WorldWideScience

Sample records for chp plant based

  1. CHP plant Legionowo Poland - Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    In 1997, a new Energy Law was passed in Poland. An important element of the law is that local energy planning is made obligatory. The law describes obligatory tasks and procedures for Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law of 1997, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for the Energy Supply Plans in these municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continues/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the Combined Cycle type should be investigated. The present report is the final Master Plan based on the following reports: Master Plan for Legionowo - Status Report; Master Plan for Legionowo - Hydraulic Analysis; CHP Plant Legionowo Poland - CHP Feasibility Analysis. The final Master Plan describes the status in the DH Company in Legionowo, possible improvements and an investment plan for the selected scenario. (BA)

  2. CHP plant reduces grain whisky costs

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, R.

    1989-04-01

    Scottish Grain Distillers Limited operate one of the largest grain whisky spirit production units in Scotland at Port Dundas Distillery, Glasgow. In 1972, a treatment plant for the distillery residues was installed. This was a major user of steam and fuelled by oil. In 1983, prompted by spiralling oil price rises, changes in the plant were initiated resulting in a significant move away from steam to electricity as the main source of energy and replacing oil by gas as the boiler fuel. To further improve the economics, an on-site gas turbine combined heat and power (CHP) system has been installed, any excess power being exported to the national grid. Estimated savings achieved by the CHP system point to a payback of 5.2 years on the gross investment capital. (U.K.).

  3. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    ) process and the Stirling engine process. The ORC process represents an economically interesting technology for small-scale biomass-fired combined heat and power plants in a power range between 400 and 1,500 kWel. A newly developed ORC technology with a nominal electric capacity of 1,000 kW was implemented...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  4. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    that are expected to be in force in Denmark during 2005, where a large part of the local CHP plants will change from being paid for electricity production according to a feed-in tariff, to a situation where the electricity is to be sold on market conditions. The results will highlight the CHP plant as the link...

  5. Biomass CHP based on a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Cowburn, D.A.; Dando, R.L.

    1997-12-31

    Combined heat and power (CHP) schemes offer a means of converting fuel to useful energy with much higher efficiencies (up to 80 percent) compared to electricity generating stations (efficiencies <36 percent). This has led to many EEC member states, including the UK, and other industrial countries encouraging the use of CHP. At the smaller scale (<500 kWe) steam based systems have generally proven too costly to provide solid fuel with an opportunity to exploit this potentially attractive CHP market sector. The Stirling engine offers a technology which can produce mechanical power from solid fuels without the need to raise steam. This project has been directed towards producing a Stirling engine design capable of producing an output of 150 kW{sub e} from solid fuel. The participants in the projects, CRE Group Ltd., Basys Marine Ltd. (formerly Cray Marine) and Gamos Ltd., brought together a wide range of experience in the areas of gasification, combustion, heat transfer, Stirling engine technology and high precision engineering. A novel form of low pressure nitrogen charged Stirling engine has been designed specifically for stationary applications. This avoided the drawbacks of high pressures with H{sub e} or H used as the working fluids and consequent requirement for exotic sealing arrangements, which have been associated with previous Stirling engine`s aimed primarily at the automotive market. (author)

  6. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.;

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...

  7. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  8. Investment appraisal for small CHP technology in biomass-fuel power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper is essentially an investment appraisal for small CHP (combined heat and power) technology in biomass-fuel power plant and discusses and presents data on the combustion/steam cycle technologies to demonstrate the economic viability of CHP projects using established market costs for technology and employing energy crops as biomass fuel. The data is based on the UK, where electricity prices are low, but the overseas market (where prices are higher and there is potential for UK exports) is also discussed. The report aims to synthesise up-to-date technical and economic information on biomass-fuel CHP projects of small scale and focuses on technical and financial information on equipment, capital, construction and operating costs, and revenue streams.

  9. Optimization of operation for combined heat and power plants - CHP plants - with heat accumulators using a MILP formulation

    Energy Technology Data Exchange (ETDEWEB)

    Grue, Jeppe; Bach, Inger [Aalborg Univ. (Denmark). Inst. of Energy Technology]. E-mails: jeg@iet.auc.dk; ib@iet.auc.dk

    2000-07-01

    The power generation system in Denmark is extensively based on small combined heat and power plants (CHP plants), producing both electricity and district heating. This project deals with smaller plants spread throughout the country. Often a heat accumulator is used to enable electricity production, even when the heat demand is low. This system forms a very complex problem, both for sizing, designing and operation of CHP plants. The objective of the work is the development of a tool for optimisation of the operation of CHP plants, and to even considering the design of the plant. The problem is formulated as a MILP-problem. An actual case is being tested, involving CHP producing units to cover the demand. The results from this project show that it is of major importance to consider the operation of the plant in detail already in the design phase. It is of major importance to consider the optimisation of the plant operation, even at the design stage, as it may cause the contribution margin to rise significantly, if the plant is designed on the basis of a de-tailed knowledge of the expected operation. (author)

  10. Load scheduling for decentralized CHP plants

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg, orlov 31.07.2008; Madsen, Henrik; Nielsen, Torben Skov

    This report considers load scheduling for decentralized combined heat and power plants where the revenue from selling power to the transmission company and the fuel cost may be time-varying. These plants produce both heat and power with a fixed ratio between these outputs. A heat storage facility...... be uncertain and dependent on time. It is suggested to use a combination of background knowledge of the operator and computer tools to solve the scheduling problem. More specificly it is suggested that the plant is equipped with (i) an automatic on-line system for forecasting the heat demand, (ii......) an interactive decision support tool by which optimal schedules can be found given the forecasts or user-defined modifications of the forecasts, and (iii) an automatic on-line system for monitoring when conditions have changed so that rescheduling is appropriate. In this report the focus is on methods applicable...

  11. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.;

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....

  12. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 - Emission factors and emission inventory for decentralised CHP production

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, M.

    2010-06-15

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity < 25MWe have been estimated based on project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines combusting residual oil and reciprocating engines combusting biomass producer gas based on wood. The emission factors for MSW incineration plants are much lower than the emission factors that were estimated for year 2000. The considerable reduction in the emission factors is a result of lower emission limit values in Danish legislation since 2006 that has lead to installation of new and improved flue gas cleaning systems in most MSW incineration plants. For CHP plants combusting wood or straw no major technical improvements have been implemented. The emission factors for natural gas fuelled reciprocating engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NO{sub x} emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low-NO{sub x} burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission sources for CH{sub 4}, NO{sub x}, SO{sub 2}, heavy metals and HCB. (author)

  13. Operational Strategies for a Portfolio of Wind Farms and CHP Plants in a Two-Price Balancing Market

    DEFF Research Database (Denmark)

    Hellmers, Anna; Zugno, Marco; Skajaa, Anders

    2015-01-01

    In this paper we explore the portfolio effect of a system consisting of a Combined Heat and Power (CHP) plant and a wind farm. The goal is to increase the overall profit of the portfolio by reducing imbalances, and consequently their implicit penalty in a two-price balancing market for electricity....... We investigate two different operational strategies, which differ in whether the CHP plant and the wind farm are operated jointly or independently, and we evaluate their economic performance on a real case study based on a CHP-wind system located in the western part of Denmark. We present......-horizon fashion, so that forecasts for heat demand, wind power production and market prices are updated at each iteration. We conclude that the portfolio strategy is the most profitable due to the two-price structure of the balancing market. This encourages producers to handle their imbalances outside the market....

  14. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    DEFF Research Database (Denmark)

    Lund, Henrik; Andersen, A.N.

    2005-01-01

    The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff.......The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff....

  15. A Stochastic Unit Commitment Model for a Local CHP Plant

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2005-01-01

    Local CHP development in Denmark has during the 90’s been characterised by large growth primarily due to government subsidies in the form of feed-in tariffs. In line with the liberalisation process in the EU, Danish local CHPs of a certain size must operate on market terms from 2005. This paper...

  16. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  17. In-situ corrosion investigation at Masnedø CHP plant - a straw-fired power plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Various austenitic and ferritic steels were exposed on a water-cooled probe in the superheater area of a straw-fired CHP plant. The temperature of the probe ranged from 450-600°C and the period of exposure was 1400 hours. The rate of corrosion was assessed based on unattacked metal remaining....... The corrosion products and course of corrosion for the various steel types were investigated using light optical and scanning electron microscopy. The ferritic steels suffered from corrosion mainly via material loss. The austenitic steels suffered from predominantly selective corrosion which resulted...

  18. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying [Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC (China); Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, Taiwan, ROC (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We analyzed fire and explosion incidents in a plant producing CHP and DCPO. Black-Right-Pointing-Pointer Data from calorimeters reveal causes and phenomena associated with the incidents. Black-Right-Pointing-Pointer The credible worst scenario was thermal explosion. Black-Right-Pointing-Pointer Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  19. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2012-01-01

    A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas...... shift (WGS) reactor, heat exchangers, and other balance-of-plant (BOP) components. The objective function of the single-objective optimization strategy is the net electrical efficiency of the micro-CHP system. The implemented optimization procedure attempts to maximize the objective function...

  20. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  1. The scale of transition: an integrated study of the performance of CHP biomass plants in the Netherlands

    OpenAIRE

    Proka, Antonia; Hisschemöller, Matthijs; Papyrakis, Elissaios

    2014-01-01

    Combined heat and power (CHP) plants using biomass are considered important to substantially increase the share of renewables in the total energy supply and meet ambitious climate targets. The analysis focuses on the links between the size of bio-fuelled CHP plants and their techno-economic and environmental performance, as well as social acceptance. In an exploratory way, this paper compares the performance of six bioenergy plants in the Netherlands in these three key areas, thereby focusing...

  2. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO.

    Science.gov (United States)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying; Duh, Yih-Shing

    2012-05-30

    Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  3. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  4. Modeling and simulation of a residential micro-CHP system based on HT-PEMFC technology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Combined-heat-and-power (CHP) technology is a well known and proved method to produce simultaneously power and heat at high efficiencies. This can be further improved by the introduction of a novel micro-CHP residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC...... is simulated in LabVIEW environment to provide the ability of Data Acquisition of actual components and thereby more realistic design in the future....

  5. Dicty_cDB: CHP638 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP638 (Link to dictyBase) - - - - CHP638P (Link to Original site) CHP638F 529 CHP63...8Z 720 CHP638P 1229 - - Show CHP638 Library CH (Link to library) Clone ID CHP638 (Link...sukuba.ac.jp/CSM/CH/CHP6-B/CHP638Q.Seq.d/ Representative seq. ID CHP638P (Link to... Original site) Representative DNA sequence >CHP638 (CHP638Q) /CSM/CH/CHP6-B/CHP638Q.Seq.d/ CTGTTGGCCTACTGGG...ng significant alignments: (bits) Value CHP638 (CHP638Q) /CSM/CH/CHP6-B/CHP638Q.S

  6. Dicty_cDB: CHP160 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP160 (Link to dictyBase) - - - Contig-U16475-1 CHP160P (Link to Original site) CHP16...0F 469 CHP160Z 728 CHP160P 1177 - - Show CHP160 Library CH (Link to library) Clone ID CHP16...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP1-C/CHP160Q.Seq.d/ Representative seq. ID CHP16...0P (Link to Original site) Representative DNA sequence >CHP160 (CHP160Q) /CSM/CH/CHP1-C/CHP16... Sequences producing significant alignments: (bits) Value CHP160 (CHP160Q) /CSM/CH/CHP1-C/CHP160Q.Seq.d/ 201

  7. Dicty_cDB: CHP531 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP531 (Link to dictyBase) - G20193 DDB0235388 Contig-U14452-1... - (Link to Original site) CHP531F 577 - - - - - - Show CHP531 Library CH (Link to library) Clone ID CHP531 ...l site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP531Q.Seq.d/ Repres...entative seq. ID - (Link to Original site) Representative DNA sequence >CHP531 (CHP531Q) /CSM/CH/CHP5-B/CHP53...liasfdmgq fitgpfgs--- Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP531 (CHP53

  8. Dicty_cDB: CHP630 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP630 (Link to dictyBase) - - - Contig-U16260-1 - (Link to Original site) - - CHP63...0Z 515 - - - - Show CHP630 Library CH (Link to library) Clone ID CHP630 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP630Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP630 (CHP630Q) /CSM/CH/CHP6-B/CHP630Q.Seq.d/ XXXXXXXXXXTCGTCAA...liyvptlpvklshnvxsiiglqlvlstkirkp Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP630 (CHP63

  9. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  10. Aeroderivative Gas Turbo engine in CHP Plant. Compatibility Problems

    Directory of Open Access Journals (Sweden)

    Sorinel-Gicu TALIF

    2010-12-01

    Full Text Available The paper presents the possibilities to develop Combined Cycle Units based onaeroderivative Gas Turbo engines and on existing Steam Turbines. The specific compatibilityproblems of these components and the thermodynamic performances of the analyzed Combined CycleUnits are also presented.

  11. Dicty_cDB: CHP631 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP631 (Link to dictyBase) - - - Contig-U16308-1 CHP631P (Link to Original site) CHP63...1F 576 CHP631Z 628 CHP631P 1184 - - Show CHP631 Library CH (Link to library) Clone ID CHP63...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP631Q.Seq.d/ Representative seq. ID CHP63...1P (Link to Original site) Representative DNA sequence >CHP631 (CHP631Q) /CSM/CH/CHP6-B/CHP63....0 %: endoplasmic reticulum >> prediction for CHP631 is exc 5' end seq. ID CHP631F 5' end seq. >CHP631F.Seq

  12. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, Marianne

    estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines...... engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NOx emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low......-NOx burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission...

  13. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    Science.gov (United States)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  14. Dicty_cDB: CHP536 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP536 (Link to dictyBase) - - - Contig-U16458-1 CHP536P (Link to Original site) CHP53...6F 597 CHP536Z 660 CHP536P 1237 - - Show CHP536 Library CH (Link to library) Clone ID CHP53...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP536Q.Seq.d/ Representative seq. ID CHP53...6P (Link to Original site) Representative DNA sequence >CHP536 (CHP536Q) /CSM/CH/CHP5-B/CHP53...XPK Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP536 (CHP53

  15. Dicty_cDB: CHP639 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP639 (Link to dictyBase) - - - Contig-U15897-1 CHP639P (Link to Original site) CHP63...9F 700 CHP639Z 643 CHP639P 1323 - - Show CHP639 Library CH (Link to library) Clone ID CHP63...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP639Q.Seq.d/ Representative seq. ID CHP63...9P (Link to Original site) Representative DNA sequence >CHP639 (CHP639Q) /CSM/CH/CHP6-B/CHP63...nkkkn*knk*ins*kkil Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP639 (CHP63

  16. Thermal gain of CHP steam generator plants and heat supply systems

    Science.gov (United States)

    Ziganshina, S. K.; Kudinov, A. A.

    2016-08-01

    Heating calculation of the surface condensate heat recovery unit (HRU) installed behind the BKZ-420-140 NGM boiler resulting in determination of HRU heat output according to fire gas value parameters at the heat recovery unit inlet and its outlet, heated water quantity, combustion efficiency per boiler as a result of installation of HRU, and steam condensate discharge from combustion products at its cooling below condensing point and HRU heat exchange area has been performed. Inspection results of Samara CHP BKZ-420-140 NGM power boilers and field tests of the surface condensate heat recovery unit (HRU) made on the bimetal calorifier base KCk-4-11 (KSk-4-11) installed behind station no. 2 Ulyanovsk CHP-3 DE-10-14 GM boiler were the basis of calculation. Integration of the surface condensation heat recovery unit behind a steam boiler rendered it possible to increase combustion efficiency and simultaneously decrease nitrogen oxide content in exit gases. Influence of the blowing air moisture content, the excess-air coefficient in exit gases, and exit gases temperature at the HRU outlet on steam condensate amount discharge from combustion products at its cooling below condensing point has been analyzed. The steam condensate from HRU gases is offered as heat system make-up water after degasification. The cost-effectiveness analysis of HRU installation behind the Samara CHP BKZ-420-140 NGM steam boiler with consideration of heat energy and chemically purified water economy has been performed. Calculation data for boilers with different heat output has been generalized.

  17. Dicty_cDB: CHP530 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP530 (Link to dictyBase) - - - - - (Link to Original site) CHP53...0F 182 - - - - - - Show CHP530 Library CH (Link to library) Clone ID CHP530 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP53...0Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >CHP53...0 (CHP530Q) /CSM/CH/CHP5-B/CHP530Q.Seq.d/ ACTGTTGGCCTACTGGGCAAATTAAAATCATTAAAAATAAAAAAA

  18. Dicty_cDB: CHP538 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP538 (Link to dictyBase) - - - Contig-U11908-1 CHP538P (Link to Original site) CHP53...8F 639 CHP538Z 714 CHP538P 1333 - - Show CHP538 Library CH (Link to library) Clone ID CHP53...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP538Q.Seq.d/ Representative seq. ID CHP53...8P (Link to Original site) Representative DNA sequence >CHP538 (CHP538Q) /CSM/CH/CHP5-B/CHP53...NIFDVEDLVPKNSXSFIKKKL*iin*nfk*inxkklcktk Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP53

  19. Decentralised CHP in a competitive market

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article agues that decentralised CHP plants is an important part of energy supply in Denmark.......The article agues that decentralised CHP plants is an important part of energy supply in Denmark....

  20. Implementation strategy for small CHP-plants in a competitive market

    DEFF Research Database (Denmark)

    Lund, Henrik; Šiupšinskas, G.; Martinaitis, V.

    2005-01-01

    The article analyses the conditions for the replacement of boilers in the existing district-heating supplies with combined heat-and-power production (CHP) in Lithuania.......The article analyses the conditions for the replacement of boilers in the existing district-heating supplies with combined heat-and-power production (CHP) in Lithuania....

  1. A Geothermal Energy Supported Gas-steam Cogeneration Unit as a Possible Replacement for the Old Part of a Municipal CHP Plant (TEKO

    Directory of Open Access Journals (Sweden)

    L. Böszörményi

    2001-01-01

    Full Text Available The need for more intensive utilization of local renewable energy sources is indisputable. Under the current economic circumstances their competitiveness in comparison with fossil fuels is rather low, if we do not take into account environmental considerations. Integrating geothermal sources into combined heat and power production in a municipal CHP plant would be an excellent solution to this problem. This concept could lead to an innovative type of power plant - a gas-steam cycle based, geothermal energy supported cogeneration unit.

  2. Dicty_cDB: CHP532 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP532 (Link to dictyBase) - - - Contig-U16255-1 - (Link to Original site) - - CHP53...2Z 245 - - - - Show CHP532 Library CH (Link to library) Clone ID CHP532 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP532Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP532 (CHP532Q) /CSM/CH/CHP5-B/CHP532Q.Seq.d/ XXXXXXXXXXGGTNTNT...s CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP532 (CHP532Q) /CSM/CH/CHP5-B/CHP532Q.Seq.d/ 335 2e-91 SS

  3. Dicty_cDB: CHP537 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP537 (Link to dictyBase) - - - Contig-U12147-1 | Contig-U15540-1 CHP53...7P (Link to Original site) CHP537F 116 CHP537Z 256 CHP537P 352 - - Show CHP537 Library CH (Link to library) Clone ID CHP53...47-1 | Contig-U15540-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP53...7Q.Seq.d/ Representative seq. ID CHP537P (Link to Original site) Representative DNA sequence >CHP537 (CHP53...7Q) /CSM/CH/CHP5-B/CHP537Q.Seq.d/ ACTGTTGGCCTACTGGGGTAAACTAATTAACACACAAAAATAAAAATAAAAAAAAAAAAA

  4. Dicty_cDB: CHP535 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP535 (Link to dictyBase) - - - Contig-U16475-1 | Contig-U16524-1 CHP53...5P (Link to Original site) CHP535F 213 CHP535Z 459 CHP535P 652 - - Show CHP535 Library CH (Link to library) Clone ID CHP53...75-1 | Contig-U16524-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP53...5Q.Seq.d/ Representative seq. ID CHP535P (Link to Original site) Representative DNA sequence >CHP535 (CHP53...5Q) /CSM/CH/CHP5-B/CHP535Q.Seq.d/ ACTGTTGGCCTACTGGNATGATTATTATAATTCAAATTAAAAATATATTATATAAATATA

  5. Dicty_cDB: CHP533 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP533 (Link to dictyBase) - - - Contig-U13117-1 | Contig-U15928-1 CHP53...3P (Link to Original site) CHP533F 113 CHP533Z 753 CHP533P 846 - - Show CHP533 Library CH (Link to library) Clone ID CHP53...17-1 | Contig-U15928-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP53...3Q.Seq.d/ Representative seq. ID CHP533P (Link to Original site) Representative DNA sequence >CHP533 (CHP53...3Q) /CSM/CH/CHP5-B/CHP533Q.Seq.d/ TTANTTAAAAAGATNGATANTAAATCAAAGGGGAAANCAGTTNTNGAANGTAATNCNTTA

  6. Dicty_cDB: CHP633 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP633 (Link to dictyBase) - - - Contig-U16496-1 - (Link to Original site) CHP63...3F 647 - - - - - - Show CHP633 Library CH (Link to library) Clone ID CHP633 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP633Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP633 (CHP633Q) /CSM/CH/CHP6-B/CHP633Q.Seq.d/ CTGTTGGCCTATTGGNA...nt alignments: (bits) Value CHP633 (CHP633Q) /CSM/CH/CHP6-B/CHP633Q.Seq.d/ 749 0.0 AFA385 (AFA385Q) /CSM/AF/

  7. Dicty_cDB: CHP636 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP636 (Link to dictyBase) - - - Contig-U15337-1 - (Link to Original site) - - CHP63...6Z 448 - - - - Show CHP636 Library CH (Link to library) Clone ID CHP636 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP636Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP636 (CHP636Q) /CSM/CH/CHP6-B/CHP636Q.Seq.d/ XXXXXXXXXXGCCNCCC...cDNA Score E Sequences producing significant alignments: (bits) Value CHP636 (CHP636Q) /CSM/CH/CHP6-B/CHP636

  8. Dicty_cDB: CHP634 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP634 (Link to dictyBase) - - - Contig-U11045-1 - (Link to Original site) - - CHP63...4Z 693 - - - - Show CHP634 Library CH (Link to library) Clone ID CHP634 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP634Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP634 (CHP634Q) /CSM/CH/CHP6-B/CHP634Q.Seq.d/ XXXXXXXXXXTAAATTT...ant alignments: (bits) Value CHP634 (CHP634Q) /CSM/CH/CHP6-B/CHP634Q.Seq.d/ 551 e

  9. Dicty_cDB: CHP632 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP632 (Link to dictyBase) - - - Contig-U16510-1 | Contig-U16524-1 CHP63...2P (Link to Original site) CHP632F 204 CHP632Z 220 CHP632P 404 - - Show CHP632 Library CH (Link to library) Clone ID CHP63...10-1 | Contig-U16524-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP63...2Q.Seq.d/ Representative seq. ID CHP632P (Link to Original site) Representative DNA sequence >CHP632 (CHP63...2Q) /CSM/CH/CHP6-B/CHP632Q.Seq.d/ CTGTTGGCCTACTGGNAAAAAAATATTCAACTCAGTAATAATAATAATAAAAATAATAAC

  10. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP) Station Processing Plant Biomass

    Science.gov (United States)

    Szulc, Justyna; Otlewska, Anna; Okrasa, Małgorzata; Majchrzycka, Katarzyna; Sulyok, Michael; Gutarowska, Beata

    2017-01-01

    The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP). We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs). Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq) revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.). The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM). We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored. PMID:28117709

  11. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP Station Processing Plant Biomass

    Directory of Open Access Journals (Sweden)

    Justyna Szulc

    2017-01-01

    Full Text Available The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP. We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs. Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.. The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM. We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored.

  12. More performance by means of enhancement of the efficiency of CHP plants. CHP operation of an ORC plant; Mehr Leistung durch Effizienzsteigerung von KWK-Anlagen. KWK-Betrieb einer ORC-Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Greschner, Timm; Fink, Jochen; Stadelmaier, Fabian [Duerr Cyplan Ltd., Bietigheim-Bissingen (Germany)

    2013-07-15

    In November 2012, the biogas plant of Stadtwerke Gross-Gerau-Versorgungs-GmbH (GGV) was supplemented with an energy-efficient organic Rankine cycle system (ORC) from Duerr Cyplan Ltd. (Bietigheim-Bissingen, Federal Republic of Germany). The ORC technology enables the utilization of the exhaust heat from the combustion of the gas for the power generation. Hereby, the efficiency in the power generation is increased by about 8 % in Gross-Gerau. Furthermore, the existing energy recovery concept is improved by the CHP operation of the ORC system. With the experience from Gross-Gerau new business segments can be accessed by means of the ORC technology.

  13. Dicty_cDB: CHP637 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP637 (Link to dictyBase) - - - Contig-U10836-1 - (Link to Original site) CHP63...7F 590 - - - - - - Show CHP637 Library CH (Link to library) Clone ID CHP637 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP637Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP637 (CHP637Q) /CSM/CH/CHP6-B/CHP637Q.Seq.d/ ACTGTTGGCCTACTGGN... %: vacuolar 4.0 %: mitochondrial 4.0 %: nuclear 4.0 %: endoplasmic reticulum >> prediction for CHP637 is exc 5' end seq. ID CHP63

  14. Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A detailed thermodynamic, kinetic and geometric model of a micro-CHP (Combined-Heatand-Power) residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC) technology is developed, implemented and validated. HT-PEMFC technology is investigated as a possible candidate...... for fuel cell-based residential micro-CHP systems, since it can operate at higher temperature than Nafion-based fuel cells, and therefore can reach higher cogeneration efficiencies. The proposed system can provide electric power, hot water, and space heating for a typical Danish single-family household...

  15. Efficient Heat Use from Biogas CHP Plants. Case Studies from Biogas Plants in Latvia

    OpenAIRE

    Dzene, Ilze; Slotiņa, Lāsma

    2013-01-01

    This paper is focusing on efficient heat use from biogas plants. It gives an overview about various biogas heat use options and specifically addresses biogas heat use market in Latvia. In the end three examples from typical agricultural biogas plants in Latvia and their heat use plans are described.

  16. Survey of controllability in decentralized CHP plants. Optimal operation of priority production units; Kortlaegning af decentrale kraftvarmevaerkers regulerbarhed. Optimal drift af prioriterede anlaeg - Teknologisk grundlag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    The present report presents results from two closely related projects, carried out in parallel, under the PSO-F and U 2002. The one project is 'Survey of controllability in de-centralized combined heat and power plants' project number PSO 4724 and is fully reported here. The other project: 'Optimal operation of priority production units, project number PSO 4712, only the part project 'Technological foundations is reported here. In project 4724 the technical conditions that matter regarding controllability of electricity production in de-centralized heat and power stations are surveyed. In this context the term controllability means how fast and to which extent the load factors of the plants can be changed. Also, is has been investigated which options are available for improving the controllability, their potentials and estimates on required investments associated. The investigation covers CHP plants having a production capacity of up to 30 MW of electricity. The main part of the de-centralized CHP plants are based on spark ignited internal combustion engines (Otto engines). Most of these engines are fuelled by natural gas and a smaller part by biogas. A minor number are gas turbines fuelled by natural gas and steam turbines in industrial applications, waste incineration plants or in combined cycle power plants. The mapping has among others consisted of a number of visits on selected different types of plants including interview with people responsible for the daily operation. From these interviews data on the actual operating strategy and technical data have been provided. In addition suppliers of engines and other equipment involved have been contacted for technical information or recommendations regarding possible changes in operation strategy. Searching the Internet has been widely used for identification of technical investigations concerning e.g. operation and maintenance of relevant equipment. Finally, substantial statistical data from

  17. Conceptual framework for the continuing circulation of small CHP-plants. IZES-Study: Further measures necessary; Rahmenbedingungen fuer die weitere Verbreitung von Klein-KWK-Anlagen. IZES-Studie: Weitere Massnahmen notwendig

    Energy Technology Data Exchange (ETDEWEB)

    Leprich, U.; Thiele, A. [Institut fuer ZukunftsEnergieSysteme (IZES), Saarbruecken (Germany)

    2004-07-01

    The incentives, created by the CHP law of March the 19th of 2002, are short- and medium term not sufficient to broadly introduce small CHP-plants in general - and future technologies like the fuel cell or a Stirling-motor in particular - on the market or at least to develop those to a state of market maturity. A further development or rather a flanking of the existing CHP law is urgently recommended. (orig.)

  18. Dicty_cDB: CHP167 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP167 (Link to dictyBase) - - - Contig-U16471-1 - (Link to Original site) - - CHP16...7Z 703 - - - - Show CHP167 Library CH (Link to library) Clone ID CHP167 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP1-C/CHP167Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP167 (CHP167Q) /CSM/CH/CHP1-C/CHP167Q.Seq.d/ XXXXXXXXXXGAAATTG...chondrial 4.0 %: cytoskeletal >> prediction for CHP167 is nuc 5' end seq. ID - 5' end seq. - Length of 5' en

  19. Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis

    Directory of Open Access Journals (Sweden)

    Alta Knizley

    2015-12-01

    Full Text Available This paper focuses on the analysis of a combined heat and power (CHP system utilizing two power generation units operating simultaneously under differing operational strategies (D-CHP on the basis of operational cost savings. A cost optimization metric, based on the facility monthly power-to-heat ratio (PHR, is presented in this paper. The PHR is defined as the ratio between the facility electric load and thermal load. Previous work in this field has suggested that D-CHP system performance may be improved by limiting operation of the system to months in which the PHR is relatively low. The focus of this paper is to illustrate how the facility PHR parameter could be used to establish the potential of a D-CHP system to reduce operational cost with respect to traditional CHP systems and conventional systems with separate heating and power. This paper analyzes the relationship between the PHR and the operational cost savings of eight different benchmark buildings. Achieving operational cost savings through optimal operation based on monthly PHR for these building types can enhance the implementation potential of D-CHP and CHP systems. Results indicate that the PHR parameter can be used to predict the potential for a D-CHP system to reduce the operational cost.

  20. Dicty_cDB: CHP159 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP159 (Link to dictyBase) - - - Contig-U15743-1 CHP159P (Link... to Original site) CHP159F 653 CHP159Z 743 CHP159P 1376 - - Show CHP159 Library CH (Link to library) Clone ID CHP159 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15743-1 Original site URL http://dict...TSTKXLSLDQVSLIVSIVFHHHVESSKRLQNQXKVNQAGSLVKKENLLALIKILH FDQSINRQQLNSILVQICTFSDNREELLCYILQILTGYQSIVSQQPQRKTAE...HHHVESSKRLQNQXKVNQAGSLVKKENLLALIKILH FDQSINRQQLNSILVQICTFSDNREELLCYILQILTGYQSIVSQ

  1. Marketing opportunities for CHP electricity in a virtual power plant. Direct and indirect marketing of flexibility; Vermarktungschancen fuer KWK-Strom im virtuellen Kraftwerk. Direkte und indirekte Flexibilitaetsvermarktung

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Achim; Baumgart, Bastian [Trianel GmbH, Aachen (Germany). Abt. Virtuelle Kraftwerke

    2013-07-15

    The increasingly fluctuating feed-in of electricity by means of a rapid expansion of renewable energies results in an increasing demand for flexible performance for the regulation of production and consumption. An important part of the necessary flexibility could be provided by CHP plants. Their potential of flexibility is not always fully exploited.

  2. Initial Market Assessment for Small-Scale Biomass-Based CHP

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.; Mann, M.

    2008-01-01

    The purpose of this report is to reexamine the energy generation market opportunities for biomass CHP applications smaller than 20 MW. This paper provides an overview of the benefits of and challenges for biomass CHP in terms of policy, including a discussion of the drivers behind, and constraints on, the biomass CHP market. The report provides a summary discussion of the available biomass supply types and technologies that could be used to feed the market. Two primary markets are outlined--rural/agricultural and urban--for small-scale biomass CHP, and illustrate the primary intersections of supply and demand for those markets. The paper concludes by summarizing the potential markets and suggests next steps for identifying and utilizing small-scale biomass.

  3. Analysis of the impact of Heat-to-Power Ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Brandon, Nigel;

    2011-01-01

    In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single-family hous......In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single......-family households in different European countries are evaluated. The range of Heat-to-Power Ratio for the SOFC based mCHP System of 0.5 to 1.5 shows good agreement with the hot water, space heating and electricity demand during the warm seasons across Europe. This suggests that the fuel cell system should be sized...... according to the summer energy demand. The winter energy demand shows a Heat-to-Power Ratio which cannot be covered by the mCHP unit alone. To ensure that the mCHP system meets both the thermal and electrical energy demand over the entire year, an auxiliary boiler and a hot water storage tank need...

  4. Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module

    Directory of Open Access Journals (Sweden)

    Wajs Jan

    2016-09-01

    Full Text Available The results of investigations conducted on the prototype of vapour driven micro-CHP unit integrated with a gas boiler are presented. The system enables cogeneration of heat and electric energy to cover the energy demand of a household. The idea of such system is to produce electricity for own demand or for selling it to the electric grid – in such situation the system user will became the prosumer. A typical commercial gas boiler, additionally equipped with an organic Rankine cycle (ORC module based on environmentally acceptable working fluid can be regarded as future generation unit. In the paper the prototype of innovative domestic cogenerative ORC system, consisting of a conventional gas boiler and a small size axial vapour microturbines (in-house designed for ORC and the commercially available for Rankine cycle (RC, evaporator and condenser were scrutinised. In the course of study the fluid working temperatures, rates of heat, electricity generation and efficiency of the whole system were obtained. The tested system could produce electricity in the amount of 1 kWe. Some preliminary tests were started with water as working fluid and the results for that case are also presented. The investigations showed that domestic gas boiler was able to provide the saturated/superheated ethanol vapour (in the ORC system and steam (in the RC system as working fluids.

  5. Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module

    Science.gov (United States)

    Wajs, Jan; Mikielewicz, Dariusz; Bajor, Michał; Kneba, Zbigniew

    2016-09-01

    The results of investigations conducted on the prototype of vapour driven micro-CHP unit integrated with a gas boiler are presented. The system enables cogeneration of heat and electric energy to cover the energy demand of a household. The idea of such system is to produce electricity for own demand or for selling it to the electric grid - in such situation the system user will became the prosumer. A typical commercial gas boiler, additionally equipped with an organic Rankine cycle (ORC) module based on environmentally acceptable working fluid can be regarded as future generation unit. In the paper the prototype of innovative domestic cogenerative ORC system, consisting of a conventional gas boiler and a small size axial vapour microturbines (in-house designed for ORC and the commercially available for Rankine cycle (RC)), evaporator and condenser were scrutinised. In the course of study the fluid working temperatures, rates of heat, electricity generation and efficiency of the whole system were obtained. The tested system could produce electricity in the amount of 1 kWe. Some preliminary tests were started with water as working fluid and the results for that case are also presented. The investigations showed that domestic gas boiler was able to provide the saturated/superheated ethanol vapour (in the ORC system) and steam (in the RC system) as working fluids.

  6. A Study of a Diesel Engine Based Micro-CHP System

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP

  7. Designing and optimization of a micro CHP system based on Solid Oxide Fuel Cell with different fuel processing technologies

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    (SMR) and partial oxidation (CPO) will be investigated for each configuration. The internal reforming will be also considered for its ability to reduce the stack temperature and decrease the need of cooling air. Finally, optimization criteria for SOFC systems applied to single-family detached dwellings...... are the possibility to partially reform hydrocarbon in the fuel cell anode compartment and the possibility to use high quality heat for cogeneration. In this work, different configurations of solid oxide fuel cell system for decentralized electricity production are examined. The Balance of Plant (BoP) components...... of the Micro Combined Heat and Power plant (mCHP) will be identified including fuel and air supply, fuel management anode re-circulation, exhaust gas heat management, power conditioning and control system. Using mass and energy balance, different types of fuel reforming including steam reforming...

  8. New integrated gas turbine CHP (combined heat and power) and incinerator plant.

    Science.gov (United States)

    Briggs, R A; Yates, B

    1990-12-01

    Despite the complex nature of the project, the clients brief of a 14 month design and installation period was achieved within the approved budget of 2.5 million pounds. Early performance figures indicate that the scheme is on target to achieve the original payback of under four years. Queen Elizabeth Hospital: installation of integrated combined heat and power plant. Client: Central Birmingham Health Authority. Consulting Engineers/Project Managers: Yates, Edge and Partners. Architects: Temple Cox and Nichols. Structural Engineers: Peel and Fowler. Quantity Surveyor: West Midlands Regional Health Authority.

  9. Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2014-10-01

    Full Text Available A comprehensive thermodynamic study is conducted of a diesel based Combined Heat and Power (CHP system, based on a diesel engine and an Organic Rankine Cycle (ORC. Present research covers both energy and exergy analyses along with a multi-objective optimization. In order to determine the irreversibilities in each component of the CHP system and assess the system performance, a complete parametric study is performed to investigate the effects of major design parameters and operating conditions on the system’s performance. The main contribution of the current research study is to conduct both exergy and multi-objective optimization of a system using different working fluid for low-grade heat recovery. In order to conduct the evolutionary based optimization, two objective functions are considered in the optimization; namely the system exergy efficiency, and the total cost rate of the system, which is a combination of the cost associated with environmental impact and the purchase cost of each component. Therefore, in the optimization approach, the overall cycle exergy efficiency is maximized satisfying several constraints while the total cost rate of the system is minimized. To provide a better understanding of the system under study, the Pareto frontier is shown for multi-objective optimization and also an equation is derived to fit the optimized point. In addition, a closed form relationship between exergy efficiency and total cost rate is derived.

  10. Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations

    Directory of Open Access Journals (Sweden)

    Ricardo Chacartegui

    2013-12-01

    Full Text Available Wastewater treatment stations take advantage of the biogas produced from sludge in anaerobic digesters to generate electricity (reciprocating gas engines and heat (cooling water and engine exhaust gases. A fraction of this electricity is used to operate the plant while the remaining is sold to the grid. Heat is almost entirely used to support the endothermic anaerobic digestion and a minimum fraction of it is rejected to the environment at a set of fan coolers. This generic description is applicable to on-design conditions. Nevertheless, the operating conditions of the plant present a large seasonal variation so it is commonly found that the fraction of heat rejected to the atmosphere increases significantly at certain times of the year. Moreover, the heat available in the exhaust gases of the reciprocating engine is at a very high temperature (around 650 oC, which is far from the temperature at which heat is needed for the digestion of sludge (around 40 oC in the digesters. This temperature difference offers an opportunity to introduce an intermediate system between the engines and the digesters that makes use of a fraction of the available heat to convert it into electricity. An Organic Rankine Cycle (ORC with an appropriate working fluid is an adequate candidate for these hot/cold temperature sources. In this paper, the techno-economic effect of adding an Organic Rankine Cycle as the intermediate system of an existing wastewater treatment station is analysed. On this purpose, different working fluids and system layouts have been studied for a reference wastewater treatment station giving rise to optimal systems configurations. The proposed systems yield very promising results with regard to global efficiency and electricity production (thermodynamically and economically.

  11. Dicty_cDB: CHP195 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP195 (Link to dictyBase) - - - Contig-U11819-1 - (Link to Or...iginal site) CHP195F 138 - - - - - - Show CHP195 Library CH (Link to library) Clone ID CHP195 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U11819-1 Original site URL http://dictycdb.b...qilkvstnk**IKNYYVNRVYEIIIIINICTYKKK--- Translated Amino Acid sequence (All Frames) Frame A: tvgllvfsnt*gink*...iin*kllck*sl*nnnynkymyi*kk--- Frame B: llaywffqilkvstnk**IKNYYVNRVYEIIIIINICTYKKK--- Frame C: cwptgffkylryqq

  12. Using Cost-Effectiveness Tests to Design CHP Incentive Programs

    Energy Technology Data Exchange (ETDEWEB)

    Tidball, Rick [ICF International, Fairfax, VA (United States)

    2014-11-01

    This paper examines the structure of cost-effectiveness tests to illustrate how they can accurately reflect the costs and benefits of CHP systems. This paper begins with a general background discussion on cost-effectiveness analysis of DER and then describes how cost-effectiveness tests can be applied to CHP. Cost-effectiveness results are then calculated and analyzed for CHP projects in five states: Arkansas, Colorado, Iowa, Maryland, and North Carolina. Based on the results obtained for these five states, this paper offers four considerations to inform regulators in the application of cost-effectiveness tests in developing CHP programs.

  13. CHP and Energy Conservation

    OpenAIRE

    McGovern, Jim

    1995-01-01

    The principles of the use of 'combined heat and power' (CHP) for the achievement of fuel energy conservation, minimisation of environmental impact and economic advantage are explained. A distinction is made between the two types of outputs: heat and work. It is argued that an efficiency value that is defined as the sum of the heat and work outputs divided by the energy of the fuel used is not very meaningful. An alternative, rational, efficiency is explained. It is concluded that CHP is an op...

  14. Development of a Transient Model of a Stirling-Based CHP System

    Directory of Open Access Journals (Sweden)

    Antón Cacabelos

    2013-06-01

    Full Text Available Although the Stirling engine was invented in 1816, this heat engine still continues to be investigated due to the variety of energy sources that can be used to power it (e.g., solar energy, fossil fuels, biomass, and geothermal energy. To study the performance of these machines, it is necessary to develop and simulate models under different operating conditions. In this paper, we present a one-dimensional dynamic model based on components from Trnsys: principally, a lumped mass and a heat exchanger. The resulting model is calibrated using GenOpt. Furthermore, the obtained model can be used to simulate the machine both under steady-state operation and during a transient response. The results provided by the simulations are compared with data measured in a Stirling engine that has been subjected to different operating conditions. This comparison shows good agreement, indicating that the model is an appropriate method for transient thermal simulations. This new proposed model requires few configuration parameters and is therefore easily adaptable to a wide range of commercial models of Stirling engines. A detailed analysis of the system results reveals that the power is directly related to the difference of temperatures between the hot and cold sources during the transient and steady-state processes.

  15. A study on electricity export capability of the μCHP system with spot price

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    When a number of muCHP systems are aggregated as a virtual power plant (VPP), they will be able to participate in the electricity wholesale market with no discrimination compared to conventional large power plants. Hence, this paper investigates the electricity export capability of the muCHP system...... when the electricity buyback price is given at a value equalizing the dynamic spot price. A muCHP system is modeled with optimized generation, and the marginal price of electricity export for such system is explained. A sensitivity analysis of several key factors, e.g. fuel price, heat to power ratio...... of the muCHP unit, which influence the export capability of muCHP system, is firstly carried out in the intraday case study, followed by the annual case study which explores the annual system performance. The results show that the electricity export capability of a muCHP system is closely related to its...

  16. IVO`s CHP know-how: experience, inventions, patents

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Ohtonen, V. [ed.

    1997-11-01

    IVO can justly claim mastery in the co-generation of district heat and electricity - CHP. As well as looking at the issue from the viewpoint of planners, builders and operators, IVO`s engineers also view power plants through the eyes of the product developer and inventor. This approach has resulted in successful power plant configurations, inventions and patents and visions

  17. Strandby Harbour on solar cooling. Demonstration of 8.000 m{sup 2} solar collectors combined with flue gas cooling with a absorption cooling system; Combined heat and power plant (CHP); Strandby havn paa solkoeling. Demonstration af 8.000 m{sup 2} solfangere kombineret med roeggaskoeling med absorptionskoeleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Flemming (Strandby Varmevaerk, Strandby (Denmark)); Soerensen, Per Alex (PlanEnergi, Skoerping (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Sloth, H. (Houe and Olsen, Thisted (Denmark))

    2010-04-15

    The aim of the project was to demonstrate 1) high solar heating ratio (18% annually) at a decentralized natural gas combined heat and power plant; 2) increased efficiency (5% of the heat consumption) in a natural gas CHP by using an extra flue gas cooler and an absorption heat pump; 3) a double tank system where a new tank during winter is used for cooling/ heat storage for the absorption heat pump and during summer for solar heat storage in serial operation with the old tank. The concept of combining solar power, absorption cooling and natural gas-fired small-scale CHP in Strandby met expectations and could be replicated in other CHP plants. However, it is important to note that if major construction modifications in the flue gas condensation system in the boiler or engine are required, the operating hours must not be reduced significantly in the amortisation period for the conversion. (ln)

  18. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  19. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  20. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    Energy Technology Data Exchange (ETDEWEB)

    Babkin, K. V., E-mail: babkin@uztec.ru; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V. [SC “South-West CHP” (Russian Federation); Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V. [JSC “Interautomatika” (Russian Federation)

    2015-01-15

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described.

  1. The rv1184c locus encodes Chp2, an acyltransferase in Mycobacterium tuberculosis polyacyltrehalose lipid biosynthesis.

    Science.gov (United States)

    Touchette, Megan H; Holsclaw, Cynthia M; Previti, Mary L; Solomon, Viven C; Leary, Julie A; Bertozzi, Carolyn R; Seeliger, Jessica C

    2015-01-01

    Trehalose glycolipids are found in many bacteria in the suborder Corynebacterineae, but methyl-branched acyltrehaloses are exclusive to virulent species such as the human pathogen Mycobacterium tuberculosis. In M. tuberculosis, the acyltransferase PapA3 catalyzes the formation of diacyltrehalose (DAT), but the enzymes responsible for downstream reactions leading to the final product, polyacyltrehalose (PAT), have not been identified. The PAT biosynthetic gene locus is similar to that of another trehalose glycolipid, sulfolipid 1. Recently, Chp1 was characterized as the terminal acyltransferase in sulfolipid 1 biosynthesis. Here we provide evidence that the homologue Chp2 (Rv1184c) is essential for the final steps of PAT biosynthesis. Disruption of chp2 led to the loss of PAT and a novel tetraacyltrehalose species, TetraAT, as well as the accumulation of DAT, implicating Chp2 as an acyltransferase downstream of PapA3. Disruption of the putative lipid transporter MmpL10 resulted in a similar phenotype. Chp2 activity thus appears to be regulated by MmpL10 in a relationship similar to that between Chp1 and MmpL8 in sulfolipid 1 biosynthesis. Chp2 is localized to the cell envelope fraction, consistent with its role in DAT modification and possible regulatory interactions with MmpL10. Labeling of purified Chp2 by an activity-based probe was dependent on the presence of the predicted catalytic residue Ser141 and was inhibited by the lipase inhibitor tetrahydrolipstatin (THL). THL treatment of M. tuberculosis resulted in selective inhibition of Chp2 over PapA3, confirming Chp2 as a member of the serine hydrolase superfamily. Efforts to produce in vitro reconstitution of acyltransferase activity using straight-chain analogues were unsuccessful, suggesting that Chp2 has specificity for native methyl-branched substrates.

  2. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  3. Modeling and off-design performance of a 1 kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    BOP (balance-of-plant) components, is modeled and coupled to the fuel cell stack subsystem. The micro-CHP system is simulated in LabVIEW environment to provide the ability of Data Acquisition of actual components and thereby more realistic design in the future. A part-load study has been conducted...

