity analyses explore possible effects of policy and technology changes. At a target market price of 19.6 $ GJ -1 , the model predicts a feasible production level of 610-1098 PJ, enough to supply up to 15% of current regional liquid transportation fuel demand. (author)

  2. Clinical treatment planning optimization by Powell's method for gamma unit treatment system

    International Nuclear Information System (INIS)

    Yan Yulong; Shu Huazhong; Bao Xudong; Luo Limin; Bai Yi

    1997-01-01

    Purpose: This article presents a new optimization method for stereotactic radiosurgery treatment planning for gamma unit treatment system. Methods and Materials: The gamma unit has been utilized in stereotactic radiosurgery for about 30 years, but the usual procedure for a physician-physicist team to design a treatment plan is a trial-and-error approach. Isodose curves are viewed on two-dimensional computed tomography (CT) or magnetic resonance (MR) image planes, which is not only time consuming but also seldom achieves the optimal treatment plan, especially when the isocenter weights are regarded. We developed a treatment-planning system on a computer workstation in which Powell's optimization method is realized. The optimization process starts with the initial parameters (the number of iso centers as well as corresponding 3D iso centers' coordinates, collimator sizes, and weight factors) roughly determined by the physician-physicist team. The objective function can be changed to consider protection of sensitive tissues. Results: We use the plan parameters given by a well-trained physician-physicist team, or ones that the author give roughly as the initial parameters for the optimization procedure. Dosimetric results of optimization show a better high dose-volume conformation to the target volume compared to the doctor's plan. Conclusion: This method converges quickly and is not sensitive to the initial parameters. It achieves an excellent conformation of the estimated isodose curves with the contours of the target volume. If the initial parameters are varied, there will be a little difference in parameters' configuration, but the dosimetric results proved almost to be the same

  3. Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: •Stochastic model is proposed for coordinated scheduling of renewable energy sources. •The effect of combined heat and power is considered. •Hydrogen storage is considered for fuel cells. •Maximizing profits of micro grid is considered as objective function. •Considering the uncertainties of problem lead to profit increasing. -- Abstract: Nowadays, renewable energy sources and combined heat and power units are extremely used in micro grids, so it is necessary to schedule these units to improve the performance of the system. In this regard, a stochastic model is proposed in this paper to schedule proton exchange membrane fuel cell-combined heat and power, wind turbines, and photovoltaic units coordinately in a micro grid while considering hydrogen storage. Hydrogen storage strategy is considered for the operation of proton exchange membrane fuel cell-combined heat and power units. To consider stochastic generation of renewable energy source units in this paper, a scenario-based method is used. In this method, the uncertainties of electrical market price, the wind speed, and solar irradiance are considered. This stochastic scheduling problem is a mixed integer- nonlinear programming which considers the proposed objective function and variables of coordinated scheduling of PEMFC-CHP, wind turbines and photovoltaic units. It also considers hydrogen storage strategy and converts it to a mixed integer nonlinear problem. In this study a modified firefly algorithm is used to solve the problem. This method is examined on modified 33-bus distributed network as a MG for its performance.

  4. An updated assessment of the prospects for fuel cells in stationary power and CHP. An information paper

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, T.K. [Future Energy Solutions, Harwell (United Kingdom)

    2005-07-01

    This report presents updated conclusions of the Department of Trade and Industry's research and development programme to assess the commercial prospects for advanced fuel cells in stationary power and combined heat and power (CHP) systems. The programme has focussed on low temperature solid polymer fuel cells (SPFCs) for transport and combined heat and power (CHP)/distributed power and high temperature solid oxide fuel cells (SOFCs) for CHP/distributed power. As well as assessing the prospects for SPFCs and SOFCs in stationary power and CHP applications, the report examines those for molten carbonate fuel cells (MCFCs) and phosphoric acid fuel cells (PAFCs). The report provides an assessment of the status of technology development for these different types of fuel cells in terms of applications to stationary power and CHP, and offers estimates of market potential for SOFCs in CHP markets, SPFCs in CHP markets and SOFCs in distributed power generation markets. Both large SPFC and SOFC CHP systems require further development to deliver the necessary cost reductions in materials and manufacturing processes before pre-commercial sales can begin. The routes taken by different manufacturers and their choice of preferred technology are explained. A discussion of the prospects and barriers for fuel cell cars concludes that while cost reduction is a major barrier to the successful commercialisation of fuel cells, there are insufficient data available from operating fuel cells systems (other than PAFC) in stationary power and CHP applications to assess the economic attractiveness of fuel cells compared with existing systems. More field trials are required to confirm energy and environmental performance in such applications and to evaluate operational and economic performance under commercial operating conditions. Such field trials could also provide a focus for the required developments in fuel cells for stationary power/CHP systems.

  5. National Accounts Energy Alliance : Field test and verification of CHP components and systems

    Energy Technology Data Exchange (ETDEWEB)

    Sweetser, R. [Exergy Partners Corporation, Herndon, VA (United States)

    2003-07-01

    Exergy is a consulting firm which specializes in capitalizing on opportunities that result from the nexus of utility deregulation and global climate change in both the construction and energy industries. The firm offers assistance in technical business and market planning, product development and high impact marketing and technology transfer programs. The author discussed National Accounts Energy Alliance (NAEA) program on distributed energy resources (DER) and identified some advantageous areas such as homeland security (less possible terrorist targets to be protected), food safety (protection of food supply and delivery system), reliability, power quality, energy density, grid congestion and energy price. In the future, an essential role in moderating energy prices for commercial buildings will probably be played by distributed generation (DG) and combined heat and power (CHP). The technical merits of these technologies is being investigated by national accounts and utilities partnering with non-profit organizations, the United States Department of Energy (US DOE), state governments and industry. In that light, in 2001 an Alliance program was developed, which allows investors to broaden their knowledge from the application and verification of Advanced Energy Technologies. This program was the result of a synergy between the American Gas Foundation and the Gas Technology Institute (GTI), and it assists investors with their strategic planning. It was proven that a customer-led Energy Technology Test and Verification Program (TA and VP) could be cost-effective and successful. The NAEA activities in five locations were reviewed and discussed. They were: (1) Russell Development, Portland, Oregon; (2) A and P-Waldbaums, Hauppage, New York; (3) HEB, Southern, Texas; (4) Cinemark, Plano, Texas; and McDonald's, Tampa, Florida. 4 tabs., figs.

  6. Optimization of Combine Heat and Power Plants in the Russian Wholesale Power Market Conditions

    Directory of Open Access Journals (Sweden)

    I. A. Chuchueva

    2015-01-01

    Full Text Available The paper concerns the relevant problem to optimize the combine heat and power (CHP plants in the Russian wholesale power market conditions. Since 1975 the CHP plants specialists faced the problem of fuel rate or fuel cost reduction while ensuring the fixed level of heat and power production. The optimality criterion was the fuel rate or fuel cost which has to be minimized. Produced heat and power was paid by known tariff. Since the power market started in 2006 the power payment scheme has essentially changed: produced power is paid by market price. In such condition a new optimality criterion the paper offers is a profit which has to be maximized for the given time horizon. Depending on the optimization horizon the paper suggests four types of the problem urgency, namely: long-term, mid-term, short-term, and operative optimization. It clearly shows that the previous problem of fuel cost minimization is a special case of profit maximization problem. To bring the problem to the mixed-integer linear programming problem a new linear characteristic curves of steam and gas turbine are introduced. Error of linearization is 0.6%. The formal statement of the problem of short-term CHP plants optimization in the market conditions is offered. The problem was solved with IRM software (OpenLinkInternational for seven power plants of JSC “Quadra”: Dyagilevskaya CHP, Kurskaya CHP-1, Lipetskaya CHP-2, Orlovskaya CHP, Kurskaya CHP NWR, Tambovskaya CHP, and Smolenskaya CHP-2.The conducted computational experiment showed that a potential profit is between 1.7% and 4.7% of the fuel cost of different CHP plants and depends on the power plant operation conditions. The potential profit value is 2–3 times higher than analogous estimations, which were obtained solving fuel cost minimization problem. The perspectives of the work are formalization of mid-term and long-term CHP plants optimization problem and development of domestic software for the new problem

  7. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  8. Multi-period MINLP model for optimising operation and structural changes to CHP plants in district heating networks with long-term thermal storage

    International Nuclear Information System (INIS)

    Tveit, Tor-Martin; Savola, Tuula; Gebremedhin, Alemayehu; Fogelholm, Carl-Johan

    2009-01-01

    By using thermal storages it is possible to decouple the generation of power and heat, and it can also lead to an reduction in investments, as the storage can be used to cover the peak load periods. This work presents a MINLP model that can be used for analysing new investments and the long-term operation of CHP plants in a district heating network with long-term thermal storage. The model presented in this work includes the non-linear off-design behaviour of the CHP plants as well as a generic mathematical model of the thermal storage, without the need to fix temperatures and pressure. The model is formulated in such a way that it is suitable for deterministic MINLP solvers. The model is non-convex, and subsequently global optimality cannot be guaranteed with local solvers. In order to reduce the chance of obtaining a poor local optimum compared to the global optimum, the model should be solved many times with the initial values varying randomly. It is possible to extract a lot of results from the model, for instance total annual profit, the optimal selection of process options, mass flow through the plant, and generated power from each plant. The formulation of the model makes it suitable for deterministic MINLP solvers

  9. Scalable unit commitment by memory-bounded ant colony optimization with A{sup *} local search

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Ahmed Yousuf; Alshareef, Abdulaziz Mohammed [Department of Electrical and Computer Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589 (Saudi Arabia)

    2008-07-15

    Ant colony optimization (ACO) is successfully applied in optimization problems. Performance of the basic ACO for small problems with moderate dimension and searching space is satisfactory. As the searching space grows exponentially in the large-scale unit commitment problem, the basic ACO is not applicable for the vast size of pheromone matrix of ACO in practical time and physical computer-memory limit. However, memory-bounded methods prune the least-promising nodes to fit the system in computer memory. Therefore, the authors propose memory-bounded ant colony optimization (MACO) in this paper for the scalable (no restriction for system size) unit commitment problem. This MACO intelligently solves the limitation of computer memory, and does not permit the system to grow beyond a bound on memory. In the memory-bounded ACO implementation, A{sup *} heuristic is introduced to increase local searching ability and probabilistic nearest neighbor method is applied to estimate pheromone intensity for the forgotten value. Finally, the benchmark data sets and existing methods are used to show the effectiveness of the proposed method. (author)

  10. Thermal and economical optimization of air conditioning units with vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, S.; Malekmohammadi, H.R. [Iran University of Science and Technology, Tehran (Iran). Dept. of Mechanical Engineering

    2004-09-01

    A new method of thermal and economical optimum design of air conditioning units with vapor compression refrigeration system, is presented. Such a system includes compressor, condenser, evaporator, centrifugal and axial fans. Evaporator and condenser temperatures, their heating surface areas (frontal surface area and number of tubes), centrifugal and axial fan powers, and compressor power are among the design variables. The data provided by manufacturers for fan (volume flow rate versus pressure drop) and compressor power (using evaporator and condenser temperatures) was used to choose these components directly from available data for consumers. To study the performance of the system under various situations, and implementing the optimization procedure, a simulation program including all thermal and geometrical parameters was developed. The objective function for optimization was the total cost per unit cooling load of the system including capital investment for components as well as the required electricity cost. To find the system design parameters, this objective function was minimized by Lagrange multipliers method. The effects of changing the cooling load on optimal design parameters were studied. (author)

  11. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  12. A price mechanism for supply demand matching in local grid of households with micro-CHP

    NARCIS (Netherlands)

    Larsen, G.K.H.; van Foreest, N.D.; Scherpen, J.M.A.

    2012-01-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household

  13. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...

  14. A Compound Herbal Preparation (CHP) in the Treatment of Children with ADHD: A Randomized Controlled Trial

    Science.gov (United States)

    Katz, M.; Adar Levine, A.; Kol-Degani, H.; Kav-Venaki, L.

    2010-01-01

    Objective: Evaluation of the efficacy of a patented, compound herbal preparation (CHP) in improving attention, cognition, and impulse control in children with ADHD. Method: Design: A randomized, double-blind, placebo-controlled trial. Setting: University-affiliated tertiary medical center. Participants: 120 children newly diagnosed with ADHD,…

  15. Innovative Hybrid CHP systems for high temperature heating plant in existing buildings

    NARCIS (Netherlands)

    de Santoli, Livio; Lo Basso, Gianluigi; Nastasi, B.; d’Ambrosio Alfano, Francesca R.; Mazzarella and Piercarlo, Livio

    2017-01-01

    This paper deals with the potential role of new hybrid CHP systems application providing both electricity and heat which are compatible with the building architectural and landscape limitations. In detail, three different plant layout options for high temperature heat production along with the

  16. Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast ...

    African Journals Online (AJOL)

    Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast hydrolysate in ... The present study was designed to investigate the hypoglycemic effects of the daily ... in the area under curve (AUC) value of YH supplemented groups as compared ...

  17. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying [Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC (China); Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, Taiwan, ROC (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We analyzed fire and explosion incidents in a plant producing CHP and DCPO. Black-Right-Pointing-Pointer Data from calorimeters reveal causes and phenomena associated with the incidents. Black-Right-Pointing-Pointer The credible worst scenario was thermal explosion. Black-Right-Pointing-Pointer Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  18. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    International Nuclear Information System (INIS)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying; Duh, Yih-Shing

    2012-01-01

    Highlights: ► We analyzed fire and explosion incidents in a plant producing CHP and DCPO. ► Data from calorimeters reveal causes and phenomena associated with the incidents. ► The credible worst scenario was thermal explosion. ► Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile–butadiene–styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  19. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Science.gov (United States)

    Matysko, Robert; Mikielewicz, Jarosław; Ihnatowicz, Eugeniusz

    2014-03-01

    The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle) cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power) system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser) and the heat supply pump in failure conditions.

  20. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Directory of Open Access Journals (Sweden)

    Matysko Robert

    2014-03-01

    Full Text Available The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser and the heat supply pump in failure conditions.

  1. Optimization models of the supply of power structures’ organizational units with centralized procurement

    Directory of Open Access Journals (Sweden)

    Sysoiev Volodymyr

    2013-01-01

    Full Text Available Management of the state power structures’ organizational units for materiel and technical support requires the use of effective tools for supporting decisions, due to the complexity, interdependence, and dynamism of supply in the market economy. The corporate nature of power structures is of particular interest to centralized procurement management, as it provides significant advantages through coordination, eliminating duplication, and economy of scale. This article presents optimization models of the supply of state power structures’ organizational units with centralized procurement, for different levels of simulated materiel and technical support processes. The models allow us to find the most profitable options for state power structures’ organizational supply units in a centre-oriented logistics system in conditions of the changing needs, volume of allocated funds, and logistics costs that accompany the process of supply, by maximizing the provision level of organizational units with necessary material and technical resources for the entire planning period of supply by minimizing the total logistical costs, taking into account the diverse nature and the different priorities of organizational units and material and technical resources.

  2. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    Directory of Open Access Journals (Sweden)

    Dongmin Yu

    2017-06-01

    Full Text Available Many combined heat and power (CHP units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity and heat loads are firstly used as sizing criteria in finding the best capacities of different types of CHP with the help of the maximum rectangle (MR method. Subsequently, the genetic algorithm (GA will be used to optimise the daily energy costs of the different cases. Then, heat and electricity loads are jointly considered for sizing different types of CHP and for optimising the daily energy costs through the GA method. The optimisation results show that the GA sizing method gives a higher average daily energy cost saving, which is 13% reduction compared to a building without installing CHP. However, to achieve this, there will be about 3% energy efficiency reduction and 7% input power to rated power ratio reduction compared to using the MR method and heat demand in sizing CHP.

  3. Optimization of the coherence function estimation for multi-core central processing unit

    Science.gov (United States)

    Cheremnov, A. G.; Faerman, V. A.; Avramchuk, V. S.

    2017-02-01

    The paper considers use of parallel processing on multi-core central processing unit for optimization of the coherence function evaluation arising in digital signal processing. Coherence function along with other methods of spectral analysis is commonly used for vibration diagnosis of rotating machinery and its particular nodes. An algorithm is given for the function evaluation for signals represented with digital samples. The algorithm is analyzed for its software implementation and computational problems. Optimization measures are described, including algorithmic, architecture and compiler optimization, their results are assessed for multi-core processors from different manufacturers. Thus, speeding-up of the parallel execution with respect to sequential execution was studied and results are presented for Intel Core i7-4720HQ и AMD FX-9590 processors. The results show comparatively high efficiency of the optimization measures taken. In particular, acceleration indicators and average CPU utilization have been significantly improved, showing high degree of parallelism of the constructed calculating functions. The developed software underwent state registration and will be used as a part of a software and hardware solution for rotating machinery fault diagnosis and pipeline leak location with acoustic correlation method.

  4. Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit

    Science.gov (United States)

    Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.

    2017-11-01

    In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.

  5. Performance and cost results from a DOE Micro-CHP demonstration facility at Mississippi State University

    International Nuclear Information System (INIS)

    Giffin, Paxton K.

    2013-01-01

    Highlights: ► We examine the cost and performance results of a Micro-CHP demonstration facility. ► Evaluation includes both summer and winter performance. ► Evaluation in comparison to a conventional HVAC system using grid power. ► Influence of improperly sized equipment. ► Influence of natural gas prices on the viability of CHP projects using that fuel. - Abstract: Cooling, Heating, and Power (CHP) systems have been around for decades, but systems that utilize 20 kW or less, designated as Micro-CHP, are relatively new. A demonstration site has been constructed at Mississippi State University (MSU) to show the advantages of these micro scale systems. This study is designed to evaluate the performance of a Micro-CHP system as opposed to a conventional high-efficiency Heating, Ventilation, and Air Conditioning (HVAC) system that utilizes electrical power from the existing power grid. Raw data was collected for 7 months to present the following results. The combined cycle efficiency from the demonstration site was averaged at 29%. The average combined boiler and engine cost was $1.8 h −1 of operation for heating season and $3.9 h −1 of operation for cooling season. The cooling technology used, an absorption chiller exhibited an average Coefficient of Performance (COP) of 0.27. The conventional high-efficiency system, during cooling season, had a COP of 4.7 with a combined cooling and building cost of $0.2 h −1 of operation. During heating mode, the conventional system had an efficiency of 47% with a fuel and building electrical cost of $0.28 h −1 of operation.

  6. Evaluation of Combined Heat and Power (CHP Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS

    Directory of Open Access Journals (Sweden)

    Fausto Cavallaro

    2016-06-01

    Full Text Available Combined heat and power (CHP or cogeneration can play a strategic role in addressing environmental issues and climate change. CHP systems require less fuel than separate heat and power systems in order to produce the same amount of energy saving primary energy, improving the security of the supply. Because less fuel is combusted, greenhouse gas emissions and other air pollutants are reduced. If we are to consider the CHP system as “sustainable”, we must include in its assessment not only energetic performance but also environmental and economic aspects, presenting a multicriteria issue. The purpose of the paper is to apply a fuzzy multicriteria methodology to the assessment of five CHP commercial technologies. Specifically, the combination of the fuzzy Shannon’s entropy and the fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS approach will be tested for this purpose. Shannon’s entropy concept, using interval data such as the α-cut, is a particularly suitable technique for assigning weights to criteria—it does not require a decision-making (DM to assign a weight to the criteria. To rank the proposed alternatives, a fuzzy TOPSIS method has been applied. It is based on the principle that the chosen alternative should be as close as possible to the positive ideal solution and be as far as possible from the negative ideal solution. The proposed approach provides a useful technical–scientific decision-making tool that can effectively support, in a consistent and transparent way, the assessment of various CHP technologies from a sustainable point of view.

  7. Unit Commitment Towards Decarbonized Network Facing Fixed and Stochastic Resources Applying Water Cycle Optimization

    Directory of Open Access Journals (Sweden)

    Heba-Allah I. ElAzab

    2018-05-01

    Full Text Available This paper presents a trustworthy unit commitment study to schedule both Renewable Energy Resources (RERs with conventional power plants to potentially decarbonize the electrical network. The study has employed a system with three IEEE thermal (coal-fired power plants as dispatchable distributed generators, one wind plant, one solar plant as stochastic distributed generators, and Plug-in Electric Vehicles (PEVs which can work either loads or generators based on their charging schedule. This paper investigates the unit commitment scheduling objective to minimize the Combined Economic Emission Dispatch (CEED. To reduce combined emission costs, integrating more renewable energy resources (RER and PEVs, there is an essential need to decarbonize the existing system. Decarbonizing the system means reducing the percentage of CO2 emissions. The uncertain behavior of wind and solar energies causes imbalance penalty costs. PEVs are proposed to overcome the intermittent nature of wind and solar energies. It is important to optimally integrate and schedule stochastic resources including the wind and solar energies, and PEVs charge and discharge processes with dispatched resources; the three IEEE thermal (coal-fired power plants. The Water Cycle Optimization Algorithm (WCOA is an efficient and intelligent meta-heuristic technique employed to solve the economically emission dispatch problem for both scheduling dispatchable and stochastic resources. The goal of this study is to obtain the solution for unit commitment to minimize the combined cost function including CO2 emission costs applying the Water Cycle Optimization Algorithm (WCOA. To validate the WCOA technique, the results are compared with the results obtained from applying the Dynamic Programming (DP algorithm, which is considered as a conventional numerical technique, and with the Genetic Algorithm (GA as a meta-heuristic technique.

  8. Unit Stratified Sampling as a Tool for Approximation of Stochastic Optimization Problems

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Martin

    2012-01-01

    Roč. 19, č. 30 (2012), s. 153-169 ISSN 1212-074X R&D Projects: GA ČR GAP402/11/0150; GA ČR GAP402/10/0956; GA ČR GA402/09/0965 Institutional research plan: CEZ:AV0Z10750506 Institutional support: RVO:67985556 Keywords : Stochastic programming * approximation * stratified sampling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/smid-unit stratified sampling as a tool for approximation of stochastic optimization problems.pdf

  9. Efficiency-optimized low-cost TDPAC spectrometer using a versatile routing/coincidence unit

    International Nuclear Information System (INIS)

    Renteria, M.; Bibiloni, A. G.; Darriba, G. N.; Errico, L. A.; Munoz, E. L.; Richard, D.; Runco, J.

    2008-01-01

    A highly efficient, reliable, and low-cost γ-γ TDPAC spectrometer, PACAr, optimized for 181 Hf-implanted low-activity samples, is presented. A versatile EPROM-based routing/coincidence unit was developed and implemented to be use with the memory-card-based multichannel analyzer hosted in a personal computer. The excellent energy resolution and very good overall resolution and efficiency of PACAr are analyzed and compare with advanced and already tested fast-fast and slow-fast PAC spectrometers.

  10. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    criteria, i.e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e.g., evaporating pressure, the working fluid, minimum allowable temperature differences......Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...

  11. Efficiency-optimized low-cost TDPAC spectrometer using a versatile routing/coincidence unit

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, M., E-mail: renteria@fisica.unlp.edu.ar; Bibiloni, A. G.; Darriba, G. N.; Errico, L. A.; Munoz, E. L.; Richard, D.; Runco, J. [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)

    2008-01-15

    A highly efficient, reliable, and low-cost {gamma}-{gamma} TDPAC spectrometer, PACAr, optimized for {sup 181}Hf-implanted low-activity samples, is presented. A versatile EPROM-based routing/coincidence unit was developed and implemented to be use with the memory-card-based multichannel analyzer hosted in a personal computer. The excellent energy resolution and very good overall resolution and efficiency of PACAr are analyzed and compare with advanced and already tested fast-fast and slow-fast PAC spectrometers.

  12. A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato.

    Science.gov (United States)

    Stork, Ines; Gartemann, Karl-Heinz; Burger, Annette; Eichenlaub, Rudolf

    2008-09-01

    Genes for seven putative serine proteases (ChpA-ChpG) belonging to the trypsin subfamily and homologous to the virulence factor pat-1 were identified on the chromosome of Clavibacter michiganensis subsp. michiganensis (Cmm) NCPPB382. All proteases have signal peptides indicating export of these proteins. Their putative function is suggested by two motifs and an aspartate residue typical for serine proteases. Furthermore, six cysteine residues are located at conserved positions. The genes are clustered in a chromosomal region of about 50 kb with a significantly lower G + C content than common for Cmm. The genes chpA, chpB and chpD are pseudogenes as they contain frame shifts and/or in-frame stop codons. The genes chpC and chpG were inactivated by the insertion of an antibiotic resistance cassette. The chpG mutant was not impaired in virulence. However, in planta the titre of the chpC mutant was drastically reduced and only weak disease symptoms were observed. Complementation of the chpC mutant by the wild-type allele restored full virulence. ChpC is the first chromosomal gene of Cmm identified so far that affects the interaction of the pathogen with the host plant.

  13. Aeroderivative Gas Turbo engine in CHP Plant. Compatibility Problems

    Directory of Open Access Journals (Sweden)

    Sorinel-Gicu TALIF

    2010-12-01

    Full Text Available The paper presents the possibilities to develop Combined Cycle Units based onaeroderivative Gas Turbo engines and on existing Steam Turbines. The specific compatibilityproblems of these components and the thermodynamic performances of the analyzed Combined CycleUnits are also presented.

  14. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Mortensen, Paw Vestergård; Enkeshafi, Ali A.

    2011-01-01

    and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating...... the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business...

  15. Thermal-economic optimization of an air-cooled heat exchanger unit

    International Nuclear Information System (INIS)

    Alinia Kashani, Amir Hesam; Maddahi, Alireza; Hajabdollahi, Hassan

    2013-01-01

    Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined. -- Highlights: ► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation

  16. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 - Emission factors and emission inventory for decentralised CHP production

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, M.

    2010-06-15

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity < 25MWe have been estimated based on project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines combusting residual oil and reciprocating engines combusting biomass producer gas based on wood. The emission factors for MSW incineration plants are much lower than the emission factors that were estimated for year 2000. The considerable reduction in the emission factors is a result of lower emission limit values in Danish legislation since 2006 that has lead to installation of new and improved flue gas cleaning systems in most MSW incineration plants. For CHP plants combusting wood or straw no major technical improvements have been implemented. The emission factors for natural gas fuelled reciprocating engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NO{sub x} emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low-NO{sub x} burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission sources for CH{sub 4}, NO{sub x}, SO{sub 2}, heavy metals and HCB. (author)

  17. Solving optimum operation of single pump unit problem with ant colony optimization (ACO) algorithm

    International Nuclear Information System (INIS)

    Yuan, Y; Liu, C

    2012-01-01

    For pumping stations, the effective scheduling of daily pump operations from solutions to the optimum design operation problem is one of the greatest potential areas for energy cost-savings, there are some difficulties in solving this problem with traditional optimization methods due to the multimodality of the solution region. In this case, an ACO model for optimum operation of pumping unit is proposed and the solution method by ants searching is presented by rationally setting the object function and constrained conditions. A weighted directed graph was constructed and feasible solutions may be found by iteratively searching of artificial ants, and then the optimal solution can be obtained by applying the rule of state transition and the pheromone updating. An example calculation was conducted and the minimum cost was found as 4.9979. The result of ant colony algorithm was compared with the result from dynamic programming or evolutionary solving method in commercial software under the same discrete condition. The result of ACO is better and the computing time is shorter which indicates that ACO algorithm can provide a high application value to the field of optimal operation of pumping stations and related fields.

  18. Optimized Matching Lift Unit Transmission Ratio of Engine Driven Ducted Fan

    Directory of Open Access Journals (Sweden)

    Xiao Senlin

    2018-01-01

    Full Text Available As a kind of VTOL technology, ducted fan is not only used by many kinds of aircrafts, but also one of the trends of the future aircraft lift system, and attracts more and more attention. For an engine driven ducted fan lift unit, involving the engine and ducted fan matching problem, the form of transmission and transmission ratio are the key design parameters. In order to design and develop a ducted fan aircraft reasonably, a thrust test platform was set up to connect the engine with the ducted fan through the belt driving. The matching relationship between the engine and the transmission system was experimentally studied and the optimal transmission ratio was determined. The results showed that the optimal transmission ratio for the engine 1 is 2.2:1, and for the engine 2, the optimal transmission ratio should be 2.95:1 based on the current ducted and movable blade aerofoil design. At this time, the lift will exceed 130 kg•f, meeting the aircraft's original design requirements.

  19. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical

  20. Integrated HT-PEMFC and multi-fuel reformer for micro CHP. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    The project was initiated in April 2008 and completed by the end of March 2010. The project consortium consisted of: Dantherm Power, Serenergy and Department of Energy Technology at Aalborg University (project manager). The activities were coordinated with the project ''Nordjysk H2FC Center'' funded by the Region of Northern Jutland. A number of experimental characterization methods were developed through this project to improve the understanding in fuel cell performance under different operating conditions. In particular the application of Electrochemical Impedance Spectroscopy was found useful and lead to new information about individual losses in the fuel cell. Techniques to measure local temperatures of the MEA were also successfully developed. Durability studies were made on single cells as well as complete stacks. A dedicated test facility was constructed in a container to isolate the test from disturbances that occur in the laboratory. The stack tests were run for just above 6 months with few interruptions and it was found that single cell and stack degradation rates were comparable. Operation temperature was found to have the most pronounced influence on degradation. The information formed the basis for a simple modeling tool to optimize the stack operating temperature versus reformate gas CO concentration. The activities on multi-fuel reformer development were mostly focused on two issues; manufacturability and analyses of flow distribution and heat transfer. The latter was required since these areas these turned out to cause challenges in the reactor design. Through a combination of experimental tests, CFD analyses and flow network modeling design modifications were suggested to improve flow distribution on both the flue gas side and the reformate side. Most of these design changes were not validated in this project through the construction and test of a new reformer. In spite of the problems identifies, the reformed successfully

  1. CHP and Local Governments: Case Studies and EPA’s New Guide (Webinar) – September 30, 2014

    Science.gov (United States)

    This webinar presents two case studies of CHP development projects undertaken through cooperation between private companies and government entities, and introduces an EPA guide to assist local governments to reduce greenhouse gas (GHG) emissions.

  2. Ecological assessment of new CHP systems and their combination; Oekologische Bewertung neuer WKK-Systeme und Systemkombinationen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Primas, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reports on new developments in the Combined Heat and Power (CHP) generation area. The objective of this study is an ecological and technical evaluation of various CHP systems and system combinations. These also include suitable combinations with other technologies. Systems for five different temperature levels are quantified according to their environmental impact. Various possible applications are compared with a highly efficient reference system using separate heat and power generation - a combined-cycle plant and a heat pump. For chilled water production a combination of the CHP system with an absorption chiller is investigated. The results of the investigations are presented and commented on. Also, advantageous applications of CHP systems are noted.

  3. An Integrated and Optimal Joint Scheduling of Energy Resources to Feed Electrical, Thermal and Potable Water Demands in Remote Area

    Directory of Open Access Journals (Sweden)

    R. Ghaffarpour

    2016-12-01

    Full Text Available The continuous spread of distributed energy resources (DERs such as combined heating and power (CHP, diesel generators, boilers and renewable energy sources provide an effective solution to energy related problems to serve the power and heat demands with minimum cost. Moreover, the DERs may play a significant role for supplying power and heat in rural areas, where grid electricity is not available. Also, some dry areas may face water scarcity and salinity problems. So, one important solution is the use of DERs to drive desalination units in order to solve water scarcity and salinity problems. In this study, the optimal scheduling of DERs and reverse osmosis (RO desalination unit that feed the required electric, thermal and potable water demands are determined. The present paper describes the operation constraints and cost function of components of the system in detail. Operation constraints of generation units as well as feasible region of operation CHP in dual dependency characteristic are taken into account. To confirm the performance of the proposed model the approach is tested on a realistic remote area over a 24-h period. The results show that the economical scheduling of DERs and desalination units can be obtained using proposed methodology by implementing the proposed formulation.

  4. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...... work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...... biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost....