  4. DEVELOPMENT OF THE CHP-THERMAL SCHEMES IN CONTEXTS OF THE CONSOLIDATED ENERGY SYSTEM OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper deals with the structural specifics of the Belarus Consolidated Energy System capacities in view of their ongoing transfer to the combined-cycle technology, building the nuclear power plant and necessity for the generating capacity regulation in compliance with the load diagram. With the country’s economic complex energy utilization pattern being preserved, the generating capacities are subject to restructuring and the CHP characteristics undergo enhancement inter alia a well-known increase of the specific electricity production based on the heat consumption. Because of this the steam-turbine condensation units which are the traditional capacity regulators for the energy systems with heat power plants dominance are being pushed out of operation. In consequence of this complex of changes the issue of load diagram provision gains momentum which in evidence is relevant to the Consolidated Energy System of Belarus. One of the ways to alleviate acuteness of the problem could be the specific electric energy production cut on the CHP heat consumption with preserving the heat loads and without their handover to the heat generating capacities of direct combustion i.e. without fuel over-burning. The solution lies in integrating the absorption bromous-lithium heat pump units into the CHP thermal scheme. Through their agency low-temperature heat streams of the generator cooling, the lubrication and condensation heat-extraction of steam minimal passing to the condenser systems are utilized. As a case study the authors choose one of the CHPs in the conditions of which the corresponding employment of the said pumps leads to diminution of the fuel-equivalent specific flow-rate by 20−25 g for 1 kW⋅h production and conjoined electric energy generation capacity lowering. The latter will be handed over to other generating capacities, and the choice of them affects economic expediency of the absorption bromous-lithium heat pump-units installation

  5. District Heating and CHP - Local Possibilities for Global Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Difs, Kristina

    2010-07-01

    the DH system cost the gasification application integrated with production of renewable biofuels (SNG) for the transport sector is the investment option with the largest savings potential for lower electricity prices, while with increasing electricity prices the BIGCC and NGCC CHP plants are the most cost-effective investment options. The economic outcome for biomass gasification applications is, however, dependent on the level of policy instruments for biofuels and renewable electricity. Moreover, it was shown that the tradable green certificates for renewable electricity can, when applied to DH systems, contribute to investments that will not fully utilise the DH systems' potential for global CO{sub 2} emissions reductions. Also illustrated is that conversion of industrial processes, utilising electricity and fossil fuels, to DH and DC can contribute to energy savings. Since DH is mainly used for space heating, the heat demand for DH systems is strongly outdoor temperature-dependent. By converting industrial processes, where the heat demand is often dependent on process hours instead of outdoor temperature, the heat loads in DH systems can become more evenly distributed over the year, with increased base-load heat demand and increased electricity generation in CHP plants as an outcome. This extra electricity production, in combination with the freed electricity when converting electricity-using processes to DH, can replace marginal electricity production in the European electricity market, resulting in reduced global CO{sub 2} emissions. Demonstrated in this thesis is that the local energy company, along with its customers, can contribute to reaching the European Union's targets of reducing energy use and decreasing CO{sub 2} emissions. This can be achieved in a manner that is cost-effective to both the local energy company and the customers.

  6. Modelling Danish local CHP on market conditions

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla;

    2004-01-01

    the local heat demand as well as technical factors such as heat storage facilities and production unit characteristics. Based on an adaptive prognosis for electricity spot prices, bids for the spot market are made in accordance with the rules of the Nord Pool 24-hour cycle. The paper will discuss...... in the Western Danish system. As both the power produced by the local CHPs and the wind power are prioritised, the production of these types of power is occasionally sufficient to meet the total demand in the system, causing the market price to drop dramatically, sometimes even to zero-level. In line...... with the liberalisation process of the energy sectors of the EU countries, it is however anticipated that Danish local CHP are to begin operating on market conditions within the year 2005. This means that the income that the local CHPs previously gained from selling electricity at the feed-in tariff is replaced in part...

  7. Putney Basketville Site Biomass CHP Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  8. A new approach in CHP steam turbines thermodynamic cycles computations

    Directory of Open Access Journals (Sweden)

    Grković Vojin R.

    2012-01-01

    Full Text Available This paper presents a new approach in mathematical modeling of thermodynamic cycles and electric power of utility district-heating and cogeneration steam turbines. The approach is based on the application of the dimensionless mass flows, which describe the thermodynamic cycle of a combined heat and power steam turbine. The mass flows are calculated relative to the mass flow to low pressure turbine. The procedure introduces the extraction mass flow load parameter νh which clearly indicates the energy transformation process, as well as the cogeneration turbine design features, but also its fitness for the electrical energy system requirements. The presented approach allows fast computations, as well as direct calculation of the selected energy efficiency indicators. The approach is exemplified with the calculation results of the district heat power to electric power ratio, as well as the cycle efficiency, versus νh. The influence of νh on the conformity of a combined heat and power turbine to the grid requirements is also analyzed and discussed. [Projekat Ministarstva nauke Republike Srbije, br. 33049: Development of CHP demonstration plant with gasification of biomass

  9. Increasing the flexibility of operational scheduling for a large-scale CHP plant used for generating district heat and electricity in order to meet the varying market demands; Steigerung der Einsatzflexibilitaet einer grossen KWK-Anlage zur Fernwaerme- und Stromerzeugung gemaess aktueller Marktanforderungen

    Energy Technology Data Exchange (ETDEWEB)

    Meierer, Matthias; Krupp, Roland; Stork, Rolf [Grosskraftwerk Mannheim AG, Mannheim (Germany)

    2015-07-01

    The substantial changes in the structure of German power supply plants pose high demands on the flexibility of the operational scheduling of conventional thermal power plants. Grosskraftwerk Mannheim AG is a power plant company that is operating a plant for combined power and district heat generation. The paper describes some measures which have been taken to improve the plant's operational flexibility. In addition, the associated technical systems and their functions, as well as the state of ongoing projects are outlined. Special focus is placed on topics related to issues such as ''district-heat storage unit of the new unit 9, flexibility of operational scheduling, and efficient CHP plant operation''.

  10. Evaluation of a pilot-scale wood torrefcaction plant based on pellet properties and Finnish market economics

    Directory of Open Access Journals (Sweden)

    Tapio Ranta, Jarno Föhr, Hanne Soininen

    2016-01-01

    Full Text Available In this study torrefaction was demonstrated at a Torrec Ltd. pilot plant located in Mikkeli, eastern Finland. The pilot plant with a nominal capacity of 10,000 tonnes/year began operation in August 2014. The torrefaction solution was a batch type process based on a vertical reactor, where biomass material flows by gravity without drives or actuators and torrefaction happens by steam inertization and accurate process control. Steam was supplied from the local biomass combined heat and power (CHP plant next to the pilot plant. The product quality of torrefied pellets was analysed by testing alternative local woody biomass sources, such as forest chips made from coniferous trees (spruce, pine and broadleaf (birch, as well as by-products such as veneer chips. Lower heating value as dry basis varied 18.47–20.53 MJ/kg with a moisture content of 4.41-8.60% for torrefied pellets. All raw materials were suitable for torrefied pellet production without binder addition. Noteworthy was good results also with hardwood species. The potential Finnish customers are CHP plants aiming to replace coal with pellets. In 2013 coal use was 31.2 TWh, where condensing was 15.3 TWh, CHP 14.2 TWh, and separate heat 1.6 TWh in Finland. If half of the current coal use in CHP would be replaced by biocoal, then Finnish potential bio-coal markets would be 7 TWh or 1.2 million tonnes of pellets/year. Aided by the results of this demonstration study and modelling of logistics it is possible to evaluate the competitiveness of torrefied pellets based on the local circumstances.

  11. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... in the ethanol facility. The calculated standard exergy efficiency of the ethanol facility varied from 0.564 to 0.855, of which the highest was obtained for integrated operation at reduced CHP load and full district heating production in the ethanol facility, and the lowest for separate operation with zero...

  12. Screening of CHP Potential at Federal Sites in Select Regions of the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Energy Nexus Group, . .

    2002-02-25

    sizing CHP to thermal and electrical estimates. The table below is a summary of findings of CHP potential for those federal facilities that chose to participate in the screening process. The study focused on three U.S. regions: California, Texas, and New York/New England. All federal facilities in these three regions with reported building space greater than 100,000 square feet were initial targets to contact and offer CHP screening services. Ranking criteria were developed to screen sites for near term CHP potential. The potential site list was pared down for a variety of reasons including site- specific and agency wide decisions not to participate, desk audit assessments, and untraceable contact information. The results are based upon the voluntary participation of those sites we were able to contact, so they reflect a fraction of the total potential CHP opportunities at federal government facilities.

  13. Deployment of FlexCHP System

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David [Gas Technology Inst., Des Plaines, IL (United States)

    2015-11-01

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissions standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.

  14. 330 kWe Packaged CHP System with Reduced Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Plahn, Paul [Cummins Power Generation, Minneapolis, MN (United States); Keene, Kevin [Cummins Power Generation, Minneapolis, MN (United States); Pendray, John [Cummins Power Generation, Minneapolis, MN (United States)

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  15. Ecological assessment of new CHP systems and their combination; Oekologische Bewertung neuer WKK-Systeme und Systemkombinationen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Primas, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reports on new developments in the Combined Heat and Power (CHP) generation area. The objective of this study is an ecological and technical evaluation of various CHP systems and system combinations. These also include suitable combinations with other technologies. Systems for five different temperature levels are quantified according to their environmental impact. Various possible applications are compared with a highly efficient reference system using separate heat and power generation - a combined-cycle plant and a heat pump. For chilled water production a combination of the CHP system with an absorption chiller is investigated. The results of the investigations are presented and commented on. Also, advantageous applications of CHP systems are noted.

  16. Regulatory Compliance and Environmental Benefit Analysis of Combined Heat and Power (CHP Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2013-01-01

    Full Text Available The energy conservation achieved by utilizing waste heat in the energy and industrial sectors has became more and more important after the energy crisis in the 1970s because it plays a vital role in the potential energy-efficiency improvement. In this regard, cogeneration (combined heat and power, CHP systems are thus becoming attractive due to the energy, economic, and environmental policies for pursuing stable electricity supply, sustainable development and environmental pollution mitigation in Taiwan. The objective of this paper is to present an updated analysis of CHP systems in Taiwan during the period from 1990 to 2010. The description in the paper is thus based on an analysis of electricity supply/consumption and its sources from CHP systems during the past two decades, and centered on two important regulations in compliance with CHP systems (i.e., Energy Management Law and Environmental Impact Assessment Act. Based on the total net power generation from CHP systems (i.e., 35,626 GWh in 2011, it was found that the carbon dioxide reduction benefits were estimated to be around 20,000 Gg.

  17. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Martin [ORNL

    2009-10-01

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and

  18. MICRO-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  19. Research of a Feasible Distributed Energy System Coupling NG-CHP and GSHP Based on Active Heat Balance Control Mechanism%主动式热平衡NG-CHP与GSHP耦合分布式系统集成研究

    Institute of Scientific and Technical Information of China (English)

    刘丽芳; 李洪强; 康书硕; 李念平

    2016-01-01

    ABSTRACT:According to the principle of cascade utilization and energy saving potential during heat transfer process, and in order to realize higher efficiency of the natural gas based combined cooling, heating and power system (NG-CHP for short )and ground source heat pump (GSHP for short) coupling systems, the authors proposed a novel NG-CHP and GSHP integrating distributed system, which can make a better use of flue gas with middle-low temperature by help of integrating GHSP. Compare with reference system, by help of simulation software Aspen plus, the calculation results shown that, the suggested system can obtain a much better thermal system performance, which can obtain total energy system efficiency 82.7%, 8.9 percentage higher than reference system 73.8%; and exergy efficiency 28.8%, 3 percentage higher than reference system 25.8%. The integrating method can supply a new and potential way for effective utilization of heat with middle-low temperature.%针对浅层地热能应用过程中尚未解决的热平衡控制、天然气基分布式能源系统含硫低温烟气余热无法回收利用两个关键问题,基于能的综合梯级利用以及主动式热平衡思想,提出基于主动式热平衡集成机理的燃气轮机与热泵耦合一体化应用分布式热电联产系统,借助新型集成方式将含硫低温烟气余热回收与土壤源热泵一体化应用,不仅同时解决含硫低温烟气余热回收以及热失衡问题,并大幅提高系统热力性能与系统运行稳定性。采用流程模拟软件 Aspen-plus 完成新型系统以及参比系统性能对比计算,计算结果表明,较之参比系统,该新型系统总能系统效率达到82.7%,较参比系统73.8%,提高8.9个百分点;㶲效率为28.8%,较参比系统25.8%,提高3个百分点。该新型统的集成方法与思路为中低温烟气余热的高效应用提供一种新解决途径。

  20. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems

    DEFF Research Database (Denmark)

    Chen, Min; Lund, Henrik; Rosendahl, Lasse;

    2010-01-01

    High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency...... configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic...

  1. Designing and control of a SOFC micro-CHP system

    DEFF Research Database (Denmark)

    Liso, Vincenzo

    component for steady-state operation were developed. System concepts and key performance parameters were identified. The models were used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, thermal energy recovery, system process design, and operating strategy...... results. Also, predominant modes of catalytic reforming were identified and modeled. System design evaluations reveal that methane-fueled SOFC systems demonstrate the highest electrical efficiency when coupled with a steam reformer process. The use of recycled cell exhaust gases in process design is found......-to-power ratio demonstrated in this study makes the SOFC-based micro-CHP systems a promising technology for energy conversion when compared to other well established technologies such as internal combustion engines or sterling engines. In particular, the range of heat-to-power ratio for the SOFC-based micro...

  2. Cost targets for domestic fuel cell CHP

    Science.gov (United States)

    Staffell, I.; Green, R.; Kendall, K.

    Fuel cells have the potential to reduce domestic energy bills by providing both heat and power at the point of use, generating high value electricity from a low cost fuel. However, the cost of installing the fuel cell must be sufficiently low to be recovered by the savings made over its lifetime. A computer simulation is used to estimate the savings and cost targets for fuel cell CHP systems. Two pitfalls of this kind of simulation are addressed: the selection of representative performance figures for fuel cells, and the range of houses from which energy demand data was taken. A meta-study of the current state of the art is presented, and used with 102 house-years of demand to simulate the range of economic performance expected from four fuel cell technologies within the UK domestic CHP market. Annual savings relative to a condensing boiler are estimated at €170-300 for a 1 kWe fuel cell, giving a target cost of €350-625 kW -1 for any fuel cell technology that can demonstrate a 2.5-year lifetime. Increasing lifetime and reducing fuel cell capacity are identified as routes to accelerated market entry. The importance of energy demand is seen to outweigh both economic and technical performance assumptions, while manufacture cost and system lifetime are highlighted as the only significant differences between the technologies considered. SOFC are considered to have the greatest potential, but uncertainty in the assumptions used precludes any clear-cut judgement.

  3. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  4. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland; Beseitigung von Hemmnissen bei der Verbreitung von Waermekraftkopplung (WKK) in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, S.; Landis, F. [Interface Politikstudien Forschung Beratung, Luzern (Switzerland); Lienhard, A.; Marti Locher, F. [Universitaet Bern, Kompetenzzentrum fuer Public Management (KPM), Bern (Switzerland); Krummenacher, S. [Enerprice Partners AG, Technopark Luzern, Root Laengenbold (Switzerland)

    2009-04-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  5. SOFC/TEG hybrid mCHP system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-15

    The starting point for this project have been the challenge has been to develop a cost effective solution with long term stability. This is where a focused effort in a strong consortium covering material research, module development and manufacture as well as device design and optimization can make a real difference. In March 2010 the SOFTEG phase II project was initiated and a cooperation organization was established to implement the project as a development and demonstration project involving the staff from all project partners. The project is now completed with excellent and documented outcome. The final results by Alpcon have been demonstration as a TEG-based mCHP system calls CHP Dual Engine Power System, which will be applicable as both a standalone TEG-CHP hybrid system, but also as an auxiliary power unit and power booster for the SOFC system. However the SOFC system cannot cover the household's heat demand alone so it is necessary to combine a SOFC system together with a water heater/boiler system to cover the peak heat demand of a residential house or a complex building. The SOFTEG project partners achieved significant results that mainly can be outlined as following: 1) University of Aarhus has improved the thermal stability of ZnSb by optimizing the concentration of Nano composite material. 2) The grain size and its influence on the sintering process by spark plasma method are investigated by Aarhus University, but further work seems to be necessary. 3) The TE material is going to commercialization by Aarhus University. 4) Aalborg University has prepared simulation tools for complex thermoelectric simulation in non-steady state condition. 5) The new type DCDC interleaved converter using the MPPT system for optimal power tracing is designed, build and tested by Aalborg University in cooperation with Alpcon. This task is included overall system design, control system implementation and power electronic control design. 6) Full scale practical

  6. Sustaining Rainforest Plants, People and Global Health: A Model for Learning from Traditions in Holistic Health Promotion and Community Based Conservation as Implemented by Q’eqchi’ Maya Healers, Maya Mountains, Belize

    Directory of Open Access Journals (Sweden)

    Pablo Sanchez-Vindas

    2010-10-01

    Full Text Available The present work showcases a model for holistic, sustainable healthcare in indigenous communities worldwide through the implementation of traditional healing practices. The implementation of this model promotes public health and community wellness while addressing crucially important themes such as in situ and ex situ conservation of medicinal plant resources and associated biodiversity, generational transmission of knowledge, and the preservation of biological and cultural diversity for future generations. Being envisaged and implemented by Q’eqchi’ Maya traditional healers of the southern Maya Mountains, Belize, this model can be replicated in other communities worldwide. A ethnobotany study in collaboration with these healers led to collection of 102 medicinal species from Itzama, their traditional healing cultural center and medicinal garden. Of these 102 species, 40 of prior reported 106 consensus study plants were present in the garden. There were 62 plants not previously reported growing in the garden as well. A general comparison of these plants was also made in relation to species reported in TRAMIL network, Caribbean Herbal Pharmacopoeia (CHP, the largest regional medicinal pharmacopoeia. A relative few species reported here were found in the CHP. However, the majority of the CHP plants are common in Belize and many are used by the nearby Mopan and Yucatec Maya. Since these 102 species are relied upon heavily in local primary healthcare, this Q’eqchi’ Maya medicinal garden represents possibilities toward novel sustainable, culturally relative holistic health promotion and community based conservation practices.

  7. ORC for electricity production in district heating plants. Experience of biomass fired boilers with electricity production based on ORC; ORC foer elproduktion i vaermeverk. Erfarenheter fraan biobraensleeldade pannor med ORC-baserad elproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara

    2007-12-15

    The ORC (Organic Rankine Cycle) technology is an option for the production of electricity in heat production plants with steam boilers. Traditionally, the ORC technology has been used mainly in geothermal applications. However, during the last five years, it has become of interest also in bioenergy plants with electricity production in the 0,5-2 MW{sub e} range. Among others in Austria and Germany a number of plants have been installed during the first decade of the 2100th century. Today (2007), about 70 biomass based ORC plants are in operation in Europe. About 30 more plants are under installation and commissioning. In total, around 100 plants will be operating in the near future. In today's biomass fuelled ORC type CHP plants, the ORC circuit is driven by the energy in the flue gases from a biomass fuelled furnace. Via a thermal oil boiler, the energy is transferred to the ORC circuit. The ORC circuit is connected to the district heating net for cooling. Due to the fact that the ORC circuit is connected to 300 deg C flue gas, as compared to the 1990's waste water based ORC plants, an electrical yield of nearly 20% net is obtained in the ORC circuit. The overall electrical yield based on biomass is almost 16%. In the report, operational experience from a number of plants is reported. The economic advantage of the technology is discussed. In conclusion, the ORC technology is more economical than conventional steam turbine technology in the 0,5-2 MW{sub e} range. The calculated investment for a 2 MW{sub e} ORC based CHP plant is 40 kSEK/kW{sub e}, which is considerably lower than for a conventional steam turbine based CHP plant

  8. Evaluation of Combined Heat and Power (CHP Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS

    Directory of Open Access Journals (Sweden)

    Fausto Cavallaro

    2016-06-01

    Full Text Available Combined heat and power (CHP or cogeneration can play a strategic role in addressing environmental issues and climate change. CHP systems require less fuel than separate heat and power systems in order to produce the same amount of energy saving primary energy, improving the security of the supply. Because less fuel is combusted, greenhouse gas emissions and other air pollutants are reduced. If we are to consider the CHP system as “sustainable”, we must include in its assessment not only energetic performance but also environmental and economic aspects, presenting a multicriteria issue. The purpose of the paper is to apply a fuzzy multicriteria methodology to the assessment of five CHP commercial technologies. Specifically, the combination of the fuzzy Shannon’s entropy and the fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS approach will be tested for this purpose. Shannon’s entropy concept, using interval data such as the α-cut, is a particularly suitable technique for assigning weights to criteria—it does not require a decision-making (DM to assign a weight to the criteria. To rank the proposed alternatives, a fuzzy TOPSIS method has been applied. It is based on the principle that the chosen alternative should be as close as possible to the positive ideal solution and be as far as possible from the negative ideal solution. The proposed approach provides a useful technical–scientific decision-making tool that can effectively support, in a consistent and transparent way, the assessment of various CHP technologies from a sustainable point of view.

  9. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    Energy Technology Data Exchange (ETDEWEB)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system

  10. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    demand. Numerical simulations are conducted in Matlab environment. System design trade-offs are discussed to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria......Energy consumption in residential sector can be considerably reduced by enhancing the efficiency of energy supply. Fuel cell-based residential micro-CHP systems are expected to be one of the most promising technologies because of their high efficiency and low environmental impact. Since the design...... heat-to-power load ratio. Therefore, the aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70m2...

  11. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karl Mayer

    2010-03-31

    challenge to the development of a long life LIC system is the development of a reliable and efficient steam generator. The steam generator and support equipment development is described in Section 7. Just one year ago, ECR International announced through its joint venture company, Climate Energy, that it was introducing to the USA market a new class of Micro-CHP product using the state-of-the-art Honda MCHP gas fired internal combustion (IC) engine platform. We now have installed Climate Energy Micro-CHP systems in 20 pilot demonstration sites for the 2005/2006 heating season. This breakthrough success with IC engine based systems paves the way for future advanced steam cycle Micro-CHP systems to be introduced.

  12. CHP Fuel Cell Durability Demonstration - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher J

    2014-07-21

    Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (μ-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: • Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. • Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

  13. CHP from Updraft Gasifier and Stirling Engine

    DEFF Research Database (Denmark)

    Jensen, N.; Werling, J.; Carlsen, Henrik

    2002-01-01

    The combination of thermal gasification with a Stirling engine is an interesting concept for use in small combined heat and power plants based on biomass. By combining the two technologies a synergism can potentially be achieved. Technical problems, e.g. gas cleaning and fouling of the Stirling...... engine heat exchanger, can be eliminated and the overall electric efficiency of the system can be improved. At the Technical University of Denmark a Stirling engine fueled by gasification gas has been developed. In this engine the combustion system and the geometry of the hot heat exchanger...... of the Stirling engine has been adapted to the use of a gas with a low specific energy content and a high content of tar and particles. In the spring of 2001 a demonstration plant has been built in the western part of Denmark where this Stirling engine is combined with an updraft gasifier. A mathematical...

  14. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    Science.gov (United States)

    Rosendahl, L. A.; Mortensen, Paw V.; Enkeshafi, Ali A.

    2011-05-01

    One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating purposes.

  15. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Mortensen, Paw Vestergård; Enkeshafi, Ali A.

    2011-01-01

    and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating......One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase...... the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business...

  16. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced...

  17. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    , using wood powder as fuel will be developed at Lund University, Sweden, in cooperation with the Technical University of Denmark and with the wood powder boiler manufacturer VTS AB. The unit is to be run in CHP operation by Vattenfall - the largest electric power company in Sweden - in a one-year field...... test in Ĭvkarleby, Sweden, and the operation of the unit will be evaluated at the end of the field test period. The unit is intended for blocks of flats, schools, local heat production plants and the wood industry....

  18. CHP and District Cooling: An Assessment of Market and Policy Potential in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report contains an assessment of India's CHP/DC status and recommendations for addressing barriers to allow India to meet its energy efficiency targets. Such barriers include a lack of governmental emphasis on CHP, the absence of a clear methodology for calculating CO2 emission reductions from CHP/DHC, and a tax and duty structure for CHP capital equipment that is not as attractive as for other renewable energy technologies.

  19. Combined Heat & Power Using the Infinia Concentrated Solar - CHP PowerDish System

    Science.gov (United States)

    2013-08-01

    installed cost as the PowerDish CHP system). The solar thermal system selected and installed will be a low or medium-temperature collector system...implementing the PowerDish CHP. ...................................... 29 Table 8. Important costs for implementing the PowerDish CHP versus PV- solar thermal ...capabilities of the Infinia PowerDish CHP technology to generate clean solar electricity as well as thermal energy for domestic hot water and space

  20. Biomass gasification with CHP production: A review of state of the art technology and near future perspectives

    Directory of Open Access Journals (Sweden)

    Jankes Goran G.

    2012-01-01

    Full Text Available This paper is a review of the state of the art of biomass gasification and the future of using biomass in Serbia and it presents researches within the project “The Development of a CHP Plant with Biomass Gasification”. The concept of downdraft demonstration unit coupled with gas engine is adopted. Downdraft fixed-bed gasification is generally favored for CHP, owing to the simple and reliable gasifiers and low content of tar and dust in produced gas. The composition and quantity of gas and the amount of air are defined by modeling biomass residues gasification process. The gas (290-400m3/h for 0.5- 0.7MW biomass input obtained by gasification at 800oC with air at atmospheric pressure contains 14% H2, 27% CO, 9% CO2, 2% CH4, and 48% N2, and its net heating value is 4.8-6 MJ/Nm3. The expected gasifier efficiency is up to 80%. The review of the work on biomass gasification has shown that the development of technology has reached the mature stage. There are CHP plants with biomass gasification operating as demonstration plants and several gasification demonstration units are successfully oriented to biofuel production. No attempt has been made here to address the economic feasibility of the system. Economics will be the part of a later work as firmer data are acquired.

  1. Market conditions for cogeneration plants. Ensuring efficiency; Marktbedingungen fuer KWK-Anlagen. Wirtschaftlichkeit sicherstellen

    Energy Technology Data Exchange (ETDEWEB)

    Ottersbach, Joerg; Otto, Falk; Schrader, Knut [BET Buero fuer Energiewirtschaft und Technische Planung GmbH, Aachen (Germany)

    2013-07-15

    Due to declining wholesale prices for electricity, the profitability of base load power and heat generation plants decreases significantly. Therefore, concepts such as the increased use of electricity or natural plant flexibility have to be developed. The improved framework conditions by means of the amended Combined Heat and Power Act are helpful. When modernising plants, it is even possible under favorable conditions and with a good concept to fully refinance the investment on the CHP surcharges.

  2. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... heat from the exhaust gas is utilised for drying and pyrolysis of the biomass in the gasification system, and the engine directly controls the load of the gasifier. Two different control approaches have been applied and investigated: one where the flow rate of the producer gas is fixed and the engine...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  3. Techno-economic analysis of CHP system supplied by waste forest biomass.

    Science.gov (United States)

    Borsukiewicz-Gozdur, A; Klonowicz, P; Król, D; Wiśniewski, S; Zwarycz-Makles, K

    2015-08-01

    Poland, as for Europe, is a country with an average forest cover of approximately 30%. In these forests, more than 37M m3 of wood, mostly coniferous (over 80%), is harvested per year. In 2012, 4.2M m3 of sawn timber was produced (sawn timber without factory lumber). At the same time, in Poland there are over 8000 sawmills, whereas only about 700 of them saw over 90% of the harvested timber. So much fragmentation is a major cause of low sawmills innovation, particularly of those small ones. However, in recent years, a trend of development in this sector is noticeable, and it is through rationalisation of material and energy economy. One of the methods to increase the technical and economic effectiveness of enterprises involved in woodworking is to build in the combined heat and power system (CHP) plant with the ORC system into the existing infrastructure, which will be matched to the needs of the company. This article presents an analysis of the profitability of the investment based on the example of a medium-sized company sawing approximately 50,000 m3 of timber per year, and the economic analysis was performed for prices and costs valid in Poland. The analysis made for the 1650 kW(el) organic Rankine cycle (ORC) system, has resulted in a profitability index PI = 1.3, on the assumptions that the ORC system operates for 6000 h y(-1), will be purchased at the price of 4500 € kW(el)(-1) and at the price of electricity sales of 130 € MWh(-1).

  4. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA

    DEFF Research Database (Denmark)

    Christensen, S.K.; Pedersen, K.; Hansen, Flemming G.;

    2003-01-01

    . coli. We show that both proteins inhibit translation by inducing cleavage of translated mRNAs. Consistently, the inhibitory effect of the proteins was counteracted by tmRNA. Amino acid starvation induced strong transcription of chpA that depended on Lon protease but not on ppGpp. Simultaneously, Chp...

  5. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    OpenAIRE

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo; Brandon, Nigel

    2014-01-01

    Fuel cell based micro-CHP systems are expected to be one of the most promising technologies for implementation in the residential sector. Since the design and operation of such CHP systems are greatly dependent upon the seasonal atmospheric conditions, it is important to evaluate their performance under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled...

  6. Developing a Model for a CHP System with Storage

    Directory of Open Access Journals (Sweden)

    M. Abunku

    2016-04-01

    Full Text Available A model for a Combined Heat and Power (CHP system developed using Matlab is presented in this project. The model developed includes sub-models of Internal Combustion Engine (ICE and generator, electrical and thermal storage systems, and power converters (rectifier and inverter. The model developed is able to simulate the performance of a CHP system when supplying user load. The battery electrical storage system is modelled and used as the electrical storage for this project, and the water storage tank is modelled and used as thermal storage. The project presents the model developed, and the results of the analysis done on the model. The model considered only heat from engine cooling, which is used to heat water to supply the DHW (District Hot Water needs of the user. The results show that by the addition of storage to the CHP system, the overall system efficiency is increased by 32% indicating that the model developed is reliable, and the project is a feasible one

  7. Trial operation of a phosphoric acid fuel cell (PC25) for CHP applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, M.; Droste, W.; Wolf, D. [Ruhrgas AG, Dorsten (Germany)

    1996-12-31

    In Europe, ten 200 kW phosphoric acid fuel cells (PAFCs) produced by ONSI (PC25) are currently in operation. Their operators collaborate closely in the European Fuel Cell Users Group (EFCUG). The experience gained from trial operation by the four German operators - HEAG, HGW/HEW, Thyssengas and Ruhrgas - coincides with that of the other European operators. This experience can generally be regarded as favourable. With a view to using fuel cells in combined heat and power generation (CHP), the project described in this report, which was carried out in cooperation with the municipal utility of Bochum and Gasunie of the Netherlands, aimed at gaining experience with the PC 25 in field operation under the specific operating conditions prevailing in Europe. The work packages included heat-controlled operation, examination of plant behavior with varying gas properties and measurement of emissions under dynamic load conditions. The project received EU funding under the JOULE programme.

  8. Nanotechnology based surface treatments for corrosion protection and deposit control of power plant equipment. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    Nanotechnology can provide possibilities for obtaining new valuable information regarding performance and corrosion protection in power plants. In general the desired performance of the contact surfaces is an easy-to-release effect. This is in order to prolong the time interval between cleaning periods or make the cleaning procedures easier and less expensive. Corrosion protection is also desired in order to extend the life time of various parts in the power plants and thus optimize the energy output and overall efficiency of the plant. Functional sol-gel coating based on nanotechnology is tested in a variety of conditions. Applications of functional sol-gel coatings were performed in the condenser and on seven air preheaters at Fynsvaerket, Odense, with corrosion protection as the main issue. Coatings with easy-to-clean effects were tested in the Flue Gas Desulphurization plant at Nordjyllandsvaerket, Aalborg, with the aim of reducing gipsum deposit. Thermo stabilized coatings were tested on tube bundles between in the passage from the 1st to 2end pass and on the wall between 1st and 2end pass at Amagervaerket, Copenhagen, and in the boiler at Haderslev CHP plant. The objective of this test were reducing deposits and increasing corrosion protection. The tested coatings were commercial available coatings and coatings developed in this project. Visual inspections have been performed of all applications except at Nordjyllandsvaerket. Corrosion assessment has been done at DTU - Mechanical Engineering. The results range from no difference between coated and uncoated areas to some improvements. At Amagervaerket the visual assessment showed in general a positive effect with a sol-gel hybrid system and a commercial system regarding removal of deposits. The visual assessment of the air preheaters at Fynsvaerket indicates reduced deposits on a sol-gel nanocomposite coated air preheater compared to an uncoated air preheater. (Author)

  9. Contribution to a Danish action plan for development and demonstration of CHP from solid biomass; Oplaeg til en national handlingsplan for udvikling og demonstration indenfor kraftvarme fra fast biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Morten Tony

    2011-01-15

    The report is the contribution from the industry to an action plan for development and demonstration of CHP technology for solid biomass. The report aims to serve as inspiration and basis for administrators and applicants of Danish funding schemes for development and demonstration in future tenders. Although Danish-based cogeneration technologies for solid biofuels are advanced compared to the competitors in many areas there is a large need to continuously improve the technology by sustained development and demonstration activities. The aim is to overcome the technological barriers that this project has identified and thus maintain competitiveness. The industry currently has very strong focus on market deployment of especially technologies for cogeneration in small scale (up to 15 MW thermal power) and on the overall economy of these plants. Reference installations that displays many operational hours with a reasonable economy, are crucial for investors. Currently, no companies market commercial plants that have sufficiently low costs to operate under Danish conditions and few do for the conditions found internationally. Thus, from the industry perspective there is still a need for development and demonstration of CHP technology below 15 MW thermal. The analysis does not exclude any technology tracks, but the development and demonstration efforts should lead to improvements in conditions such as availability, efficiencies and operating and maintenance costs. Also technologies for large plants and systems need to be improved with respect to availability and efficiency and reduced operating and maintenance costs. For all technologies, there is a need to develop the use of special solid biofuels that on the one hand may have troublesome characteristics but on the other may help lower operating costs. The Danish-based companies have good opportunities to find support for the development and demonstration effort. A number of support programs and pools are in place and

  10. A MATHEMATICAL MODEL OF CHP 2000 TYPE PROGRESSIVE GEAR

    Directory of Open Access Journals (Sweden)

    Paweł Lonkwic

    2016-12-01

    Full Text Available The project of CHP2000 type progressive gear has been presented in the article. The offered solution from its construction point of view differs from the existing solutions due to the application of Belleville springs packets supporting the braking roller cam and achieving a flexible range of the gear loading. The standard concept of the gear loading within a mathematical and a geometrical model has been presented in the article. The proposed solution can be used in the friction lifts with the loading capacity from 8500 up to 20000 N.

  11. Development of Ground-Based Plant Sentinels

    Science.gov (United States)

    2007-11-02

    plants in response to different strains of Pseudomonas syringae. Planta . 217:767-775. De Moraes CM, Schultz JC, Mescher MC, Tumlinson JH. (2004...09-30-2004 Final Technical _ April 2001 - April 2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Developing Plants as Ground-based Sentinels 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT 9 "Z Plants emit volatile mixes characteristic of exposure to both plant and animal (insect) pathogens (bacteria and fungi). The

  12. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    Energy Technology Data Exchange (ETDEWEB)

    Mago, Pedro [Mississippi State Univ., Mississippi State, MS (United States); Newell, LeLe [Mississippi State Univ., Mississippi State, MS (United States)

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  13. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  14. COMPARISON OF MATHEMATICAL MODELS FOR HEAT EXCHANGERS OF UNCONVENTIONAL CHP UNITS

    Directory of Open Access Journals (Sweden)

    Peter Durcansky

    2015-08-01

    Full Text Available An unconventional CHP unit with a hot air engine is designed as the primary energy source with fuel in the form of biomass. The heat source is a furnace designed for combustion of biomass, whether in the form of wood logs or pellets. The transport of energy generated by the biomass combustion to the working medium of a hot-air engine is ensured by a special heat exchanger connected to this resource. The correct operation of the hot-air engine is largely dependent on an appropriate design of the exchanger. The paper deals with the calculation of the heat exchanger for the applicationsmentioned, using criterion equations, and based on CFD simulations.

  15. Modelling a Combined Heat and Power Plant based on Gasification, Micro Gas Turbine and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a micro gas turbine (MGT) and the other in a combined solid oxide fuel cell (SOFC) and MGT arrangement. An electrochemical model of the SOFC has...

  16. Model-based explanation of plant knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Huuskonen, P.J. [VTT Electronics, Oulu (Finland). Embedded Software

    1997-12-31

    This thesis deals with computer explanation of knowledge related to design and operation of industrial plants. The needs for explanation are motivated through case studies and literature reviews. A general framework for analysing plant explanations is presented. Prototypes demonstrate key mechanisms for implementing parts of the framework. Power plants, steel mills, paper factories, and high energy physics control systems are studied to set requirements for explanation. The main problems are seen to be either lack or abundance of information. Design knowledge in particular is found missing at plants. Support systems and automation should be enhanced with ways to explain plant knowledge to the plant staff. A framework is formulated for analysing explanations of plant knowledge. It consists of three parts: 1. a typology of explanation, organised by the class of knowledge (factual, functional, or strategic) and by the target of explanation (processes, automation, or support systems), 2. an identification of explanation tasks generic for the plant domain, and 3. an identification of essential model types for explanation (structural, behavioural, functional, and teleological). The tasks use the models to create the explanations of the given classes. Key mechanisms are discussed to implement the generic explanation tasks. Knowledge representations based on objects and their relations form a vocabulary to model and present plant knowledge. A particular class of models, means-end models, are used to explain plant knowledge. Explanations are generated through searches in the models. Hypertext is adopted to communicate explanations over dialogue based on context. The results are demonstrated in prototypes. The VICE prototype explains the reasoning of an expert system for diagnosis of rotating machines at power plants. The Justifier prototype explains design knowledge obtained from an object-oriented plant design tool. Enhanced access mechanisms into on-line documentation are

  17. Antibody responses against NY-ESO-1 and HER2 antigens in patients vaccinated with combinations of cholesteryl pullulan (CHP)-NY-ESO-1 and CHP-HER2 with OK-432.

    Science.gov (United States)

    Aoki, Masatoshi; Ueda, Shugo; Nishikawa, Hiroyoshi; Kitano, Shigehisa; Hirayama, Michiko; Ikeda, Hiroaki; Toyoda, Hideki; Tanaka, Kyosuke; Kanai, Michiyuki; Takabayashi, Arimichi; Imai, Hiroshi; Shiraishi, Taizo; Sato, Eiichi; Wada, Hisashi; Nakayama, Eiichi; Takei, Yoshiyuki; Katayama, Naoyuki; Shiku, Hiroshi; Kageyama, Shinichi

    2009-11-16

    Combination vaccines of the NY-ESO-1 protein complexed with cholesteryl pullulan (CHP), CHP-NY-ESO-1, and the truncated 146HER2 protein with CHP, CHP-HER2, were subcutaneously administered with the immuno-adjuvant OK-432 to eight esophageal cancer patients. Vaccination was well-tolerated. NY-ESO-1- and HER2-specific antibody responses were analyzed using the patients' sera and samples from previous single CHP-NY-ESO-1 or CHP-HER2 vaccine trial. The responses to NY-ESO-1 in the combination vaccine study were comparable to the single vaccine. For responses to HER2, there were fewer antibody responses in the combination vaccines. Although there were marked individual variations in the antibody responses to the NY-ESO-1 and HER2 antigens, the reaction patterns to these antigens were comparable within each patient. Antibodies to OK-432 were not augmented. Protein cancer vaccines targeting multiple antigens are feasible.

  18. Model-Based Power Plant Master Control

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Katarina; Thomas, Jean; Funkquist, Jonas

    2010-08-15

    The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are

  19. Antibody-based resistance to plant pathogens.

    Science.gov (United States)

    Schillberg, S; Zimmermann, S; Zhang, M Y; Fischer, R

    2001-01-01

    Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments.

  20. A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems

    DEFF Research Database (Denmark)

    Rong, Aiying; Hakonen, Henri; Lahdelma, Risto

    2009-01-01

    This paper addresses the unit commitment (UC) in multi-period combined heat and power (CHP) production planning under the deregulated power market. In CHP plants (units), generation of heat and power follows joint characteristics, which implies that it is difficult to determine the relative cost...... efficiency of the plants. We introduce in this paper the DRDP-RSC algorithm, which is a dynamic regrouping based dynamic programming (DP) algorithm based on linear relaxation of the ON/OFF states of the units, sequential commitment of units in small groups. Relaxed states of the plants are used to reduce...... the dimension of the UC problem and dynamic regrouping is used to improve the solution quality. Numerical results based on real-life data sets show that this algorithm is efficient and optimal or near-optimal solutions with very small optimality gap are obtained....

  1. Plant-Based Vaccines: Production and Challenges

    Directory of Open Access Journals (Sweden)

    Erna Laere

    2016-01-01

    Full Text Available Plant-based vaccine technologies involve the integration of the desired genes encoding the antigen protein for specific disease into the genome of plant tissues by various methods. Agrobacterium-mediated gene transfer and transformation via genetically modified plant virus are the common methods that have been used to produce effective vaccines. Nevertheless, with the advancement of science and technology, new approaches have been developed to increase the efficiency of former methods such as biolistic, electroporation, agroinfiltration, sonication, and polyethylene glycol treatment. Even though plant-based vaccines provide many benefits to the vaccine industry, there are still challenges that limit the rate of successful production of these third-generation vaccines. Even with all the limitations, continuous efforts are still ongoing in order to produce efficient vaccine for many human and animals related diseases owing to its great potentials. This paper reviews the existing conventional methods as well as the development efforts by researchers in order to improve the production of plant-based vaccines. Several challenges encountered during and after the production process were also discussed.

  2. Plant viral vectors based on tobamoviruses.

    Science.gov (United States)

    Yusibov, V; Shivprasad, S; Turpen, T H; Dawson, W; Koprowski, H

    1999-01-01

    The potential of plant virus-based transient expression vectors is substantial. One objective is the production of large quantities of foreign peptides or proteins. At least one commercial group (Biosource Technologies) is producing large quantities of product in the field, has built factories to process truck-loads of material and soon expects to market virus-generated products. In the laboratory, large amounts of protein have been produced for structural or biochemical analyses. An important aspect of producing large amounts of a protein or peptide is to make the product easily purifiable. This has been done by attaching peptides or proteins to easily purified units such as virion particles or by exporting proteins to the apoplast so that purification begins with a highly enriched product. For plant molecular biology, virus-based vectors have been useful in identifying previously unknown genes by overexpression or silencing or by expression in different genotypes. Also, foreign peptides fused to virions are being used as immunogens for development of antisera for experimental use or as injected or edible vaccines for medical use. As with liposomes and microcapsules, plant cells and plant viruses are also expected to provide natural protection for the passage of antigen through the gastrointestinal tract. Perhaps the greatest advantage of plant virus-based transient expression vectors is their host, plants. For the production of large amounts of commercial products, plants are one of the most economical and productive sources of biomass. They also present the advantages of lack of contamination with animal pathogens, relative ease of genetic manipulation and the presence eukaryotic protein modification machinery.

  3. A Market-Based Virtual Power Plant

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    The fast growing penetration of Distributed Energy Resources (DER) and the continuing trend towards a more liberalized electricity market requires more efficient energy management strategies to handle both emerging technical and economic issues. In this paper, a market-based Virtual Power Plant...

  4. Combined Heat and Power (CHP Allocation and Capacity Determination According to Fuzzy Bus Thermal Coefficient and Nodal Pricing Method using Cooperative Game Theory

    Directory of Open Access Journals (Sweden)

    Mohamad Hasan Moradi

    2014-12-01

    Full Text Available In this paper a hybrid and practical method is presented to allocate and determine combined heat and power capacity (CHP generator at a bus. This method consists of two stages. First, the suitable buses for CHP installation will be found by the bus thermal coefficient . This coefficient indicates the possibility of the heat selling around each bus and will be calculated by using the Fuzzy method. Next, for each of the appropriate buses, considering the obtained heat capacity and electrical power ratio to the heat of the CHPs in the market, several CHPs are recommended. Second, on the one hand, the improvement of the technical criteria after the CHPs installation is derived by using the nodal pricing methods as the financial benefits of the distribution companies and on the other hand, the investors’ financial benefits from the sold heat output of the CHPs is determined. Finally, using the Game Theory and considering the distribution companies and investors as the players, the suitable location and capacity for CHP installation based on the set Game strategy is obtained. The proposed method is implemented to a sample distribution feeder in the Hamadan city and the results are shown.

  5. Model-based control of district heating supply temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Linn

    2010-11-15

    A model-based control strategy for the supply temperature to a district heating network was tested during three weeks at Idbaecken's CHP plant. The aim was to increase the electricity efficiency by a lower supply temperature, without risking the delivery reliability of heat to the district heating customers. Simulations and tests showed that at high loads, the mean supply temperature could be reduced by 4 deg C and the electricity production could be increased by 2.5%

  6. Process Intensification in Fuel Cell CHP Systems, the ReforCELL Project

    Directory of Open Access Journals (Sweden)

    José Luis Viviente

    2016-10-01

    Full Text Available This paper reports the findings of a FP7/FCH JU project (ReforCELL that developed materials (catalysts and membranes and an advance autothermal membrane reformer for a micro Combined Heat and Power (CHP system of 5 kWel based on a polymer electrolyte membrane fuel cell (PEMFC. In this project, an active, stable and selective catalyst was developed for the reactions of interest and its production was scaled up to kg scale (TRL5 (TRL: Technology Readiness Level. Simultaneously, new membranes for gas separation were developed. In particular, dense supported thin palladium-based membranes were developed for hydrogen separation from reactive mixtures. These membranes were successfully scaled up to TRL4 and used in lab-scale reactors for fluidized bed steam methane reforming (SMR and autothermal reforming (ATR and in a prototype reactor for ATR. Suitable sealing techniques able to integrate the different membranes in lab-scale and prototype reactors were also developed. The project also addressed the design and optimization of the subcomponents (BoP for the integration of the membrane reformer to the fuel cell system.

  7. Modeling work of a small scale gasifier/SOFC CHP system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Aravind, P.V.; Qu, Z.; Woudstra, N.; Verkooijen, A.H.M. [Delft University of Technology (Netherlands). Dept. of Mechanical Engineering], Emails: ming.liu@tudelft.nl, p.v.aravind@tudelft.nl, z.qu@tudelft.nl, n.woudstra@tudelft.nl, a. h. m. verkooijen@tudelft.nl; Cobas, V.R.M. [Federal University of Itajuba (UNIFEI), Pinheirinhos, MG (Brazil). Dept. of Mechanical Engineering], E-mail: vlad@unifei.edu.br

    2009-07-01

    For a highly efficient biomass gasification/Solid Oxide Fuel Cell (SOFC) Combined Heat and Power (CHP) generation system, the gasifier, the accompanying gas cleaning technologies and the CHP unit must be carefully designed as an integrated unit. This paper describes such a system involving a two-stage fixed-bed down draft gasifier, a SOFC CHP unit and a gas cleaning system. A gas cleaning system with both low temperature and high temperature sections is proposed for coupling the gasifier and the SOFC. Thermodynamic modeling was carried out for the gasifier/SOFC system with the proposed gas cleaning system. The net AC electrical efficiency of this system is around 30% and the overall system efficiency is around 60%. This paper also describes various exergy losses in the system and the future plans for integrated gasifier-GCU-SOFC experiments from which the results will be used to validate the modeling results of this system. (author)

  8. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... approaches are formulated using binary and Special-Ordered-Set (SOS) variables. Both suggestions have been implemented into the optimization model DER–CAM to simulate investment decisions of CHP micro-turbines and CHP fuel cells with variable efficiencies. The approaches have further been applied...... successfully in a case study with four different commercial buildings. Comparison of the results between the standard version and the new approaches indicate that total annual system costs remain almost unchanged. System performance is subject to change and storage technologies become more important. Part load...

  9. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making

  10. CHP HIGHER EDUCATION, SCHOLARSHIPS AND DEMAND ABROAD ARE POLITICS (1942-1947

    Directory of Open Access Journals (Sweden)

    Suat ZEYREK

    2016-04-01

    Full Text Available Turkey was followed by a very slow development in the course of the republic’s first year in higher education.By 1955, there are only two universities in the three cities in Turkey.Although the new university will be declared opened by Ismet Inonu’s mouth several times it was not possible for various reasons.Turkey’s economic situation, the shortage of trained personel and it has been hampered by severe conditions of World War II.But even more important excuses should have prevented the spread of higher education in Turkey. This article will be presented in the light of the real causes of the problem of archival sources mentioned above.Period ruling party, the CHP’s higher education policy followed in scholarships and dormitories were investigated.CHP likely to promote higher education in the first primary education spread to the base and thus wants to create a higher demand.For this reason, it is necessary first of all to build infrastructure for higher education institutions and rules.Coming from big cities in different regions of Anatolia youth to take education to all students experience difficulties and inclusive, egalitarian policies were followed.

  11. Environmental Comparison of Straw Applications Based on a Life Cycle Assessment Model and Emergy Evaluation

    Directory of Open Access Journals (Sweden)

    Juan Gao

    2014-11-01

    Full Text Available Straw is considered to be a renewable resource for bioenergy and biomaterial. However, about 70% of straw is burned in fields, which causes serious air pollution in China. In this study, a life cycle assessment (LCA model, together with emergy evaluation, was built to compare four straw applications after harvest vs. direct burning, including bioethanol (BE, combined heat and power plant (CHP, corrugated base paper (CP, and medium-density fiberboard (MDF. The results showed that BE and MDF would avoid greenhouse gas (GHG emissions by 82% and 36%, respectively, while CHP and CP would emit 57% and 152% more GHG , respectively, compared with direct straw burning. Bioethanol had the highest renewability indicator (RI of 47.7%, and MDF obtained the greatest profit of 657 Yuan•bale-1. The applications CHP and CP had low RI (< 10.3% and profit (< 180 Yuan•bale-1. Due to water recycling and electrical power as a coproduct, BE had the lowest value (3 × 1011 sej•Yuan-1 of EmPM (emergy per unit money profit; the EmPM value of CP was 18.6 times higher than that of BE. The four straw applications would also greatly reduce particles emission (57 to 98% to air. BE was judged to be the most environmentally friendly application among the four straw applications. Imposing a carbon tax would encourage investment in BE, but discourage the applications CHP and CP.

  12. Plant-Based Diets Score Big for Healthy Weight Loss

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162874.html Plant-Based Diets Score Big for Healthy Weight Loss ... row, U.S. News & World Report has named the plant-based eating plan as the best choice overall, ...

  13. A price mechanism for supply demand matching in local grid of households with micro-CHP

    NARCIS (Netherlands)

    Larsen, G.K.H.; van Foreest, N.D.; Scherpen, J.M.A.

    2012-01-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household

  14. CHP2 gene expression and quantitation in Egyptian patients with acute leukemia

    Directory of Open Access Journals (Sweden)

    Amira Ahmed Hammam

    2014-12-01

    Conclusions: Many studies suggest that CHP2 expression is a novel prognostic marker in AL and thus needs to be incorporated into the patient stratification and treatment protocols. In addition, a quarter of AL patients fail therapy and novel treatments that are focused on undermining specifically the leukemic process are needed urgently.

  15. A Compound Herbal Preparation (CHP) in the Treatment of Children with ADHD: A Randomized Controlled Trial

    Science.gov (United States)

    Katz, M.; Adar Levine, A.; Kol-Degani, H.; Kav-Venaki, L.

    2010-01-01

    Objective: Evaluation of the efficacy of a patented, compound herbal preparation (CHP) in improving attention, cognition, and impulse control in children with ADHD. Method: Design: A randomized, double-blind, placebo-controlled trial. Setting: University-affiliated tertiary medical center. Participants: 120 children newly diagnosed with ADHD,…

  16. Reliability Indices Utlization in Combined Heat and Power ( CHP Optimal Operation

    Directory of Open Access Journals (Sweden)

    Hamed Hosseinnia

    2014-12-01

    Full Text Available The reason for using cogeneration more that heat and power separately is that, it is more efficient. In this paper the goal is finding the optimized CHP system utility size and thermal storage considering reliability limits of boiler and grid connected bus. Loss of Load Expectation (LOLE and Expected energy not supplied (EENS are considered as two reliability indices to insure the security of operation. Non-sequential Monte Carlo simulation method is introduced to the reliability assessment of CHP, and a normal distribution electrical load model is built to simulate the hourly electrical load. CHP model combined with a two-state reliability model is applied to Monte Carlo simulation method, and results show that the CHP reliability model works well with non-sequential Monte Carlo simulation. Non-Sequential Monte Carlo method is used to generate scenarios. Also in order to reduce computation time and due to the large number of scenarios, a scenario reduction technique is used. GAMS software is used for optimization process.

  17. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Directory of Open Access Journals (Sweden)

    Matysko Robert

    2014-03-01

    Full Text Available The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser and the heat supply pump in failure conditions.

  18. Large Combined Heat and Power Plants for Sustainable Energy System

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    An energy supply based on 100% renewable energy in Denmark is the official goal for the Danish energy policy towards 2050. A smart energy system should be developed to integrate as much supply from fluctuating renewable sources and to utilise the scarce biomass resources as efficiently as possible....... CHP (combined heat and power) plants in Denmark will change their role from base load production to balancing the fluctuation in renewable energy supply, such as wind power and at the same time they have to change to renewable energy sources. Some solutions are already being planned by utilities...... in Denmark; conversion of pulverised fuel plants from coal to wood pellets and a circulating fluidised bed (CFB) plant for wood chips. From scientific research projects another solution is suggested as the most feasible; the combined cycle gas turbine (CCGT) plant. In this study a four scenarios...

  19. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2014-07-01

    Full Text Available We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC in a combined heat and power generation (CHP case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency as well as economic parameters show that hybrid power plants are more efficient compared to conventional CHP concepts or separate use of the energy sources.

  20. Optimization of Combine Heat and Power Plants in the Russian Wholesale Power Market Conditions

    Directory of Open Access Journals (Sweden)

    I. A. Chuchueva

    2015-01-01

    Full Text Available The paper concerns the relevant problem to optimize the combine heat and power (CHP plants in the Russian wholesale power market conditions. Since 1975 the CHP plants specialists faced the problem of fuel rate or fuel cost reduction while ensuring the fixed level of heat and power production. The optimality criterion was the fuel rate or fuel cost which has to be minimized. Produced heat and power was paid by known tariff. Since the power market started in 2006 the power payment scheme has essentially changed: produced power is paid by market price. In such condition a new optimality criterion the paper offers is a profit which has to be maximized for the given time horizon. Depending on the optimization horizon the paper suggests four types of the problem urgency, namely: long-term, mid-term, short-term, and operative optimization. It clearly shows that the previous problem of fuel cost minimization is a special case of profit maximization problem. To bring the problem to the mixed-integer linear programming problem a new linear characteristic curves of steam and gas turbine are introduced. Error of linearization is 0.6%. The formal statement of the problem of short-term CHP plants optimization in the market conditions is offered. The problem was solved with IRM software (OpenLinkInternational for seven power plants of JSC “Quadra”: Dyagilevskaya CHP, Kurskaya CHP-1, Lipetskaya CHP-2, Orlovskaya CHP, Kurskaya CHP NWR, Tambovskaya CHP, and Smolenskaya CHP-2.The conducted computational experiment showed that a potential profit is between 1.7% and 4.7% of the fuel cost of different CHP plants and depends on the power plant operation conditions. The potential profit value is 2–3 times higher than analogous estimations, which were obtained solving fuel cost minimization problem. The perspectives of the work are formalization of mid-term and long-term CHP plants optimization problem and development of domestic software for the new problem

  1. Optimized raw material usage and utilization degree in a polygeneration plant for heat, electricity, biofuel and market fuel; Optimal raavaruinsats och utnyttjandegrad i energikombinat foer vaerme, el, biodrivmedel och avsalubraensle

    Energy Technology Data Exchange (ETDEWEB)

    Jennie Rodin; Olle Wennberg; Mikael Berntsson; Rolf Njurell; Ola Thorson

    2012-01-15

    Energy and economic efficiency for six different types of energy combines which include heat, electricity, pellets and fuel production have been studied. The basic case is a conventional power plant, which subsequently is expanded with various additional facilities (dryer, pellets and/or fuel). Maximum exploitation of the product against inserted biofuel was obtained in case 6, pulp mills that use waste heat for district heating supply and drying of bark. Case 6 had also the lowest payoff period; two years. Of the CHP [combined heat and power] based energy combines 'the big combine' with four different products generally showed best marginal efficiency and economy. The results indicate that drying may be an economical way to extend the operating season and increase the production of electricity in a CHP based energy combine.

  2. Technical preparation of a 300 kWel biomass gasification plant. Report for the project: Simplification, system and operation optimization of staged gasification unit for CHP production (the Castor unit in Graested); Teknisk forberedelse af 300 kWel bioforgasningsanlaeg. En Delrapport til projektet: Forenkling, system- og driftsoptimering af trinopdelt forgasningsanlaeg til kraftvarmeproduktion (Castor anlaegget i Graested)

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.

    2009-09-15

    In 2003/04 BioSynergi Proces ApS built a complete approx. 450 kWth Open Core staged gasification unit as a development / demonstration plant. The plant uses wet wood chips as fuel for generating electricity and heat. The facility, known as the Castor plant, is connected to the heat supply network in Graested District Heating. The daily operation is handled by BioSynergi Process. The cogeneration system, that the Castor plant represents, is the basis for this completed project. For technical preparation of the planned future up scaling of the cogeneration system, a test of the function of the gas generator core (reactor core) was performed in this sub-project. It is the central component of the total cogeneration system, and it is also the one who has the greatest influence on the overall gasification process. The experiments have demonstrated that the stage gasification principle, which is in operation at the Castor plant, is also possible to have in operation with the desired process steps in the tested reactor core with four times more capacity. Finalization of the total gas generator in the range of 300 kWel is now being developed in a new project. The simplified experiments, that were possible to perform with the outdoor setup of the reactor core, were, however, not suited to qualitative assessments of the gasification process. (ln)

  3. Production Planning with Respect to Uncertainties. Simulator Based Production Planning of Average Sized Combined Heat and Power Production Plants; Produktionsplanering under osaekerhet. Simulatorbaserad produktionsplanering av medelstora kraftvaermeanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Haeggstaahl, Daniel [Maelardalen Univ., Vaesteraas (Sweden); Dotzauer, Erik [AB Fortum, Stockholm (Sweden)

    2004-12-01

    Production planning in Combined Heat and Power (CHP) systems is considered. The focus is on development and use of mathematical models and methods. Different aspects on production planning are discussed, including weather and load predictions. Questions relevant on the different planning horizons are illuminated. The main purpose with short-term (one week) planning is to decide when to start and stop the production units, and to decide how to use the heat storage. The main conclusion from the outline of pros and cons of commercial planning software are that several are using Mixed Integer Programming (MIP). In that sense they are similar. Building a production planning model means that the planning problem is formulated as a mathematical optimization problem. The accuracy of the input data determines the practical detail level of the model. Two alternatives to the methods used in today's commercial programs are proposed: stochastic optimization and simulator-based optimization. The basic concepts of mathematical optimization are outlined. A simulator-based model for short-term planning is developed. The purpose is to minimize the production costs, depending on the heat demand in the district heating system, prices of electricity and fuels, emission taxes and fees, etc. The problem is simplified by not including any time-linking conditions. The process model is developed in IPSEpro, a heat and mass-balance software from SimTech Simulation Technology. TOMLAB, an optimization toolbox in MATLAB, is used as optimizer. Three different solvers are applied: glcFast, glcCluster and SNOPT. The link between TOMLAB and IPSEpro is accomplished using the Microsoft COM technology. MATLAB is the automation client and contains the control of IPSEpro and TOMLAB. The simulator-based model is applied to the CHP plant in Eskilstuna. Two days are chosen and analyzed. The optimized production is compared to the measured. A sensitivity analysis on how variations in outdoor

  4. Structural insights into ChpT, an essential dimeric histidine phosphotransferase regulating the cell cycle in Caulobacter crescentus.

    Science.gov (United States)

    Fioravanti, Antonella; Clantin, Bernard; Dewitte, Frédérique; Lens, Zoé; Verger, Alexis; Biondi, Emanuele G; Villeret, Vincent

    2012-09-01

    Two-component and phosphorelay signal-transduction proteins are crucial for bacterial cell-cycle regulation in Caulobacter crescentus. ChpT is an essential histidine phosphotransferase that controls the activity of the master cell-cycle regulator CtrA by phosphorylation. Here, the 2.2 Å resolution crystal structure of ChpT is reported. ChpT is a homodimer and adopts the domain architecture of the intracellular part of class I histidine kinases. Each subunit consists of two distinct domains: an N-terminal helical hairpin domain and a C-terminal α/β domain. The two N-terminal domains are adjacent within the dimer, forming a four-helix bundle. The ChpT C-terminal domain adopts an atypical Bergerat ATP-binding fold.

  5. Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, M.R.; Weakley, S.A.

    1990-09-01

    This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessment resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.

  6. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-03-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  7. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Mani, S. [Biological and Agricultural Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602 (United States); Sokhansanj, S.; Turhollow, A.F. [Environmental Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831 (United States); Tagore, S. [Office of Biomass Program, U.S. Department of Energy, Washington, DC 20585 (United States)

    2010-03-15

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam{sup 3}). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery. (author)

  8. Dicty_cDB: CHP730 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available tute) complete sequence. 48 0.27 1 CF991093 |CF991093.1 15396rsicee_11262.y1 Oryza sativa cv. LYP9 tilleri...ng whole plant cDNA library Oryza sativa (indica cultivar-group) cDNA 5', mRNA sequ

  9. Modelling of energy systems with a high percentage of CHP and wind power

    Energy Technology Data Exchange (ETDEWEB)

    Lund, H. [Aalborg University (Denmark). Dept. of Development and Planning; Muenster, E. [PlanEnergi s/i, Skorping (Denmark)

    2003-11-01

    This paper presents the energy system analysis model EnergyPLAN, which has been used to analyse the integration of large scale wind power into the national Danish electricity system. The main purpose of the EnergyPLAN model is to design suitable national energy planning strategies by analysing the consequences of different national energy investments. The model emphasises the analysis of different regulation strategies and different market economic optimisation strategies. At present wind power supply 15% of the Danish electricity demand and ca 50% is produced in CHP (combined heat and power production). The model has been used in the work of an expert group conducted by the Danish Energy Agency for the Danish Parliament. Results are included in the paper in terms of strategies, in order to manage the integration of CHP and wind power in the future Danish energy supply in which more than 40% of the supply is expected to come from wind power. (author)

  10. Commercialisation of fuel cells for combined heat and power (CHP) application

    Science.gov (United States)

    Packer, Julian

    1992-01-01

    Combined heat and power or co-generation is an ideal application for the fuel cell. This paper has been written from the perspective of a current designer, builder and operator of small-scale (i.e. sub 1 MW) combined heat and power. Conventional current CHP is described together with typical applications. The perceived advantages of fuel cells are also discussed together with the potential for fuel cells opening up currently unapproachable markets. Various matters relevant to the application of fuel cells are also described including: initial and life costs for fuel cells CHP systems; maintenance requirements, security of supply requirements. In addition to these commercial aspects, technical issues including interfacing to building systems, control, protection, monitoring, operating procedures and performance are also discussed.

  11. Global GPP based on Plant Functional Types

    Science.gov (United States)

    Veroustraete, Frank; Balzarolo, Manuela

    2016-04-01

    Vegetation variables like Gross Primary productivity (GPP) and the Normalized Difference Vegetation Index (NDVI) are key variables in vegetation carbon exchange studies. Field measurements of the NDVI are time consuming due to landscape heterogeneity across time. Typically a sampling protocol adopted during field campaigns is based on the VALERI protocol in that case toe estimate LAI. Field campaign GPP or NDVI measurements can be scaled up to using in-situ FLUXNET radiation raster maps. Regression analysis can then be applied to construct transfer functions for the determination of GPP raster maps raster imagery from Normalized Difference Vegetation Index (NDVI) raster maps derived from in-situ FLUXNET radiation raster maps. Subsequently, in the VALERI approach the scaling up of raster maps is performed by aggregation of high resolution in-situ FLUXNET radiation raster maps data into high resolution raster maps and subsequently aggregating these to 1x1 km MODIS NDVI raster maps by calculating average NDVI values for the low resolution data. The up-scaled 1x1 km pixels are then used to validate the MODIS GPP and NVI products. Hence up scaling based on in-situ FLUXNET radiation measurements are not a luxury for large and heterogeneous sites. Therefore this paper tackles the problem of up scaling using in-situ FLUXNET radiation measurements. Key Words: FLUXNET, GPP, Plant Functional Types, Up-scaling

  12. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology.

  13. Image-Based Modeling of Plants and Trees

    CERN Document Server

    Kang, Sing Bang

    2009-01-01

    Plants and trees are among the most complex natural objects. Much work has been done attempting to model them, with varying degrees of success. In this book, we review the various approaches in computer graphics, which we categorize as rule-based, image-based, and sketch-based methods. We describe our approaches for modeling plants and trees using images. Image-based approaches have the distinct advantage that the resulting model inherits the realistic shape and complexity of a real plant or tree. We use different techniques for modeling plants (with relatively large leaves) and trees (with re

  14. A new integrated power plant with a small scale turbine for the organic Rankine cycle

    OpenAIRE

    2012-01-01

    Combined heat and power (CHP or cogeneration) describes the simultaneous generation of electrical power and heat. CHP has been well established for medium and high power ranges (> 100 kW el. power). The Kompakte Dampf Turbine (KDT, meaning compact steam turbine) addresses the low-end of power generation (~2 kW el. power). The KDT is a highly integrated power plant of small dimensions able to use various heat sources. Its simple design promises a low-cost CHP for residential homes.

  15. Identification of Ornamental Plant Functioned as Medicinal Plant Based on Redundant Discrete Wavelet Transformation

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-03-01

    Full Text Available Human has a duty to preserve the nature. One of the examples is preserving the ornamental plant. Huge economic value of plant trading, escalating esthetical value of one space and medicine efficacy that contained in a plant are some positive values from this plant. However, only few people know about its medicine efficacy. Considering the easiness to obtain and the medicine efficacy, this plant should be an initial treatment of a simple disease or option towards chemical based medicines. In order to let people get acquaint, we need a system that can proper identify this plant. Therefore, we propose to build a system based on Redundant Discrete Wavelet Transformation (RDWT through its leaf. Since its character is translation invariant that able to produce some robust features to identify ornamental plant. This system was successfully resulting 95.83% of correct classification rate.

  16. Fast Visual Modeling for Plant Based on Real Images

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; ZHU Qing-sheng; CAO Yu-kun; LIU Yin-bin; HE Xi-ping

    2004-01-01

    Structures of natural plants are complex and difficult to model. This paper proposes a fast visual modeling for plants based on a small set of images, and establishes a reasonable plant model.Based on knowledge about growth patterns of the plant, image segmentation and 3D reconstruction are first performed to construct the plant skeleton (trunk and major branches), from which the remainder of the plant grows. Then the system produces the realistic plant model images based on image synthesis and validation. It is unnecessary to acquire the complex structure (such as the complex production rules of L-systems). The method provides a high degree of control over the final shape by image validation,resulting in realistic reconstruction.

  17. Modelling a Combined Heat and Power Plant based on Gasification, Micro Gas Turbine and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a micro gas turbine (MGT) and the other in a combined solid oxide fuel cell (SOFC) and MGT arrangement. An electrochemical model of the SOFC has...... been developed and calibrated against published data from Topsoe Fuel Cells A/S (TOFC) and Risø National Laboratory, and the modelled gasifier is based on an up scaled version of the demonstrated low tar gasifier, Viking, situated at the Technical University of Denmark. The SOFC converts the syngas...

  18. Assessment of the cogeneration biogas plant possibilities in the autonomous power supply system

    Directory of Open Access Journals (Sweden)

    Sumarokova Liudmila

    2017-01-01

    Full Text Available The use of biomass and wood waste for heat and power production is increasing from year to year. Waste wood is low carbon footprint, has low sulfur content and relates to renewable energy sources. The paper demonstrates the possibility of increasing the energy efficiency of power supply system of the Stepanovka settlement (Tomsk region by means of replacing diesel power plant (DPP by the biofuel gas piston CHP. The assessment was based on the possibility of the technical and economic comparison of power supply options in the settlement.

  19. CHP unit and local heating system using sewage gas - optimised sewage gas use and power generation; BHKW mit Waermeverbund der IVF HARTMANN AG mit Klaergas aus der ARA Roeti/SH; optimierte Klaergasnutzung und Verstromung durch Kooperation von ARA und Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Roeck, P.M.

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a combined heat and power (CHP) installation in Neuhausen am Rheinfall, Switzerland. This refurbishment project, which uses sewage gas produced in a local sewage treatment plant to supply a 215 kW CHP unit running in a local factory is described. Heat produced by the unit is sold back to the sewage treatment plant to cover its demands. Electricity production is used in-house in the industrial facilities. The report reviews the origins and development of the project and gives figures on sewage gas, heat and electricity production. Initial experience gained in this co-operative project is discussed. Also, the measurement and monitoring system, which forms the basis of result-checking and billing of energy services between the sewage plant operator and the industrial company, is described.

  20. Reciprocating Joule-cycle engine for domestic CHP systems

    Energy Technology Data Exchange (ETDEWEB)

    Moss, R.W.; Roskilly, A.P.; Nanda, S.K. [University of Newcastle upon Tyne (United Kingdom). School of Marine Science and Technology

    2005-02-01

    The reciprocating Joule-cycle engine operates on a recuperated gas-turbine cycle and is intended to provide high thermal efficiency in small sizes (1-10 kW). It is designed to achieve a higher efficiency than a comparable gas-turbine by using a reciprocating compressor and expander to provide very high compression and expansion efficiencies. Possible power plants for small combined heat-and-power systems currently include Stirling engines, internal-combustion engines, gas-turbines and fuel cells. The reciprocating Joule-cycle engine appears to have considerable advantages compared with other prime movers in terms of efficiency, emissions and multi-fuel capability. The present study estimates the performance of such an engine and is the first stage in a larger project that will in due course produce a demonstration engine. (author)

  1. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    OpenAIRE

    Florian Heberle; Dieter Brüggemann

    2014-01-01

    We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC) in a combined heat and power generation (CHP) case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency...

  2. 76 FR 65165 - Importation of Plants for Planting; Risk-Based Sampling and Inspection Approach and Propagative...

    Science.gov (United States)

    2011-10-20

    ... plant part) for or capable of propagation, including a tree, a tissue culture, a plantlet culture... articles (other than seeds, bulbs, or sterile cultures of orchid plants) from any country or locality... Animal and Plant Health Inspection Service Importation of Plants for Planting; Risk-Based Sampling...

  3. Large-scale integration of off-shore wind power and regulation strategies of cogeneration plants in the Danish electricity system

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply......The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply...

  4. Survey of modern power plants driven by diesel and gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, S. [Turku Polytechnic, Turku (Finland)

    1997-12-31

    This report surveys the latest technology of power plants driven by reciprocating internal combustion (IC) engines, from information collected from publications made mainly during the 1990`s. Diesel and gas engines are considered competitive prime movers in power production due mainly to their high full- and part-load brake thermal efficiency, ability to burn different fuels, short construction time and fast start-ups. The market for engine power plants has grown rapidly, with estimated total orders for reciprocating engines of 1 MW output and more reaching the 5000 unit level, (10 GW), between June 1995 and May 1996. Industrialized countries much prefer combined heat and power (CHP) production. Intense interest has been shown in recent years in alternative gas fuels; natural gas appears to be the most promising, but liquid petroleum gas, gas from sewage disposal plants, landfill gas and other biogases, as well as wood gas have also been recognized as other alternatives. Liquid alternatives such as fuels and pyrolysis oil have also been mentioned, in addition to information on coal burning engines. The percentage of gas engines used has increased and different ones are being developed, based on either the traditional spark ignition (SI), dual-fuel technology or the more recent high pressure gas injection system. In cold climates, energy production is largely based on CHP plants. Waste heat is utilized for local, regional or district heating or for industrial uses like drying, heating, cooling etc. Even radiative and convective heat from gen-set surfaces are employed, and boilers are used with exhaust outlet temperatures of below dew point. Combined cycle schemes, including turbo compound systems and steam turbines, are also incorporated into engine power plants in order to increase output and efficiency. Two-stroke, low-speed diesel engine plants show the highest electric efficiencies, with combined cycle plants reaching up to 54 %, while gas engine plants achieved

  5. Renewables and CHP with District Energy in Support of Sustainable Communities

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Chris

    2010-09-15

    This paper addresses the powerful idea of connecting many energy users to environmentally optimum energy sources through integrated community energy systems. Such systems require piping networks for distributing thermal energy, i.e., district heating and cooling (DHC) systems. The possibilities and advantages of the application of integrated energy concepts are discussed, including the economic and environmental benefits of integrating localized electrical generating systems (CHP), transportation systems, industrial processes and other thermal energy requirements. Examples of a number of operating systems are provided. Some of the R and D carried out by the IEA Implementing Agreement on District Heating and Cooling is also described.

  6. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...... biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost....

  7. Optimum power yield for bio fuel fired combined heat and power plants

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Nystroem, Olle; Joensson, Mikael

    2012-05-15

    Plant owners, suppliers, research institutions, industry representatives and (supporting) authorities are continuing to question the viability of what can be expected by increasing the steam data and the efficiency of cogeneration plants. In recent years, the overall conditions for investment in CHP have changed. Today, there is access to new materials that allow for more advanced steam data while maintaining availability. Although the financial environment with rising prices of electricity, heating and fuel along with the introduction of energy certificates and the interest in broadening the base of fuel has changed the situation. At the same time as the increased interest in renewable energy production creates competition among energy enterprises to find suppliers, increased prices for materials and labor costs have also resulted in increased investment and maintenance costs. Research on advanced steam data for biomass-fired power cogeneration plants has mainly emphasized on technical aspects of material selection and corrosion mechanisms based on performance at 100 % load looking at single years. Reporting has rarely been dealing with the overall economic perspective based on profitability of the CHP installations throughout their entire depreciation period. In the present report studies have been performed on how the choice of steam data affects the performance and economy in biomass-fired cogeneration plants with boilers of drum type and capacities at 30, 80 and 160 MWth with varied steam data and different feed water system configurations. Profitability is assessed on the basis of internal rate of return (IRR) throughout the amortization period of the plants. In addition, sensitivity analyses based on the most essential parameters have been carried out. The target group for the project is plant owners, contractors, research institutions, industry representatives, (supporting) authorities and others who are faced with concerns regarding the viability of what

  8. Automated production of plant-based vaccines and pharmaceuticals.

    Science.gov (United States)

    Wirz, Holger; Sauer-Budge, Alexis F; Briggs, John; Sharpe, Aaron; Shu, Sudong; Sharon, Andre

    2012-12-01

    A fully automated "factory" was developed that uses tobacco plants to produce large quantities of vaccines and other therapeutic biologics within weeks. This first-of-a-kind factory takes advantage of a plant viral vector technology to produce specific proteins within the leaves of rapidly growing plant biomass. The factory's custom-designed robotic machines plant seeds, nurture the growing plants, introduce a viral vector that directs the plant to produce a target protein, and harvest the biomass once the target protein has accumulated in the plants-all in compliance with Food and Drug Administration (FDA) guidelines (e.g., current Good Manufacturing Practices). The factory was designed to be time, cost, and space efficient. The plants are grown in custom multiplant trays. Robots ride up and down a track, servicing the plants and delivering the trays from the lighted, irrigated growth modules to each processing station as needed. Using preprogrammed robots and processing equipment eliminates the need for human contact, preventing potential contamination of the process and economizing the operation. To quickly produce large quantities of protein-based medicines, we transformed a laboratory-based biological process and scaled it into an industrial process. This enables quick, safe, and cost-effective vaccine production that would be required in case of a pandemic.

  9. Modelling of a CHP SOFC system fed with biogas from anaerobic digestion of municipal waste integrated with solar collectors and storage unit

    Directory of Open Access Journals (Sweden)

    Domenico Borello

    2012-12-01

    Full Text Available The paradigm of the sustainable energy community is recognized as the future energy approach due to its economical, technical and environmental benefits. Future systems should integrate renewable energy systems applying a “community-scale” approach to maximize energy performances, while minimizing environmental impacts. Efforts have to be directed toward the promotion of integrated technical systems needed to expand the use of renewable energy resources, to build sustainable local and national energy networks, to guarantee distribution systems for urban facilities and to reduce pollution. In this framework poly-generation is a promising design perspective, for building and district scale applications, in particular where different types of energy demand are simultaneously present and when sufficient energy intensity justifies investments in smart grids and district heating networks. In situ anaerobic digestion of biomass and organic waste has the potential to provide sustainable distributed generation of electric power together with a viable solution for the disposal of municipal solid wastes. A thermal recovery system can provide the heat required for district-heating. The system analysed is a waste-to-energy combined heat and power (CHP generation plant that perfectly fits in the sustainable energy community paradigm. The power system is divided in the following sections: a a mesophilic - single phase anaerobic digestion of Organic Fraction of Municipal Solid Waste for biogas production; b a fuel treatment section with desulphurizer and pre-reformer units; c a Solid Oxide Fuel Cell (SOFC for CHP production; d a solar collector integrated system(integrated storage system - ISS. An integrated TRNSYS/ASPEN Plus model for simulating the power system behaviour during a typical reference period (day or year was developed and presented. The proposed ISS consists of a solar collector integrated with storage systems system designed to

  10. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  11. Energy-optimisation of biogas-fuelled CHP units; Energetische Optimierung von Biogas-BHKW's

    Energy Technology Data Exchange (ETDEWEB)

    Soltic, P.; Edenhauser, D.; Winkler, A.

    2008-07-15

    This illustrated final report for the Swiss Federal office of Energy (SFOE) reports on the energy-related optimisation of combined heat and power (CHP) units that are fuelled with non-processed biogas. Ways of increasing the efficiency of these units as far as the production of electricity is concerned are examined and commented on. Also, ways of using the heat generated by the CHP units to produce electricity using other, exergetic means are also described. Systems such as Stirling engines and existing and new thermo-electrical elements are discussed. The economic viability of the systems is also discussed.

  12. Assessment of the implementation issues for fuel cells in domestic and small scale stationary power generation and CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G.; Cruden, A.; Hart, J.

    2002-07-01

    This report discusses implementation issues associated with the use of fuel cells in <10 kW domestic, small-scale power generation and combined heat and power (CHP) operations in the UK. The report examines the key issues (fuel cell system standards and certification, fuel infrastructure, commercial issues and competing CHP technologies), before discussing non-technical issues including finance, ownership, import and export configuration, pricing structure, customer acceptability, installation, operation and training of servicing and commissioning personnel. The report goes on to discuss market and technical drivers, grid connection issues and solutions, operations and maintenance. Recommendations for the future are made.

  13. Is micro-CHP price controllable under price signal controlled Virtual Power Plants?

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2011-01-01

    ) like aggregators. Compared to the centralized direct control scheme, a decentralized control scheme “controlby- price” is proposed for the VPP operation. The corresponding scheme has advantages in scalability, transparency and simplicity. In this context, a short term economic analysis is conducted...

  14. Decision Support Tools for Electricity Retailers, Wind Power and CHP Plants Using Probabilistic Forecasts

    Directory of Open Access Journals (Sweden)

    Marco Zugno

    2015-06-01

    Full Text Available This paper reviews a number of applications of optimization under uncertainty in energy markets resulting from the research project ENSYMORA. A general mathematical formulation applicable to problems of optimization under uncertainty in energy markets is presented. This formulation can be effortlessly adapted to describe different approaches: the deterministic one (usable within a rolling horizon scheme, stochastic programming and robust optimization. The different features of this mathematical formulation are duly interpreted with a view to the energy applications reviewed in this paper: trading for a price-maker wind power producer, management of heat and power systems, operation for retailers in a dynamic-price market. A selection of results shows the viability and appropriateness of the presented stochastic optimization approaches for managing energy systems under uncertainty.

  15. Decision Support Tools for Electricity Retailers, Wind Power and CHP Plants Using Probabilistic Forecasts

    DEFF Research Database (Denmark)

    Zugno, Marco; Morales González, Juan Miguel; Madsen, Henrik

    2015-01-01

    This paper reviews a number of applications of optimization under uncertainty in energy markets resulting from the research project ENSYMORA. A general mathematical formulation applicable to problems of optimization under uncertainty in energy markets is presented. This formulation can be effortl......This paper reviews a number of applications of optimization under uncertainty in energy markets resulting from the research project ENSYMORA. A general mathematical formulation applicable to problems of optimization under uncertainty in energy markets is presented. This formulation can...... be effortlessly adapted to describe different approaches: the deterministic one (usable within a rolling horizon scheme), stochastic programming and robust optimization. The different features of this mathematical formulation are duly interpreted with a view to the energy applications reviewed in this paper...

  16. Cyclotron-based effects on plant gravitropism

    Science.gov (United States)

    Kordyum, E.; Sobol, M.; Kalinina, Ia.; Bogatina, N.; Kondrachuk, A.

    Primary roots exhibit positive gravitropism and grow in the direction of the gravitational vector, while shoots respond negatively and grow opposite to the gravitational vector. We first demonstrated that the use of a weak combined magnetic field (CMF), which is comprised of a permanent magnetic field and an alternating magnetic field with the frequency resonance of the cyclotron frequency of calcium ions, can change root gravitropism from a positive direction to negative direction. Two-day-old cress seedlings were gravistimulated in a chamber that was placed into a μ-metal shield where this CMF was created. Using this "new model" of a root gravitropic response, we have studied some of its components including the movement of amyloplasts-statoliths in root cap statocytes and the distribution of Ca 2+ ions in the distal elongation zone during gravistimulation. Unlike results from the control, amyloplasts did not sediment in the distal part of a statocyte, and more Ca 2+ accumulation was observed in the upper side of a gravistimulated root for seedlings treated with the CMF. For plants treated with the CMF, it appears that a root gravitropic reaction occurs by a normal physiological process resulting in root bending although in the opposite direction. These results support the hypothesis that both the amyloplasts in the root cap statocytes and calcium are important signaling components in plant gravitropism.

  17. Color and Edge Histograms Based Medicinal Plants' Image Retrieval

    Directory of Open Access Journals (Sweden)

    Basavaraj S. Anami

    2012-08-01

    Full Text Available In this paper, we propose a methodology for color and edge histogram based medicinal plants image retrieval. The medicinal plants are divided into herbs, shrubs and trees. The medicinal plants are used in ayurvedic medicines. Manual identification of medicinal plants requires a priori knowledge. Automatic recognition of medicinal plants is useful. We have considered medicinal plant species, such as Papaya, Neem, Tulasi and Aloevera are considered for identification and retrieval. The color histograms are obtained in RGB, HSV and YCbCr color spaces. The number of valleys and peaks in the color histograms are used as features. But, these features alone are not helpful in discriminating plant images, since majority plant images are green in color. We have used edge and edge direction histograms in the work to get edges in the stem and leafy parts. Finally, these features are used in retrieval of medicinal plant images. Absolute distance, Euclidean distance and mean square error, similarity distance measures are deployed in the work. The results show an average retrieval efficiency of 94% and 98% for edge and edge direction features respectively.

  18. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net

  19. Economic Potential of CHP in Detroit Edison Service Area: the Customer Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.

    2003-10-10

    can realistically be expected, based on consumer investment in combined heat and power systems (CHP) and the effect of utility applied demand response (DR). (2) Evaluate and quantify the impact on the distribution utility feeder from the perspective of customer ownership of the DE equipment. (3) Determine the distribution feeder limits and the impact DE may have on future growth. For the case study, the Gas Technology Institute analyzed a single 16-megawatt grid feeder circuit in Ann Arbor, Michigan to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid circuit capacity. Increasing circuit capacity would enable the circuit to meet consumer's energy demands at all times, but it would not improve the circuit's utilization factor. The analysis spans 12 years, to a planning horizon of 2015. By 2015, the demand for power is expected to exceed the grid circuit capacity for a significant portion of the year. The analysis was to determine whether economically acceptable implementation of customer-owned DE systems would reduce the peak power demands enough to forestall the need to upgrade the capacity of the grid circuit. The analysis was based on economics and gave no financial credit for improved power reliability or mitigation of environmental impacts. Before this study was completed, the utility expanded the capacity of the circuit to 22 MW. Although this expansion will enable the circuit to meet foreseeable increases in peak demand, it also will significantly decrease the circuit's overall utilization factor. The study revealed that DE penetration on the selected feeder is not expected to forestall the need to upgrade the grid circuit capacity unless interconnection barriers are removed. Currently, a variety of technical, business practice, and regulatory barriers discourage DE interconnection in the US market.

  20. Operation reliability analysis of independent power plants of gas-transmission system distant production facilities

    Directory of Open Access Journals (Sweden)

    Piskunov Maksim V.

    2015-01-01

    Full Text Available The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.

  1. Metal-based nanotoxicity and detoxification pathways in higher plants.

    Science.gov (United States)

    Ma, Chuanxin; White, Jason C; Dhankher, Om Parkash; Xing, Baoshan

    2015-06-16

    The potential risks from metal-based nanoparticles (NPs) in the environment have increased with the rapidly rising demand for and use of nanoenabled consumer products. Plant's central roles in ecosystem function and food chain integrity ensure intimate contact with water and soil systems, both of which are considered sinks for NPs accumulation. In this review, we document phytotoxicity caused by metal-based NPs exposure at physiological, biochemical, and molecular levels. Although the exact mechanisms of plant defense against nanotoxicity are unclear, several relevant studies have been recently published. Possible detoxification pathways that might enable plant resistance to oxidative stress and facilitate NPs detoxification are reviewed herein. Given the importance of understanding the effects and implications of metal-based NPs on plants, future research should focus on the following: (1) addressing key knowledge gaps in understanding molecular and biochemical responses of plants to NPs stress through global transcriptome, proteome, and metablome assays; (2) designing long-term experiments under field conditions at realistic exposure concentrations to investigate the impact of metal-based NPs on edible crops and the resulting implications to the food chain and to human health; and (3) establishing an impact assessment to evaluate the effects of metal-based NPs on plants with regard to ecosystem structure and function.

  2. Possible Future SOFC - ST Based Power Plants

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    Hybrid systems consisting Solid Oxide Fuel Cell (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas. A desulfurization reactor removes the sulfur content in the NG while a pre-reformer break down the heavier hydrocarbons. The pre-treated fuel enters...... then into the anode side of the SOFC. The gases from the SOFC stacks enter into a burner to burn the rest of the fuel. The off-gases now enter into a heat recovery steam generator to produce steam for a Rankine cycle. Different system setups are considered. Cyclic efficiencies up to 67% are achieved which...... is considerably more than the conventional combined cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel reformer reactors are considered in this study....

  3. Antihypertensive Properties of Plant-Based Prebiotics

    Directory of Open Access Journals (Sweden)

    Min-Tze Liong

    2009-08-01

    Full Text Available Hypertension is one of the major risk factors for cardiovascular disease. Although various drugs for its treatment have been synthesized, the occurring side effects have generated the need for natural interventions for the treatment and prevention of hypertension. Dietary intervention such as the administration of prebiotics has been seen as a highly acceptable approach. Prebiotics are indigestible food ingredients that bypass digestion and reach the lower gut as substrates for indigenous microflora. Most of the prebiotics used as food adjuncts, such as inulin, fructooligosaccharides, dietary fiber and gums, are derived from plants. Experimental evidence from recent studies has suggested that prebiotics are capable of reducing and preventing hypertension. This paper will discuss some of the mechanisms involved, the evidence generated from both in-vitro experiments and in-vivo trials and some controversial findings that are raised.

  4. Antihypertensive properties of plant-based prebiotics.

    Science.gov (United States)

    Yeo, Siok-Koon; Ooi, Lay-Gaik; Lim, Ting-Jin; Liong, Min-Tze

    2009-08-10

    Hypertension is one of the major risk factors for cardiovascular disease. Although various drugs for its treatment have been synthesized, the occurring side effects have generated the need for natural interventions for the treatment and prevention of hypertension. Dietary intervention such as the administration of prebiotics has been seen as a highly acceptable approach. Prebiotics are indigestible food ingredients that bypass digestion and reach the lower gut as substrates for indigenous microflora. Most of the prebiotics used as food adjuncts, such as inulin, fructooligosaccharides, dietary fiber and gums, are derived from plants. Experimental evidence from recent studies has suggested that prebiotics are capable of reducing and preventing hypertension. This paper will discuss some of the mechanisms involved, the evidence generated from both in-vitro experiments and in-vivo trials and some controversial findings that are raised.

  5. Multimedia-based Medicinal Plants Sustainability Management System

    CERN Document Server

    Omogbadegun, Zacchaeus; Ayo, Charles; Mbarika, Victor; Omoregbe, Nicholas; Otofia, Efe; Chieze, Frank

    2011-01-01

    Medicinal plants are increasingly recognized worldwide as an alternative source of efficacious and inexpensive medications to synthetic chemo-therapeutic compound. Rapid declining wild stocks of medicinal plants accompanied by adulteration and species substitutions reduce their efficacy, quality and safety. Consequently, the low accessibility to and non-affordability of orthodox medicine costs by rural dwellers to be healthy and economically productive further threaten their life expectancy. Finding comprehensive information on medicinal plants of conservation concern at a global level has been difficult. This has created a gap between computing technologies' promises and expectations in the healing process under complementary and alternative medicine. This paper presents the design and implementation of a Multimedia-based Medicinal Plants Sustainability Management System addressing these concerns. Medicinal plants' details for designing the system were collected through semi-structured interviews and databas...

  6. Development of HT-PEMFC components and stack for CHP unit

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf; Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Terkelsen, C.; Rudbech, H.C.; Steenberg, T. (Danish Power System Aps, Charlottenlund (Denmark)); Thibault de Rycke (IRD Fuel Cell A/S, Svendborg (Denmark))

    2009-10-15

    The aim of the project has been to further develop components for an all Danish high temperature PEM fuel cells stack for application in combined heat and power units (CHP units). The final product aimed at was a 1.5-2 kW stack for operation at 150-200 deg. C. The project follows the previous PSO project 4760, 'High Temperature PEM Fuel Cell'. The project has addressed the HT-PEM fuel cells form a components point of view and the materials here for. The main areas were polymer and membrane development, electrode and MEA development (MEA = membrane electrode assembly, i.e. the cells.) and stack development. The membrane development begins with the polymer. The polymerization technique was improved significantly in two ways. Better understanding of the process and the critical issues has led to more reproducible results with repeated high molecular weights. The molecular weight is decisive for the membrane strength and durability. The process was also scaled up to 100-200 g polymer pr. batch in a new polymerization facility build during the project. It is dimensioned for larger batches too, but this was not verified during the project. The polymer cannot be purchased in the right quality for fuel cell membranes and it is important that it manufacture is not a limiting factor at the present state. Experiments with other membrane casting techniques were also made. The traditional PBI doped with phosphoric acid is still the state of art membrane for the HT-PEM fuel cells, but progress was also made with modified membranes. Different variants of PBI were synthesized and tested. Electrodes have been manufactured by a spray technique in contrast to the previously applied tape casting. The hand held spray gun previously led to an improvement of the electrodes, but the reproducibility was limited. Subsequently the construction of a semi automated spray machine was started and results like of the best hand sprayed electrodes were obtained. A viable way of MEA rim

  7. PERFORMANCE ANALYSIS OF l kW RESIDENTIAL SOFC-CHP SYSTEM%1kW家用SOFC-CHP系统建模及性能分析

    Institute of Scientific and Technical Information of China (English)

    徐晗; 党政; 白博峰

    2011-01-01

    A combined heating and power system (CHP) driven by natrual gas was established based on solid oxide fuel cell (SOFC), relevant SOFC heat and mass transfer equations as well as electrochemical equations were deduced, and component models were built and solved by FORTRAN as a tool to predict the system performance of a 1 kW residential SOFC-CHP system. The results indicate that the system efficiency is much higher than the generating efficiency of SOFC under the design-point condition. A maximum value of electric power appears with the increase of the inlet fuel flow, fuel utilization and electric efficiency decrease, system cogeneration efficiency experiences a rising trend, and the cell temperature gradient distribution becomes growingly even. Reducing the excess air ratio could enhance the system performance.The above conclusions are very useful for the design and optimization of the residential SOFC-CHP system.%构建一个以天然气为燃料的SOFC-CHP系统,推导SOFC传热传质及电化学方程,建立各个组件的数学模型,编写计算程序,对发电功率为1kW的家用SOFC-CHP系统在设计工况下进行性能模拟并探讨不同系统参数对性能的影响.计算结果表明:在设计工况下,系统热电联供效率远高于电池单独发电的效率;此外,随着燃料入口流量的增大,系统发电功率存在一个最大值,燃料利用率与发电效率不断减小,系统热电联供效率不断增大,SOFC的温度梯度分布则越来越平缓;同时发现降低过量空气系数可以提高该CHP系统的性能.