  5. MicroCHP: Overview of selected technologies, products and field test results

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Vollrad [Berliner Energieagentur GmbH, Franzoesische Strasse 23, 10117 Berlin (Germany); Klemes, Jiri; Bulatov, Igor [Centre for Process Integration, CEAS, The University of Manchester, P.O. Box 88, M60 1QD Manchester (United Kingdom)

    2008-11-15

    This paper gives an overview on selected microCHP technologies and products with the focus on Stirling and steam machines. Field tests in Germany, the UK and some other EC countries are presented, assessed and evaluated. Test results show the overall positive performance with differences in sectors (domestic vs. small business). Some negative experiences have been received, especially from tests with the Stirling engines and the free-piston steam machine. There are still obstacles for market implementation. Further projects and tests of microCHP are starting in various countries. When positive results will prevail and deficiencies are eliminated, a way to large-scale production and market implementation could be opened. (author)

  6. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  7. Pilot test and optimization of plasma based DeNO{sub x}. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stamate, E.; Chen, W.; Michelsen, P.K. (Risoe DTU. PLF, Roskilde (Denmark)); Joergensen, L.; Jensen, T.K.; Kristensen, P.G.; Tobiasen, L.; Simonsen, P. (Dansk Gasteknisk Center, Hoersholm (Denmark))

    2010-12-15

    A technique for NO{sub x} reduction for combustion processes was examined. The technique is based on injecting ozone into the NO{sub x} containing flue gas where it will react with NO{sub x}, forming an anhydride of nitric acid, N{sub 2}O{sub 5}. N{sub 2}O{sub 5} is easily removed later using a water scrubber. The technique was tested on a gas engine based CHP unit and a CHP unit based on a straw-fired boiler and a steam turbine. It was found that: 1) NO{sub x} emissions can be reduced by more than 95 % by adding ozone to the flue gas; 2) The technique is applicable on flue gas from biomass combustion despite the presence of compounds such as SO{sub 2} and HCl; 3) Reduction of NO{sub x} emissions requires approximately half as much O{sub 3} when it is applied to the natural gas fired engine unit compared to the straw-fired boiler unit; 4) The higher O{sub 3} consumption on straw-fired units is due both to higher flue gas temperature and to larger NO{sub x} fluctuations in the flue gas compared to the gas engine unit; 5) For the gas engine unit the formaldehyde emission was reduced by 60%; 6) SO{sub 2} emissions are eliminated by the deNO{sub x} unit. It can be concluded that at present the plasma deNO{sub x} process suffers from too high capital and operating costs and too low plant operating time to be an attractive alternative for gas engine CHP plants. Furthermore, there is only a small gap of approx. 25 % between the specific ozone consumption obtained at the pilot test in Ringsted and the theoretically achievable value. This difference is too small to have a major impact on process economy in case of an optimized deNO{sub x} process. At straw fired plants the technology tends to be more promising for several reasons: 1) Significant potential for optimizing specific ozone consumption. 2) Larger NO{sub x} reduction due to the fact that higher concentration levels in the flue gas generate higher income from e.g. fertilizer sales. 3) Reduced or zero SO{sub 2

  8. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    Science.gov (United States)

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  9. Optimal placement of combined heat and power scheme (cogeneration): application to an ethylbenzene plant

    International Nuclear Information System (INIS)

    Zainuddin Abd Manan; Lim Fang Yee

    2001-01-01

    Combined heat and power (CHP) scheme, also known as cogeneration is widely accepted as a highly efficient energy saving measure, particularly in medium to large scale chemical process plants. To date, CHP application is well established in the developed countries. The advantage of a CHP scheme for a chemical plant is two-fold: (i) drastically cut down on the electricity bill from on-site power generation (ii) to save the fuel bills through recovery of the quality waste heat from power generation for process heating. In order to be effective, a CHP scheme must be placed at the right temperature level in the context of the overall process. Failure to do so might render a CHP venture worthless. This paper discusses the procedure for an effective implementation of a CHP scheme. An ethylbenzene process is used as a case study. A key visualization tool known as the grand composite curves is used to provide an overall picture of the process heat source and heat sink profiles. The grand composite curve, which is generated based on the first principles of Pinch Analysis enables the CHP scheme to be optimally placed within the overall process scenario. (Author)

  10. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, Marianne

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been...... estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines...

  11. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to the Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.

  12. Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.

  13. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia

    International Nuclear Information System (INIS)

    Pfeifer, Antun; Dominković, Dominik Franjo; Ćosić, Boris; Duić, Neven

    2016-01-01

    Highlights: • Potential of unused agricultural land for biomass and fruit production is assessed. • Technical and energy potential of biomass from SRC and fruit pruning is calculated. • Economic feasibility of CHP plants utilizing biomass from SRC is presented for Croatia. • Sensitivity analysis and recommendations for shift toward feasibility are provided. - Abstract: In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused for food crops, represent significant potential for growing biomass that could be used for energy. This biomass could be used to supply power plants of up to 15 MW_e in accordance with heat demands of the chosen locations. The methodology for regional energy potential assessment was elaborated in previous work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10 PJ/year. The added value of fruit trees pruning biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost.

  14. Specialized software for optimization of the quality control of the mammography units

    International Nuclear Information System (INIS)

    Stoeva, M.; Vassileva, J.

    2004-01-01

    Quality control is essential to ensure the equipment used is reliable and consistent in order to maintain radiation does as low as reasonably achievable whilst optimizing image quality and performance in mammography. The effectiveness of mammographic screening is highly dependent on the consistent production of high quality diagnostic images. Mammography is highly dependent on the equipment status, which requires an effective Quality Control (QC) program to provide tools for continuous assessment of the equipment performance and also data storage and analysis of the protocols' data. The objective of this paper is to present the specialized software for Quality Control of the Mammography Units, as tool providing additional functionality for optimizations of the Mammography QC data storage and management. The PC program was developed according to the requirements stated in the European protocol for Quality Control of the Mammography Screening and the data collected as a result of its application in several Bulgarian hospitals. The Structured Analysis method was used in order to perform a case, which resulted in the development of the specialized software with a database module, providing the following functionality: Data Storage, Preliminary Data Processing and Post-Processing, Manual Data Entry, Data Import from XLS format, Data Export to XLS format, Printing, Data Filters, Automated Calculation, Automated Graphical Representation, Archiving The development of specialized QC software with a database for mammography units facilitates the process of QC data storage and handling and minimizes the errors. The electronic format for data storage is especially useful in case of long-term storage and periodical data analysis/access. The integrated data processing functionality and the automated import/export features based on standard platform increase the compatibility of the data. (authors)

  15. Optimization model of a system of crude oil distillation units whit heat integration and meta modeling

    International Nuclear Information System (INIS)

    Lopez, Diana C; Mahecha, Cesar A; Hoyos, Luis J; Acevedo, Leonardo; Villamizar Jaime F

    2009-01-01

    The process of crude distillation impacts the economy of any refinery in a considerable manner. Therefore, it is necessary to improve it taking good advantage of the available infrastructure, generating products that conform to the specifications without violating the equipment operating constraints or plant restrictions at industrial units. The objective of this paper is to present the development of an optimization model for a Crude Distillation Unit (CDU) system at a ECOPETROL S.A. refinery in Barrancabermeja, involving the typical restrictions (flow according to pipeline capacity, pumps, distillation columns, etc) and a restriction that has not been included in bibliographic reports for this type of models: the heat integration of streams from Atmospheric Distillation Towers (ADTs) and Vacuum Distillation Towers (VDT) with the heat exchanger networks for crude pre-heating. On the other hand, ADTs were modeled with Meta models in function of column temperatures and pressures, pumparounds flows and return temperatures, stripping steam flows, Jet EBP ASTM D-86 and Diesel EBP ASTM D-86. Pre-heating trains were modeled with mass and energy balances, and design equation of each heat exchanger. The optimization model is NLP, maximizing the system profit. This model was implemented in GAMSide 22,2 using the CONOPT solver and it found new operating points with better economic results than those obtained with the normal operation in the real plants. It predicted optimum operation conditions of 3 ADTs for constant composition crude and calculated the yields and properties of atmospheric products, additional to temperatures and duties of 27 Crude Oil exchangers.

  16. Optimization model of a system of crude oil distillation units with heat integration and metamodeling

    International Nuclear Information System (INIS)

    Lopez, Diana C; Mahecha, Cesar A; Hoyos, Luis J; Acevedo, Leonardo; Villamizar Jaime F

    2010-01-01

    The process of crude distillation impacts the economy of any refinery in a considerable manner. Therefore, it is necessary to improve it taking good advantage of the available infrastructure, generating products that conform to the specifications without violating the equipment operating constraints or plant restrictions at industrial units. The objective of this paper is to present the development of an optimization model for a Crude Distillation Unit (CDU) system at a ECOPETROL S.A. refinery in Barrancabermeja, involving the typical restrictions (flow according to pipeline capacity, pumps, distillation columns, etc) and a restriction that has not been included in bibliographic reports for this type of models: the heat integration of streams from Atmospheric Distillation Towers (ADTs) and Vacuum Distillation Towers (VDT) with the heat exchanger networks for crude pre-heating. On the other hand, ADTs were modeled with Metamodels in function of column temperatures and pressures, pump a rounds flows and return temperatures, stripping steam flows, Jet EBP ASTM D-86 and Diesel EBP ASTM D-86. Pre-heating trains were modeled with mass and energy balances, and design equation of each heat exchanger. The optimization model is NLP, maximizing the system profit. This model was implemented in GAMSide 22,2 using the CONOPT solver and it found new operating points with better economic results than those obtained with the normal operation in the real plants. It predicted optimum operation conditions of 3 ADTs for constant composition crude and calculated the yields and properties of atmospheric products, additional to temperatures and duties of 27 Crude Oil exchangers.

  17. Smart house-based optimal operation of thermal unit commitment for a smart grid considering transmission constraints

    Science.gov (United States)

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu

    2018-05-01

    This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.

  18. Optimal sizing study of hybrid wind/PV/diesel power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Belfkira, Rachid; Zhang, Lu; Barakat, Georges [Groupe de Recherche en Electrotechnique et Automatique du Havre, University of Le Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)

    2011-01-15

    In this paper, a methodology of sizing optimization of a stand-alone hybrid wind/PV/diesel energy system is presented. This approach makes use of a deterministic algorithm to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy. The collection of 6 months of data of wind speed, solar radiation and ambient temperature recorded for every hour of the day were used. The mathematical modeling of the main elements of the hybrid wind/PV/diesel system is exposed showing the more relevant sizing variables. A deterministic algorithm is used to minimize the total cost of the system while guaranteeing the satisfaction of the load demand. A comparison between the total cost of the hybrid wind/PV/diesel energy system with batteries and the hybrid wind/PV/diesel energy system without batteries is presented. The reached results demonstrate the practical utility of the used sizing methodology and show the influence of the battery storage on the total cost of the hybrid system. (author)

  19. Optimal unit sizing of a hybrid renewable energy system for isolated applications

    International Nuclear Information System (INIS)

    Morales, D.

    2006-07-01

    In general, the methods used to conceive a renewable energy production system overestimate the size of the generating units. These methods increase the investment cost and the production cost of energy. The work presented in this thesis proposes a methodology to optimally size a renewable energy system.- This study shows that the classic approach based only on a long term analysis of system's behaviour is not sufficient and a complementary methodology based on a short term analysis is proposed. A numerical simulation was developed in which the mathematical models of the solar panel, the wind turbines and battery are integrated. The daily average solar energy per m2 is decomposed into a series of hourly I energy values using the Collares-Pereira equations. The time series analysis of the wind speed is made using the Monte Carlo Simulation Method. The second part of this thesis makes a detailed analysis of an isolated wind energy production system. The average energy produced by the system depends on the generator's rated power, the total swept area of the wind turbine, the gearbox's transformation ratio, the battery voltage and the wind speed probability function. The study proposes a methodology to determine the optimal matching between the rated power of the permanent magnet synchronous machine and the wind turbine's rotor size. This is made taking into account the average electrical energy produced over a period of time. (author)

  20. Modelling of a Naphtha Recovery Unit (NRU with Implications for Process Optimization

    Directory of Open Access Journals (Sweden)

    Jiawei Du

    2018-06-01

    Full Text Available The naphtha recovery unit (NRU is an integral part of the processes used in the oil sands industry for bitumen extraction. The principle role of the NRU is to recover naphtha from the tailings for reuse in this process. This process is energy-intensive, and environmental guidelines for naphtha recovery must be met. Steady-state models for the NRU system are developed in this paper using two different approaches. The first approach is a statistical, data-based modelling approach where linear regression models have been developed using Minitab® from plant data collected during a performance test. The second approach involves the development of a first-principles model in Aspen Plus® based on the NRU process flow diagram. A novel refinement to this latter model, called “withdraw and remix”, is proposed based on comparing actual plant data to model predictions around the two units used to separate water and naphtha. The models developed in this paper suggest some interesting ideas for the further optimization of the process, in that it may be possible to achieve the required naphtha recovery using less energy. More plant tests are required to validate these ideas.

  1. Optimal Thermal Unit Commitment Solution integrating Renewable Energy with Generator Outage

    Directory of Open Access Journals (Sweden)

    S. Sivasakthi

    2017-06-01

    Full Text Available The increasing concern of global climate changes, the promotion of renewable energy sources, primarily wind generation, is a welcome move to reduce the pollutant emissions from conventional power plants. Integration of wind power generation with the existing power network is an emerging research field. This paper presents a meta-heuristic algorithm based approach to determine the feasible dispatch solution for wind integrated thermal power system. The Unit Commitment (UC process aims to identify the best feasible generation scheme of the committed units such that the overall generation cost is reduced, when subjected to a variety of constraints at each time interval. As the UC formulation involves many variables and system and operational constraints, identifying the best solution is still a research task. Nowadays, it is inevitable to include power system reliability issues in operation strategy. The generator failure and malfunction are the prime influencing factor for reliability issues hence they have considered in UC formulation of wind integrated thermal power system. The modern evolutionary algorithm known as Grey Wolf Optimization (GWO algorithm is applied to solve the intended UC problem. The potential of the GWO algorithm is validated by the standard test systems. Besides, the ramp rate limits are also incorporated in the UC formulation. The simulation results reveal that the GWO algorithm has the capability of obtaining economical resolutions with good solution quality.

  2. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP systems

    International Nuclear Information System (INIS)

    Martinez-Hernandez, Elias; Ibrahim, Muhammad H.; Leach, Matthew; Sinclair, Phillip; Campbell, Grant M.; Sadhukhan, Jhuma

    2013-01-01

    The UK whole-wheat bioethanol and straw and DDGS-based combined heat and power (CHP) generation systems were assessed for environmental sustainability using a range of impact categories or characterisations (IC): cumulative primary fossil energy (CPE), land use, life cycle global warming potential over 100 years (GWP 100 ), acidification potential (AP), eutrophication potential (EP) and abiotic resources use (ARU). The European Union (EU) Renewable Energy Directive's target of greenhouse gas (GHG) emission saving of 60% in comparison to an equivalent fossil-based system by 2020 seems to be very challenging for stand-alone wheat bioethanol system. However, the whole-wheat integrated system, wherein the CHP from the excess straw grown in the same season and from the same land is utilised in the wheat bioethanol plant, can be demonstrated for potential sustainability improvement, achieving 85% emission reduction and 97% CPE saving compared to reference fossil systems. The net bioenergy from this system and from 172,370 ha of grade 3 land is 12.1 PJ y −1 providing land to energy yield of 70 GJ ha −1 y −1 . The use of DDGS as an animal feed replacing soy meal incurs environmental emission credit, whilst its use in heat or CHP generation saves CPE. The hot spots in whole system identified under each impact category are as follows: bioethanol plant and wheat cultivation for CPE (50% and 48%), as well as for ARU (46% and 52%). EP and GWP 100 are distributed among wheat cultivation (49% and 37%), CHP plant (26% and 30%) and bioethanol plant (25%, and 33%), respectively. -- Highlights: ► UK whole-wheat energy system can achieve 85% GHG emission reduction. ► UK whole-wheat energy system can achieve 97% primary energy saving. ► The land to energy yield of the UK whole-wheat system is 70 GJ ha −1 y −1 . ► Fertiliser production is the hotspot. ► DDGS and straw-based CHP system integration to wheat bioethanol is feasible

  3. Optimal inspection and replacement periods of the safety system in Wolsung Nuclear Power Plant Unit 1 with an optimized cost perspective

    International Nuclear Information System (INIS)

    Jinil Mok; Poong Hyun Seong

    1996-01-01

    In this work, a model for determining the optimal inspection and replacement periods of the safety system in Wolsung Nuclear Power Plant Unit 1 is developed, which is to minimize economic loss caused by inadvertent trip and the system failure. This model uses cost benefit analysis method and the part for optimal inspection period considers the human error. The model is based on three factors as follows: (i) The cumulative failure distribution function of the safety system, (ii) The probability that the safety system does not operate due to failure of the system or human error when the safety system is needed at an emergency condition and (iii) The average probability that the reactor is tripped due to the failure of system components or human error. The model then is applied to evaluate the safety system in Wolsung Nuclear Power Plant Unit 1. The optimal replacement periods which are calculated with proposed model differ from those used in Wolsung NPP Unit 1 by about a few days or months, whereas the optimal inspection periods are in about the same range. (author)

  4. Woking Park phosphoric acid fuel cell CHP monitoring

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-09-15

    A phosphoric acid fuel (PC25) delivering up to 200kw of electrical power and commensurate heat was installed in Woking Park UK in late 2006 and has been monitored over a period of one year. The system supplies electric power to a leisure centre and swimming pool via a private wires network. This report gives details of the monitoring and shows a schematic of the system, data on electrical and thermal efficiencies, stack voltage variations and gaseous emissions. Extended monitoring is now taking place to provide a complete picture of the economics and operation of the fuel cell in the developing combined heat and power unit and private wires system. The contractor is Advantica of Loughborough and detailed results of the monitoring are available on the DTI website.

  5. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    Science.gov (United States)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  6. Optimal design of compact organic Rankine cycle units for domestic solar applications

    Directory of Open Access Journals (Sweden)

    Barbazza Luca

    2014-01-01

    Full Text Available Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design criteria, i. e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e. g., evaporating pressure, the working fluid, minimum allowable temperature differences, and the equipment geometry, are the decision variables. Flat plate heat exchangers with herringbone corrugations are selected as heat transfer equipment for the preheater, the evaporator and the condenser. The results unveil the hyperbolic trend binding the net power output to the heat exchanger compactness. Findings also suggest that the evaporator and condenser minimum allowable temperature differences have the largest impact on the system volume and on the cycle performances. Among the fluids considered, the results indicate that R1234yf and R1234ze are the best working fluid candidates. Using flat plate solar collectors (hot water temperature equal to 75 °C, R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm3, whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal to 120 °C. In such case the thermal efficiency is around 6.9%, and the heat exchanger volume varies from 6.0 to 18.0 dm3.

  7. Coastal California's Fog Aerobiology and Ecology: Designing and Testing an Optimal Passive Impactor Collection Unit

    Science.gov (United States)

    Gentry, D.; Whinnery, J. T.; Ly, V. T.; Travers, S. V.; Sagaga, J.; Dahlgren, R. P.

    2017-12-01

    Microorganisms play a major role in our biosphere due to their ability to alter water, carbon and other geochemical cycles. Fog and low-level cloud water can play a major role in dispersing and supporting such microbial diversity. An ideal region to gather these microorganisms for characterization is the central coast of California, where dense fog is common. Fog captured from an unmanned aerial vehicle (UAV) at different altitudes will be analyzed to better understand the nature of microorganisms in the lower atmosphere and their potential geochemical impacts. The capture design consists of a square-meter hydrophobic mesh that hangs from a carbon fiber rod attached to a UAV. The DJI M600, a hexacopter, will be utilized as the transport for the payload, the passive impactor collection unit (PICU). The M600 will hover in a fog bank at altitudes between 10 and 100 m collecting water samples via the PICU. A computational flow dynamics (CFD) model will optimize the PICU's size, shape and placement for maximum capture efficiency and to avoid contamination from the UAV downwash. On board, there will also be an altitude, temperature and barometric pressure sensor whose output is logged to an SD card. A scale model of the PICU has been tested with several different types of hydrophobic meshes in a fog chamber at 90-95% humidity; polypropylene was found to capture the fog droplets most efficiently at a rate of .0042 g/cm2/hour. If the amount collected is proportional to the area of mesh, the estimated amount of water collected under optimal fog and flight conditions by the impactor is 21.3 g. If successful, this work will help identify the organisms living in the lower atmosphere as well as their potential geochemical impacts.

  8. SpecOp: Optimal Extraction Software for Integral Field Unit Spectrographs

    Science.gov (United States)

    McCarron, Adam; Ciardullo, Robin; Eracleous, Michael

    2018-01-01

    The Hobby-Eberly Telescope’s new low resolution integral field spectrographs, LRS2-B and LRS2-R, each cover a 12”x6” area on the sky with 280 fibers and generate spectra with resolutions between R=1100 and R=1900. To extract 1-D spectra from the instrument’s 3D data cubes, a program is needed that is flexible enough to work for a wide variety of targets, including continuum point sources, emission line sources, and compact sources embedded in complex backgrounds. We therefore introduce SpecOp, a user-friendly python program for optimally extracting spectra from integral-field unit spectrographs. As input, SpecOp takes a sky-subtracted data cube consisting of images at each wavelength increment set by the instrument’s spectral resolution, and an error file for each count measurement. All of these files are generated by the current LRS2 reduction pipeline. The program then collapses the cube in the image plane using the optimal extraction algorithm detailed by Keith Horne (1986). The various user-selected options include the fraction of the total signal enclosed in a contour-defined region, the wavelength range to analyze, and the precision of the spatial profile calculation. SpecOp can output the weighted counts and errors at each wavelength in various table formats using python’s astropy package. We outline the algorithm used for extraction and explain how the software can be used to easily obtain high-quality 1-D spectra. We demonstrate the utility of the program by applying it to spectra of a variety of quasars and AGNs. In some of these targets, we extract the spectrum of a nuclear point source that is superposed on a spatially extended galaxy.

  9. Allocating HIV prevention funds in the United States: recommendations from an optimization model.

    Directory of Open Access Journals (Sweden)

    Arielle Lasry

    Full Text Available The Centers for Disease Control and Prevention (CDC had an annual budget of approximately $327 million to fund health departments and community-based organizations for core HIV testing and prevention programs domestically between 2001 and 2006. Annual HIV incidence has been relatively stable since the year 2000 and was estimated at 48,600 cases in 2006 and 48,100 in 2009. Using estimates on HIV incidence, prevalence, prevention program costs and benefits, and current spending, we created an HIV resource allocation model that can generate a mathematically optimal allocation of the Division of HIV/AIDS Prevention's extramural budget for HIV testing, and counseling and education programs. The model's data inputs and methods were reviewed by subject matter experts internal and external to the CDC via an extensive validation process. The model projects the HIV epidemic for the United States under different allocation strategies under a fixed budget. Our objective is to support national HIV prevention planning efforts and inform the decision-making process for HIV resource allocation. Model results can be summarized into three main recommendations. First, more funds should be allocated to testing and these should further target men who have sex with men and injecting drug users. Second, counseling and education interventions ought to provide a greater focus on HIV positive persons who are aware of their status. And lastly, interventions should target those at high risk for transmitting or acquiring HIV, rather than lower-risk members of the general population. The main conclusions of the HIV resource allocation model have played a role in the introduction of new programs and provide valuable guidance to target resources and improve the impact of HIV prevention efforts in the United States.

  10. Simulation and Optimization of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    Science.gov (United States)

    Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Broerman, Craig

    2011-01-01

    Controlling carbon dioxide (CO2) and humidity levels in a spacesuit is critical to ensuring both the safety and comfort of an astronaut during extra-vehicular activity (EVA). Traditionally, this has been accomplished utilizing either non-regenerative lithium hydroxide (LiOH) or regenerative but heavy metal oxide (MetOx) canisters which pose a significant weight burden. Although such technology enables air revitalization, the volume requirements to store the waste canisters as well as the mass to transport multiple units become prohibitive as mission durations increase. Consequently, motivation exists toward developing a fully regenerative technology for spacesuit environmental control. The application of solid amine materials with vacuum swing adsorption technology has shown the capacity to control CO2 while concomitantly managing humidity levels through a fully regenerative cycle eliminating constraints imposed with the traditional technologies. Prototype air revitalization units employing this technology have been fabricated in both a rectangular and cylindrical geometry. Experimental results for these test articles have been collected and are described herein. In order to accelerate the developmental efforts, an axially-dispersed plug flow model with an accompanying energy balance has been established and correlated with the experimental data. The experimental and simulation results display good agreement for a variety of flow rates (110-170 ALM), replicated metabolic challenges (100-590 Watts), and atmosphere pressures under consideration for the spacesuit (248 and 760 mm Hg). The testing and model results lend insight into the operational capabilities of these devices as well as the influence the geometry of the device has on performance. In addition, variable metabolic profiles were imposed on the test articles in order to assess the ability of the technology to transition to new metabolic conditions. The advent of the model provides the capacity to apply

  11. Sewage Sludge Disposal with Energy Recovery by Fluidized Bed Gasification and CHP-Units

    Energy Technology Data Exchange (ETDEWEB)

    Horst, J.; Gross, B.; Kimmerle, K. [Inst. fuer ZukunftsEnergieSysteme, Saarbruecken (Germany); Eder, C. [Christian Eder Technology e.K., Neunkirchen (Germany)

    2006-07-15

    Sewage sludge is a composition of by-products collected during the different stages of the waste water cleaning process of communal and industrial treatment plants. Because of its harmful impacts on environment as well as animals - and mankind - health sewage sludge has become a problem. Therefore disposal of sludge is today on a crossroad depending on the discussion about soil contamination by using the sludge as fertiliser. Some countries are now abandoning disposal to agriculture and are entering into thermal treatment with the argument: 'Harmful substances already separated with high financial effort should definitely be removed from the food cycle and should not return indirectly via the fields to food and water'. The SEDIS project - a project funded by the European Commission under the specific research and technological development programme 'Promotion of innovation and encouragement of SME participation' - is aimed at eliminating the rising disposal problem of sewage sludge by an energy-related use of the raw sludge directly on site of wastewater treatment plants. SEDIS is developing an innovative, self-sustaining system to process liquid and pasty waste such as sewage sludge and solid biomass to utilise product-gas for power-generation direct on site. This process is called ETVS-process and is patented by Christian Eder Technology e.K. Today, where each company has to look for sustainable savings, the SEDIS concept offers a decentralised process, self-sustaining from other energy sources and able to provide the whole treatment plant with energy. Furthermore the treatment plant would be independent of price policy of sludge disposers.

  12. Access to benznidazole for Chagas disease in the United States-Cautious optimism?

    Directory of Open Access Journals (Sweden)

    Jonathan D Alpern

    2017-09-01

    Full Text Available Drugs for neglected tropical diseases (NTD are being excessively priced in the United States. Benznidazole, the first-line drug for Chagas disease, may become approved by the Food and Drug Administration (FDA and manufactured by a private company in the US, thus placing it at risk of similar pricing. Chagas disease is an NTD caused by Trypanosoma cruzi; it is endemic to Latin America, infecting 8 million individuals. Human migration has changed the epidemiology causing nonendemic countries to face increased challenges in diagnosing and managing patients with Chagas disease. Only 2 drugs exist with proven efficacy: benznidazole and nifurtimox. Benznidazole has historically faced supply problems and drug shortages, limiting accessibility. In the US, it is currently only available under an investigational new drug (IND protocol from the CDC and is provided free of charge to patients. However, 2 companies have stated that they intend to submit a New Drug Application (NDA for FDA approval. Based on recent history of companies acquiring licensing rights for NTD drugs in the US with limited availability, it is likely that benznidazole will become excessively priced by the manufacturer-paradoxically making it less accessible. However, if the companies can be taken at their word, there may be reason for optimism.

  13. Access to benznidazole for Chagas disease in the United States-Cautious optimism?

    Science.gov (United States)

    Alpern, Jonathan D; Lopez-Velez, Rogelio; Stauffer, William M

    2017-09-01

    Drugs for neglected tropical diseases (NTD) are being excessively priced in the United States. Benznidazole, the first-line drug for Chagas disease, may become approved by the Food and Drug Administration (FDA) and manufactured by a private company in the US, thus placing it at risk of similar pricing. Chagas disease is an NTD caused by Trypanosoma cruzi; it is endemic to Latin America, infecting 8 million individuals. Human migration has changed the epidemiology causing nonendemic countries to face increased challenges in diagnosing and managing patients with Chagas disease. Only 2 drugs exist with proven efficacy: benznidazole and nifurtimox. Benznidazole has historically faced supply problems and drug shortages, limiting accessibility. In the US, it is currently only available under an investigational new drug (IND) protocol from the CDC and is provided free of charge to patients. However, 2 companies have stated that they intend to submit a New Drug Application (NDA) for FDA approval. Based on recent history of companies acquiring licensing rights for NTD drugs in the US with limited availability, it is likely that benznidazole will become excessively priced by the manufacturer-paradoxically making it less accessible. However, if the companies can be taken at their word, there may be reason for optimism.

  14. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    Science.gov (United States)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  15. An Optimized Multicolor Point-Implicit Solver for Unstructured Grid Applications on Graphics Processing Units

    Science.gov (United States)

    Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana

    2016-01-01

    In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.

  16. Optimal unit commitment of the power system in Bulgaria during the transitional period to power wholesale market (cont..)

    International Nuclear Information System (INIS)

    Stoilov, D.

    2001-01-01

    The first part of the parer considers the general problem of optimal yearly unit commitment in the new economical conditions in Bulgaria. The second part deals with non-convex problem , taking into account some costs for starting and stopping of power systems. The transition from yearly commitment to weekly or daily dispatching is commented

  17. Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings

    International Nuclear Information System (INIS)

    Bianchi, Michele; Ferrari, Claudio; Melino, Francesco; Peretto, Antonio

    2012-01-01

    Highlights: ► The profitability of Thermo-Photo-Voltaic generator systems for a single-family dwelling is analyzed. ► Heat and electricity load profiles depending on hour of the day are considered for an entire year. ► The effect of Thermo-Photo-Voltaic generator size is evaluated for different household utilities. ► Results allow to identify the conditions for the energetic and economic convenience of Thermo-Photo-Voltaic system. -- Abstract: The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic gas furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

  18. Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Cioccolanti, Luca; Renzi, Massimiliano

    2014-01-01

    This study investigates the potential of energy efficiency, renewables, and micro-cogeneration to reduce household consumption in a medium Italian town and analyses the scope for municipal local policies. The study also investigates the effects of tourist flows on town's energy consumption by modelling energy scenarios for permanent and summer homes. Two long-term energy scenarios (to 2030) were modelled using the MarkAL-TIMES generator model: BAU (business as usual), which is the reference scenario, and EHS (exemplary household sector), which involves targets of penetration for renewables and micro-cogeneration. The analysis demonstrated the critical role of end-use energy efficiency in curbing residential consumption. Cogeneration and renewables (PV (photovoltaic) and solar thermal panels) were proven to be valuable solutions to reduce the energetic and environmental burden of the household sector (−20% in 2030). Because most of household energy demand is ascribable to space-heating or hot water production, this study finds that micro-CHP technologies with lower power-to-heat ratios (mainly, Stirling engines and microturbines) show a higher diffusion, as do solar thermal devices. The spread of micro-cogeneration implies a global reduction of primary energy but involves the internalisation of the primary energy, and consequently CO 2 emissions, previously consumed in a centralised power plant within the municipality boundaries. - Highlights: • Energy consumption in permanent homes can be reduced by 20% in 2030. • High efficiency appliances have different effect according to their market penetration. • Use of electrical heat pumps shift consumption from natural gas to electricity. • Micro-CHP entails a global reduction of energy consumption but greater local emissions. • The main CHP technologies entering the residential market are Stirling and μ-turbines

  19. Optimal coordinated scheduling of combined heat and power fuel cell, wind, and photovoltaic units in micro grids considering uncertainties

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2016-01-01

    In this paper, a stochastic model is proposed for coordinated scheduling of combined heat and power units in micro grid considering wind turbine and photovoltaic units. Uncertainties of electrical market price; the speed of wind and solar radiation are considered using a scenario-based method. In the method, scenarios are generated using roulette wheel mechanism based on probability distribution functions of input random variables. Using this method, the probabilistic specifics of the problem are distributed and the problem is converted to a deterministic one. The type of the objective function, coordinated scheduling of combined heat and power, wind turbine, and photovoltaic units change this problem to a mixed integer nonlinear one. Therefore to solve this problem modified particle swarm optimization algorithm is employed. The mentioned uncertainties lead to an increase in profit. Moreover, the optimal coordinated scheduling of renewable energy resources and thermal units in micro grids increase the total profit. In order to evaluate the performance of the proposed method, its performance is executed on modified 33 bus distributed system as a micro grid. - Highlights: • Stochastic model is proposed for coordinated scheduling of renewable energy sources. • The effect of combined heat and power is considered. • Maximizing profits of micro grid is considered as objective function. • Considering the uncertainties of problem lead to profit increasing. • Optimal scheduling of renewable energy sources and thermal units increases profit.