  8. A comparison of cost-benefit analysis of biomass and natural gas CHP projects in Denmark and the Netherlands

    NARCIS (Netherlands)

    Groth, Tanja; Scholtens, Bert

    2016-01-01

    We investigate what drives differences in the project appraisal of biomass and natural gas combined heat and power (CHP) projects in two countries with very similar energy profiles. This is of importance as the European Commission is assessing the potential scope of harmonizing renewable electricity

  9. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    Directory of Open Access Journals (Sweden)

    Paola Costamagna

    2016-08-01

    Full Text Available The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  10. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    Science.gov (United States)

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-08-22

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  11. Combined heat and power production based on gas turbine operation with biomass by gasification or powder firing; Kraftvaermeproduktion baserad paa gasturbindrift med biobraensle genom foergasning alternativt pulvereldning

    Energy Technology Data Exchange (ETDEWEB)

    Marbe, Aasa; Colmsjoe, Linda

    2006-12-15

    Combined heat and power (CHP) technique is relatively less extended in the Swedish energy system. There is a production of 56,2 TWh in district heating meanwhile only 7,6 TWh electricity comes from CHP. This only corresponds to 6 % of all electricity produced in Sweden (132 TWh). Based on the existing district heating system the amount of electricity produced in CHP-plants could rise from today 7,6 to 20 TWh. The Swedish government has decided to reduce the amount of CO{sub 2} released to atmosphere with 4 % by the year 2012. Furthermore there is a government decision that the nuclear power in a long time perspective will be phased out, so the amount of biofuelled heat and power plants has a huge potential to increase. To be competitive, the technique is to be efficient; hence the amount electricity produced should be as high as possible. Gasification of biofuel where the gas is used in a combined-cycle provides a higher efficiency compared to the traditional steam-cycle technique. To increase the electrical efficiency, an alternative method such as integration of a gas turbine with combustion of powder shape bio fuel in an external combustion chamber could be used. The concept is known as PFBC- technique in which the coal powder is combusted in a pressurised fluidised bed, the warm flue gases are cleaned up and expanded in a gas turbine. The objectives of this project have been to investigate the technical and economical conditions for gasification of bio fuel and for powder combustion in gas turbine for production of heat and power in different districts heat systems. Respectively technique has been studied in two different cases, Boraas Energi AB and ENA Energi AB. In Boraas the existing CHP-plant has been replaced by a bio fuelled gasification plant (IGCC) meanwhile at ENA Energi the existing CHP-plant has been complemented white a powder fuelled (bio) gas turbine. The task group for this report are decision makers of Energy Companies and the report will help

  12. CHP biomass gasifier for the Zwarts Gerbera Nursery. Technical and economic feasibility; Biomassavergasser-WKK voor Gerberakwekerij Zwarts. Technische inpassing en economische haalbaarheid

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, S.; Hart, A. [Energy Matters, Driebergen (Netherlands)

    2011-10-15

    This report describes the feasibility of a CHP gasifier at the Zwarts gerbera nursery. Using the insights from this study, a picture has been sketched for energy production by means of gasification in the horticultural sector. Note, however, that each plant specie has its own specific growth requirements in terms of nutrients, heating-cooling, light, but also relative humidity and CO2. So a 'typical' horticulturer with an 'average' energy requirement is hard to define. The economic viability must be determined for each individual situation. The outcomes of this study can therefore not be automatically used for other projects. Technically, a lot is possible, so the submitted quotes show. Of the 16 suppliers, 3 offer CHP gasifiers which, subject to conditions, not only burn wood but also other low-grade residual waste such as road verge grass, reed and miscanthus. This low-grade residual waste has the advantage of being cheaper than wood. A low biomass price lowers the operating costs and improves the economic profitability of the relatively expensive installations. The investment for a complete CHP gasifier is 5 to 10 times higher than for a normal gas CHP installation. The CO2 consumption also influences the economic profitability. Buying CO2 is a costly business. The technical and economic feasibility of harvesting CO2 from flue gas was therefore explored. Two CO2 harvesting installations (of Procede and Knook) were examined for this purpose. According to Procede and Knook, CO2 harvesting is not economically profitable for a CHP gasifier with a relatively low power capacity (up to 800 kWe). CO2 procurement or generation by means of the existing gas-fired boiler therefore seems more viable. The technical-economic feasibility study shows that an investment in a CHP gasifier is not profitable due to the relatively high investment and maintenance costs. CO2 demand and the uncertain biomass prices are stumbling blocks. However, the picture changes

  13. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions; KWK-Ausbaustrategie in NRW. Eine Blaupause fuer andere Regionen

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, Dominik [EnergieAgentur.NRW, Duesseldorf (Germany); Schneider, Sabine [EnergieAgentur.NRW, Wuppertal (Germany)

    2015-10-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  14. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by

  15. Remote sensing of plant trait responses to field-based plant-soil feedback using UAV-based optical sensors

    Science.gov (United States)

    van der Meij, Bob; Kooistra, Lammert; Suomalainen, Juha; Barel, Janna M.; De Deyn, Gerlinde B.

    2017-02-01

    Plant responses to biotic and abiotic legacies left in soil by preceding plants is known as plant-soil feedback (PSF). PSF is an important mechanism to explain plant community dynamics and plant performance in natural and agricultural systems. However, most PSF studies are short-term and small-scale due to practical constraints for field-scale quantification of PSF effects, yet field experiments are warranted to assess actual PSF effects under less controlled conditions. Here we used unmanned aerial vehicle (UAV)-based optical sensors to test whether PSF effects on plant traits can be quantified remotely. We established a randomized agro-ecological field experiment in which six different cover crop species and species combinations from three different plant families (Poaceae, Fabaceae, Brassicaceae) were grown. The feedback effects on plant traits were tested in oat (Avena sativa) by quantifying the cover crop legacy effects on key plant traits: height, fresh biomass, nitrogen content, and leaf chlorophyll content. Prior to destructive sampling, hyperspectral data were acquired and used for calibration and independent validation of regression models to retrieve plant traits from optical data. Subsequently, for each trait the model with highest precision and accuracy was selected. We used the hyperspectral analyses to predict the directly measured plant height (RMSE = 5.12 cm, R2 = 0.79), chlorophyll content (RMSE = 0.11 g m-2, R2 = 0.80), N-content (RMSE = 1.94 g m-2, R2 = 0.68), and fresh biomass (RMSE = 0.72 kg m-2, R2 = 0.56). Overall the PSF effects of the different cover crop treatments based on the remote sensing data matched the results based on in situ measurements. The average oat canopy was tallest and its leaf chlorophyll content highest in response to legacy of Vicia sativa monocultures (100 cm, 0.95 g m-2, respectively) and in mixture with Raphanus sativus (100 cm, 1.09 g m-2, respectively), while the lowest values (76 cm, 0.41 g m-2, respectively

  16. Structured Light-Based 3D Reconstruction System for Plants.

    Science.gov (United States)

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  17. Structured Light-Based 3D Reconstruction System for Plants

    Directory of Open Access Journals (Sweden)

    Thuy Tuong Nguyen

    2015-07-01

    Full Text Available Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces and software algorithms (including the proposed 3D point cloud registration and plant feature measurement. This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  18. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants

    Directory of Open Access Journals (Sweden)

    Marie-Ève Lebel

    2015-08-01

    Full Text Available Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.

  19. Photoprotection in Plants Optical Screening-based Mechanisms

    CERN Document Server

    Solovchenko, Alexei

    2010-01-01

    Optical screening of excessive and potentially harmful solar radiation is an important photoprotective mechanism, though it has received much less attention in comparison with other systems preventing photooxidative damage to photoautotrophic organisms. This photoprotection in the form of screening appears to be especially important for juvenile and senescing plants as well as under environmental stresses—i.e. in situations where the efficiency of enzymatic ROS elimination, DNA repair and other ‘classical’ photoprotective systems could be impaired. This book represents an attempt to develop an integral view of optical screening-based photoprotection in microalgae and higher plants. Towards this end, the key groups of pigments involved in the screening of ultraviolet and visible components of solar radiation in microalgae and higher plants, and the patterns of their accumulation and distribution within plant cells and tissues, are described. Special attention is paid to the manifestations of screening pi...

  20. PlantID – DNA-based identification of multiple medicinal plants in complex mixtures

    Directory of Open Access Journals (Sweden)

    Howard Caroline

    2012-07-01

    Full Text Available Abstract Background An efficient method for the identification of medicinal plant products is now a priority as the global demand increases. This study aims to develop a DNA-based method for the identification and authentication of plant species that can be implemented in the industry to aid compliance with regulations, based upon the economically important Hypericum perforatum L. (St John’s Wort or Guan ye Lian Qiao. Methods The ITS regions of several Hypericum species were analysed to identify the most divergent regions and PCR primers were designed to anneal specifically to these regions in the different Hypericum species. Candidate primers were selected such that the amplicon produced by each species-specific reaction differed in size. The use of fluorescently labelled primers enabled these products to be resolved by capillary electrophoresis. Results Four closely related Hypericum species were detected simultaneously and independently in one reaction. Each species could be identified individually and in any combination. The introduction of three more closely related species to the test had no effect on the results. Highly processed commercial plant material was identified, despite the potential complications of DNA degradation in such samples. Conclusion This technique can detect the presence of an expected plant material and adulterant materials in one reaction. The method could be simply applied to other medicinal plants and their problem adulterants.

  1. Plant Electrical Signal Classification Based on Waveform Similarity

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2016-10-01

    Full Text Available (1 Background: Plant electrical signals are important physiological traits which reflect plant physiological state. As a kind of phenotypic data, plant action potential (AP evoked by external stimuli—e.g., electrical stimulation, environmental stress—may be associated with inhibition of gene expression related to stress tolerance. However, plant AP is a response to environment changes and full of variability. It is an aperiodic signal with refractory period, discontinuity, noise, and artifacts. In consequence, there are still challenges to automatically recognize and classify plant AP; (2 Methods: Therefore, we proposed an AP recognition algorithm based on dynamic difference threshold to extract all waveforms similar to AP. Next, an incremental template matching algorithm was used to classify the AP and non-AP waveforms; (3 Results: Experiment results indicated that the template matching algorithm achieved a classification rate of 96.0%, and it was superior to backpropagation artificial neural networks (BP-ANNs, supported vector machine (SVM and deep learning method; (4 Conclusion: These findings imply that the proposed methods are likely to expand possibilities for rapidly recognizing and classifying plant action potentials in the database in the future.

  2. Efficiencies and emissions of a 192 kw{sub el} Otto engine CHP-unit running on biogas at the research station ''Unterer Lindenhof''

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Bernd; Wyndorps, Agnes

    2012-06-15

    An Otto engine CHP-unit running on biogas has been under investigation for more than two years. Within this time data regarding temperatures, energy flows, biogas composition, emissions etc. were collected, and this paper presents some of the results. In detail, electric and thermal output are discussed for one full year. From these data the monthly electric availability of the unit can be calculated, which ranges from 84.0 to 96.4%. In addition, the utilization of the heat produced by the CHP-unit during one year is displayed. It was found that 18.2% of the heat was needed for heating purposes within the biogas plant, and 64.5% of the heat could be supplied to the district heating system. Hence, 17.3% of the useful heat had to be released to the ambient air by an additional cooler. Regarding emissions, a strong impact of the excess air ratio on emissions of NO{sub X} has been observed. Moreover, the effect on electric efficiency is outlined in this paper. As known from theory, the experimental results revealed that an increase in the excess air ratio helps to lower NO{sub X}-emissions, while electric efficiency is reduced by this means. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  3. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin.

    Science.gov (United States)

    Schalch, Thomas; Job, Godwin; Noffsinger, Victoria J; Shanker, Sreenath; Kuscu, Canan; Joshua-Tor, Leemor; Partridge, Janet F

    2009-04-10

    In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1's high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1's affinity for H3K9me is greatly reduced.

  4. Situation analysis in relation to district heating and CHP in the Baltic Sea Region: Estonia, Latvia, Lithuania, Poland, Russia, Kaliningrad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    The situation analysis embraces chapters on: Estonia, Kaliningrad, Latvia, Lithuania, Poland and Russia, which experience varying degrees of difficulties with the transition to a market economy, and with integrating into the world market. In the following, the focus is on Lithuania, which has been visited during the project period. Lithuania has specific problems due to the existence of the Ignalina power plant, but has nevertheless characteristics, which apply to Estonia and Latvia as well. The problem with the quality of heat supply is rampant in all the countries, as is legal framework for the sector, except in Poland, which has generally attracted much attention from investors over the last ten years and has experienced a relatively sound political development in the energy sector. The main problem in all countries seem to relate to the policy development. The case of Lithuania confirms this. Following the observations on Lithuania, it is attempted to establish some points of concern, which are relevant to a greater or lesser extent in all countries, as well as some suggestions on how to move towards a solution of those problems. As mentioned Poland is generally in a better position, technically and politically than the three Baltic states, whereas Russia still needs to progress much on those issues. The general recommendations for initiatives in the Baltic countries in question are in brief: Establishing a clear view at governmental level of what the EU and liberalisation will bring, and what needs to be done additionally to secure main energy political objectives. Issues such as security of supply, environmental protection, low cost energy supplies and security of investments need to be thoroughly discussed at national level. It is important to understand that EU Directives provide a framework, not an answer to the future of the energy sector. Reinforcement of governmental bodies that deal with the practical problems of the energy sector. The main task of

  5. Laser Vision-Based Plant Geometries Computation in Greenhouses

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-04-01

    Full Text Available Plant growth statuses are important parameters in the greenhouse environment control system. It is time-consumed and less accuracy that measuring the plant geometries manually in greenhouses. To find a portable method to measure the growth parameters of plants portably and automatically, a laser vision-based measurement system was developed in this paper, consisting of a camera and a laser sheet that scanned the plant vertically. All equipments were mounted on a metal shelf in size of 30cm*40cm*100cm. The 3D point cloud was obtained with the laser sheet scanning the plant vertically, while the camera videoing the laser lines which projected on the plant. The calibration was conducted by a two solid boards standing together in an angle of 90. The camera’s internal and external parameters were calibrated by Image toolbox in MatLab®. It is useful to take a reference image without laser light and to use difference images to obtain the laser line. Laser line centers were extracted by improved centroid method. Thus, we obtained the 3D point cloud structure of the sample plant. For leaf length measurement, iteration method for point clouds was used to extract the axis of the leaf point cloud set. Start point was selected at the end of the leaf point cloud set as the first point of the leaf axis. The points in a radian of certain distance around the start point were chosen as the subset. The centroid of the subset of points was calculated and taken as the next axis point. Iteration was continued until all points in the leaf point cloud set were selected. Leaf length was calculated by curve fitting on these axis points. In order to increase the accuracy of curve fitting, bi-directional start point selection was useful. For leaf area estimation, exponential regression model was used to describe the grown leaves for sampled plant (water spinach in this paper. To evaluate the method in a sample of 18 water spinaches, planted in the greenhouse (length 16

  6. Plant based phosphorus recovery from wastewater via algae and macrophytes.

    Science.gov (United States)

    Shilton, Andrew N; Powell, Nicola; Guieysse, Benoit

    2012-12-01

    At present, resource recovery by irrigation of wastewater to plants is usually driven by the value of the water resource rather than phosphorus recovery. Expanded irrigation for increased phosphorus recovery may be expected as the scarcity and price of phosphorus increases, but providing the necessary treatment, storage and conveyance comes at significant expense. An alternative to taking the wastewater to the plants is instead to take the plants to the wastewater. Algal ponds and macrophyte wetlands are already in widespread use for wastewater treatment and if harvested, would require less than one-tenth of the area to recover phosphorus compared to terrestrial crops/pastures. This area could be further decreased if the phosphorus content of the macrophytes and algae biomass was tripled from 1% to 3% via luxury uptake. While this and many other opportunities for plant based recovery of phosphorus exist, e.g. offshore cultivation, much of this technology development is still in its infancy. Research that enhances our understanding of how to maximise phosphorus uptake and harvest yields; and further add value to the biomass for reuse would see the recovery of phosphorus via plants become an important solution in the future.

  7. Multimedia-based Medicinal Plants Sustainability Management System

    Directory of Open Access Journals (Sweden)

    Zacchaeus Omogbadegun

    2011-09-01

    Full Text Available Medicinal plants are increasingly recognized worldwide as an alternative source of efficacious and inexpensive medications to synthetic chemo-therapeutic compound. Rapid declining wild stocks of medicinal plants accompanied by adulteration and species substitutions reduce their efficacy, quality and safety. Consequently, the low accessibility to and non-affordability of orthodox medicine costs by rural dwellers to be healthy and economically productive further threaten their life expectancy. Finding comprehensive information on medicinal plants of conservation concern at a global level has been difficult. This has created a gap between computing technologies' promises and expectations in the healing process under complementary and alternative medicine. This paper presents the design and implementation of a Multimedia-based Medicinal Plants Sustainability Management System addressing these concerns. Medicinal plants' details for designing the system were collected through semi-structured interviews and databases. Unified Modelling Language, Microsoft-Visual-Studio.Net, C#3.0, Microsoft-Jet-Engine4.0, MySQL, Loquendo Multilingual Text-to-Speech Software, YouTube, and VLC Media Player were used.

  8. The CckA-ChpT-CtrA phosphorelay system is regulated by quorum sensing and controls flagellar motility in the marine sponge symbiont Ruegeria sp. KLH11.

    Directory of Open Access Journals (Sweden)

    Jindong Zan

    Full Text Available Bacteria respond to their environment via signal transduction pathways, often two-component type systems that function through phosphotransfer to control expression of specific genes. Phosphorelays are derived from two-component systems but are comprised of additional components. The essential cckA-chpT-ctrA phosphorelay in Caulobacter crescentus has been well studied and is important in orchestrating the cell cycle, polar development and flagellar biogenesis. Although cckA, chpT and ctrA homologues are widespread among the Alphaproteobacteria, relatively few is known about their function in the large and ecologically significant Roseobacter clade of the Rhodobacterales. In this study the cckA-chpT-ctrA system of the marine sponge symbiont Ruegeria sp. KLH11 was investigated. Our results reveal that the cckA, chpT and ctrA genes positively control flagellar biosynthesis. In contrast to C. crescentus, the cckA, chpT and ctrA genes in Ruegeria sp. KLH11 are non-essential and do not affect bacterial growth. Gene fusion and transcript analyses provide evidence for ctrA autoregulation and the control of motility-related genes. In KLH11, flagellar motility is controlled by the SsaRI system and acylhomoserine lactone (AHL quorum sensing. SsaR and long chain AHLs are required for cckA, chpT and ctrA gene expression, providing a regulatory link between flagellar locomotion and population density in KLH11.

  9. Increasing of Manoeuvrability of Cogeneration Combined Cycle Power Plants Owing to the Usage of Electric Boilers

    Directory of Open Access Journals (Sweden)

    S. Kachan

    2013-01-01

    Full Text Available The paper contains the results of efficiency evaluation  of using the electric boilers to improve maneuver capabilities of the cogeneration combined cycle power plants (as an example, 230 MW combined cycle unit of Minsk CHP-3 in comparison with the traditional steam-turbine units of cogeneration power plants.

  10. Analysis of the Impact of Decreasing District Heating Supply Temperature on Combined Heat and Power Plant Operation

    Directory of Open Access Journals (Sweden)

    Bolonina Alona

    2014-12-01

    Full Text Available District heating systems are widely used to supply heat to different groups of heat consumers. The district heating system offers great opportunities for combined heat and power production. In this paper decreasing district heating supply temperature is analysed in the context of combined heat and power plant operation. A mathematical model of a CHP plant is developed using both empirical and theoretical equations. The model is used for analysis of modified CHP plant operation modes with reduced district heating supply temperature. Conclusions on the benefits of new operation modes are introduced.

  11. Transportable Hydrogen Research Plant Based on Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro [LABEIN, Parque Tecnologico, edificio 700, 48160 Derio, Bizkaia (Spain); Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor [ROBOTIKER, Parque Tecnologico, edificio 202, 48170 Zamudio, Bizkaia, (Spain); Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola [INASMET, Mikeletegi Pasalekua, Parque Tecnologico, E-20009 San Sebastian, Guipuzcoa (Spain)

    2006-07-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  12. Exergoeconomic evaluation of a KRW-based IGCC power plant

    Science.gov (United States)

    Tsatsaronis, G.; Lin, L.; Tawfik, T.; Gallaspy, D. T.

    1994-04-01

    In a study supported by the U.S. Department of Energy, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. One of these configurations was analyzed from the exergoeconomic (thermoeconomic) viewpoint. This design configuration uses an air-blown KRW gasifier, hot gas cleanup, and two General Electric MS7001F advanced combustion turbines. Operation at three different gasification temperatures was considered. The detailed exergoeconomic evaluation identified several changes for improving the cost effectiveness of this IGCC design configuration. These changes include the following: decreasing the gasifier operating temperature, enhancing the high-pressure steam generation in the gasification island, improving the efficiency of the steam cycle, and redesigning the entire heat exchanger network. Based on the cost information supplied by the M. W. Kellogg Company, an attempt was made to calculate the economically optimal exergetic efficiency for some of the most important plant components.

  13. Sustainability of plant-based diets: back to the future.

    Science.gov (United States)

    Sabaté, Joan; Soret, Sam

    2014-07-01

    Plant-based diets in comparison to diets rich in animal products are more sustainable because they use many fewer natural resources and are less taxing on the environment. Given the global population explosion and increase in wealth, there is an increased demand for foods of animal origin. Environmental data are rapidly accumulating on the unsustainability of current worldwide food consumption practices that are high in meat and dairy products. Natural nonrenewable resources are becoming scarce, and environmental degradation is rapidly increasing. At the current trends of food consumption and environmental changes, food security and food sustainability are on a collision course. Changing course (to avoid the collision) will require extreme downward shifts in meat and dairy consumption by large segments of the world's population. Other approaches such as food waste reduction and precision agriculture and/or other technological advances have to be simultaneously pursued; however, they are insufficient to make the global food system sustainable. For millennia, meatless diets have been advocated on the basis of values, and large segments of the world population have thrived on plant-based diets. "Going back" to plant-based diets worldwide seems to be a reasonable alternative for a sustainable future. Policies in favor of the global adoption of plant-based diets will simultaneously optimize the food supply, health, environmental, and social justice outcomes for the world's population. Implementing such nutrition policy is perhaps one of the most rational and moral paths for a sustainable future of the human race and other living creatures of the biosphere that we share.

  14. Life management of power plant based on structural damage testing

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia); Arras, V. [Eesti Energia, Tallinn (Estonia)

    1998-12-31

    Life management system is based on the valid nowadays in Estonian power plants regulation documentation. The system allows to estimate stress distribution in components, find computational assessment of cumulated creep damage, determine when and where it is necessary to cut off the particular number of microsamples or take replicas. Finally, the real metal condition may be assessed on the basis of metallographic specimen research and reasonable 3-R decision - run, repair, replacement - made on further component use. (orig.) 6 refs.

  15. Plant based dietary supplement increases urinary pH

    OpenAIRE

    Rao A Venket; Logan Alan C; Berardi John M

    2008-01-01

    Abstract Background Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised. Methods Using pH...

  16. Plant based dietary supplement increases urinary pH

    Directory of Open Access Journals (Sweden)

    Rao A Venket

    2008-11-01

    Full Text Available Abstract Background Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised. Methods Using pH test strips, the urinary pH of 34 healthy men and women (33.9 +/- 1.57 y, 79.3 +/- 3.1 kg was measured for seven days to establish a baseline urinary pH without supplementation. After this initial baseline period, urinary pH was measured for an additional 14 days while participants ingested the plant-based nutritional supplement. At the end of the investigation, pH values at baseline and during the treatment period were compared to determine the efficacy of the supplement. Results Mean urinary pH statistically increased (p = 0.03 with the plant-based dietary supplement. Mean urinary pH was 6.07 +/- 0.04 during the baseline period and increased to 6.21 +/- 0.03 during the first week of treatment and to 6.27 +/- 0.06 during the second week of treatment. Conclusion Supplementation with a plant-based dietary product for at least seven days increases urinary pH, potentially increasing the alkalinity of the body.

  17. Another lesson from plants: the forward osmosis-based actuator.

    Directory of Open Access Journals (Sweden)

    Edoardo Sinibaldi

    Full Text Available Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW. Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.

  18. Another lesson from plants: the forward osmosis-based actuator.

    Science.gov (United States)

    Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara

    2014-01-01

    Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.

  19. Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine

    Energy Technology Data Exchange (ETDEWEB)

    Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

    2005-04-01

    Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

  20. Generic Combined Heat and Power (CHP Model for the Concept Phase of Energy Planning Process

    Directory of Open Access Journals (Sweden)

    Satya Gopisetty

    2016-12-01

    Full Text Available Micro gas turbines (MGTs are regarded as combined heat and power (CHP units which offer high fuel utilization and low emissions. They are applied in decentralized energy generation. To facilitate the planning process of energy systems, namely in the context of the increasing application of optimization techniques, there is a need for easy-to-parametrize component models with sufficient accuracy which allow a fast computation. In this paper, a model is proposed where the non-linear part load characteristics of the MGT are linearized by means of physical insight of the working principles of turbomachinery. Further, it is shown that the model can be parametrized by the data usually available in spec sheets. With this model a uniform description of MGTs from several manufacturers covering an electrical power range from 30 k W to 333 k W can be obtained. The MGT model was implemented by means of Modelica/Dymola. The resulting MGT system model, comprising further heat exchangers and hydraulic components, was validated using the experimental data of a 65 k W MGT from a trigeneration energy system.

  1. Toxicity of a plant based mosquito repellent/killer.

    Science.gov (United States)

    Singh, Bhoopendra; Singh, Prakash Raj; Mohanty, Manoj Kumar

    2012-12-01

    The mission to make humans less attractive to mosquitoes has fuelled decades of scientific research on mosquito behaviour and control. The search for the perfect topical insect repellent/killer continues. This analysis was conducted to review and explore the scientific information on toxicity produced by the ingredients/contents of a herbal product. In this process of systemic review the following methodology was applied. By doing a MEDLINE search with key words of selected plants, plant based insect repellents/killers pertinent articles published in journals and authentic books were reviewed. The World Wide Web and the Extension Toxicity Network database (IPCS-ITOX) were also searched for toxicology data and other pertinent information. Repellents do not all share a single mode of action and surprisingly little is known about how repellents act on their target insects. Moreover, different mosquito species may react differently to the same repellent. After analysis of available data and information on the ingredient, of the product in relation to medicinal uses, acute and chronic toxicity of the selected medicinal plants, it can be concluded that the ingredients included in the herbal product can be used as active agents against mosquitoes. If the product which contains the powder of the above said plants is applied with care and safety, it is suitable fo use as a mosquito repellent/killer.

  2. Energie-Cites opinion on the directive project of CHP. To meet urban energy requirements with optimal energy efficiency and production closer to residents; Avis d'Energie-Cites sur le project de directive cogeneration. Satisfaire les besoins energetiques urbains avec la meilleure efficacite energetique et une production plus proche des habitants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    The Directive on ''the promotion of cogeneration based on a useful heat demand in the internal energy market'' should be adopted very soon. The initial aim of the Directive is to strengthen existing measures to promote CHP in line with the Community target of doubling the share of CHP in EU electricity generation from 9% in 1994 to 18% by 2010. But no target has been mentioned. Energie-Cites states, in this document, its opinion of this draft proposal. Cogeneration is a well-tried and proven technology which has achieved tangible results and is one of the more efficient ways for the EU to fulfill the commitments it made under the Kyoto Protocol. (A.L.B.)

  3. Reinforcing loose foundation stones in trait-based plant ecology.

    Science.gov (United States)

    Shipley, Bill; De Bello, Francesco; Cornelissen, J Hans C; Laliberté, Etienne; Laughlin, Daniel C; Reich, Peter B

    2016-04-01

    The promise of "trait-based" plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients.

  4. Nuclear Power Plant Operator Reliability Research Based on Fuzzy Math

    Directory of Open Access Journals (Sweden)

    Fang Xiang

    2011-01-01

    Full Text Available This paper makes use of the concept and theory of fuzzy number in fuzzy mathematics, to research for the response time of operator in accident of Chinese nuclear power plant. Through the quantitative analysis for the performance shape factors (PSFs which influence the response time of operators, the formula of the operator response time is obtained based on the possibilistic fuzzy linear regression model which is used for the first time in this kind of research. The research result shows that the correct research method can be achieved through the analysis of the information from a small sample. This method breaks through the traditional research method and can be used not only for the reference to the safe operation of nuclear power plant, but also in other areas.

  5. Power contracting between two different partners. Biogas combined heat and power plants; Energie-Contracting zweier unterschiedlicher Partner. Biogas-Blockheizkraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Marc Wilhelm

    2013-06-15

    An agricultural consortium in the Eifel (Federal Republic of Germany) has adopted a comprehensive supply of a 7,000 m{sup 2} comprising hotel complex with combined heat and power. The old oil-fired central heating plant has been replaced by a biogas-powered combined heat and power plant (CHP). The hotel was directly connected to the CHP plant by means of a new, approximately 300 m long local heating network including buffer storage. Overall, the hotel operator saves approximately 300,000 L of heating oil annually. The energy demand of the hotel operator will be covered by more than 90 % by means of CHP plants. Thus 20 % of the heating costs is saved.

  6. Methods for planning and operating decentralized combined heat and power plants

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, H.

    2000-02-01

    In recent years, the number of decentralized combined heat and power (DCHP) plants, which are typically located in small communities, has grown rapidly. These relatively small plants are based on Danish energy resources, mainly natural gas, and constitute an increasing part of the total energy production in Denmark. The topic of this thesis is the analysis of DCHP plants, with the purpose to optimize the operation of such plants. This involves the modelling of district heating systems, which are frequently connected to DCHP plants, as well as the use of heat storage for balancing between heat and power production. Furthermore, the accumulated effect from increasing number of DCHP plants on the total power production is considered. Methods for calculating dynamic temperature response in district heating (DH) pipes have been reviewed and analyzed numerically. Furthermore, it has been shown that a tree-structured DH network consisting of about one thousand pipes can be reduced to a simple chain structure of ten equivalent pipes without loosing much accuracy when temperature dynamics are calculated. A computationally efficient optimization method based on stochastic dynamic programming has been designed to find an optimum start-stop strategy for a DCHP plant with a heat storage. The method focuses on how to utilize heat storage in connection with CHP production. A model for the total power production in Eastern Denmark has been applied to the accumulated DCHP production. Probability production simulations have been extended from the traditional power-only analysis to include one or several heat supply areas. (au)

  7. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo

    2014-01-01

    to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria for sizing the system components of the micro-CHP are specifically addressed. The developed methodology can be applied...... under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability...... of the micro-CHP to cover the heat and electricity demand of a 70 m2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed...

  8. Coordinated Wind Power Accommodating Dispatch Model Based on Electric Boiler and CHP With Thermal Energy Storage%基于含储热热电联产机组与电锅炉的弃风消纳协调调度模型

    Institute of Scientific and Technical Information of China (English)

    崔杨; 陈志; 严干贵; 唐耀华

    2016-01-01

    To solve the problem of wind power accommodation, this paper proposed acoordinated wind power accommodating dispatch model based on electrical boiler (EB) and cogeneration units with thermal energy storage (TES), with the perspective of decoupling thermoelectric coupling constraints and enhancing the adjustment capacity of the power system. This paper analyzed the principle of cogeneration units with TES, and presented the calculation method of the ultimate wind power accommodated heating capacity of the EB. Then the economy had been compared considering the TES work alone or does not work, as well as the two heating units work coordinately. Example results show that the best economy could be achieved when the EB heating capacity reached the ultimate wind power accommodated heating capacity.%为解决风电消纳问题,从解耦热电耦合约束、提升电力系统调节能力角度出发,提出基于含储热热电联产机组与电锅炉的弃风消纳协调调度模型。在分析含储热热电联产机组工作原理基础上,提出极限消纳弃风电量的电锅炉供热量计算方法,对比了储热装置不同工作方式以及含储热热电联产与电锅炉协调供热时的经济性。算例结果表明,电锅炉供热在极限消纳弃风时具有最佳经济性。

  9. ITER Fast Plant System Controller prototype based on PXIe platform

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M., E-mail: mariano.ruiz@upm.es [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Vega, J.; Castro, R. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Sanz, D.; Lopez, J.M.; Arcas, G. de; Barrera, E.; Nieto, J. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Goncalves, B.; Sousa, J.; Carvalho, B. [Associacao EURATOM/IST, Lisbon (Portugal); Utzel, N.; Makijarvi, P. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Implementation of Fast Plant System Controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer Efficient data acquisition and data movement using EPICS. Black-Right-Pointing-Pointer Performance of PCIe technologies in the implementation of FPSC. - Abstract: The ITER Fast Plant System Controller (FPSC) is based on embedded technologies. The FPSC will be devoted to both data acquisition tasks (sampling rates higher than 1 kHz) and control purposes (feedback loop actuators). Some of the essential requirements of these systems are: (a) data acquisition and data preprocessing; (b) interfacing with different networks and high speed links (Plant Operation Network, timing network based on IEEE1588, synchronous data transference and streaming/archiving networks); and (c) system setup and operation using EPICS (Experimental Physics and Industrial Control System) process variables. CIEMAT and UPM have implemented a prototype of FPSC using a PXIe (PCI eXtension for Instrumentation) form factor in a R and D project developed in two phases. The paper presents the main features of the two prototypes developed that have been named alpha and beta. The former was implemented using LabVIEW development tools as it was focused on modeling the FPSC software modules, using the graphical features of LabVIEW applications, and measuring the basic performance in the system. The alpha version prototype implements data acquisition with time-stamping, EPICS monitoring using waveform process variables (PVs), and archiving. The beta version prototype is a complete IOC implemented using EPICS with different software functional blocks. These functional blocks are integrated and managed using an ASYN driver solution and provide the basic functionalities required by ITER FPSC such as data acquisition, data archiving, data pre-processing (using both CPU and GPU) and streaming.

  10. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  11. Scheduling of Multiple Chillers in Trigeneration Plants

    Directory of Open Access Journals (Sweden)

    Chris Underwood

    2015-10-01

    Full Text Available The scheduling of both absorption cycle and vapour compression cycle chillers in trigeneration plants is investigated in this work. Many trigeneration plants use absorption cycle chillers only but there are potential performance advantages to be gained by using a combination of absorption and compression chillers especially in situations where the building electrical demand to be met by the combined heat and power (CHP plant is variable. Simulation models of both types of chillers are developed together with a simple model of a variable-capacity CHP engine developed by curve-fitting to supplier’s data. The models are linked to form an optimisation problem in which the contribution of both chiller types is determined at a maximum value of operating cost (or carbon emission saving. Results show that an optimum operating condition arises at moderately high air conditioning demands and moderately low power demand when the air conditioning demand is shared between both chillers, all recovered heat is utilised, and the contribution arising from the compression chiller results in an increase in CHP power generation and, hence, engine efficiency.

  12. Diesel power plants based on biomass gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1996-12-31

    The aim of the project was to assess the competitiveness and market potential of small-scale power plant concepts based on biomass gasification and on diesel/gas engines, and to study the effect of process parameters on the efficiency of the circulating fluidized-bed gasifier and on the formation of tarry impurities. Alternative diesel/gas engine power plant concepts based on gasification in scale 6-50 MW{sub e} were assessed. In the basic version, where the electricity is generated only by the a diesel/gas engine, the efficiency level of 37 % is achieved in power generation. When steam cycle is added to the process the efficiency of power generation increases to 44-48 %. The efficiencies achieved in the process are very high compared with those of biomass power plant processes on a commercial level or under development. The most significant potential of biomass-based power generation is made up by wastes of sugar industries in south and Central America and in Asia. There are also very extensive growth potentials of bioenergy use in the NAFTA countries (USA, Canada and Mexico) and in Europe. In Europe, the bioenergy use is expected to grow most sharply in Italy, Spain, Germany and Poland. Carbon conversion obtained in the gasifier was in the range of 99.0-99.9 % for sawdust and 96-98 % for forest residue chips. The tar content of the product gas 10-15 g/m- m{sup 3}{sub n}, for sawdust in the gasification temperature of 830-930 deg C and with sand as circulating fluid-bed. When dolomite was used as circulating fluid-bed, the tar contents were 2-3 g/m{sup 3}{sub n} at as low temperatures as 880-890 deg C. The tar content of gas can be reduced sharply by phasing of gasification air and by using catalytic circulating fluid-bed material Bioenergy Research Programme; LIEKKI 2 Research Programme. 26 refs., 40 figs.

  13. Dynamics of Plant Growth; A Theory Based on Riemannian Geometry

    CERN Document Server

    Pulwicki, Julia

    2016-01-01

    In this work, a new model for macroscopic plant tissue growth based on dynamical Riemannian geometry is presented. We treat 1D and 2D tissues as continuous, deformable, growing geometries for sizes larger than 1mm. The dynamics of the growing tissue are described by a set of coupled tensor equations in non-Euclidean (curved) space. These coupled equations represent a novel feedback mechanism between growth and curvature dynamics. For 1D growth, numerical simulations are compared to two measures of root growth. First, modular growth along the simulated root shows an elongation zone common to many species of plant roots. Second, the relative elemental growth rate (REGR) calculated in silico exhibits temporal dynamics recently characterized in high-resolution root growth studies but which thus far lack a biological hypothesis to explain them. Namely, the REGR can evolve from a single peak localized near the root tip to a double-peak structure. In our model, this is a direct consequence of considering growth as b...

  14. Cold power plant based on the cryogenic refueling tank

    Directory of Open Access Journals (Sweden)

    A. I. Dovgjallo

    2014-01-01

    Full Text Available The paper evaluates the possibility to use a tank with cryogenic refueling as a part of the autonomous complex employing the liquefied natural gas. A cryogenic refueling tank-based installation to utilize a low-grade heat has been designed. During its use extra electric power is generated. To assess a performance capability, the proposed installation calculations have been made for different end pressures in cryogenic refueling tank. In all embodiments, the mass of cryogenic refilled is 866 kg. Depending on the pressure an amount of extra electric power is produced owing to utilizing a low temperature potential of LNG. New values, such as the specific amount of extra energy are introduced. These values allow objective assessment of the potential for extra energy when using the cryogenic products with their subsequent regasification in cryogenic refueling tank taking into consideration the operational constraints and the working fluid flow.A cold energy power plant has been also designed to refuel vehicles with the natural gas. In this paper the turbines with desirable expansion ratio to generate the maximum possible amount of power were selected in an optimal way. The optimum degree of expansion for the first turbine in the first loop will be т = 8.8; for the second turbine in the first loop т = 10; turbines for the second loop т = 3.9. The total amount of generated electric power will be 3725.22 kW•h for 225 min. The action time of cold energy power plant, including the time of methane gasification in cryogenic refueling tank, time of refueling vehicles, and time of electricity generation will be 24 hours. The economic assessment of cold energy power plant has shown that the payback period is 3.4 years.Thus, the performance evaluation by the temperature and pressure levels eliminates the possibility for forming the hydrates.So the calculations have shown that research in the development of power plants looks promising as well as allow you

  15. A plant resource and experiment management system based on the Golm Plant Database as a basic tool for omics research

    Directory of Open Access Journals (Sweden)

    Selbig Joachim

    2008-05-01

    Full Text Available Abstract Background For omics experiments, detailed characterisation of experimental material with respect to its genetic features, its cultivation history and its treatment history is a requirement for analyses by bioinformatics tools and for publication needs. Furthermore, meta-analysis of several experiments in systems biology based approaches make it necessary to store this information in a standardised manner, preferentially in relational databases. In the Golm Plant Database System, we devised a data management system based on a classical Laboratory Information Management System combined with web-based user interfaces for data entry and retrieval to collect this information in an academic environment. Results The database system contains modules representing the genetic features of the germplasm, the experimental conditions and the sampling details. In the germplasm module, genetically identical lines of biological material are generated by defined workflows, starting with the import workflow, followed by further workflows like genetic modification (transformation, vegetative or sexual reproduction. The latter workflows link lines and thus create pedigrees. For experiments, plant objects are generated from plant lines and united in so-called cultures, to which the cultivation conditions are linked. Materials and methods for each cultivation step are stored in a separate ACCESS database of the plant cultivation unit. For all cultures and thus every plant object, each cultivation site and the culture's arrival time at a site are logged by a barcode-scanner based system. Thus, for each plant object, all site-related parameters, e.g. automatically logged climate data, are available. These life history data and genetic information for the plant objects are linked to analytical results by the sampling module, which links sample components to plant object identifiers. This workflow uses controlled vocabulary for organs and treatments. Unique

  16. [Peculicidal activity of plant essential oils and their based preparations].

    Science.gov (United States)

    Lopatina, Iu V; Eremina, O Iu

    2014-01-01

    The peculicidal activity of eight plant essential oils in 75% isopropyl alcohol was in vitro investigated. Of them, the substances that were most active against lice were tea tree (Melaleuca), eucalyptus, neem, citronella (Cymbopogon nardus), and clove (Syzygium aromaticum) oils; KT50 was not more than 3 minutes on average; KT95 was 4 minutes. After evaporating the solvent, only five (tea tree, cassia, clove, anise (Anisum vulgare), and Japanese star anise (Illicium anisatum) oils) of the eight test botanical substances were active against lice. At the same time, KT50 and KT95 showed 1.5-5-fold increases. Citronella and anise oils had incomplete ovicidal activity. Since the lice were permethrin-resistant, the efficacy of preparations based on essential oils was much higher than permethrin.

  17. Simulation-based biagnostics and control for nuclar power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.C.

    1993-01-01

    Advanced simulation-based diagnostics and control guidance systems for the identification and management of off-normal transient events in nuclear power plants is currently under investigation. To date a great deal of progress has been made in effectively and efficiently combining information obtained through fuzzy pattern recognition and macroscopic mass and energy inventory analysis for use in multiple failure diagnostics. Work has also begun on the unique problem of diagnostics and surveillance methodologies for advanced passively-safe reactors systems utilizing both statistical and fuzzy information. Plans are also being formulated for the development of deterministic optimal control algorithms combined with Monte Carlo incremental learning algorithms to be used for the flexible and efficient control of reactor transients.

  18. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  19. Use of Methanation for Optimization of a Hybrid Plant Combining Two-Stage Biomass Gasification, SOFCs and a Micro Gas Turbine

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    A hybrid plant producing combined heat and power (CHP) from biomass by use of the two-stage gasification concept, solid oxide fuel cells (SOFCs) and a micro gas turbine (MGT) was considered for optimization. The hybrid plant is a sustainable and efficient alternative to conventional decentralized...

  20. Performance Based Failure Criteria of the Base Isolation System for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Kim, Min Kyu; Choi, In Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The realistic approach to evaluate the failure state of the base isolation system is necessary. From this point of view, several concerns are reviewed and discussed in this study. This is the preliminary study for the performance based risk assessment of a base isolated nuclear power plant. The items to evaluate the capacity and response of an individual base isolator and a base isolation system were briefly outlined. However, the methodology to evaluate the realistic fragility of a base isolation system still needs to be specified. For the quantification of the seismic risk for a nuclear power plant structure, the failure probabilities of the structural component for the various seismic intensity levels need to be calculated. The failure probability is evaluated as the probability when the seismic response of a structure exceeds the failure criteria. Accordingly, the failure mode of the structural system caused by an earthquake vibration should be defined first. The type of a base isolator appropriate for a nuclear power plant structure is regarded as an elastometric rubber bearing with a lead core. The failure limit of the lead-rubber bearing (LRB) is not easy to be predicted because of its high nonlinearity and a complex loading condition by an earthquake excitation. Furthermore, the failure mode of the LRB system installed below the nuclear island cannot be simply determined because the basemat can be sufficiently supported if the number of damaged isolator is not much.

  1. Improvement of operational efficiency based on fast startup plant concepts

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Harald; Meinecke, Gero; Ohresser, Sylvia; Pickard, Andreas

    2010-09-15

    One of the major global challenges of the present time is the reduction of CO2 emissions. Provisions for integration of a CO2 capture plant are already required today in new power plant construction projects in order to enable current plants to also benefit from the possibilities of carbon capture systems to be developed in the future. These provisions for integration should account for the fact that the scrubbing processes are still in the optimization phase. Requisite process parameters may still change in the future. In the development of a plant interface, the paper describes a concept developed by Siemens which ensures maximum flexibility with simultaneous optimization of the plant for the capture process. Emphasis was placed on the following points in the development of this interface and the associated connection concepts: Maximum plant efficiency before and after modification; Maximum flexibility with regard to future process parameters; Optimization of customer investment cash flow; and, Applicability also to existing plants. According to the paper, Siemens can offer a concept which enables future conversion in accordance with the specified criteria. This concept requires no compromises with regard to plant efficiency in process optimization for either current power plant operation without carbon capture or for future operation with carbon capture. The concept also enables retrofitting of existing plants which are not yet capture-ready. However, retrofitting of power plants which are not prepared for operation with carbon capture is considerably more elaborate in most cases, as corridors must frequently still be cleared for the connecting piping.

  2. Plant growth promoting bacteria from cow dung based biodynamic preparations.

    Science.gov (United States)

    Radha, T K; Rao, D L N

    2014-12-01

    Indigenous formulations based on cow dung fermentation are commonly used in organic farming. Three biodynamic preparations viz., Panchagavya (PG), BD500 and 'Cow pat pit' (CPP) showed high counts of lactobacilli (10(9) ml(-1)) and yeasts (10(4) ml(-1)). Actinomycetes were present only in CPP (10(4) ml(-1)) and absent in the other two. Seven bacterial isolates from these ferments were identified by a polyphasic approach: Bacillus safensis (PG1), Bacillus cereus (PG2, PG4 PG5), Bacillus subtilis (BD2) Lysinibacillus xylanilyticus (BD3) and Bacillus licheniformis (CPP1). This is the first report of L. xylanilyticus and B. licheniformis in biodynamic preparations. Only three carbon sources-dextrose, sucrose and trehalose out of 21 tested were utilized by all the bacteria. None could utilize arabinose, dulcitol, galactose, inositol, inulin, melibiose, raffinose, rhamnose and sorbitol. All the strains produced indole acetic acid (1.8-3.7 μg ml(-1) culture filtrate) and ammonia. None could fix nitrogen; but all except B. safensis and B. licheniformis could solubilize phosphorous from insoluble tri-calcium phosphate. All the strains except L. xylaniliticus exhibited antagonism to the plant pathogen Rhizoctonia bataticola whereas none could inhibit Sclerotium rolfsi. In green house experiment in soil microcosms, bacterial inoculation significantly promoted growth of maize; plant dry weight increased by ~21 % due to inoculation with B. cereus (PG2). Results provide a basis for understanding the beneficial effects of biodynamic preparations and industrial deployment of the strains.

  3. Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    2017-02-01

    Full Text Available In the Republic of Korea, efficient biogas-fuelled power systems are needed to use the excess biogas that is currently burned due to a lack of suitable power technology. We examined the performance of a biogas-fuelled micro-gas turbine (MGT system and a bottoming organic Rankine cycle (ORC. The MGT provides robust operation with low-grade biogas, and the exhaust can be used for heating the biodigester. Similarly, the bottoming ORC generates additional power output with the exhaust gas. We selected a 1000-kW MGT for four co-digestion plants with 28,000-m3 capacity. A 150-kW ORC system was selected for the MGT exhaust gas. We analysed the effects of the system size, methane concentration, and ORC operating conditions. Based on the system performance, we analysed the annual performance of the MGT with a combined heat and power (CHP system, bottoming ORC, or both a bottoming ORC and CHP system. The annual net power outputs for each system were 7.4, 8.5, and 9.0 MWh per year, respectively.

  4. ITER fast plant system controller prototype based on ATCA platform

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, B., E-mail: bruno@ipfn.ist.utl.pt [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Sousa, J.; Carvalho, B.B.; Batista, A.; Neto, A.; Santos, B.; Duarte, A.; Valcarcel, D.; Alves, D.; Correia, M.; Rodrigues, A.P.; Carvalho, P.F. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Ruiz, M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Vega, J.; Castro, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Lopez, J.M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Utzel, N.; Makijarvi, P. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2012-12-15

    The ITER fast plan system controllers (FPSC) are based on embedded technologies. The FPSCs [1] will be devoted to data acquisition tasks (sampling rates >1 kSPS) and control purposes in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers and interface to actuators, sensors and high performance networks. This contribution presents an FPSC prototype, specialized for data acquisition, based on the ATCA (Advanced Telecommunications Computing Architecture) standard. This prototyping activity contributes to the ITER Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. For the prototype, IPFN has developed a new family of ATCA modules targeting ITER requirements. This family of modules comprises an AMC (Advanced Mezzanine Card) carrier/data hub/timing hub, compliant with the upcoming ATCA extensions for Physics, and a multi-channel galvanically isolated PnP digitizer, designed for serviceability. The design and test of a peer-to-peer communications layer for the implementation of a reflective memory over PCI Express and the design and test of an IEEE-1588 transport layer over an high performance serial link were also performed. In this contribution, a complete description of the solution is presented as well as the integration of the controller into the standard CODAC environment. The most relevant test results will be addressed, focusing in the benefits and limitations of the applied technologies.

  5. Central Heating Plant site characterization report, Marine Corps Combat Development Command, Quantico, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This report presents the methodology and results of a characterization of the operation and maintenance (O M) environment at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This characterization is part of a program intended to provide the O M staff with a computerized artificial intelligence (AI) decision support system that will assist the plant staff in more efficient operation of their plant. 3 refs., 12 figs.

  6. Chemical bases for medicinal plant use in Oaxaca, Mexico.

    Science.gov (United States)

    Ortiz de Montellano, B R; Browner, C H

    1985-03-01

    Fifty-eight medicinal plants used for the management of reproduction and the treatment of women's reproductive health problems in an indigenous community in southern Mexico are described. The efficacy of these plants is assessed according to both community members' understandings of the therapeutic effects they seek and the standards of conventional Western medicine. The majority of the plants contain chemicals which would appear to enable them to accomplish their intended effects in either or both the popular and the conventional medical systems.

  7. Implementing a business improvement model based on integrated plant information

    Directory of Open Access Journals (Sweden)

    Swanepoel, Hendrika Francina

    2016-11-01

    Full Text Available The World Energy Council defines numerous challenges in the global energy arena that put pressure on owners and /operators to operate run existing plant better and more efficiently. As such there is an increasing focus on the use of business and technical plant information and data to make better, more integrated, and more informed decisions on the plant. The research study developed a business improvement model (BIM that can be used to establish an integrated plant information management infrastructure as the core foundation for of business improvement initiatives. Operational research then demonstrated how this BIM approach could be successfully implemented to improve business operations and provide decision-making insight.

  8. Building and Researching the Bidding Model Based on the Cost of Power Plant

    Institute of Scientific and Technical Information of China (English)

    秦春申; 叶春; 赵景峰

    2004-01-01

    A bidding model of neural network was presented to pursue the largest benefit according to the policy of separating power plants from network and bidding transaction. This model bases on the cost of power plant and its research object is a power plant in the market. The market clearing price (MCP) can be predicted and an optimized load curve can be decided in this model. The model may provide technical support for the power plant.

  9. Image-based plant phenotyping with incremental learning and active contours

    OpenAIRE

    Minervini, Massimo; Mohammed M. Abdelsamea; Tsaftaris, Sotirios A

    2014-01-01

    Plant phenotyping investigates how a plant's genome, interacting with the environment, affects the observable traits of a plant (phenome). It is becoming increasingly important in our quest towards efficient and sustainable agriculture. While sequencing the genome is becoming increasingly efficient, acquiring phenotype information has remained largely of low throughput. Current solutions for automated image-based plant phenotyping, rely either on semi-automated or manual analysis of the imagi...

  10. Small-Scale Combined Heat and Power Plants Using Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Salomon-Popa, Marianne [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-11-01

    In this time period where energy supply and climate change are of special concern, biomass-based fuels have attracted much interest due to their plentiful supply and favorable environmental characteristics (if properly managed). The effective capture and continued sustainability of this renewable resource requires a new generation of biomass power plants with high fuel energy conversion. At the same time, deregulation of the electricity market offers new opportunities for small-scale power plants in a decentralized scheme. These two important factors have opened up possibilities for small-scale combined heat and power (CHP) plants based on biofuels. The objective of this pre-study is to assess the possibilities and technical limitations for increased efficiency and energy utilization of biofuels in small size plants (approximately 10 MWe or lower). Various energy conversion technologies are considered and proven concepts for large-scale fossil fuel plants are an especially important area. An analysis has been made to identify the problems, technical limitations and different possibilities as recognized in the literature. Beyond published results, a qualitative survey was conducted to gain first-hand, current knowledge from experts in the field. At best, the survey results together with the results of personal interviews and a workshop on the role of small-scale plants in distributed generation will serve a guideline for future project directions and ideas. Conventional and novel technologies are included in the survey such as Stirling engines, combustion engines, gas turbines, steam turbines, steam motors, fuel cells and other novel technologies/cycles for biofuels. State-of-the-art heat and power plants will be identified to clarify of the advantages and disadvantages as well as possible obstacles for their implementation.

  11. Adolescents’ Food Choice and the Place of Plant-Based Foods

    Directory of Open Access Journals (Sweden)

    Hannah Ensaff

    2015-06-01

    Full Text Available A diet dominated by plant foods, with limited amounts of refined processed foods and animal products conveys substantial health benefits. This study sought to explore adolescents’ attitudes and perceptions towards plant-based foods. Semi-structured focus group interviews were conducted with adolescents (age 14–15 years (n = 29 attending an inner city school in Yorkshire, UK. Using a grounded theory methodology, data analysis provided four main categories and related concepts revolving around adolescents’ perspectives on plant-based foods: food choice parameters; perceived drivers and benefits of plant-based foods; environmental food cues; barriers to plant-based food choice. In the emergent grounded theory, a clear disconnect between plant-based foods and the parameters that adolescents use to make food choices, is highlighted. Further, key barriers to adolescents adopting a plant-based diet are differentiated and considered with respect to practice and policy. The analysis offers a framework to remodel and re-present plant-based foods. In this way, it is proposed that a closer connection is possible, with consequent shifts in adolescents’ dietary behaviour towards a more plant-based diet and associated health benefits.

  12. Adolescents' Food Choice and the Place of Plant-Based Foods.

    Science.gov (United States)

    Ensaff, Hannah; Coan, Susan; Sahota, Pinki; Braybrook, Debbie; Akter, Humaira; McLeod, Helen

    2015-06-09

    A diet dominated by plant foods, with limited amounts of refined processed foods and animal products conveys substantial health benefits. This study sought to explore adolescents' attitudes and perceptions towards plant-based foods. Semi-structured focus group interviews were conducted with adolescents (age 14-15 years) (n = 29) attending an inner city school in Yorkshire, UK. Using a grounded theory methodology, data analysis provided four main categories and related concepts revolving around adolescents' perspectives on plant-based foods: food choice parameters; perceived drivers and benefits of plant-based foods; environmental food cues; barriers to plant-based food choice. In the emergent grounded theory, a clear disconnect between plant-based foods and the parameters that adolescents use to make food choices, is highlighted. Further, key barriers to adolescents adopting a plant-based diet are differentiated and considered with respect to practice and policy. The analysis offers a framework to remodel and re-present plant-based foods. In this way, it is proposed that a closer connection is possible, with consequent shifts in adolescents' dietary behaviour towards a more plant-based diet and associated health benefits.

  13. Exergetic comparison of two KRW-based IGCC power plants

    Science.gov (United States)

    Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D. T.

    1994-04-01

    In studies supported by the U.S. Department of Energy and the Electric Power Research Institute, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. Two of these configurations are compared here from the exergetic viewpoint. The first design configuration (case 1) uses an air-blown KRW gasifier and hot gas cleanup while the second configuration (reference case) uses an oxygen-blown KRW gasifier and cold gas cleanup. Each case uses two General Electric MS7001F advanced combustion turbines. The exergetic comparison identifies the causes of performance difference between the two cases: differences in the exergy destruction of the gasification system, the gas turbine system, and the gas cooling process, as well as differences in the exergy loss accompanying the solids to disposal stream. The potential for using (a) oxygen-blown versus air-blown-KRW gasifiers, and (b) hot gas versus cold gas cleanup processes was evaluated. The results indicate that, among the available options, an oxygen-blown KRW gasifier using in-bed desulfurization combined with an optimized hot gas cleanup process has the largest potential for providing performance improvements.

  14. EWS based visual and interactive simulator for plant engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Shiroh [Toshiba Corp. (Japan). Isogo Nuclear Engineering Center; Tanaka, Kazuma; Yoshikawa, Eiji [Toshiba Corp. (Japan). Nuclear Engineering Lab.

    1994-12-31

    The `Plant Engineering Visual and Interactive Simulator (PLEVIS)` is a realtime plant engineering simulator and runs on a general-purpose desk-top engineering workstation with a high-resolution bit-mapped display. PLEVIS is unique in that simulation models are integrated with a control/interlock model editor. PLEVIS can be used in a wide variety of applications, some of which are: (1) Design and modification studies of a control and interlock system, (2) Plant response evaluation for plant start-up testing and troubleshooting, (3) Transient recognition and mitigation studies, and (4) Familiarization with the plant process and control/ interlock system concept. The basic features of PLEVIS in order to realize the above applications are described in the presentation. (1 ref., 6 figs.).

  15. Biomass and bio-fuel based poly-generation for off-grid and grid-connected operation. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    The overall objective of this project was to design and build a combined heat and power plant based on an updraft gasifier and a 35 kW electrical output Stirling engine and further to test the flexibility of the plant with regards to fuel and application. In the project a containerized combined heat and power plant including a 200 kW updraft gasifier and a 35 kW electrical output Stirling engine was designed, the specified components were procured, the plant was installed in the three containers and the plant was erected at Amagerforbraendingen ready for the COP15 in November 2009. The potential of operating the Stirling engine in island-mode (without grid connection) was investigated by mathematical modelling. Using an absorption cooling plant connected to the Stirling CHP plant was also investigated. A technical feasibility study was undertaken and it was concluded that from the two available technologies (water/LiBr and Ammonia/water) the appropriate choice is depending on the required cooling temperature. Test runs focussed on investigating the fuel flexibility of two different configurations of Stirling engine CHP plants were carried out - respectively the updraft gasifier plant (the containerized plant and the DTU plant) and the pyrolysis plant (the plant situated at Barritskov). In order to perform these test runs a stable operation is required. On both the containerized plant and the pyrolysis plant this proved to be more challenging than expected and therefore the number of fuels tested was limited to willow chips at the containerized plant and dry wood residues, wood pellets and straw pellets on the pyrolysis plant. For all tested fuels it was possible to operate the plants, however different issues mainly related to the quality of the fuels were encountered. And so it can be concluded that the quality of the fuel is critical for the operation of both the updraft gasifier plant and the pyrolysis plant. A comprehensive desktop evaluation of the feasibility

  16. CHP: Combined Heat and Power: a vision of energy efficiency; Cogeracao: uma visao de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Osvaldo A.S.N. de; Abreu, Melissa E. de; Marcal, Roberto L.; Ferreira, Ademilson D.; Ferreira, Patricia E.; Monterio, Glauber J.R.; Silva, Ademir B. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The installation of a cogeneration plant has been the subject of discussions on alternatives in the Brazilian energy matrix. Considered viable solution in the not too distant past, 2001, when Brazil was undergoing a process of the economic slowdown, lack of investments in the energy sector, unemployment and reaching the peak of the crisis with the rationing of electricity. The principle of the cogeneration system is designed primarily to meet electrical demand, so there is no surplus production of energy and do not need to buy with the concessionaire, except in cases of the system stops on account of maintenance. However, there is a recovery of waste heat produced in thermodynamic processes for generation of electricity within a model that 'conventional' would be wasted. In this case, the exploitation can be given in the form of steam, hot water and/or cold, for secondary application, or can not be linked to a process. Based on the results of the fieldwork, aims to show that, despite the limitations inherent in the process of cogeneration, is justified economically the installation of this system in relation to the growth of procedures developed in CENPES and its resident effective. (author)

  17. Modelling of a solid oxide fuel cell CHP system coupled with a hot water storage tank for a single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2015-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. The use of a storage tank with thermal stratification allows one to increase the annual operating hours of CHP: heat can be produced when the request...... produced by gasification and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation are used to size the SOFC system and storage heat tank to provide energy for a small household using two different fuels. In particular it was shown...... is low (for instance during the night), taking advantage of thermal stratification to increases the heat recovery performance. A model of the SOFC system is presented to estimate the energy required to meet the average electric energy demand of the residence. Two fuels are considered, namely syngas...

  18. Liposome-Based Delivery Systems in Plant Polysaccharides

    Directory of Open Access Journals (Sweden)

    Meiwan Chen

    2012-01-01

    Full Text Available Plant polysaccharides consist of many monosaccharide by α- or β-glycosidic bond which can be extracted by the water, alcohol, lipophile liquid from a variety of plants including Cordyceps sinensis, astragalus, and mushrooms. Recently, many evidences illustrate that natural plant polysaccharides possess various biological activities including strengthening immunity, lowering blood sugar, regulating lipid metabolism, antioxidation, antiaging, and antitumour. Plant polysaccharides have been widely used in the medical field due to their special features and low toxicity. As an important drug delivery system, liposomes can not only encapsulate small-molecule compound but also big-molecule drug; therefore, they present great promise for the application of plant polysaccharides with unique physical and chemical properties and make remarkable successes. This paper summarized the current progress in plant polysaccharides liposomes, gave an overview on their experiment design method, preparation, and formulation, characterization and quality control, as well as in vivo and in vitro studies. Moreover, the potential application of plant polysaccharides liposomes was prospected as well.

  19. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism

    Directory of Open Access Journals (Sweden)

    Serenella Nardi

    2016-02-01

    Full Text Available ABSTRACT In recent years, the use of biostimulants in sustainable agriculture has been growing. Biostimulants can be obtained from different organic materials and include humic substances (HS, complex organic materials, beneficial chemical elements, peptides and amino acids, inorganic salts, seaweed extracts, chitin and chitosan derivatives, antitranspirants, amino acids and other N-containing substances. The application of biostimulants to plants leads to higher content of nutrients in their tissue and positive metabolic changes. For these reasons, the development of new biostimulants has become a focus of scientific interest. Among their different functions, biostimulants influence plant growth and nitrogen metabolism, especially because of their content in hormones and other signalling molecules. A significant increase in root hair length and density is often observed in plants treated with biostimulants, suggesting that these substances induce a “nutrient acquisition response” that favors nutrient uptake in plants via an increase in the absorptive surface area. Furthermore, biostimulants positively influence the activity and gene expression of enzymes functioning in the primary and secondary plant metabolism. This article reviews the current literature on two main classes of biostimulants: humic substances and protein-based biostimulants. The characteristic of these biostimulants and their effects on plants are thoroughly described.

  20. Promoter-Based Integration in Plant Defense Regulation

    DEFF Research Database (Denmark)

    Li, Baohua; Gaudinier, Allison; Tang, Michelle;

    2014-01-01

    A key unanswered question in plant biology is how a plant regulates metabolism to maximize performance across an array of biotic and abiotic environmental stresses. In this study, we addressed the potential breadth of transcriptional regulation that can alter accumulation of the defensive...... validation, we showed that >75% of tested transcription factor (TF) mutants significantly altered the accumulation of the defensive glucosinolates. These glucosinolate phenotypes were conditional upon the environment and tissue type, suggesting that these TFs may allow the plant to tune its defenses...

  1. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    Science.gov (United States)

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  2. Development of a knowledge-based information management system for plant maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Hyung Sang; Park, Young Jae; Lee, Sang Min; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Roh, Eun Chul; Lee, Byung Ine [Pohang Iron and Steel Company, Pohang (Korea, Republic of)

    2003-07-01

    Recently, the importance of Plant Maintenance(PM) was highly raised to provide efficient plant operation which highly affects the productivity. For this reason, a number of engineering methodologies, such as Risk-Based Inspection(RBI), Fitness For Service guidelines(FFS), Plant Lifecycle Management(PLM), have been applied to improve the plant operation efficiency. Also, a network-based business operation system, which is called ERP(Enterprise Resource Planning), has been introduced in the field of plant maintenance. However, there was no attempt to connect engineering methodologies to the ERP PM system. In this paper, a knowledge-based information system for the plant operation of steel making company has been proposed. This system, which is named as K-VRS(Knowledge-based Virtual Reality System), provides a connection between ERP plant maintenance module and knowledge-based engineering methodologies, and thus, enables network-based highly effective plant maintenance process. The developed system is expected to play a great role for more efficient and safer plant maintenance.

  3. Tumor associated antigen CHP2 promotes intraperitoneal metastasis of HEK293 cells in nude mice%肿瘤相关抗原CHP2促进HEK293细胞在裸鼠腹腔内的转移

    Institute of Scientific and Technical Information of China (English)

    钱晓萍; 孙秀媛; 李国栋; 张毓; 陈慰峰

    2009-01-01

    目的:研究肿瘤相关抗原CHP2对HEK293细胞在裸鼠腹腔内转移能力的影响,并初步探讨其可能的分子机制.方法:通过Boyden小室法检测CHP2转染细胞和对照细胞的体外转移能力.对BALB/c裸鼠进行腹腔接种,观察裸鼠体内的成瘤与组织浸润情况并进行HE染色.利用RT-PCR方法检测HEK293细胞中部分转移相关分子的基因表达水平.结果:CHP2增强HEK293细胞在体外穿过Matrigel胶的侵袭能力,同时显著加速HEK293细胞在裸鼠腹腔内的成瘤速度并促进肿瘤对腹腔主要脏器的浸润.CHP2上调转移相关分子骨桥蛋白(osteopon-tin,OPN)在HEK293细胞中的表达,但对基质金属蛋白酶MMP2的表达没有明显影响.结论:CHP2显著增强HEK293细胞在体外及裸鼠腹腔内的转移能力,OPN表达上调可能参与CHP2对HEK293细胞的转移促进作用.

  4. Large combined heat and power plants in sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    2015-01-01

    In many countries, the electricity supply and power plant operation are challenged by increasing amounts of fluctuating renewable energy sources. A smart energy system should be developed to integrate as much energy supply from fluctuating renewable sources and to utilise the scarce biomass...... resources as efficiently as possible. Using the advanced energy systems analysis tool EnergyPLAN and Denmark as a case, this analysis defines which of the three assessed types of CHP plants connected to district heating systems is most feasible in terms of total socioeconomic costs and biomass consumption...... as an unsustainable level of biomass consumption. Therefore, the regulatory framework should generally be considered in long-term planning of sustainable CHP systems....

  5. [Study on medicinal plant allelopathy and soil sickness based on ecological niche].

    Science.gov (United States)

    Sun, Hao; Huang, Lu-ming; Huang, Lu-qi; Guo, Lan-ping; Zhou, Jie; Lv, Dong-mei; Zeng, Yan

    2008-09-01

    Based on the conception and theory of ecological niche, authors analyzed the cause of the allelopathy and soil sickness of medicinal plants and the relationship between them. Methods to resolve problems in the cultivating medicinal plant was found, that is to construct the ecological niche based on allelopathy theory and avoid the soil sickness.

  6. Energy Resiliency for Marine Corps Logistics Base Production Plant Barstow

    Science.gov (United States)

    2014-12-01

    feasible microgrid and on-site energy generation options to provide power infrastructure resiliency aboard Production Plant Barstow (PPB), such that the...for selecting a cost-effective, resilient and scalable alternative energy portfolio, and creates a levelized cost for a microgrid and its...thesis is to examine feasible microgrid and on-site energy generation options to provide power infrastructure resiliency aboard Production Plant Barstow

  7. Satellite combined heat and power plants and their legal autonomy; Satelliten-BHKW und deren rechtliche Eigenstaendigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Loibl, Helmut [Kanzlei Paluka Sobola Loibl und Partner, Regensburg (Germany). Abt. Erneuerbare Energien

    2014-04-15

    Since the landmark decision by the German Court of Justice concerning the term ''plant'' in the context of biogas plants it should be clear beyond doubt that satellite combined heat and power plants (CHPs) are legally autonomous plants pursuant to Para. 3 No. 1 of the Renewable Energy Law (EEG). What has yet to be finally resolved are the conditions under which satellite CHPs are to be regarded as autonomous. This will be a question of distance on the one hand and of operation autonomy on the other. In the individual case both these factors will have to be assessed from the perspective of an average objective, informed citizen. To the extent that its heat and electricity are being utilised in a meaningful manner, the plant's autonomy will be beyond doubt, at least in operational terms. Regarding the remuneration to be paid for satellite CHPs the only case requiring special consideration is when a CHP falls under the EEG of 2012. In this case Para. 1 Section 1 Sentence 2 EEG provides that the remuneration for the CHP in question is to be calculated as if there was a single overall plant. To the extent that none of the CHPs fall under the EEG of 2012, the ruling remains that there is a separate entitlement to remuneration for each satellite CHP. This also holds in cases where satellite CHPs that were commissioned after 1 January 2012 are relocated. When a satellite CHP is replaced by a new one, the rate and duration of remuneration remain unchanged. However, when a new satellite CHP is added to an existing satellite CHP via a gas collector line it is to be treated according to the decisions of the Federal Court of Justice concerning biogas plant extensions: It falls under the law that applies to the existing CHP and has an entitlement to a new minimum remuneration period, albeit subject to the degression rate provided by the EEG version in question.

  8. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    Directory of Open Access Journals (Sweden)

    Amirabedin Ehsan

    2014-12-01

    Full Text Available Trigeneration or Combined Cooling, Heat and Power (CCHP which is based upon combined heat and power (CHP systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  9. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    Science.gov (United States)

    Amirabedin, Ehsan; Pooyanfar, Mirparham; Rahim, Murad A.; Topal, Hüseyin

    2014-12-01

    Trigeneration or Combined Cooling, Heat and Power (CCHP) which is based upon combined heat and power (CHP) systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP) can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  10. Analysis of engineering cycles power, refrigerating and gas liquefaction plant

    CERN Document Server

    Haywood, R W

    1991-01-01

    Extensively revised, updated and expanded, the fourth edition of this popular text provides a rigorous analytical treatment of modern energy conversion plant. Notable for both its theoretical and practical treatment of conventional and nuclear power plant, and its studies of refrigerating and gas-liquefaction plant. This fourth edition now includes material on topics of increasing concern in the fields of energy 'saving' and reduction of environmental pollution. This increased coverage deals specifically with the following areas: CHP (cogeneration) plant, studies of both gas and coal burning p

  11. [Design and Preparation of Plant Bionic Materials Based on Optical and Infrared Features Simulation].

    Science.gov (United States)

    Jiang, Xiao-jun; Lu, Xu-liang; Pan, Jia-liang; Zhang, Shuan-qin

    2015-07-01

    Due to the life characteristics such as physiological structure and transpiration, plants have unique optical and infrared features. In the optical band, because of the common effects of chlorophyll and water, plant leafs show spectral reflectance characteristics change in 550, 680, 1400 and 1900 nm significantly. In the infrared wave band, driven by transpiration, plants could regulate temperature on their own initiative, which make the infrared characteristics of plants different from artificial materials. So palnt bionic materials were proposed to simulate optical and infrared characteristics of plants. By analyzing formation mechanism of optical and infrared features about green plants, the component design and heat-transfer process of plants bionic materials were studied, above these the heat-transfer control formulation was established. Based on water adsorption/release compound, optical pigments and other man-made materials, plant bionic materials preparation methods were designed which could simulate the optical and infrared features of green plants. By chemical casting methods plant bionic material films were prepared, which use polyvinyl alcohol as film forming and water adsorption/release compound, and use optical pigments like chrome green and macromolecule yellow as colouring materials. The research conclusions achieved by testings figured out: water adsorption/release testing showed that the plant bionic materials with a certain thickness could absorb 1.3 kg water per square meter, which could satisfy the water usage of transpiration simulation one day; the optical and infrared simulated effect tests indicated that the plant bionic materials could preferably simulate the spectral reflective performance of green plants in optical wave band (380-2500 nm, expecially in 1400 and 1900 nm which were water absorption wave band of plants), and also it had similar daily infrared radiation variations with green plants, daily average radiation temperature

  12. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Rudra, Souman; Toor, Saqib

    2013-01-01

    Initial process studies carried out in Aspen Plus on an integrated thermochemical conversion process are presented herein. In the simulations, a hydrothermal liquefaction (HTL) plant is combined with a biogas plant (BP), such that the digestate from the BP is converted to a biocrude in the HTL pr...... grid or for CHP. An estimated 62–84% of the biomass energy can be recovered in the biofuels.......Initial process studies carried out in Aspen Plus on an integrated thermochemical conversion process are presented herein. In the simulations, a hydrothermal liquefaction (HTL) plant is combined with a biogas plant (BP), such that the digestate from the BP is converted to a biocrude in the HTL...... process. This biorefinery concept offers a sophisticated and sustainable way of converting organic residuals into a range of high-value biofuel streams in addition to combined heat and power (CHP) production. The primary goal of this study is to provide an initial estimate of the feasibility...

  13. Design of novel DME/methanol synthesis plants based on gasification of biomass

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    is lost in the biomass torrefaction process, the total efficiencies based on untreated biomass to DME were 64% for the RC plant and 59% for the OT plant. CO2 emissions could be reduced to 3% (RC) or 10% (OT) of the input carbon in the torrefied biomass, by using CO2 capture and storage together...... with certain plant design changes. Accounting for the torrefaction process, which occurs outside the plant, the emissions became 22% (RC) and 28% (OT) of the carbon in the untreated biomass. The estimated costs of the produced DME were $11.9/GJLHV for the RC plant, and $12.9/GJLHV for the OT plant...... complete conversion of the carbon in the torrefied biomass, to carbon in the produced methanol, was achieved (97% conversion). The methanol yield per unit biomass input was therefore increased from 66% (the large-scale DME plant) to 128% (LHV). The total energy efficiency was however reduced from 71% (the...

  14. Laser-based analytical monitoring in nuclear-fuel processing plants

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, J.P.

    1978-09-01

    The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified.

  15. Venation Skeleton-Based Modeling Plant Leaf Wilting

    Directory of Open Access Journals (Sweden)

    Shenglian Lu

    2009-01-01

    Full Text Available A venation skeleton-driven method for modeling and animating plant leaf wilting is presented. The proposed method includes five principal processes. Firstly, a three-dimensional leaf skeleton is constructed from a leaf image, and the leaf skeleton is further used to generate a detailed mesh for the leaf surface. Then a venation skeleton is generated interactively from the leaf skeleton. Each vein in the venation skeleton consists of a segmented vertices string. Thirdly, each vertex in the leaf mesh is banded to the nearest vertex in the venation skeleton. We then deform the venation skeleton by controlling the movement of each vertex in the venation skeleton by rotating it around a fixed vector. Finally, the leaf mesh is mapped to the deformed venation skeleton, as such the deformation of the mesh follows the deformation of the venation skeleton. The proposed techniques have been applied to simulate plant leaf surface deformation resulted from biological responses of plant wilting.

  16. Synchrophasor Measurement-Based Wind Plant Inertia Estimation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Bank, J.; Wan, Y. H.; Muljadi, E.; Corbus, D.

    2013-05-01

    The total inertia stored in all rotating masses that are connected to power systems, such as synchronous generations and induction motors, is an essential force that keeps the system stable after disturbances. To ensure bulk power system stability, there is a need to estimate the equivalent inertia available from a renewable generation plant. An equivalent inertia constant analogous to that of conventional rotating machines can be used to provide a readily understandable metric. This paper explores a method that utilizes synchrophasor measurements to estimate the equivalent inertia that a wind plant provides to the system.

  17. Improvement of operational efficiency based on fast startup plant concepts

    Energy Technology Data Exchange (ETDEWEB)

    Grumann, Ulrich; Kurz, Harald; Meinecke, Gero; Pickard, Andreas

    2010-09-15

    The power generation sector is currently confronted with new challenges relating to the conservation of dwindling fuel reserves. At the same time we must reduce CO2 emissions in order to counteract global warming. This paper shows that power plant operation, which employs shutdowns during periods of low load demand coupled with the optimization of startup procedures are a key to reducing CO2 emissions and to conserving resources. The startup technology developed by Siemens also offers grid support in the event of naturally occurring failures of renewable energy sources. Additionally, plant profitability is improved due to the resulting savings in fuel.

  18. Verification of Geometric Model-Based Plant Phenotyping Methods for Studies of Xerophytic Plants

    Directory of Open Access Journals (Sweden)

    Paweł Drapikowski

    2016-06-01

    Full Text Available This paper presents the results of verification of certain non-contact measurement methods of plant scanning to estimate morphological parameters such as length, width, area, volume of leaves and/or stems on the basis of computer models. The best results in reproducing the shape of scanned objects up to 50 cm in height were obtained with the structured-light DAVID Laserscanner. The optimal triangle mesh resolution for scanned surfaces was determined with the measurement error taken into account. The research suggests that measuring morphological parameters from computer models can supplement or even replace phenotyping with classic methods. Calculating precise values of area and volume makes determination of the S/V (surface/volume ratio for cacti and other succulents possible, whereas for classic methods the result is an approximation only. In addition, the possibility of scanning and measuring plant species which differ in morphology was investigated.

  19. A concept of a component based system to determine pot-plant shelf-life

    DEFF Research Database (Denmark)

    Körner, Oliver; Skou, Anne-Marie Thonning; Aaslyng, Jesper Peter Mazanti;

    2006-01-01

    to calculate the expected keeping quality, or it will be able to apply the system as decision support during plant cultivation. In the latter case, the model-based system can be implemented in a greenhouse climate computer. The concept contains information on climate control strategies, controlled stress......, the keeping quality of a plant after removal from the greenhouse could be estimated. A concept of a system that describes a model based knowledge system aiming at determination of the last selling date for pot plants is presented. The core of the conceptual system is a tool that can either be used......Plant keeping quality during shelf life is next to genetic attributes also determined by plant treatment. This is attributed to inner plant quality parameters. We expect that a model including information gathered during crop cultivation could be used to predict the inner crop quality. From that...

  20. An integrated framework for gas turbine based power plant operational modeling and optimization

    Science.gov (United States)

    Zhao, Yongjun

    The deregulation of the electric power market introduced a strong element of competition. Power plant operators strive to develop advanced operational strategies to maximize the profitability in the dynamic electric power market. New methodologies for gas turbine power plant operational modeling and optimization are needed for power plant operation to enhance operational decision making, and therefore to maximize power plant profitability by reducing operations and maintenance cost and increasing revenue. In this study, a profit based, lifecycle oriented, and unit specific methodology for gas turbine based power plant operational modeling was developed, with the power plant performance, reliability, maintenance, and market dynamics considered simultaneously. The generic methodology is applicable for a variety of optimization problems, and several applications were implemented using this method. A multiple time-scale method was developed for gas turbine power plants long term generation scheduling. This multiple time-scale approach allows combining the detailed granularity of the day-to-day operations with global (seasonal) trends, while keeping the resulting optimization model relatively compact. Using the multiple time-scale optimization method, a profit based outage planning method was developed, and the key factors for this profit based approach include power plant aging, performance degradation, reliability degradation, and, importantly, the energy market dynamics. Also a novel approach for gas turbine based power plant sequential preventive maintenance scheduling was introduced, and a profit based sequential preventive maintenance scheduling was developed for more effective maintenance scheduling. Methods to evaluate the impact of upgrade packages on gas turbine power plant performance, reliability, and economics were developed, and TIES methodology was applied for effective evaluation and selection of gas turbine power plant upgrade packages.

  1. Adverse Effects of Plant Food Supplements and Plants Consumed as Food: Results from the Poisons Centres-Based PlantLIBRA Study.

    Science.gov (United States)

    Lüde, Saskia; Vecchio, Sarah; Sinno-Tellier, Sandra; Dopter, Aymeric; Mustonen, Harriet; Vucinic, Slavica; Jonsson, Birgitta; Müller, Dieter; Veras Gimenez Fruchtengarten, Ligia; Hruby, Karl; De Souza Nascimento, Elizabeth; Di Lorenzo, Chiara; Restani, Patrizia; Kupferschmidt, Hugo; Ceschi, Alessandro

    2016-06-01

    Plant food supplements (PFS) are products of increasing popularity and wide-spread distribution. Nevertheless, information about their risks is limited. To fill this gap, a poisons centres-based study was performed as part of the EU project PlantLIBRA. Multicentre retrospective review of data from selected European and Brazilian poisons centres, involving human cases of adverse effects due to plants consumed as food or as ingredients of food supplements recorded between 2006 and 2010. Ten poisons centres provided a total of 75 cases. In 57 cases (76%) a PFS was involved; in 18 (24%) a plant was ingested as food. The 10 most frequently reported plants were Valeriana officinalis, Camellia sinensis, Paullinia cupana, Melissa officinalis, Passiflora incarnata, Mentha piperita, Glycyrrhiza glabra, Ilex paraguariensis, Panax ginseng, and Citrus aurantium. The most frequently observed clinical effects were neurotoxicity and gastro-intestinal symptoms. Most cases showed a benign clinical course; however, five cases were severe. PFS-related adverse effects seem to be relatively infrequent issues for poisons centres. Most cases showed mild symptoms. Nevertheless, the occurrence of some severe adverse effects and the increasing popularity of PFS require continuous active surveillance, and further research is warranted. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Genomic analysis of plant chromosomes based on meiotic pairing

    Directory of Open Access Journals (Sweden)

    Lisete Chamma Davide

    2007-12-01

    Full Text Available This review presents the principles and applications of classical genomic analysis, with emphasis on plant breeding. The main mathematical models used to estimate the preferential chromosome pairing in diploid or polyploid, interspecific or intergenera hybrids are presented and discussed, with special reference to the applications and studies for the definition of genome relationships among species of the Poaceae family.

  3. Determining Reliability Parameters for a Closed-Cycle Small Combined Heat and Power Plant

    Directory of Open Access Journals (Sweden)

    Vysokomorny Vladimir S.

    2016-01-01

    Full Text Available The paper provides numerical values of the reliability parameters for independent power sources within the ambient temperature and output power range corresponding to the operation under the climatic conditions of Eastern Siberia and the Far East of the Russian Federation. We have determined the optimal values of the parameters necessary for the reliable operation of small CHP plants (combined heat and power plants providing electricity for isolated facilities.

  4. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    Science.gov (United States)

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings.

  5. Optimized solar heat production in a liberalised electricity market. Demonstration of full-scale plant in Braedstrup; Optimeret solvarmeproduktion i et liberaliseret elmarked. Demonstration af fuldskalaanlaeg i Braedstrup

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.A. (PlanEnergi, Skoerping (Denmark)); Kristensen, Per (Braedstrup Fjernvarme, Braedstrup (Denmark)); Furbo, S. (Danmarks Tekniske Univ. DTU BYG, Kgs. Lyngby (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Holm, L. (Marstal Fjernvarme, Marstal (Denmark)); Schmidt, T. (Steinbeis-Research Institute for Solar and Sustainable Thermal Systems, Stuttgart (Denmark))

    2009-03-15

    The project demonstrates for the first time a combination between CHP and solar power systems. 8,019 m2 solar collectors producing 8% of the annual consumption in Braedstrup, Denmark, and nearly the total consumption on a good summer day were combined with a natural gas-fired CHP plant. An optimised ARCON HT2006 collector was developed for this purpose, and the control system was designed to ensure that supply-pipe temperature from solar collectors is always as low as possible and that the temperature in the existing water storage tank does not drop below 90 deg. C. (ln)

  6. Reconsideration of Plant Morphological Traits: From a Structure-Based Perspective to a Function-Based Evolutionary Perspective.

    Science.gov (United States)

    Bai, Shu-Nong

    2017-01-01

    This opinion article proposes a novel alignment of traits in plant morphogenesis from a function-based evolutionary perspective. As a member species of the ecosystem on Earth, we human beings view our neighbor organisms from our own sensing system. We tend to distinguish forms and structures (i.e., "morphological traits") mainly through vision. Traditionally, a plant was considered to be consisted of three parts, i.e., the shoot, the leaves, and the root. Based on such a "structure-based perspective," evolutionary analyses or comparisons across species were made on particular parts or their derived structures. So far no conceptual framework has been established to incorporate the morphological traits of all three land plant phyta, i.e., bryophyta, pteridophyta and spermatophyta, for evolutionary developmental analysis. Using the tenets of the recently proposed concept of sexual reproduction cycle, the major morphological traits of land plants can be aligned into five categories from a function-based evolutionary perspective. From this perspective, and the resulting alignment, a new conceptual framework emerges, called "Plant Morphogenesis 123." This framework views a plant as a colony of integrated plant developmental units that are each produced via one life cycle. This view provided an alternative perspective for evolutionary developmental investigation in plants.

  7. Validation of Continuous CHP Operation of a Two-Stage Biomass Gasifier

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2006-01-01

    measurement campaign was performed. The campaign verified a stable operation of the plant, and the energy balance resulted in an overall fuel to gas efficiency of 93% and a wood to electricity efficiency of 25%. Very low tar content in the producer gas was observed: only 0.1 mg/Nm3 naphthalene could...

  8. IPE Data Base: Plant design, core damage frequency and containment performance information

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, J.; Lin, C.C.; Pratt, W.T. [Brookhaven National Lab., Upton, NY (United States); Su, T.; Danziger, L. [Nuclear Regulatory Commission, Rockville, MD (United States)

    1995-12-31

    This data base stores data obtained from the Individual Plant Examinations (IPEs) which licensees of nuclear power plants have conducted in response to NRC`s Generic Letter GL88-20. The IPE Data Base is a collection of linked files which store information about plant design, core damage frequency, and containment performance in a uniform, structured way. The information contined in the various files is based on data contained in the IPE submittals. The information extracted from the submittals and entered into the IPE Data Base can be maniulated so that queries regarding individual or groups of plants can be answered using the IPE Data Base. The IPE Data Base supports detailed inquiries into the characteristics of individual plants or classes of plants. Progress has been made on the IPE Data Base and it is largely complete. Recent focus has been the development of a user friendly version which is menu driven and allows the user to ask queries of varying complexity easily, without the need to become familiar with particular data base formats or conventions such as those of DBase IV or Microsoft Access. The user can obtain the information he desired by quickly moving through a series of on-screen menus and ``clicking`` on appropriate choices. In this way even a first time user can benefit from the large amount of information stored in the IPE Data Base without the need of a learning period.

  9. Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification.

    Science.gov (United States)

    Mezzasalma, Valerio; Ganopoulos, Ioannis; Galimberti, Andrea; Cornara, Laura; Ferri, Emanuele; Labra, Massimo

    2017-01-01

    Plant exposures are among the most frequently reported cases to poison control centres worldwide. This is a growing condition due to recent societal trends oriented towards the consumption of wild plants as food, cosmetics, or medicine. At least three general causes of plant poisoning can be identified: plant misidentification, introduction of new plant-based supplements and medicines with no controls about their safety, and the lack of regulation for the trading of herbal and phytochemical products. Moreover, an efficient screening for the occurrence of plants poisonous to humans is also desirable at the different stages of the food supply chain: from the raw material to the final transformed product. A rapid diagnosis of intoxication cases is necessary in order to provide the most reliable treatment. However, a precise taxonomic characterization of the ingested species is often challenging. In this review, we provide an overview of the emerging DNA-based tools and technologies to address the issue of poisonous plant identification. Specifically, classic DNA barcoding and its applications using High Resolution Melting (Bar-HRM) ensure high universality and rapid response respectively, whereas High Throughput Sequencing techniques (HTS) provide a complete characterization of plant residues in complex matrices. The pros and cons of each approach have been evaluated with the final aim of proposing a general user's guide to molecular identification directed to different stakeholder categories interested in the diagnostics of poisonous plants.

  10. MedLeaf: Mobile Application for Medicinal Plant Identification Based on Leaf Image

    Directory of Open Access Journals (Sweden)

    Desta Sandya Prasvita

    2013-01-01

    Full Text Available This research proposes MedLeaf as a new mobile application for medicinal plants identification based on leaf image. The application runs on the Android operating system. MedLeaf has two main functionalities, i.e. medicinal plants identification and document searching of medicinal plant. We used Local Binary Pattern to extract leaf texture and Probabilistic Neural Network to classify the image. In this research, we used30 species of Indonesian medicinal plants and each species consists of 48 digital leaf images. To evaluate user satisfaction of the application we used questionnaire based on heuristic evaluation. The evaluation result shows that MedLeaf is promising for medicinal plants identification. MedLeaf will help botanical garden or natural reserve park management to identify medicinal plant, discover new plant species, plant taxonomy and so on. Also, it will help individual, groups and communities to find unused and undeveloped their skill to optimize the potential of medicinal plants. As the results, MedLeaf will increase of their resources, capitals, and economic wealth.

  11. Development of Bio-Machine Based on the Plant Response to External Stimuli

    Directory of Open Access Journals (Sweden)

    K. Aditya

    2011-01-01

    Full Text Available In the area of biorobotics, intense research work is being done based on plant intelligence. Any living cell continuously receives information from the environment. In this paper, research is conducted on the plant named descoingsii x haworthioides (Pepe obtaining the action potential signals and its responses to stimulations of different light modes. The plant electrical signal is the reaction of plant’s stimulation owing to various environmental conditions. Action potentials are responsible for signaling between plant cells and communication from the plants can be achieved through modulation of various parameters of the electrical signal in the plant tissue. The modulated signals are used for providing information to the microcontroller’s algorithm for working of the bio-machine. The changes of frequency of action potentials in plant are studied. Electromyography (EMG electrodes and needle-type conductive electrodes along with electronic modules are used to collect and transform the information from the plant. Inverse fast Fourier transform (IFFT is used to convert signal in frequency domain into voltage signal for real-time analysis. The changes in frequency of the plant action potentials to different light modes are used for the control of the bio-machine. This work has paved the way for an extensive research towards plant intelligence.

  12. The IVF Harrmann AG's combined heat and power plant with district heating system using sewage gas from the Roeti wastewater treatment plant in Schaffhausen; Blockheizkraftwerk mit Waermeverbund der IVF Hartmann AG mit Klaergas aus der ARA Roeti/SH. Erfolgskontrolle

    Energy Technology Data Exchange (ETDEWEB)

    Roeck, P.; Boehner, A.

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents and discusses monitoring results from a project that provides biogas from the 'Roeti' wastewater treatment plant (WWTP) to a neighbouring industry for firing a steam boiler and a combined heat and power (CHP) unit. The largest part of the heat generated by the CHP unit is sold back to the WWTP. The report presents the results of measurements made in the system regarding biogas, electricity and heat production and concludes that the most important goals of the project were successfully reached - high degree of fuel usage, practically no burning off of excess biogas, reliable supply of heat to the WWTP, considerable reduction of bought-in electrical power, practically complete use of the heat produced by the CHP unit.

  13. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  14. The Increasing Impact of Activity-Based Protein Profiling in Plant Science.

    Science.gov (United States)

    Morimoto, Kyoko; van der Hoorn, Renier A L

    2016-03-01

    The active proteome dictates plant physiology. Yet, active proteins are difficult to predict based on transcript or protein levels, because protein activities are regulated post-translationally in their microenvironments. Over the past 10 years, activity-based protein profiling (ABPP) is increasingly used in plant science. ABPP monitors the activities of hundreds of plant proteins using tagged chemical probes that react with the active site of proteins in a mechanism-dependent manner. Since labeling is covalent and irreversible, labeled proteins can be detected and identified on protein gels and by mass spectrometry using tagged fluorophores and/or biotin. Here, we discuss general concepts, approaches and practical considerations of ABPP, before we summarize the discoveries made using 40 validated probes representing 14 chemotypes that can monitor the active state of >4,500 plant proteins. These discoveries and new opportunities indicate that this emerging functional proteomic technology is a powerful discovery tool that will have an increasing impact on plant science.

  15. Modelling the dynamics of the cogeneration power plant gas-air duct

    Directory of Open Access Journals (Sweden)

    Аnatoliy N. Bundyuk

    2014-12-01

    Full Text Available Introducing into wide practice the cogeneration power plants (or CHP is one of promising directions of the Ukrainian small-scale power engineering development. Thermal and electric energy generation using the same fuel kind can increase the overall plant efficiency. That makes it appropriate to use CHPs at compact residential areas, isolated industrial enterprises constituting one complex with staff housing area, at sports complexes, etc. The gas-air duct of the cogeneration power plant has been considered as an object of the diesel-generator shaft velocity control. The developed GAD mathematical model, served to analyze the CHP dynamic characteristics as acceleration curves obtained under different external disturbances in the MathWorks MATLAB environment. According to the electric power generation technology requirements a convenient transition process type has been selected, with subsequent identification of the diesel-generator shaft rotation speed control law.

  16. Relationship of Estuarine Plant Contaminants to Existing Data Bases

    Science.gov (United States)

    1988-02-01

    Experiments. Plant and Soil, ?8: 271-282. COMISSAO NACIONAL DO AMBIENTE (1980). Atlas do Ambiente de Portugal.CNA, Lisboa. CROWDER, A.A. & Macfie, S.M...Photo- synthetica, 18: 134-138. INSTITUTO AGRONONICO DE S. PAULO (1978). Andlise Quimica de Plantas.Cir cular N2 87, Sic Paulo. KIEKENS, L. Cottenie, A...Estudos de Am- biente, Lisboa. PENEDA, M.C. & Coelho, A.T. (1978). Valor e Potencialidade8 do Estudrio do Sado. ServiCo de Estudos de Ambiente , Lisboa

  17. Distribution System Optimization Planning Based on Plant Growth Simulation Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; CHENG Hao-zhong; HU Ze-chun; WANG Yi

    2008-01-01

    An approach for the integrated optimization of the construction/expansion capacity of high-voltage/medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant growth simulation algorithm (PGSA). In the optimization process, fixed costs correspondent to the investment in lines and substations and the variable costs associated to the operation of the system were considered under the constraints of branch capacity, substation capacity and bus voltage. The optimization variables considerably reduce the dimension of variables and speed up the process of optimizing. The effectiveness of the proposed approach was tested by a distribution system planning.

  18. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Monica Scognamiglio

    2015-01-01

    Full Text Available An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  19. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes.

  20. Approach to Modeling and Virtual-reality-based Simulation for Plant Canopy Lighting

    Institute of Scientific and Technical Information of China (English)

    ZHAO Kai; SONG Fengbin; WANG Haopeng

    2008-01-01

    Over the past 20 years, significant progress has been made in virtual plant modeling corresponding to the rapid advances in information technology. Virtual plant research has broad applications in agronomy, forestry, ecol-ogy and remote sensing. As many biological processes are driven by light, it is the key for virtual plant to estimate the light absorbed by each organ. This paper presents the radiance equation suitable for calculating sun and sky light in-tercepted by plant organs based on the principles of the interaction between light and plant canopy firstly; analyzes the process principles of plant canopy primary lighting based on ray casting and projection secondly; describes the multiple scattering of plant lighting based on Monte Carlo ray tracing method and on the radiosity method thirdly; and confirms the research with 3D visualization based on Virtual Reality Modeling Language (VRML) finally. The research is the primary work of digital agriculture, and important for monitoring and estimating corn growth in Northeast China.