  20. A CSP plant combined with biomass CHP using ORC-technology in Bronderslev Denmark

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Yuan, Guofeng

    2017-01-01

    A new CSP plant combined with biomass CHP, using ORC technology, will be built and taken into operation in Bronderslev, Denmark during spring 2017. The price for Biomass is expected to increase with more and more use of this very limited energy source and then CSP will be cost effective in the long...... run, also in the Danish climate. Oil is used as heat transfer fluid instead of steam giving several advantages in this application for district heating at high latitudes. Total efficiencies and costs, competitive to PV plants. are expected....

  1. Renewables and CHP with District Energy in Support of Sustainable Communities

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Chris

    2010-09-15

    This paper addresses the powerful idea of connecting many energy users to environmentally optimum energy sources through integrated community energy systems. Such systems require piping networks for distributing thermal energy, i.e., district heating and cooling (DHC) systems. The possibilities and advantages of the application of integrated energy concepts are discussed, including the economic and environmental benefits of integrating localized electrical generating systems (CHP), transportation systems, industrial processes and other thermal energy requirements. Examples of a number of operating systems are provided. Some of the R and D carried out by the IEA Implementing Agreement on District Heating and Cooling is also described.

  2. In-vitro Characterization of Optimized Multi-Unit Dosage Forms of ...

    African Journals Online (AJOL)

    The optimized formulation was characterized with Differential Scanning Calorimetry and Fourier-Transform Infrared Spectroscopy. Results showed that the optimized MU tablets gave dissolution profile that was comparable with that of the designed model. The following were the dissolution parameters of the optimized MU ...

  3. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.

    Science.gov (United States)

    Rosado-Méndez, I; Palma, B A; Brandan, M E

    2008-12-01

    Contrast-medium-enhanced digital mammography (CEDM) is an image subtraction technique which might help unmasking lesions embedded in very dense breasts. Previous works have stated the feasibility of CEDM and the imperative need of radiological optimization. This work presents an extension of a former analytical formalism to predict contrast-to-noise ratio (CNR) in subtracted mammograms. The goal is to optimize radiological parameters available in a clinical mammographic unit (x-ray tube anode/filter combination, voltage, and loading) by maximizing CNR and minimizing total mean glandular dose (D(gT)), simulating the experimental application of an iodine-based contrast medium and the image subtraction under dual-energy nontemporal, and single- or dual-energy temporal modalities. Total breast-entrance air kerma is limited to a fixed 8.76 mGy (1 R, similar to screening studies). Mathematical expressions obtained from the formalism are evaluated using computed mammographic x-ray spectra attenuated by an adipose/glandular breast containing an elongated structure filled with an iodinated solution in various concentrations. A systematic study of contrast, its associated variance, and CNR for different spectral combinations is performed, concluding in the proposal of optimum x-ray spectra. The linearity between contrast in subtracted images and iodine mass thickness is proven, including the determination of iodine visualization limits based on Rose's detection criterion. Finally, total breast-entrance air kerma is distributed between both images in various proportions in order to maximize the figure of merit CNR2/D(gT). Predicted results indicate the advantage of temporal subtraction (either single- or dual-energy modalities) with optimum parameters corresponding to high-voltage, strongly hardened Rh/Rh spectra. For temporal techniques, CNR was found to depend mostly on the energy of the iodinated image, and thus reduction in D(gT) could be achieved if the spectral energy

  4. Optimization of a Nucleic Acids united-RESidue 2-Point model (NARES-2P) with a maximum-likelihood approach

    International Nuclear Information System (INIS)

    He, Yi; Scheraga, Harold A.; Liwo, Adam

    2015-01-01

    Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field

  5. Operational Strategies for a Portfolio of Wind Farms and CHP Plants in a Two-Price Balancing Market

    DEFF Research Database (Denmark)

    Hellmers, Anna; Zugno, Marco; Skajaa, Anders

    2015-01-01

    In this paper we explore the portfolio effect of a system consisting of a Combined Heat and Power (CHP) plant and a wind farm. The goal is to increase the overall profit of the portfolio by reducing imbalances, and consequently their implicit penalty in a two-price balancing market for electricity......-horizon fashion, so that forecasts for heat demand, wind power production and market prices are updated at each iteration. We conclude that the portfolio strategy is the most profitable due to the two-price structure of the balancing market. This encourages producers to handle their imbalances outside the market........ We investigate two different operational strategies, which differ in whether the CHP plant and the wind farm are operated jointly or independently, and we evaluate their economic performance on a real case study based on a CHP-wind system located in the western part of Denmark. We present...

  6. A study on the optimal replacement periods of digital control computer's components of Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il; Seong, Poong Hyun

    1993-01-01

    Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Even a trip of a single nuclear power plant (NPP) causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this paper we investigated the optimal replacement periods of the control computer's components of Wolsung nuclear power plant Unit 1. We first derived mathematical models of optimal replacement periods to the digital control computer's components of Wolsung NPP Unit 1 and calculated the optimal replacement periods analytically. We compared the periods with the replacement periods currently used at Wolsung NPP Unit 1. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained and those used in the field show a little difference. (Author)

  7. Assessment of the implementation issues for fuel cells in domestic and small scale stationary power generation and CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G.; Cruden, A.; Hart, J.

    2002-07-01

    This report discusses implementation issues associated with the use of fuel cells in <10 kW domestic, small-scale power generation and combined heat and power (CHP) operations in the UK. The report examines the key issues (fuel cell system standards and certification, fuel infrastructure, commercial issues and competing CHP technologies), before discussing non-technical issues including finance, ownership, import and export configuration, pricing structure, customer acceptability, installation, operation and training of servicing and commissioning personnel. The report goes on to discuss market and technical drivers, grid connection issues and solutions, operations and maintenance. Recommendations for the future are made.

  8. Economic potentials of CHP connected to district heat systems in Germany. Implementation of the EU Efficiency Directive

    International Nuclear Information System (INIS)

    Eikmeier, Bernd

    2015-01-01

    The EU Efficiency Directive (2012/27/EU) is requiring all member states to carry out an evaluation of the potential for highly efficient CHP and the efficient use of district heating and cooling by December 2015. The German Federal Ministry of Economic Affairs and Energy appointed this task to the Fraunhofer Institute for Manufacturing and Advanced Materials, division for Energy Systems Analysis (formerly Bremer Energie Institut) in conjunction with other partners. The results for the sector district- and communal heating with CHP, sub-sectors private households, trade and services industry, are presented in this article.

  9. Spatial distribution of pollutants in the area of the former CHP plant

    Science.gov (United States)

    Cichowicz, Robert

    2018-01-01

    The quality of atmospheric air and level of its pollution are now one of the most important issues connected with life on Earth. The frequent nuisance and exceedance of pollution standards often described in the media are generated by both low emission sources and mobile sources. Also local organized energy emission sources such as local boiler houses or CHP plants have impact on air pollution. At the same time it is important to remember that the role of local power stations in shaping air pollution immission fields depends on the height of emitters and functioning of waste gas treatment installations. Analysis of air pollution distribution was carried out in 2 series/dates, i.e. 2 and 10 weeks after closure of the CHP plant. In the analysis as a reference point the largest intersection of streets located in the immediate vicinity of the plant was selected, from which virtual circles were drawn every 50 meters, where 31 measuring points were located. As a result, the impact of carbon dioxide, hydrogen sulfide and ammonia levels could be observed and analyzed, depending on the distance from the street intersection.

  10. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  11. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net

  12. Experimental characterization, modeling and simulation of a wood pellet micro-combined heat and power unit used as a heat source for a residential building

    Energy Technology Data Exchange (ETDEWEB)

    Thiers, Stephane; Aoun, Bernard; Peuportier, Bruno [MINES ParisTech, CEP - Centre Energetique et Procedes, 60 Boulevard St Michel, 75272 Paris Cedex 06 (France)

    2010-06-15

    Cogeneration provides heat and power in a more efficient way than separate production. Micro-cogeneration (micro-CHP) is an emerging solution for the improvement of energy and environmental assessments of residential buildings. A wood pellet Stirling engine micro-CHP unit has been studied in order to characterize its annual performance when integrated to a building. First, through a test bench experiment, both transient and steady state behaviors of the micro-CHP unit have been characterized and modeled. Then a more complete model representing a hot water and heating system including the micro-CHP unit and a stratified storage tank has been carried out. This model has been coupled to a building model. A sensitivity analysis by simulation shows that the dimensioning of different elements of the system strongly influences its global energy performance. (author)

  13. Prevalence of insufficient, borderline, and optimal hours of sleep among high school students - United States, 2007.

    Science.gov (United States)

    Eaton, Danice K; McKnight-Eily, Lela R; Lowry, Richard; Perry, Geraldine S; Presley-Cantrell, Letitia; Croft, Janet B

    2010-04-01

    We describe the prevalence of insufficient, borderline, and optimal sleep hours among U.S. high school students on an average school night. Most students (68.9%) reported insufficient sleep, whereas few (7.6%) reported optimal sleep. The prevalence of insufficient sleep was highest among female and black students, and students in grades 11 and 12. Published by Elsevier Inc.

  14. Application of Numerical Optimization Methods to Perform Molecular Docking on Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    M. A. Farkov

    2014-01-01

    Full Text Available An analysis of numerical optimization methods for solving a problem of molecular docking has been performed. Some additional requirements for optimization methods according to GPU architecture features were specified. A promising method for implementation on GPU was selected. Its implementation was described and performance and accuracy tests were performed.

  15. Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization

    Directory of Open Access Journals (Sweden)

    Da Xie

    2016-06-01

    Full Text Available Network-connected combined heat and powers (CHPs, owned by a community, can export surplus heat and electricity to corresponding heat and electric networks after community loads are satisfied. This paper proposes a new optimization model for network-connected CHP operation. Both CHPs’ overall efficiency and heat to electricity ratio (HTER are assumed to vary with loading levels. Based on different energy flow scenarios where heat and electricity are exported to the network from the community or imported, four profit models are established accordingly. They reflect the different relationships between CHP energy supply and community load demand across time. A discrete optimization model is then developed to maximize the profit for the community. The models are derived from the intervals determined by the daily operation modes of CHP and real-time buying and selling prices of heat, electricity and natural gas. By demonstrating the proposed models on a 1 MW network-connected CHP, results show that the community profits are maximized in energy markets. Thus, the proposed optimization approach can help customers to devise optimal CHP operating strategies for maximizing benefits.

  16. Optimal Sizing of Decentralized Photovoltaic Generation and Energy Storage Units for Malaysia Residential Household Using Iterative Method

    Directory of Open Access Journals (Sweden)

    Rahman Hasimah Abdul

    2016-01-01

    Full Text Available World’s fuel sources are decreasing, and global warming phenomena cause the necessity of urgent search for alternative energy sources. Photovoltaic generating system has a high potential, since it is clean, environmental friendly and secure energy sources. This paper presents an optimal sizing of decentralized photovoltaic system and electrical energy storage for a residential household using iterative method. The cost of energy, payback period, degree of autonomy and degree of own-consumption are defined as optimization parameters. A case study is conducted by employing Kuala Lumpur meteorological data, typical load profile from rural area in Malaysia, decentralized photovoltaic generation unit and electrical storage and it is analyzed in hourly basis. An iterative method is used with photovoltaic array variable from 0.1kW to 4.0kW and storage system variable from 50Ah to 400Ah was performed to determine the optimal design for the proposed system.

  17. Modeling and Optimization of Woody Biomass Harvest and Logistics in the Northeastern United States

    Science.gov (United States)

    Hartley, Damon S.

    World energy consumption is at an all-time high and is projected to continue growing for the foreseeable future. Currently, much of the energy that is produced comes from non-renewable fossil energy sources, which includes the burden of increased greenhouse gas emissions and the fear of energy insecurity. Woody biomass is being considered as a material that can be utilized to reduce the burden caused by fossil energy. While the technical capability to convert woody biomass to energy has been known for a long period of time, the cost of the feedstock has been considered too costly to be implemented in a large commercial scale. Increasing the use of woody biomass as an energy source requires that the supply chains are setup in a way that minimizes cost, the locational factors that lead to development are understood, the facilities are located in the most favorable locations and local resource assessments can be made. A mixed integer linear programming model to efficiently configure woody biomass supply chain configurations and optimize the harvest, extraction, transport, storage and preprocessing of the woody biomass resources to provide the lowest possible delivered price. The characteristics of woody biomass, such as spatial distribution and low bulk density, tend to make collection and transport difficult as compared to traditional energy sources. These factors, as well as others, have an adverse effect on the cost of the feedstock. The average delivered cost was found to be between 64.69-98.31 dry Mg for an annual demand of 180,000 dry Mg. The effect of resource availability and required demand was examined to determine the impact that each would have on the total cost. The use of woody biomass for energy has been suggested as a way to improve rural economies through job creation, reduction of energy costs and regional development. This study examined existing wood using bio-energy facilities in the northeastern United States to define the drivers of

  18. Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A detailed thermodynamic, kinetic and geometric model of a micro-CHP (Combined-Heatand-Power) residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC) technology is developed, implemented and validated. HT-PEMFC technology is investigated as a possible candidate...

  19. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  20. In-situ corrosion investigation at Masnedø CHP plant - a straw-fired power plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Various austenitic and ferritic steels were exposed on a water-cooled probe in the superheater area of a straw-fired CHP plant. The temperature of the probe ranged from 450-600°C and the period of exposure was 1400 hours. The rate of corrosion was assessed based on unattacked metal remaining...

  1. Advanced m-CHP fuel cell system based on a novel bio-ethanol fluidized bed membrane reformer

    NARCIS (Netherlands)

    Viviente, J.L.; Melendez Rey, J.; Pacheco Tanaka, D.A.; Gallucci, F.; Spallina, V.; Manzolini, G.; Foresti, S.; Palma, V.; Ruocco, C.; Roses, L.

    2017-01-01

    Distributed power generation via Micro Combined Heat and Power (m-CHP) systems, has been proven to over-come disadvantages of centralized generation since it can give savings in terms of Primary Energy consumption and energy costs. The FluidCELL FCH JU/FP7 project aims at providing the Proof of

  2. Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates

    International Nuclear Information System (INIS)

    Howard, B.; Modi, V.

    2017-01-01

    Highlights: • CHP attributable reductions, not viable by electric generation alone, are defined. • Simplified operating strategy heuristics are optimal under specific circumstances. • Phosphoric acid fuel cells yield the largest reductions except in the extremes. • Changes in baseline emissions affect the optimal system capacity and operating hours. - Abstract: This work aims to elucidate notions concerning the ideal operation and greenhouse gas (GHG) emissions benefits of combined heat and power (CHP) systems by investigating how various metrics change as a function of the GHG emissions from the underlying electricity source, building use type and climate. Additionally, a new term entitled “CHP Attributable” reductions is introduced to quantify the benefits from the simultaneous use of thermal and electric energy, removing benefits achieved solely from fuel switching and generating electricity more efficiently. The GHG emission benefits from implementing internal combustion engine, microturbines, and phosphoric acid (PA) fuel cell based CHP systems were evaluated through an optimization approach considering energy demands of prototypical hospital, office, and residential buildings in varied climates. To explore the effect of electric GHG emissions rates, the ideal operation of the CHP systems was evaluated under three scenarios: “High” GHG emissions rates, “Low” GHG emissions rates, and “Current” GHG emissions rate for a specific location. The analysis finds that PA fuel cells achieve the highest GHG emission reductions in most cases considered, though there are exceptions. Common heuristics, such as electric load following and thermal load following, are the optimal operating strategy under specific conditions. The optimal CHP capacity and operating hours both vary as a function of building type, climate and GHG emissions rates from grid electricity. GHG emissions reductions can be as high as 49% considering a PA fuel cell for a

  3. Commitment and dispatch of heat and power units via affinely adjustable robust optimization

    DEFF Research Database (Denmark)

    Zugno, Marco; Morales González, Juan Miguel; Madsen, Henrik

    2016-01-01

    compromising computational tractability. We perform an extensive numerical study based on data from the Copenhagen area in Denmark, which highlights important features of the proposed model. Firstly, we illustrate commitment and dispatch choices that increase conservativeness in the robust optimization...... and conservativeness of the solution. Finally, we perform a thorough comparison with competing models based on deterministic optimization and stochastic programming. (C) 2016 Elsevier Ltd. All rights reserved....

  4. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by

  5. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    International Nuclear Information System (INIS)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by the Fraunhofer

  6. Optimization of a flexible multi-generation system based on wood chip gasification and methanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Clausen, Lasse Røngaard; Algren, Loui

    2017-01-01

    of ± 25% in investment costs and methanol price, and considering two different electricity price scenarios.In addition, a change in the interest rate from 5% to 20% was found to reduce the lower bound of the NPVto 181.3 M€ for reference operating conditions. The results suggest that the applied interest...... rate andoperating conditions, in particular the methanol price, would have a much higher impact on the economicperformance of the designs than corresponding uncertainties in investment costs. In addition,the study outcomes emphasize the importance of including systematic uncertainty analysis...... with an existing combined heat and power (CHP) unit and industrial energy utility supply in the Danish city of Horsens. The objective was to optimize economic performance and minimize total CO2 emission of the FMG while it was required to meet the local district heating demand plus the thermal utility demand...

  7. Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system

    International Nuclear Information System (INIS)

    Almansoori, Ali; Betancourt-Torcat, Alberto

    2015-01-01

    Highlights: • A design optimization model for the power sector has been developed. • We examine the influence of exogenous variables in the UAE power infrastructure. • Subsidizing fuel prices will stimulate fossil-based electricity generation. • Carbon tax and higher fuel prices are suitable options to decrease air emissions. • Accounting the social benefits of emissions avoidance incentivizes diversification. - Abstract: A Mixed Integer Linear Programming (MILP) formulation is presented for the optimal design of the United Arab Emirates’ (UAE) power system. The model was formulated in the General Algebraic Modeling System (GAMS), which is a mathematical modeling language for programming and optimization. Previous studies have either focused on the estimation of the UAE’s energy demands or the simulation of the operation of power technologies to plan future electricity supply. However, these studies have used international simulation tools such as “MARKAL” and “MESSAGE”; whereas the present work presents an optimization model. The proposed design optimization model can be used to estimate the most suitable combination of power plants under CO 2 emission and alternative energy targets, carbon tax, and social benefits of air emissions avoidance. Although the proposed model was used to estimate the future power infrastructure in the UAE, the model includes several standard power technologies; thus, it can be extended to other countries. The proposed optimization model was verified using historical data of the UAE power sector operation in the year 2011. Likewise, the proposed model was used to study the 2020 UAE power sector operations under three scenarios: domestic vs. international natural gas prices (considering different carbon tax levels), social benefits of using low emission power technologies (e.g., renewable and nuclear), and CO 2 emission constraints. The results show that the optimization model is a practical tool for designing the

  8. Optimal replacement and inspection periods of safety and control boards in Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il

    1993-02-01

    In nuclear power plants, the safety and control systems are important for operating and maintaining safety of nuclear power plants. Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Since the start of first commercial operation of Kori nuclear power plant (NPP) unit 1, the trips caused by instrument and control systems account for 28% of total trips of NPPs in Korea. Even a single trip of a nuclear power plant causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this work we investigated the optimal replacement periods of the digital control computer's (DCC) and the programmable digital comparator's (PDC) electronic circuit boards of Wolsung nuclear power plant Unit 1. We first derived mathematical models which calculate optimal replacement periods for electronic circuit boards of digital control computer (DCC) and for those of the programmable digital comparator (PDC) in Wolsung NPP unit 1. And we analytically obtained the optimal replacement periods of electronic circuit boards by using these models. We compared these periods with the replacement periods currently used at Wolsung NPP Unit. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained for the electronic circuit boards of DCC and those used in the field shown small difference : the optimal replacement periods analytically obtained for the electronic circuit boards of PDC are shorter than those used in the field in general. The engineered safeguards of Wolsung nuclear power plant unit 1 contains redundant systems of 2-out-of-3 logic which are not operating under normal conditions but they are called

  9. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions; KWK-Ausbaustrategie in NRW. Eine Blaupause fuer andere Regionen

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, Dominik [EnergieAgentur.NRW, Duesseldorf (Germany); Schneider, Sabine [EnergieAgentur.NRW, Wuppertal (Germany)

    2015-10-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  10. Trial operation of a phosphoric acid fuel cell (PC25) for CHP applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, M.; Droste, W.; Wolf, D. [Ruhrgas AG, Dorsten (Germany)

    1996-12-31

    In Europe, ten 200 kW phosphoric acid fuel cells (PAFCs) produced by ONSI (PC25) are currently in operation. Their operators collaborate closely in the European Fuel Cell Users Group (EFCUG). The experience gained from trial operation by the four German operators - HEAG, HGW/HEW, Thyssengas and Ruhrgas - coincides with that of the other European operators. This experience can generally be regarded as favourable. With a view to using fuel cells in combined heat and power generation (CHP), the project described in this report, which was carried out in cooperation with the municipal utility of Bochum and Gasunie of the Netherlands, aimed at gaining experience with the PC 25 in field operation under the specific operating conditions prevailing in Europe. The work packages included heat-controlled operation, examination of plant behavior with varying gas properties and measurement of emissions under dynamic load conditions. The project received EU funding under the JOULE programme.

  11. The effectiveness of absorption heat pumps application for the increase of economic efficiency of CHP operation

    Directory of Open Access Journals (Sweden)

    Luzhkovoy Dmitriy S.

    2017-01-01

    Full Text Available The article deals with a comparative analysis of CHP operational efficiency in various working modes before and after the absorption heat pumps installation. The calculation was performed using a mathematical model of the extraction turbine PT- 80/100-130/13. Absorption heat pumps of LLC “OKB Teplosibmash” were used as AHP models for the analysis. The most effective way of absorption lithium-bromide heat pumps application as a part of the turbine PT-80/100-130/13 turned out to be their usage in a heat-producing mode during a non-heating season with a load of hot water supply. For this mode the dependence of the turbine heat efficiency on the heat load of the external consumer at a given throttle flow was analyzed.

  12. Fuel cell power plants for decentralised CHP applications; Brennstoffzellen-Kraftwerke fuer dezentrale KWK-Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Ohmer, Martin; Mattner, Katja [FuelCell Energy Solutions GmbH, Dresden (Germany)

    2015-06-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO{sub 2} and other emissions (NO{sub x}, SO{sub x} and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  13. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... operates with varying excess of air due to variation in gas composition and thus stoichiometry, and a second where the excess of air in the exhaust gas is fixed and the flow rate of produced gas from the gasifier is varying. The interaction between the gas engine and the gasification system has been...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  14. Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system

    International Nuclear Information System (INIS)

    Meybodi, Mehdi Aghaei; Behnia, Masud

    2013-01-01

    Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions. -- Highlights: •We study the application of Stirling engines in coal mine CHP systems. •We develop a thermo-economic approach based on the net present worth analysis. •We examine the impact of a carbon tax and ETS on the economics of the system. •The modeled system leads to a substantial reduction in greenhouse gas emissions. •Carbon tax provides a greater incentive to address the methane emissions

  15. Total cost of ownership of CHP SOFC systems: Effect of installation context

    International Nuclear Information System (INIS)

    Arduino, Francesco; Santarelli, Massimo

    2016-01-01

    Solid oxide fuel cells (SOFC) are one of the most interesting between the emerging technologies for energy production. Although some information about the production cost of these devices are already known, their operational cost has not been studied yet with sufficient accuracy. This paper presents a life cycle cost (LCC) analysis of CHP (combined heat and power) SOFC systems performed in hospitals located in various cities of the US and one in Italy. In this study the strong effects of the installation context will be analyzed using a customized use phase model for each location. The cost effectiveness of these devices has been proved without credits in Mondovi (IT), New York (NY) and Minneapolis (MN) where the payback time goes from 10 to 7 years. Considering the credits, it is possible to obtain economic feasibility also in Chicago (IL) and reduce the payback for other cities to values from 4 to 6 years. In other cities like Phoenix (AZ) and Houston (TX) the payback can’t be reached in any case. The life cycle impact assessment analysis has shown how, even in the cities with cleaner electricity grid, there is a reduction in the emissions of both greenhouse gases and pollutants. - Highlights: •Life cycle cost analysis has been performed for CHP SOFC systems. •The strong effects of the installation context have been analyzed. •Economic feasibility has been proven in new york, Minneapolis and Mondovi. •Economic feasibility can’t be reached in phoenix and Houston. •SOFC always provide a reduction in the emissions of greenhouse gases and pollutant.

  16. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  17. Optimal Sizing and Sitting of Smart Microgrid Units under Pool Electricity Market

    DEFF Research Database (Denmark)

    Hakimi, Seyed Mehdi; Hajizadeh, Amin

    2017-01-01

    , reliability cost, power loss cost and selling and buying electricity cost. The new idea of this paper is the investigation of pool electricity market aspects in optimization of smart microgrid. On the other hand, cost minimization of smart microgrid is related to their bidding strategies. Therefore two...... different optimization tools are considered. First, a game-theoretical (GT) model has been used for bidding strategy of smart microgrid as a price-maker, in a long-term electricity market. Secondly, a particle swarm optimization (PSO) algorithm is employed to obtain the best cost value of smart microgrids...... construction. This study was performed for the Ekbatan residential complex in Tehran, Iran. It has three smart microgrids consist of renewable energy resources. They participate in a long-term electricity market as a price maker. The results show that the proposed method is more effective and has lower cost...

  18. Optimal Design of Fixed-Point and Floating-Point Arithmetic Units for Scientific Applications

    OpenAIRE

    Pongyupinpanich, Surapong

    2012-01-01

    The challenge in designing a floating-point arithmetic co-processor/processor for scientific and engineering applications is to improve the performance, efficiency, and computational accuracy of the arithmetic unit. The arithmetic unit should efficiently support several mathematical functions corresponding to scientific and engineering computation demands. Moreover, the computations should be performed as fast as possible with a high degree of accuracy. Thus, this thesis proposes algorithm, d...

  19. Estimation of the optimal operating conditions for a radiation chemical neutralization unit

    International Nuclear Information System (INIS)

    Putilov, A.V.; Kamenetskaya, S.A.; Pshezhetskii, S.Ya.; Kazakov, M.S.; Kudryavtsev, S.L.; Petrukhin, N.V.; Misharin, B.A.; Koneev, V.Z.

    1985-01-01

    An estimate is made of the effect of the hydrodynamic conditions on the efficiency of foam units for the radiation chemical neutralization of impurities, taking into account the penetrating power of accelerated electrons having various energies. Expressions are obtained for calculating the efficiency of such units with sectionized operation of the chamber and taking account of the effect of incomplete mixing of the products of radiolysis through the height of the foam layer

  20. An efficient and rigorous thermodynamic library and optimal-control of a cryogenic air separation unit

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    2017-01-01

    -linear model based control to achieve optimal techno-economic performance. Accordingly, this work presents a computationally efficient and novel approach for solving a tray-by-tray equilibrium model and its implementation for open-loop optimal-control of a cryogenic distillation column. Here, the optimisation...... objective is to reduce the cost of compression in a volatile electricity market while meeting the production requirements, i.e. product flow rate and purity. This model is implemented in Matlab and uses the ThermoLib rigorous thermodynamic library. The present work represents a first step towards plant...

  1. ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection.

    Science.gov (United States)

    Komi, Komi Koukoura; Ge, Yu-Mei; Xin, Xiao-Yang; Ojcius, David M; Sun, Dexter; Hu, Wei-Lin; Zhao, Xin; Lin, Xu'ai; Yan, Jie

    2015-01-01

    Pathogenic Leptospira species are the causative agents of leptospirosis, a global zoonotic infectious disease. Toxin-antitoxin (TA) modules have been confirmed as stress-response elements that induce prokaryotic and eukaryotic cell-growth arrest or death, but their role in the virulence of Leptospira has not been reported. Here, we confirmed that all the tested leptospiral strains had the chpIK and mazEF TA modules with highly-conserved sequences. The transcription and expression of the chpI, chpK, mazE, and mazF genes of Leptospira interrogans strain Lai were significantly increased during infection of phorbol 12-myristate 13-acetate-induced human THP-1 macrophages. The toxic ChpK and MazF but not the antitoxic ChpI and MazE proteins were detectable in the cytoplasmic fraction of leptospire-infected THP-1 cells, indicating the external secretion of ChpK and MazF during infection. Transfection of the chpK or mazF gene caused decreased viability and necrosis in THP-1 cells, whereas the chpI or mazE gene transfection did not affect the viability of THP-1 cells but blocked the ChpK or MazF-induced toxicity. Deletion of the chpK or mazF gene also decreased the late-apoptotic and/or necrotic ratios of THP-1 cells at the late stages of infection. The recombinant protein MazF (rMazF) cleaved the RNAs but not the DNAs from Leptospira and THP-1 cells, and this RNA cleavage was blocked by rMazE. However, the rChpK had no RNA or DNA-degrading activity. All these findings indicate that the ChpK and MazF proteins in TA modules are involved in the virulence of L. interrogans during infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Fuel cell-based CHP system modelling using Artificial Neural Networks aimed at developing techno-economic efficiency maximization control systems

    International Nuclear Information System (INIS)

    Asensio, F.J.; San Martín, J.I.; Zamora, I.; Garcia-Villalobos, J.

    2017-01-01

    This paper focuses on the modelling of the performance of a Polymer Electrolyte Membrane Fuel Cell (PEMFC)-based cogeneration system to integrate it in hybrid and/or connected to grid systems and enable the optimization of the techno-economic efficiency of the system in which it is integrated. To this end, experimental tests on a PEMFC-based cogeneration system of 600 W of electrical power have been performed to train an Artificial Neural Network (ANN). Once the learning of the ANN, it has been able to emulate real operating conditions, such as the cooling water out temperature and the hydrogen consumption of the PEMFC depending on several variables, such as the electric power demanded, temperature of the inlet water flow to the cooling circuit, cooling water flow and the heat demanded to the CHP system. After analysing the results, it is concluded that the presented model reproduces with enough accuracy and precision the performance of the experimented PEMFC, thus enabling the use of the model and the ANN learning methodology to model other PEMFC-based cogeneration systems and integrate them in techno-economic efficiency optimization control systems. - Highlights: • The effect of the energy demand variation on the PEMFC's efficiency is predicted. • The model relies on experimental data obtained from a 600 W PEMFC. • It provides the temperature and the hydrogen consumption with good accuracy. • The range in which the global energy efficiency could be improved is provided.

  3. Optimal Power Flow in three-phase islanded microgrids with inverter interfaced units

    DEFF Research Database (Denmark)

    Sanseverino, Eleonora Riva; Quang, Ninh Nguyen; Di Silvestre, Maria Luisa

    2015-01-01

    In this paper, the solution of the Optimal Power Flow (OPF) problem for three phase islanded microgrids is studied, the OPF being one of the core functions of the tertiary regulation level for an AC islanded microgrid with a hierarchical control architecture. The study also aims at evaluating the...