  1. Modelling of a Solid Oxide Fuel Cell CHP System Coupled with a Hot Water Storage Tank for a Single Household

    Directory of Open Access Journals (Sweden)

    Vincenzo Liso

    2015-03-01

    Full Text Available In this paper a solid oxide fuel cell (SOFC system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. The use of a storage tank with thermal stratification allows one to increase the annual operating hours of CHP: heat can be produced when the request is low (for instance during the night, taking advantage of thermal stratification to increases the heat recovery performance. A model of the SOFC system is presented to estimate the energy required to meet the average electric energy demand of the residence. Two fuels are considered, namely syngas produced by gasification and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation are used to size the SOFC system and storage heat tank to provide energy for a small household using two different fuels. In particular it was shown that in the case of syngas, due to larger system heat output, a larger tank volume was required in order to accumulate unused heat over the night. The detailed description of the tank model will be useful to energy system modelers when sizing hot water tanks. Problem formulation is reported also using a Matlab script.

  2. 植物糖生物学与糖链植物疫苗%Plant glycobiology and carbohydrate-based plant disease vaccines

    Institute of Scientific and Technical Information of China (English)

    尹恒; 赵小明; 王文霞; 杜昱光

    2011-01-01

    Plant glycobiology is concentrated on the plant-carbohydrates interaction mechanism as well as the structure and biology function of carbohydrates (sugar chains or glycans) and glycoconjugates. It contains several research aspects like sugar signaling, plant glycoprotein and glycan, plant glycosyltransferases and plant lectins. Based on published papers and our previous results, the recent research advance of plant glycobiology was reviewed and focused on carbohydrate-based plant disease vaccines (CPDVs). The carbohydrates which have the ability to active plant immunity and defense were named carbohydrate-based plant disease vaccines and the application and mechanism of carbohydrate-based plant disease vaccines were introduced and discussed.%植物糖生物学是研究植物与糖类互作机制、植物体内糖链与糖缀合物结构及生物学功能的科学,具体涉及糖信号、糖蛋白及其糖链功能、糖基转移酶及植物凝集素等研究方向.依据相关文献及实际研究经验,简要综述植物糖生物学的最新研究进展,其中重点介绍糖链植物疫苗并阐述其应用情况及作用机制.

  3. Demonstration of Next-Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, John [Plug Power Inc., Latham, NY (United States); Fritz Intwala, Katrina [Plug Power Inc., Latham, NY (United States)

    2009-08-01

    Plug Power and BASF have conducted eight years of development work prior to this project, demonstrating the potential of PBI membranes to exceed many DOE technical targets. This project consisted of; 1.The development of a worldwide system architecture; 2.Stack and balance of plant module development; 3.Development of an improved, lower cost MEA electrode; 4.Receipt of an improved MEA from the EU consortium; 5.Integration of modules into a system; and 6.Delivery of system to EU consortium for additional integration of technologies and testing.

  4. Pilot test and optimization of plasma based DeNO{sub x}. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stamate, E.; Chen, W.; Michelsen, P.K. (Risoe DTU. PLF, Roskilde (Denmark)); Joergensen, L.; Jensen, T.K.; Kristensen, P.G.; Tobiasen, L.; Simonsen, P. (Dansk Gasteknisk Center, Hoersholm (Denmark))

    2010-12-15

    A technique for NO{sub x} reduction for combustion processes was examined. The technique is based on injecting ozone into the NO{sub x} containing flue gas where it will react with NO{sub x}, forming an anhydride of nitric acid, N{sub 2}O{sub 5}. N{sub 2}O{sub 5} is easily removed later using a water scrubber. The technique was tested on a gas engine based CHP unit and a CHP unit based on a straw-fired boiler and a steam turbine. It was found that: 1) NO{sub x} emissions can be reduced by more than 95 % by adding ozone to the flue gas; 2) The technique is applicable on flue gas from biomass combustion despite the presence of compounds such as SO{sub 2} and HCl; 3) Reduction of NO{sub x} emissions requires approximately half as much O{sub 3} when it is applied to the natural gas fired engine unit compared to the straw-fired boiler unit; 4) The higher O{sub 3} consumption on straw-fired units is due both to higher flue gas temperature and to larger NO{sub x} fluctuations in the flue gas compared to the gas engine unit; 5) For the gas engine unit the formaldehyde emission was reduced by 60%; 6) SO{sub 2} emissions are eliminated by the deNO{sub x} unit. It can be concluded that at present the plasma deNO{sub x} process suffers from too high capital and operating costs and too low plant operating time to be an attractive alternative for gas engine CHP plants. Furthermore, there is only a small gap of approx. 25 % between the specific ozone consumption obtained at the pilot test in Ringsted and the theoretically achievable value. This difference is too small to have a major impact on process economy in case of an optimized deNO{sub x} process. At straw fired plants the technology tends to be more promising for several reasons: 1) Significant potential for optimizing specific ozone consumption. 2) Larger NO{sub x} reduction due to the fact that higher concentration levels in the flue gas generate higher income from e.g. fertilizer sales. 3) Reduced or zero SO{sub 2

  5. A plant nutrition strategy for ex-situ conservation based on "Ecological Similarity"

    Institute of Scientific and Technical Information of China (English)

    WAN Kai-yuan; CHEN Fang; TAO Yong; CHEN Shu-sen; ZHANG Guo-shi

    2008-01-01

    This paper reviewed a large scale conservation work of rare and endangered plants currently conducted in main botanical gardens in China,and the existed,predictable and neglected problems on plant growth and reproduction in ex-situ conservation process.Considered the status quo in plant ex conservation,a nutritional strategy on the plant conservation was proposed based on 'Ecological Similarity'.Its main idea was that the ex-situ conservation plants coming from natural ecosystem were compulsively allocated in the agro-ecosystems and would return to natural ecosystem ultimately.Therefore,research on plant nutrition of the ex-situ conservation plants should neither just pursue yield and quality as that in agro-ecosystems nor merely stay on intrinsic natures without human intervening.We should give attentions to both of their attributes as in natural ecosystems and in agro-ecosystems,i.e.,taking full advantage of plant nutritional measures as in agro-ecosystems to solve actual survival problems of the ex-conservation plants,and ensuring the final goal of returning to nature and playing its ecological role.

  6. Auxiliary feedwater system risk-based inspection guide for the H. B. Robinson nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Moffitt, N.E.; Lloyd, R.C.; Gore, B.F.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States); Garner, L.W. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-08-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. H. B. Robinson was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the H. B. Robinson plant.

  7. Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant.

  8. Auxiliary feedwater system risk-based inspection guide for the Point Beach nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, R C; Moffitt, N E; Gore, B F; Vo, T V; Vehec, T A [Pacific Northwest Lab., Richland, WA (United States)

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Point Beach was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Point Beach plant.

  9. Auxiliary feedwater system risk-based inspection guide for the McGuire nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bumgardner, J.D.; Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. McGuire was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the McGuire plant.

  10. Auxiliary feedwater system risk-based inspection guide for the Fort Calhoun nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Moffitt, N.E.; Gore, B.F.; Vehec, T.A.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Fort Calhoun was selected as the sixth plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Fort Calhoun plant.

  11. Actin based processes that could determine the cytoplasmic architecture of plant cells.

    Science.gov (United States)

    van der Honing, Hannie S; Emons, Anne Mie C; Ketelaar, Tijs

    2007-05-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on actin-based force generation with the function of their homologues in plants. We predict the possible role of these proteins, and thus the role of actin-based force generation, in the production of cytoplasmic organisation in plant cells.

  12. Using Deep Learning for Image-Based Plant Disease Detection.

    Science.gov (United States)

    Mohanty, Sharada P; Hughes, David P; Salathé, Marcel

    2016-01-01

    Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis. Using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions, we train a deep convolutional neural network to identify 14 crop species and 26 diseases (or absence thereof). The trained model achieves an accuracy of 99.35% on a held-out test set, demonstrating the feasibility of this approach. Overall, the approach of training deep learning models on increasingly large and publicly available image datasets presents a clear path toward smartphone-assisted crop disease diagnosis on a massive global scale.

  13. Using Deep Learning for Image-Based Plant Disease Detection

    Science.gov (United States)

    Mohanty, Sharada P.; Hughes, David P.; Salathé, Marcel

    2016-01-01

    Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis. Using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions, we train a deep convolutional neural network to identify 14 crop species and 26 diseases (or absence thereof). The trained model achieves an accuracy of 99.35% on a held-out test set, demonstrating the feasibility of this approach. Overall, the approach of training deep learning models on increasingly large and publicly available image datasets presents a clear path toward smartphone-assisted crop disease diagnosis on a massive global scale. PMID:27713752

  14. Synthesis of Model Based Robust Stabilizing Reactor Power Controller for Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Arshad Habib Malik

    2011-04-01

    Full Text Available In this paper, a nominal SISO (Single Input Single Output model of PHWR (Pressurized Heavy Water Reactor type nuclear power plant is developed based on normal moderator pump-up rate capturing the moderator level dynamics using system identification technique. As the plant model is not exact, therefore additive and multiplicative uncertainty modeling is required. A robust perturbed plant model is derived based on worst case model capturing slowest moderator pump-up rate dynamics and moderator control valve opening delay. Both nominal and worst case models of PHWR-type nuclear power plant have ARX (An Autoregressive Exogenous structures and the parameters of both models are estimated using recursive LMS (Least Mean Square optimization algorithm. Nominal and worst case discrete plant models are transformed into frequency domain for robust controller design purpose. The closed loop system is configured into two port model form and H? robust controller is synthesized. The H?controller is designed based on singular value loop shaping and desired magnitude of control input. The selection of desired disturbance attenuation factor and size of the largest anticipated multiplicative plant perturbation for loop shaping of H? robust controller form a constrained multi-objective optimization problem. The performance and robustness of the proposed controller is tested under transient condition of a nuclear power plant in Pakistan and found satisfactory.

  15. SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting

    Science.gov (United States)

    Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.

    2014-12-01

    Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.

  16. Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Houbak, N.; Elmegaard, Brian

    2010-01-01

    Methanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO2...... with a different syngas production method, were compared. The plants achieve methanol exergy efficiencies of 59-72%, the best from a configuration incorporating autothermal reforming of biogas and electrolysis of water for syngas production. The different processes in the plants are highly heat integrated......, and the low-temperature waste heat is used for district heat production. This results in high total energy efficiencies (similar to 90%) for the plants. The specific methanol costs for the six plants are in the range 11.8-25.3 (sic)/GJ(exergy). The lowest cost is obtained by a plant using electrolysis...

  17. Cell-phone based assistance for waterworks/sewage plant maintenance.

    Science.gov (United States)

    Kawada, T; Nakamichi, K; Hisano, N; Kitamura, M; Miyahara, K

    2006-01-01

    Cell-phones are now incorporating the functions necessary for them to be used as mobile IT devices. In this paper, we present our results of the evaluation of cell-phones as the mobile IT device to assist workers in industrial plants. We use waterworks and sewage plants as examples. By employing techniques to squeeze the SCADA screen on CRT into a small cell-phone LCD, we have made it easier for a plant's field workers to access the information needed for effective maintenance, regardless of location. An idea to link SCADA information and the plant facility information on the cell-phone is also presented. Should an accident or emergency situation arise, these cell-phone-based IT systems can efficiently deliver the latest plant information, thus the worker out in the field can respond to and resolve the emergency.

  18. Towards automatic model based controller design for reconfigurable plants

    DEFF Research Database (Denmark)

    Michelsen, Axel Gottlieb; Stoustrup, Jakob; Izadi-Zamanabadi, Roozbeh

    2008-01-01

    This paper introduces model-based Plug and Play Process Control, a novel concept for process control, which allows a model-based control system to be reconfigured when a sensor or an actuator is plugged into a controlled process. The work reported in this paper focuses on composing a monolithic m...

  19. The second green revolution? Production of plant-based biodegradable plastics.

    Science.gov (United States)

    Mooney, Brian P

    2009-03-01

    Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.

  20. Energy concepts for self-supplying communities based on local and renewable energy sources

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2016-01-01

    that virtually allow a heating energy and electricity supply fully based on local, renewable energy resources. The most feasible and cost-efficient variant is the use of local food production waste in a CHP plant feeding a district heating grid. The overall aim is to show that a self-sufficient heat......The reduction of GHG emissions in buildings is a focus area of national energy policies, because buildings are responsible for a major share of energy consumption. Policies to increase the share of renewable energies and energy efficiency measures are implemented at local scale. Municipalities......, as responsible entities for physical planning, can hold a key role in transforming energy systems towards carbon-neutrality, based on renewable energies. The implementation should be approached at community scale, which has advantages compared to only focusing on buildings or cities. But community energy...

  1. Efficient Plant Supervision Strategy Using NN Based Techniques

    Science.gov (United States)

    Garcia, Ramon Ferreiro; Rolle, Jose Luis Calvo; Castelo, Francisco Javier Perez

    Most of non-linear type one and type two control systems suffers from lack of detectability when model based techniques are applied on FDI (fault detection and isolation) tasks. In general, all types of processes suffer from lack of detectability also due to the ambiguity to discriminate the process, sensors and actuators in order to isolate any given fault. This work deals with a strategy to detect and isolate faults which include massive neural networks based functional approximation procedures associated to recursive rule based techniques applied to a parity space approach.

  2. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.

    Science.gov (United States)

    Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla

    2016-09-01

    Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.

  3. Cysteine-based redox regulation and signalling in plants

    Directory of Open Access Journals (Sweden)

    Jérémy eCouturier

    2013-04-01

    Full Text Available Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen (ROS, nitrogen (RNS and sulfur (RSS species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signalling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs are disulfide bonds, sulfenic acids, S-glutathionylated adducts, S-nitrosothiols and to a lesser extent S-sulfenylamides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.

  4. Cysteine-based redox regulation and signaling in plants.

    Science.gov (United States)

    Couturier, Jérémy; Chibani, Kamel; Jacquot, Jean-Pierre; Rouhier, Nicolas

    2013-01-01

    Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen, nitrogen, and sulfur species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signaling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs) are disulfide bonds, sulfenic acids, S-glutathione adducts, S-nitrosothiols and to a lesser extent S-sulfenyl-amides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.

  5. Optimization of energy plants including water/lithium bromide absorption chillers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.C.; Castells, F. [Universitat Rovira i Virgili, Dept. d' Enginyeria Quimica, Tarragona (Spain); Miquel, J. [Universitat Politecnica de Catalunya, Dept. de Mecanica de Fluids, Barcelona (Spain)

    2000-07-01

    In this paper a methodology for the optimal integration of water/lithium bromide absorption chillers in combined heat and power plants is proposed. This method is based on the economic optimisation of an energy plant that interacts with a refrigeration cycle, by using a successive linear programming technique (SLP). The aim of this paper is to study the viability of the integration of already technologically available absorption chillers in CHP plants. The results of this alternative are compared with the results obtained using the conventional way of producing chilled water, that is, using mechanical vapour compression chillers in order to select the best refrigeration cycle alternative for a given refrigeration demand. This approach is implemented in the computer program XV, and tested using the data obtained in the water/LiBr absorption chiller of Bayer in Tarragona (Catalonia, Spain). The results clearly show that absorption chillers are not only a good option when low-cost process heat is available, but also when a cogeneration system is presented. In this latter case, the absorption chiller acts as a bottoming cycle by using steam generated in the heat recovery boiler. In this way, the cogeneration size can be increased producing higher benefits than those obtained with the use of compression chillers. (Author)

  6. Extraction and purification methods in downstream processing of plant-based recombinant proteins.

    Science.gov (United States)

    Łojewska, Ewelina; Kowalczyk, Tomasz; Olejniczak, Szymon; Sakowicz, Tomasz

    2016-04-01

    During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described.

  7. DESIGN AND DEVELOPMENT OF AN IMAGE BASED PLANT IDENTIFICATION SYSTEM USING LEAF

    Directory of Open Access Journals (Sweden)

    KomalAsrani

    2015-12-01

    Full Text Available Because of huge diversity of plants existing on earth and large inter-species similarity, the manual process of identification of plants is difficult and at times, the results generated may be confusing. So, it is necessary to automate the process of identification of plants to generate faster and accurate results. Among various parts of plant, leaf is easily available in all seasons and can be easily scanned for understanding the shape details. So, in this paper, we have worked on plant identification using leaf image. In the process of identification of plants, the key challenge identified is to keep the size of feature vector reasonable and still achieve accurate and effective results. As the results are to be interpreted by the user, it was necessary to understand the theories behind human perception to reduce the semantic gap. We have designed and developed a tool ‘SbLRS: Shape based Leaf Recognition System’ which is a three-staged system that performs identification of plant using leaf shape. Our system can be helpful for following users- common layman person, as replacement for biologists in remote locations, as teaching aid for teachers and students, for a farmer to identify the plant species and to assist biologists in identification process. The parameters important for identifying leaf image according to human perception are identified and defined at three different levels. On the basis of results generated, the effectiveness of SbLRS is compared with existing contour based methods in terms of recall, precision. It was observed that our tool SbLRS showed satisfactory results for identification of plant using leaf at small feature vector size and simpler computations.

  8. MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism.

    Science.gov (United States)

    Deborde, Catherine; Jacob, Daniel

    2014-01-01

    Plant primary metabolites are organic compounds that are common to all or most plant species and are essential for plant growth, development, and reproduction. They are intermediates and products of metabolism involved in photosynthesis and other biosynthetic processes. Primary metabolites belong to different compound families, mainly carbohydrates, organic acids, amino acids, nucleotides, fatty acids, steroids, or lipids. Until recently, unlike the Human Metabolome Database ( http://www.hmdb.ca ) dedicated to human metabolism, there was no centralized database or repository dedicated exclusively to the plant kingdom that contained information on metabolites and their concentrations in a detailed experimental context. MeRy-B is the first platform for plant (1)H-NMR metabolomic profiles (MeRy-B, http://bit.ly/meryb ), designed to provide a knowledge base of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata. MeRy-B contains lists of plant metabolites, mostly primary metabolites and unknown compounds, with information about experimental conditions, the factors studied, and metabolite concentrations for 19 different plant species (Arabidopsis, broccoli, daphne, grape, maize, barrel clover, melon, Ostreococcus tauri, palm date, palm tree, peach, pine tree, eucalyptus, plantain rice, strawberry, sugar beet, tomato, vanilla), compiled from more than 2,300 annotated NMR profiles for various organs or tissues deposited by 30 different private or public contributors in September 2013. Currently, about half of the data deposited in MeRy-B is publicly available. In this chapter, readers will be shown how to (1) navigate through and retrieve data of publicly available projects on MeRy-B website; (2) visualize lists of experimentally identified metabolites and their concentrations in all plant species present in MeRy-B; (3) get primary metabolite list for a particular plant species in MeRy-B; and for a

  9. Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    . It consists of a fuel cell stack, a fuel processing subsystem, heat exchangers, and balance-of-plant components. The optimization methodology involves system optimization attempting to maximize the net electrical efficiency, and then by use of a mixed integer nonlinear programming (MINLP) problem formulation......, the heat exchange network (HEN) annual cost is minimized. The results show the high potential of the proposed model since high efficiencies are accomplished. The net electrical efficiency and total system efficiency, based on lower heating value (LHV), are 35.2% and 91.1%, respectively. The minimized total...

  10. Novel Approach to Classify Plants Based on Metabolite-Content Similarity

    Directory of Open Access Journals (Sweden)

    Kang Liu

    2017-01-01

    Full Text Available Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes. This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward’s method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations.

  11. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    Science.gov (United States)

    Martínez-Rodríguez, Julia del C.; la Mora-Amutio, Marcela De; Plascencia-Correa, Luis A.; Audelo-Regalado, Esmeralda; Guardado, Francisco R.; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J.; Escalante, Adelfo; Beltrán-García, Miguel J.; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. ‘Azul’ is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  12. 3D Maize Plant Reconstruction Based on Georeferenced Overlapping LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Miguel Garrido

    2015-12-01

    Full Text Available 3D crop reconstruction with a high temporal resolution and by the use of non-destructive measuring technologies can support the automation of plant phenotyping processes. Thereby, the availability of such 3D data can give valuable information about the plant development and the interaction of the plant genotype with the environment. This article presents a new methodology for georeferenced 3D reconstruction of maize plant structure. For this purpose a total station, an IMU, and several 2D LiDARs with different orientations were mounted on an autonomous vehicle. By the multistep methodology presented, based on the application of the ICP algorithm for point cloud fusion, it was possible to perform the georeferenced point clouds overlapping. The overlapping point cloud algorithm showed that the aerial points (corresponding mainly to plant parts were reduced to 1.5%–9% of the total registered data. The remaining were redundant or ground points. Through the inclusion of different LiDAR point of views of the scene, a more realistic representation of the surrounding is obtained by the incorporation of new useful information but also of noise. The use of georeferenced 3D maize plant reconstruction at different growth stages, combined with the total station accuracy could be highly useful when performing precision agriculture at the crop plant level.

  13. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    Science.gov (United States)

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  14. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    Directory of Open Access Journals (Sweden)

    Julia del C. Martínez-Rodríguez

    2014-12-01

    Full Text Available Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI. Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  15. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  16. Plant Growth Promoting Bacteria from Cow Dung Based Biodynamic Preparations

    OpenAIRE

    Radha, T. K.; RAO, D. L. N.

    2014-01-01

    Indigenous formulations based on cow dung fermentation are commonly used in organic farming. Three biodynamic preparations viz., Panchagavya (PG), BD500 and ‘Cow pat pit’ (CPP) showed high counts of lactobacilli (109 ml−1) and yeasts (104 ml−1). Actinomycetes were present only in CPP (104 ml−1) and absent in the other two. Seven bacterial isolates from these ferments were identified by a polyphasic approach: Bacillus safensis (PG1), Bacillus cereus (PG2, PG4 PG5), Bacillus subtilis (BD2) Lysi...

  17. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  18. Cogeneration power plant concepts using advanced gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Huettenhofer, K.; Lezuo, A. [Siemens Power Generation, Erlangen (Germany)

    2001-07-01

    Cogeneration of heat and power (CHP) is undeniably the environmentally most favourable way of making efficient use of energy in the power generation industry. Cogeneration is also particularly appreciated by political decision makers because of its high yield from primary energy sources, and thus its contribution to the protection of the environment and the conservation of resources. Advanced gas turbines, along with an intelligent power plant design consisting of pre-engineered, modular power plant items, will help cogeneration to play an important role in future energy markets also from an economic point of view. (orig.)

  19. A Seed-Based Plant Propagation Algorithm: The Feeding Station Model

    Directory of Open Access Journals (Sweden)

    Muhammad Sulaiman

    2015-01-01

    Full Text Available The seasonal production of fruit and seeds is akin to opening a feeding station, such as a restaurant. Agents coming to feed on the fruit are like customers attending the restaurant; they arrive at a certain rate and get served at a certain rate following some appropriate processes. The same applies to birds and animals visiting and feeding on ripe fruit produced by plants such as the strawberry plant. This phenomenon underpins the seed dispersion of the plants. Modelling it as a queuing process results in a seed-based search/optimisation algorithm. This variant of the Plant Propagation Algorithm is described, analysed, tested on nontrivial problems, and compared with well established algorithms. The results are included.

  20. IEC 61850/61400-25-4 gateways based on the control technology on-going integration of distributed generation facilities; Gateways auf Basis IEC 61850/61400-25-4 fuer die leittechnische Einbindung von dezentralen Erzeugungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Michael; Thomas, Ralf [IDS GmbH, Ettlingen (Germany)

    2011-07-01

    With the mass use of micro-CHP and other small generating plants new solutions are necessary to make these systems for network operations can be monitored and controlled, since overvoltages on the low voltage level or being fed back from the low voltage level in the medium voltage level, caused by uncontrolled generation plants that threaten the quality of care the network stability. Low cost and low maintenance gateways are required to be able to integrate these systems into the control of network operators. Specific requirements are unusual interfaces, the application in private households and a simple start-up. It proposes a long-distance data transmission over DSL, GPRS, or power-line based on the IEC 61850 developed for Web services and the generic data model of IEC 61400-25-4. The article presents the first practical experiences and an outlook on planned developments. (orig.)

  1. Possibilities of Utilization the Risk – Based Techniques in the Field of Offshore Wind Power Plants

    Directory of Open Access Journals (Sweden)

    Przemysław Kacprzak

    2014-09-01

    Full Text Available In the article the risk-based concept that may be applicable to offshore wind power plants has been presented. The aim of the concept is to aid designers in the early design and retrofit phases of the project in case of lack or insufficient information in relevant international standards. Moreover the initial classification of components within main system parts of offshore wind power plant has been performed. Such classification is essential in order to apply risk-based concept. However further scientific researches need to be performed in that field to develop detailed concept useful for future practical applications.

  2. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2014-11-01

    Full Text Available The goal of this research is to study a cogeneration plant for combined heat & power (CHP production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC is selected. All the ship heat requirements can be covered by energy of organic fluid after expansion in the turbine, except feeder-booster heating. Hence, an additional quantity of working fluid may be heated using an after Heat Recovery Steam Generator (HRSG directed to the feeder-booster module. An analysis of the obtained results shows that the steam turbine plant does not yield significant fuel savings. However, a CHP plant with R245fa fluid using supercritical ORC meets all of the demands for electrical energy and heat while burning only a small amount of additional fuel in HRSG at the main engine off-design operation.

  3. Power and heat from CHP fuel cell systems in the basement. Testing of fuel cell-driven heating systems; Kleinkraftwerke im Keller sorgen fuer Strom und Waerme. Brennstoffzellen-Heizgeraete in der Erprobung

    Energy Technology Data Exchange (ETDEWEB)

    Tschaetsch, H.U.

    2002-03-25

    The article discusses important aspects of a joint project funded by industry, utilities and the State Government of North Rhine-Westphalia. The field test results, the performance and engineering data of the innovative energy conversion and storage system based on the fuel cell-driven CHP technology for on-site power and heat production for a multi-family house are described in detail. (orig./CB) [German] Die Entwicklung der Brennstoffzellen-Technologie fuer die dezentrale Strom- und Waermeversorgung ist in einer entscheidenden Phase. In einem Mehrfamilienhaus in Gelsenkirchen begann im Januar 2002 der erste Praxistest eines Vaillant Brennstoffzellen-Heizgeraetes (BZH), das mit einem Kostenaufwand von rd. 2,2 Mio. Euro entwickelt wurde. Die Projektpartner Vaillant GmbH, Remscheidt, Ruhrgas AG, Essen, Eon Engineering GmbH, Gelsenkirchen, ELE Emscher Lippe Energie GmbH, Gelsenkirchen, und EUS - Gesellschaft fuer innovative Energieumwandlung und -speicherung mbH., Gelsenkirchen, wollen mit dem vom Land Nordrhein-Westfalen (NRW) mit insgesamt 800 000 Euro unterstuetzten Feldtest zeigen, dass die einzelnen Komponenten Brennstoffzelle, Warmwasserspeicher und Zusatzheizgeraet ueber einen Energiemanager (Prozesssteuerung) kostenoptimal zusammenarbeiten koennen. (orig.)

  4. Performance comparison between partial oxidation and methane steam for SOFC micro-CHP systems

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Olesen, Anders Christian; Nielsen, Mads Pagh;

    2011-01-01

    The aim of this research work is to describe in qualitative and quantitative form the performance of a micro Combined Heat and Power system for residential application based on Solid Oxide Fuel Cell fueled by natural gas with two different types of pre-reforming systems, namely Steam Reforming...... and Partial Oxidation and recirculation of anode and cathode gas. The comparative analysis among the different configurations will lead us to conclude that maximum efficiency is achieved when cathode and anode gas recirculation are used along with steam methane reforming. Further Steam Methane Reforming...... process produces a higher electrical system efficiency compared to Partial oxidation reforming process. Efficiency is affected when running the system in part load mode mainly due to heat loss, additional natural gas supplied to the burner to satisfy the required heat demand inside the system, and ejector...

  5. Preparation and testing of plant seed meal-based wood adhesives.

    Science.gov (United States)

    He, Zhongqi; Chapital, Dorselyn C

    2015-01-01

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications.

  6. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  7. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants.

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-09-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops.

  8. SVM and ANN Based Classification of Plant Diseases Using Feature Reduction Technique

    Directory of Open Access Journals (Sweden)

    Jagadeesh D.Pujari

    2016-06-01

    Full Text Available Computers have been used for mechanization and automation in different applications of agriculture/horticulture. The critical decision on the agricultural yield and plant protection is done with the development of expert system (decision support system using computer vision techniques. One of the areas considered in the present work is the processing of images of plant diseases affecting agriculture/horticulture crops. The first symptoms of plant disease have to be correctly detected, identified, and quantified in the initial stages. The color and texture features have been used in order to work with the sample images of plant diseases. Algorithms for extraction of color and texture features have been developed, which are in turn used to train support vector machine (SVM and artificial neural network (ANN classifiers. The study has presented a reduced feature set based approach for recognition and classification of images of plant diseases. The results reveal that SVM classifier is more suitable for identification and classification of plant diseases affecting agriculture/horticulture crops.

  9. Optimal multi-floor plant layout based on the mathematical programming and particle swarm optimization.

    Science.gov (United States)

    Lee, Chang Jun

    2015-01-01

    In the fields of researches associated with plant layout optimization, the main goal is to minimize the costs of pipelines and pumping between connecting equipment under various constraints. However, what is the lacking of considerations in previous researches is to transform various heuristics or safety regulations into mathematical equations. For example, proper safety distances between equipments have to be complied for preventing dangerous accidents on a complex plant. Moreover, most researches have handled single-floor plant. However, many multi-floor plants have been constructed for the last decade. Therefore, the proper algorithm handling various regulations and multi-floor plant should be developed. In this study, the Mixed Integer Non-Linear Programming (MINLP) problem including safety distances, maintenance spaces, etc. is suggested based on mathematical equations. The objective function is a summation of pipeline and pumping costs. Also, various safety and maintenance issues are transformed into inequality or equality constraints. However, it is really hard to solve this problem due to complex nonlinear constraints. Thus, it is impossible to use conventional MINLP solvers using derivatives of equations. In this study, the Particle Swarm Optimization (PSO) technique is employed. The ethylene oxide plant is illustrated to verify the efficacy of this study.

  10. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  11. A predictive controller based on transient simulations for controlling a power plant

    Science.gov (United States)

    Svingen, B.

    2016-11-01

    A predictive governor based on an embedded, online transient simulation was commissioned at Tonstad power plant in Norway in December 2014. This governor controls each individual turbine governor by feeding them modified setpoints. Tonstad power plant consists of 4 × 160 MW + 1 × 320 MW high head Francis turbines. With a yearly production of 3888 GWh, it is the largest in Norway. The plant is a typical high head Norwegian plant with very long tunnels and correspondingly active dynamic behaviour. This new governor system continuously simulates the entire plant, and appropriate actions are taken automatically by special algorithms. The simulations are based on the method of characteristics (MOC). The governing system has been in full operational mode since December 19 2014. The testing period also included special acceptance tests to be able to deliver FRR, both on the Nordic grid and on DC cable to Denmark. Although in full operational mode, this system is still a prototype under constant development. It shows a new way of using transient analysis that may become increasingly important in the future with added power from un-regulated sources such as wind, solar and bio.

  12. Taurine supplemented plant protein based diets with alternative lipid sources for juvenile sea bream, sparus aurata

    Science.gov (United States)

    Two lipid sources were evaluated as fish oil replacements in fishmeal free, plant protein based diets for juvenile gilthead sea bream, Sparus aurata. A twelve week feeding study was undertaken to examine the performance of fish fed the diets with different sources of essential fatty acids (canola o...

  13. Study of operation optimization based on data mining technique in power plants

    Institute of Scientific and Technical Information of China (English)

    LI Jianqiang; LIU Jizhen; GU Junjie; NIU Chenglin

    2007-01-01

    The determination of operation optimization value is very important for economic analysis and operation optimization in power plants.The operation optimization value determined by traditional methods usually cannot reflect the actual running states correctly in power plants with the increase in running time.Based on a large amount of history data stored in power plants,a way of operation optimization by applying data mining technique is proposed.The structure of operation optimi-zation based on data mining is established and the fuzzy association rule mining algorithm is introduced to find the operation optimization target value to guide the operation in power plants.Based on the actual local data in a 300 MW unit,the operation optimization value in typical load ranges is found out by data mining to provide better adjustment guidance in industry process.Experimental results show that the determination of operation optimization value based on data mining can improve the efficiency and decrease the emission of pollutants.

  14. An assay for secologanin in plant tissues based on enzymatic conversion into strictosidine

    DEFF Research Database (Denmark)

    Hallard, Didier; van der Heijden, Robert; Contin, Adriana;

    1998-01-01

    The secoiridoid glucoside secologanin is the terpenoid building block in the biosynthesis of terpenoid indole alkaloids. A method for its determination in plant tissues and cell suspension cultures has been developed. This assay is based on the condensation of secologanin with tryptamine, yielding...

  15. Suppression of plant resistance gene-based immunity by a fungal effector

    NARCIS (Netherlands)

    Houterman, P.M.; Cornelissen, B.J.C.; Rep, M.

    2008-01-01

    The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R) genes that mediate recognition of effectors, proteins secreted

  16. Proportional derivative based stabilizing control of paralleled grid converters with cables in renewable power plants

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    Resonant interactions of grid-connected converters with each other and with cable capacitance are challenging the stability and power quality of renewable energy sources based power plants. This paper addresses the instability of current control of converters with the multiple resonance frequenci...

  17. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun;

    2013-01-01

    This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia ...

  18. Development of Web-Based Common Cause Failure (CCF) Database Module for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Gyo; Hwang, Seok-Won; Shin, Tae-young [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Probabilistic safety assessment (PSA) has been used to identify risk vulnerabilities and derive the safety improvement measures from construction to operation stages of nuclear power plants. In addition, risk insights from PSA can be applied to improve the designs and operation requirements of plants. However, reliability analysis methods for quantitative PSA evaluation have essentially inherent uncertainties, and it may create a distorted risk profiles because of the differences among the PSA models, plant designs, and operation status. Therefore, it is important to ensure the quality of the PSA model so that analysts identify design vulnerabilities and utilize risk information. Especially, the common cause failure (CCF) has been pointed out as one of major issues to be able to cause the uncertainty related to the PSA analysis methods and data because CCF has a large influence on the PSA results. Organization for economic cooperation and development /nuclear energy agent (OECD/NEA) has implemented an international common cause failure data exchange (ICDE) project for the CCF quality assurance through the development of the detailed analysis methodologies and data sharing. However, Korea Hydro and Nuclear Power company (KHNP) does not have the basis for the data gathering and analysis for CCF analyses. In case of methodology, the Alpha Factor parameter estimation, which can analyze uncertainties and estimate an interface factor (Impact Vector) with an ease, is ready to be applied rather than the Multi Greek Letter (MGL) method. This article summarizes the development of the plant-specific CCF database (DB) module considering the raw data collection and the analysis procedure based on the CCF parameter calculation method of ICDE. Although the portion affected by CCF in the PSA model is quite a large, the development efforts of the tools to collect and analyze data were insufficient. Currently, KHNP intends to improve PSA quality and ensure CCF data reliability by

  19. Wind-hydrogen-biomass. The hybrid power plant of ENERTRAG AG

    Energy Technology Data Exchange (ETDEWEB)

    Miege, Andreas; Luschtinetz, T. [Fachhochschule Stralsund (Germany); Wenske, M.; Gamallo, F. [ENERTRAG AG (Germany)

    2010-07-01

    The ENERTRAG Hybrid Power Plant is designed around the following components: three wind turbines of 2 MW each, an electrolyser of 500 kW, a hydrogen storage system, and two CHP units of 350 kW each, able to run with variable mixtures of biogas and hydrogen. The use of the electrolyser - acting as a deferrable load, and running under variable power - and the possibility of reconverting the hydrogen again into electricity will allow a feeding-in of the produced electricity to the grid, free of any of the changing characteristics of the wind power. Besides of that renewable electricity, the Hybrid Power Plant will also be able of delivering hydrogen as a clean fuel for the transport sector, as well as oxygen and heat. The project will show that renewable energy sources, like wind and solar, will be able, in the future, of producing back-up power without any support of fossile sources; and also of feeding electricity to the grid as a part of the base-load demand. As a first step towards this direction, the project has the goal of assuring that the energy production of the three wind turbines will be in accordance to the 24-h-forecasted wind power values. (orig.)

  20. Security Design of Remote Maintenance Systems for Nuclear Power Plants Based on ISO/IEC 15408

    Science.gov (United States)

    Watabe, Ryosuke; Oi, Tadashi; Endo, Yoshio

    This paper presents a security design of remote maintenance systems for nuclear power plants. Based on ISO/IEC 15408, we list assets to be protected, threats to the assets, security objectives against the threats, and security functional requirements that achieve the security objectives. Also, we show relations between the threats and the security objectives, and relations between the security objectives and the security functional requirements. As a result, we concretize a necessary and sufficient security design of remote maintenance systems for nuclear power plants that can protect the instrumentation and control system against intrusion, impersonation, tapping, obstruction and destruction.

  1. Fuzzy-logic-based safety verification framework for nuclear power plants.

    Science.gov (United States)

    Rastogi, Achint; Gabbar, Hossam A

    2013-06-01

    This article presents a practical implementation of a safety verification framework for nuclear power plants (NPPs) based on fuzzy logic where hazard scenarios are identified in view of safety and control limits in different plant process values. Risk is estimated quantitatively and compared with safety limits in real time so that safety verification can be achieved. Fuzzy logic is used to define safety rules that map hazard condition with required safety protection in view of risk estimate. Case studies are analyzed from NPP to realize the proposed real-time safety verification framework. An automated system is developed to demonstrate the safety limit for different hazard scenarios.

  2. Integration of chemical product development, process design and operation based on a kilo-plant

    Institute of Scientific and Technical Information of China (English)

    QIAN Yu; WU Zhihui; JIANG Yanbin

    2006-01-01

    Presented in this paper is an integrated approach of computer-aided product development, process design and operation analysis based on a kilo-plant. The implemented kilo-plant, as a research platform to manufacture product in kilogram-scale, was designed especially for fine and specialty chemicals. The characteristics of product synthesis, process operation and product quality control are investigated coupled with computer-aided monitoring, online modeling, simulation and operation process optimization. In this way, chemical product discovery, process design and operation are integrated in a systematic approach, in the aim to respond to rapid changing marketplace demands to new products.

  3. Simulation-based valuation of project finance investments. Crucial aspects of power plant projects

    Energy Technology Data Exchange (ETDEWEB)

    Pietz, Matthaeus

    2010-12-15

    The liberalization of electricity markets transformed a regulated and stable market to a market with former unknown price volatility. This results in a high uncertainty which is mainly due to the, from an economic point of view, lack of storability of the commodity electricity. Thus investments in power plants are highly risky. This dissertation analyzes crucial aspects within the valuation of a power plant financed via project finance, a popular financing method for projects with high capital requirements. Starting with the development of a valuation model based on stochastic modelling of the future cash flows the focus of the analysis is on the impact of model complexity and electricity prices. (orig.)

  4. Aequorin-based measurements of intracellular Ca2+-signatures in plant cells

    Directory of Open Access Journals (Sweden)

    Mithöfer Axel

    2002-01-01

    Full Text Available Due to the involvement of calcium as a main second messenger in the plant signaling pathway, increasing interest has been focused on the calcium signatures supposed to be involved in the patterning of the specific response associated to a given stimulus. In order to follow these signatures we described here the practical approach to use the non-invasive method based on the aequorin technology. Besides reviewing the advantages and disadvantages of this method we report on results showing the usefulness of aequorin to study the calcium response to biotic (elicitors and abiotic stimuli (osmotic shocks in various compartments of plant cells such as cytosol and nucleus.

  5. Foxtail Millet Planting Willingness of Farmers in North China Based on Analysis of SPSS Statistical Data

    Institute of Scientific and Technical Information of China (English)

    Jinjun; MA; Huijun; WANG

    2014-01-01

    Based on the field survey of the foxtail millet planting,processing and sales in foxtail millet production areas,it found out basic demands of foxtail millet farmers and processing enterprises for policies. It made statistical analysis with the aid of SPSS statistical software. It found that current situation of China’s foxtail millet industry is not optimistic. Finally,it came up with policy recommendations including enhancing actual effect of policy,establishing special fund,increasing scientific and technological support,and encouraging mechanized planting.

  6. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  7. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fontana, M.H. [Oak Ridge National Lab., TN (United States); Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A. [Los Alamos National Lab., NM (United States)

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  8. vProtein: identifying optimal amino acid complements from plant-based foods.

    Directory of Open Access Journals (Sweden)

    Peter J Woolf

    Full Text Available BACKGROUND: Indispensible amino acids (IAAs are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs. METHODS: vProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination. RESULTS: For single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes. Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online

  9. Field Demonstration, Optimization, and Rigorous Validation of Peroxygen-Based ISCO for the Remediation of Contaminated Groundwater - CHP Stabilization Protocol

    Science.gov (United States)

    2014-05-01

    sorbed material and to disrupt and destroy the NAPL globules and ganglia. Superoxide is generated through heterogeneous catalysis of hydrogen peroxide...loggings are assumed to be available. One core of subsurface solids should be collected from each region of areal heterogeneity to evaluate the effects of...degree of heterogeneity , individual lithologies will require separate treatability studies. Subsurface cores should be inspected visually for gross

  10. Anion channels/transporters in plants: from molecular bases to regulatory networks.

    Science.gov (United States)

    Barbier-Brygoo, Hélène; De Angeli, Alexis; Filleur, Sophie; Frachisse, Jean-Marie; Gambale, Franco; Thomine, Sébastien; Wege, Stefanie

    2011-01-01

    Anion channels/transporters are key to a wide spectrum of physiological functions in plants, such as osmoregulation, cell signaling, plant nutrition and compartmentalization of metabolites, and metal tolerance. The recent identification of gene families encoding some of these transport systems opened the way for gene expression studies, structure-function analyses of the corresponding proteins, and functional genomics approaches toward further understanding of their integrated roles in planta. This review, based on a few selected examples, illustrates that the members of a given gene family exhibit a diversity of substrate specificity, regulation, and intracellular localization, and are involved in a wide range of physiological functions. It also shows that post-translational modifications of transport proteins play a key role in the regulation of anion transport activity. Key questions arising from the increasing complexity of networks controlling anion transport in plant cells (the existence of redundancy, cross talk, and coordination between various pathways and compartments) are also addressed.

  11. Diffusivity-Based Characterization of Plant Growth Media for Earth and Space

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Jones, Scot B.

    Most of the plant requirements for optimal growth (air, water, and nutrient supply, and mechanical support) are closely linked with the basic physical properties of the growth media. Oxygen and nutrients supply to plant roots occur predominantly by diffusion, and gas and solute diffusivity...... diffusivity and mean particle (aggregate) diameter was identified and suggested to be used in future design models. The concept of critical windows of diffusivity (CWD) was suggested based on the air content range where gas diffusivity (hence, oxygen supply) and solute diffusivity or the analogous electrical...... will likely fulfill diffusion requirements when designing safe plant growth media for earth and space. The CWD concept was also applied to a natural volcanic ash soil (Nishi-Tokyo, Japan), and natural volcanic ash soil exhibited a CWD performance fully comparable with the best among the aggregated growth...

  12. Bringing plant-based veterinary vaccines to market: Managing regulatory and commercial hurdles.

    Science.gov (United States)

    MacDonald, Jacqueline; Doshi, Ketan; Dussault, Marike; Hall, J Christopher; Holbrook, Larry; Jones, Ginny; Kaldis, Angelo; Klima, Cassidy L; Macdonald, Phil; McAllister, Tim; McLean, Michael D; Potter, Andrew; Richman, Alex; Shearer, Heather; Yarosh, Oksana; Yoo, Han Sang; Topp, Edward; Menassa, Rima

    2015-12-01

    The production of recombinant vaccines in plants may help to reduce the burden of veterinary diseases, which cause major economic losses and in some cases can affect human health. While there is abundant research in this area, a knowledge gap exists between the ability to create and evaluate plant-based products in the laboratory, and the ability to take these products on a path to commercialization. The current report, arising from a workshop sponsored by an Organisation for Economic Co-operation and Development (OECD) Co-operative Research Programme, addresses this gap by providing guidance in planning for the commercialization of plant-made vaccines for animal use. It includes relevant information on developing business plans, assessing market opportunities, manufacturing scale-up, financing, protecting and using intellectual property, and regulatory approval with a focus on Canadian regulations.

  13. Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Houbak, N.; Elmegaard, Brian

    2010-01-01

    Methanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO2...... from post-combustion capture and autothermal reforming of natural gas or biogas. Underground gas storage of hydrogen and oxygen was used in connection with the electrolysis to enable the electrolyser to follow the variations in the power produced by renewables. Six plant configurations, each...... with a different syngas production method, were compared. The plants achieve methanol exergy efficiencies of 59-72%, the best from a configuration incorporating autothermal reforming of biogas and electrolysis of water for syngas production. The different processes in the plants are highly heat integrated...

  14. To Stretch the Boundary of Secondary Metabolite Production in Plant Cell-Based Bioprocessing: Anthocyanin as a Case Study

    OpenAIRE

    Wei Zhang; Chris Franco; Chris Curtin; Simon Conn

    2004-01-01

    Plant cells and tissue cultures hold great promise for controlled production of a myriad of useful secondary metabolites on demand. The current yield and productivity cannot fulfill the commercial goal of a plant cell-based bioprocess for the production of most secondary metabolites. In order to stretch the boundary, recent advances, new directions and opportunities in plant cell-based bioprocessing, have been critically examined for the 10 years from 1992 to 2002. A review of the literature ...

  15. A particle based model to simulate microscale morphological changes of plant tissues during drying.

    Science.gov (United States)

    Karunasena, H C P; Senadeera, W; Brown, R J; Gu, Y T

    2014-08-07

    Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.

  16. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  17. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants.

    Science.gov (United States)

    Li, Jian-Feng; Chung, Hoo Sun; Niu, Yajie; Bush, Jenifer; McCormack, Matthew; Sheen, Jen

    2013-05-01

    Artificial microRNA (amiRNA) approaches offer a powerful strategy for targeted gene manipulation in any plant species. However, the current unpredictability of amiRNA efficacy has limited broad application of this promising technology. To address this, we developed epitope-tagged protein-based amiRNA (ETPamir) screens, in which target mRNAs encoding epitope-tagged proteins were constitutively or inducibly coexpressed in protoplasts with amiRNA candidates targeting single or multiple genes. This design allowed parallel quantification of target proteins and mRNAs to define amiRNA efficacy and mechanism of action, circumventing unpredictable amiRNA expression/processing and antibody unavailability. Systematic evaluation of 63 amiRNAs in 79 ETPamir screens for 16 target genes revealed a simple, effective solution for selecting optimal amiRNAs from hundreds of computational predictions, reaching ∼100% gene silencing in plant cells and null phenotypes in transgenic plants. Optimal amiRNAs predominantly mediated highly specific translational repression at 5' coding regions with limited mRNA decay or cleavage. Our screens were easily applied to diverse plant species, including Arabidopsis thaliana, tobacco (Nicotiana benthamiana), tomato (Solanum lycopersicum), sunflower (Helianthus annuus), Catharanthus roseus, maize (Zea mays) and rice (Oryza sativa), and effectively validated predicted natural miRNA targets. These screens could improve plant research and crop engineering by making amiRNA a more predictable and manageable genetic and functional genomic technology.

  18. FOREST-BASED MEDICINAL PLANTS RENDERING THEIR SERVICES TO THE RURAL COMMUNITY OF ASSAM, INDIA

    Directory of Open Access Journals (Sweden)

    Ratul Arya Baishya

    2013-12-01

    Full Text Available Forests are the main biological resource areas from where reportedly 80% of the medicinal plants are collected by the rural communities of the state. Traditional folk medicines, mainly based on plants, occupy a significant position today, especially in the developing countries, where modern health care service is limited. Medicinal plants are gaining global importance owing to the fact that herbal drugs are cost-effective, easily available and most reportedly, with negligible side effects. Safe, effective and inexpensive indigenous remedies had been practiced by the people of both tribal and rural society of Assam from time immemorial. Therefore, the need of the hour is to harness this natural resource sustainably for the socio-economic development of the indigenous communities. Hence, a strategy for sustainable harvesting practice needs to be developed that would ensure preservation of the valuable medicinal plants in situ while addressing the needs of the rural communities. The present study is, thus, an attempt to highlight the common medicinal plants of forested region as used by the rural poor community for different kinds of treatment as the rural local healers usually practice for treatment of diseases in their locality.

  19. Research progress of plant population genomics based on high-throughput sequencing.

    Science.gov (United States)

    Yunsheng, Wang

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.

  20. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    Science.gov (United States)

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.

  1. The Experience-Based Safety Training System Using Vr Technology for Chemical Plant

    Directory of Open Access Journals (Sweden)

    Atsuko Nakai

    2014-11-01

    Full Text Available In chemical plants, safety measures are needed in order to minimize the impact of severe accidents and natural disasters. At the same time, carrying out the education and training to workers the corresponding operation in non-stationary situation is essential. However, reproducing the non-stationary conditions to actual equipment or mock-up cannot be performed because it is dangerous. By using the virtual reality (VR technology, we can build up a virtual chemical plant with lower cost compared to real plant. The operator can experience the fire and explosion accidents in the virtual space. Therefore, in this paper, we propose an experienced-based safety training system for implementing the education and training by using the non-stationary situation in the computer. This proposed system is linked with the dynamic plant simulator. A trainee can learn the correct operation through the simulated experience to prevent an accident. The safety awareness of workers will improve by experiential learning. The proposed system is useful for safety education in chemical plant.

  2. Research of Plant-Leaves Classification Algorithm Based on Supervised LLE

    Directory of Open Access Journals (Sweden)

    Yan Qing

    2013-06-01

    Full Text Available A new supervised LLE method based on the fisher projection was proposed in this paper, and combined it with a new classification algorithm based on manifold learning to realize the recognition of the plant leaves. Firstly,the method utilizes the Fisher projection distance to replace the sample's geodesic distance, and a new supervised LLE algorithm is obtained .Then, a classification algorithm which uses the manifold reconstruction error to distinguish the sample classification directly is adopted. This algorithm can utilize the category information better,and improve recognition rate effectively. At the same time, it has the advantage of the easily parameter estimation. The experimental results based on the real-world plant leaf databases shows its average accuracy of recognition was up to 95.17%.

  3. 3D plant phenotyping in sunflower using architecture-based organ segmentation from 3D point clouds

    OpenAIRE

    Gélard, William; Burger, Philippe; Casadebaig, Pierre; Langlade, Nicolas; Debaeke, Philippe; Devy, Michel; Herbulot, Ariane

    2016-01-01

    International audience; This paper presents a 3D phenotyping method applied to sunflower, allowing to compute the leaf area of an isolated plant. This is a preliminary step towards the automated monitoring of leaf area and plant growth through the plant life cycle. First, a model-based segmentation method is applied to 3D data derived from RGB images acquired on sunflower plants grown in pots. The RGB image acquisitions are made all around the isolated plant with a single hand-held standard c...

  4. Prediction of plant promoters based on hexamers and random triplet pair analysis

    Directory of Open Access Journals (Sweden)

    Noman Nasimul

    2011-06-01

    Full Text Available Abstract Background With an increasing number of plant genome sequences, it has become important to develop a robust computational method for detecting plant promoters. Although a wide variety of programs are currently available, prediction accuracy of these still requires further improvement. The limitations of these methods can be addressed by selecting appropriate features for distinguishing promoters and non-promoters. Methods In this study, we proposed two feature selection approaches based on hexamer sequences: the Frequency Distribution Analyzed Feature Selection Algorithm (FDAFSA and the Random Triplet Pair Feature Selecting Genetic Algorithm (RTPFSGA. In FDAFSA, adjacent triplet-pairs (hexamer sequences were selected based on the difference in the frequency of hexamers between promoters and non-promoters. In RTPFSGA, random triplet-pairs (RTPs were selected by exploiting a genetic algorithm that distinguishes frequencies of non-adjacent triplet pairs between promoters and non-promoters. Then, a support vector machine (SVM, a nonlinear machine-learning algorithm, was used to classify promoters and non-promoters by combining these two feature selection approaches. We referred to this novel algorithm as PromoBot. Results Promoter sequences were collected from the PlantProm database. Non-promoter sequences were collected from plant mRNA, rRNA, and tRNA of PlantGDB and plant miRNA of miRBase. Then, in order to validate the proposed algorithm, we applied a 5-fold cross validation test. Training data sets were used to select features based on FDAFSA and RTPFSGA, and these features were used to train the SVM. We achieved 89% sensitivity and 86% specificity. Conclusions We compared our PromoBot algorithm to five other algorithms. It was found that the sensitivity and specificity of PromoBot performed well (or even better with the algorithms tested. These results show that the two proposed feature selection methods based on hexamer frequencies

  5. Preliminary Feasibility Assessment of Integrating CCHP with NW Food Processing Plant #1: Modeling Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Michael G.; Srivastava, Viraj; Wagner, Anne W.; Makhmalbaf, Atefe; Thornton, John

    2014-01-01

    The Pacific Northwest National Laboratory (PNNL) has launched a project funded by the Bonneville Power Association (BPA) to identify strategies for increasing industrial energy efficiency and reducing energy costs of Northwest Food Processors Association (NWFPA) plants through deployment of novel combinations and designs of variable-output combined heat and power (CHP) distributed generation (DG), combined cooling, heating and electric power (CCHP) DG and energy storage systems. Detailed evaluations and recommendations of CHP and CCHP DG systems will be performed for several Northwest (NW) food processing sites. The objective is to reduce the overall energy use intensity of NW food processors by 25% by 2020 and by 50% by 2030, as well as reducing emissions and understanding potential congestion reduction impacts on the transmission system in the Pacific Northwest.

  6. A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus.

    Science.gov (United States)

    Grasso, Simone; Lico, Chiara; Imperatori, Francesca; Santi, Luca

    2013-06-01

    Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized.

  7. Numerical Estimation of Incident Wave Parameters Based on the Air Pressure Measurements in Pico OWC Plant

    Energy Technology Data Exchange (ETDEWEB)

    Le Crom, I.; Brito-Melo, A.; Newman, F. Sarmento, A. [Wave Energy Centre, Av. Manuel da Maia, 36, r/c D., Lisbon (Portugal)

    2009-07-01

    The present study aims at assessing the key spectral parameters of the incident wave on a fixed oscillating water column (OWC) device, based on the air pressure measurements inside the chamber and on the numerical hydrodynamic coefficients of the device. The methodology is based on the equation of continuity of the air in the time-domain and linear decomposition of the air flow in the usual terms of radiation and diffraction flows. By applying the Fast Fourier Transform, the time-domain equation is transposed to the respective frequency-domain equation. This methodology was applied to the 400 kW OWC power plant, on the Island of Pico, Azores, which has been monitored since 2005 by the Wave Energy Centre. The numerical hydrodynamic coefficients obtained by the 3D radiation-diffraction boundary element code, AQUADYN-OWC, were used in this study. No measurements of the incident wave in front of the plant are available; therefore the results obtained for a set of records are compared with forecast estimations for the site of Pico plant provided by INETI and also with the measurements of two directional wave rider buoys offshore Pico and Terceira islands. These data are provided by the Centre of Climate, Meteorology and Global Changes and propagated via the SWAN spectral wave model to the zone of interest. Final objective is to improve the control of the Pico plant by assessing its performance for a range of sea states.

  8. Design of Biomass Gasification and Combined Heat and Power Plant Based on Laboratory Experiments

    Science.gov (United States)

    Haydary, Juma; Jelemenský, Ľudovít

    Three types of wooden biomass were characterized by calorimetric measurements, proximate and elemental analysis, thermogravimetry, kinetics of thermal decomposition and gas composition. Using the Aspen steady state simulation, a plant with the processing capacity of 18 ton/h of biomass was modelled based on the experimental data obtained under laboratory conditions. The gasification process has been modelled in two steps. The first step of the model describes the thermal decomposition of the biomass based on a kinetic model and in the second step, the equilibrium composition of syngas is calculated by the Gibbs free energy of the expected components. The computer model of the plant besides the reactor model includes also a simulation of other plant facilities such as: feed drying employing the energy from the process, ash and tar separation, gas-steam cycle, and hot water production heat exchangers. The effect of the steam to air ratio on the conversion, syngas composition, and reactor temperature was analyzed. Employment of oxygen and air for partial combustion was compared. The designed computer model using all Aspen simulation facilities can be applied to study different aspects of biomass gasification in a Combined Heat and Power plant.

  9. How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling.

    Directory of Open Access Journals (Sweden)

    Martin Heil

    Full Text Available BACKGROUND: Animal-derived elicitors can be used by plants to detect herbivory but they function only in specific insect-plant interactions. How can plants generally perceive damage caused by herbivores? Damaged-self recognition occurs when plants perceive molecular signals of damage: degraded plant molecules or molecules localized outside their original compartment. METHODOLOGY/PRINCIPAL FINDINGS: Flame wounding or applying leaf extract or solutions of sucrose or ATP to slightly wounded lima bean (Phaseolus lunatus leaves induced the secretion of extrafloral nectar, an indirect defense mechanism. Chemically related molecules that would not be released in high concentrations from damaged plant cells (glucose, fructose, salt, and sorbitol did not elicit a detectable response, excluding osmotic shock as an alternative explanation. Treatments inducing extrafloral nectar secretion also enhanced endogenous concentrations of the defense hormone jasmonic acid (JA. Endogenous JA was also induced by mechanically damaging leaves of lima bean, Arabidopsis, maize, strawberry, sesame and tomato. In lima bean, tomato and sesame, the application of leaf extract further increased endogenous JA content, indicating that damaged-self recognition is taxonomically widely distributed. Transcriptomic patterns obtained with untargeted 454 pyrosequencing of lima bean in response to flame wounding or the application of leaf extract or JA were highly similar to each other, but differed from the response to mere mechanical damage. We conclude that the amount or concentration of damaged-self signals can quantitatively determine the intensity of the wound response and that the full damaged-self response requires the disruption of many cells. CONCLUSIONS/SIGNIFICANCE: Numerous compounds function as JA-inducing elicitors in different plant species. Most of them are, contain, or release, plant-derived molecular motifs. Damaged-self recognition represents a taxonomically

  10. Plant based cosmetics%源自植物的化妆品

    Institute of Scientific and Technical Information of China (English)

    胡静

    2011-01-01

    The green,environmental friendly plant based cosmetics,and the green cosmetic raw materials extracted from nature plants are related briefly.The skin care cosmetics based on plant shoots,the cosmetics based on collagen and the skin care products based on essential oil are introduced.Meanwhile,some healthy ideas for skin care,hair care,methods solving skin and hair problems at the source,and improving the skin care follow-up are also included here.%简要论述了体现绿色环保价值的化妆品,以及绿色化妆品原料的纯天然植物提取物。介绍了源自纯净植物嫩芽的护肤品、源自植物的胶原蛋白护肤品、源自植物的精油护肤品、护发品以及一些健康护肤理念,从根源上改善头发和肌肤问题,促进后续保养品的吸收。

  11. Suppression of plant resistance gene-based immunity by a fungal effector.

    Directory of Open Access Journals (Sweden)

    Petra M Houterman

    2008-05-01

    Full Text Available The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1. At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations.

  12. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Eiko E Kuramae

    Full Text Available We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age in pots associated with four maize cultivars, including two genetically modified (GM cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA. The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most "active" fungi (as recovered via RNA. Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production. Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time.

  13. Electric Energy Consumption of the Full Scale Research Biogas Plant “Unterer Lindenhof”: Results of Longterm and Full Detail Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Jungbluth

    2012-12-01

    Full Text Available This work thoroughly evaluates the electric power consumption of a full scale, 3 × 923 m3 complete stirred tank reactor (CSTR research biogas plant with a production capacity of 186 kW of electric power. The plant was fed with a mixture of livestock manure and renewable energy crops and was operated under mesophilic conditions. This paper will provide an insight into precise electric energy consumption measurements of a full scale biogas plant over a period of two years. The results showed that a percentage of 8.5% (in 2010 and 8.7% (in 2011 of the produced electric energy was consumed by the combined heat and power unit (CHP, which was required to operate the biogas plant. The consumer unit agitators with 4.3% (in 2010 and 4.0% (in 2011 and CHP unit with 2.5% (in 2010 and 2011 accounted for the highest electrical power demand, in relation to the electric energy produced by the CHP unit. Calculations show that 51% (in 2010 and 46% (in 2011 of the total electric energy demand was due to the agitators. The results finally showed the need for permanent measurements to identify and quantify the electric energy saving potentials of full scale biogas plants.

  14. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species.

    Science.gov (United States)

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study

  15. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species

    Science.gov (United States)

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study

  16. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  17. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    Science.gov (United States)

    Chattopadhyay, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (rp) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.

  18. FEASIBILITY STUDY OF GAS TREATMENT PLANT BASED ON AN EJECTOR SCRUBBER

    Directory of Open Access Journals (Sweden)

    S. Iu. Panov

    2014-01-01

    Full Text Available Summary. The article executed the feasibility study of various options for gas treatment. Rapid development of industry and transport worldwide in recent times raises the problem in the protection of habitat environment from harmful waste. In solving problems of flue gas treatment great attention is given to the economic characteristics and recycling techniques for capturing emissions and disposal must also meet the sanitary health requirements: flue gas treatment plants should not cause air or water pollution. The set objective is solved by developing a two-stage wet treatment system for pyrolysis gas based on ejector scrubbers. Their advantage - a central nozzle supply that allows the scrubber to operate on the principle of an ejector pump. Projected plant can be used in enterprises for processing of solid domestic and industrial waste, where there are steam and hot water boilers, whose operations result in contaminated gases emissions obtained with high temperatures. In particular, this installation can be applied at a cement plant in which a large amount of waste gases containing sulfur oxides is emitted. Assessment of market potential for the plant designed to treat waste gases in the cement factory is performed through a SWOT analysis. SWOT analysis results indicate the possibility of the treatment of exhaust gases without a high cost and with high gas treatment efficiency. Plant competitive analysis was done using an expert method in comparison with market competitors. Technical and economic indicators of the plant are presented. Return on investments is 46% and payback period of capital investments - 2.7 years.

  19. V-Model based Configuration Management Program for New-Build Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    An, Kyungik [PartDB Co. Ltd., Daejeon (Korea, Republic of); Cho, Yoon Sang [KHNP Co. Ltd., Daejeon (Korea, Republic of); Freeland, Kent R. [Industrial Analysts Incorporated, New Hampshire (United States)

    2014-05-15

    As NPP operators undertook design basis reconstitution efforts, they began to realize that the design basis is a foundation for Configuration Management (CM). This realization was made evident in the magnitude of the problems that were being observed. This experience also raised serious questions about how the information being developed to produce the design basis documents would be kept up to date in the future. A process to reconstitute the design basis is likely to be ineffective if CM controls are not in place. The right IT solution for CM depends upon a number of factors, including the nuclear power plant culture, budget, target technology, and the nuclear power plant owner/operator's standards, requirements and limitations for its generating fleet. Comprehensive CM Program for NPP is the single greatest strategy to meet the commitment to nuclear excellence. The safety and viability of nuclear power, particularly at the fleet level, depends upon the development of positive design control and design basis to better understanding plant operating dynamics and margin management, along with technology to control the realization of such design in the physical plant. However the most of plant facilities are modified many times, often without suitable support needed to confirm with their design base and to update their engineering data, maintenance rules and operating procedures. This lack of equilibrium between the requirements, design information and physical plant still remains a important issue. This study focuses on how to manage the configuration information of NPP using systems engineering V-model approach, and proposes data model to manage the configuration information in relation to manage their life cycle. Comprehensive CM Program and IMS for NPP life cycle support is the greatest strategy to meet the commitment to nuclear safety.

  20. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity

    Science.gov (United States)

    Youssef, Hanan H.; Hamza, Mervat A.; Fayez, Mohamed; Mourad, Elhussein F.; Saleh, Mohamed Y.; Sarhan, Mohamed S.; Suker, Ragab M.; Eltahlawy, Asmaa A.; Nemr, Rahma A.; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A.

    2015-01-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >106–108 cfu g−1 were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium. PMID:26966571

  1. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity.

    Science.gov (United States)

    Youssef, Hanan H; Hamza, Mervat A; Fayez, Mohamed; Mourad, Elhussein F; Saleh, Mohamed Y; Sarhan, Mohamed S; Suker, Ragab M; Eltahlawy, Asmaa A; Nemr, Rahma A; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A

    2016-03-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >10(6)-10(8) cfu g(-1) were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium.

  2. Meticulous Regionalization of Climate Suitability about Spring Potato Planting in Western Guizhou Based on GIS

    Institute of Scientific and Technical Information of China (English)

    CHI; Zai-xiang; MO; Jian-guo; KANG; Xue-liang; GU; Xiao-ping; XIAO; Jun

    2012-01-01

    [Objective] The study aimed to carry out the regionalization of climate suitability about spring potato planting in Western Guizhou on the basis of GIS technology. [Method] Based on the climatic data of 15 meteorological stations in Western Guizhou during the growing period of spring potato from March to August in 1978-2010, the regionalization indicators of climate suitability about spring potato planting were determined according to the correlation between climatic factors and meteorological yield of spring potato. Afterwards, on the basis of climitic data and corresponding basic geographical information like longitude, latitude, altitude, slope and aspect, the spatial analysis models of division indicators about spring potato planting in Western Guizhou were established by using GIS spatial overlay analysis and used to carry out the township-level regionalization of climate suitability about spring potato planting in Western Guizhou with 100 m×100 m grids. [Result] Based on the relationship between meteorological yield of spring potato and climatic factors in Western Guizhou from 1978 to 2010, eight climatic division indicators, including altitude, average temperature,>10 ℃ active accumulated temperature, precipitation and sunshine hours in the growth stage, average temperature in July, average temperature difference between day and night from July to August, and precipitation from May to July, were chosen for spring potato planting, and each indicator had three levels, namely the most suitable, suitable and sub-suitable. Meanwhile, Western Guizhou was grouped into three areas according to these indicators, including the most suitable area, suitable area and sub-suitable area, and their area accounted for 52%, 45% and 3% of total area of the whole province respectively. [Conclusion] The research could provide scientific references for the production layout and species selection of spring potato in Western Guizhou.

  3. Meticulous Regionalization of Climate Suitability about Spring Potato Planting in Western Guizhou Based on GIS

    Institute of Scientific and Technical Information of China (English)

    CHI; Zai-xiang; MO; Jian-guo; KANG; Xue-liang; GU; Xiao-ping; XIAO; Jun

    2012-01-01

    [Objective] The study aimed to carry out the regionalization of climate suitability about spring potato planting in Western Guizhou on the basis of GIS technology. [Method] Based on the climatic data of 15 meteorological stations in Western Guizhou during the growing period of spring potato from March to August in 1978-2010, the regionalization indicators of climate suitability about spring potato planting were determined according to the correlation between climatic factors and meteorological yield of spring potato. Afterwards, on the basis of climitic data and corresponding basic geographical information like longitude, latitude, altitude, slope and aspect, the spatial analysis models of division indicators about spring potato planting in Western Guizhou were established by using GIS spatial overlay analysis and used to carry out the township-level regionalization of climate suitability about spring potato planting in Western Guizhou with 100 m×100 m grids. [Result] Based on the relationship between meteorological yield of spring potato and climatic factors in Western Guizhou from 1978 to 2010, eight climatic division indicators, including altitude, average temperature,10 ℃ active accumulated temperature, precipitation and sunshine hours in the growth stage, average temperature in July, average temperature difference between day and night from July to August, and precipitation from May to July, were chosen for spring potato planting, and each indicator had three levels, namely the most suitable, suitable and sub-suitable. Meanwhile, Western Guizhou was grouped into three areas according to these indicators, including the most suitable area, suitable area and sub-suitable area, and their area accounted for 52%, 45% and 3% of total area of the whole province respectively. [Conclusion] The research could provide scientific references for the production layout and species selection of spring potato in Western Guizhou.

  4. Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers

    DEFF Research Database (Denmark)

    Chua, Seong-Chea; Xu, Xuebing; Guo, Zheng

    2012-01-01

    The chemical industry is increasingly looking toward sustainable technology to reduce the environmental impact and minimize the footprint of a chemical process. This work, which presents emerging technologies in academia and industry, discusses the development of advanced processes...... for the production of epoxidized plant oil-based plasticizers. The effects of the substrate structure, oxygen-donor properties, catalysts and biocatalysts on the specificity of the epoxidation reaction are intensively discussed. The progress in enzymatic epoxidation and the application of neoteric media...

  5. Epidemiological data base for a health effects study at a coal gasification plant

    OpenAIRE

    Morris, S C; Ukmata, H.; Begraca, M.; Canhasi, B.; Haxhiu, M.A.

    1988-01-01

    An occupational population is characterized as a basis for epidemiological study. Parameters include age, smoking history, years of work, job title, all medical diagnoses by 3-digit ICD code, and selected Iaboratory test results. By example analyses differences are examined in the incidence of chrome bronchitis and circulatory system disease by smoking history and job title. The data base includes coal gasification plant workers and surface lignite minors in Kosovo, Yugoslavia. Because of the...

  6. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    OpenAIRE

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10...

  7. Equivalent Modeling of DFIG-Based Wind Power Plant Considering Crowbar Protection

    OpenAIRE

    Qianlong Zhu; Ming Ding; Pingping Han

    2016-01-01

    Crowbar conduction has an impact on the transient characteristics of a doubly fed induction generator (DFIG) in the short-circuit fault condition. But crowbar protection is seldom considered in the aggregation method for equivalent modeling of DFIG-based wind power plants (WPPs). In this paper, the relationship between the growth of postfault rotor current and the amplitude of the terminal voltage dip is studied by analyzing the rotor current characteristics of a DFIG during the fault process...

  8. The ABC's required for establishing a practical computerized plant engineering management data base system

    Science.gov (United States)

    Maiocco, F. R.; Hume, J. P.

    1976-01-01

    A system's approach is outlined in the paper to assist facility and Plant Engineers improve their organization's data management system. The six basic steps identified may appear somewhat simple; however, adequate planning, proper resources, and the involvement of management will determine the success of a computerized facility management data base. Helpful suggestions are noted throughout the paper to insure the development of a practical computerized data management system.

  9. Astaxanthin Synthesis by Yeast Xanthophyllomyces dendrorhous and its Mutants on Media Based on Plant Extracts.

    Science.gov (United States)

    Stachowiak, Barbara

    2012-12-01

    The study evaluated the effect of media based on plant extracts: potato, carrot and barley malt broth, on growth and astaxanthin synthesis by yeast Xanthophyllomyces dendrorhous DSM 5626 and its mutants. The carrot medium promoted carotenogenesis most effectively. In cultures on this medium the highest volumetric and cellular concentrations of astaxanthin were recorded for four out of five tested strains. Also the share of astaxanthin in the total carotenoids produced by the tested strains was the highest.

  10. Astaxanthin Synthesis by Yeast Xanthophyllomyces dendrorhous and its Mutants on Media Based on Plant Extracts

    OpenAIRE

    Stachowiak, Barbara

    2012-01-01

    The study evaluated the effect of media based on plant extracts: potato, carrot and barley malt broth, on growth and astaxanthin synthesis by yeast Xanthophyllomyces dendrorhous DSM 5626 and its mutants. The carrot medium promoted carotenogenesis most effectively. In cultures on this medium the highest volumetric and cellular concentrations of astaxanthin were recorded for four out of five tested strains. Also the share of astaxanthin in the total carotenoids produced by the tested strains wa...

  11. Location of Bioelectricity Plants in the Madrid Community Based on Triticale Crop: A Multicriteria Methodology

    Directory of Open Access Journals (Sweden)

    L. Romero

    2015-01-01

    Full Text Available This paper presents a work whose objective is, first, to quantify the potential of the triticale biomass existing in each of the agricultural regions in the Madrid Community through a crop simulation model based on regression techniques and multiple correlation. Second, a methodology for defining which area has the best conditions for the installation of electricity plants from biomass has been described and applied. The study used a methodology based on compromise programming in a discrete multicriteria decision method (MDM context. To make a ranking, the following criteria were taken into account: biomass potential, electric power infrastructure, road networks, protected spaces, and urban nuclei surfaces. The results indicate that, in the case of the Madrid Community, the Campiña region is the most suitable for setting up plants powered by biomass. A minimum of 17,339.9 tons of triticale will be needed to satisfy the requirements of a 2.2 MW power plant. The minimum range of action for obtaining the biomass necessary in Campiña region would be 6.6 km around the municipality of Algete, based on Geographic Information Systems. The total biomass which could be made available in considering this range in this region would be 18,430.68 t.

  12. Compatibility of selected plant-based shortening as lard substitute: microstructure, polymorphic forms and textural properties

    Directory of Open Access Journals (Sweden)

    N. A.M. Yanty

    2017-03-01

    Full Text Available A study was carried out to determine the compatibility of three plant-based shortening mixtures to lard shortening (LD in terms of microstructure, polymorphic forms, and textural properties. The shortenings of binary, ternary, and quaternary fat mixtures were prepared according to a standard procedure by blending mee fat (MF with palm stearin (PS in a 99:1 (w/w ratio; avocado fat (Avo with PS and cocoa butter (CB in a 84:7:9 (w/w ratio; palm oil (PO with PS, soybean oil (SBO and CB in a 38:5:52:5 (w/w ratio, respectively. The triacylglycerol composition, polymorphic forms, crystal morphology, and textural properties of the shortening were evaluated. This study found that all three plant-based shortenings and LD shortening were similar with respect to their consistency, hardness and compression and adhesiveness values. However, all plant-based shortening was found to be dissimilar to LD shortening with respect to microstructure.

  13. Plant-based milk alternatives an emerging segment of functional beverages: a review.

    Science.gov (United States)

    Sethi, Swati; Tyagi, S K; Anurag, Rahul K

    2016-09-01

    Plant-based or non-dairy milk alternative is the fast growing segment in newer food product development category of functional and specialty beverage across the globe. Nowadays, cow milk allergy, lactose intolerance, calorie concern and prevalence of hypercholesterolemia, more preference to vegan diets has influenced consumers towards choosing cow milk alternatives. Plant-based milk alternatives are a rising trend, which can serve as an inexpensive alternate to poor economic group of developing countries and in places, where cow's milk supply is insufficient. Though numerous types of innovative food beverages from plant sources are being exploited for cow milk alternative, many of these faces some/any type of technological issues; either related to processing or preservation. Majority of these milk alternatives lack nutritional balance when compared to bovine milk, however they contain functionally active components with health promoting properties which attracts health conscious consumers. In case of legume based milk alternatives, sensory acceptability is a major limiting factor for its wide popularity. New and advanced non-thermal processing technologies such as ultra high temperature treatment, ultra high pressure homogenization, pulsed electric field processing are being researched for tackling the problems related to increase of shelf life, emulsion stability, nutritional completeness and sensory acceptability of the final product. Concerted research efforts are required in coming years in functional beverages segment to prepare tailor-made newer products which are palatable as well as nutritionally adequate.

  14. SEASONAL CHANGES IN THE REDUCTION OF BIOGENIC COMPOUNDS IN WASTEWATER TREATMENT PLANTS BASED ON HYDROPONIC TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Aleksandra Bawiec

    2016-04-01

    Full Text Available The study presents the results of the treatment of domestic and industrial wastewater with respect to the reduction of nitrogen and phosphorus compounds. The analysis encompasses the results of physical and chemical tests of effluents from two facilities based on hydroponic technology: wastewater treatment plants with hydroponic lagoons using the BIOPAX technology – Paczków, Poland and the Organica technology – Szarvas, Hungary. Monthly treatment effectiveness was determined basing on these analyses. The composition of wastewater flowing into the lagoon (after mechanical treatment and wastewater discharged to the collector in 2009–2011 was subject to physical and chemical analysis in both facilities. The effluent quality was determined basing on the concentration of total phosphorus, total nitrogen and ammonium nitrogen. Mean annual results of the operation of both objects were high. For the wastewater treatment plant in Paczkow, operating in the BIOPAX technology, the effectiveness of treatment with respect to total nitrogen throughout the analysed period ranged from 76.9–84.4%. Total phosphorus was eliminated from wastewater with an effectiveness of 96.4–98.0%. Such high reduction level was caused by the application of additional precipitation process in the chambers of activated sludge reactor. The hydroponic plant in Szarvas (Organica technology was characterised by a high effectiveness of reduction with respect to ammonium nitrogen: 92.0–93.0%, while the reduction of total phosphorus fell into the range 49.3–55.3%.

  15. A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Honglu Zhu

    2015-12-01

    Full Text Available The power prediction for photovoltaic (PV power plants has significant importance for their grid connection. Due to PV power’s periodicity and non-stationary characteristics, traditional power prediction methods based on linear or time series models are no longer applicable. This paper presents a method combining the advantages of the wavelet decomposition (WD and artificial neural network (ANN to solve this problem. With the ability of ANN to address nonlinear relationships, theoretical solar irradiance and meteorological variables are chosen as the input of the hybrid model based on WD and ANN. The output power of the PV plant is decomposed using WD to separated useful information from disturbances. The ANNs are used to build the models of the decomposed PV output power. Finally, the outputs of the ANN models are reconstructed into the forecasted PV plant power. The presented method is compared with the traditional forecasting method based on ANN. The results shows that the method described in this paper needs less calculation time and has better forecasting precision.

  16. Species Diversity Distribution Patterns of Chinese Endemic Seed Plants Based on Geographical Regions

    Science.gov (United States)

    Huang, Jihong; Ma, Keping; Huang, Jianhua

    2017-01-01

    Based on a great number of literatures, we established the database about the Chinese endemic seed plants and analyzed the compositions, growth form, distribution and angiosperm original families of them within three big natural areas and seven natural regions. The results indicate that the above characters of Chinese endemic plants take on relative rule at the different geographical scales. Among the three big natural areas, Eastern Monsoon area has the highest endemic plants richness, whereas Northwest Dryness area is the lowest. For life forms, herbs dominate. In contrast, the proportion of herbs of Eastern Monsoon area is remarkable under other two areas. Correspondingly the proportions of trees and shrubs are substantially higher than other two. For angiosperm original families, the number is the highest in Eastern Monsoon area, and lowest in Northwest Dryness area. On the other hand, among the seven natural regions, the humid and subtropical zone in Central and Southern China has the highest endemic plants richness, whereas the humid, hemi-humid region and temperate zone in Northeast China has the lowest. For life forms, the proportion of herbs tends to decrease from humid, hemi-humid region and temperate zone in Northeast China to humid and tropical zone in Southern China. Comparably, trees, shrubs and vines or lianas increase with the same directions. This fully represents these characters of Chinese endemic plants vary with latitudinal gradients. Furthermore, as to the number of endemic plants belonging to angiosperm original families, the number is the most in humid and subtropical zone in Center and Southern China, and tropical zone in Southern China in the next place. In contrast, the endemic plant of these two regions relatively is richer than that of The Qinghai-Tibet alpine and cold region. All above results sufficiently reflect that the Chinese endemic plants mainly distribute in Eastern Monsoon area, especially humid and subtropical zone in Center

  17. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies.

    Science.gov (United States)

    Aboul-Ata, Aboul-Ata E; Vitti, Antonella; Nuzzaci, Maria; El-Attar, Ahmad K; Piazzolla, Giuseppina; Tortorella, Cosimo; Harandi, Ali M; Olson, Olof; Wright, Sandra A; Piazzolla, Pasquale

    2014-01-01

    A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and

  18. Online operations optimization of waste incineration plants. Phase 3: Control concept and demonstration; Online driftsoptimering af affaldsfyrede anlaeg. Fase 3: Reguleringskoncept og demonstration. Hovedrapport ver. C

    Energy Technology Data Exchange (ETDEWEB)

    Boecher Poulsen, K.; Rassing Stoltze, K.; Solberg, B.; Hansen, Lars Henrik (DONG Energy (Denmark)); Cramer, J.; Andreasen, L.B. (FORCE Technology (Denmark)); Nymann Thomsen, S.; West, F. (Babcock and Wilcox Voelund (Denmark)); Clausen, S.; Fateev, A. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2010-06-15

    The long-term vision of the project is to develop a system for online optimisation of waste incineration. The fundamental idea is to base the system on advanced measuring technique, dynamic process models and advanced control technique. In the present phase 3 project the intention is to implement several of the improvement measures specified in phase 2 - both at Haderslev CHP Plant and at Reno-Nord - and not least evaluate the results from the two widely different plants. In addition to that, it is essential to test the new NIR camera system online at Reno-Nord and to carry out a complete measuring campaign where dynamic characteristics are pursued and must be compared with similar tests from phase 2 at Haderslev CHP Plant. The measuring campaign at Reno-Nord was performed differently from phase 2 at Haderslev CHP Plant, i.e. at Reno-Nord both traditional manual steps in series with input (pusher, grate, primary air) and manual control and pseudo random parallel pulse effects of all input with partly automatic control were performed. Pulse effects are made automatically from a sequence in the control room. The new method requires considerably less involvement from operating staff and engineers during the tests, and it is capable of producing good model estimation data as the control will automatically lead the incineration back to the fixed incineration point. The disadvantage is that it is difficult to follow the quality of the boiler responses in the process because of several concurrent step effects. Therefore, another data processing is necessary to be able to estimate the correct dynamic models and extract dynamic furnace characteristics. However, the potential of the new method is that it can be activated directly by the operating staff from the control room and that it is capable of operating for a long time with eg considerably different fuel types. As to modelling, both SISO (single input single output) and MIMO (multi input multi output) model estimates

  19. Online operations optimization of waste incineration plants. Phase 3: Control concept and demonstration; Online driftsoptimering af affaldsfyrede anlaeg. Fase 3: Reguleringskoncept og demonstration. Hovedrapport ver. C

    Energy Technology Data Exchange (ETDEWEB)

    Boecher Poulsen, K.; Rassing Stoltze, K.; Solberg, B.; Hansen, Lars Henrik (DONG Energy (Denmark)); Cramer, J.; Andreasen, L.B. (FORCE Technology (Denmark)); Nymann Thomsen, S.; West, F. (Babcock and Wilcox Voelund (Denmark)); Clausen, S.; Fateev, A. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2010-06-15

    The long-term vision of the project is to develop a system for online optimisation of waste incineration. The fundamental idea is to base the system on advanced measuring technique, dynamic process models and advanced control technique. In the present phase 3 project the intention is to implement several of the improvement measures specified in phase 2 - both at Haderslev CHP Plant and at Reno-Nord - and not least evaluate the results from the two widely different plants. In addition to that, it is essential to test the new NIR camera system online at Reno-Nord and to carry out a complete measuring campaign where dynamic characteristics are pursued and must be compared with similar tests from phase 2 at Haderslev CHP Plant. The measuring campaign at Reno-Nord was performed differently from phase 2 at Haderslev CHP Plant, i.e. at Reno-Nord both traditional manual steps in series with input (pusher, grate, primary air) and manual control and pseudo random parallel pulse effects of all input with partly automatic control were performed. Pulse effects are made automatically from a sequence in the control room. The new method requires considerably less involvement from operating staff and engineers during the tests, and it is capable of producing good model estimation data as the control will automatically lead the incineration back to the fixed incineration point. The disadvantage is that it is difficult to follow the quality of the boiler responses in the process because of several concurrent step effects. Therefore, another data processing is necessary to be able to estimate the correct dynamic models and extract dynamic furnace characteristics. However, the potential of the new method is that it can be activated directly by the operating staff from the control room and that it is capable of operating for a long time with eg considerably different fuel types. As to modelling, both SISO (single input single output) and MIMO (multi input multi output) model estimates

  20. Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity

    Directory of Open Access Journals (Sweden)

    M. Sonia Terreros-Olarte

    2013-05-01

    Full Text Available This paper proposes a new model for short-term forecasting of electric energy production in a photovoltaic (PV plant. The model is called HIstorical SImilar MIning (HISIMI model; its final structure is optimized by using a genetic algorithm, based on data mining techniques applied to historical cases composed by past forecasted values of weather variables, obtained from numerical tools for weather prediction, and by past production of electric power in a PV plant. The HISIMI model is able to supply spot values of power forecasts, and also the uncertainty, or probabilities, associated with those spot values, providing new useful information to users with respect to traditional forecasting models for PV plants. Such probabilities enable analysis and evaluation of risk associated with those spot forecasts, for example, in offers of energy sale for electricity markets. The results of spot forecasting of an illustrative example obtained with the HISIMI model for a real-life grid-connected PV plant, which shows high intra-hour variability of its actual power output, with forecasting horizons covering the following day, have improved those obtained with other two power spot forecasting models, which are a persistence model and an artificial neural network model.

  1. Plant-based antimicrobial studies--methods and approaches to study the interaction between natural products.

    Science.gov (United States)

    van Vuuren, Sandy; Viljoen, Alvaro

    2011-07-01

    The therapeutic value of synergistic interactions has been known since antiquity, and many different cultural healing systems still rely on this principle in the belief that combination therapy may enhance efficacy. This paper intends to provide an overview, from an antimicrobial perspective, on the research undertaken and interactive principles involved in pharmacognosy studies. Methods used to determine antimicrobial interactions include basic combination studies, the sum of the fractional inhibitory concentration index (ΣFIC), isobole interpretations, and death kinetic (time-kill) assays. The various interactions are discussed with reference to molecules, different plant parts or fractions, different plant species, and combinations with nonbotanical antimicrobial agents. It is recommended for future development in the field of phytosynergy that consideration should be given to the selection criteria for the two inhibitors. A more conservative approach should be adopted when classifying synergy. When examining interactions in plant-based studies, antagonistic interactions should not be ignored. Combinations involving more than two test samples should be examined where applicable, and very importantly, the mechanism of action of synergistic interactions should be given precedence. It is encouraging to observe the upsurge in papers exploring the complex interactions of medicinal plants, and undoubtedly this will become increasingly important in our continued quest to understand the mechanism of action of phytotherapy. The scientific validation of efficacious antimicrobial combinations could lead to patentable entities making research in the field of phytosynergy not only academically rewarding but also commercially relevant.

  2. Development of a Biochar-Plant-Extract-Based Nitrification Inhibitor and Its Application in Field Conditions

    Directory of Open Access Journals (Sweden)

    Jhónatan Reyes-Escobar

    2015-10-01

    Full Text Available The global use of nitrogen (N fertilizer has increased 10-fold in the last fifty years, resulting in increased N losses via nitrate leaching to groundwater bodies or from gaseous emissions to the atmosphere. One of the biggest problems farmers face in agricultural production systems is the loss of N. In this context, novel biological nitrification inhibitors (BNI using biochar (BC as a renewable matrix to increase N use efficiency, by reducing nitrification rates, have been evaluated. The chemical and morphological characteristics of BC were analyzed and BC-BNI complexes were formulated using plant extracts from pine (Pinus radiata, eucalyptus (Eucalyptus globulus and peumo (Cryptocarya alba. In field experiments, fertilizer and treatments, based on crude plant extracts and BC-BNI complexes, were applied and the effect on nitrification was periodically monitored, and at the laboratory level, a phytotoxicity assay was performed. The biochar-peumo (BCPe complex showed the highest nitrification inhibition (66% on day 60 after application compared with the crude plant extract, suggesting that BCPe complex protects the BNI against biotic or abiotic factors, and therefore BC-BNI complexes could increase the persistence of biological nitrification inhibitors. None of the biochar complexes had toxic effect on radish plants.

  3. Isolation and selection of fluorescent pseudomonads based on multiple plant growth promotion traits and siderotyping

    Directory of Open Access Journals (Sweden)

    Jayamohan Subramanian

    2014-09-01

    Full Text Available Fluorescent pseudomonads, acclaimed plant associated bacterial group, are well-known plant growth promoting-biocontrol agents in rhizosphere arena. In this study, 144 fluorescent pseudomonad isolates from rhizosphere soil samples were screened with King's medium B supplemented with 8-hydroxyquinoline (8-HQ chelator and comprehensively profiled for plant growth promotion viz., production of indole acetic acid (IAA, siderophore, ammonia, hydrogen cyanide, motility, phosphate solubilization, root growth promotion, and biofilm forming ability, along with two known control strains of pseudomonads. Iron and IAA regulated secondary metabolite siderophore production were investigated quantitatively. All isolates were positive for ammonia production and motility; 46% isolates were positive for hydrogen cyanide, 44% shown positivity for phosphate solubilization, and 40% isolates for siderophore production. Siderotyping showed production of hydroxamate type of siderophores which are known to be more efficient biocontrol agents. All isolates stimulated root growth to varying extent and had potentiality to form biofilms, a critical constituent for survival on different environments. Forty-two isolates of pseudomonads showed antagonistic behavior against the deleterious fungal pathogen Fusarium oxysporum (MTCC1755. Based on the above observations and statistical analysis, 11 isolates were shortlisted for further scrutiny. The study of biogeographic correlation and secondary metabolite profiling in association with plant growth promotion focalizes significant assessment on the behavior and antagonistic action, which probably brings out a competent biocontrol agent in a sustainable eco-friendly dimension.

  4. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Science.gov (United States)

    Sladojevic, Srdjan; Arsenovic, Marko; Culibrk, Dubravko; Stefanovic, Darko

    2016-01-01

    The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%. PMID:27418923

  5. Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    Science.gov (United States)

    Nguyen, G. T. T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G.

    2016-06-01

    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2‧,3‧,4‧,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2‧,3‧,4‧-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15–45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme.

  6. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Directory of Open Access Journals (Sweden)

    Srdjan Sladojevic

    2016-01-01

    Full Text Available The latest generation of convolutional neural networks (CNNs has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  7. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.

    Science.gov (United States)

    Liang, Gang; Zhang, Huimin; Lou, Dengji; Yu, Diqiu

    2016-02-19

    The CRISPR/Cas9-sgRNA system has been developed to mediate genome editing and become a powerful tool for biological research. Employing the CRISPR/Cas9-sgRNA system for genome editing and manipulation has accelerated research and expanded researchers' ability to generate genetic models. However, the method evaluating the efficiency of sgRNAs is lacking in plants. Based on the nucleotide compositions and secondary structures of sgRNAs which have been experimentally validated in plants, we instituted criteria to design efficient sgRNAs. To facilitate the assembly of multiple sgRNA cassettes, we also developed a new strategy to rapidly construct CRISPR/Cas9-sgRNA system for multiplex editing in plants. In theory, up to ten single guide RNA (sgRNA) cassettes can be simultaneously assembled into the final binary vectors. As a proof of concept, 21 sgRNAs complying with the criteria were designed and the corresponding Cas9/sgRNAs expression vectors were constructed. Sequencing analysis of transgenic rice plants suggested that 82% of the desired target sites were edited with deletion, insertion, substitution, and inversion, displaying high editing efficiency. This work provides a convenient approach to select efficient sgRNAs for target editing.

  8. Alpha Stable Distribution Based Morphological Filter for Bearing and Gear Fault Diagnosis in Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xinghui Zhang

    2015-01-01

    Full Text Available Gear and bearing play an important role as key components of rotating machinery power transmission systems in nuclear power plants. Their state conditions are very important for safety and normal operation of entire nuclear power plant. Vibration based condition monitoring is more complicated for the gear and bearing of planetary gearbox than those of fixed-axis gearbox. Many theoretical and engineering challenges in planetary gearbox fault diagnosis have not yet been resolved which are of great importance for nuclear power plants. A detailed vibration condition monitoring review of planetary gearbox used in nuclear power plants is conducted in this paper. A new fault diagnosis method of planetary gearbox gears is proposed. Bearing fault data, bearing simulation data, and gear fault data are used to test the new method. Signals preprocessed using dilation-erosion gradient filter and fast Fourier transform for fault information extraction. The length of structuring element (SE of dilation-erosion gradient filter is optimized by alpha stable distribution. Method experimental verification confirmed that parameter alpha is superior compared to kurtosis since it can reflect the form of entire signal and it cannot be influenced by noise similar to impulse.

  9. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Directory of Open Access Journals (Sweden)

    Irineo Torres-Pacheco

    2010-09-01

    Full Text Available Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities.

  10. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Science.gov (United States)

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656

  11. Evaluation of possible use of disinfectant based on chlorine dioxide in dairy plant

    Directory of Open Access Journals (Sweden)

    Rakić-Martinez Mira

    2009-01-01

    Full Text Available Poor sanitation of food contact surfaces has been a contributing factor in food borne disease outbreaks, especially those involving Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus aureus etc. The objectives of this study were therefore to: 1. Determine the efficiency of a disinfectant based on chlorine dioxide in suspension in a closed system in a dairy plant. 2. Evaluate the possibility of disinfection of working surfaces with a disinfectant based on chlorine dioxide. In order to determine the germicidal effect of the disinfectant based on chlorine dioxide by suspension test (BSEN 1276:1997; the following test organisms were used: Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Bacillus cereus, Staphylococcus aureus and Pseudomonas aeruginosa clinical isolate. The corrosive properties of the disinfectant based on chlorine dioxide were tested by IDF 077:1977 standard. The efficacy of this disinfectant was investigated in a closed system in a dairy plant. Results indicated a 100% reduction of >108 cfu/ml L. monocytogenes, E. coli, Proteus mirabilis, Pseudomonas aeruginosa, S. aureus, viable count after 1 minute of exposure to 100 ppm of the disinfectant based on chlorine dioxide and 400 ppm for Bacillus cereus. In the presence of 2% skim milk and 4 % skim milk concentrations of 200 and 250 ppm resulted in 100% reduction in numbers of the five of six test microorganisms, respectively. The spore former, Bacillus cereus is less susceptible to the disinfectant. Therefore, the efficient concentration for 100% reduction in viable count after 1 minute exposure was 500 ppm. The corrosive properties of the disinfectant were not determined. In the case of closed system disinfection in a dairy plant, reduction in viable count after 15 minute exposure to 100 ppm of disinfectant based on chlorine dioxide ranged from 80 to 100%.