  4. Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss

    Directory of Open Access Journals (Sweden)

    Yongli Wang

    2018-06-01

    Full Text Available Integrated energy systems (IESs are considered a trending solution for the energy crisis and environmental problems. However, the diversity of energy sources and the complexity of the IES have brought challenges to the economic operation of IESs. Aiming at achieving optimal scheduling of components, an IES operation optimization model including photovoltaic, combined heat and power generation system (CHP and battery energy storage is developed in this paper. The goal of the optimization model is to minimize the operation cost under the system constraints. For the optimization process, an optimization principle is conducted, which achieves maximized utilization of photovoltaic by adjusting the controllable units such as energy storage and gas turbine, as well as taking into account the battery lifetime loss. In addition, an integrated energy system project is taken as a research case to validate the effectiveness of the model via the improved differential evolution algorithm (IDEA. The comparison between IDEA and a traditional differential evolution algorithm shows that IDEA could find the optimal solution faster, owing to the double variation differential strategy. The simulation results in three different battery states which show that the battery lifetime loss is an inevitable factor in the optimization model, and the optimized operation cost in 2016 drastically decreased compared with actual operation data.

  5. Analysis and Choice of Optimal Heating Ventilation Air Conditioning System for a Teaching Unit

    Directory of Open Access Journals (Sweden)

    Marina Verdeş

    2007-01-01

    Full Text Available Under the conditions of present society in which providing an optimum interior comfort is confronted with the necessity of the energy consumption reduction, solving this problem depends on the factors which contribute to the achievements of this comfort. Modern buildings -- implicitly teaching unit -- may be equipped with installations which have low energy consumption, respective a heating, cooling and ventilating integrated system with heat pumps system which can assure all the required comfort conditions. This paper underlines the necessity to use the heat pump in heating system for a teaching unit, energetic and economic guides and the possibility to increase them when using cooling and heating mixed. The solution of heat pumps for heating of the teaching unit and the energetic and economic advantages of the system is made in study.

  6. Practical Robust Optimization Method for Unit Commitment of a System with Integrated Wind Resource

    Directory of Open Access Journals (Sweden)

    Yuanchao Yang

    2017-01-01

    Full Text Available Unit commitment, one of the significant tasks in power system operations, faces new challenges as the system uncertainty increases dramatically due to the integration of time-varying resources, such as wind. To address these challenges, we propose the formulation and solution of a generalized unit commitment problem for a system with integrated wind resources. Given the prespecified interval information acquired from real central wind forecasting system for uncertainty representation of nodal wind injections with their correlation information, the proposed unit commitment problem solution is computationally tractable and robust against all uncertain wind power injection realizations. We provide a solution approach to tackle this problem with complex mathematical basics and illustrate the capabilities of the proposed mixed integer solution approach on the large-scale power system of the Northwest China Grid. The numerical results demonstrate that the approach is realistic and not overly conservative in terms of the resulting dispatch cost outcomes.

  7. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications

    International Nuclear Information System (INIS)

    Maraver, Daniel; Royo, Javier; Lemort, Vincent; Quoilin, Sylvain

    2014-01-01

    Highlights: • ORC optimization for different target applications. • Model developed to allow computation in subcritical and transcritical operation. • Regenerative and non-regenerative cycles evaluated through second law efficiency. • Common working fluids: R134a, R245fa, Solkatherm, n-Pentane, MDM, Toluene. • Thermodynamic and technological approaches lead to optimal design guidelines. - Abstract: The present work is focused on the thermodynamic optimization of organic Rankine cycles (ORCs) for power generation and CHP from different average heat source profiles (waste heat recovery, thermal oil for cogeneration and geothermal). The general goal is to provide optimization guidelines for a wide range of operating conditions, for subcritical and transcritical, regenerative and non-regenerative cycles. A parameter assessment of the main equipment in the cycle (expander, heat exchangers and feed pump) was also carried out. An optimization model of the ORC (available as an electronic annex) is proposed to predict the best cycle performance (subcritical or transcritical), in terms of its exergy efficiency, with different working fluids. The working fluids considered are those most commonly used in commercial ORC units (R134a, R245fa, Solkatherm, n-Pentane, Octamethyltrisiloxane and Toluene). The optimal working fluid and operating conditions from a purely thermodynamic approach are limited by the technological constraints of the expander, the heat exchangers and the feed pump. Hence, a complementary assessment of both approaches is more adequate to obtain some preliminary design guidelines for ORC units

  8. A Bi-Level Particle Swarm Optimization Algorithm for Solving Unit Commitment Problems with Wind-EVs Coordinated Dispatch

    Science.gov (United States)

    Song, Lei; Zhang, Bo

    2017-07-01

    Nowadays, the grid faces much more challenges caused by wind power and the accessing of electric vehicles (EVs). Based on the potentiality of coordinated dispatch, a model of wind-EVs coordinated dispatch was developed. Then, A bi-level particle swarm optimization algorithm for solving the model was proposed in this paper. The application of this algorithm to 10-unit test system carried out that coordinated dispatch can benefit the power system from the following aspects: (1) Reducing operating costs; (2) Improving the utilization of wind power; (3) Stabilizing the peak-valley difference.

  9. Convex modeling and optimization of a vehicle powertrain equipped with a generator-turbine throttle unit

    NARCIS (Netherlands)

    Marinkov, S.; Murgovski, N.; de Jager, A.G.

    2017-01-01

    This paper investigates an internal combustion (gasoline) engine throttled by a generator-turbine unit. Apart from throttling, the purpose of this device is to complement the operation of a conventional car alternator and support its downsizing by introducing an additional source of energy for the

  10. An Optimal Balancing of Multiple Assembly Line For a Batch Production Unit

    Directory of Open Access Journals (Sweden)

    M. Mohan Prasad

    2013-12-01

    Full Text Available Higher Productivity in organizations leads to national prosperity and better standard of living for the whole community. This has motivated several workers on productivity improvement at different levels of XXXX India Pvt Ltd, Chennai. The main objective of this project is to increase the production by changing the layout of the assembly line in making of Transmit Mixer. At present 12 machines are being manufactured in a total of 2 shifts per day. Time study is carried out to identify and avoid the idle time to increase the production rate to 24 machines per day. The organization facing the problems like production time, online inventory, delay and idle time. Here our objective is to reduce the idle time, identifying the cycle time and optimal method of production. The COMSOAL (Computer Method for Sequencing Operations for Assembly Lines and RPW (Ranked Positional Weight algorithms have been used to get the optimal solution. This algorithm provides the better solution, thereby reducing unnecessary movements of the worker within the station. The overall cycle time got reduced when compared with the existing cycle time in order to meet the customer demand. Thus we are proposing this scientific approach to get the optimal solution for increased rate of production of the company without affecting the quality and cost.

  11. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.

    Science.gov (United States)

    Qin, Nan; Shen, Chenyang; Tsai, Min-Yu; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun

    2018-01-01

    One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    Science.gov (United States)

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  13. Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions

    International Nuclear Information System (INIS)

    Compernolle, Tine; Witters, Nele; Van Passel, Steven; Thewys, Theo

    2011-01-01

    To counter global warming, a transition to a low-carbon economy is needed. The greenhouse sector can contribute by installing Combined Heat and Power (CHP) systems, known for their excellent energy efficiency. Due to the recent European liberalization of the energy market, glass horticulturists have the opportunity to sell excess electricity to the market and by tailored policy and support measures, regional governments can fill the lack of technical and economic knowledge, causing initial resistance. This research investigates the economic and environmental opportunities using two detailed cases applying a self managed cogeneration system. The Net Present Value is calculated to investigate the economic feasibility. The Primary Energy Saving, the CO 2 Emission Reduction indicator and an Emission Balance are applied to quantify the environmental impact. The results demonstrate that a self-managed CHP system is economic viable and that CO 2 emissions are reduced.

  14. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems

    DEFF Research Database (Denmark)

    Chen, Min; Lund, Henrik; Rosendahl, Lasse

    2010-01-01

    benefits, together with the environmental impact of this deployment, will then be estimated. By using the Danish thermal energy system as a paradigm, this paper will consider the TEG application to district heating systems and power plants through the EnergyPLAN model, which has been created to design......High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency...... configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic...

  15. Analysis of a CHP plant in a municipal solid waste landfill in the South of Spain

    International Nuclear Information System (INIS)

    Chacartegui, Ricardo; Carvalho, Monica; Abrahão, Raphael; Becerra, José

    2015-01-01

    The most effective strategy to manage and treat solid urban residues, with the least environmental impact as well as lowest economic and energy costs, is a challenge for sustainability in current society, who actually pay for the final management of these residues. This manuscript analyzes the potential of biogas generation in an urban solid residue treatment plant, and the potential use for cogeneration in situ at the landfill. The objective is to identify the energy potential associated with the landfill and its potential use to accelerate the evaporation of leachate through the supply of heat, reducing the risks of exceeding the collection capacity of the leachate ponds. The change in legislation for generation within the special regime in Spain (2014) introduced a sudden change in the direction of energy policies, which affected significantly the profitability of these facilities. This manuscript analyzes the application of both legislations, previous (2007) and current (2014), for the case of a cogeneration system installed in this landfill. The results obtained indicate that even with a much more restrictive legislation in force, acceptable values are obtained for the evaluation of the investment – however, better results were obtained for the previous legislation that favored the special regime. The new regulation constrains the maximum and minimum annual operating hours for landfill cogeneration. It results in relevant periods with limited use of biogas for electricity generation. Biogas storage for delayed future consumption in the same installation and biogas selling for external use in boilers are proposed as options for this biogas in excess. They can reduce greenhouse gases emissions from the non-used biogas and can improve the economic results of the facility. - Highlights: • Analysis of biogas generation capacity in an existing landfill at South of Spain. • Analysis of the integration of gas engine for cogeneration. • CHP integration for

  16. Development of a CHP/DH system for the new town of Parand: An opportunity to mitigate global warming in Middle East

    International Nuclear Information System (INIS)

    Mostafavi Tehrani, S. Saeed; Saffar-Avval, M.; Mansoori, Z.; Behboodi Kalhori, S.; Abbassi, A.; Dabir, B.; Sharif, M.

    2013-01-01

    As a result of the worldwide concern about global warming, projects that target reduction of greenhouse gas emissions have gained a lot of interest. The idea of this paper is to recover exhaust hot gases of an existing gas turbine power plant to meet dynamic thermal energy requirements of a residential area (the new town of Parand) situated in the suburb of Tehran, and also use the rest of the heat source potential to feed a steam turbine cycle. In close proximity to this town, there are two GT plants: Parand (954 MW e ) and Rudeshur (790 MW e ). For handling the CHP/STC/DH plant, two methods are considered along with thermal load following operation strategy: maximum power generation (MPG) and minimum fuel consumption (MFC). Then, the alternatives are compared in terms of annual PES, CO 2 abatement and NPV. For the best design from environmental viewpoint (Parand CHP-B), PES, CO 2 abatement and NPV are calculated to be 27.31%, 2.56 million tons and 1491 million dollar, respectively. -- Highlights: • To propose a technical and financial methodology to evaluate CHP/DH projects. • To address environmental advantages of CHPs with conventional plants. • To present practical operation strategies to increase benefits of CHP/DH plants. • To report/compare benefits of various CHP/DH alternatives for a case study in Iran. • To conduct a comprehensive energy analysis of proposed CHP/DH design options

  17. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    Energy Technology Data Exchange (ETDEWEB)

    Babkin, K. V., E-mail: babkin@uztec.ru; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V. [SC “South-West CHP” (Russian Federation); Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V. [JSC “Interautomatika” (Russian Federation)

    2015-01-15

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described.

  18. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    International Nuclear Information System (INIS)

    Babkin, K. V.; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V.; Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V.

    2015-01-01

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described

  19. Preliminary experimental investigation of a natural gas-fired ORC-based micro-CHP system for residential buildings

    International Nuclear Information System (INIS)

    Farrokhi, M.; Noie, S.H.; Akbarzadeh, A.A.

    2014-01-01

    The continual increases in energy demand and greenhouse gas emissions, call for efficient use of energy resources. Decentralized combined heat and power (CHP) technology provides an alternative for the world to meet and solve energy-related problems including energy shortages, energy supply security, emission control and conservation of energy. This paper presents the preliminary results of an experimental investigation of a natural gas-fired micro-CHP system for residential buildings based on an organic Rankine cycle (ORC). Isopentane was used as the ORC working fluid in consideration of several criteria including its environmentally-friendly characteristics. Experiments were conducted to evaluate the performance of the developed system at different heat source temperatures of nominally 85, 80, 75, 70, and 65 °C. The maximum electrical power output of 77.4 W was generated at heating water entry temperature of 84.1 °C, corresponding to net cycle electrical efficiency of 1.66%. Further work will be done with a view to increasing the cycle electrical efficiency by using more efficient components, in particular the expander and generator. - Highlights: •A natural gas-fired ORC-based micro-scale CHP system has been developed and tested. •The good agreement between the mechanical and gross power validates the assumptions. •A vane expander suits a micro-CHP system based on an organic Rankine cycle. •A vane expander does not suit power generation by a Trilateral Flash Cycle (TFC). •Domestic gas-fired ORC systems may reduce reliance on central power stations

  20. Heading towards the nZEB through CHP+HP systems. A comparison between retrofit solutions able to increase the energy performance for the heating and domestic hot water production in residential buildings

    International Nuclear Information System (INIS)

    Salata, Ferdinando; Golasi, Iacopo; Domestico, Umberto; Banditelli, Matteo; Lo Basso, Gianluigi; Nastasi, Benedetto; Lieto Vollaro, Andrea de

    2017-01-01

    Highlights: • Energy optimization measures to increase the energy class of buildings. • Analysis of the demands related to the space-heating season and the production of annual DHW. • Case study related to a residential building of medium size located in Rome (Italy). • Improvements on building envelope and on systems (traditional technologies or CHP+HP). • Energy and economic analysis to achieve the performance of a nZEB. - Abstract: Optimizing consumptions in the field of civil construction led to define energy labels for residential buildings. To calculate the building energy demand the EPgl was determined, i.e. the annual consumption per m"2 of primary energy. This paper examines the technical solutions useful to optimize the energy demands for heating during space-heating season and domestic hot water production (thanks to energy analysis softwares as MC11300 and TRNSYS) and, at the same time, to take into account the financial issues those interventions implied. The total inside heated surface of the building case study is 1204.00 m"2, hence the inside heated volume is about 3250.80 m"3. Besides the more traditional interventions concerning the building envelope and its systems, the paper examined the performance of a system obtained through the combination of a cogenerator (CHP) and a heat pump (HP), thus, substituting the conventional boilers of the buildings. CHP+HP solution increases the most the energy label of the building (from a D class with EPgl = 59.62 kW h m"−"2 year"−"1, to an A class, with EPgl = 25.64 kW h m"−"2 year"−"1), determining an annual energy cost saving of 3,114 € year"−"1, allowing to amortize installation costs (54,560 €) in a reasonable payback period, i.e. 15.4 years. This innovative solution in the residential sector can be realized through retrofit interventions on existing buildings, hence it leads the current dwelling towards nZEB with a remarkable benefits for the environment.

  1. Model-predictive control and real-time optimization of a cat cracker unit

    Directory of Open Access Journals (Sweden)

    Stig Strand

    1997-04-01

    Full Text Available A project for control and optimization of the Residual Catalytic Cracking Process at the Mongstad refinery is near completion. Four model-predictive control applications have been successfully implemented, using the IDCOM control software from Setpoint Inc. The most attractive feature of the controller is the well-defined control prioritizing hierarchy, and the linear impulse-response models have proved to give satisfactory performance on this process. Excitation and identification of the dynamic models proved to be a difficult task, and careful design and monitoring of the tests was mandatory in order to produce good results. Multi-variable Pseudo Random Binary Test Sequences were used for the excitation. Technical performance and operator acceptance of the new control functions have been good, but it is realized that a continuing effort is needed to fine-tune and maintain such functions.

  2. Thermo-kinetic modeling and optimization of the sulfur recovery unit thermal stage

    International Nuclear Information System (INIS)

    Zarei, Samane; Ganji, Hamid; Sadi, Maryam; Rashidzadeh, Mehdi

    2016-01-01

    Highlights: • The Claus reaction furnace was modeled using the corrected Gibbs energy minimization. • Using the corrected model, a significant error reduction from 33.50 to 7.86% occurred. • The waste heat boiler was modeled using plant data and a new H_2S decomposition rate. • The combined model could reasonably predict the experimental data with 6.50% error. • An optimization was carried out to control the operating variables of an existing plant. - Abstract: In this study, the reaction furnace of Claus process was modeled using the Gibbs free energy minimization method, which involved new parameters in correlations of thermodynamic properties. Using the new parameters, a significant error reduction from 33.50% to 7.86% occurred in the prediction of molar flow rate of components. Subsequently, the waste heat boiler attached to the reaction furnace was modeled using experimental plant data and a new hydrogen sulfide decomposition rate. Utilizing this new rate expression, the capability of the model in H_2 molar flow rate prediction was enhanced, and the mean absolute percentage error of the model for H_2 and H_2S species reached 12.94% and 9.43%, respectively. The combined model including corrected equilibrium model for the reaction furnace and corrected kinetic model for the waste heat boiler could reasonably predict the experimental data so that the mean absolute percentage error reached to 6.50%. An optimization study was carried out to examine the operating condition of the Claus reaction furnace and the waste heat boiler in order to maximize sulfur production and minimize COS emission while maintaining H_2S to SO_2 flow ratio at constant value of 2.

  3. Delayed coking unit preheat train optimization; Otimizacao do preaquecimento das Unidades de Coque

    Energy Technology Data Exchange (ETDEWEB)

    Marins, Edson R; Geraldelli, Washington O; Barros, Francisco C [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The oil industry has been investing in research and development of new techniques and process improvements with the objective to increase the residual fraction profitability and to fulfill the market demands. The adequacy of the refining scheme has led to the development of bottom of the barrel processes that has the objective to convert heavy fractions into products of higher aggregate value. In this context, the process of Delayed Coking presents a great importance in the production of distillates in the diesel range as well as the processing of heavy residues, mostly in the markets where the fuel oil consumption is being reduced. With the approach to help PETROBRAS decide which route to follow during new designs of Delayed Coking units, this work presents a comparative study of the preheat train performance among the energy recovery to preheat the feed, in contrast with preheating the feed and generating steam, simultaneously. In this study the Pinch Technology methodology was used as a procedure for heat integration with the objective of getting the maximum energy recovery from the process, finding the best trade-off between operational cost and investment cost. The alternative of steam generation aims to provide an appropriate flexibility in Delayed Coking units design and operation. (author)

  4. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis.

    Science.gov (United States)

    Hemmati, Reza; Saboori, Hedayat

    2016-05-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics.

  5. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis

    Science.gov (United States)

    Hemmati, Reza; Saboori, Hedayat

    2016-01-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741

  6. Clinical review of supracricoid laryngectomy with CHEP and CHP. 50 patients treated in 11 years

    International Nuclear Information System (INIS)

    Nakayama, Meijin; Seino, Yutomo; Hayashi, Seiichi; Miyamoto, Shunsuke; Takeda, Masahiko; Masaki, Takashi; Yokobori, Satoru; Okamoto, Makito

    2009-01-01

    An analysis of clinical data on 50 patients undergoing supracricoid laryngectomy (SCL) between 1997 and 2008 id est (i.e.), cricohyoidoepiglottopexy (CHEP) in 47 and cricohyoidopexy (CHP) in 3 cases showed that the number of SCL cases operated on within a year surpassed that of Total Laryngectomy after 2003. Selection criteria included performance status 0-1 and blood gas PO2>80 torr, especially in those patients over 70 years old. Postoperative wound infection occurred in 16 patients (32%), with four requiring additional surgical intervention (two ruptured pexis and two chondritis induced by C3-C4 osteophytes). A history of radiotherapy and systemic complications, i.e., diabetes and renal failure, added to the risk of wound infection. Introducing a clinical pathway shortened hospitalization. Vocal function was achieved in 96% and swallowing function in 89% of patients. Five-year crude survival in CHEP was 69% and in total laryngectomy (TL) 51%. Laryngeal preservation was 70%, increasing to 89% after the introduction of SCL. SCL-CHEP is thus indicated for unfavorable T2 (ASCO 2006), well-selected T3, T4, and rT1-4 (radiation failures). Effort should emphasize a good balance in prognosis and function in organ preservation for laryngeal cancer. (author)

  7. Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania

    International Nuclear Information System (INIS)

    Lund, H.; Siupsinskas, G.; Martinaitis, V.

    2005-01-01

    Within five years from now, Lithuania is going to close down Ignalina, the only nuclear-power plant in the country. Since Ignalina generates more than 75% of the Lithuanian electricity production, new generation capacities are needed. Traditional steam-turbines, fuelled with fossil fuels, would mean further imports of fuel as well as a rise in CO 2 emissions. At the same time, several small district-heating companies one suffering from high heating-prices. Typically, the price in small towns is 20-50% higher than the price in large urban areas. Consequently, alternative strategies should be considered. This article analyses the conditions for one such strategy, namely the replacement of boilers in the existing district-heating supplies with combined heat-and-power production (CHP). Compared with new power stations, fuel can be saved and CO 2 -emissions reduced. Also this strategy can be used to level the difference between low heating prices in the large urban areas and high prices in small towns and villages. (Author)

  8. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP Station Processing Plant Biomass

    Directory of Open Access Journals (Sweden)

    Justyna Szulc

    2017-01-01

    Full Text Available The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP. We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs. Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.. The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM. We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored.

  9. Factors that are influencing the economical efficiency of the CHP plants

    International Nuclear Information System (INIS)

    Ruieneanu, Liviu; Ion, Mircea

    2004-01-01

    This paper presents some factors that might influence the economical efficiency of a cogeneration plant. These factors are: the understanding of the fuel economy at consumers; - the influence of the electricity production efficiency; - the influence of exergy losses. The statistical data for different countries of Europe show that under the conditions of a deregulated liberalized market of energy the cogeneration plants have numerous financial difficulties. Even if the use of cogeneration ensures a fuel saving, if this economy it is not obvious for the consumers, those consumers might prefer for the production of heat the use of a heat only generating plant. This trend might spread rapidly if the increase of the electricity will not be present immediately in the bill of the consumers that renounce to the heat produced by the CHP plant. The method used for cost allocation on both types of energy has also a great importance, because it might facilitate the rehabilitation measures and doing so it might allow lower prices for both types of energy. Perhaps the most important factor for the economical efficiency of the plant are the exergy losses. The analysis presented above shows two things, namely: - that the electricity production has a very high price, and this cost might be lowered down by some rehabilitation measures (for example repowering); - and that the heat only plants (boilers) are not affected by the exergy losses and that's why if we analyse only the heat production, the use of cogeneration might seem inappropriate

  10. CHP HIGHER EDUCATION, SCHOLARSHIPS AND DEMAND ABROAD ARE POLITICS (1942-1947

    Directory of Open Access Journals (Sweden)

    Suat ZEYREK

    2016-04-01

    Full Text Available Turkey was followed by a very slow development in the course of the republic’s first year in higher education.By 1955, there are only two universities in the three cities in Turkey.Although the new university will be declared opened by Ismet Inonu’s mouth several times it was not possible for various reasons.Turkey’s economic situation, the shortage of trained personel and it has been hampered by severe conditions of World War II.But even more important excuses should have prevented the spread of higher education in Turkey. This article will be presented in the light of the real causes of the problem of archival sources mentioned above.Period ruling party, the CHP’s higher education policy followed in scholarships and dormitories were investigated.CHP likely to promote higher education in the first primary education spread to the base and thus wants to create a higher demand.For this reason, it is necessary first of all to build infrastructure for higher education institutions and rules.Coming from big cities in different regions of Anatolia youth to take education to all students experience difficulties and inclusive, egalitarian policies were followed.

  11. Optimal location of centralized biodigesters for small dairy farms: A case study from the United States

    Directory of Open Access Journals (Sweden)

    Deep Mukherjee

    2015-06-01

    Full Text Available Anaerobic digestion technology is available for converting livestock waste to bio-energy, but its potential is far from fully exploited in the United States because the technology has a scale effect. Utilization of the centralized anaerobic digester (CAD concept could make the technology economically feasible for smaller dairy farms. An interdisciplinary methodology to determine the cost minimizing location, size, and number of CAD facilities in a rural dairy region with mostly small farms is described. This study employs land suitability analysis, operations research model and Geographical Information System (GIS tools to evaluate the environmental, social, and economic constraints in selecting appropriate sites for CADs in Windham County, Connecticut. Results indicate that overall costs are lower if the CADs are of larger size and are smaller in number.

  12. Structure and Function: Planning a New Intensive Care Unit to Optimize Patient Care

    Directory of Open Access Journals (Sweden)

    Jozef Kesecioğlu

    2014-08-01

    Full Text Available To survey the recent medical literature reporting effects of intensive care unit (ICU design on patients’ and family members’ well-being, safety and functionality. Features of ICU design linked to the needs of patients and their family are single-rooms, privacy, quiet surrounding, exposure to daylight, views of nature, prevention of infection, a family area and open visiting hours. Other features such as safety, working procedures, ergonomics and logistics have a direct impact on the patient care and the nursing and medical personnel. An organization structured on the needs of the patient and their family is mandatory in designing a new intensive care. The main aims in the design of a new department should be patient centered care, safety, functionality, innovation and a future-proof concept.

  13. Multi-parameter vital sign database to assist in alarm optimization for general care units.

    Science.gov (United States)

    Welch, James; Kanter, Benjamin; Skora, Brooke; McCombie, Scott; Henry, Isaac; McCombie, Devin; Kennedy, Rosemary; Soller, Babs

    2016-12-01

    Continual vital sign assessment on the general care, medical-surgical floor is expected to provide early indication of patient deterioration and increase the effectiveness of rapid response teams. However, there is concern that continual, multi-parameter vital sign monitoring will produce alarm fatigue. The objective of this study was the development of a methodology to help care teams optimize alarm settings. An on-body wireless monitoring system was used to continually assess heart rate, respiratory rate, SpO 2 and noninvasive blood pressure in the general ward of ten hospitals between April 1, 2014 and January 19, 2015. These data, 94,575 h for 3430 patients are contained in a large database, accessible with cloud computing tools. Simulation scenarios assessed the total alarm rate as a function of threshold and annunciation delay (s). The total alarm rate of ten alarms/patient/day predicted from the cloud-hosted database was the same as the total alarm rate for a 10 day evaluation (1550 h for 36 patients) in an independent hospital. Plots of vital sign distributions in the cloud-hosted database were similar to other large databases published by different authors. The cloud-hosted database can be used to run simulations for various alarm thresholds and annunciation delays to predict the total alarm burden experienced by nursing staff. This methodology might, in the future, be used to help reduce alarm fatigue without sacrificing the ability to continually monitor all vital signs.

  14. Planning intensive care unit design using computer simulation modeling: optimizing integration of clinical, operational, and architectural requirements.

    Science.gov (United States)

    OʼHara, Susan

    2014-01-01

    Nurses have increasingly been regarded as critical members of the planning team as architects recognize their knowledge and value. But the nurses' role as knowledge experts can be expanded to leading efforts to integrate the clinical, operational, and architectural expertise through simulation modeling. Simulation modeling allows for the optimal merge of multifactorial data to understand the current state of the intensive care unit and predict future states. Nurses can champion the simulation modeling process and reap the benefits of a cost-effective way to test new designs, processes, staffing models, and future programming trends prior to implementation. Simulation modeling is an evidence-based planning approach, a standard, for integrating the sciences with real client data, to offer solutions for improving patient care.

  15. Computational procedure of optimal inventory model involving controllable backorder rate and variable lead time with defective units

    Science.gov (United States)

    Lee, Wen-Chuan; Wu, Jong-Wuu; Tsou, Hsin-Hui; Lei, Chia-Ling

    2012-10-01

    This article considers that the number of defective units in an arrival order is a binominal random variable. We derive a modified mixture inventory model with backorders and lost sales, in which the order quantity and lead time are decision variables. In our studies, we also assume that the backorder rate is dependent on the length of lead time through the amount of shortages and let the backorder rate be a control variable. In addition, we assume that the lead time demand follows a mixture of normal distributions, and then relax the assumption about the form of the mixture of distribution functions of the lead time demand and apply the minimax distribution free procedure to solve the problem. Furthermore, we develop an algorithm procedure to obtain the optimal ordering strategy for each case. Finally, three numerical examples are also given to illustrate the results.

  16. Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units

    International Nuclear Information System (INIS)

    Pothiya, Saravuth; Ngamroo, Issarachai

    2008-01-01

    This paper proposes a new optimal fuzzy logic-based-proportional-integral-derivative (FLPID) controller for load frequency control (LFC) including superconducting magnetic energy storage (SMES) units. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the multiple tabu search (MTS) algorithm is applied to simultaneously tune PID gains, membership functions and control rules of FLPID controller to minimize frequency deviations of the system against load disturbances. The MTS algorithm introduces additional techniques for improvement of search process such as initialization, adaptive search, multiple searches, crossover and restarting process. Simulation results explicitly show that the performance of the optimum FLPID controller is superior to the conventional PID controller and the non-optimum FLPID controller in terms of the overshoot, settling time and robustness against variations of system parameters

  17. Optimization of Cycle and Expander Design of an Organic Rankine Cycle Unit using Multi-Component Working Fluids

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Pierobon, Leonardo

    2016-01-01

    Organic Rankine cycle (ORC) power systems represent at-tractive solutions for power conversion from low temperatureheat sources, and the use of these power systems is gaining increasing attention in the marine industry. This paper proposesthe combined optimal design of cycle and expander...... for an organic Rankine cycle unit utilizing waste heat from low temperature heat sources. The study addresses a case where the minimum temperature of the heat source is constrained and a case where no constraint is imposed. The former case is the wasteheat recovery from jacket cooling water of a marine diesel...... engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature pro-files in the heat exchangers and, consequently, reducing...

  18. Optimization of a Distillation Unit In Terms of Potential Environmental Impact and Economics

    International Nuclear Information System (INIS)

    Alhassan Salami Tijani; Ramzan, N.

    2013-01-01

    Process energy integration and continuous improvement of process technology are increasing issues to ensure profitability of chemical productions. These objectives are increasingly important due to long-term environmental impact of energy degradation, such as resource depletion, emissions and the release of waste heat. The earlier energy conservation, process economics and environmental aspects are integrated into the process development, the easier and less expensive it is to improve the process design. In this work different distillation process design alternatives have been considered with respect to evaluations of process economics and potential environmental impacts. Optimum design alternatives are analyzed related to these objectives. A multi-criteria decision making technique such as (Analytic Hierarchy Process) AHP is applied for ranking the alternatives. This method reveals that the heat pump distillation unit which has the highest score of 52 % is the best alternative when compare with base case. In terms of the effluent streams the base case has a less potential environmental impact (PEI) compared with heat pump. The lower total PEI/ kg (7.45E-01) of the base case illustrates that the material utilization efficiency of the base case is better than the heat pump whose PEI/ kg is 8.14E-01. (author)

  19. Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling

    Directory of Open Access Journals (Sweden)

    M. Alvioli

    2016-11-01

    Full Text Available Automatic subdivision of landscapes into terrain units remains a challenge. Slope units are terrain units bounded by drainage and divide lines, but their use in hydrological and geomorphological studies is limited because of the lack of reliable software for their automatic delineation. We present the r.slopeunits software for the automatic delineation of slope units, given a digital elevation model and a few input parameters. We further propose an approach for the selection of optimal parameters controlling the terrain subdivision for landslide susceptibility modeling. We tested the software and the optimization approach in central Italy, where terrain, landslide, and geo-environmental information was available. The software was capable of capturing the variability of the landscape and partitioning the study area into slope units suited for landslide susceptibility modeling and zonation. We expect r.slopeunits to be used in different physiographical settings for the production of reliable and reproducible landslide susceptibility zonations.

  20. Thermodynamic analysis and experimental investigation of a Solo V161 Stirling cogeneration unit

    International Nuclear Information System (INIS)

    Rogdakis, E.D.; Antonakos, G.D.; Koronaki, I.P.

    2012-01-01

    In order to investigate the Stirling engine implementation technology, a Solo Stirling Engine V161 cogeneration module has been installed at the Laboratory of Applied Thermodynamics of National Technical University of Athens. A special thermodynamic analysis of the engine's performance has been conducted introducing and utilizing specially designed computing codes along with the thermal balance study of the unit. Measurements were conducted under different operational conditions concerning various heat load stages of the engine, working pressure, as well as electric power production. Analysis of the experimental results has shown that the overall performance of the Stirling unit proved very promising and quite adequate for various areal applications, equally competing with other CHP systems. The performance of the unit experienced significant stability all over the operating range. The power stand ratio 0.35 differentiates Stirling cogeneration units from others that use diverging technologies significantly. The energy savings using a Stirling CHP unit, in respect to the concurrent use of a thermal and an electrical system at the same equivalent power has revealed 36.8%. -- Highlights: ► Thermodynamic analysis of an a-type Stirling engine. ► Development of generated electrical and thermal power of the m-CHP Solo Stirling Unit to engine's load comparison. ► Stirling m-CHP until heat balance analysis. ► Evaluation of the Solo Stirling V161 unit efficiency.

  1. Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization

    International Nuclear Information System (INIS)

    Lobello, Maria Grazia; Fantacci, Simona; Manfredi, Norberto; Coluccini, Carmine; Abbotto, Alessandro; Nazeeruddin, Mohammed K.; De Angelis, Filippo

    2014-01-01

    We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO 2 nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO 2

  2. Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lobello, Maria Grazia; Fantacci, Simona [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy); Manfredi, Norberto; Coluccini, Carmine [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Abbotto, Alessandro, E-mail: alessandro.abbotto@unimib.it [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Nazeeruddin, Mohammed K., E-mail: mdkhaja.nazeeruddin@epfl.ch [Laboratory for Photonics and Interfaces, Station 6, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); De Angelis, Filippo, E-mail: filippo@thch.unipg.it [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy)

    2014-06-02

    We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO{sub 2} nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO{sub 2}.

  3. SU-E-T-551: Monitor Unit Optimization in Stereotactic Body Radiation Therapy for Stage I Lung Cancer

    International Nuclear Information System (INIS)

    Huang, B-T; Lu, J-Y

    2015-01-01

    Purpose: The study aims to reduce the monitor units (MUs) in the stereotactic body radiation therapy (SBRT) treatment for lung cancer by adjusting the optimizing parameters. Methods: Fourteen patients suffered from stage I Non-Small Cell Lung Cancer (NSCLC) were enrolled. Three groups of parameters were adjusted to investigate their effects on MU numbers and organs at risk (OARs) sparing: (1) the upper objective of planning target volume (UOPTV); (2) strength setting in the MU constraining objective; (3) max MU setting in the MU constraining objective. Results: We found that the parameters in the optimizer influenced the MU numbers in a priority, strength and max MU dependent manner. MU numbers showed a decreasing trend with the UOPTV increasing. MU numbers with low, medium and high priority for the UOPTV were 428±54, 312±48 and 258±31 MU/Gy, respectively. High priority for UOPTV also spared the heart, cord and lung while maintaining comparable PTV coverage than the low and medium priority group. It was observed that MU numbers tended to decrease with the strength increasing and max MU setting decreasing. With maximum strength, the MU numbers reached its minimum while maintaining comparable or improved dose to the normal tissues. It was also found that the MU numbers continued to decline at 85% and 75% max MU setting but no longer to decrease at 50% and 25%. Combined with high priority for UOPTV and MU constraining objectives, the MU numbers can be decreased as low as 223±26 MU/Gy. Conclusion:: The priority of UOPTV, MU constraining objective in the optimizer impact on the MU numbers in SBRT treatment for lung cancer. Giving high priority to the UOPTV, setting the strength to maximum value and the max MU to 50% in the MU objective achieves the lowest MU numbers while maintaining comparable or improved OAR sparing

  4. GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Praghnesh [Department of Electrical Engineering, Charotar Institute of Technology, Changa 388 421, Gujarat (India); Roy, Ranjit [Department of Electrical Engineering, S.V. National Institute of Technology, Surat 395 007, Gujarat (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur 713 209, West Bengal (India)

    2010-05-15

    This paper presents the comparative performance analysis of the two specific varieties of controller devices for optimal transient performance of automatic generation control (AGC) of an interconnected two-area power system, having multiple thermal-hydro-diesels mixed generating units. The significant improvement of optimal transient performance is observed with the addition of a thyristor-controlled phase shifter (TCPS) in the tie-line or capacitive energy storage (CES) units fitted in both the areas. Three different optimization algorithms are adopted for the sake of comparison of optimal performances and obtaining the optimal values of the gain settings of the devices independently. Craziness based particle swarm optimization (CRPSO) proves to be moderately fast algorithm and yields true optimal gains and minimum overshoot, minimum undershoot and minimum settling time of the transient response for any system. Comparative studies of TCPS and CES by any algorithm reveals that the CES units fitted in both the areas improve the transient performance to a greater extent following small load disturbance(s) in both the areas. (author)

  5. Optimization of an experimental hybrid microgrid operation: reliability and economic issues

    OpenAIRE

    Milo, Aitor; Gaztañaga, Haizea; Etxeberria Otadui, Ion; Bilbao, Endika; Rodríguez Cortés, Pedro

    2009-01-01

    In this paper a hybrid microgrid system, composed of RES (Renewable Energy System) and CHP (Combined Heat and Power) systems together with a battery based storage system is presented. The microgrid is accompanied by a centralized energy management system (CEMS) in order to optimize the microgrid operation both in grid-connected and in stand-alone modes. In grid-connected mode the optimization of the economic exploitation of the microgrid is privileged by applying optim...

  6. Stochastic Multicriteria Acceptability Analysis for Evaluation of Combined Heat and Power Units

    Directory of Open Access Journals (Sweden)

    Haichao Wang

    2014-12-01

    Full Text Available Combined heat and power (CHP is a promising technology that can contribute to energy efficiency and environmental protection. More CHP-based energy systems are planned for the future. This makes the evaluation and selection of CHP systems very important. In this paper, 16 CHP units representing different technologies are taken into account for multicriteria evaluation with respect to the end users’ requirements. These CHP technologies cover a wide range of power outputs and fuel types. They are evaluated from the energy, economy and environment (3E points of view, specifically including the criteria of efficiency, investment cost, electricity cost, heat cost, CO2 production and footprint. Uncertainties and imprecision are common both in criteria measurements and weights, therefore the stochastic multicriteria acceptability analysis (SMAA model is used in aiding this decision making problem. These uncertainties are treated better using a probability distribution function and Monte Carlo simulation in the model. Moreover, the idea of “feasible weight space (FWS” which represents the union of all preference information from decision makers (DMs is proposed. A complementary judgment matrix (CJM is introduced to determine the FWS. It can be found that the idea of FWS plus CJM is well compatible with SMAA and thus make the evaluation reliable.

  7. Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes

    International Nuclear Information System (INIS)

    Ferreira, Ana C.; Nunes, Manuel L.; Teixeira, José C.F.; Martins, Luís A.S.B.; Teixeira, Senhorinha F.C.F.

    2016-01-01

    Micro-cogeneration systems are a promising technology for improving the energy efficiency near the end user, allowing the optimal use of the primary energy sources and significant reductions in carbon emissions. Its use, still incipient, has a great potential for applications in the residential sector. This study aims to develop a methodology for the thermal-economic optimization of micro cogeneration units using Stirling engine as prime mover and concentrated solar energy as the heat source. The thermal-economic optimization was formulated considering the maximization of the annual worth from the system operation, subjected to the nonlinear thermodynamic and economic constraints. The physical model includes the limitations in the heat transfer processes and losses due to the pumping effects and the costing methodology was defined considering a purchase cost equation representative of each system component. Geometric and operational parameters were selected as decision variables. Numerical simulations were developed in MatLab"® programming language and the Generalized Pattern Search optimization algorithm with MADSPositiveBasis2N was used in the determination of the optimal solution. A positive annual worth for the defined input simulation conditions and the economic analysis disclosed a system, economically attractive, with a payback period of approximately 10 years. - Highlights: • Application of optimization methods to model a renewable powered Stirling engine. • The aim is to optimize design of each plant-component for the best economical outcome. • The objective function is the maximization of annual worth of micro-CHP system. • The optimal solution is sensitive to electricity feed-in-tariffs and fuel prices fluctuations. • The optimal solution is economically attractive, with a payback period of ≈10 years.

  8. Penentuan Rute Patroli Sekuriti Optimal Dengan Menggunakan Metode Nearest Neighbour Dan Insertion (Studi Kasus : South Processing Unit PT. X

    Directory of Open Access Journals (Sweden)

    Fuaddillah Fuaddillah

    2017-03-01

    Full Text Available South Processing Unit (SPU merupakan salah satu lapangan migas di PT. X dengan estimasi harian produksi gas sekitar 450 gas (MMscf/d dan 5000 kondensat (BOPD. Gas dan kondesat yang terpisah dari masing-masing sumur produksi akan dikumpulkan ke dalam satu stasiun pengumpul yang disebut Gathering and Testing Satellite (GTS. Karena statusnya sebagai objek vital nasional, melakukan patroli sekuriti di laut antara GTS yang satu dengan GTS lainnya wajib dilakukan. Proses patroli sekuriti dengan seatruck pada kawasan SPU PT. X masih menggunakan intuisi dari supir seatruck dimana rute yang dipilih adalah rute yang dirasa lebih dekat, lebih nyaman dilalui, dan lebih familiar dengan pengetahuan supir sendiri sehingga menghasilkan total jarak tempuh yang lebih jauh. Penelitian ini bertujuan untuk menerapkan dan membandingkan metode intuitif yang dilakukan oleh supir seatruck dengan metode nearest neighbour dan metode insertion dalam permasalahan penentuan rute patroli sekuriti yang optimal di PT. X pada lokasi SPU. Hasil penelitian menunjukkan bahwa total jarak tempuh dengan menggunakan metode intuitif yang telah diterapkan oleh supir seatruck adalah 72,76 km. Sedangkan, total jarak tempuh yang didapatkan dari menggunakan metode nearest neighbour yaitu 67,67 km dengan persentase penghematan jarak sebesar 6,9%. Dengan metode insertion, didapatkan total jarak tempuh sebesar 61,40 km, dengan persentase penghematan jarak sebesar 15,6% dibandingkan dengan metode intuitif supir seatruck.

  9. The optimal parameter design for a welding unit of manufacturing industry by Taguchi method and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zahraee, S.M.; Chegeni, A.; Toghtamish, A.

    2016-07-01

    Manufacturing systems include a complicated combination of resources, such as materials, labors, and machines. Hence, when the manufacturing systems are faced with a problem related to the availability of resources it is difficult to identify the root of the problem accurately and effectively. Managers and engineers in companies are trying to achieve a robust production line based on the maximum productivity. The main goal of this paper is to design a robust production line, taking productivity into account in the selected manufacturing industry. This paper presents the application of Taguchi method along with computer simulation for finding an optimum factor setting for three controllable factors, which are a number of welding machines, hydraulic machines, and cutting machines by analyzing the effect of noise factors in a selected manufacturing industry. Based on the final results, the optimal design parameter of welding unit of in the selected manufacturing industry will be obtained when factor A is located at level 2 and B and C are located at level 1. Therefore, maximum productive desirability is achieved when the number of welding machines, hydraulic machines, and cutting machines is equal to 17, 2, and 1, respectively. This paper has a significant role in designing a robust production line by considering the lowest cost and timely manner based on the Taguchi method. (Author)

  10. Optimal day-ahead wind-thermal unit commitment considering statistical and predicted features of wind speeds

    International Nuclear Information System (INIS)

    Sun, Yanan; Dong, Jizhe; Ding, Lijuan

    2017-01-01

    Highlights: • A day–ahead wind–thermal unit commitment model is presented. • Wind speed transfer matrix is formed to depict the sequential wind features. • Spinning reserve setting considering wind power accuracy and variation is proposed. • Verified study is performed to check the correctness of the program. - Abstract: The increasing penetration of intermittent wind power affects the secure operation of power systems and leads to a requirement of robust and economic generation scheduling. This paper presents an optimal day–ahead wind–thermal generation scheduling method that considers the statistical and predicted features of wind speeds. In this method, the statistical analysis of historical wind data, which represents the local wind regime, is first implemented. Then, according to the statistical results and the predicted wind power, the spinning reserve requirements for the scheduling period are calculated. Based on the calculated spinning reserve requirements, the wind–thermal generation scheduling is finally conducted. To validate the program, a verified study is performed on a test system. Then, numerical studies to demonstrate the effectiveness of the proposed method are conducted.

  11. The optimal parameter design for a welding unit of manufacturing industry by Taguchi method and computer simulation

    Directory of Open Access Journals (Sweden)

    Seyed Mojib Zahraee

    2016-05-01

    Full Text Available Purpose: Manufacturing systems include a complicated combination of resources, such as materials, labors, and machines. Hence, when the manufacturing systems are faced with a problem related to the availability of resources it is difficult to identify the root of the problem accurately and effectively. Managers and engineers in companies are trying to achieve a robust production line based on the maximum productivity. The main goal of this paper is to design a robust production line, taking productivity into account in the selected manufacturing industry. Design/methodology/approach: This paper presents the application of Taguchi method along with computer simulation for finding an optimum factor setting for three controllable factors, which are a number of welding machines, hydraulic machines, and cutting machines by analyzing the effect of noise factors in a selected manufacturing industry. Findings and Originality/value: Based on the final results, the optimal design parameter of welding unit of in the selected manufacturing industry will be obtained when factor A is located at level 2 and B and C are located at level 1. Therefore, maximum productive desirability is achieved when the number of welding machines, hydraulic machines, and cutting machines is equal to 17, 2, and 1, respectively. This paper has a significant role in designing a robust production line by considering the lowest cost and timely manner based on the Taguchi method.

  12. Environmental burdens over the entire life cycle of a biomass CHP plant

    International Nuclear Information System (INIS)

    Jungmeier, G.; Spitzer, J.; Resch, G.

    1998-01-01

    To increase the use of biomass for energy production it is important to know the possible and significant environmental effects. A life cycle inventory (LCI) was made on a 1.3 MW el biomass CHP plant located in Reuthe/Vorarlberg/Austria with the purpose of analysing the different environmental burdens over the entire life cycle. The plant is fired with coarse and small fuelwood (10,000 t/yr) from industrial waste and forest residues. The boiler for the steam process has a moving grate burner and a muffle burner. The annual production is 4700 MWh of electricity and 29,000 MWh of district heat. The methodology of the analysis is orientated on the ISO Committee Draft of the Series 13,600. The analysis was carried out for the different sections of the biomass plant over their entire life cycle-construction (1 yr), operation (20 yrs) and dismantling (1 yr). The plant in Reuthe, which is the first cogeneration system of this kind in Austria, is a model for other similar projects. The results are shown as environmental burdens of one year and of the entire life cycle. Some results of the life cycle inventory, like the mass and energy balances, selected emissions to air, allocation results and effects on carbon storage pools are given. The results demonstrate that depending on the stage and the period of life, different environmental burdens become significant, i.e. CO 2 emissions of fossil fuels during construction. NO x emission during operation, emissions to soil during dismantling. The different options for allocation the environmental burdens to electricity and heat show a wide range of possible results, depending on the choice of allocation parameters (energy, exergy, credits for heat or electricity, price) i.e. for the particles emissions: 161 mg/kWh el to minus 566 mg/kWh el , 0 mg/kWh th to 118 mg/kWh th . With the results of the analysis it is thus possible for future similar projects to know when and where significant environmental burdens might be further

  13. Micro CHP as a new business model. Trianel distribution system decentralised production; Mikro-BHKW als neues Geschaeftsmodell. Trianel-Netzwerk Dezentrale Erzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Michel [Trianel GmbH, Aachen (Germany)

    2013-04-29

    About four years ago, an energy distribution company in Hamburg (Federal Republic of Germany) reported on mini and micro CHP in the media. When it comes to a decentralized production of electricity and heat, however public utilities are the perfect partner: the decentralized power generation in flexible adjustable combined heat and power plants offers the opportunity to provide highly efficient heat and power directly at the place of consumption. In addition, regional and municipal utilities score with the theme mini and micro CHP for their customers due to the support on the way to more energy efficiency.

  14. Designing and optimization of a micro CHP system based on Solid Oxide Fuel Cell with different fuel processing technologies

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    are the possibility to partially reform hydrocarbon in the fuel cell anode compartment and the possibility to use high quality heat for cogeneration. In this work, different configurations of solid oxide fuel cell system for decentralized electricity production are examined. The Balance of Plant (BoP) components...

  15. Field Demonstration, Optimization, and Rigorous Validation of Peroxygen-Based ISCO for the Remediation of Contaminated Groundwater - CHP Stabilization Protocol

    Science.gov (United States)

    2014-05-01

    treatability testing. • Site mineralogy . If a description or characterization of the site mineralogy indicates high iron and/or manganese oxide content...document concludes with detailed descriptions of two case histories. 3 1 Introduction to Catalyzed H2O2 Propagations In situ chemical oxidation (ISCO...changes in organic matter and mineralogy , particularly iron oxides . Visual inspections can be used to help assess changes in lithology and associated

  16. Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation

    International Nuclear Information System (INIS)

    Wang Haichao; Jiao Wenling; Lahdelma, Risto; Zou Pinghua

    2011-01-01

    Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (β). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at β=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently. - Highlights: ► Combined heating systems comply with the energy structure reformation in China. ► We consider the current state of the art of cogeneration systems in China. ► Combined heating systems can be economically more feasible and sustainable. ► The net heating cost of a combined heating system is more sensitive to coal price. ► The optimal basic heat load ratio is more easily influenced by gas price.

  17. Carbon Debt Payback Time for a Biomass Fired CHP Plant—A Case Study from Northern Europe

    Directory of Open Access Journals (Sweden)

    Kristian Madsen

    2018-03-01

    Full Text Available The European Union (EU has experienced a large increase in the use of biomass for energy in the last decades. In 2015, biomass used to generate electricity, heat, and to a limited extent, liquid fuels accounted for 51% of the EU’s renewable energy production. Bioenergy use is expected to grow substantially to meet energy and climate targets for 2020 and beyond. This development has resulted in analyses suggesting the increased use of biomass for energy might initially lead to increased greenhouse gas (GHG emissions to the atmosphere, a so-called carbon debt. Here, we analyze carbon debt and payback time of substituting coal with forest residues for combined heat and power generation (CHP. The analysis is, in contrast to most other studies, based on empirical data from a retrofit of a CHP plant in northern Europe. The results corroborate findings of a carbon debt, here 4.4 kg CO2eq GJ−1. The carbon debt has a payback time of one year after conversion, and furthermore, the results show that GHG emissions are reduced to 50% relative to continued coal combustion after about 12 years. The findings support the use of residue biomass for energy as an effective means for climate change mitigation.

  18. Five-year outcomes for frontline brentuximab vedotin with CHP for CD30-expressing peripheral T-cell lymphomas.

    Science.gov (United States)

    Fanale, Michelle A; Horwitz, Steven M; Forero-Torres, Andres; Bartlett, Nancy L; Advani, Ranjana H; Pro, Barbara; Chen, Robert W; Davies, Andrew; Illidge, Tim; Uttarwar, Mayur; Lee, Shih-Yuan; Ren, Hong; Kennedy, Dana A; Shustov, Andrei R

    2018-05-10

    This phase 1 study evaluated frontline brentuximab vedotin in combination with cyclophosphamide, doxorubicin, and prednisone (BV+CHP; 6 cycles, then up to 10 cycles of brentuximab vedotin monotherapy) in 26 patients with CD30 + peripheral T-cell lymphoma, including 19 with systemic anaplastic large cell lymphoma. All patients (100%) achieved an objective response, with a complete remission (CR) rate of 92%; none received a consolidative stem cell transplant. After a median observation period of 59.6 months (range, 4.6-66.0) from first dose, neither the median progression-free survival (PFS) nor the median overall survival (OS) was reached. No progression or death was observed beyond 35 months. The estimated 5-year PFS and OS rates were 52% and 80%, respectively. Eighteen of 19 patients (95%) with treatment-emergent peripheral neuropathy (PN) reported resolution or improvement of symptoms. Thirteen patients (50%) remained in remission at the end of the study, with PFS ranging from 37.8+ to 66.0+ months. Eight of these 13 patients received the maximum 16 cycles of study treatment. These final results demonstrate durable remissions in 50% of patients treated with frontline BV+CHP, suggesting a potentially curative treatment option for some patients. This trial was registered at www.clinicaltrials.gov as #NCT01309789. © 2018 by The American Society of Hematology.

  19. Reverse line blot probe design and polymerase chain reaction optimization for bloodmeal analysis of ticks from the eastern United States.

    Science.gov (United States)

    Scott, M C; Harmon, J R; Tsao, J I; Jones, C J; Hickling, G J

    2012-05-01

    Determining the host preference of vector ticks is vital to elucidating the eco-epidemiology of the diseases they spread. Detachment of ticks from captured hosts can provide evidence of feeding on those host species, but only for those species that are feasible to capture. Recently developed, highly sensitive molecular assays show great promise in allowing host selection to be determined from minute traces of host DNA that persist in recently molted ticks. Using methods developed in Europe as a starting-point, we designed 12S rDNA mitochondrial gene probes suitable for use in a reverse line blot (RLB) assay of ticks feeding on common host species in the eastern United States. This is the first study to use the 12S mitochondrial gene in a RLB bloodmeal assay in North America. The assay combines conventional PCR with a biotin-labeled primer and reverse line blots that can be stripped and rehybridized up to 20 times, making the method less expensive and more straightforward to interpret than previous methods of tick bloodmeal identification. Probes were designed that target the species, genus, genus group, family, order, or class of eight reptile, 13 birds, and 32 mammal hosts. After optimization, the RLB assay correctly identified the current hostspecies for 99% of ticks [Amblyomma americanum (L.) and eight other ixodid tick species] collected directly from known hosts. The method identified previous-host DNA for approximately half of all questing ticks assayed. Multiple bloodmeal determinations were obtained in some instances from feeding and questing ticks; this pattern is consistent with previous RLB studies but requires further investigation. Development of this probe library, suitable for eastern U.S. ecosystems, opens new avenues for eco-epidemiological investigations of this region's tick-host systems.

  20. Optimal interpolation schemes to constrain pmPM2.5 in regional modeling over the United States

    Science.gov (United States)

    Sousan, Sinan Dhia Jameel

    This thesis presents the use of data assimilation with optimal interpolation (OI) to develop atmospheric aerosol concentration estimates for the United States at high spatial and temporal resolutions. Concentration estimates are highly desirable for a wide range of applications, including visibility, climate, and human health. OI is a viable data assimilation method that can be used to improve Community Multiscale Air Quality (CMAQ) model fine particulate matter (PM2.5) estimates. PM2.5 is the mass of solid and liquid particles with diameters less than or equal to 2.5 µm suspended in the gas phase. OI was employed by combining model estimates with satellite and surface measurements. The satellite data assimilation combined 36 x 36 km aerosol concentrations from CMAQ with aerosol optical depth (AOD) measured by MODIS and AERONET over the continental United States for 2002. Posterior model concentrations generated by the OI algorithm were compared with surface PM2.5 measurements to evaluate a number of possible data assimilation parameters, including model error, observation error, and temporal averaging assumptions. Evaluation was conducted separately for six geographic U.S. regions in 2002. Variability in model error and MODIS biases limited the effectiveness of a single data assimilation system for the entire continental domain. The best combinations of four settings and three averaging schemes led to a domain-averaged improvement in fractional error from 1.2 to 0.97 and from 0.99 to 0.89 at respective IMPROVE and STN monitoring sites. For 38% of OI results, MODIS OI degraded the forward model skill due to biases and outliers in MODIS AOD. Surface data assimilation combined 36 × 36 km aerosol concentrations from the CMAQ model with surface PM2.5 measurements over the continental United States for 2002. The model error covariance matrix was constructed by using the observational method. The observation error covariance matrix included site representation that

  1. ANALYSIS AND PARAMETRIC OPTIMIZATION OF ENERGY-AND-TECHNOLOGY UNITS ON THE BASIS OF THE POWER EQUIPMENT OF COMPRESSOR PLANTS OF MAIN GAS PIPELINES

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2017-01-01

    Full Text Available On the basis of the gas compressor units of compressor plants of a main gas pipeline mathematical models of the macro-level were generated for analysis and parametric optimization of combined energy-and-technology units. In continuation of the study these models was applied to obtain the regression dependencies. For this purpose, a numerical experiment was used which had been designed with the use of regression analysis mathematical tool, which assumes that the test results should represent independent, normally distributed, random variables with approximately equal variance. Herewith we study the dependence of the optimization criterion on the value of control parameters (factors. Planning, conducting and processing of results of the experiment was conducted in the following sequence: choice of the optimization criteria, selection of control parameters (factors, encoding factors, the matrix of experiment compiling, assessing significance of regression coefficients, testing the adequacy of the model and reproducibility of the experiments. As the optimization criteria the electricity capacity and efficiency of combined energy-technology units were adopted. As control parameters for the installation with a gas-expansion-and-generator machine the temperature of the fuel gas before the expander, the pressure of the fuel gas after the expander and the temperature of the air supplied to the compressor of the engine were adopted, while for the steam turbine the adopted optimization criteria were compression in the compressor of the engine, the steam consumption for the technology and the temperature of the air supplied to the compressor of the engine. The application of the outlined methodological approach makes it possible to obtain a simple polynomial dependence, which significantly simplify the procedures of analysis, parametric optimization and evaluation of efficiency in the feasibility studies of the options of construction of the energy

  2. Comprehensive Energy Assessment: EE and RE Project Optimization Modeling for United States Pacific Command (USPACOM) American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance

    Energy Technology Data Exchange (ETDEWEB)

    Brigantic, Robert T.; Papatyi, Anthony F.; Perkins, Casey J.

    2010-09-30

    This report summarizes a study and corresponding model development conducted in support of the United States Pacific Command (USPACOM) as part of the Federal Energy Management Program (FEMP) American Reinvestment and Recovery Act (ARRA). This research was aimed at developing a mathematical programming framework and accompanying optimization methodology in order to simultaneously evaluate energy efficiency (EE) and renewable energy (RE) opportunities. Once developed, this research then demonstrated this methodology at a USPACOM installation - Camp H.M. Smith, Hawaii. We believe this is the first time such an integrated, joint EE and RE optimization methodology has been constructed and demonstrated.

  3. Marketing opportunities for CHP electricity in a virtual power plant. Direct and indirect marketing of flexibility; Vermarktungschancen fuer KWK-Strom im virtuellen Kraftwerk. Direkte und indirekte Flexibilitaetsvermarktung

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Achim; Baumgart, Bastian [Trianel GmbH, Aachen (Germany). Abt. Virtuelle Kraftwerke

    2013-07-15

    The increasingly fluctuating feed-in of electricity by means of a rapid expansion of renewable energies results in an increasing demand for flexible performance for the regulation of production and consumption. An important part of the necessary flexibility could be provided by CHP plants. Their potential of flexibility is not always fully exploited.

  4. Integrated energy markets and varying degrees of liberalisation: price links, bundled sales and CHP production exemplified by Northern European experiences

    International Nuclear Information System (INIS)

    Jacobsen, H.K.; Fristrup, P.; Munksgaard, J.

    2006-01-01

    Liberalisation of energy markets has during the last 20 years been gradually introduced in many countries. The liberalisation has led to concerns regarding the markets' state of competition and fears that market power existence can result in less efficiency gains than what is expected from liberalisation. Concerns have also been raised as to whether specific consumer groups will be affected by limited competition in markets. Much of the concern has been concentrated on the electricity markets, but the development of energy sectors with integration of activities within natural gas, electricity and the oil sector creates the need to examine market power aspects across these markets. This paper examines the concentration trends in the Northern European markets for electricity and natural gas, combined with regional district heating aspects, especially with respect to the situation in Denmark. The situation with natural gas companies supplying to both small-scale CHP and to retail heat customers is discussed, for instance, which changes of regulatory regime for domestic heating customers should be considered when the natural gas market is being liberalised? The interlinked nature of the energy markets is described and examples of impacts from one market with limited competition to other markets with seemingly well-functioning competition are given. The specific case of large CHP production facilities with output on the regulated district heating market and the competitive Nordic electricity market is examined. How much of the fluctuations in price experienced in electricity markets should be reflected in the price of heating supplies? To which degree do the heating customers have to bear the burden of low-electricity market prices? Regulation of liberalised markets is discussed focusing on the interaction between one regulated market and the related energy markets that are liberalised. Existing regulation on the markets are compared to a situation where liberalisation

  5. Integrated energy markets and varying degrees of liberalisation: Price links, bundled sales and CHP production exemplified by Northern European experiences

    International Nuclear Information System (INIS)

    Klinge Jacobsen, Henrik; Fristrup, Peter; Munksgaard, Jesper

    2006-01-01

    Liberalisation of energy markets has during the last 20 years been gradually introduced in many countries. The liberalisation has led to concerns regarding the markets' state of competition and fears that market power existence can result in less efficiency gains than what is expected from liberalisation. Concerns have also been raised as to whether specific consumer groups will be affected by limited competition in markets. Much of the concern has been concentrated on the electricity markets, but the development of energy sectors with integration of activities within natural gas, electricity and the oil sector creates the need to examine market power aspects across these markets. This paper examines the concentration trends in the Northern European markets for electricity and natural gas, combined with regional district heating aspects, especially with respect to the situation in Denmark. The situation with natural gas companies supplying to both small-scale CHP and to retail heat customers is discussed, for instance, which changes of regulatory regime for domestic heating customers should be considered when the natural gas market is being liberalised? The interlinked nature of the energy markets is described and examples of impacts from one market with limited competition to other markets with seemingly well-functioning competition are given. The specific case of large CHP production facilities with output on the regulated district heating market and the competitive Nordic electricity market is examined. How much of the fluctuations in price experienced in electricity markets should be reflected in the price of heating supplies? To which degree do the heating customers have to bear the burden of low-electricity market prices? Regulation of liberalised markets is discussed focusing on the interaction between one regulated market and the related energy markets that are liberalised. Existing regulation on the markets are compared to a situation where liberalisation

  6. Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The objective of the project ''Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization'' was to combine the Danish experiences with the Stirling engine and updraft gasification with the application of the FLOX gas burner technology for developing and demonstrating a flexible biomass-based small scale CHP plant with 75 kW electrical output, high power efficiency and low emissions. Further, the project has aimed at increasing the technology's reliability and decreasing the need for service. Also, the project has included the development of a control and communication system for unmanned start-up and operation of the plant. During the project the objective was altered and so the development of a new Stirling engine design was done on the 4-cylindred 35 kWe Stirling engine instead of the 8-cylindred 75 kWe Stirling engine. Focus has been on designing a more durable engine designed for easy and fast service. Cold test of the engine has been successful and now full-scale hot tests are to be performed. In the project Stirling DK has also in cooperation with project partner Danish gas Technology Centre developed the Stirling Engine with Diluted Oxidation (SEDIOX) concept which is a combustion technology based on the diluted oxidation principle. A trademark is obtained and also a patent application is filed and pending regarding the SEDIOX combustion chamber concept. All components for the Stirling gasification plant were produced and installed at Svanholm Estate. The plant consisted of one conventional combustion chamber and one SD3E-type Stirling engine. The plant was commissioned in June 2009 and 1,472 hours of operation and 43 MWh of electricity production was achieved before the plant was de-commissioned in February 2010 due to divergences between Svanholm Estate and Stirling DK. During operation the control system including remote access was tested thoroughly and with great success. The new overall

  7. A Comparative Study of Fuzzy Logic, Genetic Algorithm, and Gradient-Genetic Algorithm Optimization Methods for Solving the Unit Commitment Problem

    Directory of Open Access Journals (Sweden)

    Sahbi Marrouchi

    2014-01-01

    Full Text Available Due to the continuous increase of the population and the perpetual progress of industry, the energy management presents nowadays a relevant topic that concerns researchers in electrical engineering. Indeed, in order to establish a good exploitation of the electrical grid, it is necessary to solve technical and economic problems. This can only be done through the resolution of the Unit Commitment Problem. Unit Commitment Problem allows optimizing the combination of the production units’ states and determining their production planning, in order to satisfy the expected consumption with minimal cost during a specified period which varies usually from 24 hours to one week. However, each production unit has some constraints that make this problem complex, combinatorial, and nonlinear. This paper presents a comparative study between a strategy based on hybrid gradient-genetic algorithm method and two strategies based on metaheuristic methods, fuzzy logic, and genetic algorithm, in order to predict the combinations and the unit commitment scheduling of each production unit in one side and to minimize the total production cost in the other side. To test the performance of the optimization proposed strategies, strategies have been applied to the IEEE electrical network 14 busses and the obtained results are very promising.