  12. Power-Hardware-In-the-Loop (PHIL) Test of VSC-based HVDC connection for Offshore Wind Power Plants (WPPs)

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Cha, Seung-Tae; Wu, Qiuwei;

    2011-01-01

    This paper presents a power-hardware-in-the-loop (PHIL) test for an offshore wind power plant (WPP) interconnected to the onshore grid by a VSC-based HVDC connection. The intention of the PHIL test is to verify the control coordination between the plant side converter of the HVDC connection...... the successful control coordination between the WPP and the plant side VSC converter of the HVDC connection of the WPP....

  13. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1995-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  14. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuen dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y. [VTT Energy, Espoo (Finland)

    1996-12-01

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (1) suitability to small scale electricity production (<5-10 MWe), (2) reliable operation with realistically available biomass feedstocks, and (3) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (1) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (2) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers. The studies are scheduled to be completed in March 1996. (author)

  15. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    Energy Technology Data Exchange (ETDEWEB)

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O.; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J.; Kuo, Alan; Grigoriev, Igor V.; Wong, Chee-Hong; Smith, Richard D.; Callister, Stephen J.; Wei, Chia-Lin; Schmutz, Jeremy; Worden, Alexandra Z.

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share less than 8,142of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the

  16. Implementation of Case-Based Reasoning System for Knowledge Management of Power Plant Construction Projects in a Korean Company

    Science.gov (United States)

    Jang, Gil-Sang

    Recently, plant construction industries are enjoying a favorable business climate centering around developing countries and oil producing countries rich in oil money. This paper proposes a methodology of implementing corporation-wide case-based reasoning (CBR) system for effectively managing lessons learned knowledge like experiences and know-how obtained in performing power plant construction projects. Our methodology is consisted of 10 steps: user requirement analysis, information modeling, case modeling, case base design, similarity function design, user interface design, case base building, CBR module development, user interface development, integration test. Also, to illustrate the usability of proposed methodology, the practical CBR system is implemented for the plant construction business division of ’H’ company which has international competitiveness in the field of plant construction industry. At present, our CBR system is successfully utilizing as storing, sharing, and reusing the knowledge which is accumulated in performing power plant construction projects in the target enterprise.

  17. A contribution to the study of plant development evolution based on gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Francisco J. Romero-Campero

    2013-08-01

    Full Text Available Phototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics. We have studied light-dependent gene regulatory modules from algae to plants employing integrative-omics approaches based on gene co-expression networks. Our study reveals some remarkably conserved ways in which eukaryotic phototrophs deal with day length and light signaling. Here we describe how a family of Arabidopsis transcription factors involved in photoperiod response has evolved from a single algal gene according to the innovation, amplification and divergence theory of gene evolution by duplication. These modifications of the gene co-expression networks from the ancient unicellular green algae Chlamydomonas reinhardtii to the modern brassica Arabidopsis thaliana may hint on the evolution and specialization of plants and other organisms.

  18. Synthesis and Characterization of Plant based Polythiophene Copolymers for Light Harvesting Applications

    Science.gov (United States)

    Kodithuwakku, Udari; Malavi Arachchi, Prashantha; Ratnaweera, Dilru

    Polythiophenes became more attractive in diverse applications due to some of their inherent properties including thermal and environmental stability as well as optical and electronic conductive properties. Commonly thiophene monomers are obtained from byproducts of crude oils. The current study discuss for the first time the synthesis and characterization of light harvesting polythiophenes copolymers from thiophene derivatives extracted from Tagetes species. There were mainly two thiophenes derivatives, 5-(3-buten-1-ynyl)-2, 2-bithienyl and 2, 2', 5, 2''-terthienyl (terthiophene), in the roots of the plant. Chemical oxidative radical polymerization was followed during the synthesis of copolymers with various block compositions of plant based terthiophenes and 3-hexyl terthiophenes. Structural characterization of the synthetic products was done using FTIR, NMR, Uv-vis, XRD and DSC techniques. Polythiophene homopolymers obtained from plant based terthiophenes have limited processability of solar cells due to poor solubility in common organic solvents. A significant solubility improvement was observed with copolymers having minor contributions of 3-hexylthiophenes. Research Grants, University of Sri Jayewardenepura, Sri Lanka.

  19. Process bases and specifications thorium---U-233 separations at the Purex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, S.M.

    1965-07-26

    The Purex Plant was originally designed for the chemical processing of irradiated natural uranium. It has been used nearly exclusively for this purpose during its approximately ten-year operating lifetime. However, during the winter of 1964--1965, a special processing campaign was planned and accomplished in which approximately 6 tons of irradiated thoria targets were introduced to the plant, and the thorium-232 and uranium-233 were successfully separated and purified on a demonstration basis. For the demonstration thorium processing operation (6-ton test) of the winter of 1964--1965, process specifications were issued. These specifications were necessarily specific to the particular campaign inasmuch as a rather unusual processing scheme was required, by virtue of the small tonnage involved and the equipment limitations of the plant. Thus, for the relatively large operation subsequently planned, other process specifications are required. The purpose of this present document is to provide these specifications. Depending on the manner and extent of thorium -- uranium-233 production developments, these present specifications may have future application, at least in part. In addition to the process specifications, this document includes a section describing the flowsheet, and a section in which the technological bases for good process control are presented. In conjunction with the specifications, these sections are intended to provide the bases for the processing operations required to accomplish the processing objectives in a safe manner, and with minimum effect on equipment service life. All sections are organized in a manner to provide for relatively simple additions or revisions.

  20. Annual Energy Production (AEP) optimization for tidal power plants based on Evolutionary Algorithms - Swansea Bay Tidal Power Plant AEP optimization

    Science.gov (United States)

    Kontoleontos, E.; Weissenberger, S.

    2016-11-01

    In order to be able to predict the maximum Annual Energy Production (AEP) for tidal power plants, an advanced AEP optimization procedure is required for solving the optimization problem which consists of a high number of design variables and constraints. This efficient AEP optimization procedure requires an advanced optimization tool (EASY software) and an AEP calculation tool that can simulate all different operating modes of the units (bidirectional turbine, pump and sluicing mode). The EASY optimization software is a metamodel-assisted Evolutionary Algorithm (MAEA) that can be used in both single- and multi-objective optimization problems. The AEP calculation tool, developed by ANDRITZ HYDRO, in combination with EASY is used to maximize the tidal annual energy produced by optimizing the plant operation throughout the year. For the Swansea Bay Tidal Power Plant project, the AEP optimization along with the hydraulic design optimization and the model testing was used to evaluate all different hydraulic and operating concepts and define the optimal concept that led to a significant increase of the AEP value. This new concept of a triple regulated “bi-directional bulb pump turbine” for Swansea Bay Tidal Power Plant (16 units, nominal power above 320 MW) along with its AEP optimization scheme will be presented in detail in the paper. Furthermore, the use of an online AEP optimization during operation of the power plant, that will provide the optimal operating points to the control system, will be also presented.

  1. Formulation of plant based Rainbow trout feeds on an Ideal Protein Basis can reduce total dietary protein

    Science.gov (United States)

    Fish meal has been a primary protein source in trout feeds and any changes that can reduce fish meal levels and total costs are beneficial. Replacing fish meal with plant protein is a first step, but amino acid content of plant based diets can be limiting. Amino acids are needed for many metabolic...

  2. CO2 capture from power plants. Part I : A parametric study of the technical performance based on monoethanolamine

    NARCIS (Netherlands)

    Abu-Zahra, M. R. M.; Schneiders, L. H. J.; Niederer, J. P. M.; Feron, P. H. M.; Versteeg, G. F.

    2007-01-01

    Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based

  3. CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine

    NARCIS (Netherlands)

    Abu-Zahra, Mohammad R.M.; Schneiders, Le´on H.J.; Niederer, John P.M.; Feron, Paul H.M.; Versteeg, Geert F.

    2007-01-01

    Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based

  4. Mobile robot based electrostatic spray system for controlling pests on cotton plants in Iraq

    Science.gov (United States)

    Al-Mamury, M.; Manivannan, N.; Al-Raweshidy, H.; Balachandran, W.

    2015-10-01

    A mobile robot based electrostatic spray system was developed to combat pest infestation on cotton plants in Iraq. The system consists of a charged spray nozzle, a CCD camera, a mobile robot (vehicle and arm) and Arduino microcontroller. Arduino microcontroller is used to control the spray nozzle and the robot. Matlab is used to process the image from the CCD camera and to generate the appropriate control signals to the robot and the spray nozzle. COMSOL multi-physics FEM software was used to design the induction electrodes to achieve maximum charge transfer onto the fan spray liquid film resulting in achieving the desired charge/mass ratio of the spray. The charged spray nozzle was operated on short duration pulsed spray mode. Image analysis was employed to investigate the spray deposition on improvised insect targets on an artificial plant.

  5. PERSPECTIVES OF THE DEVELOPMENT OF MUCOSAL VACCINES AGAINST DANGEROUS INFECTIONS ON THE BASE OF TRANSGENIC PLANTS

    Directory of Open Access Journals (Sweden)

    A.V. Tretyakova

    2012-08-01

    Full Text Available Mucosal vaccines created on the base of transgenic plants reacting with mucosal layers of the intestines and other organs are considered to be the perspective method of the vaccination. These vaccines induce both mucosal and general humoral immunogenicity after the peroral administration. The folding of antigenic proteins synthesizing in plants occurs via eukaryotic type and has advantages before yeast and prokaryotic platforms. This feature results to more adequate synthesis of antibodies against pathogens and to the interaction with effector molecules of complement. Earlier we together with The State Scientific Center “Vector”, Institute of chemical biology and fundamental medicine SB RAS and Dr R.Hammond from Laboratory of Plant Pathology (Maryland, USA created two candidate vaccines : one of them against AIDS (HIV-1 and hepatitis B on the base of the chimeric gene TBI-HBS, encoding simultaneously 9 antigenic determinants of HIV-1 and the main surface antigen of hepatitis B (HBsAg. The second candidate vaccine was created against hepatitis B on the base of the genetic construct with the gene preS2-S encoding the synthesis of two subunits of the main surface antigen of hepatitis B and the signal peptide HDEL which directed antigens for the accumulation on ER. Both vaccines were tested on mice and confirmed their immunogenicity as the pronounced antibodies response. Twice vaccinated mice maintained the antibodies response during 11 months after there was little tendency to lowering. It was established that transgenic plants – vaccines (tomato kept the capability to the synthesis of antigenic determinants in seven seed generations during 7 years. The results of the development of the mucosal vaccine against cervical carcinoma (carcinoma of uterine cervix evoked by human papillomaviruses of high oncogenic risks were presented in this report. We created the genetic construct consisting of 35S CaMV promoter, Ώ (omega leader of TMV, the

  6. Biosafety research for non-target organism risk assessment of RNAi-based GE plants.

    Science.gov (United States)

    Roberts, Andrew F; Devos, Yann; Lemgo, Godwin N Y; Zhou, Xuguo

    2015-01-01

    RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment.

  7. Efficacy of a food plant-based oral cholera toxin B subunit vaccine.

    Science.gov (United States)

    Arakawa, T; Chong, D K; Langridge, W H

    1998-03-01

    Transgenic potatoes were engineered to synthesize a cholera toxin B subunit (CTB) pentamer with affinity for GMI-ganglioside. Both serum and intestinal CTB-specific antibodies were induced in orally immunized mice. Mucosal antibody titers declined gradually after the last immunization but were restored following an oral booster of transgenic potato. The cytopathic effect of cholera holotoxin (CT) on Vero cells was neutralized by serum from mice immunized with transgenic potato tissues. Following intraileal injection with CT, the plant-immunized mice showed up to a 60% reduction in diarrheal fluid accumulation in the small intestine. Protection against CT was based on inhibition of enterotoxin binding to the cell-surface receptor GMI-ganglioside. These results demonstrate the ability of transgenic food plants to generate protective immunity in mice against a bacterial enterotoxin.

  8. Model-Based Analysis and Efficient Operation of a Glucose Isomerization Reactor Plant

    DEFF Research Database (Denmark)

    2015-01-01

    efficiency. The objective of this study is the application of the developed framework on an industrial case study of a glucose isomerization (GI) reactor plant that is part of a corn refinery, with the objective to improve the productivity of the process. Therefore, a multi-scale reactor model......The application of computer-aided model based methods within an integrated systematic framework is illustrated with the objective to assist the multi-purpose pharmaceutical/biochemical industry to systematically solve the complex problems that are experienced when aiming at improving the process...... is developedfor use as a building block for the GI reactor plant simulation. An optimal operation strategy is proposed on the basis of the simulation results...

  9. Effect of fermentation on the antioxidant activity in plant-based foods.

    Science.gov (United States)

    Hur, Sun Jin; Lee, Seung Yuan; Kim, Young-Chan; Choi, Inwook; Kim, Geun-Bae

    2014-10-01

    This study provides an overview of the factors that influence the effect of fermentation on the antioxidant activity and the mechanisms that augment antioxidative activities in fermented plant-based foods. The ability of fermentation to improve antioxidant activity is primarily due to an increase in the amount of phenolic compounds and flavonoids during fermentation, which is the result of a microbial hydrolysis reaction. Moreover, fermentation induces the structural breakdown of plant cell walls, leading to the liberation or synthesis of various antioxidant compounds. These antioxidant compounds can act as free radical terminators, metal chelators, singlet oxygen quenchers, or hydrogen donors to radicals. The production of protease, α-amylase and some other enzymes can be influenced by fermentation that may have metal ion chelation activity. Because the mechanisms that affect antioxidant activity during fermentation are extremely varied, further investigation is needed to establish the precise mechanisms for these processes.

  10. Production of a plant-derived immunogenic protein targeting ApoB100 and CETP: toward a plant-based atherosclerosis vaccine.

    Science.gov (United States)

    Salazar-Gonzalez, Jorge Alberto; Rosales-Mendoza, Sergio; Romero-Maldonado, Andrea; Monreal-Escalante, Elizabeth; Uresti-Rivera, Edith Elena; Bañuelos-Hernández, Bernardo

    2014-12-01

    In an effort to initiate the development of a plant-based vaccination model against atherosclerosis, a cholera toxin B subunit (CTB)-based chimeric protein was designed to target both ApoB100 and CETP epitopes associated with immunotherapeutic effects in atherosclerosis. Epitopes were fused at the C-terminus of CTB to yield a protein called CTB:p210:CETPe. A synthetic gene coding for CTB:p210:CETPe was successfully transferred to tobacco plants with no phenotypic alterations. Plant-derived CTB:p210:CETPe was expressed and assembled in the pentameric form. This protein retained the target antigenic determinants, as revealed by GM1-ELISA and Western blot analyses. Higher expresser lines reached recombinant protein accumulation levels up to 10 µg/g fresh weight in leaf tissues and these lines carry a single insertion of the transgene as determined by qPCR. Moreover, when subcutaneously administered, the biomass from these CTB:p210:CETPe-producing plants was able to elicit humoral responses in mice against both ApoB100 and CETP epitopes and human serum proteins. These findings evidenced for the first time that atherosclerosis-related epitopes can be expressed in plants retaining immunogenicity, which opens a new path in the molecular farming field for the development of vaccines against atherosclerosis.

  11. Role of plants and plant based products towards the control of insect pests and vectors:A novel review

    Institute of Scientific and Technical Information of China (English)

    Elumalai Kuppusamy; Saranya Jayakumar

    2016-01-01

    Insect pests bear harmful effects causing great loss to the agricultural crops, stored agricultural products and vector mosquitoes can cause diseases to human. Plants possess an array of vast repository of phytochemicals and have been used to cure many diseases and to control the infestation of insect pests from time immemorial. Plants are easily biodegradable and ecologically safe for treating on the stored or on the field crops against pests to prevent from further damage or loss of stored products or preventing human from mosquito bites, thus preventing the spreading of dreadful diseases such as chikungunya and malaria. Hence, this review can give a clear insecticidal, pesticidal and mosquitocidal property of several plants against the insect pests and vectors.

  12. Assessment of Potential Capacity Increases at Combined Heat and Power Facilities Based on Available Corn Stover and Forest Logging Residues

    Directory of Open Access Journals (Sweden)

    Donald L. Grebner

    2013-08-01

    Full Text Available Combined Heat and Power (CHP production using renewable energy sources is gaining importance because of its flexibility and high-energy efficiency. Biomass materials, such as corn stover and forestry residues, are potential sources for renewable energy for CHP production. In Mississippi, approximately 4.0 MT dry tons of woody biomass is available annually for energy production. In this study, we collected and analyzed 10 years of corn stover data (2001–2010 and three years of forest logging residue data (1995, 1999, and 2002 in each county in Mississippi to determine the potential of these feed stocks for sustainable CHP energy production. We identified six counties, namely Amite, Copiah, Clarke, Wayne, Wilkinson and Rankin, that have forest logging residue feedstocks to sustain a CHP facility with a range of capacity between 8.0 and 9.8 MW. Using corn stover alone, Yazoo and Washington counties can produce 13.4 MW and 13.5 MW of energy, respectively. Considering both feedstocks and based on a conservative amount of 30% available forest logging residue and 33% corn stover, we found that 20 counties have adequate supply for a CHP facility with a capacity of 8.3 MW to 19.6 MW.

  13. Data mining diagnosis system based on rough set theory for boilers in thermal power plants

    Institute of Scientific and Technical Information of China (English)

    YANG Ping

    2006-01-01

    Large amounts of data in the SCADA systems'databases of thermal power plants have been used for monitoring,control and over-limit alarm,but not for fault diagnosis.Additional tests are often required from the technology support center of manufacturing companies to diagnose faults for large-scale equipment,although these tests are often expensive and involve some risks to equipment.Aimed at diffculfies in fault diagnosis for boilers in thermal power plants,a hybrid-intelligence data-mining system based only on acquired data in SCADA systems is structured to extract hidden diagnosis information directly from the SCADA systems' databases in thermal power plants.This makes it possible to eliminate additional tests for fault diagnosis.In the system,a focusing quantization algorithm is proposed to discretize all variables in the preparation set to improve resolution near the change between normal value to abnormal value.A reduction algorithm based on rough set theory is designed to find minimum reducts from all discrete variables in the preparation set to represent diagnosis rules succinctly.The diagnosis rules mining from SCADA systems' database are expressed directly by variables in the database,making it easy for engineers to understand and use in industry applications.A boiler fault diagnosis system is designed and realized by the proposed approach,its running results in a thermal power plant of Guangdong Province show that the system can satisfy fault diagnosis requirement of large-scale boilers and its accuracy rangers from 91% to 98% in different months.

  14. Study and practice on condition-based maintenance of induced fans in coal-fired power plants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Reducing the enormous maintenance cost is essential to enhance the competitiveness for power plants.An overall design scheme for condition-based maintenance of induced fans is proposed for large thermal power plants.The interface of the above framework is simple and convenient;the optimum maintenance strategy is given by condition monitoring and risk evaluating.The decisionsupported system was used in Guangdong Shajiao C Power Plant.The results show that it is a feasible maintenance optimization scheme for power plants.

  15. Cost base for hydropower plants : with a generating capacity of more than 10 000 kw : price level 1 January 2010

    Energy Technology Data Exchange (ETDEWEB)

    Slapgaard, Jan

    2012-07-25

    This manual has been prepared as a tool for calculation of average foreseeable contractor costs (civil works) and supplier costs (mechanical and electrical equipment) for large hydroelectric power plants with an early phase generating capacity of more than 10 000 kw. These costs will depend on a number of conditions which may vary from plant to plant, and this requires that the user to have a sound technical knowledge. This applies in particular to the civil works associated with the hydropower plant. The manual is a supplement to our cost base for smaller hydropower projects (Manual No. 2/2010)(au)

  16. NetCDF based data archiving system applied to ITER Fast Plant System Control prototype

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R., E-mail: rodrigo.castro@visite.es [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Ruiz, M.; De Arcas, G.; Barrera, E.; Lopez, J.M.; Sanz, D. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, UPM, Madrid (Spain); Goncalves, B.; Santos, B. [Associacao EURATOM/IST, IPFN - Laboratorio Associado, IST, Lisboa (Portugal); Utzel, N.; Makijarvi, P. [ITER Organization, St. Paul lez Durance Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Implementation of a data archiving solution for a Fast Plant System Controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer Data archiving solution based on scientific NetCDF-4 file format and Lustre storage clustering. Black-Right-Pointing-Pointer EPICS control based solution. Black-Right-Pointing-Pointer Tests results and detailed analysis of using NetCDF-4 and clustering technologies on fast acquisition data archiving. - Abstract: EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution

  17. A Denoising Based Autoassociative Model for Robust Sensor Monitoring in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Ahmad Shaheryar

    2016-01-01

    Full Text Available Sensors health monitoring is essentially important for reliable functioning of safety-critical chemical and nuclear power plants. Autoassociative neural network (AANN based empirical sensor models have widely been reported for sensor calibration monitoring. However, such ill-posed data driven models may result in poor generalization and robustness. To address above-mentioned issues, several regularization heuristics such as training with jitter, weight decay, and cross-validation are suggested in literature. Apart from these regularization heuristics, traditional error gradient based supervised learning algorithms for multilayered AANN models are highly susceptible of being trapped in local optimum. In order to address poor regularization and robust learning issues, here, we propose a denoised autoassociative sensor model (DAASM based on deep learning framework. Proposed DAASM model comprises multiple hidden layers which are pretrained greedily in an unsupervised fashion under denoising autoencoder architecture. In order to improve robustness, dropout heuristic and domain specific data corruption processes are exercised during unsupervised pretraining phase. The proposed sensor model is trained and tested on sensor data from a PWR type nuclear power plant. Accuracy, autosensitivity, spillover, and sequential probability ratio test (SPRT based fault detectability metrics are used for performance assessment and comparison with extensively reported five-layer AANN model by Kramer.

  18. Open system architecture for condition based maintenance applied to a hydroelectric power plant

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, E.J.; Alvares, A.J. [University of Brasilia (UnB), DF (Brazil). Mechanical and Mechatronic Dept.], Emails: eamaya@unb.br, alvares@AlvaresTech.com; Gudwin, R.R. [State University of Campinas (UNICAMP), SP (Brazil). Computer Engineering and Industrial Automation Dept.], E-mail: gudwin@dca.fee.unicamp.br

    2009-07-01

    The hydroelectric power plant of Balbina is implementing a condition based maintenance system applying an open, modular and scalable integrated architecture to provide comprehensive solutions and support to the end users like operational and maintenance team. The system called SIMPREBAL (Predictive Maintenance System of Balbina) is advocate of open standards, in particular through collaborative research programmers. In the developing is clearly understands the need for both, industry standards and a simple to use software development tool chain, supporting the development of complex condition based maintenance systems with multiple partners. The Open System Architecture for Condition Based Maintenance (OSA-CBM) is a standard that consider seven hierarchic layers that represent a logic transition or performed data flow from the data acquisition layer, through the intermediates layers as signal processing, condition monitor, health assessment, prognostics and decision support, to arrive to the presentation layer. SIMPREBAL is being implementing as an OSA-CBM software framework and tool set that allows the creation of truly integrated, comprehensive maintenance solutions through the internet. This paper identifies specific benefits of the application of the OSA-CBM in comprehensive solutions of condition based maintenance for a hydroelectric power plant. (author)

  19. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method.

    Science.gov (United States)

    Zhang, Peng-Qian; Liu, Yan-Ju; Chen, Xing; Yang, Zheng; Zhu, Ming-Hao; Li, Yi-Ping

    2016-10-01

    Various plant species of green belt in urban traffic area help to reduce air pollution and beautify the city environment. Those plant species growing healthily under long-term atmospheric pollution environment are considered to be resilient. This study aims to identify plant species that are more tolerant to air pollution from traffic and to give recommendations for future green belt development in urban areas. Leaf samples of 47 plant species were collected from two heavy traffic roadside sites and one suburban site in Beijing during summer 2014. Four parameters in leaves were separately measured including relative water content (RWC), total chlorophyll content (TCH), leaf-extract pH (pH), and ascorbic acid (AA). The air pollution tolerance index (APTI) method was adopted to assess plants' resistance ability based on the above four parameters. The tolerant levels of plant species were classified using two methods, one by comparing the APTI value of individual plant to the average of all species and another by using fixed APTI values as standards. Tolerant species were then selected based on combination results from both methods. The results showed that different tolerance orders of species has been found at the three sampling sites due to varied air pollution and other environmental conditions. In general, plant species Magnolia denudata, Diospyros kaki, Ailanthus altissima, Fraxinus chinensis and Rosa chinensis were identified as tolerant species to air pollution environment and recommend to be planted at various location of the city, especially at heavy traffic roadside.

  20. Support schemes and ownership structures - the policy context for fuel cell based micro-combined heat and power

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten; Costa, Ana; Obé, Elisabeth

    2011-01-01

    In recent years, fuel cell based micro-combined heat and power (mCHP) has received increasing attention due to its potential contribution to European energy policy goals, i.e., sustainability, competitiveness and security of supply. Besides technical advances, regulatory framework and ownership s...... for fuel cell mCHP. This can be used for improved analysis of operational strategies. The interaction of this plethora of elements necessitates careful balancing from a private- and socio-economic point of view.......In recent years, fuel cell based micro-combined heat and power (mCHP) has received increasing attention due to its potential contribution to European energy policy goals, i.e., sustainability, competitiveness and security of supply. Besides technical advances, regulatory framework and ownership...

  1. Design and preparation of plant oil-based polymers and their applications

    Science.gov (United States)

    Ahn, Byung-Jun Kollbe

    Renewable materials are desirable for many applications due to the finite fossil resources and environmental issues. Plant oil is one of the most promising renewable feedstocks. Plant oils and functionalized oleo-chemicals including functionalized soybean oils have become attractive sustainable chemicals for industrial applications. Especially, epoxidized oleo-chemicals such as epoxidized soybean oil (ESO) are one of the most well-known readily available inexpensive functionalized plant oils. In this study, novel polymers and nanocomposites for sustainable materials applications were designed and prepared via ring-opening of epoxide in plant oils, and their chemical and physical properties were characterized. The novel transparent elastomers derived from functionalized plant oils have a great potential as flexible electronic and biological applications with their inherent low toxicity. Especially, their rheological properties showed a potential for pressure sensitive adhesives (PSAs). The dominant thermal stability and transparency were obtained via green processing: one pot, single step, fast reactions in moderate conditions, or solvent-free UV curing conditions. These oleo-based elastomers presented excellent end-use properties for PSAs application comparable to commercial PSA tapes. Based on the principal chemical studies, the roles of the each component have been identified: polymer derived from the ring-opening of epoxides as an elastomer, and dihydroxylated triglycerides as a tackifier. Their interaction was also elucidated with an element label analysis. The mechanical and rheological properties of the oleo-polymer as PSAs were able to be improved with a rosin ester tackifier. In addition, biogreases and bio-thermoplastics were developed via the environmentally benign process, which will contribute to further application on the production of new bio-based materials. Further, this study essays a novel acid functionalized iron/iron oxide nanoparticles catalyst

  2. Use of Remote Imagery and Object-based Image Methods to Count Plants in an Open-field Container Nursery

    Science.gov (United States)

    Leiva Lopez, Josue Nahun

    In general, the nursery industry lacks an automated inventory control system. Object-based image analysis (OBIA) software and aerial images could be used to count plants in nurseries. The objectives of this research were: 1) to evaluate the effect of an unmanned aerial vehicle (UAV) flight altitude and plant canopy separation of container-grown plants on count accuracy using aerial images and 2) to evaluate the effect of plant canopy shape, presence of flowers, and plant status (living and dead) on counting accuracy of container-grown plants using remote sensing images. Images were analyzed using Feature AnalystRTM (FA) and an algorithm trained using MATLABRTM. Total count error, false positives and unidentified plants were recorded from output images using FA; only total count error was reported for the MATLAB algorithm. For objective 1, images were taken at 6, 12 and 22 m above the ground using a UAV. Plants were placed on black fabric and gravel, and spaced as follows: 5 cm between canopy edges, canopy edges touching, and 5 cm of canopy edge overlap. In general, when both methods were considered, total count error was smaller [ranging from -5 (undercount) to 4 (over count)] when plants were fully separated with the exception of images taken at 22 m. FA showed a smaller total count error (-2) than MATLAB (-5) when plants were placed on black fabric than those placed on gravel. For objective 2, the plan was to continue using the UAV, however, due to the unexpected disruption of the GPS-based navigation by heightened solar flare activity in 2013, a boom lift that could provide images on a more reliable basis was used. When images obtained using a boom lift were analyzed using FA there was no difference between variables measured when an algorithm trained with an image displaying regular or irregular plant canopy shape was applied to images displaying both plant canopy shapes even though the canopy shape of 'Sea Green' juniper is less compact than 'Plumosa Compacta

  3. Nitrate dynamics in natural plants: Insights based on the concentration and natural isotope abundances of tissue nitrate

    Directory of Open Access Journals (Sweden)

    Xue Yan Liu

    2014-07-01

    Full Text Available The dynamics of nitrate (NO3-, a major nitrogen (N source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO3- uptake and reduction may vary with external N availability. Abrupt application and short operation times, field N addition, and isotopic labeling hinder the elucidation of in situ NO3--use mechanisms. The concentration and natural isotopes of tissue NO3- can offer insights into the plant NO3- sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO3- utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO3- in plants. Moreover, this study highlights the utility and benefits of these parameters in interpreting NO3- sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO3- in plants, and discuss the implications of NO3- concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO3 - and plant ecophysiological functions in interspecific and intra-plant NO3- variations. We introduce N and O isotope systematics of NO3- in plants and discusse the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and ∆17O; and isotope mass-balance calculations to constrain sources and reduction of NO3- in possible scenarios for natural plants are deliberated. Finally, we construct a preliminary framework of intraplant δ18O-NO3- variation, and summarize the uncertainties in using tissue NO3- parameters to interpret plant NO3- utilization.

  4. Combined approach based on principal component analysis and canonical discriminant analysis for investigating hyperspectral plant response

    Directory of Open Access Journals (Sweden)

    Anna Maria Stellacci

    2012-07-01

    Full Text Available Hyperspectral (HS data represents an extremely powerful means for rapidly detecting crop stress and then aiding in the rational management of natural resources in agriculture. However, large volume of data poses a challenge for data processing and extracting crucial information. Multivariate statistical techniques can play a key role in the analysis of HS data, as they may allow to both eliminate redundant information and identify synthetic indices which maximize differences among levels of stress. In this paper we propose an integrated approach, based on the combined use of Principal Component Analysis (PCA and Canonical Discriminant Analysis (CDA, to investigate HS plant response and discriminate plant status. The approach was preliminary evaluated on a data set collected on durum wheat plants grown under different nitrogen (N stress levels. Hyperspectral measurements were performed at anthesis through a high resolution field spectroradiometer, ASD FieldSpec HandHeld, covering the 325-1075 nm region. Reflectance data were first restricted to the interval 510-1000 nm and then divided into five bands of the electromagnetic spectrum [green: 510-580 nm; yellow: 581-630 nm; red: 631-690 nm; red-edge: 705-770 nm; near-infrared (NIR: 771-1000 nm]. PCA was applied to each spectral interval. CDA was performed on the extracted components to identify the factors maximizing the differences among plants fertilised with increasing N rates. Within the intervals of green, yellow and red only the first principal component (PC had an eigenvalue greater than 1 and explained more than 95% of total variance; within the ranges of red-edge and NIR, the first two PCs had an eigenvalue higher than 1. Two canonical variables explained cumulatively more than 81% of total variance and the first was able to discriminate wheat plants differently fertilised, as confirmed also by the significant correlation with aboveground biomass and grain yield parameters. The combined

  5. Land-Based Wind Plant Balance-of-System Cost Drivers and Sensitivities (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Mone, C.; Maples, B.; Hand, M.

    2014-04-01

    With Balance of System (BOS) costs contributing up to 30% of the installed capital cost, it is fundamental to understand the BOS costs for wind projects as well as potential cost trends for larger turbines. NREL developed a BOS model using project cost estimates developed by industry partners. Aspects of BOS covered include engineering and permitting, foundations for various wind turbines, transportation, civil work, and electrical arrays. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and geographic characteristics. Based on the new BOS model, an analysis to understand the non‐turbine wind plant costs associated with turbine sizes ranging from 1-6 MW and wind plant sizes ranging from 100-1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of wind project BOS, and explores the sensitivity of the capital investment cost and the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrate the potential impact of turbine size and project size on the cost of energy from US wind plants.

  6. CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.

    Science.gov (United States)

    Ma, Xingliang; Liu, Yao-Guang

    2016-07-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome targeting system has been applied to a variety of organisms, including plants. Compared to other genome-targeting technologies such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), the CRISPR/Cas9 system is easier to use and has much higher editing efficiency. In addition, multiple "single guide RNAs" (sgRNAs) with different target sequences can be designed to direct the Cas9 protein to multiple genomic sites for simultaneous multiplex editing. Here, we present a procedure for highly efficient multiplex genome targeting in monocot and dicot plants using a versatile and robust CRISPR/Cas9 vector system, emphasizing the construction of binary constructs with multiple sgRNA expression cassettes in one round of cloning using Golden Gate ligation. We also describe the genotyping of targeted mutations in transgenic plants by direct Sanger sequencing followed by decoding of superimposed sequencing chromatograms containing biallelic or heterozygous mutations using the Web-based tool DSDecode. © 2016 by John Wiley & Sons, Inc.

  7. Electric protections based in microprocessors in power plants; Protecciones electricas basadas en microprocesadores en centrales generadoras

    Energy Technology Data Exchange (ETDEWEB)

    Libreros, Domitilo; Castanon Jimenez, Jose Ismael [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    This article is centered around the substitution of the conventional electric protections of a power plant in connection type unit for protections based in microprocessors. A general model of conventional protection of a power plant is described and the number of analogic and digital signals that intervene in that model are quantified. A model is setup for power plant protection with microprocessors, analyzing each one of the modules that would form it. Finally, the algorithms to carry on such protection are presented. [Espanol] Este articulo se centra en torno a la sustitucion de las protecciones electricas convencionales de una central generadora en conexion tipo unidad por protecciones basadas en microprocesadores. Se describe el modelo general de proteccion convencional de una central generadora y se cuantifica el numero de senales analogicas y digitales que interviene en dicho modelo. Se propone un modelo para proteccion de centrales generadoras mediante microprocesadores, analizandose cada uno de los modulos que lo conformarian. Finalmente, se presentan los algoritmos para realizar dicha proteccion.

  8. Automated DNA-based plant identification for large-scale biodiversity assessment.

    Science.gov (United States)

    Papadopoulou, Anna; Chesters, Douglas; Coronado, Indiana; De la Cadena, Gissela; Cardoso, Anabela; Reyes, Jazmina C; Maes, Jean-Michel; Rueda, Ricardo M; Gómez-Zurita, Jesús

    2015-01-01

    Rapid degradation of tropical forests urges to improve our efficiency in large-scale biodiversity assessment. DNA barcoding can assist greatly in this task, but commonly used phenetic approaches for DNA-based identifications rely on the existence of comprehensive reference databases, which are infeasible for hyperdiverse tropical ecosystems. Alternatively, phylogenetic methods are more robust to sparse taxon sampling but time-consuming, while multiple alignment of species-diagnostic, typically length-variable, markers can be problematic across divergent taxa. We advocate the combination of phylogenetic and phenetic methods for taxonomic assignment of DNA-barcode sequences against incomplete reference databases such as GenBank, and we developed a pipeline to implement this approach on large-scale plant diversity projects. The pipeline workflow includes several steps: database construction and curation, query sequence clustering, sequence retrieval, distance calculation, multiple alignment and phylogenetic inference. We describe the strategies used to establish these steps and the optimization of parameters to fit the selected psbA-trnH marker. We tested the pipeline using infertile plant samples and herbivore diet sequences from the highly threatened Nicaraguan seasonally dry forest and exploiting a valuable purpose-built resource: a partial local reference database of plant psbA-trnH. The selected methodology proved efficient and reliable for high-throughput taxonomic assignment, and our results corroborate the advantage of applying 'strict' tree-based criteria to avoid false positives. The pipeline tools are distributed as the scripts suite 'BAGpipe' (pipeline for Biodiversity Assessment using GenBank data), which can be readily adjusted to the purposes of other projects and applied to sequence-based identification for any marker or taxon.

  9. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.

    Science.gov (United States)

    Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente

    2016-06-01

    Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available.

  10. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, R.S. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Maret, D.; Seniuk, P.; Smith, L.

    1996-12-01

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development`s (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing.

  11. Study the effect of the organizational factors on the acceptance using combined heat and power Generation plants (small-scale generation by organizational Consumers

    Directory of Open Access Journals (Sweden)

    Mehdi Momeni

    2012-01-01

    Full Text Available The main goal of this research is to study the influence of organizational factors on the acceptance of using combined heat and power generation plants by organizational consumers. Organizational factors include the seven variables of organizational values, perception, organization representatives, organizational goals and tasks, organization, technology, organizational structure and organizational resources. Research method is typically descriptive-survey and applied based. Questionnaire has been used for data collection. The questionnaire has been developed based on theoretical principles and six points Likert spectrum. Content validity of questionnaires has been positively approved by scholars and experts. Data reliability has been computed using Cronbach’s alpha coefficient as 0.955, which is satisfactory. Descriptive and inferential statistics (correlation analysis, regression and T-test have been used for data analysis. Findings imply that i all of the above-mentioned variables influence the acceptance of power plants CHP (small-scale generation by the organizational consumers, significantly; and ii the order of importance and influence of organizational factors include organizational resources, organizational goals and tasks, perception, organization representatives, technology, organizational values, and organizational structure, respectively.

  12. Dynamic flowgraph modeling of process and control systems of a nuclear-based hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    Modeling and analysis of system reliability facilitate the identification of areas of potential improvement. The Dynamic Flowgraph Methodology (DFM) is an emerging discrete modeling framework that allows for capturing time dependent behaviour, switching logic and multi-state representation of system components. The objective of this research is to demonstrate the process of dynamic flowgraph modeling of a nuclear-based hydrogen production plant with the copper-chlorine (Cu-Cl) cycle. Modeling of the thermochemical process of the Cu-Cl cycle in conjunction with a networked control system proposed for monitoring and control of the process is provided. This forms the basis for future component selection. (author)

  13. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue Yan; Li, Shu; Li, Qing [China Nuclear Power Operation Technology Co., Wuhan (China)

    2011-08-15

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier.

  14. Plant-based medicines for anxiety disorders, Part 1: a review of preclinical studies.

    Science.gov (United States)

    Sarris, Jerome; McIntyre, Erica; Camfield, David A

    2013-03-01

    Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. This article (part 1) reviews herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In part 2, we review herbal medicines for which there have been clinical investigations for anxiolytic activity. An open-ended, language-restricted (English) search of MEDLINE (PubMed), CINAHL, Scopus and the Cochrane Library databases was conducted (up to 28 October 2012) using specific search criteria to identify herbal medicines that have been investigated for anxiolytic activity. This search of the literature revealed 1,525 papers, from which 53 herbal medicines were included in the full review (having at least one study using the whole plant extract). Of these plants, 21 had human clinical trial evidence (reviewed in part 2), with another 32 having solely preclinical studies (reviewed here in part 1). Preclinical evidence of anxiolytic activity (without human clinical trials) was found for Albizia julibrissin, Sonchus oleraceus, Uncaria rhynchophylla, Stachys lavandulifolia, Cecropia glazioui, Magnolia spp., Eschscholzia californica, Erythrina spp., Annona spp., Rubus brasiliensis, Apocynum venetum, Nauclea latifolia, Equisetum arvense, Tilia spp., Securidaca longepedunculata, Achillea millefolium, Leea indica, Juncus effusus, Coriandrum sativum, Eurycoma longifolia, Turnera diffusa, Euphorbia hirta, Justicia spp., Crocus sativus, Aloysia polystachya, Albies pindrow, Casimiroa edulis, Davilla rugosa, Gastrodia elata, Sphaerathus indicus, Zizyphus jujuba and Panax ginseng. Common mechanisms of action for the majority of botanicals reviewed primarily involve GABA, either via direct receptor binding or ionic channel or cell membrane modulation; GABA transaminase

  15. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fornetti, Micheal [Escanaba Paper Company, MI (United States); Freeman, Douglas [Escanaba Paper Company, MI (United States)

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  16. Organic matrix based slow release fertilizer enhances plant growth, nitrate assimilation and seed yield of Indian mustard (Brassica juncea L.).

    Science.gov (United States)

    Sharma, Vinod K; Singh, Rana P

    2011-09-01

    Field experiments were conducted to study the effect of organic matrix based slow release fertilizers (SRFs) on plant growth, nitrate assimilation and seed yield of Brassica juncea L. cv, pusa bold. The agro-waste materials like cow dung, clay soil, neem leaves and rice bran were mixed together in 2:2:1:1 ratio and used as organic matrix for the immobilization of chemical fertilizer nutrients with commercial grade saresh (Acacia gum, 15% solution) as binder. Different fertilizer treatments were organic matrix based slow release fertilizers, SRF-I (542.0 kg ha(-1)); SRF-II (736.5 kg ha(-1)) and chemical fertilizer combinations, boron (3 kg ha(-1))+sulphur (15 kg ha(-1))+nitrogen (80 kg ha(-1)) and boron (3 kg ha(-1)) + sulphur (15 kg ha(-1))+nitrogen (80 kg ha(-1))+phosphorus (15 kg ha(-1))+potassium (100 kg ha(-1)). Organic matrix based SRF-II released ammonium up to 50-d in wetsoil under laboratory conditions which showed maximum retention of the nutrients. Avery significant increase in plant growth, nitrate assimilation and seed yield was recorded in organic matrix based SRF-II applied plants. The maximum percent increase in biomass production was observed with organic matrix based SRF-II (increase of 65.8% in root fresh weight, 38.0% in root dry weight, 45.9% in leaf fresh weight plant(-1) and 27.5 % in leaf dry weight plant(-1) in 60-d old plants). It also increased the acquisition and assimilation of nitrate from the plant's rhizosphere which was evident by 45.6% increase in nitrate, 27.5% in nitrite and 11.7% in nitrate reductase activity (NRA) in leaves of 45-d old plants over control. The organic matrix based SRF-II significantly increased the seed yield by 28% in Indian mustard. Cost analysis revealed thatthis formulation is cost effective as it is based on agro waste materials.

  17. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products.

    Science.gov (United States)

    Mäkinen, Outi Elina; Wanhalinna, Viivi; Zannini, Emanuele; Arendt, Elke Karin

    2016-01-01

    A growing number of consumers opt for plant-based milk substitutes for medical reasons or as a lifestyle choice. Medical reasons include lactose intolerance, with a worldwide prevalence of 75%, and cow's milk allergy. Also, in countries where mammal milk is scarce and expensive, plant milk substitutes serve as a more affordable option. However, many of these products have sensory characteristics objectionable to the mainstream western palate. Technologically, plant milk substitutes are suspensions of dissolved and disintegrated plant material in water, resembling cow's milk in appearance. They are manufactured by extracting the plant material in water, separating the liquid, and formulating the final product. Homogenization and thermal treatments are necessary to improve the suspension and microbial stabilities of commercial products that can be consumed as such or be further processed into fermented dairy-type products. The nutritional properties depend on the plant source, processing, and fortification. As some products have extremely low protein and calcium contents, consumer awareness is important when plant milk substitutes are used to replace cow's milk in the diet, e.g. in the case of dairy intolerances. If formulated into palatable and nutritionally adequate products, plant-based substitutes can offer a sustainable alternative to dairy products.

  18. Application of Microprocessor-Based Equipment in Nuclear Power Plants - Technical Basis for a Qualification Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.

    2001-08-24

    This document (1) summarizes the most significant findings of the ''Qualification of Advanced Instrumentation and Control (I&C) Systems'' program initiated by the Nuclear Regulatory Commission (NRC); (2) documents a comparative analysis of U.S. and European qualification standards; and (3) provides recommendations for enhancing regulatory guidance for environmental qualification of microprocessor-based safety-related systems. Safety-related I&C system upgrades of present-day nuclear power plants, as well as I&C systems of Advanced Light-Water Reactors (ALWRs), are expected to make increasing use of microprocessor-based technology. The Nuclear Regulatory Commission (NRC) recognized that the use of such technology may pose environmental qualification challenges different from current, analog-based I&C systems. Hence, it initiated the ''Qualification of Advanced Instrumentation and Control Systems'' program. The objectives of this confirmatory research project are to (1) identify any unique environmental-stress-related failure modes posed by digital technologies and their potential impact on the safety systems and (2) develop the technical basis for regulatory guidance using these findings. Previous findings from this study have been documented in several technical reports. This final report in the series documents a comparative analysis of two environmental qualification standards--Institute of Electrical and Electronics Engineers (IEEE) Std 323-1983 and International Electrotechnical Commission (IEC) 60780 (1998)--and provides recommendations for environmental qualification of microprocessor-based systems based on this analysis as well as on the findings documented in the previous reports. The two standards were chosen for this analysis because IEEE 323 is the standard used in the U.S. for the qualification of safety-related equipment in nuclear power plants, and IEC 60780 is its European counterpart. In addition, the IEC

  19. Feed dilution-based design of a thickener for refuse slurry of a coal preparation plant

    Energy Technology Data Exchange (ETDEWEB)

    S. Banisi; M. Yahyaei [Shahid Bahonar University of Kerman, Kerman (Iran). Mining Engineering Group

    2008-10-15

    Thickening is the most widely applied dewatering technique in mineral processing. Thickeners are used to increase the concentration of suspensions by sedimentation, accompanied by the release of a clear liquid. As the particles get finer the thickening process encounters difficulty due to a significant change in the particles settling behavior. The batch settling tests of coal refuse of a coal washing plant that contained 91% particles smaller than 38 {mu}m and 0.6% coarser than 75 {mu}m showed that the optimum feed percent solids that provided highest flux (solids handling capacity) was 4%. The flux of the pulp with the plant solids concentration (i.e., 10% by weight) was 60% lower than that of the pulp with 4% solids. A thickener with a diameter of 22 m based on the dilution of feed from solids concentration of 10% to 4% was designed. Monitoring of the thickener performance for a period of one month in the plant indicated that an average feed rate of 25t/h (dry solids) with solids concentration of 10% could be thickened to an underflow concentration of 26.5% with a clear water overflow. It was found that the key component of the successful operation of the thickener is the dilution of the feed, without dilution the overflow loses its clarity and the system ceases to operate under predetermined conditions. Based on the results of established CFD (Computational Fluid Dynamics) studies, a feeding system that efficiently dissipated the energy of the incoming flow and a staged flocculant addition regime were utilized in the design and operation of the thickener. 23 refs.

  20. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    An endoreversible intercooled regenerative Brayton combined heat and power (CHP) plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.