  8. Future plans for performance analysis and maintenance/inspection optimization of shutoff rods based on the case study of Bruce Power Unit-3 Shutoff Rod 5 inspection

    International Nuclear Information System (INIS)

    Nasimi, E.; Gabbar, H.A.

    2011-01-01

    Shutdown System 1 (SDS1) is a preferred method for a quick shutdown of nuclear fission process in CANDU (CANada Deuterium Uranium) reactor units. Failure of a routine SDS1 safety test during Fall 2009 outage resulted in the need to develop and execute a new methodology for Shutoff Rod inspection and re-evaluate the known degradation mechanisms and failure modes. This paper describes the development of this methodology and the obtained results. It also proposes several alternative solutions for the future performance analysis and maintenance/inspection optimization for SDS1 Shutoff Rods based on the Bruce Power Unit-3 Shutoff Rod 5 case study. (author)

  9. Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China

    International Nuclear Information System (INIS)

    Liao, Chunhui; Ertesvåg, Ivar S.; Zhao, Jianing

    2013-01-01

    The efficiencies of coal-fired CHP (combined heat and power) plants used in the district heating systems of China were analyzed with a thermodynamic model in the Hysys program. The influences of four parameters were evaluated by the Taguchi method. The results indicated that the extraction steam flow rate and extraction steam pressure are the most important parameters for energetic and exergetic efficiencies, respectively. The relations between extraction steam flow rate, extraction steam pressure and the energetic and exergetic efficiencies were investigated. The energetic and exergetic efficiencies were compared to the RPES (relative primary energy savings) and the RAI (relative avoided irreversibility). Compared to SHP (separate heat and power) generation, the CHP systems save fuel energy when extraction ratio is larger than 0.15. In the analysis of RAI, the minimum extraction ratio at which CHP system has advantages compared with SHP varies between 0.25 and 0.6. The higher extraction pressure corresponds to a higher value. Two of the examined plants had design conditions giving RPES close to zero and negative RAI. The third had both positive RPES and RAI at design conditions. The minimum extraction ratio can be used as an indicator to design or choose CHP plant for a given district heating system. - Highlights: • Extraction flow rate and extraction pressure are the most important parameters. • The exergetic efficiency depends on the energy to exergy ratio and system boundary. • The minimum extraction ratio is a key indicator for CHP plants. • Program Hysys and Taguchi method are used in this research

  10. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    Science.gov (United States)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  11. Development and test of a Stirling engine driven by waste gases for the micro-CHP system

    International Nuclear Information System (INIS)

    Li Tie; Tang Dawei; Li Zhigang; Du Jinglong; Zhou Tian; Jia Yu

    2012-01-01

    In recent years, micro-CHP systems are attracting world attention. As one kind of external heating engines, Stirling engines could be applied to the micro-CHP systems driven by solar, biogas, mid-high temperature waste gases and many other heat sources. The development of a Stirling engine driven by mid-high temperature waste gases is presented first. The thermodynamic design method, the key parameters of the designed Stirling engine and its combustion chamber adapted for waste gases are described in detail. Then the performance test of the Stirling engine is carried out. During the test, the temperature of the heater head is monitored by thermocouples, and the pressure of the working fluid helium in the Stirling engine is monitored by pressure sensors. The relationships among the output shaft power, torque and speed are studied, and the pressure losses of the working fluid in the heat exchanger system are also analyzed. The test results demonstrate that the output shaft power could reach 3476 W at 1248 RPM, which is in good agreement with the predicted value of 3901 W at 1500 RPM. The test results confirm the fact that Stirling engines driven by mid-high temperature waste gases are able to achieve a valuable output power for engineering application. - Highlights: ► A β-type Stirling engine whose output power could reach about 3.5 kW is developed by ourselves. ► Waste gases are used as the heat source to drive the Stirling engine. ► Test on the relationship among the power, torque, and speed are presented. ► The pressure changing process of the working fluid in the heat exchanger system during the test is recorded and analyzed.

  12. Financial stability, wealth effects and optimal macroeconomic policy combination in the United Kingdom: A new-Keynesian dynamic stochastic general equilibrium framework

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Nasir

    2016-12-01

    Full Text Available This study derives an optimal macroeconomic policy combination for financial sector stability in the United Kingdom by employing a New Keynesian Dynamic Stochastic General Equilibrium (NK-DSGE framework. The empirical results obtained show that disciplined fiscal and accommodative monetary policies stance is optimal for financial sector stability. Furthermore, fiscal indiscipline countered by contractionary monetary stance adversely affects financial sector stability. Financial markets, e.g. stocks and Gilts show a short-term asymmetric response to macroeconomic policy interaction and to each other. The asymmetry is a reflection of portfolio adjustment. However in the long-run, the responses to suggested optimal policy combination had homogenous effects and there was evidence of co-movement in the stock and Gilt markets.

  13. Mathematical modelling and optimization of a large-scale combined cooling, heat, and power system that incorporates unit changeover and time-of-use electricity price

    International Nuclear Information System (INIS)

    Zhu, Qiannan; Luo, Xianglong; Zhang, Bingjian; Chen, Ying

    2017-01-01

    Highlights: • We propose a novel superstructure for the design and optimization of LSCCHP. • A multi-objective multi-period MINLP model is formulated. • The unit start-up cost and time-of-use electricity prices are involved. • Unit size discretization strategy is proposed to linearize the original MINLP model. • A case study is elaborated to demonstrate the effectiveness of the proposed method. - Abstract: Building energy systems, particularly large public ones, are major energy consumers and pollutant emission contributors. In this study, a superstructure of large-scale combined cooling, heat, and power system is constructed. The off-design unit, economic cost, and CO_2 emission models are also formulated. Moreover, a multi-objective mixed integer nonlinear programming model is formulated for the simultaneous system synthesis, technology selection, unit sizing, and operation optimization of large-scale combined cooling, heat, and power system. Time-of-use electricity price and unit changeover cost are incorporated into the problem model. The economic objective is to minimize the total annual cost, which comprises the operation and investment costs of large-scale combined cooling, heat, and power system. The environmental objective is to minimize the annual global CO_2 emission of large-scale combined cooling, heat, and power system. The augmented ε–constraint method is applied to achieve the Pareto frontier of the design configuration, thereby reflecting the set of solutions that represent optimal trade-offs between the economic and environmental objectives. Sensitivity analysis is conducted to reflect the impact of natural gas price on the combined cooling, heat, and power system. The synthesis and design of combined cooling, heat, and power system for an airport in China is studied to test the proposed synthesis and design methodology. The Pareto curve of multi-objective optimization shows that the total annual cost varies from 102.53 to 94.59 M

  14. Decision Support Tools for Electricity Retailers, Wind Power and CHP Plants Using Probabilistic Forecasts

    Directory of Open Access Journals (Sweden)

    Marco Zugno

    2015-06-01

    Full Text Available This paper reviews a number of applications of optimization under uncertainty in energy markets resulting from the research project ENSYMORA. A general mathematical formulation applicable to problems of optimization under uncertainty in energy markets is presented. This formulation can be effortlessly adapted to describe different approaches: the deterministic one (usable within a rolling horizon scheme, stochastic programming and robust optimization. The different features of this mathematical formulation are duly interpreted with a view to the energy applications reviewed in this paper: trading for a price-maker wind power producer, management of heat and power systems, operation for retailers in a dynamic-price market. A selection of results shows the viability and appropriateness of the presented stochastic optimization approaches for managing energy systems under uncertainty.

  15. Thermodynamic and economic analysis of integrating lignocellulosic bioethanol production in a Danish combined heat and power unit

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    bioethanol production in the Danish CHP unit Avedøreværket 1. Numerical models of the plants were developed, and feasible integration solutions were identified and optimised using exergy analysis. Hour-wise production simulations were run over a reference year, and market prices and economic parameters from...

  16. Present status of reactor physics in the United States and Japan-III. 2. Nuclear Fuel Management Optimization Capabilities

    International Nuclear Information System (INIS)

    Karve, Atul A.; Keller, Paul M.; Turinsky, Paul J.; Maldonado, G. Ivan

    2001-01-01

    Nuclear fuel management is a very difficult design optimization problem in that decisions ranging from the microscopic level, e.g., pin enrichment, to the macroscopic level, e.g., core flow rate, and spanning time horizons of several reload cycles are strongly coupled. Added to these attributes are the highly constrained design, disjointed decision space, multimodal objective function, mixed integer type decision variables, highly nonlinear objective and constraint functions, and computationally demanding evaluation of the objective and constraint functions. Not surprisingly, after years of research on nuclear fuel management optimization, only limited progress has been made. The traditional approach to partially overcome these difficulties involves constraining the search space via heuristic rules, decomposing the problem into sub-optimization problems, and utilizing simplified core physics models. These approaches have sometimes proven effective, but to claim that the design decisions are global optimum decisions would not be appropriate. Given the increasingly tight constraints and design complexities of nuclear cores, and stronger desire to reduce generating costs, the nuclear fuel management design optimization problem has grown more challenging and important with the passage of time. In this paper, we summarize our research on this design optimization problem. A suite of computer codes that aid in making nuclear fuel management decisions has been developed. From Table I, it is obvious that decomposition of the global optimization problem into suboptimum problems has been employed. All of these computer codes utilize stochastic optimization techniques to search the decision space for determining the family of near-optimum decisions in the sub-optimization problem being solved. A stochastic optimization approach has been selected since it is well suited to address the problems' attributes noted earlier. The drawback of employing a stochastic optimization

  17. Evaluating biomass energy strategies for a UK eco-town with an MILP optimization model

    International Nuclear Information System (INIS)

    Keirstead, James; Samsatli, Nouri; Pantaleo, A. Marco; Shah, Nilay

    2012-01-01

    Recent years have shown a marked interest in the construction of eco-towns, showcase developments intended to demonstrate the best in ecologically-sensitive and energy-efficient construction. This paper examines one such development in the UK and considers the role of biomass energy systems. We present an integrated resource modelling framework that identifies an optimized low-cost energy supply system including the choice of conversion technologies, fuel sources, and distribution networks. Our analysis shows that strategies based on imported wood chips, rather than locally converted forestry residues, burned in a mix of ICE and ORC combined heat and power facilities offer the most promise. While there are uncertainties surrounding the precise environmental impacts of these solutions, it is clear that such biomass systems can help eco-towns to meet their target of an 80% reduction in greenhouse gas emissions. -- Highlights: ► An optimization model for urban biomass energy system design is presented. ► Tool selects technologies, operating rates, supply infrastructures. ► Five technology scenarios evaluated for a UK eco-town proposal. ► Results show ICE and ORC CHP units, fed by wood chips, promising. ► Results show biomass can help eco-towns achieve 80% GHG emission reductions.

  18. 4E analysis and multi objective optimization of a micro gas turbine and solid oxide fuel cell hybrid combined heat and power system

    Science.gov (United States)

    Sanaye, Sepehr; Katebi, Arash

    2014-02-01

    Energy, exergy, economic and environmental (4E) analysis and optimization of a hybrid solid oxide fuel cell and micro gas turbine (SOFC-MGT) system for use as combined generation of heat and power (CHP) is investigated in this paper. The hybrid system is modeled and performance related results are validated using available data in literature. Then a multi-objective optimization approach based on genetic algorithm is incorporated. Eight system design parameters are selected for the optimization procedure. System exergy efficiency and total cost rate (including capital or investment cost, operational cost and penalty cost of environmental emissions) are the two objectives. The effects of fuel unit cost, capital investment and system power output on optimum design parameters are also investigated. It is observed that the most sensitive and important design parameter in the hybrid system is fuel cell current density which has a significant effect on the balance between system cost and efficiency. The selected design point from the Pareto distribution of optimization results indicates a total system exergy efficiency of 60.7%, with estimated electrical energy cost 0.057 kW-1 h-1, and payback period of about 6.3 years for the investment.

  19. Decision Support Tools for Electricity Retailers, Wind Power and CHP Plants Using Probabilistic Forecasts

    DEFF Research Database (Denmark)

    Zugno, Marco; Morales González, Juan Miguel; Madsen, Henrik

    2015-01-01

    : trading for a price-maker wind power producer, management of heat and power systems, operation for retailers in a dynamic-price market. A selection of results shows the viability and appropriateness of the presented stochastic optimization approaches for managing energy systems under uncertainty....

  20. HIV-related stigma and optimism as predictors of anxiety and depression among HIV-positive men who have sex with men in the United Kingdom and Ireland.

    Science.gov (United States)

    Murphy, Patrick J; Garrido-Hernansaiz, Helena; Mulcahy, Fiona; Hevey, David

    2018-03-01

    This study investigated the associations between forms of HIV-related optimism, HIV-related stigma, and anxiety and depression among HIV-positive men who have sex with men (MSM) in the United Kingdom and Ireland. HIV health optimism (HHO) and HIV transmission optimism (HTO) were hypothesised to be protective factors for anxiety and depression, while the components of HIV-related stigma (enacted stigma, disclosure concerns, concern with public attitudes, and internalised stigma) were hypothesised to be risk factors. Data were collected from 278 HIV-positive MSM using an online questionnaire. The prevalence of psychological distress was high, with close to half (48.9%) of all participants reporting symptoms of anxiety, and more than half (57.9%) reporting symptoms of depression. Multiple linear regressions revealed that both anxiety and depression were positively predicted by internalised stigma and enacted stigma, and negatively predicted by HHO. For both anxiety and depression, internalised stigma was the strongest and most significant predictor. The results highlight the continued psychological burden associated with HIV infection among MSM, even as community support services are being defunded across the United Kingdom and Ireland. The results point to the need for clinicians and policy makers to implement stigma reduction interventions among this population.

  1. Optimism/pessimism and health-related quality of life during pregnancy across three continents: a matched cohort study in China, Ghana, and the United States

    Directory of Open Access Journals (Sweden)

    Calhoun Cecilia

    2009-09-01

    Full Text Available Abstract Background Little is known about how optimism/pessimism and health-related quality of life compare across cultures. Methods Three samples of pregnant women in their final trimester were recruited from China, Ghana, and the United States (U.S.. Participants completed a survey that included the Life Orientation Test - Revised (LOT-R, an optimism/pessimism measure, the Short Form 12 (SF-12, a quality of life measure, and questions addressing health and demographic factors. A three-country set was created for analysis by matching women on age, gestational age at enrollment, and number of previous pregnancies. Anovas with post-hoc pairwise comparisons were used to compare results across the cohorts. Multivariate regression analysis was used to create a model to identify those variables most strongly associated with optimism/pessimism. Results LOT-R scores varied significantly across cultures in these samples, with Ghanaian pregnant women being the most optimistic and least pessimistic and Chinese pregnant women being the least optimistic overall and the least pessimistic in subscale analysis. Four key variables predicted approximately 20% of the variance in overall optimism scores: country of origin (p = .006, working for money (p = .05; level of education (p = .002, and ever being treated for emotional issues with medication (p Conclusion This research raises important questions regarding what it is about country of origin that so strongly influences optimism/pessimism among pregnant women. Further research is warranted exploring underlying conceptualization of optimism/pessimism and health related quality of life across countries.

  2. Optimization of Phasor Measurement Unit (PMU Placement in Supervisory Control and Data Acquisition (SCADA-Based Power System for Better State-Estimation Performance

    Directory of Open Access Journals (Sweden)

    Mohammad Shoaib Shahriar

    2018-03-01

    Full Text Available Present-day power systems are mostly equipped with conventional meters and intended for the installation of highly accurate phasor measurement units (PMUs to ensure better protection, monitoring and control of the network. PMU is a deliberate choice due to its unique capacity in providing accurate phasor readings of bus voltages and currents. However, due to the high expense and a requirement for communication facilities, the installation of a limited number of PMUs in a network is common practice. This paper presents an optimal approach to selecting the locations of PMUs to be installed with the objective of ensuring maximum accuracy of the state estimation (SE. The optimization technique ensures that the critical locations of the system will be covered by PMU meters which lower the negative impact of bad data on state-estimation performance. One of the well-known intelligent optimization techniques, the genetic algorithm (GA, is used to search for the optimal set of PMUs. The proposed technique is compared with a heuristic approach of PMU placement. The weighted least square (WLS, with a modified Jacobian to deal with the phasor quantities, is used to compute the estimation accuracy. IEEE 30-bus and 118-bus systems are used to demonstrate the suggested technique.

  3. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    ) process and the Stirling engine process. The ORC process represents an economically interesting technology for small-scale biomass-fired combined heat and power plants in a power range between 400 and 1,500 kWel. A newly developed ORC technology with a nominal electric capacity of 1,000 kW was implemented...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  4. New CHP plant for a rubber products manufacturer; Nueva planta e cogeneración para un fabricante de productos de hule

    Energy Technology Data Exchange (ETDEWEB)

    Vila, R.; Martí, C.

    2016-07-01

    At the end of 2014 the company Industrias de Hule Galgo decided to undertake the installation project of an efficient CHP plant for its production plant, with the aim of bringing down energy costs and improving the company’s competitive position in the market. The new plant has already started its first operational phase. The project has comprised the installation of a single cycle with gas-powered gensets providing a total electrical capacity of 6.6 MW. This provides the necessary thermal oil for the production plant; covers 100% of the electrical power consumed by the industrial complex; and also generates cooling water, giving improved production capacity by supercooling the extrusion system. To execute these works, Industrias de Hule Galgo contracted the services of engineering company AESA to provide the engineering, procurement and construction of the CHP plant. (Author)

  5. Energetic and Exergetic Analysis of a Heat Exchanger Integrated in a Solid Biomass-Fuelled Micro-CHP System with an Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Marie Creyx

    2016-04-01

    Full Text Available A specific heat exchanger has been developed to transfer heat from flue gas to the working fluid (hot air of the Ericsson engine of a solid biomass-fuelled micro combined heat and power (CHP. In this paper, the theoretical and experimental energetic analyses of this heat exchanger are compared. The experimental performances are described considering energetic and exergetic parameters, in particular the effectiveness on both hot and cold sides. A new exergetic parameter called the exergetic effectiveness is introduced, which allows a comparison between the real and the ideal heat exchanger considering the Second Law of Thermodynamics. A global analysis of exergetic fluxes in the whole micro-CHP system is presented, showing the repartition of the exergy destruction among the components.

  6. Researching of the possibility of using absorption heat exchangers for creating the low return temperature heat supply systems based on CHP generation

    Science.gov (United States)

    Yavorovsky, Y. V.; Malenkov, A. S.; Zhigulina, Y. V.; Romanov, D. O.; Kurzanov, S. Y.

    2017-11-01

    This paper deals with the variant of modernization of the heat point within urban heat supply network in order to create the system of heat and cold supply on its basis, providing the suppliers with heat in cold months and with heat and cold in warm months. However, in cold months in the course of heating system operation, the reverse delivery water temperature is maintained below 40 °C. The analysis of heat and power indicators of the heat and cold supply system under different operating conditions throughout the year was conducted. The possibility to use the existing heat networks for the cold supply needs was estimated. The advantages of the system over the traditional heat supply systems that use Combined Heat and Power (CHP) plant as a heat source as exemplified by heat supply system from CHP with ST-80 turbine were demonstrated.

  7. Multi-objective optimization for the maximization of the operating share of cogeneration system in District Heating Network

    International Nuclear Information System (INIS)

    Franco, Alessandro; Versace, Michele

    2017-01-01

    Highlights: • Combined Heat and Power plants and civil/residential energy uses. • CHP plant supported by auxiliary boilers and thermal energy storage. • Definition of optimal operational strategies for cogeneration plants for District Heating. • Optimal-sized Thermal Energy Storage and a hybrid operational strategy. • Maximization of cogeneration share and reduction of time of operation of auxiliary boilers. - Abstract: The aim of the paper is to define optimal operational strategies for Combined Heat and Power plants connected to civil/residential District Heating Networks. The role of a reduced number of design variables, including a Thermal Energy Storage system and a hybrid operational strategy dependent on the storage level, is considered. The basic principle is to reach maximum efficiency of the system operation through the utilization of an optimal-sized Thermal Energy Storage. Objective functions of both energetic and combined energetic and economic can be considered. In particular, First and Second Law Efficiency, thermal losses of the storage, number of starts and stops of the combined heat and power unit are considered. Constraints are imposed to nullify the waste of heat and to operate the unit at its maximum efficiency for the highest possible number of consecutive operating hours, until the thermal tank cannot store more energy. The methodology is applied to a detailed case study: a medium size district heating system, in an urban context in the northern Italy, powered by a combined heat and power plant supported by conventional auxiliary boilers. The issues involving this type of thermal loads are also widely investigated in the paper. An increase of Second Law Efficiency of the system of 26% (from 0.35 to 0.44) can be evidenced, while the First Law Efficiency shifts from about 0.74 to 0.84. The optimization strategy permits of combining the economic benefit of cogeneration with the idea of reducing the energy waste and exergy losses.

  8. Increasing the flexibility of operational scheduling for a large-scale CHP plant used for generating district heat and electricity in order to meet the varying market demands; Steigerung der Einsatzflexibilitaet einer grossen KWK-Anlage zur Fernwaerme- und Stromerzeugung gemaess aktueller Marktanforderungen

    Energy Technology Data Exchange (ETDEWEB)

    Meierer, Matthias; Krupp, Roland; Stork, Rolf [Grosskraftwerk Mannheim AG, Mannheim (Germany)

    2015-07-01

    The substantial changes in the structure of German power supply plants pose high demands on the flexibility of the operational scheduling of conventional thermal power plants. Grosskraftwerk Mannheim AG is a power plant company that is operating a plant for combined power and district heat generation. The paper describes some measures which have been taken to improve the plant's operational flexibility. In addition, the associated technical systems and their functions, as well as the state of ongoing projects are outlined. Special focus is placed on topics related to issues such as ''district-heat storage unit of the new unit 9, flexibility of operational scheduling, and efficient CHP plant operation''.

  9. Optimizing Surveillance for South American Origin Influenza A Viruses Along the United States Gulf Coast Through Genomic Characterization of Isolates from Blue-winged Teal (Anas discors).

    Science.gov (United States)

    Ramey, A M; Walther, P; Link, P; Poulson, R L; Wilcox, B R; Newsome, G; Spackman, E; Brown, J D; Stallknecht, D E

    2016-04-01

    Relative to research focused on inter-continental viral exchange between Eurasia and North America, less attention has been directed towards understanding the redistribution of influenza A viruses (IAVs) by wild birds between North America and South America. In this study, we genomically characterized 45 viruses isolated from blue-winged teal (Anas discors) along the Texas and Louisiana Gulf Coast during March of 2012 and 2013, coincident with northward migration of this species from Neotropical wintering areas to breeding grounds in the United States and Canada. No evidence of South American lineage genes was detected in IAVs isolated from blue-winged teal supporting restricted viral gene flow between the United States and southern South America. However, it is plausible that blue-winged teal redistribute IAVs between North American breeding grounds and wintering areas throughout the Neotropics, including northern South America, and that viral gene flow is limited by geographical barriers further south (e.g., the Amazon Basin). Surveillance for the introduction of IAVs from Central America and northern South America into the United States may be further optimized through genomic characterization of viruses resulting from coordinated, concurrent sampling efforts targeting blue-winged teal and sympatric species throughout the Neotropics and along the United States Gulf Coast. © Published 2014. This article is a US Government work and is in the public domain in the USA.

  10. A study on the optimization of test interval for check valves of Ulchin Unit 3 using the risk-informed in-service testing approach

    International Nuclear Information System (INIS)

    Kang, D. I.; Kim, K. Y.; Yang, Z. A.; Ha, J. J.

    2002-01-01

    We optimized the test interval for check valves of Ulchin Unit 3 using the risk-informed in-service testing (IST) approach. First, we categorized the IST check valves for Ulchin Unit 3 according to their contributions to the safety of Ulchin Unit 3. Next, we performed the risk analysis on the relaxation of test interval for check valves identified as relatively low important to the safety of Ulchin Unit 3 to identify the maximum increasable test interval of them. Finally, we estimated the number of tests of IST check valves to be performed due to the changes of test interval. These study results are as follows: The categorization of IST check valve importance; the number of the HSSCs is 24(11.48%), the ISSCs is 40 (19.14%), and the LSSCs is 462(69.38%). The maximum increasable test interval; 6 times of current test interval of ISSCs2 and 40 times of that of LSSCs. The number of tests of IST check valves to be performed during 6 refueling time can be reduced from 7692 to 1333 ( 82.7%)

  11. The concept of system for chips production need to work demo CHP plant in company 'AGROSAVA' from Šimanovci

    Directory of Open Access Journals (Sweden)

    Dedić Aleksandar Đ.

    2014-01-01

    Full Text Available In this paper according to the calculation of chips productivity needs for gasification in the demo CHP plant for co-generation: electricity and heat, chippers were analyzed due to: the type of mobility, running for chipping and the method of delivering chips to temporary yard. The plant was planned to generate electricity power up to 200kWelec. First, in consideration were taken the chippers with medium capacity, which mainly served for chipping brushwood and leaves that remain after harvest plantations on mostly flat terrain and parks. Later, the comparative characteristics of the world's three largest manufacturers of machinery for the production of wood chips significantly larger amounts (up to 30m3/h were given. These chippers were particularly suitable for the higher density of crops and stationed yard, in which brushwood would be brought and chip. At the end, the types of convective dryers were analyzed that could be successfully used for drying wood chips (drum and pneumatic dryer and based on the calculation proposed the types of dryers that were available in the local market.

  12. Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform

    International Nuclear Information System (INIS)

    Ng, Kok Siew; Sadhukhan, Jhuma

    2011-01-01

    The techno-economic potential of the UK poplar wood and imported oil palm empty fruit bunch derived bio-oil integrated gasification and Fischer-Tropsch (BOIG-FT) systems for the generation of transportation fuels and combined heat and power (CHP) was investigated. The bio-oil was represented in terms of main chemical constituents, i.e. acetic acid, acetol and guaiacol. The compositional model of bio-oil was validated based on its performance through a gasification process. Given the availability of large scale gasification and FT technologies and logistic constraints in transporting biomass in large quantities, distributed bio-oil generations using biomass pyrolysis and centralised bio-oil processing in BOIG-FT system are technically more feasible. Heat integration heuristics and composite curve analysis were employed for once-through and full conversion configurations, and for a range of economies of scale, 1 MW, 675 MW and 1350 MW LHV of bio-oil. The economic competitiveness increases with increasing scale. A cost of production of FT liquids of 78.7 Euro/MWh was obtained based on 80.12 Euro/MWh of electricity, 75 Euro/t of bio-oil and 116.3 million Euro/y of annualised capital cost. -- Highlights: → Biomass to liquid process and gas to liquid process synthesis. → Biorefinery economic analysis. → Pyrolysis oil to biofuel. → Gasification and Fischer-Tropsch. → Process integration, pinch analysis and energy efficiency.

  13. Testing and model-aided analysis of a 2 kW el PEMFC CHP-system

    Science.gov (United States)

    König, P.; Weber, A.; Lewald, N.; Aicher, T.; Jörissen, L.; Ivers-Tiffée, E.; Szolak, R.; Brendel, M.; Kaczerowski, J.

    A prototype PEMFC CHP-system (combined heat and power) for decentralised energy supply in domestic applications has been installed in the Fuel Cell Testing Laboratory at the Institut für Werkstoffe der Elektrotechnik (IWE), Universität Karlsruhe (TH). The system, which was developed at the Zentrum für Sonnenenergie- und Wasserstoff-Forschung ZSW, Ulm (FC-stack) and the Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg (reformer) is operated and tested in close cooperation with the Stadtwerke Karlsruhe. The tests are carried out as part of the strategic project EDISon, which is supported by the German Federal Ministry of Economics and Technology (BMWA). The performance of the system is evaluated for different operating conditions. The tests include steady state measurements under different electrical and thermal loads as well as an analysis of the dynamic behaviour of the system during load changes. First results of these steady state and dynamic operation characteristics will be presented in this paper.

  14. Balmorel: A model for analyses of the electricity and CHP markets in the Baltic Sea Region. Appendices

    International Nuclear Information System (INIS)

    Ravn, H.F.; Munksgaard, J.; Ramskov, J.; Grohnheit, P.E.; Larsen, H.V.

    2001-03-01

    This report describes the motivations behind the development of the Balmorel model as well as the model itself. The purpose of the Balmorel project is to develop a model for analyses of the power and CHP sectors in the Baltic Sea Region. The model is directed towards the analysis of relevant policy questions to the extent that they contain substantial international aspects. The model is developed in response to the trend towards internationalisation in the electricity sector. This trend is seen in increased international trade of electricity, in investment strategies among producers and otherwise. Also environmental considerations and policies are to an increasing extent gaining an international perspective in relation to the greenhouse gasses. Further, the ongoing process of deregulation of the energy sector highlights this and contributes to the need for overview and analysis. A guiding principle behind the construction of the model has been that it may serve as a means of communication in relation to the policy issues that already are or that may become important for the region. Therefore, emphasis has been put on documentation, transparency and flexibility of the model. This is achieved in part by formulating the model in a high level modelling language, and by making the model, including data, available at the internet. Potential users of the Balmorel model include research institutions, consulting companies, energy authorities, transmission system operators and energy companies. (au)

  15. Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende

    2014-01-01

    Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.

  16. The Design, Construction, and Experimental Evaluation of a Compact Thermoacoustic-Stirling Engine Generator for Use in a micro-CHP Appliance

    Science.gov (United States)

    Wilcox, Douglas A., Jr.

    Micro combined heat and power or micro-CHP is the simultaneous generation of useful heat and electricity on a residential scale. The heat and electricity are produced at the point of use, avoiding the distribution losses associated with a centralized power plant. These appliances combine a conventional gas-fired condensing boiler with an electric power module capable of generating electricity from the heat of combustion. Currently, the leading power modules for micro-CHP appliances are free-piston Stirling engines (FPSEs) which can generate 1050 watts of electricity at a thermal-to-electric efficiency of 26%.[1] These external combustion engines have been under development for the last 25 years, with FPSE micro-CHP appliances only recently being introduced to the commercial market. Publications by developers assert unlimited service life and high efficiency, with low noise and emissions; but despite these claims, the actual reliability and cost of manufacturing has prevented their successful mass-market adoption. A Thermoacoustic-Stirling Engine Generator or TaSEG is one possible alternative to FPSE's. A TaSEG uses a thermoacoustic engine, or acoustic heat engine, which can efficiently convert high temperature heat into acoustic power while maintaining a simple design with fewer moving parts than traditional FPSE's. This simpler engine is coupled to an electrodynamic alternator capable of converting acoustic power into electricity. This thesis outlines the design, construction, and experimental evaluation of a TaSEG which is appropriate for integration with a gas burner inside of a residential micro- CHP appliance. The design methodology is discussed, focusing on how changes in the geometry affected the predicted performance. Details of its construction are given and the performance of the TaSEG is then outlined. The TaSEG can deliver 132 watts of electrical output power to an electric load with an overall measured thermal-to-electric (first law) efficiency of eta

  17. Optimal investment paths for future renewable based energy systems - Using the optimisation model Balmorel

    DEFF Research Database (Denmark)

    Karlsson, Kenneth Bernard; Meibom, Peter

    2008-01-01

    that with an oil price at 100 $/barrel, a CO2 price at40 €/ton and the assumed penetration of hydrogen in the transport sector, it is economically optimal to cover more than 95% of the primary energy consumption for electricity and district heat by renewables in 2050. When the transport sector is converted......: A model for analyses of the electricity and CHP markets in the Baltic Sea Region. 〈www.Balmorel.com〉; 2001. [1

  18. Development of a pellet boiler with Stirling engine for m-CHP domestic application

    Energy Technology Data Exchange (ETDEWEB)

    Crema, Luigi; Alberti, Fabrizio; Bertaso, Alberto; Bozzoli, Alessandro [Fondazione Bruno Kessler (FBK), Povo, Trento (IT). Renewable Energies and Environmental Technologies Unit (REET)

    2011-12-15

    A new sustainable technology has been designed by Fondazione Bruno Kessler through its unit Renewable Energies and Environmental Technologies. This technology is realized integrating in a single system (1) a Stirling engine (mRT-1K) from a pre-engineering design of Allan J. Organ; (2) a micro-heat exchanger technology, to reduce the net transfer unit deficit on the hot side of the heat engine; (3) a customized pellet boiler, able to extract electrical and thermal power; and (4) a customized hydraulic circuit, connecting the cool side of the Stirling engine and the heat generation on the second section of the pellet boiler. The objective of this paper was to present a new technology for the micro-cogeneration of energy at a distributed level able to be integrated in domestic dwellings. Most part of the available biomass is used in buildings for the generation of thermal power for indoor heating and, in minor cases, for hot sanitary water. In the Province of Trento, 88% of the biomass is used for this purpose. The full system is actually under integration for the test phase and not yet tested. The first tests on the single components have confirmed preliminary results on the Stirling engine with respect to the tolerances, pressurization, and proper integration of the electrical generator-driven control system. The pellet boiler has been tested separately, confirming an overall thermal efficiency of 90%. (orig.)

  19. Inter-terminal transfer between port terminals. A continuous mathematical programming model to optimize scheduling and deployment of transport units

    Energy Technology Data Exchange (ETDEWEB)

    Morales Fusco, P.; Pedrielli, G.; Zhou, C.; Hay Lee, L.; Peng Chew, E.

    2016-07-01

    In most large port cities, the challenge of inter-terminal transfers (ITT) prevails due to the long distance between multiple terminals. The quantity of containers requiring movement between terminals as they connect from pre-carrier to on-carrier is increasing with the formation of the mega-alliances. The paper proposes a continuous time mathematical programming model to optimize the deployment and schedule of trucks and barges to minimize the number of operating transporters, their makespan, costs and the distance travelled by the containers by choosing the right combination of transporters and container movements while fulfilling time window restrictions imposed on reception of the containers. A multi-step routing problem is developed where transporters can travel from one terminal to another and/or load or unload containers from a specific batch at each step. The model proves successful in identifying the costless schedule and means of transportation. And a sensibility analysis over the parameters used is provided. (Author)

  20. Woking Park PAFC CHP monitoring. Phase 1: Planning, installation and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, P S; Fry, M R

    2003-07-01

    This report covers the planning, installation and commissioning of the first commercially operated fuel cell cogeneration system in the UK. The involvement of Woking Borough Council, its approach to energy efficiency, and the Woking Park site are discussed, and details are given of the PC25/C 200kW fuel cell which is manufactured in the US by UTC Fuel Cells. A description of the Woking Park fuel cell combined heat and power application is presented, and the project economics, specification and tendering are examined. The route taken to planning approval is traced, and installation procedures are outlined. The testing of the phosphoric type PC25 fuel cell cogeneration unit is described, and expected cost and project timescales are noted.

  1. Techno-economic optimization of flexible biogas concepts in the context of EEG

    International Nuclear Information System (INIS)

    Barchmann, Tino; Lauer, Markus

    2014-01-01

    Due to the introduction of direct marketing and flexibility premium of renewable energy by the Renewable Energy Act 2012 (EEG 2012), incentives were created to favour a more demand-oriented power supply from biogas plants (BGA). The decision for such an operational mode depends on on-site conversion units on the economic outcome of the plants throughout the whole operating time. To install new plants or transfer existing plants into a flexible mode of operation, investments in additional and more efficient combined heat and power plants (CHP), in additional gas and/or heat storage and other technical components are necessary. The analyses show that the flexibility premium, as an extra of the market premium model, creates the greatest incentive for a more flexible generation of electricity from biogas. In addition, an intelligent management optimization can generate additional revenues on EPEX SPOT SE and balancing energy market. The additional revenues of more demand-oriented power supply from biogas plants are highly dependent on plant-specific conditions. From an economic perspective, a duplication of the installed electrical capacity seems to be the most beneficial option for a transition to a demand-driven operation mode of an average biogas model plant under the current legal framework (EEG 2012).

  2. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    An endoreversible intercooled regenerative Brayton combined heat and power (CHP) plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.

  3. Development of a portable, modular unit for the optimization of ultrasound-assisted oxidative desulfurization of diesel

    Science.gov (United States)

    Wan, Meng-Wei

    Due to the stringent rules requiring ultra-low sulfur content in diesel fuels, it is necessary to develop alternative methods of desulfurization of fossil fuel derived oil, such as diesel. Current technology is not sufficient to solve this problem. Ultrasound applied to oxidative desulfurization which combined three complementary techniques: ultrasonication, phase transfer catalysis (PTC) and transition metal catalyzed oxidation, has accomplished high sulfur removal in a short contact time at ambient temperature and atmospheric pressure. This research has successfully demonstrated that the higher oxidation efficiency of BT to BTO and free of any by-products by using tetraoctylammonium fluoride as phase transfer agent. The oxidation rate of BT to BTO increased with increasing the carbon chain length of QAS cations. Under the same length of carbon chain, the oxidation rate of BT to BTO increased with decreasing the molecular size of QAS anions. Moreover, for diesel fuels containing various levels of sulfur content, UAOD process followed by solvent extraction has demonstrated that the sulfur reduction can reach above 95 % removal efficiency or final sulfur content below 15 ppm in mild condition. For large-scale commercial production, this research has successfully developed and operated a continuous desulfurization unit, which consists of a sonoractor, an RF amplifier, a function generator, a pretreatment tank, and a pipeline system. A single unit only needed 2' x 4' x 1' space for installation. The results indicated that the remarkable 92% removal efficiency for the sulfur in marine logistic diesel, even at a treatment rate as high as 25 lb/hour which is approximately 2 barrels per day. Therefore, this sonoreactor demonstrated the feasibility of large-scale operation even in a relatively small installation with low capital investment and maintenance cost. It also ensures the safety considerations by operating with diluted hydrogen peroxide under ambient temperature

  4. Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations

    Directory of Open Access Journals (Sweden)

    Ricardo Chacartegui

    2013-12-01

    Full Text Available Wastewater treatment stations take advantage of the biogas produced from sludge in anaerobic digesters to generate electricity (reciprocating gas engines and heat (cooling water and engine exhaust gases. A fraction of this electricity is used to operate the plant while the remaining is sold to the grid. Heat is almost entirely used to support the endothermic anaerobic digestion and a minimum fraction of it is rejected to the environment at a set of fan coolers. This generic description is applicable to on-design conditions. Nevertheless, the operating conditions of the plant present a large seasonal variation so it is commonly found that the fraction of heat rejected to the atmosphere increases significantly at certain times of the year. Moreover, the heat available in the exhaust gases of the reciprocating engine is at a very high temperature (around 650 oC, which is far from the temperature at which heat is needed for the digestion of sludge (around 40 oC in the digesters. This temperature difference offers an opportunity to introduce an intermediate system between the engines and the digesters that makes use of a fraction of the available heat to convert it into electricity. An Organic Rankine Cycle (ORC with an appropriate working fluid is an adequate candidate for these hot/cold temperature sources. In this paper, the techno-economic effect of adding an Organic Rankine Cycle as the intermediate system of an existing wastewater treatment station is analysed. On this purpose, different working fluids and system layouts have been studied for a reference wastewater treatment station giving rise to optimal systems configurations. The proposed systems yield very promising results with regard to global efficiency and electricity production (thermodynamically and economically.

  5. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy

    International Nuclear Information System (INIS)

    Ruzzenenti, Franco; Bravi, Mirko; Tempesti, Duccio; Salvatici, Enrica; Manfrida, Giampaolo; Basosi, Riccardo

    2014-01-01

    Highlights: • Binary, ORC technology avoids CO 2 , but raises questions about environmental impact. • We proposed a micro-size system that combines geothermal energy with solar energy. • The small scale and the solar energy input edges the energy profitability. • The system’s performance is appreciable if applied to existing wells. • The feasibility of exploiting abandoned wells is preliminarily evaluated. - Abstract: In this paper we evaluate the environmental sustainability of a small combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC). The heat sources of the system are from geothermal energy at low temperature (90–95 °C) and solar energy. The designed system uses a solar field composed only of evacuated, non-concentrating solar collectors, and work is produced by a single turbine of 50 kW. The project addresses an area of Tuscany, but it could be reproduced in areas where geothermal energy is extensively developed. Therefore, the aim is to exploit existing wells that are either unfit for high-enthalpy technology, abandoned or never fully developed. Furthermore, this project aims to aid in downsizing the geothermal technology in order to reduce the environmental impact and better tailor the production system to the local demand of combined electric and thermal energy. The environmental impact assessment was performed through a Life Cycle Analysis and an Exergy Life Cycle Analysis. According to our findings the reservoir is suitable for a long-term exploitation of the designed system, however, the sustainability and the energy return of this latter is edged by the surface of the heat exchanger and the limited running hours due to the solar plant. Therefore, in order to be comparable to other renewable resources or geothermal systems, the system needs to develop existing wells, previously abandoned

  6. Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator

    International Nuclear Information System (INIS)

    Prando, Dario; Renzi, Massimiliano; Gasparella, Andrea; Baratieri, Marco

    2015-01-01

    More than seventy district heating (DH) plants based on biomass are operating in South Tyrol (Italy) and most of them supply heat to residential districts. Almost 20% of them are cogenerative systems, thus enabling primary energy savings with respect to the separate production of heat and power. However, the actual performance of these systems in real operation can considerably differ from the nominal one. The main objectives of this work are the assessment of the energy performance of a biomass boiler coupled with an Organic Rankine Cycle (i.e. ORC) generator under real operating conditions and the identification of its potential improvements. The fluxes of energy and mass of the plant have been measured onsite. This experimental evaluation has been supplemented with a thermodynamic model of the ORC generator, calibrated with the experimental data, which is capable to predict the system performance under different management strategies of the system. The results have highlighted that a decrease of the DH network temperature of 10 °C can improve the electric efficiency of the ORC generator of one percentage point. Moreover, a DH temperature reduction could decrease the main losses of the boiler, namely the exhaust latent thermal loss and the exhaust sensible thermal loss, which account for 9% and 16% of the boiler input power, respectively. The analysis of the plant has pointed out that the ORC pump, the flue gases extractor, the thermal oil pump and the condensation section fan are the main responsible of the electric self-consumption. Finally, the negative effect of the subsidisation on the performance of the plant has been discussed. - Highlights: • Energy performance of a biomass boiler coupled to an ORC turbine in real operation. • Potential improvements of a CHP plant connected to a DH network. • Performance prediction by means of a calibrated ORC thermodynamic model. • Influence of the DH temperature on the electric efficiency. • Impact of the

  7. Uniting geology and craftsmanship to find the optimal soapstone for restoration of the Nidaros soapstone Cathedral in Norway

    Science.gov (United States)

    Aslaksen Aasly, Kari; Meyer, Gurli Birgitte; Kløve Keiding, Jakob; Langås, Rune; Lund, Vegard

    2017-04-01

    The Nidaros Cathedral situated in Trondheim, Norway is a restored cathedral resting on the remnants of an original medieval church sanctified St Olav. The cathedral became one of the most important sanctuary for pilgrimage during the Middle Ages and still is today. In a European context the cathedral, along with a certain group of other churches and monasteries in Norway, is unique by being build from soapstone (steatite). This talc and chlorite dominated metamorphic rock is relatively soft, heat resistant and dense making the material ideal for cooking pots, stoves and all kinds of utensils. Soapstone has therefore been appreciated, used and quarried since the Stone Age in Norway. At the onset of Christianity the choice of soapstone from harder rock types was not difficult for the building owners combining the vision of stone churches in Norway with the skills of wood carving traditions of local handicraftsmen. The best example is the Nidaros Cathedral built in the 11th to 14th century. In 1869, the Nidaros Cathedral Restoration Workshop (NDR) was founded with the purpose of restoring the cathedral using original craftsman's techniques and authentic materials. The restoration was originally completed in 1969, but is still ongoing due to weathering of certain used soapstone types. A major challenge remains to find soapstone resources of the right quality. Core issues relate to avoid rocks with cracks and cleavage, a demand for homogeneity, maintaining esthetic authenticity, resistance to weathering (disintegration) and last but not least the ultimatum of workability. Thus locating new soapstone resources depends strongly on geological understanding, quarry experience and stone carver's knowledge. The present work is based on close cooperation between stone carvers and geologists in a common goal of uniting knowledge and experience in defining qualities of soapstone for various purposes of restoration. Cooperate observations of geology and carving properties in the

  8. Unit operation optimization for the manufacturing of botanical injections using a design space approach: a case study of water precipitation.

    Science.gov (United States)

    Gong, Xingchu; Chen, Huali; Chen, Teng; Qu, Haibin

    2014-01-01

    Quality by design (QbD) concept is a paradigm for the improvement of botanical injection quality control. In this work, water precipitation process for the manufacturing of Xueshuantong injection, a botanical injection made from Notoginseng Radix et Rhizoma, was optimized using a design space approach as a sample. Saponin recovery and total saponin purity (TSP) in supernatant were identified as the critical quality attributes (CQAs) of water precipitation using a risk assessment for all the processes of Xueshuantong injection. An Ishikawa diagram and experiments of fractional factorial design were applied to determine critical process parameters (CPPs). Dry matter content of concentrated extract (DMCC), amount of water added (AWA), and stirring speed (SS) were identified as CPPs. Box-Behnken designed experiments were carried out to develop models between CPPs and process CQAs. Determination coefficients were higher than 0.86 for all the models. High TSP in supernatant can be obtained when DMCC is low and SS is high. Saponin recoveries decreased as DMCC increased. Incomplete collection of supernatant was the main reason for the loss of saponins. Design space was calculated using a Monte-Carlo simulation method with acceptable probability of 0.90. Recommended normal operation region are located in DMCC of 0.38-0.41 g/g, AWA of 3.7-4.9 g/g, and SS of 280-350 rpm, with a probability more than 0.919 to attain CQA criteria. Verification experiment results showed that operating DMCC, SS, and AWA within design space can attain CQA criteria with high probability.

  9. Unit operation optimization for the manufacturing of botanical injections using a design space approach: a case study of water precipitation.

    Directory of Open Access Journals (Sweden)

    Xingchu Gong

    Full Text Available Quality by design (QbD concept is a paradigm for the improvement of botanical injection quality control. In this work, water precipitation process for the manufacturing of Xueshuantong injection, a botanical injection made from Notoginseng Radix et Rhizoma, was optimized using a design space approach as a sample. Saponin recovery and total saponin purity (TSP in supernatant were identified as the critical quality attributes (CQAs of water precipitation using a risk assessment for all the processes of Xueshuantong injection. An Ishikawa diagram and experiments of fractional factorial design were applied to determine critical process parameters (CPPs. Dry matter content of concentrated extract (DMCC, amount of water added (AWA, and stirring speed (SS were identified as CPPs. Box-Behnken designed experiments were carried out to develop models between CPPs and process CQAs. Determination coefficients were higher than 0.86 for all the models. High TSP in supernatant can be obtained when DMCC is low and SS is high. Saponin recoveries decreased as DMCC increased. Incomplete collection of supernatant was the main reason for the loss of saponins. Design space was calculated using a Monte-Carlo simulation method with acceptable probability of 0.90. Recommended normal operation region are located in DMCC of 0.38-0.41 g/g, AWA of 3.7-4.9 g/g, and SS of 280-350 rpm, with a probability more than 0.919 to attain CQA criteria. Verification experiment results showed that operating DMCC, SS, and AWA within design space can attain CQA criteria with high probability.

  10. Unit Risk Quotient (RQ) and Relative Significance of Radionuclide on Flora and Fauna to the EU-APR Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keunsung [KHNP-CRI, Daejeon (Korea, Republic of); Kim, Sukhoon [FNC Technology Co., Ltd., Yongin (Korea, Republic of); Lee, Chonghui [KEPCO E and C, Yongin (Korea, Republic of)

    2015-05-15

    As part of the project for acquiring the certification from EUR organization, in accordance with Articles 4.8 and 5.5 specified in Section 2.20 of EUR Volume 2, the effects of ionizing radiation from the standard design of EU-APR on biota and ecosystems during operation and decommissioning phases shall be assessed. This assessment must be carried out according to the ERICA (i.e. Environmental Risk from Ionizing Contaminants: Assessment and management) integrated approach. This paper describes the evaluation results for unit risk quotient and relative significance by radionuclide derived from performing Tier 1 assessment on flora and fauna for the EU-APR design using ERICA Tool. As specified previously, Pa-231 and Th-228 are the most significant for the terrestrial and for the marine/freshwater ecosystems, respectively. And, in terms of environmental risk, those radionuclides having the most impact on flora and fauna are relatively more significant than isotope having the least impact by about 7 to 10 orders of magnitude.

  11. Unit Risk Quotient (RQ) and Relative Significance of Radionuclide on Flora and Fauna to the EU-APR Optimization

    International Nuclear Information System (INIS)

    Lee, Keunsung; Kim, Sukhoon; Lee, Chonghui

    2015-01-01

    As part of the project for acquiring the certification from EUR organization, in accordance with Articles 4.8 and 5.5 specified in Section 2.20 of EUR Volume 2, the effects of ionizing radiation from the standard design of EU-APR on biota and ecosystems during operation and decommissioning phases shall be assessed. This assessment must be carried out according to the ERICA (i.e. Environmental Risk from Ionizing Contaminants: Assessment and management) integrated approach. This paper describes the evaluation results for unit risk quotient and relative significance by radionuclide derived from performing Tier 1 assessment on flora and fauna for the EU-APR design using ERICA Tool. As specified previously, Pa-231 and Th-228 are the most significant for the terrestrial and for the marine/freshwater ecosystems, respectively. And, in terms of environmental risk, those radionuclides having the most impact on flora and fauna are relatively more significant than isotope having the least impact by about 7 to 10 orders of magnitude

  12. Optimal unit sizing of a hybrid renewable energy system for isolated applications; Optimalite des elements d'un systeme decentralise de production d'energie electrique

    Energy Technology Data Exchange (ETDEWEB)

    Morales, D

    2006-07-15

    In general, the methods used to conceive a renewable energy production system overestimate the size of the generating units. These methods increase the investment cost and the production cost of energy. The work presented in this thesis proposes a methodology to optimally size a renewable energy system.- This study shows that the classic approach based only on a long term analysis of system's behaviour is not sufficient and a complementary methodology based on a short term analysis is proposed. A numerical simulation was developed in which the mathematical models of the solar panel, the wind turbines and battery are integrated. The daily average solar energy per m2 is decomposed into a series of hourly I energy values using the Collares-Pereira equations. The time series analysis of the wind speed is made using the Monte Carlo Simulation Method. The second part of this thesis makes a detailed analysis of an isolated wind energy production system. The average energy produced by the system depends on the generator's rated power, the total swept area of the wind turbine, the gearbox's transformation ratio, the battery voltage and the wind speed probability function. The study proposes a methodology to determine the optimal matching between the rated power of the permanent magnet synchronous machine and the wind turbine's rotor size. This is made taking into account the average electrical energy produced over a period of time. (author)

  13. Optimal unit sizing of a hybrid renewable energy system for isolated applications; Optimalite des elements d'un systeme decentralise de production d'energie electrique

    Energy Technology Data Exchange (ETDEWEB)

    Morales, D

    2006-07-15

    In general, the methods used to conceive a renewable energy production system overestimate the size of the generating units. These methods increase the investment cost and the production cost of energy. The work presented in this thesis proposes a methodology to optimally size a renewable energy system.- This study shows that the classic approach based only on a long term analysis of system's behaviour is not sufficient and a complementary methodology based on a short term analysis is proposed. A numerical simulation was developed in which the mathematical models of the solar panel, the wind turbines and battery are integrated. The daily average solar energy per m2 is decomposed into a series of hourly I energy values using the Collares-Pereira equations. The time series analysis of the wind speed is made using the Monte Carlo Simulation Method. The second part of this thesis makes a detailed analysis of an isolated wind energy production system. The average energy produced by the system depends on the generator's rated power, the total swept area of the wind turbine, the gearbox's transformation ratio, the battery voltage and the wind speed probability function. The study proposes a methodology to determine the optimal matching between the rated power of the permanent magnet synchronous machine and the wind turbine's rotor size. This is made taking into account the average electrical energy produced over a period of time. (author)

  14. Optimization of the level and range of working temperature of the PCM in the gypsum-microencapsulated PCM thermal energy storage unit for summer conditions in Central Poland

    Science.gov (United States)

    Łapka, P.; Jaworski, M.

    2017-10-01

    In this paper thermal energy storage (TES) unit in a form of a ceiling panel made of gypsum-microencapsulated PCM composite with internal U-shaped channels was considered and optimal characteristics of the microencapsulated PCM were determined. This panel may be easily incorporated into, e.g., an office or residential ventilation system in order to reduce daily variations of air temperature during the summer without additional costs related to the consumption of energy for preparing air parameters to the desired level. For the purpose of the analysis of heat transfer in the panel, a novel numerical simulator was developed. The numerical model consists of two coupled parts, i.e., the 1D which deals with the air flowing through the U-shaped channel and the 3D which deals with heat transfer in the body of the panel. The computational tool was validated based on the experimental study performed on the special set-up. Using this tool an optimization of parameters of the gypsum-microencapsulated PCM composite was performed in order to determine its most appropriate properties for the application under study. The analyses were performed for averaged local summer conditions in Warsaw, Poland.

  15. A Monte-Carlo-Based Method for the Optimal Placement and Operation Scheduling of Sewer Mining Units in Urban Wastewater Networks

    Directory of Open Access Journals (Sweden)

    Eleftheria Psarrou

    2018-02-01

    Full Text Available Pressures on water resources, which have increased significantly nowadays mainly due to rapid urbanization, population growth and climate change impacts, necessitate the development of innovative wastewater treatment and reuse technologies. In this context, a mid-scale decentralized technology concerning wastewater reuse is that of sewer mining. It is based on extracting wastewater from a wastewater system, treating it on-site and producing recycled water applicable for non-potable uses. Despite the technology’s considerable benefits, several challenges hinder its implementation. Sewer mining disturbs biochemical processes inside sewers and affects hydrogen sulfide build-up, resulting in odor, corrosion and health-related problems. In this study, a tool for optimal sewer mining unit placement aiming to minimize hydrogen sulfide production is presented. The Monte-Carlo method coupled with the Environmental Protection Agency’s Storm Water Management Model (SWMM is used to conduct multiple simulations of the network. The network’s response when sewage is extracted from it is also examined. Additionally, the study deals with optimal pumping scheduling. The overall methodology is applied in a sewer network in Greece providing useful results. It can therefore assist in selecting appropriate locations for sewer mining implementation, with the focus on eliminating hydrogen sulfide-associated problems while simultaneously ensuring that higher water needs are satisfied.

  16. SECARB Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Koperna, George J. [Advanced Resources International, Inc., Arlington, VA (United States); Pashin, Jack [Oklahoma State Univ., Stillwater, OK (United States); Walsh, Peter [Univ. of Alabama, Birmingham, AL (United States)

    2017-10-30

    for the region and provide modern day analogues. Stability of the caprock over several test parameters was conducted by UAB to yield comprehensive measurements on long term stability of caprocks. The detailed geologic model of the full earth volume from surface thru the Donovan oil reservoir is incorporated into a state-of-the-art reservoir simulation conducted by the University of Alabama at Birmingham (UAB) to explore optimization of CO2 injection and storage under different characterizations of reservoir flow properties. The application of a scaled up geologic modeling and reservoir simulation provides a proof of concept for the large scale volumetric modeling of CO2 injection and storage the subsurface.

  17. Sizing a solar dish Stirling micro-CHP system for residential application in diverse climatic conditions based on 3E analysis

    International Nuclear Information System (INIS)

    Moghadam, Ramin Shabanpour; Sayyaadi, Hoseyn; Hosseinzade, Hadi

    2013-01-01

    Highlights: • 3E analysis was performed on solar CHP systems. • Significant primary energy saving and greenhouse gas reduction were obtained. • The engine was sized so that it had the best economic sound. • Various criteria at different weathers were used for sizing the engine. - Abstract: A solar dish Stirling cogeneration system is considered to provide energy demands of a residential building. As energy demands of the building and output power of the engine are functions of weather condition and solar irradiation flux, the benchmark building was considered to be located in five different cities in Iran with diverse climatic and solar irradiation conditions. The proposed solar dish Stirling micro-CHP system was analyzed based on 3E analysis. The 3E analysis evaluated primary energy saving analysis (energy analysis), carbon dioxide emission reduction (environmental analysis) and payback period for return of investment (economic analysis) and was compared to a reference building that utilized primary energy carriers for its demands. Three scenarios were considered for assessment and sizing the solar dish Stirling engine. In the first scenario, size of the solar dish Stirling engine was selected based on the lowest annual electric power demand while, in second, the highest annual electric power consumption was considered to specify size of the engine. In the third scenario, a solar dish Stirling engine with constant output capacity was considered for the five locations. It was shown that implementing the solar dish Stirling micro-CHP system had good potential in primary energy saving and carbon dioxide emission reduction in all scenarios and acceptable payback period for return of the investment in some scenarios. Finally, the best scenario for selecting size of the engine in each city was introduced using the TOPSIS decision making method. It was demonstrated that, for dry weather, the first scenario was the best while, for hot and humid cities and

  18. Situation analysis in relation to district heating and CHP in the Baltic Sea Region: Estonia, Latvia, Lithuania, Poland, Russia, Kaliningrad

    International Nuclear Information System (INIS)

    2000-11-01

    such bodies must be to secure the implementation of national energy policy, and of the acquis communautaire in the countries where this is relevant. Laying out the role gas, district heating and CHP respectively should be a main priority. Institute a continuous dialogue between key political and market actors, to optimise the relation between natural gas, district heating, and condensing power. Its aim should also be to institute measures that will boost investments. (EHS)

  19. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  20. Economic potentials of CHP connected to district heat systems in Germany. Implementation of the EU Efficiency Directive; Wirtschaftliche Potenziale der waermeleitungsgebundenen Siedlungs-KWK in Deutschland. Umsetzung der EU-Energieeffizienzrichtlinie

    Energy Technology Data Exchange (ETDEWEB)

    Eikmeier, Bernd [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen (Germany). Organisationseinheit Systemanalyse; Bremen Univ. (Germany)

    2015-07-01

    The EU Efficiency Directive (2012/27/EU) is requiring all member states to carry out an evaluation of the potential for highly efficient CHP and the efficient use of district heating and cooling by December 2015. The German Federal Ministry of Economic Affairs and Energy appointed this task to the Fraunhofer Institute for Manufacturing and Advanced Materials, division for Energy Systems Analysis (formerly Bremer Energie Institut) in conjunction with other partners. The results for the sector district- and communal heating with CHP, sub-sectors private households, trade and services industry, are presented in this article.

  1. Technical-Economic Evaluation of a Cogeneration Unit Considering Carbon Emission Savings

    Directory of Open Access Journals (Sweden)

    Ana Christina Ferreira

    2014-06-01

    Full Text Available The support of combined heat and power production systems has gained policy attention, because these are often considered to be less polluting and more efficient than conventional energy conversion systems. As a consequence, the potential market for these energy systems that contribute to reduce greenhouse gas emissions and to enhance energy security on a national level, is shifting from large-scale existing units to small and micro-size emerging technologies. This paper presents a numerical model based on a cost-benefit analysis used to design an optimal cogeneration system for a small-scale building application, considering the Portuguese context and the comparison with the harmonized efficiency reference values for the separate production of electricity and useful heat. The model includes the identification of the objective function terms (i.e., the elements involved in the financial analysis across the system lifetime and the economic evaluation of costs and benefits of the combined heat and power production system. The economic viability of cogeneration systems significantly depends on system technology, client energy requirements and support schemes implemented in the respective countries. A strategic approach is necessary to adequately embed the new technology as a feasible solution in terms of investment and operational costs. Only by matching the energy supply to the needs and expectations of the energy users, it will be possible to improve the market competitiveness of these alternative power production plants. The optimal solution disclosed a positive annual worth, which is higher if the carbon emission savings are monetized. In addition, the optimal system represents a more efficient way to produce useful heat and electricity (i.e. a positive primary energy saving and to reduce gas emissions. A cost-benefit analysis can be applied for the techno-economic evaluation of a CHP system by assessing the monetary socio-environmental costs

  2. A robust optimization approach for energy generation scheduling in microgrids

    International Nuclear Information System (INIS)

    Wang, Ran; Wang, Ping; Xiao, Gaoxi

    2015-01-01

    Highlights: • A new uncertainty model is proposed for better describing unstable energy demands. • An optimization problem is formulated to minimize the cost of microgrid operations. • Robust optimization algorithms are developed to transform and solve the problem. • The proposed scheme can prominently reduce energy expenses. • Numerical results provide useful insights for future investment policy making. - Abstract: In this paper, a cost minimization problem is formulated to intelligently schedule energy generations for microgrids equipped with unstable renewable sources and combined heat and power (CHP) generators. In such systems, the fluctuant net demands (i.e., the electricity demands not balanced by renewable energies) and heat demands impose unprecedented challenges. To cope with the uncertainty nature of net demand and heat demand, a new flexible uncertainty model is developed. Specifically, we introduce reference distributions according to predictions and field measurements and then define uncertainty sets to confine net and heat demands. The model allows the net demand and heat demand distributions to fluctuate around their reference distributions. Another difficulty existing in this problem is the indeterminate electricity market prices. We develop chance constraint approximations and robust optimization approaches to firstly transform and then solve the prime problem. Numerical results based on real-world data evaluate the impacts of different parameters. It is shown that our energy generation scheduling strategy performs well and the integration of combined heat and power (CHP) generators effectively reduces the system expenditure. Our research also helps shed some illuminations on the investment policy making for microgrids.

  3. Mathematical model of optimizing the arrival of fire units with the use of information systems for monitoring transport logistics of Voronezh city

    Directory of Open Access Journals (Sweden)

    A. V. Kochegarov

    2016-01-01

    Full Text Available In recent years, the strong pace of construction is increasing in big cities. With their growth becomes a question of the deployment of firefighters and the number of fire stations. The most effective solution is the problem of finding the optimum route of fire departments, taking into account the information transport logistics systems within the city that will allow us to arrive at the scene at any time, regardless of the degree of congestion of city roads. Prompt arrival of fire units provides the most successful fire fighting. The main objective of the study is to develop a preliminary route and the route in case of unforeseen factors affecting the time fire engine arrived. To construct the routes used to develop actively in the current methods of machine learning artificial neural networks. To construct the optimal route requires a correct prediction of the future behavior of a complex system of urban traffic based on its past behavior. Within the framework of statistical machine learning theory considered the problem of classification and regression. The learning process is to select a classification or a regression function of a predetermined broad class of such functions. After determining the prediction scheme, it is necessary to evaluate the quality of its forecasts, which are measured not on the basis of observations, and on the basis of an improved stochastic process, the result of the construction of the prediction rules. The model is verified on the basis of data collected in real departures real fire brigades, which made it possible to obtain a minimum time of arrival of fire units.

  4. Economic optimization of waste treatment and energy production in Denmark

    DEFF Research Database (Denmark)

    Münster, Marie; Ravn, Hans; Hedegaard, Karsten

    2013-01-01

    This article presents an optimization model that incorporates LCA methodology and captures important characteristics of waste management systems. The most attractive waste management options are in the model identified as part the optimization. The model renders it possible to apply different...... optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritise several objectives given different weights. An illustrative case is analyzed, covering alternative treatments of 1 tonne residual household waste: incineration of the full amount or sorting out organic waste...... for biogas production for either CHP generation or as fuel in vehicles. The case study illustrates, that what is the optimal solution depends on the objective and assumptions regarding the background system – here illustrated with different assumptions regarding displaced electricity production. The article...

  5. Optimal Resources Planning of Residential Complex Energy System in a Day-ahead Market Based on Invasive Weed Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    P. Αhmadi

    2017-10-01

    Full Text Available This paper deals with optimal resources planning in a residential complex energy system, including FC (fuel cell, PV (Photovoltaic panels and the battery. A day-ahead energy management system (EMS based on invasive weed optimization (IWO algorithm is defined for managing different resources to determine an optimal operation schedule for the energy resources at each time interval to minimize the operation cost of a smart residential complex energy system. Moreover, in this paper the impacts of the sell to grid and purchase from grid are also considered. All practical constraints of the each energy resources and utility policies are taken into account. Moreover, sensitivity analysis are conducted on electricity prices and sell to grid factor (SGF, in order to improve understanding the impact of key parameters on residential CHP systems economy. It is shown that proposed system can meet all electrical and thermal demands with economic point of view. Also enhancement of electricity price leads to substantial growth in utilization of proposed CHP system.

  6. Optimization of the fluid catalytic cracking unit performance by application of a high motor Octane catalyst and reduction of gasoline vapour pressure

    International Nuclear Information System (INIS)

    Chavdarov, I.; Stratiev, D.; Shishkova, I.; Dinkov, R.; Petkov, P.

    2013-01-01

    Full text: The fluid catalytic cracking (FCC) gasoline is the main contributor to the refinery gasoline pool in the LUKOIL Neftohim Burgas (LNB) refinery. Next in quantity contributor in the refinery gasoline pool is the reformate. The FCC gasoline sensitivity (MON-RON) is about 12 points. The reformer gasoline sensitivity is 11 points. The high sensitivity of the main contributors to the LNB refinery gasoline pool leads to a shortage in the motor octane number. For that reason a selection of an FCC catalyst that is capable of increasing the motor octane number of the FCC gasoline was performed. The application of this catalyst in the LNB FCC unit has led to an increase of the motor octane number of the FCC gasoline by 0.5 points, which enabled the refinery to increase the production of automotive gasolines by 1.3 % and to increase the share of premium automotive gasoline by 5 %. This had an effect of improvement of the refinery economics by a six figure number of US $ per year. The optimization of the FCC gasoline Reid Vapor Pressure (RVP) during the winter season, consisting in a reduction of the RVP from 60 to 50 kPa and an increase of the FCC C 4 olefins yield, has led to an augmentation of high motor octane number alkylate production. As a result the refinery economics was improved by a five figure number of US $ per year. key words: FCC gasoline motor octane number, gasoline RVP, FCC operation profitability

  7. Evaluation of the cost effectiveness of exenatide versus insulin glargine in patients with sub-optimally controlled Type 2 diabetes in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Tetlow Anthony P

    2008-08-01

    Full Text Available Abstract Objective Exenatide belongs to a new therapeutic class in the treatment of diabetes (incretin mimetics, allowing glucose-dependent glycaemic control in Type 2 diabetes. Randomised controlled trial data suggest that exenatide is as effective as insulin glargine at reducing HbA1c in combination therapy with metformin and sulphonylureas; with reduced weight but higher incidence of adverse gastrointestinal events. The objective of this study is to evaluate the cost effectiveness of exenatide versus insulin glargine using RCT data and a previously published model of Type 2 diabetes disease progression that is based on the United Kingdom Prospective Diabetes Study; the perspective of the health-payer of the United Kingdom National Health Service. Methods The study used a discrete event simulation model designed to forecast the costs and health outcome of a cohort of 1,000 subjects aged over 40 years with sub-optimally-controlled Type 2 diabetes, following initiation of either exenatide, or insulin glargine, in addition to oral hypoglycaemic agents. Sensitivity analysis for a higher treatment discontinuation rate in exenatide patients was applied to the cohort in three different scenarios; (1 either ignored or (2 exenatide-failures excluded or (3 exenatide-failures switched to insulin glargine. Analyses were undertaken to evaluate the price sensitivity of exenatide in terms of relative cost effectiveness. Baseline cohort profiles and effectiveness data were taken from a published randomised controlled trial. Results The relative cost-effectiveness of exenatide and insulin glargine was tested under a variety of conditions, in which insulin glargine was dominant in all cases. Using the most conservative of assumptions, the cost-effectiveness ratio of exenatide vs. insulin glargine at the current UK NHS price was -£29,149/QALY (insulin glargine dominant and thus exenatide is not cost-effective when compared with insulin glargine, at the current

  8. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....... manufacturer, and BIOS BIOENERGIESYSTEME GmbH, an Austrian development and engineering company. Based on the technology developed, a pilot plant was designed and erected in Austria. The nominal electric power output of the plant is 35 kWel and the nominal thermal output amounts to approx. 220 kWth. The plant...

  9. CHP biomass gasifier for the Zwarts Gerbera Nursery. Technical and economic feasibility; Biomassavergasser-WKK voor Gerberakwekerij Zwarts. Technische inpassing en economische haalbaarheid

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, S.; Hart, A. [Energy Matters, Driebergen (Netherlands)

    2011-10-15

    This report describes the feasibility of a CHP gasifier at the Zwarts gerbera nursery. Using the insights from this study, a picture has been sketched for energy production by means of gasification in the horticultural sector. Note, however, that each plant specie has its own specific growth requirements in terms of nutrients, heating-cooling, light, but also relative humidity and CO2. So a 'typical' horticulturer with an 'average' energy requirement is hard to define. The economic viability must be determined for each individual situation. The outcomes of this study can therefore not be automatically used for other projects. Technically, a lot is possible, so the submitted quotes show. Of the 16 suppliers, 3 offer CHP gasifiers which, subject to conditions, not only burn wood but also other low-grade residual waste such as road verge grass, reed and miscanthus. This low-grade residual waste has the advantage of being cheaper than wood. A low biomass price lowers the operating costs and improves the economic profitability of the relatively expensive installations. The investment for a complete CHP gasifier is 5 to 10 times higher than for a normal gas CHP installation. The CO2 consumption also influences the economic profitability. Buying CO2 is a costly business. The technical and economic feasibility of harvesting CO2 from flue gas was therefore explored. Two CO2 harvesting installations (of Procede and Knook) were examined for this purpose. According to Procede and Knook, CO2 harvesting is not economically profitable for a CHP gasifier with a relatively low power capacity (up to 800 kWe). CO2 procurement or generation by means of the existing gas-fired boiler therefore seems more viable. The technical-economic feasibility study shows that an investment in a CHP gasifier is not profitable due to the relatively high investment and maintenance costs. CO2 demand and the uncertain biomass prices are stumbling blocks. However, the picture changes

  10. Role of LNG in an optimized hybrid energy network, Part 1 : Balancing renewable energy supply and demand by integration of decentralized LNG regasifcation with a CHP

    NARCIS (Netherlands)

    Montoya Cardona, J.; Dam, J.A.M.; de Rooij, M.

    2017-01-01

    The future energy system could benefit from the integration of independent gas, heat and electricity infrastructures. Such a hybrid energy network could support the increase of intermittent renewable energy sources by offering increased operational flexibility. Nowadays, the expectations on Natural

  11. Role of LNG in an optimized hybrid energy network : part I. Increased operational flexibility for the future energy system by integration of decentralized LNG regasification with a CHP

    NARCIS (Netherlands)

    Montoya Cardona, Juliana; de Rooij, Marietta; Dam, Jacques

    2017-01-01

    The future energy system could benefit from the integration of the independent gas, heat and electricity infrastructures. In addition to an increase in exergy efficiency, such a Hybrid Energy Network (HEN) could support the increase of intermittent renewable energy sources by offering increased

  12. Role of lng in an optimized hybrid energy network : Part 1. Balancing renewable energy supply and demand by integration of decentralized lng regasification with a CHP

    NARCIS (Netherlands)

    Montoya Cardona, Juliana; Dam, Jacques; de Rooij, Marietta

    2017-01-01

    The future energy system could benefit from the integration of independent gas, heat and electricity infrastructures. Such a hybrid energy network could support the increase of intermittent renewable energy sources by offering increased operational flexibility. Nowadays, the expectations on Natural

  13. Techno-economic optimization of flexible biogas concepts in the context of EEG; Technisch-oekonomische Optimierung von flexiblen Biogaskonzepten im Kontext des EEG

    Energy Technology Data Exchange (ETDEWEB)

    Barchmann, Tino; Lauer, Markus [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany)

    2014-08-01

    Due to the introduction of direct marketing and flexibility premium of renewable energy by the Renewable Energy Act 2012 (EEG 2012), incentives were created to favour a more demand-oriented power supply from biogas plants (BGA). The decision for such an operational mode depends on on-site conversion units on the economic outcome of the plants throughout the whole operating time. To install new plants or transfer existing plants into a flexible mode of operation, investments in additional and more efficient combined heat and power plants (CHP), in additional gas and/or heat storage and other technical components are necessary. The analyses show that the flexibility premium, as an extra of the market premium model, creates the greatest incentive for a more flexible generation of electricity from biogas. In addition, an intelligent management optimization can generate additional revenues on EPEX SPOT SE and balancing energy market. The additional revenues of more demand-oriented power supply from biogas plants are highly dependent on plant-specific conditions. From an economic perspective, a duplication of the installed electrical capacity seems to be the most beneficial option for a transition to a demand-driven operation mode of an average biogas model plant under the current legal framework (EEG 2012).

  14. Optimization of Edwards vacuum coating unit model E12E for the production of thin films.; Optimizacion de la evaporadora Edwards modelo E12E para la fabricacion de peliculas delgadas.

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz P, H S

    1995-10-01

    This work is about an Edwards vacuum coating unit model E12E, it shows the principle of vacuum thermal evaporation, some observations in the operation of vacuum diffusion pumps, mechanical pumps, vacuum gauge, Penning and Pirani, and some equations of leak vacuum, after the modifications and additions of Edwards vacuum coating unit for optimization, the last part contains a concise introduction about thin films and one specific application, it also contains the recommendations and requirements to keep the system in good conditions. (Author).

  15. Response of MV-connected Doubly-Fed Induction Generator Wind Turbines and CHP plants to Grid Disturbances

    NARCIS (Netherlands)

    Karaliolios, P.; Slootweg, J.G.; Kling, W.L.

    2010-01-01

    Notwithstanding the positive environmental impact, the increasing penetration of Distributed Generation (DG) units connected to the distribution network raises new topics concerning the expected response of these during outages. Grid disturbances especially at the transmission level can cause the

  16. Fault-ride through behavior of MV-connected wind turbines and CHP-plants during transmission grid disturbances

    NARCIS (Netherlands)

    Karaliolios, P.; Coster, E.J.; Kling, W.L.; Myrzik, J.M.A.

    2009-01-01

    Apart from the positive technical consequences, the increasing penetration of Distributed Generation (DG) units connected to the distribution network brings new requirements in the protection strategy. Grid disturbances at the transmission level can cause the unwanted disconnection of large amount

  17. Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations

    Directory of Open Access Journals (Sweden)

    Nah-Oak Song

    2015-08-01

    Full Text Available We propose an optimal electric energy management of a cooperative multi-microgrid community with sequentially coordinated operations. The sequentially coordinated operations are suggested to distribute computational burden and yet to make the optimal 24 energy management of multi-microgrids possible. The sequential operations are mathematically modeled to find the optimal operation conditions and illustrated with physical interpretation of how to achieve optimal energy management in the cooperative multi-microgrid community. This global electric energy optimization of the cooperative community is realized by the ancillary internal trading between the microgrids in the cooperative community which reduces the extra cost from unnecessary external trading by adjusting the electric energy production amounts of combined heat and power (CHP generators and amounts of both internal and external electric energy trading of the cooperative community. A simulation study is also conducted to validate the proposed mathematical energy management models.

  18. Comparison of operation optimization methods in energy system modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2013-01-01

    In areas with large shares of Combined Heat and Power (CHP) production, significant introduction of intermittent renewable power production may lead to an increased number of operational constraints. As the operation pattern of each utility plant is determined by optimization of economics......, possibilities for decoupling production constraints may be valuable. Introduction of heat pumps in the district heating network may pose this ability. In order to evaluate if the introduction of heat pumps is economically viable, we develop calculation methods for the operation patterns of each of the used...... energy technologies. In the paper, three frequently used operation optimization methods are examined with respect to their impact on operation management of the combined technologies. One of the investigated approaches utilises linear programming for optimisation, one uses linear programming with binary...

  19. Optimizing gas extraction at landfills in Denmark; Optimering af gasindvinding pae deponeringsanlaeg i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, H.C. [LFG Consult (Denmark)

    2005-07-01

    In landfills which contain organic material and anaerobic decomposition takes place, and landfill gas (LFG) is produced. The LFG contains approximately 50% methane, which contributes to the greenhouse effect when emitting from the landfill. Approximately 19% of the greenhouse gases in the atmosphere are methane, and around 8% of this is emission from landfills. This means that roughly 1.5% of the global warming is related to emission from landfills. Extraction of LFG for energy purposes was started 30 years ago in USA. In Denmark 26 LFG plants have been established since 1985. The gas is utilized for CHP or pure power production in gas engine/generator units. In some cases the LFG is used in gas burners in connection with boilers for district heating systems. 24 million m{sup 3} was recovered in 2004, which is equivalent to a reduction of CO{sub 2} of 160.000 tons CO{sub 2}/year. (BA)

  20. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Yaroslav [Gas Technology Inst., Des Plaines, IL (United States); Kozlov, Aleksandr [Gas Technology Inst., Des Plaines, IL (United States)

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  1. Present status of reactor physics in the United States and Japan-III. 1. Recent Activities of Loading Pattern Optimization Research in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Akio

    2001-01-01

    Because of recent enhancements of optimization algorithms and great improvements in computer hardware, loading pattern (LP) optimization methods are being used as practical design tools both in the pressurized water reactor (PWR) and boiling water reactor (BWR) industries. LP optimization methods are mainly used for the following in-core fuel management activities in Japan: 1. minimization of fuel cycle costs; 2. evaluation of various in-core fuel management scenarios; 3. estimation of the number of feed assemblies needed during several successive cycles for fuel ordering; 4. evaluation of fuel bids. Although engineers can perform these analyses, the major motivations to utilize LP optimization methods are the reduction of manpower and the establishment of engineer-independent LP quality. These are important in today's in-core fuel management tasks. In the following sections, activities related to LP optimization research in Japan are briefly described. The major activity of PWR LP optimization research in Japan is development of the INSIGHT system. The INSIGHT system is an integrated scoping analysis tool for PWRs developed by Nuclear Fuel Industries (NFI). The INSIGHT system is a graphical user interface (GUI)-based interactive design tool that includes LP optimization, automated multicycle analysis, an interactive LP design, core follow, an integrated database, and some auxiliary functions. The INSIGHT system was mainly written in the C++ language and consists of ∼400 000 lines of source code. The GALLOP code is the LP optimization module of the INSIGHT system. An automated multicycle analysis is performed by the MCA code in INSIGHT. The MCA code performs a fuel and burnable poison (BP) inventory search by automatically invoking the GALLOP code, which makes LPs. The MCA code can deal with various constraints that have appeared in practical in-core fuel management, e.g., limitations of fuel/BP stock, forced fuel loading/discharge, limitations of core safety

  2. Novel web-based real-time dashboard to optimize recycling and use of red cell units at a large multi-site transfusion service.

    Science.gov (United States)

    Sharpe, Christopher; Quinn, Jason G; Watson, Stephanie; Doiron, Donald; Crocker, Bryan; Cheng, Calvino

    2014-01-01

    Effective blood inventory management reduces outdates of blood products. Multiple strategies have been employed to reduce the rate of red blood cell (RBC) unit outdate. We designed an automated real-time web-based dashboard interfaced with our laboratory information system to effectively recycle red cell units. The objective of our approach is to decrease RBC outdate rates within our transfusion service. The dashboard was deployed in August 2011 and is accessed by a shortcut that was placed on the desktops of all blood transfusion services computers in the Capital District Health Authority region. It was designed to refresh automatically every 10 min. The dashboard provides all vital information on RBC units, and implemented a color coding scheme to indicate an RBC unit's proximity to expiration. The overall RBC unit outdate rate in the 7 months period following implementation of the dashboard (September 2011-March 2012) was 1.24% (123 units outdated/9763 units received), compared to similar periods in 2010-2011 and 2009-2010: 2.03% (188/9395) and 2.81% (261/9220), respectively. The odds ratio of a RBC unit outdate postdashboard (2011-2012) compared with 2010-2011 was 0.625 (95% confidence interval: 0.497-0.786; P dashboard system is an inexpensive and novel blood inventory management system which was associated with a significant reduction in RBC unit outdate rates at our institution over a period of 7 months. This system, or components of it, could be a useful addition to existing RBC management systems at other institutions.

  3. Optimization and Optimal Control

    CERN Document Server

    Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider

    2010-01-01

    During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou

  4. Optimally Stopped Optimization

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known, and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time, optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark the performance of a D-Wave 2X quantum annealer and the HFS solver, a specialized classical heuristic algorithm designed for low tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N = 1098 variables, the D-Wave device is between one to two orders of magnitude faster than the HFS solver.

  5. Novel web-based real-time dashboard to optimize recycling and use of red cell units at a large multi-site transfusion service

    Directory of Open Access Journals (Sweden)

    Christopher Sharpe

    2014-01-01

    Full Text Available Background: Effective blood inventory management reduces outdates of blood products. Multiple strategies have been employed to reduce the rate of red blood cell (RBC unit outdate. We designed an automated real-time web-based dashboard interfaced with our laboratory information system to effectively recycle red cell units. The objective of our approach is to decrease RBC outdate rates within our transfusion service. Methods: The dashboard was deployed in August 2011 and is accessed by a shortcut that was placed on the desktops of all blood transfusion services computers in the Capital District Health Authority region. It was designed to refresh automatically every 10 min. The dashboard provides all vital information on RBC units, and implemented a color coding scheme to indicate an RBC unit′s proximity to expiration. Results: The overall RBC unit outdate rate in the 7 months period following implementation of the dashboard (September 2011-March 2012 was 1.24% (123 units outdated/9763 units received, compared to similar periods in 2010-2011 and 2009-2010: 2.03% (188/9395 and 2.81% (261/9220, respectively. The odds ratio of a RBC unit outdate postdashboard (2011-2012 compared with 2010-2011 was 0.625 (95% confidence interval: 0.497-0.786; P < 0.0001. Conclusion: Our dashboard system is an inexpensive and novel blood inventory management system which was associated with a significant reduction in RBC unit outdate rates at our institution over a period of 7 months. This system, or components of it, could be a useful addition to existing RBC management systems at other institutions.

  6. Thermal-economic optimisation of a CHP gas turbine system by applying a fit-problem genetic algorithm

    Science.gov (United States)

    Ferreira, Ana C. M.; Teixeira, Senhorinha F. C. F.; Silva, Rui G.; Silva, Ângela M.

    2018-04-01

    Cogeneration allows the optimal use of the primary energy sources and significant reductions in carbon emissions. Its use has great potential for applications in the residential sector. This study aims to develop a methodology for thermal-economic optimisation of small-scale micro-gas turbine for cogeneration purposes, able to fulfil domestic energy needs with a thermal power out of 125 kW. A constrained non-linear optimisation model was built. The objective function is the maximisation of the annual worth from the combined heat and power, representing the balance between the annual incomes and the expenditures subject to physical and economic constraints. A genetic algorithm coded in the java programming language was developed. An optimal micro-gas turbine able to produce 103.5 kW of electrical power with a positive annual profit (i.e. 11,925 €/year) was disclosed. The investment can be recovered in 4 years and 9 months, which is less than half of system lifetime expectancy.

  7. Evaluation of load flow and grid expansion in a unit-commitment and expansion optimization model SciGRID International Conference on Power Grid Modelling

    Science.gov (United States)

    Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven

    2018-02-01

    Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.

  8. Measuring the influence of a mental health training module on the therapeutic optimism of advanced nurse practitioner students in the United Kingdom.

    Science.gov (United States)

    Hemingway, Steve; Rogers, Melanie; Elsom, Stephen

    2014-03-01

    To evaluate the influence of a mental health training module on the therapeutic optimism of advanced nurse practitioner (ANP) students in primary care (family practice). Three cohorts of ANPs who undertook a Mental Health Problems in Primary Care Module as part of their MSc ANP (primary care) run by the University of Huddersfield completed the Elsom Therapeutic Optimism Scale (ETOS), in a pre- and postformat. The ETOS is a 10-item, self-administered scale, which has been used to evaluate therapeutic optimism previously in mental health professionals. All three cohorts who completed the scale showed an improvement in their therapeutic optimism scores. With stigma having such a detrimental effect for people diagnosed with a mental health problem, ANPs who are more mental health literate facilitated by education and training in turn facilitates them to have the skills and confidence to engage and inspire hope for the person diagnosed with mental health problems. ©2013 The Author(s) ©2013 American Association of Nurse Practitioners.

  9. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms

    Directory of Open Access Journals (Sweden)

    Ambika Ramamoorthy

    2016-01-01

    Full Text Available Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF and weak (WK bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5 and PQ capacities of DGs (P alone, Q alone, and  P and Q both are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology.

  10. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms.

    Science.gov (United States)

    Ramamoorthy, Ambika; Ramachandran, Rajeswari

    2016-01-01

    Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF) and weak (WK) bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5) and PQ capacities of DGs (P alone, Q alone, and P and Q both) are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology.

  11. Robust Management of Combined Heat and Power Systems via Linear Decision Rules

    DEFF Research Database (Denmark)

    Zugno, Marco; Morales González, Juan Miguel; Madsen, Henrik

    2014-01-01

    The heat and power outputs of Combined Heat and Power (CHP) units are jointly constrained. Hence, the optimal management of systems including CHP units is a multicommodity optimization problem. Problems of this type are stochastic, owing to the uncertainty inherent both in the demand for heat and...... linear decision rules to guarantee both tractability and a correct representation of the dynamic aspects of the problem. Numerical results from an illustrative example confirm the value of the proposed approach....

  12. Optimization of production in the oil field through the study of the problem of location of wells and production units; Otimizacao da producao em campo de petroleo pelo estudo do problema de localizacao de pocos e unidades de producao

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Roberta G.S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Rosa, Vinicius R. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    This project provides a process for determining the best location of well and production units in an oil field in order to optimize the reservoir performance and the volume of recovered oil, maximizing the profitability. The process uses various statistical analyses presented in the reservoir simulation results, under considerations and parameters. Sensibility analysis and response surface methodology is also applied to a better understanding of how each well influence the total production and the location of the platform and/or manifold can be changed to optimize the production. The method is shown being applied on a field scale with synthetic data. It aims to be a new way of guiding decision-making on a project to develop a field production. (author)

  13. Optimization of use of waste in the future energy system

    International Nuclear Information System (INIS)

    Muenster, Marie; Meibom, Peter

    2011-01-01

    Alternative uses of waste for energy production become increasingly interesting when considered from two perspectives, that of waste management and the energy system perspective. This paper presents the results of an enquiry into the use of waste in a future energy system. The analysis was performed using the energy system analysis model, Balmorel. The study is focused on Germany and the Nordic countries and demonstrates the optimization of both investments and production within the energy systems. The results present cost optimization excluding taxation concerning the use of waste for energy production in Denmark in a 2025 scenario with 48% renewable energy. Investments in a range of waste conversion technologies are facilitated, including waste incineration, co-combustion with coal, anaerobic digestion, and gasification. The most economically feasible solutions are found to be incineration of mixed waste, anaerobic digestion of organic waste, and gasification of part of the potential RDF (refuse derived fuel) for CHP (combined heat and power) production, while the remaining part is co-combusted with coal. Co-combustion mainly takes place in new coal-fired power plants, allowing investments to increase in comparison with a situation where only investments in waste incineration are allowed. -- Highlights: → The analysis is based on hourly chronological time steps, thereby taking dynamic properties of the energy system into account. → The system analyzed includes both the heat and the electricity market, which is important when analyzing e.g. CHP technologies. → The surrounding countries, which form part of the same electricity market, are included in the analysis. → New innovative Waste-to-Energy production plants have been modeled to allow for a more efficient and flexible use of waste. → The analysis includes economical optimization of operation and of investments in production and transmission of both electricity and heat.

  14. Evaluation of the performance of combined cooling, heating, and power systems with dual power generation units

    International Nuclear Information System (INIS)

    Knizley, Alta A.; Mago, Pedro J.; Smith, Amanda D.

    2014-01-01

    The benefits of using a combined cooling, heating, and power system with dual power generation units (D-CCHP) is examined in nine different U.S. locations. One power generation unit (PGU) is operated at base load while the other is operated following the electric load. The waste heat from both PGUs is used for heating and for cooling via an absorption chiller. The D-CCHP configuration is studied for a restaurant benchmark building, and its performance is quantified in terms of operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE). Cost spark spread, PEC spark spread, and CDE spark spread are examined as performance indicators for the D-CCHP system. D-CCHP system performance correlates well with spark spreads, with higher spark spreads signifying greater savings through implementation of a D-CCHP system. A new parameter, thermal difference, is introduced to investigate the relative performance of a D-CCHP system compared to a dual PGU combined heat and power system (D-CHP). Thermal difference, together with spark spread, can explain the variation in savings of a D-CCHP system over a D-CHP system for each location. The effect of carbon credits on operational cost savings with respect to the reference case is shown for selected locations. - Highlights: • We investigate benefits from using combined cooling, heating, and power systems. • A dual power generation unit configuration is considered for CCHP and CHP. • Spark spreads for cost, energy, and emissions correlate with potential savings. • Thermal difference parameter helps to explain variations in potential savings. • Carbon credits may increase cost savings where emissions savings are possible

  15. CO{sub 2} reduction: potential of heat pumps when used together with combined heat and power units; Potentiel energetique des pompes a chaleur combinees au couplage chaleur-force. Pour une reduction maximale des emissions de CO{sub 2} et pour une production de courant fossile avec reduction des emissions de CO{sub 2} en Suisse - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Rognon, F.

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the potential of using heat pumps in combination with Combined Heat and Power (CHP) units as a replacement for fossil-fuel fired heating units in Switzerland. The electrical power produced by the CHP units can be used to provide power for the drives of heat pump systems. The author states that the fossil fuel consumption and the resulting emissions of carbon dioxide can be halved using this combination. Also, even more efficient systems using power produced in larger combined-cycle power generation are discussed. Further examples of how fossil-fired power generation in combination with heat pumps can not only replace fossil-fuelled heating systems but also provide additional electricity too are given. This overview includes figures on the potential of such combined systems.

  16. Optimal Assignment Problem Applications of Finite Mathematics to Business and Economics. [and] Difference Equations with Applications. Applications of Difference Equations to Economics and Social Sciences. [and] Selected Applications of Mathematics to Finance and Investment. Applications of Elementary Algebra to Finance. [and] Force of Interest. Applications of Calculus to Finance. UMAP Units 317, 322, 381, 382.

    Science.gov (United States)

    Gale, David; And Others

    Four units make up the contents of this document. The first examines applications of finite mathematics to business and economies. The user is expected to learn the method of optimization in optimal assignment problems. The second module presents applications of difference equations to economics and social sciences, and shows how to: 1) interpret…

  17. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bieleveld, T.

    2010-08-15

    These days, the reduction of CO2 emissions from combustion devices is one of the main priorities for each design improvement. For the domestic use of the central heating boiler, Microgen Engine Corporation produces free piston Stirling engines for the Combined Heat and Power (CHP) application in these central heating boilers (Dutch: 'HRe ketel'). With CHP, the generation of electricity and heat are combined to increase overall efficiency, as heat is generally a waste product from the combustion to electric generation process. In this application, the Stirling engine, which can be defined as an external combustion engine, is heated by a natural gas fired engine-burner and cooled by a coolant flow. The heat transfer into the engine is converted into mechanical work and a heat flux from the engine. The mechanical work is used to produce electricity via a linear alternator. Heat in the flue gasses from the engine-burner is reused in a secondary burner and condensing heat exchanger. The coolant flow from the engine, after passing the secondary burner, is used for heating purposes. The heat transfer from engine-burner to the Stirling engine is analyzed and via several motivations it is found that it is favorable to improve fuel to electric conversion efficiency, for which the heat transfer efficiency of the engine-burner to the Stirling engine should be improved, as the engine design is not to be altered. From an initially developed linear free piston Stirling engine model and measurements performed at Microgen Engine Corporation, St. Petersborough, (UK), the engine power demand and engine-burner performance are found. The results are used to visualize the current energy flows of the Stirling engine and engine burner subsystem. The heat transfer to the engine is analyzed to find possible heat transfer improvements. It is concluded that heat transfer from the engine-burner to the engine can be approved if the flue losses due to convective heat transfer are

  18. High performance liquid chromatographic separation of thirteen drugs collected in Chinese Pharmacopoeia 2010(Ch.P2010 on cellulose ramification chiral stationary phase

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2012-02-01

    Full Text Available The enantiomers separation of thirteen drugs collected in Ch.P2010 was performed on chiral stationary phase of cellulose ramification (chiralpak OD and chiralpak OJ by high performance liquid chromatographic (HPLC methods, which included ibuprofen (C1, ketoprofen (C2, nitrendipine (C3, nimodipine (C4, felodipine (C5, omeprazole (C6, praziquantel (C7, propranolol hydrochloride (C8, atenolol (C9, sulpiride (C10, clenbuterol hydrochloride (C11, verapamil hydrochloride (C12, and chlorphenamine maleate (C13. The mobile phase consisted of isopropanol and n-hexane. The detection wavelength was set at 254 nm and the flow rate was 0.7 mL/min. The enantiomers separation of these thirteen racemates on chiralpak OD column and chiralpak OJ column was studied, while the effects of proportion of organic additives, alcohol displacer and temperature on the separation were studied. And the mechanism of some of racemates was discussed. The results indicated that thirteen chiral drugs could be separated on chiral stationary phase of cellulose ramification in normal phase chromatographic system. The chromatographic retention and resolution of enantiomers could be adjusted by factors including column temperature and the concentration of alcohol displacer and organic alkaline modifier in mobile phase. It was shown that the resolution was improved with reducing concentration of alcohol displacer. When concentration of organic alkaline modifier was 0.2% (v/v, the resolution and the peak shape were fairly good. Most racemates mentioned above had better resolution at column temperature of 25 °C. When racemates were separated, the temperature should be kept so as to obtain stable separation results. Keywords: HPLC, Chiral stationary phase, Optical enantiomers, Cellulose ramification

  19. The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies

    International Nuclear Information System (INIS)

    Lantz, Mikael

    2012-01-01

    Highlights: ► Interest in biogas from manure is increasing rapidly due to its climate benefits. ► Farm-scale production of CHP from manure-based biogas is not profitable in Sweden. ► Minor changes in energy prices or suggested production subsidies will make it profitable. ► Profitability is also affected by efficiency of scale and introduction of thermophilic conditions. -- Abstract: Interest in the generation of biogas from agricultural residues is increasing rapidly due to its climate benefits. In this study, an evaluation of the economic feasibility of various technologies, also on different scales, for the production of combined heat and power from manure-based biogas in Sweden is presented. The overall conclusion is that such production is not profitable under current conditions. Thus, the gap between the calculated biogas production cost and the acceptable cost for break-even must be bridged by, for example, different policy instruments. In general, efficiency of scale favors large-scale plants compared to individual farm-scale ones. However, a large, centralized biogas plant, using manure from numerous farms, is not always more cost efficient than a large, farm-scale plant treating manure from a few neighboring farms. The utilization of the produced heat, electricity prices, and political incentives, all have a significant impact on the economic outcome, whereas the value of the digestate as fertilizer is currently having a minor impact. Utilization of heat is, however, often limited by the lack of local heat sinks, in which case the implementation of a biogas process operating under thermophilic conditions could increase the profitability due to a more efficient utilization of reactor volume by using more process heat. The results from this study could be utilized by policy makers when implementing policy instruments considering biogas production from manure as well as companies involved in production and utilization of biogas.

  20. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions