WorldWideScience

Sample records for cholinergic receptor expression

  1. Culture density regulates both the cholinergic phenotype and the expression of the CNTF receptor in P19 neurons.

    Science.gov (United States)

    Parnas, D; Linial, M

    1997-04-01

    The P19 embryonal carcinoma cells differentiate into neurons, astrocytes, and fibroblast-like cells following induction with retinoic acid. The cells mature into functional neurons, as determined by their ability to release neurotransmitters in a Ca(2+)- and depolarization-dependent manner. P19 neurons in culture represent a mixed population in terms of their neurotransmitter phenotype. The cholinergic phenotype of these neurons is modulated by culture density. Cholinergic markers, such as the vesicular acetylcholine transporter, acetyl cholinesterase, and choline acetyltransferase, are expressed in about 85% of the cells in sparse cultures and are largely suppressed at high cell densities. In contrast, glutamate release is enhanced in dense P19 neuronal cultures. The factor mediating the density effect is concentrated exclusively on the cell membrane of P19 neurons and not on the nonneuronal cells, which also differentiate from P19 embryonal carcinoma cells. This membrane-associated component retains its functionality, even after membrane fixation. The downregulation of the cholinergic properties in dense cultures is paralleled by a downregulation of the alpha subunit of the ciliary neurotrophic factor (CNTF) receptor. Thus, it is suggested that the membrane-associated factor, which mediates the density effect, downregulates the cholinergic phenotype by inhibiting the responsiveness of these neurons to CNTF. We further suggest that the P19 cell line can serve as a model system for the study of neurotransmitter phenotype acquisition and plasticity throughout neuronal differentiation. PMID:9188041

  2. Involvement of M3 Cholinergic Receptor Signal Transduction Pathway in Regulation of the Expression of Chemokine MOB-1, MCP-1 Genes in Pancreatic Acinar Cells

    Institute of Scientific and Technical Information of China (English)

    郑海; 陈道达; 张景輝; 田原

    2004-01-01

    Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay.The results showed that as compared with control group, M3 cholinergic receptor agonist (103mol/L, 104-4ol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10-3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10-5 mol/L atropine) or NF-κB inhibitor (10-2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P <0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.

  3. Central cholinergic regulation of respiration: nicotinic receptors

    Institute of Scientific and Technical Information of China (English)

    Xuesi M SHAO; Jack L FELDMAN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of a4* nAChRs in the preBotzinger Complex (preBotC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBotC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic a4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS.

  4. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons

    OpenAIRE

    Albers, Kathryn M.; Zhang, Xiu Lin; Diges, Charlotte M.; Schwartz, Erica S.; Yang, Charles I; Davis, Brian M.; Gold, Michael S.

    2014-01-01

    Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) s...

  5. The involvement of ventral tegmental area cholinergic muscarinic receptors in classically conditioned fear expression as measured with fear-potentiated startle.

    Science.gov (United States)

    Greba, Q; Munro, L J; Kokkinidis, L

    2000-07-01

    Accumulating evidence suggests that dopamine (DA) neurons in the ventral tegmental area (VTA) contribute to the complex amygdala-based neurocircuitry that mediates fear-motivated behaviors. Because of acetylcholine's (ACh) role in DA neuronal activation, the involvement of VTA cholinergic muscarinic receptors in Pavlovian conditioned fear responding was evaluated in the present study. Fear-potentiated startle was used to assess the effects of intraVTA infused methylscopolamine on conditioned fear performance in laboratory rats. Application of this nonspecific muscarinic receptor antagonist to VTA neurons was observed to inhibit the ability of a conditioned stimulus (CS) previously paired with footshock to enhance the amplitude of the acoustic startle reflex. Doses of methylscopolamine that blocked conditioned fear expression did not alter baseline sensorimotor responding. These results identify ACh neurotransmission in the VTA as a potential excitatory mechanism underlying the fear-arousing properties of threatening environmental stimuli.

  6. The α2-subunit of the nicotinic cholinergic receptor is specifically expressed in medial subpallium-derived cells of mammalian amygdala.

    Science.gov (United States)

    Pombero, Ana; Martinez, Salvador

    2015-08-01

    Nicotinic acetylcholine receptor (nAChR) subtypes are expressed in specific neuronal populations, which are involved in numerous neural functions such as sleep, fatigue, anxiety, and cognition, as well as the central processing of pain and food intake. Moreover, mutations in nAChRs subunits have been related to frontal lobe epilepsy, neurodegenerative diseases, and other neurological disorders, including schizophrenia and attention deficit and hyperactivity disorder (ADHD). Previous studies have shown that the α2-subunit of the AChR (Chrna2) is expressed in the basal forebrain, in the septum, and in some amygdalar nuclei in the adult rodent brain. However, although the importance of this amygdalar expression in emotion-related behavior and the physiopathology of neuropsychiatric disorders has been accepted, a detailed study of the Chrna2 expression pattern during development has been lacking. In this study we found that Chrna2 is specifically expressed in medial subpallium-derived amygdalar nuclei from early developmental stages to adult. This finding could help us to better understand the role of Chrna2 in the differentiation and functional maturation of amygdalar neurons involved in cholinergic-regulated emotional behavior. PMID:25641263

  7. Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    NARCIS (Netherlands)

    De Souza Silva, M. A.; Dolga, Amalia; Pieri, I.; Marchetti, L.; Eisel, U. L. M.; Huston, J. P.; Dere, E.

    2006-01-01

    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the n

  8. The Cholinergic Signaling Responsible for the Expression of a Memory-Related Protein in Primary Rat Cortical Neurons.

    Science.gov (United States)

    Chen, Tsan-Ju; Chen, Shun-Sheng; Wang, Dean-Chuan; Hung, Hui-Shan

    2016-11-01

    Cholinergic dysfunction in the brain is closely related to cognitive impairment including memory loss. In addition to the degeneration of basal forebrain cholinergic neurons, deficits in the cholinergic receptor signaling may also play an important role. In the present study, to examine the cholinergic signaling pathways responsible for the induction of a memory-related postsynaptic protein, a cholinergic agonist carbachol was used to induce the expression of activity-regulated cytoskeleton associated protein (Arc) in primary rat cortical neurons. After pretreating neurons with various antagonists or inhibitors, the levels of carbachol-induced Arc protein expression were detected by Western blot analysis. The results show that carbachol induces Arc protein expression mainly through activating M1 acetylcholine receptors and the downstream phospholipase C pathway, which may lead to the activation of the MAPK/ERK signaling pathway. Importantly, carbachol-mediated M2 receptor activation exerts negative effects on Arc protein expression and thus counteracts the enhanced effects of M1 activation. Furthermore, it is suggested for the first time that M1-mediated enhancement of N-methyl-D-aspartate receptor (NMDAR) responses, leading to Ca(2+) entry through NMDARs, contributes to carbachol-induced Arc protein expression. These findings reveal a more complete cholinergic signaling that is responsible for carbachol-induced Arc protein expression, and thus provide more information for developing treatments that can modulate cholinergic signaling and consequently alleviate cognitive impairment. J. Cell. Physiol. 231: 2428-2438, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895748

  9. Cholinergic receptor binding in the frontal cortex of suicide victims

    International Nuclear Information System (INIS)

    Because there is a high incidence of individuals diagnosed as having an affective disorder who subsequently commit suicide, the author thought it would be of interest to determine QNB binding in the brains of a large sample of suicide victims, and to compare the findings with a well-matched control group. Brain samples were obtained at autopsy from 22 suicide victims and 22 controls. Frontal cortex samples were diseected, frozen, and stored until assayed. Samples of tissue homogenate were incubated in duplicate with 10 concentrations of tritium-QNB. Specific binding was determined with and without atropine. The results confirmed previous studies in which no changes were noted in suicide versus control brains. While the findings neither disprove nor support the cholinergic hypothesis of depression, they do suggest that the neurochemical basis for the in vivo observations of increased responsivity of depressed individuals to muscarinic cholinergic agents might not involve changes in receptors estimated by QNB binding

  10. Antagonist of the amylin receptor blocks beta-amyloid toxicity in rat cholinergic basal forebrain neurons.

    Science.gov (United States)

    Jhamandas, Jack H; MacTavish, David

    2004-06-16

    Salvage of cholinergic neurons in the brain through a blockade of the neurotoxic effects of amyloidbeta protein (Abeta) is one of the major, but still elusive, therapeutic goals of current research in Alzheimer's disease (AD). To date, no receptor has been unequivocally identified for Abeta. Human amylin, which acts via a receptor composed of the calcitonin receptor-like receptor and a receptor-associated membrane protein, possesses amyloidogenic properties and has a profile of neurotoxicity that is strikingly similar to Abeta. In this study, using primary cultures of rat cholinergic basal forebrain neurons, we show that acetyl-[Asn30, Tyr32] sCT(8-37) (AC187), an amylin receptor antagonist, blocks Abeta-induced neurotoxicity. Treatment of cultures with AC187 before exposure to Abeta results in significantly improved neuronal survival as judged by MTT and live-dead cell assays. Quantitative measures of Abeta-evoked apoptotic cell death, using Hoechst and phosphotidylserine staining, confirm neuroprotective effects of AC187. We also demonstrate that AC187 attenuates the activation of initiator and effector caspases that mediate Abeta-induced apoptotic cell death. These data are the first to show that expression of Abeta toxicity may occur through the amylin receptor and suggest a novel therapeutic target for the treatment of AD. PMID:15201330

  11. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  12. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    OpenAIRE

    Luiten, PGM; DEJONG, GI; VANDERZEE, EA; vanDijken, H; van Dijken, H.

    1996-01-01

    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a general consensus as to the presence of nicotinic and muscarinic receptors in the domain of the capillary wall, their precise anatomical position is unknown. The subcellular localization of muscarinic re...

  13. Cholinergic receptors as target for cancer therapy in a systems medicine perspective.

    Science.gov (United States)

    Russo, P; Del Bufalo, A; Milic, M; Salinaro, G; Fini, M; Cesario, A

    2014-01-01

    Epithelial cells not innervated by cholinergic neurons express nicotinic and muscarinic acetylcholine (ACh) receptors (nAChR, mAChR). nAChR and mAChR are components of the auto-/paracrine-regulatory loop of non-neuronal ACh release. The cholinergic control of non-neuronal cells may be mediated by different effects (synergistic, additive, or reciprocal) triggered by these receptors. The ionic events (Ca(+2) influx) are generated by the ACh-opening of nAChR channels, while the metabolic events by ACh-binding to G-proteincoupled mAChR. Effective inter- and intracellular signaling is crucial for valuable cancer cells proliferation and survival. Depending on cancer cell type, different AChR have been identified. The proliferation of airways epithelial cancer cells and pancreatic cancer cells may be under the control of α7-nAChR and M3-mAChR, while breast cancer cells and colon cancer cells are regulated by α9-nAChR, and M3-mAChR, respectively. In turn, these receptors may activate different pathways (Ras-Raf-1-Erk-AKT) as well as other receptors (β- adrenergicR). nAChR or mAChR antagonists may inhibit cancer growth. Inhibition of M3 by antisense or antagonists (Darifenacin, Tiotropium) reduces lung or colon cancer proliferation, as well as inhibition of α9- nAChR [polyphenol (-)-epigallocatechin-3-gallate] diminishes breast cancer cells growth. α7-nAChR silencing inhibits lung cancer proliferation. Moreover, inhibition of the nAChR-β-adrenergicR pathway (β-blockers) could be also useful. This review will describe the future translational perspectives of cholinergic receptors druginhibition in a complex disease such as cancer that poses compelling treatment challenges. Cancer happens as consequence of disease-perturbed molecular networks in relevant organ cells that change during progression. The framework for approaching these challenges is a systems approach. PMID:25324001

  14. Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis.

    Science.gov (United States)

    Muller, Jay F; Mascagni, Franco; Zaric, Violeta; Mott, David D; McDonald, Alexander J

    2016-08-15

    Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R(+) . The main targets of M2R(+) terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R(+) dendritic shafts. M2R-ir was also seen in VAChT(+) cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R-mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ-aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400-2417, 2016. © 2016 Wiley Periodicals, Inc. PMID:26779591

  15. Spontaneous Synaptic Activation of Muscarinic Receptors by Striatal Cholinergic Neuron Firing.

    Science.gov (United States)

    Mamaligas, Aphroditi A; Ford, Christopher P

    2016-08-01

    Cholinergic interneurons (CHIs) play a major role in motor and learning functions of the striatum. As acetylcholine does not directly evoke postsynaptic events at most striatal synapses, it remains unclear how postsynaptic cholinergic receptors encode the firing patterns of CHIs in the striatum. To examine the dynamics of acetylcholine release, we used optogenetics and paired recordings from CHIs and medium spiny neurons (MSNs) virally overexpressing G-protein-activated inwardly rectifying potassium (GIRK) channels. Due to the efficient coupling between endogenous muscarinic receptors and GIRK channels, we found that firing of individual CHIs resulted in monosynaptic spontaneous inhibitory post-synaptic currents (IPSCs) in MSNs. Paired CHI-MSN recordings revealed that the high probability of acetylcholine release at these synapses allowed muscarinic receptors to faithfully encode physiological activity patterns from individual CHIs without failure. These results indicate that muscarinic receptors in striatal output neurons reliably decode CHI firing. PMID:27373830

  16. Activation of vascular cholinergic and adrenergic receptors induced by gamma rays

    International Nuclear Information System (INIS)

    Activation of vascular cholinergic receptors and adrenoceptors plays an important role in vasomotoricity and peripheric vascular resistance. These factors are essential in maintaining a stable blood pressure. The aim of this study is to investigate the radiosensitivity differences between vascular cholinergic receptors and adrenoceptors, and consequently to determinate the effects of ionizing radiation (whole body irradiation) on contractile response regulation of vascular smooth muscle fibers VSMF isolated from rat portal vein. Our results show that Clonidine, (non-specific adrenergic agonist), and phenylephrine which is more specific α1-adrenoceptor agonist, increase the VSMF contractions. The maximum effect is obtained at 10-5 - 3.10-5 M. On irradiated rats (1-3-5 Gy), there is an important shift thus, the maximal response (Emax) can be obtained in lower concentrations of clonidine and phenylephrine. Irradiation deceases the contractile responses of VSMF mediated by cholinergic stimulation, in a dose dependant manner. With Emax 1 Gy>Emax 3 Gy>Emax 5 Gy. Irradiated muscular fibers became less sensitive to acetylcholine, thus 3.10-8 M. A. ch induced more than 50% of contraction force increase in normal conditions. This concentration induce generally a negligible effect after irradiation. The results reveal the existence of radiosensitivity differences between vascular cholinergic and adrenergic receptors. (author)

  17. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    Science.gov (United States)

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  18. Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Zhi-zhong GUAN

    2008-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, and its pathogenesis is likely to be associated with multiple etiologies and mechanisms in which oxidative stress and deficits of neurotransmitter receptors may play impor-tant roles. It has been indicated that a high level of free radicals can influence the expressions of nicotinic receptors (nAChRs), muscarinic receptors (mAChRs), and N-methyl-D-aspartate (NMDA) receptors, exhibiting disturbances of cellular mem-brane by lipid peroxidation, damages of the protein receptors by protein oxidation, and possible modified gene expressions of these receptors by DNA oxidation. nAChRs have shown an antioxidative effect by a direct or an indirect pathway; mAChR stimulation may generate reactive oxygen species, which might be a physi-ological compensative reaction, or improve oxidative stress; and high stimulation to NMDA receptors can increase the sensitivity of oxidative stress of neurons. This review may provide complemental information" for understanding the correla-tion between oxidative stress and changed cholinergic and glutaminergic recep-tors in AD processing, and for revealing the underlying molecular mechanisms of these factors in the multiple etiologies and pathophysiology of the disorder.

  19. Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons

    OpenAIRE

    Fernández de Sevilla, D.; Núñez Molina, Ángel; Borde, M.; Malinow, R.; Buño, Washinton

    2008-01-01

    Cholinergic-glutamatergic interactions influence forms of synaptic plasticity that are thought to mediate memory and learning. We tested in vitro the induction of long-lasting synaptic enhancement at Schaffer collaterals by acetylcholine (ACh) at the apical dendrite of CA1 pyramidal neurons and in vivo by stimulation of cholinergic afferents. In vitro ACh induced a Ca2+ wave and synaptic enhancement mediated by insertion of AMPA receptors in spines. Activation of muscarinic ACh receptors (mAC...

  20. Naltrexone pretreatment blocks microwave-induced changes in central cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.; Carino, M.A.; Wen, Y.F.; Horita, A.; Guy, A.W. (Univ. of Washington School of Medicine, Seattle (USA))

    1991-01-01

    Repeated exposure of rats to pulsed, circularly polarized microwaves (2,450-MHz, 2-microseconds pulses at 500 pps, power density 1 mW/cm2, at an averaged, whole-body SAR of 0.6 W/kg) induced biphasic changes in the concentration of muscarinic cholinergic receptors in the central nervous system. An increase in receptor concentration occurred in the hippocampus of rats subjected to ten 45-min sessions of microwave exposure, whereas a decrease in concentration was observed in the frontal cortex and hippocampus of rats exposed to ten 20-min sessions. These findings, which confirm earlier work in the authors' laboratory, were extended to include pretreatment of rats with the narcotic antagonist naltrexone (1 mg/kg, IP) before each session of exposure. The drug treatment blocked the microwave-induced changes in cholinergic receptors in the brain. These data further support the authors' hypothesis that endogenous opioids play a role in the effects of microwaves on central cholinergic systems.

  1. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    Kristi A Kohlmeier

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  2. C. elegans dopaminergic D2-like receptors delimit recurrent cholinergic-mediated motor programs during a goal-oriented behavior.

    Directory of Open Access Journals (Sweden)

    Paola Correa

    Full Text Available Caenorhabditis elegans male copulation requires coordinated temporal-spatial execution of different motor outputs. During mating, a cloacal circuit consisting of cholinergic sensory-motor neurons and sex muscles maintains the male's position and executes copulatory spicule thrusts at his mate's vulva. However, distinct signaling mechanisms that delimit these behaviors to their proper context are unclear. We found that dopamine (DA signaling directs copulatory spicule insertion attempts to the hermaphrodite vulva by dampening spurious stimulus-independent sex muscle contractions. From pharmacology and genetic analyses, DA antagonizes stimulatory ACh signaling via the D2-like receptors, DOP-2 and DOP-3, and Gα(o/i proteins, GOA-1 and GPA-7. Calcium imaging and optogenetics suggest that heightened DA-expressing ray neuron activities coincide with the cholinergic cloacal ganglia function during spicule insertion attempts. D2-like receptor signaling also attenuates the excitability of additional mating circuits to reduce the duration of mating attempts with unproductive and/or inappropriate partners. This suggests that, during wild-type mating, simultaneous DA-ACh signaling modulates the activity threshold of repetitive motor programs, thus confining the behavior to the proper situational context.

  3. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Virág T Takács

    Full Text Available Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum. In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties

  4. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo.

    Science.gov (United States)

    Koszegi, Zsombor; Szego, Éva M; Cheong, Rachel Y; Tolod-Kemp, Emeline; Ábrahám, István M

    2011-09-01

    17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.

  5. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus.

    Science.gov (United States)

    Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-06-01

    Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes. PMID:27103432

  6. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. In vivo PET imaging of brain nicotinic cholinergic receptors

    International Nuclear Information System (INIS)

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the α4β2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [18F]fluoro-A-85380 (Dolle et al., 1999). The [18F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ 18F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the 18F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [18F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [18F]fluoro-A-85380 was also used in epileptic patients to whom a mutation in the α4 or β2 nAChRs subunit have been identified. We found that, in these patients, the pattern of the brain distribution of the radiotracer was found different when compared to the healthy subjects

  8. Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sciamanna

    Full Text Available BACKGROUND: DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. METHODS AND RESULTS: We characterized the alterations in D2 dopamine receptor (D2R signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT. An abnormal excitatory response to the D2R agonist quinpirole was recorded at postnatal day 14, consisting of a membrane depolarization coupled to an increase in spiking frequency, and persisted unchanged at 3 and 9 months in hMT mice, compared to mice expressing wild-type human torsinA and non-transgenic mice. This response was blocked by the D2R antagonist sulpiride and depended upon G-proteins, as it was prevented by intrapipette GDP-β-S. Patch-clamp recordings from dissociated interneurons revealed a significant increase in the Cav2.2-mediated current fraction at all ages examined. Consistently, chelation of intracellular calcium abolished the paradoxical response to quinpirole. Finally, no gross morphological changes were observed during development. CONCLUSIONS: These results suggest that an imbalanced striatal dopaminergic/cholinergic signaling occurs early in DYT1 dystonia and persists along development, representing a susceptibility factor for symptom generation.

  9. In vivo PET imaging of brain nicotinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bottlaender, M.; Valette, H.; Saba, W.; Schollhorn-Peyronneau, M.A.; Dolle, F.; Syrota, A. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the {alpha}4{beta}2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [{sup 18}F]fluoro-A-85380 (Dolle et al., 1999). The [{sup 18}F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ {sup 18}F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the < 4R2 nAChRs. Competition and pre-blocking studies, using nicotinic agonists, confirm that the radiotracer binds specifically to the heteromeric nAChRs in the brain (Valette et al., 1999). The in vivo, characteristics of the [{sup 18}F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [{sup 18}F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [{sup 18}F

  10. Cholinergic stimulation of pancreatic amylase release and muscarinic receptors: effect of ionophore A23187

    International Nuclear Information System (INIS)

    Dispersed rat pancreatic acini were incubated in 0.5 mM calcium medium with increasing concentrations of carbamylcholine, with or without the ionophore A23187 (10-6M). Addition of the ionophore reduced maximal amylase release, increased the maximal effective concentration of carbamylcholine and dramatically impaired the agonist's capacity to induce enzyme secretion at low concentration. The ionophore also abolished the inhibition of secretion observed at high carbamylcholine concentrations. These effects of the ionophore on the cholinergic secretory response cannot be explained by interaction at the muscarinic receptor since neither the Bmax, the affinity of the receptor for the [3H]QNB nor the binding of carbamylcholine were affected by the ionophore. It is suggested that for the conditions studied, the ionophore can interact with the secretory process at one or several points ulterior to the initial recognition site of carbamylcholine on its receptor. 30 references, 3 figures

  11. Cholinergic Targets in Lung Cancer.

    Science.gov (United States)

    Spindel, Eliot R

    2016-01-01

    Lung cancers express an autocrine cholinergic loop in which secreted acetylcholine can stimulate tumor growth through both nicotinic and muscarinic receptors. Because activation of mAChR and nAChR stimulates growth; tumor growth can be stimulated by both locally synthesized acetylcholine as well as acetylcholine from distal sources and from nicotine in the high percentage of lung cancer patients who are smokers. The stimulation of lung cancer growth by cholinergic agonists offers many potential new targets for lung cancer therapy. Cholinergic signaling can be targeted at the level of choline transport; acetylcholine synthesis, secretion and degradation; and nicotinic and muscarinic receptors. In addition, the newly describe family of ly-6 allosteric modulators of nicotinic signaling such as lynx1 and lynx2 offers yet another new approach to novel lung cancer therapeutics. Each of these targets has their potential advantages and disadvantages for the development of new lung cancer therapies which are discussed in this review. PMID:26818857

  12. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H. [and others

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  13. Hook-up of GluA2, GRIP and liprin-α for cholinergic muscarinic receptor-dependent LTD in the hippocampus

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-06-01

    Full Text Available Abstract The molecular mechanism underlying muscarinic acetylcholine receptor-dependent LTD (mAChR-LTD in the hippocampus is less studied. In a recent study, a novel mechanism is described. The induction of mAChR-LTD required the activation of protein tyrosine phosphatase (PTP, and the expression was mediated by AMPA receptor endocytosis via interactions between GluA2, GRIP and liprin-α. The hook-up of these proteins may result in the recruitment of leukocyte common antigen-related receptor (LAR, a PTP that is known to be involved in AMPA receptor trafficking. Interestingly, the similar molecular interaction cannot be applied to mGluR-LTD, despite the fact that the same G-protein involved in LTD is activated by both mAChR and mGluR. This discovery provides key molecular insights for cholinergic dependent cognitive function, and mAChR-LTD can serve as a useful cellular model for studying the roles of cholinergic mechanism in learning and memory.

  14. Dorsal raphe nucleus acetylcholine-mediated neurotransmission modulates post-ictal antinociception: The role of muscarinic and nicotinic cholinergic receptors.

    Science.gov (United States)

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Francisco; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2016-01-15

    The dorsal raphe nucleus (DRN) is a key structure of the endogenous pain inhibitory system. Although the DRN is rich in serotoninergic neurons, cholinergic neurons are also found in that nucleus. Both ictal and inter-ictal states are followed by post-ictal analgesia. The present study investigated the role of cholinergic mechanisms in postictal antinociceptive processes using microinjections of atropine and mecamylamine, muscarinic and nicotinic cholinergic receptor antagonists, respectively, in the DRN of rats. Intraperitoneal injection of pentylenetetrazole (PTZ) (at 64mg/kg) caused tonic and tonic-clonic seizures. The convulsive motor reactions were followed by an increase in pain thresholds, a phenomenon known as post-ictal analgesia. Pre-treatment of the DRN with atropine or mecamylamine at 1µg, 3µg and 5µg/0.2µL decreased the post-ictal antinociceptive phenomenon. The present results showed that the post-ictal analgesia was mediated by muscarinic and nicotinic cholinergic receptors in the DRN, a structure crucially involved in the neural network that organises post-ictal hypoalgesia. PMID:26620541

  15. An increase in intracelluar free calcium ions modulated by cholinergic receptors in rat facial nucleus

    Institute of Scientific and Technical Information of China (English)

    SUN Da-wei; ZHOU Rui; LI Na; ZHANG Qiu-gui; ZHU Fu-gao

    2009-01-01

    Background Ca2+in the central nervous system plays important roles in brain physiology, including neuronal survival and regeneration in rats with injured facial motoneurons. The present research was to study the modulations of intracellular free Ca2+ concentrations by cholinergic receptors in rat facial nucleus, and the mechanisms of the modulations. Methods The fluorescence intensity of facial nucleus in Fluo-3 AM loaded acute brainstem slices was detected by applying intracellular free Ca2+ measurement technique via confocal laser scanning microscope. The changes of fluorescence intensity of facial nucleus indicate the average changes of intracellular free Ca2+ levels of the neurons. Results Acetylcholine was effective at increasing the fluorescence intensity of facial nucleus. Muscarine chlorlde induced a marked increase of fluorescence intensity in a concentration dependent fashion. The enhancement of fluorescence intensity by muscarine chloride was significantly reduced by thapsigargin (depletor of intracellular Ca2+ store; P0.05). And the increase of fluorescence intensity was also significantly inhibited by pirenzepine (M1 subtype selective antagonist; P0.05).Conclusions The data provide the evidence that muscarinic receptors may induce the increase of intracellular free Ca2+ levels through the Ca2+ release of intracellular Ca2+ stores, in a manner related to M1 and M3 subtypes of muscarinic receptors in rat facial nucleus. Nicotine may increase intracellular free Ca2+ concentrations via the influx of extracellular Ca2+ mainly across L-type voltage-gated Ca2+ channels, in a manner related to the α4β2 subtype of nicotinic receptors.

  16. Developmental Profile of the Aberrant Dopamine D2 Receptor Response in Striatal Cholinergic Interneurons in DYT1 Dystonia

    OpenAIRE

    Giuseppe Sciamanna; Annalisa Tassone; Giuseppina Martella; Georgia Mandolesi; Francesca Puglisi; Dario Cuomo; Grazia Madeo; Giulia Ponterio; David George Standaert; Paola Bonsi; Antonio Pisani

    2011-01-01

    BACKGROUND: DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. METHODS AND RESULTS: We characterized the alterations in D2 dopamine receptor (D2R) signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT). An abnormal excitatory response to the D2R agonist quinpirole w...

  17. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    NARCIS (Netherlands)

    Luiten, PGM; deJong, GI; VanderZee, EA; vanDijken, H; Dijken, H. van

    1996-01-01

    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a genera

  18. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology

    Science.gov (United States)

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S.; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  19. INTRAHIPPOCAMPAL ADMINISTRATION OF IBOTENIC ACID INDUCED CHOLINERGIC DYSFUNCTION via NR2A/NR2B EXPRESSION: IMPLICATIONS OF RESVERATROL AGAINST ALZHEIMER DISEASE PATHOPHYSIOLOGY

    Directory of Open Access Journals (Sweden)

    Chennakesavan eKarthick

    2016-04-01

    Full Text Available Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression towards Alzheimer’s disease (AD pathology. Resveratrol (RSV, a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5µg/µl lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20mg/kg body weight, i.p significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the

  20. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology.

    Science.gov (United States)

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  1. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. (Genentech, San Francisco, CA (USA))

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  2. Muscarinic and nicotinic cholinergic receptor antagonists differentially mediate acquisition of fructose-conditioned flavor preference and quinine-conditioned flavor avoidance in rats.

    Science.gov (United States)

    Rotella, Francis M; Olsson, Kerstin; Vig, Vishal; Yenko, Ira; Pagirsky, Jeremy; Kohen, Ilanna; Aminov, Alon; Dindyal, Trisha; Bodnar, Richard J

    2015-09-01

    Rats display both conditioned flavor preference (CFP) for fructose, and conditioned flavor avoidance (CFA) following sweet adulteration with quinine. Previous pharmacological analyses revealed that fructose-CFP expression was significantly reduced by dopamine (DA) D1 or D2 antagonists, but not NMDA or opioid antagonists. Fructose-CFP acquisition was significantly reduced by DA D1, DA D2 or NMDA antagonists, but not opioid antagonists. Quinine-CFA acquisition was significantly enhanced and prolonged by DA D1, NMDA or opioid, but not DA D2 antagonists. Cholinergic interneurons and projections interact with DA systems in the nucleus accumbens and ventral tegmental area. Further, both muscarinic and nicotinic cholinergic receptor signaling have been implicated in sweet intake and development of food-related preferences. Therefore, the present study examined whether systemic administration of muscarinic (scopolamine: SCOP) or nicotinic (mecamylamine: MEC) cholinergic receptor antagonists mediated fructose-CFP expression, fructose-CFP acquisition and quinine-CFA acquisition. For fructose-CFP expression, rats were trained over 10 sessions with a CS+ flavor in 8% fructose and 0.2% saccharin and a CS- flavor in 0.2% saccharin. Two-bottle choice tests with CS+ and CS- flavors mixed in 0.2% saccharin occurred following vehicle, SCOP (0.1-10mg/kg) and MEC (1-8mg/kg). For fructose-CFP acquisition, six groups of rats received vehicle, SCOP (1 or 2.5mg/kg), MEC (4 or 6mg/kg) or a limited intake vehicle control 0.5h prior to 10 CS+ and CS- training sessions followed by six 2-bottle CS+ and CS- choice tests in 0.2% saccharin. For quinine-CFA acquisition, five groups of rats received vehicle, SCOP (1 or 2.5mg/kg) or MEC (4 or 6mg/kg) 0.5h prior to 8 one-bottle CS- (8% fructose+0.2% saccharin: FS) and CS+ (fructose+saccharin+quinine (0.030%: FSQ) training sessions followed by six 2-bottle CS- and CS+ choice tests in fructose-saccharin solutions. Fructose-CFP expression was

  3. New Etiology of Cholinergic Urticaria.

    Science.gov (United States)

    Tokura, Yoshiki

    2016-01-01

    Cholinergic urticaria (CholU) is characterized by pinpoint-sized, highly pruritic wheals occurring upon sweating. Both direct and indirect theories in the interaction of acetylcholine (ACh) with mast cells have been put forward in the sweating-associated histamine release from mast cells. In the mechanism of indirect involvement of ACh, patients are hypersensitive to sweat antigen(s) and develop wheals in response to sweat substances leaking from the syringeal ducts to the dermis, possibly by obstruction of the ducts. Some patients with CholU exhibit a positive reaction to intradermal injection of their own diluted sweat, representing 'sweat allergy (hypersensitivity)'. Regarding the direct interaction theory between ACh and mast cells, we found that CholU with anhidrosis and hypohidrosis lacks cholinergic receptor M3 (CHRM3) expression in eccrine sweat gland epithelial cells. The expression of CHRM3 is completely absent in the anhidrotic areas and lowly expressed in the hypohidrotic areas. In the hypohidrotic area, where CholU occurs, it is hypothesized that ACh released from nerves cannot be completely trapped by cholinergic receptors of eccrine glands and overflows to the adjacent mast cells, leading to wheals. PMID:27584968

  4. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    Science.gov (United States)

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  5. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  6. The Regulatory Action of Radix Astragali on M-Cholinergic Receptor of the Brain of Senile Rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The changes in density of M-cholinergic receptors in different areas of senile rats and the regulatory action of Huang Qi (黄芪Radix Astragali, a drug for warming yang and replenishing qi) were observed by autoradiography. The results showed that the gray scale displayed in brain sections was clear and mainly distributed in the cortex, hippocampus and striate body, while that due to nonspecific combination was negligible. The gray scale in the cortex, hippocampus and striate body of the experimental group was markedly lower than that in the young control rats, decreased respectively by 24.87%, 14.12% and 12.76% (all P<0.05); but it was obviously higher than those in the senile control rats, increased respectively by 24.15%, 14.38% and 13.47% (P<0.05). The data indicate that Huang Qi (黄芪Radix Astragali) may up-regulate the decreased density of M-cholinergic receptors in the brain of senile rats.

  7. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    Science.gov (United States)

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors. PMID:26084221

  8. Activation of Muscarinic Acetylcholine Receptor Subtype 4 is Essential for Cholinergic Stimulation of Gastric Acid Secretion - Relation To D Cell/Somatostatin -

    Directory of Open Access Journals (Sweden)

    Koji Takeuchi

    2016-08-01

    Full Text Available AbstractBackground/Aim: Muscarinic acetylcholine receptors exist in five subtypes (M1~M5, and they are widely expressed in various tissues to mediate diverse autonomic functions, including gastric secretion. In the present study, we demonstrated, using M1~M5 KO mice, the importance of M4 receptors in carbachol (CCh stimulation of acid secretion and investigated how the secretion is modulated by the activation of M4 receptors. Methods: C57BL/6J mice of wild-type (WT and M1-M5 KO were used. Under urethane anesthesia, acid secretion was measured in the stomach equipped with an acute fistula. CCh (30 µg/kg was given s.c. to stimulate acid secretion. Atropine or octreotide (a somatostatin analogue was given s.c. 20 min before the administration of CCh. CYN154806 (a somatostatin SST2 receptor antagonist was given i.p. 20 min before the administration of octreotide or CCh. Results: CCh caused an increase of acid secretion in WT mice, and the effect was totally inhibited by prior administration of atropine. The effect of CCh was similarly observed in the animals lacking M1, M2 or M5 receptors but significantly decreased in M3 or M4 KO mice. CYN154806, the SST2 receptor antagonist, dose-dependently and significantly reversed the decreased acid response to CCh in M4 but not M3 KO mice. Octreotide, the somatostatin analogue, inhibited the secretion of acid under CCh-stimulated conditions in WT mice. The immunohistochemical study showed the localization of M4 receptors on D cells in the stomach. Serum somatostatin levels in M4 KO mice were higher than WT mice under basal conditions, while those in WT mice were significantly decreased in response to CCh. Conclusions: These results suggest that under cholinergic stimulation the acid secretion is directly mediated by M3 receptors and indirectly modified by M4 receptors. It is assumed that the activation of M4 receptors inhibits the release of somatostatin from D cells and minimizes the acid inhibitory effect

  9. Selective immunolesion of cholinergic neurons leads to long-term changes in 5-HT2A receptor levels in hippocampus and frontal cortex

    DEFF Research Database (Denmark)

    Severino, Maurizio; Pedersen, Anja F; Trajkovska, Viktorija;

    2007-01-01

    Although loss of cholinergic neurons in the basal forebrain is considered a key initial feature in Alzheimer's disease (AD), changes in other transmitter systems, including serotonin and 5-HT(2A) receptors, are also associated with early AD. The aim of this study was to investigate whether elimin...

  10. Cholinesterases: structure of the active site and mechanism of the effect of cholinergic receptor blockers on the rate of interaction with ligands

    Energy Technology Data Exchange (ETDEWEB)

    Antokhin, A M; Gainullina, E T; Taranchenko, V F [Federal State Agency ' 27 Scientific Centre of Ministry of Defence of the Russian Federation' (Russian Federation); Ryzhikov, S B; Yavaeva, D K [Department of Physics, M.V.Lomonosov Moscow State University (Russian Federation)

    2010-10-19

    Modern views on the structure of cholinesterase active sites and the mechanism of their interaction with organophosphorus inhibitors are considered. The attention is focused on the mechanism of the effect of cholinergic receptor blockers, acetylcholine antagonists, on the rate of interaction of acetylcholine esterase with organophosphorus inhibitors.

  11. Effects of beta-amyloid protein on M1 and M2 subtypes of muscarinic acetylcholine receptors in the medial septum-diagonal band complex of the rat: relationship with cholinergic, GABAergic, and calcium-binding protein perikarya.

    Science.gov (United States)

    González, Iván; Arévalo-Serrano, Juan; Sanz-Anquela, José Miguel; Gonzalo-Ruiz, Alicia

    2007-06-01

    Cortical cholinergic dysfunction has been correlated with the expression and processing of beta-amyloid precursor protein. However, it remains unclear as to how cholinergic dysfunction and beta-amyloid (Abeta) formation and deposition might be related to one another. Since the M1- and M2 subtypes of muscarinic acetylcholine receptors (mAChRs) are considered key molecules that transduce the cholinergic message, the purpose of the present study was to assess the effects of the injected Abeta peptide on the number of M1mAchR- and M2mAChR-immunoreactive cells in the medial septum-diagonal band (MS-nDBB) complex of the rat. Injections of Abeta protein into the retrosplenial cortex resulted in a decrease in M1mAChR and M2mAChR immunoreactivity in the MS-nDBB complex. Quantitative analysis revealed a significant reduction in the number of M1mAChR- and M2mAChR-immunoreactive cells in the medial septum nucleus (MS) and in the horizontal nucleus of the diagonal band of Broca (HDB) as compared to the corresponding hemisphere in control animals and with that seen in the contralateral hemisphere, which corresponds to the PBS-injected side. Co-localization studies showed that the M1mAChR protein is localized in GABA-immunoreactive cells of the MS-nDBB complex, in particular those of the MS nucleus, while M2mAChR protein is localized in both the cholinergic and GABAergic cells. Moreover, GABAergic cells containing M2mAChR are mainly localized in the MS nucleus, while cholinergic cells containing M2mAChR are localized in the MS and the HDB nuclei. Our findings suggest that Abeta induces a reduction in M1mAChR- and M2mAChR-containing cells, which may contribute to impairments of cholinergic and GABAergic transmission in the MS-nDBB complex.

  12. Amyloid-β depresses excitatory cholinergic synaptic transmission in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Liqun Fang; Jingjing Duan; Dongzhi Ran; Zihao Fan; Ying Yan; Naya Huang; Huaiyu Gu; Yulan Zhu

    2012-01-01

    Objective Decline,disruption,or alterations of nicotinic cholinergic mechanisms contribute to cognitive dysfunctions like Alzheimer's disease (AD).Although amyloid-β (Aβ) aggregation is a pathological hallmark of AD,the mechanisms by which Aβ peptides modulate cholinergic synaptic transmission and memory loss remain obscure.This study was aimed to investigate the potential synaptic modulation by Aβ of the cholinergic synapses between olfactory receptor neurons and projection neurons (PNs) in the olfactory lobe of the fruit fly.Methods Cholinergic spontaneous and miniature excitatory postsynaptic current (mEPSC) were recorded with whole-cell patch clamp from PNs in Drosophila AD models expressing Aβ40,Aβ42,or Aβ42Arc peptides in neural tissue.Results In fly pupae (2 days before eclosion),overexpression of Aβ42 or Aβ42Arc,but not Aβ40,led to a significant decrease of mEPSC frequency,while overexpression of Aβ40,Aβ42,or Aβ42Arc had no significant effect on mEPSC amplitude.In contrast,Pavlovian olfactory associative learning and lifespan assays showed that both short-term memory and lifespan were decreased in the Drosophila models expressing Aβ40,Aβ42,or Aβ42Arc.Conclusion Both electrophysiological and behavioral results showed an effect of Aβ peptide on cholinergic synaptic transmission and suggest a possible mechanism by which Aβ peptides cause cholinergic neuron degeneration and the consequent memory loss.

  13. Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]dexetimide and [11C]levetimide

    International Nuclear Information System (INIS)

    The localization and quantitation of muscarinic cholinergic receptors (m-AChR) in the living human brain using a non-invasive method such as positron emission tomography (PET) may provide valuable information about receptor changes which have been observed post mortem in patients with Huntington's chorea and Alzheimer's dementia, as well as normal brain mechanisms mediated by the m-AChR. We chose to label dexetimide as a radiotracer for studying the m-AChR and levetimide as a radiotracer for assessing non-specific binding associated with the in vivo receptor binding studies. (author)

  14. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    Science.gov (United States)

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  15. Cholinergic signalling-regulated KV7.5 currents are expressed in colonic ICC-IM but not ICC-MP.

    Science.gov (United States)

    Wright, George W J; Parsons, Sean P; Loera-Valencia, Raúl; Wang, Xuan-Yu; Barajas-López, Carlos; Huizinga, Jan D

    2014-09-01

    Interstitial cells of Cajal (ICC) and the enteric nervous system orchestrate the various rhythmic motor patterns of the colon. Excitation of ICC may evoke stimulus-dependent pacemaker activity and will therefore have a profound effect on colonic motility. The objective of the present study was to evaluate the potential role of K(+) channels in the regulation of ICC excitability. We employed the cell-attached patch clamp technique to assess single channel activity from mouse colon ICC, immunohistochemistry to determine ICC K(+) channel expression and single cell RT-PCR to identify K(+) channel RNA. Single channel activity revealed voltage-sensitive K(+) channels, which were blocked by the KV7 blocker XE991 (n = 8), which also evoked inward maxi channel activity. Muscarinic acetylcholine receptor stimulation with carbachol inhibited K(+) channel activity (n = 8). The single channel conductance was 3.4 ± 0.1 pS (n = 8), but with high extracellular K(+), it was 18.1 ± 0.6 pS (n = 22). Single cell RT-PCR revealed Ano1-positive ICC that were positive for KV7.5. Double immunohistochemical staining of colons for c-Kit and KV7.5 in situ revealed that intramuscular ICC (ICC-IM), but not ICC associated with the myenteric plexus (ICC-MP), were positive for KV7.5. It also revealed dense cholinergic innervation of ICC-IM. ICC-IM and ICC-MP networks were found to be connected. We propose that the pacemaker network in the colon consists of both ICC-MP and ICC-IM and that one way of exciting this network is via cholinergic KV7.5 channel inhibition in ICC-IM.

  16. Nematode cholinergic pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  17. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    Directory of Open Access Journals (Sweden)

    Luis Armando Sawada

    2014-01-01

    Full Text Available Libidibia ferrea (LF is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF, partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg, naloxone (5 mg/kg in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies.

  18. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    Science.gov (United States)

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies. PMID:24860820

  19. TITERS OF ANTIBODIES TO Β1-ADRENOCEPTOR AND M2 CHOLINERGIC RECEPTORS IN PATIENTS WITH VENTRICULAR ARRHYTHMIAS WITHOUT AN ORGANIC CARDIOVASCULAR DISEASE AND THEIR POSSIBLE CLINICAL SIGNIFICANCE

    Directory of Open Access Journals (Sweden)

    M. M. Rogova

    2012-01-01

    Full Text Available Aim. To identify the most promising epitopes that simulate various sites β1-adrenergic and M2-cholinergic receptors, and to evaluate their possible contribution to the development and maintenance of cardiac arrhythmias, particularly idiopathic ventricular arrhythmia. Material and methods. Patients with ventricular arrhythmias without organic cardiovascular disease (the study group; n=70 were included in the study. The control group consisted of 20 healthy volunteers. Evaluation of levels of antibodies to antigenic determinants, modeling various sites β1-adrenergic and M2-cholinergic performed in all patients. Causal treatment with clarithromycin and valacyclovir performed in part of patients. Results. Antibodies to different peptide sequences of β1-adrenergic and M2-cholinergic receptors have been identified in 25% of main group patients. A direct correlation between the frequency of episodes of ventricular tachycardia and IgG levels to MRI-MRIV (p=0.02 revealed. Increase in titre of antibodies to β1-adrenoceptors, to a peptide sequence β8 (p=0.02, and lower titers of antibodies to the M2 acetylcholine receptor — chimera MRI-MRIV IgM (p=0.06 and ARI-MRIV IgM (p=0.07 were observed when assessing the efficacy of the therapy in the causal dynamics in the group of "untreated" patients. IgG titer reduction of ARI-MRIV (p=0.02, which is 4 times out of 10 with reduction of ventricular ectopic activity , recorded after valacyclovir therapy. Clarithromycin therapy on the level of antibodies exerted no significant effect. Conclusion. Possible involvement of antibodies to β1-adrenoceptor and M2-cholinergic receptors in the development of idiopathic ventricular arrhythmias demonstrated. The relationship between the frequency of episodes of ventricular tachycardia and levels of antibody titers to M2-cholinergic receptors found. Attempt of causal treatment, depending on the possible mechanisms of the autoimmune process is executed. Further studies to

  20. Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom.

    Science.gov (United States)

    Nakib, Imene; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2016-10-01

    Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation. PMID:27395044

  1. Morphine dependence and withdrawal induced changes in cholinergic signaling

    Science.gov (United States)

    Neugebauer, Nichole M.; Einstein, Emily B.; Lopez, Maria B.; McClure-Begley, Tristan D.; Mineur, Yann S.; Picciotto, Marina R.

    2013-01-01

    Cholinergic signaling is thought to be involved in morphine dependence and withdrawal, but the specific mechanisms involved remain unclear. The current study aimed to identify alterations in the cholinergic system that may contribute to the development of morphine dependence and withdrawal. Acetylcholinesterase (AChE) activity and [3H]-epibatidine binding were evaluated in order to determine if morphine dependence and withdrawal induces alterations in cholinergic signaling or expression of high affinity nicotinic acetylcholine receptors (nAChRs) in the midbrain (MB), medial habenula (MHb) and interpeduncular nucleus (IPN). The effect of cholinergic signaling through nAChRs on morphine-withdrawal induced jumping behavior was then determined. Lastly, the contribution of β4-containing nAChRs receptors in the MHb to morphine-withdrawal induced jumping behavior and neuronal activity as indicated by c-fos expression was assessed. Chronic morphine administration decreased AChE activity in MB and MHb, an effect that was no longer present following precipitated withdrawal. Morphine dependent mice showed increased nicotinic acetylcholine receptor (nAChR) levels in MB. Further, nicotine (0.4 mg/kg) and lobeline (3 mg/kg) decreased jumping behavior while mecamylamine (1 mg/kg) had no effect. Knock-down of β4 subunit-containing nAChRs in the MHb attenuated c-fos activation, but did not decrease morphine withdrawal-induced jumping. Thus, morphine withdrawal induces cholinergic signaling in the MHb, but this does not appear to be responsible for the effects of cholinergic drugs on somatic signs of opiate withdrawal, as measured by jumping behavior. PMID:23651795

  2. Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide

    Science.gov (United States)

    Kalla, Manish; Chotalia, Minesh; Coughlan, Charles; Hao, Guoliang; Crabtree, Mark J.; Tomek, Jakub; Bub, Gil; Paterson, David J.

    2016-01-01

    Key points Animal studies suggest an anti‐fibrillatory action of the vagus nerve on the ventricle, although the exact mechanism is controversial.Using a Langendorff perfused rat heart, we show that the acetylcholine analogue carbamylcholine raises ventricular fibrillation threshold (VFT) and flattens the electrical restitution curve.The anti‐fibrillatory action of carbamylcholine was prevented by the nicotinic receptor antagonist mecamylamine, inhibitors of neuronal nitric oxide synthase (nNOS) and soluble guanylyl cyclase (sGC), and can be mimicked by the nitric oxide (NO) donor sodium nitroprusside.Carbamylcholine increased NO metabolite content in the coronary effluent and this was prevented by mecamylamine.The anti‐fibrillatory action of both carbamylcholine and sodium nitroprusside was ultimately dependent on muscarinic receptor stimulation as all effects were blocked by atropine.These data demonstrate a protective effect of carbamylcholine on VFT that depends upon both muscarinic and nicotinic receptor stimulation, where the generation of NO is likely to be via a neuronal nNOS–sGC dependent pathway. Abstract Implantable cardiac vagal nerve stimulators are a promising treatment for ventricular arrhythmia in patients with heart failure. Animal studies suggest the anti‐fibrillatory effect may be nitric oxide (NO) dependent, although the exact site of action is controversial. We investigated whether a stable analogue of acetylcholine could raise ventricular fibrillation threshold (VFT), and whether this was dependent on NO generation and/or muscarinic/nicotinic receptor stimulation. VFT was determined in Langendorff perfused rat hearts by burst pacing until sustained VF was induced. Carbamylcholine (CCh, 200 nmol l–1, n = 9) significantly (P < 0.05) reduced heart rate from 292 ± 8 to 224 ± 6 b.p.m. Independent of this heart rate change, CCh caused a significant increase in VFT (control 1.5 ± 0.3 mA, CCh 2.4 ± 0.4 mA, wash 1.1

  3. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex.

    Science.gov (United States)

    Lucas-Meunier, Estelle; Monier, Cyril; Amar, Muriel; Baux, Gérard; Frégnac, Yves; Fossier, Philippe

    2009-10-01

    This study aims to clarify how endogenous release of cortical acetylcholine (ACh) modulates the balance between excitation and inhibition evoked in visual cortex. We show that electrical stimulation in layer 1 produced a significant release of ACh measured intracortically by chemoluminescence and evoked a composite synaptic response recorded intracellularly in layer 5 pyramidal neurons of rat visual cortex. The pharmacological specificity of the ACh neuromodulation was determined from the continuous whole-cell voltage clamp measurement of stimulation-locked changes of the input conductance during the application of cholinergic agonists and antagonists. Blockade of glutamatergic and gamma-aminobutyric acid (GABAergic) receptors suppressed the evoked response, indicating that stimulation-induced release of ACh does not directly activate a cholinergic synaptic conductance in recorded neurons. Comparison of cytisine and mecamylamine effects on nicotinic receptors showed that excitation is enhanced by endogenous evoked release of ACh through the presynaptic activation of alpha(*)beta4 receptors located on glutamatergic fibers. DHbetaE, the selective alpha4beta2 nicotinic receptor antagonist, induced a depression of inhibition. Endogenous ACh could also enhance inhibition by acting directly on GABAergic interneurons, presynaptic to the recorded cell. We conclude that endogenous-released ACh amplifies the dominance of the inhibitory drive and thus decreases the excitability and sensory responsiveness of layer 5 pyramidal neurons. PMID:19176636

  4. Cerebellar Nicotinic Cholinergic Receptors are Intrinsic to the Cerebellum: Implications for Diverse Functional Roles

    Science.gov (United States)

    Turner, Jill R.; Ortinski, Pavel I.; Sherrard, Rachel M.

    2016-01-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum. PMID:21562921

  5. Lesions of cholinergic pedunculopontine tegmental nucleus neurons fail to affect cocaine or heroin self-administration or conditioned place preference in rats.

    Directory of Open Access Journals (Sweden)

    Stephan Steidl

    Full Text Available Cholinergic input to the ventral tegmental area (VTA is known to contribute to reward. Although it is known that the pedunculopontine tegmental nucleus (PPTg provides an important source of excitatory input to the dopamine system, the specific role of PPTg cholinergic input to the VTA in cocaine reward has not been previously determined. We used a diphtheria toxin conjugated to urotensin-II (Dtx::UII, the endogenous ligand for urotensin-II receptors expressed by PPTg cholinergic but not glutamatergic or GABAergic cells, to lesion cholinergic PPTg neurons. Dtx::UII toxin infusion resulted in the loss of 95.78 (±0.65% of PPTg cholinergic cells but did not significantly alter either cocaine or heroin self-administration or the development of cocaine or heroin conditioned place preferences. Thus, cholinergic cells originating in PPTg do not appear to be critical for the rewarding effects of cocaine or of heroin.

  6. Huperzine A protects sepsis associated encephalopathy by promoting the deficient cholinergic nervous function.

    Science.gov (United States)

    Zhu, Sen-Zhi; Huang, Wei-Ping; Huang, Lin-Qiang; Han, Yong-Li; Han, Qian-Peng; Zhu, Gao-Feng; Wen, Miao-Yun; Deng, Yi-Yu; Zeng, Hong-Ke

    2016-09-19

    Neuroinflammatory deregulation in the brain plays a crucial role in the pathogenesis of sepsis associated encephalopathy (SAE). Given the mounting evidence of anti-inflammatory and neuroprotective effects of the cholinergic nervous system, it is surprising that there is little information about its changes in the brain during sepsis. To elucidate the role of the cholinergic nervous system in SAE, hippocampal choline acetyltransferase, muscarinic acetylcholine receptor-1, acetylcholinesterase and acetylcholine were evaluated in LPS-induced sepsis rats. Expression of pro-inflammatory cytokines, neuronal apoptosis, and animal cognitive performance were also assessed. Furthermore, therapeutic effects of the acetylcholinesterase inhibitor Huperzine A (HupA) on the hippocampal cholinergic nervous function and neuroinflammation were evaluated. A deficiency of the cholinergic nervous function was revealed in SAE, accompanied with over-expressed pro-inflammatory cytokines, increase in neuronal apoptosis and brain cognitive impairment. HupA remarkably promoted the deficient cholinergic nervous function and attenuated the abnormal neuroinflammation in SAE, paralleled with the recovery of brain function. We suggest that the deficiency of the cholinergic nervous function and the abnormal neuroinflammation are synergistically implicated in the pathogenesis of SAE. Thus, HupA is a potential therapeutic candidate for SAE, as it improves the deficient cholinergic nervous function and exerts anti-inflammatory action.

  7. Activation of nicotinic cholinergic receptors prevents ventilator-induced lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Fabienne Brégeon

    Full Text Available Respiratory distress syndrome is responsible for 40 to 60 percent mortality. An over mortality of about 10 percent could result from additional lung injury and inflammation due to the life-support mechanical ventilation, which stretches the lung. It has been recently demonstrated, in vitro, that pharmacological activation of the alpha 7 nicotinic receptors (α7-nAChR could down regulate intracellular mediators involved in lung cell inflammatory response to stretch. Our aim was to test in vivo the protective effect of the pharmacological activation of the α7-nAChR against ventilator-induced lung injury (VILI. Anesthetized rats were ventilated for two hours with a high stretch ventilation mode delivering a stroke volume large enough to generate 25-cmH(2O airway pressure, and randomly assigned to four groups: pretreated with parenteral injection of saline or specific agonist of the α7-nAChR (PNU-282987, or submitted to bilateral vagus nerve electrostimulation while pre-treated or not with the α7-nAChR antagonist methyllycaconitine (MLA. Controls ventilated with a conventional stroke volume of 10 mL/kg gave reference data. Physiological indices (compliance of the respiratory system, lung weight, blood oxygenation, arterial blood pressure and lung contents of inflammatory mediators (IL-6 measured by ELISA, substance P assessed using HPLC were severely impaired after two hours of high stretch ventilation (sham group. Vagal stimulation was able to maintain the respiratory parameters close to those obtained in Controls and reduced lung inflammation except when associated to nicotinic receptor blockade (MLA, suggesting the involvement of α7-nAChR in vagally-mediated protection against VILI. Pharmacological pre-treatment with PNU-282987 strongly decreased lung injury and lung IL-6 and substance P contents, and nearly abolished the increase in plasmatic IL-6 levels. Pathological examination of the lungs confirmed the physiological differences observed

  8. Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Animal experiments and preliminary results in humans have indicated alterations of hippocampal muscarinic acetylcholine receptors (mAChR) in temporal lobe epilepsy. Patients with temporal lobe epilepsy often present with a reduction in hippocampal volume. The aim of this study was to investigate the influence of hippocampal atrophy on the quantification of mAChR with single photon emission tomography (SPET) in patients with temporal lobe epilepsy. Cerebral uptake of the muscarinic cholinergic antagonist [123I]4-iododexetimide (IDex) was investigated by SPET in patients suffering from temporal lobe epilepsy of unilateral (n=6) or predominantly unilateral (n=1) onset. Regions of interest were drawn on co-registered magnetic resonance images. Hippocampal volume was determined in these regions and was used to correct the SPET results for partial volume effects. A ratio of hippocampal IDex binding on the affected side to that on the unaffected side was used to detect changes in muscarinic cholinergic receptor density. Before partial volume correction a decrease in hippocampal IDex binding on the focus side was found in each patient. After partial volume no convincing differences remained. Our results indicate that the reduction in hippocampal IDex binding in patients with epilepsy is due to a decrease in hippocampal volume rather than to a decrease in receptor concentration. (orig.). With 2 figs., 2 tabs

  9. The cholinergic system, circadian rhythmicity, and time memory

    NARCIS (Netherlands)

    Hut, R. A.; Van der Zee, E. A.

    2011-01-01

    This review provides an overview of the interaction between the mammalian cholinergic system and circadian system, and its possible role in time memory. Several studies made clear that circadian (daily) fluctuations in acetylcholine (ACh) release, cholinergic enzyme activity and cholinergic receptor

  10. Effects of ginger constituents on the gastrointestinal tract: role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors.

    Science.gov (United States)

    Pertz, Heinz H; Lehmann, Jochen; Roth-Ehrang, René; Elz, Sigurd

    2011-07-01

    The herbal drug ginger (Zingiber officinale Roscoe) may be effective for treating nausea, vomiting, and gastric hypomotility. In these conditions, cholinergic M (3) receptors and serotonergic 5-HT (3) and 5-HT (4) receptors are involved. The major chemical constituents of ginger are [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol. We studied the interaction of [6]-gingerol, [8]-gingerol, [10]-gingerol (racemates), and [6]-shogaol with guinea pig M (3) receptors, guinea pig 5-HT (3) receptors, and rat 5-HT (4) receptors. In whole segments of guinea pig ileum (bioassay for contractile M (3) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol slightly but significantly depressed the maximal carbachol response at an antagonist concentration of 10 µM. In the guinea pig myenteric plexus preparation (bioassay for contractile 5-HT (3) receptors), 5-HT maximal responses were depressed by [10]-gingerol from 93 ± 3 % to 65 ± 6 % at an antagonist concentration of 3 µM and to 48 ± 3 % at an antagonist concentration of 5 µM following desensitization of 5-HT (4) receptors and blockade of 5-HT (1) and 5-HT (2) receptors. [6]-Shogaol (3 µM) induced depression to 61 ± 3 %. In rat esophageal tunica muscularis mucosae (bioassay for relaxant 5-HT (4) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol (2-6.3 µM) showed no agonist effects. The maximal 5-HT response remained unaffected in the presence of the compounds. It is concluded that the efficiency of ginger in reducing nausea and vomiting may be based on a weak inhibitory effect of gingerols and shogaols at M (3) and 5-HT (3) receptors. 5-HT (4) receptors, which play a role in gastroduodenal motility, appear not to be involved in the action of these compounds. PMID:21305447

  11. Novel aspects of cholinergic regulation of colonic ion transport.

    Science.gov (United States)

    Bader, Sandra; Diener, Martin

    2015-06-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (I sc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on I sc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport - up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors - is more complex than previously assumed. PMID:26236483

  12. [Cholinergic system of the heart].

    Science.gov (United States)

    Kučera, Matej; Hrabovská, Anna

    2015-12-01

    The cholinergic system of the heart can be either of neuronal or non-neuronal origin. The neuronal cholinergic system in the heart is represented by preganglionic parasympathetic pathways, intracardiac parasympathetic ganglia and postganglionic parasympathetic neurons projecting to the atria, SA node and AV node. The non-neuronal cholinergic system consists of cardiomyocytes that have complete equipment for synthesis and secretion of acetylcholine. Current knowledge suggests that the non-neuronal cholinergic system in the heart affects the regulation of the heart during sympathetic activation. The non-neuronal cholinergic system of the heart plays also a role in the energy metabolism of cardimyocites. Acetylcholine of both neuronal and non-neuronal origin acts in the heart through muscarinic and nicotinic receptors. The effect of acetylcholine in the heart is terminated by cholinesterases acetylcholinesterase and butyrylcholinesterase. Recently, papers suggest that the increased cholinergic tone in the heart by cholinesterase inhibitors has a positive effect on some cardiovascular disorders such as heart failure. For this reason, the cholinesterase inhibitors might be used in the treatment of certain cardiovascular disorders in the future.

  13. Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis.

    Science.gov (United States)

    van Nierop, Pim; Bertrand, Sonia; Munno, David W; Gouwenberg, Yvonne; van Minnen, Jan; Spafford, J David; Syed, Naweed I; Bertrand, Daniel; Smit, August B

    2006-01-20

    We described a family of nicotinic acetylcholine receptor (nAChR) subunits underlying cholinergic transmission in the central nervous system (CNS) of the mollusc Lymnaea stagnalis. By using degenerate PCR cloning, we identified 12 subunits that display a high sequence similarity to nAChR subunits, of which 10 are of the alpha-type, 1 is of the beta-type, and 1 was not classified because of insufficient sequence information. Heterologous expression of identified subunits confirms their capacity to form functional receptors responding to acetylcholine. The alpha-type subunits can be divided into groups that appear to underlie cation-conducting (excitatory) and anion-conducting (inhibitory) channels involved in synaptic cholinergic transmission. The expression of the Lymnaea nAChR subunits, assessed by real time quantitative PCR and in situ hybridization, indicates that it is localized to neurons and widespread in the CNS, with the number and localization of expressing neurons differing considerably between subunit types. At least 10% of the CNS neurons showed detectable nAChR subunit expression. In addition, cholinergic neurons, as indicated by the expression of the vesicular ACh transporter, comprise approximately 10% of the neurons in all ganglia. Together, our data suggested a prominent role for fast cholinergic transmission in the Lymnaea CNS by using a number of neuronal nAChR subtypes comparable with vertebrate species but with a functional complexity that may be much higher.

  14. Hormone activation of baculovirus expressed progesterone receptors.

    Science.gov (United States)

    Elliston, J F; Beekman, J M; Tsai, S Y; O'Malley, B W; Tsai, M J

    1992-03-15

    Human and chicken progesterone receptors (A form) were overproduced in a baculovirus expression system. These recombinant progesterone receptors were full-length bound progesterone specifically and were recognized by monoclonal antibodies, AB52 and PR22, specific for human and chicken progesterone receptor, respectively. In gel retardation studies, binding of recombinant human and chicken progesterone receptors to their progesterone response element (PRE) was specific and was enhanced in the presence of progesterone. Binding of human progesterone receptor to the PRE was also enhanced in the presence of the antiprogestin, RU486, but very little effect was observed in the presence of estradiol, dexamethasone, testosterone, and vitamin D. In our cell-free transcription system, human progesterone receptor induced transcription in a receptor-dependent and hormone-activable manner. Receptor-stimulated transcription required the presence of the PRE in the test template and could be specifically inhibited by excess PRE oligonucleotides. Furthermore, chicken progesterone receptor also induced in vitro transcription in a hormone-activable manner. These results demonstrate that steroid receptors overexpressed in a baculovirus expression system are functional and exhibit steroid-responsive binding and transcription. These observations support our present understanding of the mechanism of steroid receptor-regulated gene expression and provide a technological format for studies of the role of hormone and antihormone in altering gene expression. PMID:1544902

  15. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  16. Androgen receptor expression in gastrointestinal stromal tumor.

    Science.gov (United States)

    Lopes, Lisandro F; Bacchi, Carlos E

    2009-03-01

    The aim of this study was to evaluate the expression of estrogen, progesterone, and androgen receptors in a large series of gastrointestinal stromal tumors. Clinical and pathologic data were reviewed in 427 cases of gastrointestinal stromal tumor and the expression of such hormone receptors was investigated by immunohistochemistry using tissue microarray technique. All tumors were negative for estrogen receptor expression. Progesterone and androgen receptors expression was observed in 5.4% and 17.6% of tumors, respectively. We found the higher average age at diagnosis, the lower frequency of tumors located in the small intestine, and the higher frequency of extragastrointestinal tumors to be statistically significant in the group of tumors with androgen receptor expression in contrast to the group showing no androgen receptor expression. There was no statistic difference between such groups regarding sex, tumor size, mitotic count, cell morphology, and risk of aggressive behavior. Considering that the expression of androgen receptors in gastrointestinal stromal tumors is not negligible, further studies are encouraged to establish the role of androgen deprivation therapy for gastrointestinal stromal tumors.

  17. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  18. c-fos expression in brainstem premotor interneurons during cholinergically induced active sleep in the cat.

    Science.gov (United States)

    Morales, F R; Sampogna, S; Yamuy, J; Chase, M H

    1999-11-01

    The present study was undertaken to identify trigeminal premotor interneurons that become activated during carbachol-induced active sleep (c-AS). Their identification is a critical step in determining the neural circuits responsible for the atonia of active sleep. Accordingly, the retrograde tracer cholera toxin subunit B (CTb) was injected into the trigeminal motor nuclei complex to label trigeminal interneurons. To identify retrograde-labeled activated neurons, immunocytochemical techniques, designed to label the Fos protein, were used. Double-labeled (i.e., CTb(+), Fos(+)) neurons were found exclusively in the ventral portion of the medullary reticular formation, medial to the facial motor nucleus and lateral to the inferior olive. This region, which encompasses the ventral portion of the nucleus reticularis gigantocellularis and the nucleus magnocellularis, corresponds to the rostral portion of the classic inhibitory region of. This region contained a mean of 606 +/- 41.5 ipsilateral and 90 +/- 32.0 contralateral, CTb-labeled neurons. These cells were of medium-size with an average soma diameter of 20-35 micrometer. Approximately 55% of the retrogradely labeled cells expressed c-fos during a prolonged episode of c-AS. We propose that these neurons are the interneurons responsible for the nonreciprocal postsynaptic inhibition of trigeminal motoneurons that occurs during active sleep. PMID:10531453

  19. Effects of melatonin on learning abilities, cholinergic fibers and nitric oxide synthase expression in rat cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Bin Xu; Junpao Chen; Hailing Zhao

    2006-01-01

    BACKGROUND: Melatonin is a kind of hormones derived from pineal gland. Recent researches demonstrate that melatonin is characterized by anti-oxidation, anti-senility and destroying free radicals. While, effect and pathogenesis of pineal gland on learning ability should be further studied.OBJ ECTIVE: To investigate the effects of pinealectomy on learning abiliy, distribution of cholinesterase and expression of neuronal nitric oxide synthase (nNOS) in cerebral cortex of rats and probe into the effect of melatonin on learning ability, central cholinergic system and nNOS expression.DESIGN: Randomized grouping design and animal study.SETTING: Department of Neurology, the 187 Hospital of Chinese PLA.MATERIALS: A total of 12 male SD rats, of normal learning ability testing with Y-tape maze, of clean grade,weighing 190-210 g, aged 6 weeks, were selected in this study.METHODS: The experiment was carried out in the Department of Neurology, Zhujiang Hospital from July 1997to June 2000. All SD rats were divided into experimental group (n =6,pinealectomy) and control group (n =6, sham operation). Seven days later, rats in both two groups were continuously fed for 33 days. ①Learning ability test: The learning ability of rats was tested by trisection Y-type maze and figured as attempting times. ②Expression of acetylcholinesterase (AchE) was detected by enzyme histochemistry and nNOS was measured by SABC method. ③ Quantitative analysis of AchE fibers: AchE fibers density in unit area (surface density)was surveyed with Leica Diaplan microscope and Leica Quantimet 500+ image analytic apparatus and quantitative parameter was set up for AchE fibers covering density (μm2) per 374 693.656 μm2, moreover, the AchE fibers density was measured in Ⅱ -Ⅳ layers of motor and somatosensory cortex (showing three layers per field of vision at one time), in radiative, lacunaria and molecular layers of CA1, CA2 and CA3 areas, and in lamina multiforms of dentate gyrus. Three tissue slices

  20. Electron microscopic localization of M2-muscarinic receptors in cholinergic and noncholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei of the rat mesopontine tegmentum.

    Science.gov (United States)

    Garzón, Miguel; Pickel, Virginia M

    2016-10-15

    Muscarinic m2 receptors (M2Rs) are implicated in autoregulatory control of cholinergic output neurons located within the pedunculopontine (PPT) and laterodorsal tegmental (LTD) nuclei of the mesopontine tegmentum (MPT). However, these nuclei contain many noncholinergic neurons in which activation of M2R heteroceptors may contribute significantly to the decisive role of the LTD and PPT in sleep-wakefulness. We examined the electron microscopic dual immunolabeling of M2Rs and the vesicular acetylcholine transporter (VAchT) in the MPT of rat brain to identify the potential sites for M2R activation. M2R immunogold labeling was predominately seen in somatodendritic profiles throughout the PPT/LTD complex. In somata, M2R immunogold particles were often associated with Golgi lamellae and cytoplasmic endomembrannes, but were rarely in contact with the plasma membrane, as was commonly seen in dendrites. Approximately 36% of the M2R-labeled somata and 16% of the more numerous M2R-labeled dendrites coexpressed VAchT. M2R and M2R/VAchT-labeled dendritic profiles received synapses from inhibitory- and excitatory-type axon terminals, over 88% of which were unlabeled and others contained exclusively M2R or VAchT immunoreactivity. In axonal profiles M2R immunogold was localized to plasmalemmal and cytoplasmic regions and showed a similar distribution in many VAchT-negative glial profiles. These results provide ultrastructural evidence suggestive of somatic endomembrane trafficking of M2Rs, whose activation serves to regulate the postsynaptic excitatory and inhibitory responses in dendrites of cholinergic and noncholinergic neurons in the MPT. They also suggest the possibility that M2Rs in this brain region mediate the effects of acetylcholine on the release of other neurotransmitters and on glial signaling. J. Comp. Neurol. 524:3084-3103, 2016. © 2016 Wiley Periodicals, Inc. PMID:27038330

  1. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore...... to examine whether human bladder tumor cells express VDR. Tumor biopsies were obtained from 26 patients with TCC. Expression of VDR was examined by immunohistochemical experiments. All tumors expressed VDR. Biopsies from advanced disease contained more VDR positive cells than low stage disease (p ....05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...

  2. Cholinergic regulation of the vasopressin neuroendocrine system

    Energy Technology Data Exchange (ETDEWEB)

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The median eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.

  3. Checks and balances on cholinergic signaling in brain and body function.

    Science.gov (United States)

    Soreq, Hermona

    2015-07-01

    A century after the discovery of acetylcholine (ACh), we recognize both ACh receptors, transporters, and synthesizing and degrading enzymes and regulators of their expression as contributors to cognition, metabolism, and immunity. Recent discoveries indicate that pre- and post-transcriptional ACh signaling controllers coordinate the identity, functioning, dynamics, and brain-to-body communication of cholinergic cells. Checks and balances including epigenetic mechanisms, alternative splicing, and miRNAs may all expand or limit the diversity of these cholinergic components by consistently performing genome-related surveillance. This regulatory network enables homeostatic maintenance of brain-to-body ACh signaling as well as reactions to nicotine, Alzheimer's disease anticholinesterase therapeutics, and agricultural pesticides. Here I review recent reports on the functional implications of these controllers of cholinergic signaling in and out of the brain. PMID:26100140

  4. Cannabinoid-receptor expression in human leukocytes.

    Science.gov (United States)

    Bouaboula, M; Rinaldi, M; Carayon, P; Carillon, C; Delpech, B; Shire, D; Le Fur, G; Casellas, P

    1993-05-15

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS), probably through the cannabinoid receptor, which has recently been cloned in rat and human. While numerous reports have also described effects of cannabinoids on the immune system, the observation of both mRNA and cannabinoid receptor has hitherto been exclusively confined to the brain, a reported detection in the testis being the sole example of its presence at the periphery. Here we report the expression of the cannabinoid receptor on human immune tissues using a highly sensitive polymerase-chain-reaction-based method for mRNA quantification. We show that, although present in a much lower abundance than in brain, cannabinoid receptor transcripts are found in human spleen, tonsils and peripheral blood leukocytes. The distribution pattern displays important variations of the mRNA level for the cannabinoid receptor among the main human blood cell subpopulations. The rank order of mRNA levels in these cells is B cells > natural killer cells > or = polymorphonuclear neutrophils > or = T8 cells > monocytes > T4 cells. Cannabinoid-receptor mRNA, which is also found in monocytic, as well as T and B leukemia cell lines but not in Jurkat cells, presents a great diversity of expression on these cells as well, B-cell lines expressing a much higher level than T-cell lines. The cannabinoid receptor PCR products from leukocytes and brain are identical both in size and sequence suggesting a strong similarity between central and peripheral cannabinoid receptors. The expression of this receptor was demonstrated on membranes of the myelomonocytic U937 cells using the synthetic cannabinoid [3H]CP-55940 as ligand. The Kd determined from Scatchard analysis was 0.1 nM and the Bmax for membranes was 525 fmol/mg protein. The demonstration of cannabinoid-receptor expression at both mRNA and protein levels on human leukocytes provides a molecular basis for cannabinoid action on these cells. PMID

  5. Expression of the 5-HT1A Serotonin Receptor in the Hippocampus Is Required for Social Stress Resilience and the Antidepressant-Like Effects Induced by the Nicotinic Partial Agonist Cytisine

    Science.gov (United States)

    Mineur, Yann S; Einstein, Emily B; Bentham, Matthew P; Wigestrand, Mattis B; Blakeman, Sam; Newbold, Sylvia A; Picciotto, Marina R

    2015-01-01

    Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders. PMID:25288485

  6. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission.

    Science.gov (United States)

    Ovsepian, Saak V; O'Leary, Valerie B; Zaborszky, Laszlo

    2016-06-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  7. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees

    OpenAIRE

    Palmer, Mary J; Moffat, Christopher; Saranzewa, Nastja; Harvey, Jenni; Wright, Geraldine A.; Connolly, Christopher N.

    2013-01-01

    Pesticides that target cholinergic neurotransmission are highly effective, but their use has been implicated in insect pollinator population decline. Honeybees are exposed to two widely used classes of cholinergic pesticide: neonicotinoids (nicotinic receptor agonists) and organophosphate miticides (acetylcholinesterase inhibitors). Although sublethal levels of neonicotinoids are known to disrupt honeybee learning and behaviour, the neurophysiological basis of these effects has not been shown...

  8. Androgen Receptor Is Expressed in Genital Warts

    Institute of Scientific and Technical Information of China (English)

    Jiang Haiyang; Zhang Li; Fan Min; Yang Dexiu

    2003-01-01

    Objective:To study the expression of androgen receptor(AR) in genital warts. Methods:The expressions of AR weredetected in 40 samples of genital warts from 28 males and 12 females and 9 normal foreskins by immunohistochemical stain S-Pmethod. The status of AR expression in wart and normal foreskin were compared. Results:The AR expression was revealed in all 40samples of genital wart and 9 samples of normal foreskin.There weren's any differences in AR expression between the genital wartsand normal foreskins. Conclusions:It' s supposed that androgens may play an important role in regulating the metabolism of GW andthe HPV might be one of viruses which addicts to the tissues expressing AR properly.

  9. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder

    OpenAIRE

    Silva-Ramos, M.; Silva, I; Faria, M.; Magalhães-Cardoso, M. T.; Correia, J.; Ferreirinha, F; Correia-de-Sá, P.

    2015-01-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [3H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n...

  10. Cholinergic Mechanisms in Spinal Locomotion - Potential Target for Rehabilitation Approaches

    Directory of Open Access Journals (Sweden)

    L M Jordan

    2014-11-01

    Full Text Available Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a hyper-cholinergic state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in supressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed

  11. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    Science.gov (United States)

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O.; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options. PMID:27630569

  12. Novel Fast Adapting Interneurons Mediate Cholinergic-Induced Fast GABAA IPSCs In Striatal Spiny Neurons

    OpenAIRE

    Faust, Thomas W.; Assous, Maxime; Shah, Fulva; Tepper, James M.; Koós, Tibor

    2015-01-01

    Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism only one such cell type, the neuropeptide-Y expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that el...

  13. Increased expression of 5-HT(1B) receptors by Herpes simplex virus gene transfer in septal neurons: New in vitro and in vivo models to study 5-HT(1B) receptor function.

    Science.gov (United States)

    Riegert, Céline; Rothmaier, Anna Katharina; Leemhuis, Jost; Sexton, Timothy J; Neumaier, John F; Cassel, Jean-Christophe; Jackisch, Rolf

    2008-07-01

    Serotonergic modulation of acetylcholine (ACh) release after neuron-specific increase of the expression of 5-HT(1B) receptors by gene transfer was studied in vitro and in vivo. The increased expression of the 5-HT(1B) receptor in vitro was induced by treating rat primary fetal septal cell cultures for 3 days with a viral vector inducing the expression of green fluorescent protein (GFP) vector alone, or, in addition, of 5-HT(1B) receptors (HA1B/GFP vector). The transfection resulted in a high number of GFP-positive cells, part of which being immunopositive for choline acetyltransferase. In HA1B/GFP-cultures (vs. GFP-cultures), electrically evoked ACh release was significantly more sensitive to the inhibitory action of the 5-HT(1B) agonist CP-93,129. Increased expression of the 5-HT(1B) receptor in vivo was induced by stereotaxic injections of the vectors into the rat septal region. Three days later, electrically evoked release of ACh in hippocampal slices of HA1B/GFP-treated rats was lower than in their GFP-treated counterparts, showing a higher inhibitory efficacy of endogenous 5-HT on cholinergic terminals after transfection. Moreover, CP-93,129 had a higher inhibitory potency. In conclusion, the HA1B/GFP vector reveals a useful tool to induce a targeted increase of 5-HT(1B) heteroreceptors on cholinergic neurons in selected CNS regions, which provides interesting perspectives for functional approaches at more integrated levels.

  14. Intracerebroventricular injection of mu- and delta-opiate receptor antagonists block 60 Hz magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat.

    Science.gov (United States)

    Lai, H; Carino, M

    1998-01-01

    In previous research, we have found that acute exposure to a 60 Hz magnetic field decreased cholinergic activity in the frontal cortex and hippocampus of the rat as measured by sodium-dependent high-affinity choline uptake activity. We concluded that the effect was mediated by endogenous opioids inside the brain because it could be blocked by pretreatment of rats before magnetic field exposure with the opiate antagonist naltrexone, but not by the peripheral antagonist naloxone methiodide. In the present study, the involvement of opiate receptor subtypes was investigated. Rats were pretreated by intracerebroventricular injection of the mu-opiate receptor antagonist, beta-funaltrexamine, or the delta-opiate receptor antagonist, naltrindole, before exposure to a 60 Hz magnetic field (2 mT, 1 hour). It was found that the effects of magnetic field on high-affinity choline uptake in the frontal cortex and hippocampus were blocked by the drug treatments. These data indicate that both mu- and delta-opiate receptors in the brain are involved in the magnetic field-induced decreases in cholinergic activity in the frontal cortex and hippocampus of the rat.

  15. The expression of the ACTH receptor

    Directory of Open Access Journals (Sweden)

    L.L.K. Elias

    2000-10-01

    Full Text Available Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH acting through a specific cell membrane receptor (ACTH-R. The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.

  16. Cholinergic interneurons control local circuit activity and cocaine conditioning.

    Science.gov (United States)

    Witten, Ilana B; Lin, Shih-Chun; Brodsky, Matthew; Prakash, Rohit; Diester, Ilka; Anikeeva, Polina; Gradinaru, Viviana; Ramakrishnan, Charu; Deisseroth, Karl

    2010-12-17

    Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.

  17. Effects of bone morphogenetic protein-4 on spatial memory and cholinergic expression in the dentate gyrus after fornix-fimbria transection in rats

    Institute of Scientific and Technical Information of China (English)

    Lei Liu; Yilong Xue; Jingkun Pan; Yazhuo Hu; Yuhong Gao; Yun Luo

    2008-01-01

    BACKGROUND: Previous experiments have confirmed bone morphogenetic proteins (BMPs) upregulate cholinergic expression in neurons isolated from the embryonic rat hippocampus and cerebral cortex. Therefore, BMPs could be useful for treating Alzheimer's disease and other neurodegenerative diseases. OBJECTIVE: BMP-4 was infused into the hippocampal dentate gyrus of fornix-fimbria transected rats to test the effects of BMP-4 on cholinergic expression in dentate gyrus neurons, and to observe changes in spatial memory behavior. DESIGN: A randomized controlled animal experiment. SETTING: Department of Neurosurgery and Laboratory for Cell Biology, Institute of Geriatrics, General Hospital of Chinese PLA.MATERIALS: Twenty-seven healthy adult male Sprague Dawley (SD) rats, weighing 250-300 g, were provided by the Laboratory Animal Center of the General Hospital of Chinese PLA. Reagents: BMP-4 (B-2680, Sigma Company) and choline acetyl transferase (ChAT) antibody (AB5042, Chemicon Company) were used in this study. Equipments: a rat stereotaxic instrument (type: SN-2N, Narushige Group, Japan) and Image-prog-plus image analysis software (Media Cybernetics company, USA) were used in this study. The protocol was carried out in accordance with ethical guidelines for the use and care of animals.METHODS: This experiment was performed in the Institute of Geriatrics, General Hospital of Chinese PLA between July 2004 and March 2005. Rats were randomly divided into 4 groups: Alzheimer's disease group (n = 7), normal control group (n = 5), BMP-4-Alzheimer's disease group (n = 8), and model group (n = 7). In the Alzheimer's disease group, the left hippocampal fornix-fimbria of rats was transected to mimic Alzheimer's disease symptoms. In the BMP-4-Alzheimer's disease group, 1 μL BMP-4 (10 mg/L) was perfused into the left dentate gyrus with a microinjector at 1 μL/min. In the model group, 1 μL saline was perfused into the same position by the same method. Twenty-eight days after injection

  18. IL-21 Receptor Expression in Human Tendinopathy

    Directory of Open Access Journals (Sweden)

    Abigail L. Campbell

    2014-01-01

    Full Text Available The pathogenetic mechanisms underlying tendinopathy remain unclear, with much debate as to whether inflammation or degradation has the prominent role. Increasing evidence points toward an early inflammatory infiltrate and associated inflammatory cytokine production in human and animal models of tendon disease. The IL-21/IL-21R axis is a proinflammatory cytokine complex that has been associated with chronic inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. This project aimed to investigate the role and expression of the cytokine/receptor pair IL-21/IL-21R in human tendinopathy. We found significantly elevated expression of IL-21 receptor message and protein in human tendon samples but found no convincing evidence of the presence of IL-21 at message or protein level. The level of expression of IL-21R message/protein in human tenocytes was significantly upregulated by proinflammatory cytokines (TNFα/IL-1β in vitro. These findings demonstrate that IL-21R is present in early human tendinopathy mainly expressed by tenocytes and macrophages. Despite a lack of IL-21 expression, these data again suggest that early tendinopathy has an inflammatory/cytokine phenotype, which may provide novel translational targets in the treatment of tendinopathy.

  19. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Science.gov (United States)

    Guzman, Monica S; De Jaeger, Xavier; Raulic, Sanda; Souza, Ivana A; Li, Alex X; Schmid, Susanne; Menon, Ravi S; Gainetdinov, Raul R; Caron, Marc G; Bartha, Robert; Prado, Vania F; Prado, Marco A M

    2011-11-01

    Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease. PMID:22087075

  20. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Directory of Open Access Journals (Sweden)

    Monica S Guzman

    2011-11-01

    Full Text Available Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.

  1. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A;

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated ...

  2. Expression of Androgen Receptor in Meningiomas

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the expression of androgen receptor (AR) in meningiomas and its relation to tumor proliferative potential, we examined the expression of AR and proliferating cell nuclear antigen (PCNA) by avidine-biotin complex immunohistochemistry in 39 cases of meningiomas. Of the 39 cases of meningiomas, 20(51 %) showed positive AR immunoreactivity. The AR expression positivity rates were 31 % (6/19) in benign meningiomas, 58 % (7/12) in atypical meningiomas, 87.5 % (7/8) in malignant meningiomas, respectively. In addition to the tumor cells, cells of microvascular endothelial proliferation were frequently AR positive. Malignant meningiomas had a significantly higher percentage of AR positive cells compared with atypical and benign meningiomas (P<0.05). The mean proliferating cell nuclear antigen labeling index (PCNA LI) was significantly higher in the malignant meningiomas when compared with atypical meningiomas (P<0.05) and benign meningiomas (P<0.05). AR positive meningiomas had higher PCNA LI than AR negative meningiomas (P<0.05). The expression of AR in tumor tissues was significantly related with PCNA LI. These data indicated that AR in the meningiomas was correlated with histological grade and AR might participate in the growth of these tumors and tumor angiogenesis. The measurement of AR in these tumors may indirectly represent tumor growth potential.

  3. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice

    DEFF Research Database (Denmark)

    de la Cour, Cecilie; Sørensen, Gunnar; Wörtwein, Gitta;

    2015-01-01

    Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system...

  4. Acetylcholinesterase loosens the brain's cholinergic anti-inflammatory response and promotes epileptogenesis

    Directory of Open Access Journals (Sweden)

    Yehudit eGnatek

    2012-05-01

    Full Text Available Recent studies show a key role of brain inflammation in epilepsy. However, the mechanisms controlling brain immune response are only partly understood. In the periphery, acetylcholine (ACh release by the vagus nerve restrains inflammation by inhibiting the activation of leukocytes. Recent reports suggested a similar anti-inflammatory effect for ACh in the brain. Since brain cholinergic dysfunction are documented in epileptic animals, we explored changes in brain cholinergic gene expression and associated immune response during pilocarpine-induced epileptogenesis. Levels of acetylcholinesterase (AChE and inflammatory markers were measured using real-time RT-PCR, in-situ hybridization and immunostaining in wild type (WT and transgenic mice over-expressing the "synaptic" splice variant AChE-S (TgS. One month following pilocarpine, mice were video-monitored for spontaneous seizures. To test directly the effect of ACh on the brain's innate immune response, cytokines expression levels were measured in acute brain slices treated with cholinergic agents. We report a robust upregulation of AChE as early as 48 hrs following pilocarpine-induced status epilepticus (SE. AChE was expressed in hippocampal neurons, microglia and endothelial cells but rarely in astrocytes. TgS mice overexpressing AChE showed constitutive increased microglial activation, elevated levels of pro-inflammatory cytokines 48 hrs after SE and accelerated epileptogenesis compared to their WT counterparts. Finally we show a direct, muscarine-receptor dependant, nicotine-receptor independent anti-inflammatory effect of ACh in brain slices maintained ex vivo. Our work demonstrates for the first time, that ACh directly suppresses brain innate immune response and that AChE up-regulation after SE is associated with enhanced immune response, facilitating the epileptogenic process. Our results highlight the cholinergic system as a potential new target for the prevention of seizures and epilepsy.

  5. Human basophils express interleukin-4 receptors

    International Nuclear Information System (INIS)

    Interleukin-4 (IL-4), a multipotential lymphokine reputed to play an important role in the regulation of immune responses, interacts with a variety of hemopoietic target cells through specific cell surface membrane receptors. The present study was designed to investigate whether human basophils express IL-4 binding sites. For this purpose, basophils were enriched to homogeneity (93% and 98% purity, respectively) from the peripheral blood of two chronic granulocytic leukemia (CGL) donors using a cocktail of monoclonal antibodies (MoAbs) and complement. Purified basophils bound 125I-radiolabeled recombinant human (rh) IL-4 in a specific manner. Quantitative binding studies and Scatchard plot analysis revealed the presence of a single class of high affinity IL-4 binding sites (280 +/- 40 sites per cell in donor 1 and 640 +/- 45 sites per cell in donor 2) with an apparent dissociation constant, kd, of 7.12 x 10(-11) +/- 2.29 x 10(-11) and 9.55 +/- 3.5 x 10(-11) mol/L, respectively. KU812-F, a human basophil precursor cell line, was found to express a single class of 810 to 1,500 high affinity IL-4 binding sites with a kd of 2.63 to 5.54 x 10(-10) mol/L. No change in the numbers or binding constants of IL-4 receptors was found after exposure of KU812-F cells to rhIL-3 (a potent activator of basophils) for 60 minutes. No effect of rhIL-4 on 3H-thymidine uptake, release or synthesis of histamine, or expression of basophil differentiation antigens (Bsp-1, CD11b, CD25, CD40, CD54) on primary human CGL basophils or KU812-F cells was observed

  6. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  7. Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression

    OpenAIRE

    Schlenker, Evelyn H; Rio, Rodrigo Del; Schultz, Harold D.

    2014-01-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a periphera...

  8. Cholinergic Mechanisms in Spinal Locomotion - Potential Target for Rehabilitation Approaches

    OpenAIRE

    Jordan, L M; Noga, B. R.; Cabaj, A. M.; J Provencher

    2014-01-01

    Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Test...

  9. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells

    Science.gov (United States)

    Elgueta, Claudio; Vielma, Alex H.; Palacios, Adrian G.; Schmachtenberg, Oliver

    2015-01-01

    Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca2+ accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca2+ stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing. PMID:25709566

  10. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne;

    2015-01-01

    BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival...

  11. Cholinergic dysfunction in Parkinson's disease.

    Science.gov (United States)

    Müller, Martijn L T M; Bohnen, Nicolaas I

    2013-09-01

    There is increasing interest in the clinical effects of cholinergic basal forebrain and tegmental pedunculopontine complex (PPN) projection degeneration in Parkinson's disease (PD). Recent evidence supports an expanded role beyond cognitive impairment, including effects on olfaction, mood, REM sleep behavior disorder, and motor functions. Cholinergic denervation is variable in PD without dementia and may contribute to clinical symptom heterogeneity. Early in vivo imaging evidence that impaired cholinergic integrity of the PPN associates with frequent falling in PD is now confirmed by human post-mortem evidence. Brainstem cholinergic lesioning studies in primates confirm the role of the PPN in mobility impairment. Degeneration of basal forebrain cholinergic projections correlates with decreased walking speed. Cumulatively, these findings provide evidence for a new paradigm to explain dopamine-resistant features of mobility impairments in PD. Recognition of the increased clinical role of cholinergic system degeneration may motivate new research to expand indications for cholinergic therapy in PD. PMID:23943367

  12. Protective role of the cholinergic anti-inflammatory pathway in a mouse model of viral myocarditis.

    Directory of Open Access Journals (Sweden)

    Zheng Cheng

    Full Text Available Activation of the cholinergic anti-inflammatory pathway, which relies on the α7nAchR (alpha 7 nicotinic acetylcholine receptor, has been shown to decrease proinflammatory cytokines. This relieves inflammatory responses and improves the prognosis of patients with experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, pancreatitis, arthritis and other inflammatory syndromes. However, whether the cholinergic anti-inflammatory pathway has an effect on acute viral myocarditis has not been investigated. Here, we studied the effects of the cholinergic anti-inflammatory pathway on acute viral myocarditis.In a coxsackievirus B3 murine myocarditis model (Balb/c, nicotine and methyllycaconitine were used to stimulate and block the cholinergic anti-inflammatory pathway, respectively. Relevant signal pathways were studied to compare their effects on myocarditis, survival rate, histopathological changes, ultrastructural changes, and cytokine levels. Nicotine treatments significantly improved survival rate, attenuated myocardial lesions, and downregulated the expression of TNF-α and IL-6. Methyllycaconitine decreased survival rate, aggravated myocardial lesions, and upregulated the expression of TNF-α and IL-6. In addition, levels of the signaling protein phosphorylated STAT3 were higher in the nicotine group and lower in the methyllycaconitine group compared with the untreated myocarditis group.These results show that nicotine protects mice from CVB3-induced viral myocarditis and that methyllycaconitine aggravates viral myocarditis in mice. Because nicotine is a α7nAchR agonist and methyllycaconitine is a α7nAchR antagonist, we conclude that α7nAchR activation increases the phosphorylation of STAT3, reduces the expression of TNF-α and IL-6, and, ultimately, alleviates viral myocarditis. We also conclude that blocking α7nAchR reduces the phosphorylation of STAT3, increases the expression of TNF-α and IL-6, aggravating viral

  13. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    International Nuclear Information System (INIS)

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  14. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pranay [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Yadav, Rajesh S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003 (India); Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Dwivedi, Hari N. [Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015 (India); Pant, Aditiya B. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Khanna, Vinay K., E-mail: vkkhanna1@gmail.com [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India)

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  15. Expression of the endocannabinoid receptors in human fascial tissue.

    Science.gov (United States)

    Fede, C; Albertin, G; Petrelli, L; Sfriso, M M; Biz, C; De Caro, R; Stecco, C

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  16. Different neuropeptides are expressed in different functional subsets of cholinergic excitatory motorneurons in the nematode Ascaris suum.

    Science.gov (United States)

    Konop, Christopher J; Knickelbine, Jennifer J; Sygulla, Molly S; Vestling, Martha M; Stretton, Antony O W

    2015-06-17

    Neuropeptides are known to have dramatic effects on neurons and synapses; however, despite extensive studies of the motorneurons in the parasitic nematode Ascaris suum, their peptide content had not yet been described. We determined the peptide content of single excitatory motorneurons by mass spectrometry and tandem mass spectrometry. There are two subsets of ventral cord excitatory motorneurons, each with neuromuscular output either anterior or posterior to their cell body, mediating forward or backward locomotion, respectively. Strikingly, the two sets of neurons contain different neuropeptides, with AF9 and six novel peptides (As-NLP-21.1-6) in anterior projectors, and the six afp-1 peptides in addition to AF2 in posterior projectors. In situ hybridization confirmed the expression of these peptides, validating the integrity of the dissection technique. This work identifies new components of the functional behavioral circuit, as well as potential targets for antiparasitic drug development.

  17. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  18. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  19. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    Science.gov (United States)

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  20. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  1. Cholinergic imaging in dementia spectrum disorders.

    Science.gov (United States)

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios

    2016-07-01

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [(11)C]MP4A and [(11)C]PMP PET for acetylcholinesterase (AChE), [(123)I]5IA SPECT for the α4β2 nicotinic acetylcholine receptor and [(123)I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. PMID:26984612

  2. Cholinergic imaging in dementia spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios [Institute of Psychiatry, Psychology and Neuroscience, King' s College London, Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, London (United Kingdom)

    2016-07-15

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [{sup 11}C]MP4A and [{sup 11}C]PMP PET for acetylcholinesterase (AChE), [{sup 123}I]5IA SPECT for the α{sub 4}β{sub 2} nicotinic acetylcholine receptor and [{sup 123}I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. (orig.)

  3. Basal ganglia cholinergic and dopaminergic function in progressive supranuclear palsy.

    Science.gov (United States)

    Warren, Naomi M; Piggott, Margaret A; Greally, Elizabeth; Lake, Michelle; Lees, Andrew J; Burn, David J

    2007-08-15

    Progressive Supranuclear Palsy (PSP) is a progressive neurodegenerative disorder. In contrast to Parkinson's disease (PD) and dementia with Lewy bodies (DLB), replacement therapy with dopaminergic and cholinergic agents in PSP has been disappointing. The neurochemical basis for this is unclear. Our objective was to measure dopaminergic and cholinergic receptors in the basal ganglia of PSP and control brains. We measured, autoradiographically, dopaminergic (dopamine transporter, 125I PE2I and dopamine D2 receptors, 125I epidepride) and cholinergic (nicotinic alpha4beta2 receptors, 125I 5IA85380 and muscarinic M1 receptors, 3H pirenzepine) parameters in the striatum and pallidum of pathologically confirmed PSP cases (n=15) and controls (n=32). In PSP, there was a marked loss of dopamine transporter and nicotinic alpha4beta2 binding in the striatum and pallidum, consistent with loss of nigrostriatal neurones. Striatal D2 receptors were increased in the caudate and muscarinic M1 receptors were unchanged compared with controls. These results do not account for the poor response to dopaminergic and cholinergic replacement therapies in PSP, and suggest relative preservation of postsynaptic striatal projection neurones bearing D2/M1 receptors. PMID:17534953

  4. Regulation of gonadotropin receptor gene expression

    NARCIS (Netherlands)

    A.P.N. Themmen (Axel); R. Kraaij (Robert); J.A. Grootegoed (Anton)

    1994-01-01

    textabstractThe receptors for the gonadotropins differ from the other G protein-coupled receptors by having a large extracellular hormone-binding domain, encoded by nine or ten exons. Alternative splicing of the large pre-mRNA of approximately 100 kb can result in mRNA species that encode truncated

  5. Vitamin D3 receptor is highly expressed in Hodgkin's lymphoma

    OpenAIRE

    Christoph, Renné; Benz, Alexander H; Hansmann, Martin L

    2012-01-01

    Background: Hodkin s lymphoma is one of the most frequent lymphoma in western world. Despite an overall good prognosis some patients suffer relapsing tumors which are difficult to cure. Over a long period Vitamin D has been shown to be a potential treatment for cancer. Vitamin D acts via the vitamin D receptor, a nuclear receptor, acting as an inducible transcription factor. We aimed to investigate the expression of vitamin D receptor as potential therapeutic target structure in Hodgkin s lym...

  6. Expression of Tas1 taste receptors in mammalian spermatozoa

    OpenAIRE

    Meyer, Dorke; Voigt, Anja; Widmayer, Patricia; Borth, Heike; Huebner, Sandra; Breit, Andreas; Marschall, Susan; Hrabé de Angelis, Martin; Boehm, Ulrich; Meyerhof, Wolfgang; Gudermann, Thomas; Boekhoff, Ingrid

    2012-01-01

    Background: During their transit through the female genital tract, sperm have to recognize and discriminate numerous chemical compounds. However, our current knowledge of the molecular identity of appropriate chemosensory receptor proteins in sperm is still rudimentary. Considering that members of the Tas1r family of taste receptors are able to discriminate between a broad diversity of hydrophilic chemosensory substances, the expression of taste receptors in mammalian spermatozoa was examined...

  7. Brain gangliosides of a transgenic mouse model of Alzheimer's disease with deficiency in GD3-synthase: expression of elevated levels of a cholinergic-specific ganglioside, GT1aα

    Directory of Open Access Journals (Sweden)

    Toshio Ariga

    2013-05-01

    Full Text Available In order to examine the potential involvement of gangliosides in AD (Alzheimer's disease, we compared the ganglioside compositions of the brains of a double-transgenic (Tg mouse model [APP (amyloid precursor protein/PSEN1 (presenilin] of AD and a triple mutant mouse model with an additional deletion of the GD3S (GD3-synthase gene (APP/PSEN1/GD3S−/−. These animals were chosen since it was previously reported that APP/PSEN1/GD3S−/− triple-mutant mice performed as well as WT (wild-type control and GD3S−/− mice on a number of reference memory tasks. Cholinergic neuron-specific gangliosides, such as GT1aα and GQ1bα, were elevated in the brains of double-Tg mice (APP/PSEN1, as compared with those of WT mice. Remarkably, in the triple mutant mouse brains (APP/PSEN1/GD3S−/−, the concentration of GT1aα was elevated and as expected there was no expression of GQ1bα. On the other hand, the level of c-series gangliosides, including GT3, was significantly reduced in the double-Tg mouse brain as compared with the WT. Thus, the disruption of the gene of a specific ganglioside-synthase, GD3S, altered the expression of cholinergic neuron-specific gangliosides. Our data thus suggest the intriguing possibility that the elevated cholinergic-specific ganglioside, GT1aα, in the triple mutant mouse brains (APP/PSEN1/GD3S−/− may contribute to the memory retention in these mice.

  8. High expression of NPY receptors in the human testis.

    Science.gov (United States)

    Körner, Meike; Waser, Beatriche; Thalmann, George N; Reubii, Jean Claude

    2011-04-30

    NPY receptors represent novel molecular therapeutic targets in cancer and obesity. However, the extent of NPY receptor expression in normal human tissues is poorly investigated. Based on the role of NPY in reproductive functions, the NPY receptor expression was studied in 25 normal human testes and, additionally, 24 testicular tumors using NPY receptor autoradiography. In the normal testis, Leydig cells strongly expressed NPY receptor subtype Y2, and small arterial blood vessels Y1. Y2 receptors were found to be functional with agonist-stimulated [(35)S]GTPγS binding autoradiography. Full functional integrity of the NPY system was further suggested by the immunohistochemical detection of NPY peptide in nerve fibers directly adjacent to Leydig cells and arteries. Germ cell tumors expressed Y1 and Y2 on tumor cells in 33% and Y1 on intratumoral blood vessels in 50%. Based on its strong NPY receptor expression in Leydig cells and blood vessels, the normal human testis represents a potentially important physiological and pharmalogical NPY target.

  9. Dopamine receptor expression and function in corticotroph pituitary tumors

    OpenAIRE

    Pivonello, Rosario; Lamberts, Steven; Ferone, Diego; De Herder, Wouter; Kros, Johan; Caro, M.L.; M. Arvigo; Annunziato, L; Lombardi, Gaetano; Colao, Annamaria; Hofland, Leo

    2004-01-01

    textabstractThe role of dopamine agonist treatment in corticotroph pituitary tumors is controversial. The aim of this study was to evaluate D(2) receptor expression in 20 corticotroph pituitary tumors and to correlate it to the in vitro effect of dopamine agonists on ACTH secretion and the in vivo effect of short-term cabergoline treatment on cortisol secretion. D(2) expression was evaluated by receptor-ligand binding, immunohistochemistry, and RT-PCR. A 50% or more decrease in daily urinary ...

  10. Cloning and expression of the rabbit prostaglandin EP2 receptor

    OpenAIRE

    Guan, Youfei; Brett A. Stillman; Zhang, Yahua; Schneider, André; Saito, Osamu; Davis, Linda S.; Redha, Reyadh; Breyer, Richard M.; Breyer, Matthew D.

    2002-01-01

    Background Prostaglandin E2 (PGE2) has multiple physiologic roles mediated by G protein coupled receptors designated E-prostanoid, or "EP" receptors. Evidence supports an important role for the EP2 receptor in regulating fertility, vascular tone and renal function. Results The full-length rabbit EP2 receptor cDNA was cloned. The encoded polypeptide contains 361 amino acid residues with seven hydrophobic domains. COS-1 cells expressing the cloned rabbit EP2 exhibited specific [3H]PGE2 binding ...

  11. Prostaglandin F receptor expression in intrauterine tissues of pregnant rats

    Science.gov (United States)

    Kanca, Halit; Yar, Atiye Seda; Helvacioğlu, Fatma; Menevşe, Sevda; Çalgüner, Engin; Erdoğan, Deniz

    2014-01-01

    In this investigation, we studied the expression and localization of rat prostaglandin F (FP) receptor in uterine tissues of rats on gestational Days 10, 15, 18, 20, 21, 21.5 and postpartal Days 1 and 3 using Western blotting analysis, real-time PCR, and immunohistochemistry. A high level of immunoreactivity was observed on gestational Days 20, 21, and 21.5 with the most significant signals found on Day 20. FP receptor protein was expressed starting on gestational Day 15, and a fluctuating unsteady increase was observed until delivery. Uterine FP receptor mRNA levels were low between Days 10 and 18 of gestation (p < 0.05). The transcript level increased significantly on Day 20 and peaked on Day 21.5 just before labor (p < 0.05). There was a positive correlation between FP receptor mRNA expression and serum estradiol levels (rs = 0.78; p < 0.01) along with serum estradiol/progesterone ratios (rs = 0.79; p < 0.01). In summary, we observed an increase FP receptor expression in rat uterus with advancing gestation, a marked elevation of expression at term, and a concominant decrease during the postpartum period. These findings indicate a role for uterine FP receptors in the mediation of uterine contractility at term. PMID:24136214

  12. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Carlos M. Carballosa

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  13. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    International Nuclear Information System (INIS)

    The effects of brief incubation with carbamylcholine on subsequent binding of [3H]N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with [3H]N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent [3H]N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation

  14. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  15. GABAergic actions on cholinergic laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Kohlmeier, K A; Kristiansen, Uffe

    2010-01-01

    Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated....... In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored...... neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for d-subunit containing GABA(A) receptors, induced inward currents, suggesting...

  16. Intrinsic cholinergic neurons in the hippocampus: fact or artefact?

    Directory of Open Access Journals (Sweden)

    Jan Krzysztof Blusztajn

    2016-03-01

    Full Text Available It is generally agreed that hippocampal acetylcholine (ACh is synthesized and released exclusively from the terminals of the long-axon afferents whose cell bodies reside in the medial septum and diagonal band. The search for intrinsic cholinergic neurons in the hippocampus has a long history; however evidence for the existence of these neurons has been inconsistent, with most investigators failing to detect them using in situ hybridization or immunohistochemical staining of the cholinergic markers, choline acetyltransferase (CHAT or vesicular acetylcholine transporter (VACHT. Advances in the use of bacterial artificial chromosome (BAC transgenic mice expressing a reporter protein under the control of the genomic elements of the Chat gene (Chat-BAC mice have facilitated studies of cholinergic neurons. Such mice show robust and faithful expression of the reporter proteins in all known cholinergic cell populations. The availability of the Chat-BAC mice re-ignited interest in hippocampal cholinergic interneurons, because a small number of such reporter-expressing cells is frequently observed in the hippocampus of these mice. However, to date, attempts to confirm that these neurons co-express the endogenous cholinergic markers CHAT or VACHT, or release ACh, have been unsuccessful. Without such confirmatory evidence it is best to conclude that there are no cholinergic neurons in the hippocampus. Similar considerations apply to other BAC transgenic lines, whose utility as a discovery tool for cell populations heretofore not known to express the genes of interest encoded by the BACs, must be validated by methods that detect expression of the endogenous genes.

  17. Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster.

    Science.gov (United States)

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Proost, Paul; Vanden Broeck, Jozef

    2015-06-01

    Leucine-rich repeat containing G protein-coupled receptors (LGRs) comprise a cluster of transmembrane proteins, characterized by the presence of a large N-terminal extracellular domain. This receptor group can be classified into three subtypes. Belonging to the subtype C LGRs are the mammalian relaxin receptors LGR7 (RXFP1) and LGR8 (RXFP2), which mediate important reproductive and other processes. We identified two related receptors in the genome of the fruit fly and cloned their open reading frames into an expression vector. Interestingly, dLGR3 demonstrated constitutive activity at very low doses of transfected plasmid, whereas dLGR4 did not show any basal activity. Both receptors exhibited a similar expression pattern during development, with relatively high transcript levels during the first larval stage. In addition, both receptors displayed higher expression in male adult flies as compared to female flies. Analysis of the tissue distribution of both receptor transcripts revealed a high expression of dLGR3 in the female fat body, while the expression of dLGR4 peaked in the midgut of both the wandering and adult stage. PMID:25064813

  18. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits.

    Science.gov (United States)

    Paolone, Giovanna; Mallory, Caitlin S; Koshy Cherian, Ajeesh; Miller, Thomas R; Blakely, Randy D; Sarter, Martin

    2013-12-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/- mice. Additionally, CHT+/- mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/- mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/- cholinergic terminals. Further analyses of molecular and functional compensations in the CHT+/- model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders.

  19. Vascular endothelial growth factor receptor-3 expression in mycosis fungoides

    DEFF Research Database (Denmark)

    Pedersen, Ida Holst; Willerslev-Olsen, Andreas; Vetter-Kauczok, Claudia;

    2012-01-01

    Here, we have studied vascular endothelial growth factor receptor-3 (VEGFR-3) expression in mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma (CTCL). Immunohistochemistry revealed that in two-thirds of 34 patients, VEGFR-3 was expressed in situ by both tumor and stromal...

  20. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  1. Regulation of fibrinogen receptor expression on human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Shattil, S.J.; Motulsky, H.J.; Insel, P.A.; Brass, L.F.

    1986-03-01

    Platelet aggregation requires the binding of fibrinogen to specific receptors on the plasma membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The authors have developed a monoclonal anti-IIb-IIIa antibody (PAC-1) that binds only to stimulated platelets and only in the presence of Ca. In order to better understand the steps leading to platelet aggregation, the authors used radiolabeled PAC-1 and fibrinogen to examine the effect of the ..cap alpha../sub 2/-adrenergic agonist, epinephrine, on the expression and function of the fibrinogen receptor. The addition of epinephrine to unstirred platelets caused and immediate increase in PAC-1 and fibrinogen binding that was associated with platelet aggregation once the platelets were stirred. Even after prolonged incubation of the platelets with epinephrine, fibrinogen receptor expression could be reversed by adding EGTA, PGl/sub 2/, or the ..cap alpha../sub 2/-adrenergic antagonist, phentolamine. When unstirred platelets were exposed to epinephrine for more than 10 min, the extent of aggregation caused by subsequent stirring was decreased by 70%. Surprisingly, these desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due to a decrease in fibrinogen receptor expression or function. These studies demonstrate that: (1) fibrinogen receptor expression is dependent on extracellular CA; (2) induction of the fibrinogen receptor by epinephrine requires the continued presence of the agonist; and (3) prolonged stimulation of the platelet by epinephrine can lead to a reduced aggregation response by a mechanism that does not involve a loss of either fibrinogen recepor expression or fibrinogen binding.

  2. Impairment of cognitive function and reduced hippocampal cholinergic activity in a rat model of chronic intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    Chunling Zhao; Yan Chen; Chunlai Zhang; Linya Lü; Qian Xu

    2011-01-01

    The present study established a rat model of chronic intermittent hypoxia (CIH) to simulate obstructive sleep apnea syndrome. CIH rats were evaluated for cognitive function using the Morris water maze, and neuronal pathology in the hippocampus was observed using hematoxylin-eosin staining. In addition, hippocampal choline acetyl transferase (ChAT) and nicotinic acetylcholine receptor (nAChR) expression was determined by immunohistochemistry. Our results revealed necrotic hippocampal neurons, decreased ChAT and nAChR expression, as well as cognitive impairment in CIH rats. These results suggest that hippocampal neuronal necrosis and decreased cholinergic activity may be involved in CIH-induced cognitive impairment in rats.

  3. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    Science.gov (United States)

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  4. Cholinergic urethral brush cells are widespread throughout placental mammals.

    Science.gov (United States)

    Deckmann, Klaus; Krasteva-Christ, Gabriela; Rafiq, Amir; Herden, Christine; Wichmann, Judy; Knauf, Sascha; Nassenstein, Christina; Grevelding, Christoph G; Dorresteijn, Adriaan; Chubanov, Vladimir; Gudermann, Thomas; Bschleipfer, Thomas; Kummer, Wolfgang

    2015-11-01

    We previously identified a population of cholinergic epithelial cells in murine, human and rat urethrae that exhibits a structural marker of brush cells (villin) and expresses components of the canonical taste transduction signaling cascade (α-gustducin, phospholipase Cβ2 (PLCβ2), transient receptor potential cation channel melanostatin 5 (TRPM5)). These cells serve as sentinels, monitoring the chemical composition of the luminal content for potentially hazardous compounds such as bacteria, and initiate protective reflexes counteracting further ingression. In order to elucidate cross-species conservation of the urethral chemosensory pathway we investigated the occurrence and molecular make-up of urethral brush cells in placental mammals. We screened 11 additional species, at least one in each of the five mammalian taxonomic units primates, carnivora, perissodactyla, artiodactyla and rodentia, for immunohistochemical labeling of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), villin, and taste cascade components (α-gustducin, PLCβ2, TRPM5). Corresponding to findings in previously investigated species, urethral epithelial cells with brush cell shape were immunolabeled in all 11 mammals. In 8 species, immunoreactivities against all marker proteins and ChAT were observed, and double-labeling immunofluorescence confirmed the cholinergic nature of villin-positive and chemosensory (TRPM5-positive) cells. In cat and horse, these cells were not labeled by the ChAT antiserum used in this study, and unspecific reactions of the secondary antiserum precluded conclusions about ChAT-expression in the bovine epithelium. These data indicate that urethral brush cells are widespread throughout the mammalian kingdom and evolved not later than about 64.5millionyears ago. PMID:26044348

  5. Cholinergic urethral brush cells are widespread throughout placental mammals.

    Science.gov (United States)

    Deckmann, Klaus; Krasteva-Christ, Gabriela; Rafiq, Amir; Herden, Christine; Wichmann, Judy; Knauf, Sascha; Nassenstein, Christina; Grevelding, Christoph G; Dorresteijn, Adriaan; Chubanov, Vladimir; Gudermann, Thomas; Bschleipfer, Thomas; Kummer, Wolfgang

    2015-11-01

    We previously identified a population of cholinergic epithelial cells in murine, human and rat urethrae that exhibits a structural marker of brush cells (villin) and expresses components of the canonical taste transduction signaling cascade (α-gustducin, phospholipase Cβ2 (PLCβ2), transient receptor potential cation channel melanostatin 5 (TRPM5)). These cells serve as sentinels, monitoring the chemical composition of the luminal content for potentially hazardous compounds such as bacteria, and initiate protective reflexes counteracting further ingression. In order to elucidate cross-species conservation of the urethral chemosensory pathway we investigated the occurrence and molecular make-up of urethral brush cells in placental mammals. We screened 11 additional species, at least one in each of the five mammalian taxonomic units primates, carnivora, perissodactyla, artiodactyla and rodentia, for immunohistochemical labeling of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), villin, and taste cascade components (α-gustducin, PLCβ2, TRPM5). Corresponding to findings in previously investigated species, urethral epithelial cells with brush cell shape were immunolabeled in all 11 mammals. In 8 species, immunoreactivities against all marker proteins and ChAT were observed, and double-labeling immunofluorescence confirmed the cholinergic nature of villin-positive and chemosensory (TRPM5-positive) cells. In cat and horse, these cells were not labeled by the ChAT antiserum used in this study, and unspecific reactions of the secondary antiserum precluded conclusions about ChAT-expression in the bovine epithelium. These data indicate that urethral brush cells are widespread throughout the mammalian kingdom and evolved not later than about 64.5millionyears ago.

  6. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D;

    1990-01-01

    antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  7. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents.

    Science.gov (United States)

    Kanazawa, Hideaki; Ieda, Masaki; Kimura, Kensuke; Arai, Takahide; Kawaguchi-Manabe, Haruko; Matsuhashi, Tomohiro; Endo, Jin; Sano, Motoaki; Kawakami, Takashi; Kimura, Tokuhiro; Monkawa, Toshiaki; Hayashi, Matsuhiko; Iwanami, Akio; Okano, Hideyuki; Okada, Yasunori; Ishibashi-Ueda, Hatsue; Ogawa, Satoshi; Fukuda, Keiichi

    2010-02-01

    Although several cytokines and neurotrophic factors induce sympathetic neurons to transdifferentiate into cholinergic neurons in vitro, the physiological and pathophysiological roles of this remain unknown. During congestive heart failure (CHF), sympathetic neural tone is upregulated, but there is a paradoxical reduction in norepinephrine synthesis and reuptake in the cardiac sympathetic nervous system (SNS). Here we examined whether cholinergic transdifferentiation can occur in the cardiac SNS in rodent models of CHF and investigated the underlying molecular mechanism(s) using genetically modified mice. We used Dahl salt-sensitive rats to model CHF and found that, upon CHF induction, the cardiac SNS clearly acquired cholinergic characteristics. Of the various cholinergic differentiation factors, leukemia inhibitory factor (LIF) and cardiotrophin-1 were strongly upregulated in the ventricles of rats with CHF. Further, LIF and cardiotrophin-1 secreted from cultured failing rat cardiomyocytes induced cholinergic transdifferentiation in cultured sympathetic neurons, and this process was reversed by siRNAs targeting Lif and cardiotrophin-1. Consistent with the data in rats, heart-specific overexpression of LIF in mice caused cholinergic transdifferentiation in the cardiac SNS. Further, SNS-specific targeting of the gene encoding the gp130 subunit of the receptor for LIF and cardiotrophin-1 in mice prevented CHF-induced cholinergic transdifferentiation. Cholinergic transdifferentiation was also observed in the cardiac SNS of autopsied patients with CHF. Thus, CHF causes target-dependent cholinergic transdifferentiation of the cardiac SNS via gp130-signaling cytokines secreted from the failing myocardium.

  8. Multiple melanocortin receptors are expressed in bone cells

    Science.gov (United States)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  9. The involvement of cholinergic neurons in the spreading of tau pathology

    Directory of Open Access Journals (Sweden)

    Diana eSimon

    2013-06-01

    Full Text Available Long time ago, it was described the selective loss of cholinergic neurons during the development of Alzheimer disease. Recently, it has been suggested that tau protein may play a role in that loss of cholinergic neurons through a mechanism involving the interaction of extracellular tau with M1/M3 muscarinic receptors present in the cholinergic neurons. This interaction between tau and muscarinic receptors may be a way, although not the only one, to explain the spreading of tau pathology occurring in Alzheimer disease.

  10. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  11. The chicken progesterone receptor: sequence, expression and functional analysis.

    OpenAIRE

    Gronemeyer, H; Turcotte, B; Quirin-Stricker, C; Bocquel, M T; Meyer, M E; Krozowski, Z; Jeltsch, J M; Lerouge, T; Garnier, J M; P. Chambon

    1987-01-01

    The complete mRNA sequence of the chicken progesterone receptor (cPR) has been determined. Expression of the cloned cDNA both in vivo and in vitro produces a protein that has the same apparent mol. wt on SDS--polyacrylamide gels as the 'natural' cPR form B (109 kd) as determined by immunoblotting and photoaffinity labelling. When expressed in HeLa or in Cos-1 cells the 'cloned' cPR displays hormone binding characteristics indistinguishable from the 'natural' receptor and, in the presence of p...

  12. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade

  13. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    Science.gov (United States)

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  14. Glucocorticoid programming of the mesopontine cholinergic system

    Directory of Open Access Journals (Sweden)

    Sónia eBorges

    2013-12-01

    Full Text Available Stress perception, response, adaptation and coping strategies are individually distinct, and the sequel of stress and/or glucocorticoids is also distinct between subjects. In the last years, it has become clear that early life stress is a powerful modulator of neuroendocrine stress-responsive circuits, programming intrinsic susceptibility to stress, and potentiating the appearance of stress-related disorders such as depression, anxiety and addiction. Herein we were interested in understanding how early life experiences reset the normal processing of negative stimuli, leading to emotional dysfunction. Animals prenatally exposed to glucocorticoids (iuGC present hyperanxiety, increased fear behaviour and hyper-reactivity to negative stimuli. In parallel, we found a remarkable increase in the number of aversive 22kHz ultrasonic vocalizations in response to an aversive cue. Considering the suggested role of the mesopontine tegmentum cholinergic pathway, arising from the laterodorsal tegmental nucleus (LDT and pedunculopontine tegmental nucleus (PPT, in the initiation of 22kHz vocalizations and hypothetically in the control of emotional arousal and tone, we decided to evaluate the condition of this circuit in iuGC animals. Notably, in a basal situation, iuGC animals present increased choline acetyltransferase (ChAT expression in the LDT and PPT, but not in other cholinergic nuclei, namely in the nucleus basalis of Meynert. In addition, and in accordance with the amplified response to an adverse stimulus of iuGC animals, we found marked changes in the cholinergic activation pattern of LDT and PPT regions. Altogether, our results suggest a specific cholinergic pathway programing by prenatal GC, and hint that this may be of relevance in setting individuals stress vulnerability threshold.

  15. Characterization of urokinase receptor expression by human placental trophoblasts.

    Science.gov (United States)

    Zini, J M; Murray, S C; Graham, C H; Lala, P K; Karikó, K; Barnathan, E S; Mazar, A; Henkin, J; Cines, D B; McCrae, K R

    1992-06-01

    The processes of implantation and placentation are both dependent on the invasion and remodeling of the uterine endometrium and vasculature by trophoblasts. Because the secretion and autocrine binding of urokinase (uPA) appears to be a common mechanism used by cells to facilitate plasmin-dependent tissue invasion, we measured the production of uPA and expression of uPA receptors by trophoblasts. Prourokinase bound specifically, reversibly, and with high affinity to cultured trophoblasts, via the uPA epidermal growth factor-like domain. Trophoblasts derived from two first-trimester placentae bound more prourokinase than cells isolated from term placentae. Furthermore, in vitro differentiation of cultured cytotrophoblasts into syncytiotrophoblasts was associated with diminished expression of urokinase receptors and a parallel decrease in the cellular content of uPA receptor mRNA. Trophoblasts also secreted prourokinase and plasminogen activator inhibitors types 1 and 2 (PAI-1 and PAI-2). Although prourokinase was secreted in amounts sufficient to endogenously saturate trophoblast uPA receptors, trophoblasts secreted greater amounts of PAI-1 and PAI-2 than uPA, and no net plasminogen activator activity was detected in trophoblast conditioned medium. In contrast, plasminogen added directly to cultured trophoblasts was readily converted to plasmin. Although the invasion and remodeling of uterine tissues by trophoblasts is a complex process dependent on several proteases of varying specificity, our findings suggest that the expression and modulation of urokinase receptors on the trophoblast cell surface may play an important role in this process. PMID:1316787

  16. Protocol for Heterologous Expression of Insect Odourant Receptors in Drosophila

    OpenAIRE

    Gonzalez, Francisco; Witzgall, Peter; Walker, William B.

    2016-01-01

    Insect olfactory receptors (ORs) are tuned to volatile chemicals, they are expressed in the membrane of olfactory sensory neurons (OSNs), housed in sensilla on the antenna. The olfactory apparatus is under strong selection and ORs are tuned to vital chemical signals, mediating social communication, feeding and oviposition, and avoidance of predators and pathogens. An emerging technique to reliably and efficiently identify the key ligands of ORs is to express single ORs in heterologous cell sy...

  17. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons.

    Science.gov (United States)

    Unal, Cagri T; Pare, Denis; Zaborszky, Laszlo

    2015-01-14

    In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.

  18. Genes involved in Drosophila glutamate receptor expression and localization

    Directory of Open Access Journals (Sweden)

    Featherstone David E

    2005-06-01

    Full Text Available Abstract Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the

  19. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice

    NARCIS (Netherlands)

    M.A. van Maanen; S.P. Stoof; G.J. Larosa; M.J. Vervoordeldonk; P.P. Tak

    2010-01-01

    BACKGROUND: The alpha7 subunit of nicotinic acetylcholine receptors (alpha7nAChR) can negatively regulate the synthesis and release of proinflammatory cytokines by macrophages and fibroblast-like synoviocytes in vitro. In addition, stimulation of the alpha7nAChR can reduce the severity of arthritis

  20. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    André M. Xavier

    2016-04-01

    Full Text Available Glucocorticoids (GCs are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GCs effects on inflammation are generally mediated through GC receptors (GRs. Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors (TLRs pathway, or subject key transcription factors, such as NF-B and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins (APPs and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective glucocorticoid receptor modulators; SEGRMs, cell culture, animal treatment or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive.

  1. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    Science.gov (United States)

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  2. Expression of haemopexin receptors by cultured human cytotrophoblast

    NARCIS (Netherlands)

    H.P. van Dijk (Hans); M.J. Kroos; J.S. Starreveld; H.G. van Eijk (Henk); S.P. Tang; D.X. Song

    1995-01-01

    textabstractThe expression of cell-surface haemopexin (Hx) receptors on human cytotrophoblasts was assessed by using four different Hx species purified from plasma: human Hx isolated by wheatgerm-affinity chromatography, human Hx isolated by haem-agarose-affinity chroma

  3. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  4. Cloning and expression of the rabbit prostaglandin EP2 receptor

    Science.gov (United States)

    Guan, Youfei; Stillman, Brett A; Zhang, Yahua; Schneider, André; Saito, Osamu; Davis, Linda S; Redha, Reyadh; Breyer, Richard M; Breyer, Matthew D

    2002-01-01

    Background Prostaglandin E2 (PGE2) has multiple physiologic roles mediated by G protein coupled receptors designated E-prostanoid, or "EP" receptors. Evidence supports an important role for the EP2 receptor in regulating fertility, vascular tone and renal function. Results The full-length rabbit EP2 receptor cDNA was cloned. The encoded polypeptide contains 361 amino acid residues with seven hydrophobic domains. COS-1 cells expressing the cloned rabbit EP2 exhibited specific [3H]PGE2 binding with a Kd of 19.1± 1.7 nM. [3H]PGE2 was displaced by unlabeled ligands in the following order: PGE2>>PGD2=PGF2α=iloprost. Binding of [3H]PGE2 was also displaced by EP receptor subtype selective agonists with a rank order of affinity consistent with the EP2 receptor (butaprost>AH13205>misoprostol>sulprostone). Butaprost free acid produced a concentration-dependent increase in cAMP accumulation in rabbit EP2 transfected COS-1 cells with a half-maximal effective concentration of 480 nM. RNase protection assay revealed high expression in the ileum, spleen, and liver with lower expression in the kidney, lung, heart, uterus, adrenal gland and skeletal muscle. In situ hybridization localized EP2 mRNA to the uterine endometrium, but showed no distinct localization in the kidney. EP2 mRNA expression along the nephron was determined by RT-PCR and its expression was present in glomeruli, MCD, tDL and CCD. In cultured cells EP2 receptor was not detected in collecting ducts but was detected in renal interstitial cells and vascular smooth muscle cells. EP2 mRNA was also detected in arteries, veins, and preglomerular vessels of the kidney. Conclusion EP2 expression pattern is consistent with the known functional roles for cAMP coupled PGE2 effects in reproductive and vascular tissues and renal interstitial cells. It remains uncertain whether it is also expressed in renal tubules. PMID:12097143

  5. Expression of estrogen and progesterone receptors in papillary thyroid carcinoma

    Science.gov (United States)

    Jalali-Nadoushan, Mohammad-Reza; Amirtouri, Reza; Davati, Ali; Askari, Samaneh; Siadati, Sepideh

    2016-01-01

    Background: Papillary thyroid carcinoma (PTC), occurs mostly in women and sex hormones may play a role in the pathogenesis and clinical course. The objective of this study was to determine the status and prevalence of estrogen and progesterone receptors in PTC with regard to age, gender, tumor size and lymph node involvement. Methods: Immunohistochemical stains were performed on 92 tissue blocks of PTC for estrogen receptor (ER) and progesterone receptor (PR) expression in tumor cells. Chi-square test and Mann-Whitney U test were used to determine statistical difference using statistical software SPSS. Results: The mean age of patients was 39.32±1.7 years (range 13-80) with 79(85.9%) women and 13 (14.1%) men. Lymph node involvement was seen in 76.1% of patients. The average tumor size was 3.6±2.21 cm. The rate of ER and PR expression were 46.75% and 5.6%, respectively. ER expression for females was higher than males (P=0.014), but no relation was found between males and females in PR expression (P=0.7). Also there was no statistical difference between ER and PR expression with respect to age, lymph node involvement and tumor size. Conclusion: Our study showed higher ER expression in females than males with PTC. No relation was found between the expression of these receptors and age of presentation, lymph node involvement and tumor size. Further investigation is required to determine the prognostic importance of ER and PR in PTC.

  6. Melanocortin 4 Receptor and Dopamine D2 Receptor Expression in Brain Areas Involved in Food Intake

    OpenAIRE

    Yoon, Ye Ran; Baik, Ja-Hyun

    2015-01-01

    Background The melanocortin 4 receptor (MC4R) is involved in the regulation of homeostatic energy balance by the hypothalamus. Recent reports showed that MC4R can also control the motivation for food in association with a brain reward system, such as dopamine. We investigated the expression levels of MC4R and the dopamine D2 receptor (D2R), which is known to be related to food rewards, in both the hypothalamus and brain regions involved in food rewards. Methods We examined the expression leve...

  7. Evaluation of leptin receptor expression on buffalo leukocytes.

    Science.gov (United States)

    De Matteis, Giovanna; Grandoni, Francesco; Scatà, Maria Carmela; Catizone, Angela; Reale, Anna; Crisà, Alessandra; Moioli, Bianca

    2016-09-01

    Experimental evidences support a direct role for leptin in immunity. Besides controlling food intake and energy expenditure, leptin was reported to be involved in the regulation of the immune system in ruminants. The aim of this work was to highlight the expression of leptin receptor (LEPR) on Bubalus bubalis immune cells using a multi-approach assessment: flow cytometry, confocal microscopy and gene expression analysis. Flow cytometric analysis of LEPR expression showed that peripheral blood monocytes were the predominant cells expressing LEPR. This result was corroborated by confocal microscopy and RT-PCR analysis. Moreover, among lymphocytes, LEPR was mainly expressed by B lymphocytes and Natural Killer cells. Evidence of LEPR expression on buffalo blood leukocytes showed to be a good indicator of the responsivity of these cells to leptin, so confirming the involvement of leptin in buffalo immune response. PMID:27436440

  8. Expression of serotonin receptor genes in cranial ganglia.

    Science.gov (United States)

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  9. Dopamine receptor expression and function in corticotroph pituitary tumors.

    Science.gov (United States)

    Pivonello, Rosario; Ferone, Diego; de Herder, Wouter W; Kros, Johan M; De Caro, Maria Laura Del Basso; Arvigo, Marica; Annunziato, Lucio; Lombardi, Gaetano; Colao, Annamaria; Hofland, Leo J; Lamberts, Steven W J

    2004-05-01

    The role of dopamine agonist treatment in corticotroph pituitary tumors is controversial. The aim of this study was to evaluate D(2) receptor expression in 20 corticotroph pituitary tumors and to correlate it to the in vitro effect of dopamine agonists on ACTH secretion and the in vivo effect of short-term cabergoline treatment on cortisol secretion. D(2) expression was evaluated by receptor-ligand binding, immunohistochemistry, and RT-PCR. A 50% or more decrease in daily urinary cortisol levels was considered a significant clinical response. At receptor-ligand binding, specific binding of [(125)I]epidepride was found in 80% of cases. At immunohistochemistry, specific D(2) immunostaining was found in 75% of cases. D(2) expression was found in 83.3% of cases (D(2long) in 40%, D(2short) in 20%, and both in 40%) by RT-PCR. Significant in vitro inhibition of ACTH secretion was found in 100% of D(2)-positive cases, but not in 100% of D(2)-negative cases by either bromocriptine or cabergoline. A significant in vivo inhibition of cortisol secretion after 3-month cabergoline treatment was found in 60%, although a normalization of cortisol secretion was found in 40% of cases. All cabergoline-responsive cases were associated with D(2) expression, whereas all noncabergoline-responsive cases but one were not associated with D(2) expression. In conclusion, functional D(2) receptors were expressed in approximately 80% of corticotroph pituitary tumors. The effectiveness of cabergoline in normalizing cortisol secretion in 40% of cases supports its therapeutic use in the management of Cushing's disease. PMID:15126577

  10. Novel G Protein-Coupled Oestrogen Receptor GPR30 Shows Changes in mRNA Expression in the Rat Brain over the Oestrous Cycle

    Directory of Open Access Journals (Sweden)

    Emma J. Spary

    2012-02-01

    Full Text Available Oestrogen influences autonomic function via actions at classical nuclear oestrogen receptors α and β in the brain, and recent evidence suggests the orphan G protein-coupled receptor GPR30 may also function as a cytoplasmic oestrogen receptor. We investigated the expression of GPR30 in female rat brains throughout the oestrous cycle and after ovariectomy to determine whether GPR30 expression in central autonomic nuclei is correlated with circulating oestrogen levels. In the nucleus of the solitary tract (NTS, ventrolateral medulla (VLM and periaqueductal gray (PAG GPR30 mRNA, quantified by real-time PCR, was increased in proestrus and oestrus. In ovariectomised (OVX rats, expression in NTS and VLM appeared increased compared to metoestrus, but in the hypothalamic paraventricular nucleus and PAG lower mRNA levels were seen in OVX. GPR30-like immunoreactivity (GPR30-LI colocalised with Golgi in neurones in many brain areas associated with autonomic pathways, and analysis of numbers of immunoreactive neurones showed differences consistent with the PCR data. GPR30-LI was found in a variety of transmitter phenotypes, including cholinergic, serotonergic, catecholaminergic and nitrergic neurones in different neuronal groups. These observations support the view that GPR30 could act as a rapid transducer responding to oestrogen levels and thus modulate the activity of central autonomic pathways.

  11. GABA(A) receptors implicated in REM sleep control express a benzodiazepine binding site.

    Science.gov (United States)

    Nguyen, Tin Quang; Liang, Chang-Lin; Marks, Gerald A

    2013-08-21

    It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consistent with GABAA receptor antagonists disinhibiting acetylcholine release in the PnO to result in an acetylcholine-mediated REM sleep induction. Direct evidence has been lacking for localization in the PnO of the specific GABAA receptor-subtypes mediating the REM sleep effects. Here, we demonstrated a dose-related, long-lasting increase in REM sleep following injection (60 nl) in the PnO of the inverse benzodiazepine agonist, methyl-6,7-dimethoxy-4-ethyl-β-carboline (DMCM, 10(-2)M). REM sleep increases were greater and more consistently produced than with the non-selective antagonist gabazine, and both were blocked by atropine. Fluorescence immunohistochemistry and laser scanning confocal microscopy, colocalized in PnO vesicular acetylcholine transporter, a presynaptic marker of cholinergic boutons, with the γ2 subunit of the GABAA receptor. These data provide support for the direct action of GABA on mechanisms of acetylcholine release in the PnO. The presence of the γ2 subunit at this locus and the REM sleep induction by DMCM are consistent with binding of benzodiazepines by a GABAA receptor-subtype in control of REM sleep.

  12. Axotomy-induced neurotrophic withdrawal causes the loss of phenotypic differentiation and downregulation of NGF signalling, but not death of septal cholinergic neurons

    Directory of Open Access Journals (Sweden)

    Inestrosa Nibaldo C

    2010-01-01

    Full Text Available Abstract Background Septal cholinergic neurons account for most of the cholinergic innervations of the hippocampus, playing a key role in the regulation of hippocampal synaptic activity. Disruption of the septo-hippocampal pathway by an experimental transection of the fimbria-fornix drastically reduces the target-derived trophic support received by cholinergic septal neurons, mainly nerve growth factor (NGF from the hippocampus. Axotomy of cholinergic neurons induces a reduction in the number of neurons positive for cholinergic markers in the medial septum. In several studies, the reduction of cholinergic markers has been interpreted as analogous to the neurodegeneration of cholinergic cells, ruling out the possibility that neurons lose their cholinergic phenotype without dying. Understanding the mechanism of cholinergic neurodegeneration after axotomy is relevant, since this paradigm has been extensively explored as an animal model of the cholinergic impairment observed in neuropathologies such as Alzheimer's disease. The principal aim of this study was to evaluate, using modern quantitative confocal microscopy, neurodegenerative changes in septal cholinergic neurons after axotomy and to assess their response to delayed infusion of NGF in rats. Results We found that there is a slow reduction of cholinergic cells labeled by ChAT and p75 after axotomy. However, this phenomenon is not accompanied by neurodegenerative changes or by a decrease in total neuronal number in the medial septum. Although the remaining axotomized-neurons appear healthy, they are unable to respond to delayed NGF infusion. Conclusions Our results demonstrate that at 3 weeks, axotomized cholinergic neurons lose their cholinergic phenotype without dying and down-regulate their NGF-receptors, precluding the possibility of a response to NGF. Therefore, the physiological role of NGF in the adult septal cholinergic system is to support phenotypic differentiation and not survival

  13. Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma

    Directory of Open Access Journals (Sweden)

    John Davies

    2012-01-01

    Full Text Available Canine osteosarcoma (OS is an aggressive malignant bone tumor. Prognosis is primarily determined by clinical parameters. Vitamin D has been postulated as a novel therapeutic option for many malignancies. Upon activation, vitamin D receptors (VDRs combine with retinoid receptor (RXR forming a heterodimer initiating a cascade of events. Vitamin D's antineoplastic activity and its mechanism of action in OS remain to be clearly established. Expression of VDR, RXR, Ki-67, survivin, and ezrin was studied in 33 archived, canine OS specimens. VDR, RXR, survivin, and ezrin were expressed in the majority of cases. There was no statistically significant difference in VDR expression in relationship with tumor grade, type, or locations or animal breed, age, and/or sex. No significant association (p=0.316 between tumor grade and Ki-67 expression was found; in particular, no difference in Ki-67 expression between grades 2 and 3 OSs was found, while a negative correlation was noted between Ki-67 and VDR expression (ρ=−0.466, a positive correlation between survivin and RXR expression was found (p=0.374. A significant relationship exists between VDR and RXR expression in OSs and proliferative/apoptosis markers. These results establish a foundation for elucidating mechanisms by which vitamin D induces antineoplastic activity in OS.

  14. Heterogeneous Expression of Drosophila Gustatory Receptors in Enteroendocrine Cells

    OpenAIRE

    Jeong-Ho Park; Jae Young Kwon

    2011-01-01

    The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can p...

  15. Stimulation of acetylcholine receptors impairs host defence during pneumococcal pneumonia

    NARCIS (Netherlands)

    I.A.J. Giebelen; M. Leendertse; S. Florquin; T. van der Poll

    2009-01-01

    The cholinergic nervous system can inhibit the systemic inflammation accompanying sepsis by virtue of a specific action of acetylcholine on alpha7 cholinergic receptors. The current authors sought to determine the effect of nicotine, an alpha7 cholinergic receptor agonist, on the host response to pn

  16. Chemokine receptor expression by inflammatory T cells in EAE.

    Science.gov (United States)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 1% of CD4(+) T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8(+) T cells. CD8(+) T cells expressed CXCR3, which was also expressed by CD4(+) T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6(+) and CXCR3(+) CD4(+) T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8(+) T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  17. Chemokine receptor expression by inflammatory T cells in EAE

    Directory of Open Access Journals (Sweden)

    Jyothi Thyagabhavan Mony

    2014-07-01

    Full Text Available Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS. The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS. The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4+ T cells that produce the cytokine IL-17 (Th17 cells. Th17 cells and interferon-gamma (IFNγ-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE. We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4+ T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 7.7% of CD4+ T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8+ T cells. CD8+ T cells expressed CXCR3, which was also expressed by CD4+ T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6+ and CXCR3+ CD4+ T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8+ T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4+ T cells expressed CCR6 within infiltrates. CD4-negative CCR6+ cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4+ and CD8+ T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  18. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    OpenAIRE

    Shogo Sato; Ken Shirato; Kaoru Tachiyashiki; Kazuhiko Imaizumi

    2011-01-01

    We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented ...

  19. Spatiotemporal expression of Nogo-66 receptor after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yue Cao; Ya-xian Dong; Jie Xu; Guo-liang Chu; Zhi-hua Yang; Yan-ming Liu

    2016-01-01

    NgR, the receptor for the neurite outgrowth inhibitor Nogo-66, plays a critical role in the plasticity and regeneration of the nervous system after injury such as ischemic stroke. In the present study, we used immunohistochemistry to investigate the regional expression of NgR in rat brain following middle cerebral artery occlusion (MCAO). NgR protein expression was not observed in the center of the lesion, but was elevated in the marginal zone compared with control and sham-operated rats. The cerebral cortex and hippocampus (CA1, CA2, and CA3) showed the greatest expression of NgR. Furthermore, NgR expression was higher in the ipsilesional hemisphere than on the control side in the same coronal section. Although time-dependent changes in NgR expression across brain regions had their own characteristics, the overall trend complied with the following rules: NgR expression changes with time showed two peaks and one trough; the ifrst peak in expression appeared between 1 and 3 days after MCAO; expression declined at 5 days; and the second peak occurred at 28 days.

  20. A tale of two receptors: Dual roles for ionotropic acetylcholine receptors in regulating motor neuron excitation and inhibition.

    Science.gov (United States)

    Philbrook, Alison; Barbagallo, Belinda; Francis, Michael M

    2013-07-01

    Nicotinic or ionotropic acetylcholine receptors (iAChRs) mediate excitatory signaling throughout the nervous system, and the heterogeneity of these receptors contributes to their multifaceted roles. Our recent work has characterized a single iAChR subunit, ACR-12, which contributes to two distinct iAChR subtypes within the C. elegans motor circuit. These two receptor subtypes regulate the coordinated activity of excitatory (cholinergic) and inhibitory (GABAergic) motor neurons. We have shown that the iAChR subunit ACR-12 is differentially expressed in both cholinergic and GABAergic motor neurons within the motor circuit. In cholinergic motor neurons, ACR-12 is incorporated into the previously characterized ACR-2 heteromeric receptor, which shows non-synaptic localization patterns and plays a modulatory role in controlling circuit function.(1) In contrast, a second population of ACR-12-containing receptors in GABAergic motor neurons, ACR-12GABA, shows synaptic expression and regulates inhibitory signaling.(2) Here, we discuss the two ACR-12-containing receptor subtypes, their distinct expression patterns, and functional roles in the C. elegans motor circuit. We anticipate our continuing studies of iAChRs in the C. elegans motor circuit will lead to novel insights into iAChR function in the nervous system as well as mechanisms for their regulation. PMID:24778941

  1. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  2. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  3. Expression of oestrogen receptor-α and oestrogen receptor-β in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-sheng; WANG Ying; WANG Ping; CHEN Zhao-dian

    2007-01-01

    Background Recent studies have suggested that estrogens are involved in normal and abnormal prostate growth,though their exact role is still controversial. Oestrogens exert inhibitory and stimulatory effects on prostate gland, but the expression of oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) in malignant prostate tissue remains unresolved. We determined ERα and ERβ in prostate cancer and investigated the relationship between expression of ER and pathological features of prostate carcinoma.Methods Thirty-two cases of prostate cancer, 12 cases of normal prostate tissue and 32 cases of benign prostate hyperplasia were analyzed for the expression of ERα and ERβ using semiquantitative, reverse transcription polymerase chain reaction (RT-PCR) and the products sequenced.Results Comparisons of the normal, hyperplastic and tumour prostate tissues indicated an overexpression of ERα in tumour specimens (P<0.01). However, the expression of ERβ significantly reduced in tumour tissues compared with normal and hyperplastic specimens (P<0.01), suggesting that severe pathological features of prostate cancer were associated with lower ERβ expression. Spearman analysis showed negative correlation between ERβ expression and tumour stage, grade (-0.67, -0.43, respectively, both P<0.05), and a positive correlation between ERα expression and tumour stage, grade (0.51, 0.57, respectively, both P<0.01). Our analysis also showed that hormone refractory, prostate cancer, compared with hormone dependent, prostate cancer, displayed a decreased expression of ERβ (P<0.01) and an increased expression of ERα.Conclusions ERa and ERβ may play important roles in the development of prostate cancer. The decrease in ERβ expression is associated with higher Gleason grade tumours and prostate cancer with higher metastatic potential. The loss of ERβ could be one of the key processes leading to uncontrolled growth of prostate epithelial cells.

  4. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    Science.gov (United States)

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  5. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection.

    Science.gov (United States)

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-08-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP(-/-) MEF cells, and quite substantially decreased in TRIF(-/-) MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP(-/-) MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  6. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice.

    Science.gov (United States)

    Abdus-Saboor, Ishmail; Al Nufal, Mohammed J; Agha, Maha V; Ruinart de Brimont, Marion; Fleischmann, Alexander; Shykind, Benjamin M

    2016-04-25

    Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice. PMID:27040780

  7. TEMPORAL EXPRESSION OF NOTCH RECEPTORS DURING LUNG DEVELOPMENT IN RAT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian-shen; CHANG Li-wen; LIU Han-chu; RONG Zhi-hu; CHEN Hong-bing

    2005-01-01

    Objective To investigate the temporal expression of Notch receptors in developing lungs of rats and to explore the regulating role of Notch in lung development. Methods We studied the expression of Notch1,2,3 isforms in embryonic days 18,20,21 and postnatal days 1,4,7,14, 21 rat lungs. Six rats of each group were used to assess lung histologic changes by HE staining and expression of Notch in lungs by immunohistochemistry. Total RNA was extracted by Trizol reagent from the frozen lung tissues. mRNA levels of Notch were measured by reverse transcription polymerase chain reaction (RT-PCR). Results It is showed that Notch1-3 mainly localized in the airway surface epithelium、alveolar epithelium during the psdueoglandular stage, and reached the peaks at canalicular period. The expression patterns of Notch1-3 were changed with the fetal age. Conclusion These results support multiple roles for Notch1,2,and 3 receptor activation during lung development, probably not only modulating the process of branching morphogenesis but also involved in determining the cell differentiation fate in fetal alveolar epithelium.

  8. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    Science.gov (United States)

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity.

  9. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs during inflammation induced visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2009-09-01

    Full Text Available Abstract Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs, co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG neurons expressing the transient receptor potential vanilloid-1 (TRPV1 receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned

  10. Prevalence of androgen receptors in invasive breast carcinoma and its relation with estrogen receptor, progesterone receptor and Her2/neu expression

    International Nuclear Information System (INIS)

    Background and aims: Although Breast carcinoma had many targeted bio markers for its treatment, however, it is a heterogeneous disease with different outcomes and need new markers especially for the triple negative group when estrogen receptor, progesterone receptors and Her2/ neu are negative. Androgen receptor is a new target with unclear role. The aim of this study was to examine the prevalence of androgen receptors in invasive breast cancer and tries to elucidate its relation to some well recognized clinico pathological and immunohistochemical markers. Materials and methods: One hundred and fifty cases of invasive breast carcinoma were evaluated for type, grade and stage and studied immunohistochemically for estrogen receptor, progesterone receptor, Her2/neu and androgen expression. Androgen receptor expression was correlated with histopathological factors and the three studied markers separately then the studied cases were classified into three groups according to estrogen, progesterone receptor and Her2/neu expression and correlated with androgen receptor expression. Results: Androgen receptor was expressed in 71% of breast cancer cases. Its expression is associated significantly with both the stage and the grade. Also it was significantly associated with estrogen receptor and Her2/neu expression. It was expressed in a significant number of triple negative breast carcinoma, in Her2/neu positive cases and in estrogen negative cases which indicate that androgen receptor could be a new target for the treatment of these groups. Conclusions: Although the impact of androgen receptor on breast cancer outcomes had not been clearly established, this result may provide evidence that androgen receptor is a good prognostic and predictive marker.

  11. An investigation of the factors that regulate muscarinic receptor expression in schizophrenia.

    Science.gov (United States)

    Seo, Myoung Suk; Scarr, Elizabeth; Dean, Brian

    2014-09-01

    We previously identified a group of subjects with schizophrenia who, on average, have a 75% decrease in cholinergic receptor, muscarinic 1 (CHRM1) in Brodmann's area (BA) 9. To extend this finding, we determined i) if the decrease in CHRM1 was present in another functionally related CNS region (BA6), ii) whether the marked decrease in CHRM1 was accompanied by changes in levels of other CHRMs and iii) potential factors responsible for the decreased CHRM1 expression. We measured CHRM1 and CHRM3 using in situ radioligand binding with [(3)H]pirenzepine and [(3)H]4-DAMP respectively in BA6 from 20 subjects with schizophrenia who had low levels of CHRM1 in BA9 (SzLow[(3)H]PZP), 18 subjects with schizophrenia whose levels of CHRM1 were similar to controls (SzNormal[(3)H]PZP) and 20 control subjects. Levels of CHRM1, 3 and 4 mRNA were measured using qPCR and levels of the transcription factors, SP1 and SP3, were determined using Western blots. In BA6, the density of [(3)H]pirenzepine binding was decreased in subjects with SzLow[(3)H]PZP (p<0.001) compared to controls. The density of [(3)H]4-DAMP binding, levels of CHRM1, 3 and 4 mRNA and levels of SP1 and SP3 was not significantly different between the three groups. This study shows that the previously identified decrease in CHRM1 expression is not confined to the dorsolateral prefrontal cortex but is present in other cortical areas. The effect shows some specificity to CHRM1, with no change in levels of binding to CHRM3. Furthermore, this decrease in CHRM1 does not appear to be associated with low levels of CHRM1 mRNA or to simply be regulated by the transcription factors, SP1 and SP3, suggesting that other mechanisms are responsible for the decreased CHRM1 in these subjects.

  12. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene

    OpenAIRE

    Kratsios, Paschalis; Stolfi, Alberto; Levine, Michael; Hobert, Oliver

    2011-01-01

    Cholinergic motor neurons are defined by the co-expression of a battery of genes which encode proteins that act sequentially to synthesize, package and degrade acetylcholine and reuptake its breakdown product, choline. How expression of these critical motor neuron identity determinants is controlled and coordinated is not understood. We show here that in the nematode Caenorhabditis elegans all members of the cholinergic gene battery, as well as many other markers of terminal motor neuron fate...

  13. A cholinergic hypothesis of the unconscious in affective disorders.

    Directory of Open Access Journals (Sweden)

    Costa eVakalopoulos

    2013-11-01

    Full Text Available The interactions between distinct pharmacological systems are proposed as a key dynamic in the formation of unconscious memories underlying rumination and mood disorder, but also reflect the plastic capacity of neural networks that can aid recovery. An inverse and reciprocal relationship is postulated between cholinergic and monoaminergic receptor subtypes. M1-type muscarinic receptor transduction facilitates encoding of unconscious, prepotent behavioural repertoires at the core of affective disorders and ADHD. Behavioural adaptation to new contingencies is mediated by the classic prototype receptor: 5-HT1A (Gi/o and its modulation of m1-plasticity. Reversal of learning is dependent on increased phasic activation of midbrain monoaminergic nuclei and is a function of hippocampal theta. Acquired hippocampal dysfunction due to abnormal activation of the hypothalamic-pituitary-adrenal (HPA axis predicts deficits in hippocampal-dependent memory and executive function and further impairments to cognitive inhibition. Encoding of explicit memories is mediated by Gq/11 and Gs signalling of monoamines only. A role is proposed for the phasic activation of the basal forebrain cholinergic nucleus by cortical projections from the complex consisting of the insula and claustrum. Although controversial. recent studies suggest a common ontogenetic origin of the two structures and a functional coupling. Lesions of the region result in loss of motivational behaviour and familiarity based judgements. A major hypothesis of the paper is that these lost faculties result indirectly, from reduced cholinergic tone.

  14. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    Science.gov (United States)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  15. Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain.

    Science.gov (United States)

    Matsunaga, Eiji; Okanoya, Kazuo

    2008-05-01

    The androgen receptor is a steroid hormone receptor widely expressed in the vocal control nuclei in songbirds. Here, we analysed androgen receptor expression in the brains of juvenile and adult budgerigars. With a species-specific probe for budgerigar androgen receptor mRNA, we found that the androgen receptor was expressed in the vocal areas, such as the central nucleus of the lateral nidopallium, the anterior arcopallium, the oval nucleus of the mesopallium, the oval nucleus of the anterior nidopallium and the tracheosyringeal hypoglossal nucleus. With the present data, together with previous reports, it turned out that the androgen receptor expression in telencephalic vocal control areas is similar amongst three groups of vocal learners--songbirds, hummingbirds and parrots, suggesting the possibility that the androgen receptor might play a role in vocal development and that the molecular mechanism regulating the androgen receptor expression in the vocal areas might be important in the evolution of vocal learning.

  16. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  17. GABAERGIC MODULATION OF STRIATAL CHOLINERGIC INTERNEURONS - AN IN-VIVO MICRODIALYSIS STUDY

    NARCIS (Netherlands)

    DEBOER, P; WESTERINK, BHC

    1994-01-01

    Striatal cholinergic interneurons have been shown to receive input from striatal gamma-aminobutyric acid (GABA)-containing cell elements. GABA is known to act on two different types of receptors, the GABA(A) and the GABA(B) receptor. Using in vivo microdialysis, we have studied the effect of intrast

  18. Androgen receptor transcriptionally regulates μ-opioid receptor expression in rat trigeminal ganglia.

    Science.gov (United States)

    Lee, Ki Seok; Zhang, Youping; Asgar, Jamila; Auh, Q-Schick; Chung, Man-Kyo; Ro, Jin Y

    2016-09-01

    The involvement of testosterone in pain, inflammation, and analgesia has been reported, but the role of androgen receptor (AR), a steroid receptor for testosterone, is not well understood. We have previously shown that peripheral inflammation upregulates μ-opioid receptor (MOR) in rat trigeminal ganglia (TG) in a testosterone-dependent manner. In this study, we hypothesized that testosterone regulates MOR expression via transcriptional activities of AR in TG. We first examined whether AR is co-expressed with MOR in TG neurons. Our immunohistochemical experiment revealed that AR staining is detected in neurons of all sizes in TG and that a subset of AR is expressed in MOR as well as in TRPV1-positive neurons. We identified the promoter region of the rat MOR gene contains putative AR binding sites. Using chromatin immunoprecipitation assay, we demonstrated that AR directly binds to these sites in TG extracts. We confirmed with luciferase reporter assay that AR activated the MOR promoter in response to androgens in a human neuroblastoma cell line (5H-5YSY). These data demonstrated that AR functions as a transcriptional regulator of the MOR gene activity. Finally, we showed that flutamide, a specific AR antagonist, prevents complete Freund's adjuvant (CFA)-induced upregulation of MOR mRNA in TG, and that flutamide dose-dependently blocks the efficacy of DAMGO, a specific MOR agonist, on CFA-induced mechanical hypersensitivity. Our results expand the knowledge regarding the role of androgens and their receptor in pain and analgesia and have important clinical implications, particularly for inflammatory pain patients with low or compromised plasma testosterone levels. PMID:27320211

  19. Deregulated Fcγ receptor expression in patients with CIDP

    OpenAIRE

    Quast, Isaak; Cueni, Flavio; Nimmerjahn, Falk; Tackenberg, Björn; Lünemann, Jan D.

    2015-01-01

    Objective: To evaluate the expression of activating and inhibitory Fc-gamma receptors (FcγRs) before and during clinically effective therapy with IV immunoglobulin (IVIg) in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Methods: Peripheral blood leukocyte subsets, including classical CD14highCD16− and nonclassical inflammatory CD14lowCD16+ monocytes as well as naive CD19+CD27− and memory CD19+CD27+ B cells, were obtained at baseline and monitored at 2 and 4–8 weeks a...

  20. Expression of Interleukin 1 Receptor Antagonist in Human Cornea

    OpenAIRE

    Heur, Martin; Shyam S. Chaurasia; Wilson, Steven E.

    2008-01-01

    The purpose of this study was to confirm the expression of interleukin-1 receptor antagonist (IL-1 Ra) in the human cornea. Four samples of human ex vivo corneal epithelium were obtained from patients undergoing photorefractive keratectomy. RT-PCR was performed using mRNA isolated from the corneal epithelium and oligo-dT primers. PCR was performed on the cDNA products using primers specific for human IL-1Ra. The PCR products were subcloned and sequenced. Human cornea sections were prepared fr...

  1. Expression of subtypes of somatostatin receptors in hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Sheng-Han Song; Xi-Sheng Leng; Tao Li; Zhi-Zhong Qin; Ji-Run Peng; Li Zhao; Yu-Hua Wei; Xin Yu

    2004-01-01

    AIM: To elucidate the mechanism by which somatostatin and its analogue exert the influence on liver fibrosis, and to investigate the mRNA expression of somatostatin receptors subtypes (SSTRs) and the distribution of somatostatin analogue octreotide in rat hepatic stellate cells (HSCs).METHODS: HSCs were isolated from Sprague Dawley (SD)rats byin situ perfusion and density gradient centrifugation.After several passages, the mRNA expression of 5 subtypes of SSTRs were assessed by reverse transcription-polymerase chain reaction (RT-PCR). HSCs were planted on coverslip and co-cultured with octreotide tagged by FITC. Then the distribution of FITC fluorescence was observed under laser scanning confocal microscope (LSCM) in 12-24 h.RESULTS: There were mRNA expression of SSTR2, SSTR3and SSTR5 but not SSTR1 and SSTR4 in SD rat HSCs. The mRNA expression level of SSTR2 was significantly higher than that of other subtypes (P<0.01). FITC fluorescence of octreotide was clearly observed on the surface and in the cytoplasm, but not in the nuclei of HSCs under LSCM.CONCLUSION: The effect exerted by somatostatin and its analogues on HSCs may mainly depend on the expression of SSTR2, SSTR3 and SSTR5. Octreotide can perfectly combine with HSCs, and thereby exerts its biological activity on regulating the characters of active HSCs. This provides a potential prevention and management against liver fibrosis.

  2. Gene Expression Analysis of CL-20-induced Reversible Neurotoxicity Reveals GABAA Receptors as Potential Target in the Earthworm Eisenia fetida

    Science.gov (United States)

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J.

    2012-01-01

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. Endpoints such as survival, growth and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we applied a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm2 of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at day 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control and 13-day exposed (i.e. 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shot-gun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by non-competitively blocking the ligand-gated GABAA receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress. PMID:22191394

  3. Ionotropic glutamate receptor expression in human white matter.

    Science.gov (United States)

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-01

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. PMID:27443784

  4. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability.

    Science.gov (United States)

    He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T; Morgan, Dave; Burns, Jeffery M; Swerdlow, Russell H; Suo, William Z

    2016-05-19

    Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer's disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration.

  5. Expression of CysLT2 receptors in asthma lung, and their possible role in bronchoconstriction

    Directory of Open Access Journals (Sweden)

    Tomohiko Sekioka

    2015-10-01

    Conclusions: CysLT2 receptors were expressed in lung specimens isolated from asthma subjects. Activation of CysLT2 receptors may contribute to antigen-induced bronchoconstriction in certain asthma population.

  6. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    Science.gov (United States)

    Park, Jeong-Ho; Kwon, Jae Young

    2011-01-01

    The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs) in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF), locustatachykinin (LTK), and diuretic hormone 31 (DH31). RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis. PMID:22194978

  7. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Park

    Full Text Available The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF, locustatachykinin (LTK, and diuretic hormone 31 (DH31. RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis.

  8. Expression of androgen receptor target genes in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kesha Rana; Nicole KL Lee; Jeffrey D Zajac; Helen E MacLean

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor(AR)‑regulated genes ininvitroandinvivomodels. The expression of the myogenic regulatory factormyogenin was signiifcantly decreased in skeletal muscle from testosterone‑treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity(ARΔZF2) versus wildtype mice, demonstrating thatmyogenin is repressed by the androgen/AR pathway. The ubiquitin ligaseFbxo32 was repressed by 12h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, andc‑Myc expression was decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, Igf2 andcalcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all butp57Kip2was also decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase‑mediated atrophy pathways to preserve muscle mass in adult muscle.

  9. The Estrogen ReceptorExpression in De Quervain's Disease.

    Science.gov (United States)

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-01-01

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy. PMID:26556342

  10. Expression of estrogen receptor alpha in preimplantation mice embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To study the expression of estrogen receptor alpha (ERα) in preimplantation mice embryos.Methods:Mice zygotes were collected from superovulated Kunming mice and cultured in vitro.Embryos at different developmental stages were collected at 0,24,36,48,72 and 96hours after cultivation.The expression of ERα in early mice embryos was detected by reverse transcription-PCR (RT-PCR) and immunocytochemistry.Results:The expression of ERα mRNA was detected in all of the examined embryonic stages.The relative amount of ERα mRNA showed no significant difference between 1-cell stage embryos and 4-cell stage embryos (P>0.05).However,the relative level of ERα mRNA significantly decreased (P<0.05) at 2-cell stage and was the lowest at this stage.Over 2-cell stage,the ERα mRNA relative level would increase and achieve the peak level at blastocyst stage.The location of immunocytochemistry showed that ERα immunopositive cells could be firstly detected at 8-cell stage,after which they are consistently detected until blastocyst stage.In addition,the intensity of ERα positive staining was higher at blastocyst stage compared with that at 8-cell stage and morula stage.Conclusion:ERα is expressed in preimplantation mice embryos in a temporal and spatial pattern and may be involved in regulating the development of early mice embryos,which probably plays crucial roles in early embryonic development.

  11. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  12. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Maelle Jospin

    2009-12-01

    Full Text Available In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.

  13. Tissue distribution and differential expression of melanocortin 1 receptor, a malignant melanoma marker

    OpenAIRE

    Salazar-Onfray, F; López, M.; Lundqvist, A.; Aguirre, A.; Escobar, A; Serrano, A; Korenblit, C; PETERSSON,M; Chhajlani, V.; Larsson, O; Kiessling, R.

    2002-01-01

    The melanocortin 1 receptor is a G-protein-coupled receptor, described to be expressed on melanomas and melanocytes. Subsequent RT–PCR studies demonstrated the presence of melanocortin 1 receptor mRNA in other tissues such as pituitary gland and testis. Previously, we have demonstrated that three HLA-A2 binding nonamer peptides derived from melanocortin 1 receptor can elicit peptide-specific CTL which can recognize target cells transfected with the melanocortin 1 receptor gene and MHC class I...

  14. Expression of retinoic acid receptors in human endometrial carcinoma.

    Science.gov (United States)

    Tanabe, Kojiro; Utsunomiya, Hiroki; Tamura, Mitsutoshi; Niikura, Hitoshi; Takano, Tadao; Yoshinaga, Kohsuke; Nagase, Satoru; Suzuki, Takashi; Ito, Kiyoshi; Matsumoto, Mitsuyo; Hayashi, Shin-ichi; Yaegashi, Nobuo

    2008-02-01

    The retinoids (vitamin A and its biologically active derivatives) are essential for the health and survival of the individual. Several studies have reported a strong rationale for the use of retinoids in cancer treatment and chemoprevention. It has been discovered that expression of retinoic acid receptor (RAR) beta is frequently silenced in epithelial carcinogenesis, which has led to the hypothesis that RAR beta could act as a tumor suppressor. However, the status of RAR beta in human endometrial carcinoma has not been examined. In the present study, we initially studied the effects of retinoic acid on cell proliferation and the expression of RAR alpha, RAR beta, and RAR gamma using AM580 (a RAR-specific agonist) in the Ishikawa endometrial cancer cell line. We also examined the expression of RAR in human eutopic endometrium (30 cases), endometrial hyperplasia (28 cases), and endometrial carcinoma (103 cases) using immunohistochemistry. Finally, we correlated these findings with the clinicopathological parameters. In vitro, cell growth was inhibited and RAR beta and RAR gamma mRNA was significantly induced by AM580, compared with vehicle controls, whereas RAR alpha mRNA was significantly attenuated by AM580, compared with vehicle. RAR beta was detected predominantly in endometrial hyperplasia, compared with endometrial carcinoma. No statistically significant correlation was obtained between the expression of any other RAR subtypes and clinicopathological parameters in human endometrial carcinoma. The results of our study demonstrate that AM580 inhibits cell growth and induces RAR beta mRNA expression in the Ishikawa cell line, and the expression level of RAR beta in endometrial carcinoma is significantly lower than that in endometrial hyperplasia. AM580 might therefore be considered as a potential treatment for endometrial carcinoma.

  15. Expression of estrogen receptor β in human colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Qun Xie; Jie-Ping Yu; He-Sheng Luo

    2004-01-01

    AIM: To determine the expression of estrogen receptor (ER)β in Chinese colorectal carcinoma (CRC) patients.METHODS: Erβ expression in CRC was investigated by immunohistochemical staining of formalin-fixed, paraffin-embedded tissue sections from 40 CRCs, 10 colonic adenomas,and 10 normal colon mucosa biopsies. The percentage of positive cells was recorded, mRNA expression of Erα and Erβ in 12 CRC tissues and paired normal colon tissues were detected by RT-PCR.RESULTS: Positive ER immunoreactivity was present in part of normal epithelium of biopsy (2/10), adenomas (3/10),and the sections of CRC tissue, most of them were nuclear positive. In CRCs, nuclear Erβ immunoreactivity was detected in over 10% of the cancer cells in 57.5% of the cases and was always associated with cytoplasmic immunoreactivity.There was no statistical significance between Erβ positive and negative groups in regard to depth of invasion and nodal metastases. Of the 12 CRC tissues and paired normal colon tissues, the expression rate of Erα mRNA in CRC tissue and corresponding normal colon tissue was 25% and 16.6%,respectively. Erβ mRNA was expressed in 83.3% CRC tissue and 91.7% paired normal colon tissue, respectively. Therewas no significant difference in Erβ mRNA level between CRC tissues and paired normal colon tissues.CONCLUSION: A large number of CRCs are positive for Erβ, which can also be detected in normal colonic epithelia.There is a different localization of Erβ immunoreactivity among normal colon mucosae, adenomas and CRCs. Erαand Erβ mRNA can be detected both in CRC tissue and in corresponding normal colon tissue. A post-transcriptional mechanism may account for the decrease of Erβ protein expression in CRC tissues.

  16. Expression of tumor necrosis factor related apoptosis inducing ligand receptor in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Dongling Gao; Zhongwei Zhao; Hongxin Zhang; Lan Zhang; Kuisheng Chen; Yunhan Zhang

    2008-01-01

    BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells.OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR and to compare this expression to that in normal brain tissue.DESIGN: Observational analysis.SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory.PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P>0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee.METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase

  17. Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex.

    Science.gov (United States)

    Shao, Yu-Feng; Wang, Can; Xie, Jun-Fan; Kong, Xiang-Pan; Xin, Le; Dong, Chao-Yu; Li, Jing; Ren, Wen-Ting; Hou, Yi-Ping

    2016-07-01

    Our previous studies have demonstrated that neuropeptide S (NPS), via selective activation of the neurons bearing NPS receptor (NPSR) in the olfactory cortex, facilitates olfactory function. High level expression of NPSR mRNA in the subiculum complex of hippocampal formation suggests that NPS-NPSR system might be involved in the regulation of olfactory spatial memory. The present study was undertaken to investigate effects of NPS on the scopolamine- or MK801-induced impairment of olfactory spatial memory using computer-assisted 4-hole-board spatial memory test, and by monitoring Fos expression in the subiculum complex in mice. In addition, dual-immunofluorescence microscopy was employed to identify NPS-induced Fos-immunereactive (-ir) neurons that also bear NPSR. Intracerebroventricular administration of NPS (0.5 nmol) significantly increased the number of visits to switched odorants in recall trial in mice suffering from odor-discriminating inability induced by scopolamine, a selective muscarinic cholinergic receptor antagonist, or MK801, a N-methyl-D-aspartate receptor antagonist, after training trials. The improvement of olfactory spatial memory by NPS was abolished by the NPSR antagonist [D-Val(5)]NPS (40 nmol). Ex vivo c-Fos and NPSR immunohistochemistry revealed that, as compared with vehicle-treated mice, NPS markedly enhanced Fos expression in the subiculum complex encompassing the subiculum (S), presubiculum (PrS) and parasubiculum (PaS). The percentages of Fos-ir neurons that also express NPSR were 91.3, 86.5 and 90.0 % in the S, PrS and PaS, respectively. The present findings demonstrate that NPS, via selective activation of the neurons bearing NPSR in the subiculum complex, ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 in mice. PMID:26323488

  18. Novel dimeric DOTA-coupled peptidic Y1-receptor antagonists for targeting of neuropeptide Y receptor-expressing cancers

    OpenAIRE

    Chatenet, David; Cescato, Renzo; Waser, Beatrice; Erchegyi, Judit; Jean E Rivier; Reubi, Jean Claude

    2011-01-01

    Background Several peptide hormone receptors were identified that are specifically over-expressed on the cell surface of certain human tumors. For example, high incidence and density of the Y1 subtype of neuropeptide Y (NPY) receptors are found in breast tumors. Recently, we demonstrated that the use of potent radiolabeled somatostatin or bombesin receptor antagonists considerably improved the sensitivity of in vivo imaging when compared to agonists. We report here on the first DOTA-coupled p...

  19. A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131

    OpenAIRE

    Simone Prandi; Marta Bromke; Sandra Hübner; Anja Voigt; Ulrich Boehm; Wolfgang Meyerhof; Maik Behrens

    2013-01-01

    The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs), direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r express...

  20. Bombesin family receptor and ligand gene expression in human colorectal cancer and normal mucosa

    OpenAIRE

    Chave, H S; Gough, A C; Palmer, K.; Preston, S. R.; Primrose, J N

    1999-01-01

    Bombesin-like peptides and their receptors are widely distributed throughout the gut and are potential mitogens for a number of gastrointestinal (GI) cancers. We have analysed the expression of bombesin-like peptides and their receptor subtypes in normal and neoplastic colorectal tissue. Expression was analysed by reverse transcription polymerase chain reaction (RT-PCR) using receptor and ligand subtype-specific primers and then expression localized by in situ hybridization (ISH) with ribopro...

  1. Mouse neutrophils express functional umami taste receptor T1R1/T1R3

    OpenAIRE

    Lee, NaHye; Jung, Young Su; Lee, Ha Young; Kang, NaNa; Park, Yoo Jung; Hwang, Jae Sam; Bahk, Young Yil; Koo, JaeHyung; Bae, Yoe-Sik

    2014-01-01

    Neutrophils play an important role in the initiation of innate immunity against infection and injury. Although many different types of G-protein coupled receptors are functionally expressed in neutrophils, no reports have demonstrated functional expression of umami taste receptor in these cells. We observed that mouse neutrophils express the umami taste receptor T1R1/T1R3 through RNA sequencing and quantitative RT-PCR analysis. Stimulation of mouse neutrophils with L-alanine or L-serine, whic...

  2. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Hong Zhu; Zhi-Bin Yang

    2009-01-01

    BACKGROUND: The mda-7/IL-24 receptor belongs to the typeⅡ cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. METHODS: With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were ampliifed by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. RESULTS: PLC/PRF/5 and SMMC-7721 expressed IL-20R1;BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. CONCLUSION: Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  3. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels

    DEFF Research Database (Denmark)

    Jennings, Katie Ann; Licht, Cecilie Löe; Bruce, Aynsley;

    2012-01-01

    Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT kno......). Together, these findings suggest that variation in 5-HTT expression causes adaptive changes in 5-HT4 receptor levels which are directly linked to alterations in 5-HT availability.......Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT...

  4. Unique expression pattern of the three insulin receptor family members in the rat mammary gland

    DEFF Research Database (Denmark)

    Hvid, Henning; Klopfleisch, Robert; Vienberg, Sara Gry;

    2011-01-01

    Supra-pharmacological doses of the insulin analog X10 (AspB10) increased the incidence of mammary tumors in female Sprague-Dawley rats in chronic toxicity studies, most likely via receptor-mediated mechanisms. However, little is known about the expression of the insulin receptor family in the rat...... mammary gland. Using laser micro-dissection, quantitative RT-PCR and immunohistochemistry, we examined the expression of IR (insulin receptor), IGF-1R (IGF-1 receptor), IRR (insulin receptor-related receptor), ERα (estrogen receptor alpha), ERβ (estrogen receptor beta) and PR (progesteron receptor...... of IGF-1R and PR in the mammary gland varied during the estrous cycle. These findings are important for the understanding of carcinogenic effects of insulin analogs in the rat mammary gland, and relevant for development of refined short-term models for preclinical safety assessment of insulin analogs....

  5. CHARACTERIZATION OF THE OLFACTORY RECEPTORS EXPRESSED IN HUMAN SPERMATOZOA

    Directory of Open Access Journals (Sweden)

    Caroline eFlegel

    2016-01-01

    Full Text Available The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicated that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa and demonstrates that ORs are involved in the physiological processes.

  6. Myoglobin expression in prostate cancer is correlated to androgen receptor expression and markers of tumor hypoxia.

    Science.gov (United States)

    Meller, Sebastian; Bicker, Anne; Montani, Matteo; Ikenberg, Kristian; Rostamzadeh, Babak; Sailer, Verena; Wild, Peter; Dietrich, Dimo; Uhl, Barbara; Sulser, Tullio; Moch, Holger; Gorr, Thomas A; Stephan, Carsten; Jung, Klaus; Hankeln, Thomas; Kristiansen, Glen

    2014-10-01

    Recent studies identified unexpected expression and transcriptional complexity of the hemoprotein myoglobin (MB) in human breast cancer but its role in prostate cancer is still unclear. Expression of MB was immunohistochemically analyzed in three independent cohorts of radical prostatectomy specimens (n = 409, n = 625, and n = 237). MB expression data were correlated with clinicopathological parameters and molecular parameters of androgen and hypoxia signaling. Expression levels of novel tumor-associated MB transcript variants and the VEGF gene as a hypoxia marker were analyzed using qRT-PCR. Fifty-three percent of the prostate cancer cases were MB positive and significantly correlated with androgen receptor (AR) expression (p < 0.001). The positive correlation with CAIX (p < 0.001) and FASN (p = 0.008) as well as the paralleled increased expression of the tumor-associated MB transcript variants and VEGF suggest that hypoxia participates in MB expression regulation. Analogous to breast cancer, MB expression in prostate cancer is associated with steroid hormone signaling and markers of hypoxia. Further studies must elucidate the novel functional roles of MB in human carcinomas, which probably extend beyond its classic intramuscular function in oxygen storage. PMID:25172328

  7. Expression of estrogen receptor and estrogen receptor messenger RNA in gastric carcinoma tissues

    Institute of Scientific and Technical Information of China (English)

    Xin-Han Zhao; Shan-Zhi Gu; Shan-Xi Liu; Bo-Rong Pan

    2003-01-01

    AIM: To study estrogen receptor (ER) and estrogen receptor messenger RNA (ERmRNA) expression in gastric carcinoma tissues and to investigate their association with the pathologic types of gastric carcinoma.METHODS: The expression of ER and ERmRNA in gastric carcinoma tissues (15 males and 15 females, 42-70 years old) was detected by immunohistochemistry and in situ hybridization, respectively.RESULTS: The positive rate of ER (immunohistochemistry)was 33.3% in males and 46.7% in females. In Borrmann Ⅳ gastric carcinoma ER positive rate was greater than that in other pathologic types, and in poorly differentiated adenocarcinoma and signet ring cell carcinoma the positive rates were greater than those in other histological types of both males and females (P<0.05). The ER was more highly expressed in diffused gastric carcinoma than in non-diffused gastric carcinoma (P<0.05). The ER positive rate was also related to regional lymph nodes metastases (P<0.05), and was significantly higher in females above 55 years old, and higher in males under 55 years old (P<0.05). The ERmRNA (in situ hybridization) positive rate was 73.3% in males and 86.7% in females. The ERmRNA positive rates were almost the same in Borrmann Ⅰ, Ⅱ, Ⅲ and Ⅳ gastric carcinoma (P>0.05). ERmRNA was expressed in all tubular adenocarcinoma, poorly differentiated adenocarcinoma and signet ring cell carcinoma (P<0.05). The ERmRNA positive rate was related to both regional lymph nodes metastases and gastric carcinoma growth patterns, and was higher in both sexes above 55 years old but without statistical significance (P>0.05). The positive rate of ERmRNA expression by in situ hybridization was higher than that of ER expression by immunohistochemistry (P<0.05).CONCLUSION: ERmRNA expression is related to the pathological behaviors of gastric carcinoma, which might help to predict the prognosis and predict the effectiveness of endocrine therapy for gastric carcinoma.

  8. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    Science.gov (United States)

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  9. The Characteristics of Gastrin Receptor Expression in Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    HUANGGuangjian; ZHANGYanling; LEZhuqin; YUFen; ZHANGGuangming; DENShouzhen; NIQuanxing

    2003-01-01

    Objective: To investigate the characteristics and significance of gastrin receptor (GR) expression in gastric cancer. Methods: The content and affinity of GR were determined in 34 specimens of gastric cancer using radioligand binding assay. The correlation was analyzed between GR expression in tumors and tumor sites, stages, grades, DNA of gastric cancer cells, GR of adjacent normal gastric mucosa, survival time. Results: Among the 34 cases of gastric cancer, 16 patients (47.1%) had positive GR in specimens of gastric cancer, with high-affinity GR in 14 cases (41.2%) and low-affinity GR in 2 cases. Of high-affinity GR, 9 cases had cancers with GR>10 fmol/mg.protein (39.5±14.4 fmol/mg.protein), 5 cases with GR≤10fmol/mg.protein (6.0±2.8 fmol/mg.protein). High-affinity GR was easier to be expressed in cancers ofgastric body (7/9) and cardia (3/6) than in gastric antrum (4/19). The expression of GR in gastric cancer accorded well with that in normal gastric mucosa at the same sites, but with more high-special binding sites than the latter (39.5±14.4 vs 26.1±16.6 fmol/mg.protein). A significantly greater proportion of patients withⅢ+Ⅳ stages (13/24) had high-affinity GR compared with I+II stages (1/10) of gastric cancers. During a follow-up of 23-61 months, 11 of 13 cases with high-affinity GR were dead, whereas 4 of 11 cases with low-affinity or negative GR were dead in Ⅲ+Ⅳ stages of gastric cancer. Conclusion: GR is an important factor in the autocrine growth of gastric cancer cells, and helpful in the prediction of prognosis and guidance of treatment with GR antagonists.

  10. Impairment of reward-related learning by cholinergic cell ablation in the striatum.

    Science.gov (United States)

    Kitabatake, Yasuji; Hikida, Takatoshi; Watanabe, Dai; Pastan, Ira; Nakanishi, Shigetada

    2003-06-24

    The striatum in the basal ganglia-thalamocortical circuitry is a key neural substrate that is implicated in motor balance and procedural learning. The projection neurons in the striatum are dynamically modulated by nigrostriatal dopaminergic input and intrastriatal cholinergic input. The role of intrastriatal acetylcholine (ACh) in learning behaviors, however, remains to be fully clarified. In this investigation, we examine the involvement of intrastriatal ACh in different categories of learning by selectively ablating the striatal cholinergic neurons with use of immunotoxin-mediated cell targeting. We show that selective ablation of cholinergic neurons in the striatum impairs procedural learning in the tone-cued T-maze memory task. Spatial delayed alternation in the T-maze learning test is also impaired by cholinergic cell elimination. In contrast, the deficit in striatal ACh transmission has no effect on motor learning in the rota-rod test or spatial learning in the Morris water-maze test or on contextual- and tone-cued conditioning fear responses. We also report that cholinergic cell elimination adaptively up-regulates nicotinic ACh receptors not only within the striatum but also in the cerebral cortex and substantia nigra. The present investigation indicates that cholinergic modulation in the local striatal circuit plays a pivotal role in regulation of neural circuitry involving reward-related procedural learning and working memory. PMID:12802017

  11. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  12. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor

    DEFF Research Database (Denmark)

    Fink-Jensen, Anders; Schmidt, Lene S; Dencker, Ditte;

    2011-01-01

    A delicate balance exists between the central dopaminergic and cholinergic neurotransmitter systems with respect to motor function. An imbalance can result in motor dysfunction as observed in Parkinson's disease patients and in patients treated with antipsychotic compounds. Cholinergic receptor a...

  13. Expression and Characterization of Purinergic Receptors in Rat Middle Meningeal Artery–Potential Role in Migraine

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Edvinsson, Lars

    2014-01-01

    be inhibited by SCH58261 (A2A receptor antagonist) and caffeine (adenosine receptor antagonist). This gives one putative molecular mechanism for the effect of caffeine, often used as an adjuvant remedy of cranial pain. Semi-quantitative RT-PCR expression data for the receptors correlate well...

  14. The therapeutic promise of positive allosteric modulation of nicotinic receptors.

    Science.gov (United States)

    Uteshev, Victor V

    2014-03-15

    In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.

  15. Epidermal growth factor receptor expression in triple negative and nontriple negative breast carcinomas

    Directory of Open Access Journals (Sweden)

    Arathi A Changavi

    2015-01-01

    Conclusion: EGFR is an important marker to stratify patients with breast cancer according to molecular classification. Its expression correlated positively with young age, higher SBR grade, necrosis, lymphocytic infiltrate and inversely with hormonal receptor expression.

  16. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    Directory of Open Access Journals (Sweden)

    Shogo Sato

    2011-01-01

    Full Text Available We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented by the downregulation of the receptor. Endurance training improves oxidative performance partly by increasing β2-adrenergic receptor density in exercise-recruited slow-twitch muscles. However, excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although the preventive effects of β2-adrenergic receptor stimulation on atrophy induced by muscle disuse and catabolic hormones or drugs are observed, these catabolic conditions decrease β2-adrenergic receptor expression in slow-twitch muscles. These findings present evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal muscles play an important physiological role in the regulation of protein and energy balance.

  17. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  18. Electroacupuncture at Zusanli (ST36 Prevents Intestinal Barrier and Remote Organ Dysfunction following Gut Ischemia through Activating the Cholinergic Anti-Inflammatory-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Sen Hu

    2013-01-01

    Full Text Available This study investigated the protective effect and mechanism of electroacupuncture at ST36 points on the intestinal barrier dysfunction and remote organ injury after intestinal ischemia and reperfusion injury in rats. Rats were subjected to gut ischemia for 30 min, and then received electroacupuncture for 30 min with or without abdominal vagotomy or intraperitoneal administration of cholinergic α7 nicotinic acetylcholine receptor (α7nAChR inhibitor. Then we compared its effects with electroacupuncture at nonchannel points, vagal nerve stimulation, or intraperitoneal administration of cholinergic agonist. Cytokine levels in plasma and tissue of intestine, lung, and liver were assessed 60 min after reperfusion. Intestinal barrier injury was detected by histology, gut injury score, the permeability to 4 kDa FITC-dextran, and changes in tight junction protein ZO-1 using immunofluorescence and Western blot. Electroacupuncture significantly lowered the levels of tumor necrosis factor-α and interleukin-8 in plasma and organ tissues, decreased intestinal permeability to FITC-dextran, and prevented changes in ZO-1 protein expression and localization. However, abdominal vagotomy or intraperitoneal administration of cholinergic α7nAChR inhibitor reversed these effects of electroacupuncture. These findings suggest that electroacupuncture attenuates the systemic inflammatory response through protection of intestinal barrier integrity after intestinal ischemia injury in the presence of an intact vagus nerve.

  19. The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.

    Science.gov (United States)

    Zhang, Feifan; Bhattacharya, Abhishek; Nelson, Jessica C; Abe, Namiko; Gordon, Patricia; Lloret-Fernandez, Carla; Maicas, Miren; Flames, Nuria; Mann, Richard S; Colón-Ramos, Daniel A; Hobert, Oliver

    2014-01-01

    Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.

  20. Expression of leptin and leptin receptor isoforms in the human stomach

    OpenAIRE

    Mix, H; Widjaja, A.; Jandl, O.; Cornberg, M.; Kaul, A.; GOKE, M; Beil, W.; Kuske, M; Brabant, G.; Manns, M; Wagner, S.

    2000-01-01

    BACKGROUND—Leptin is an important regulator of food intake and energy expenditure. Initially it was thought to be expressed exclusively in and secreted by adipocytes. Recently, leptin expression was also noted in other tissues, including rat gastric mucosa. Information on leptin and leptin receptor expression in the human stomach is lacking.
AIM—To investigate expression of leptin and its corresponding receptors in human gastric epithelial cells.
METHODS—Fundic and antral gastric mucosal biop...

  1. Association of carcinoma breast: grade and estrogen progesterone receptor expression

    International Nuclear Information System (INIS)

    To determine the association between histological grade of tumour and estrogen progesterone receptors (ER/PR) expression in unselected invasive carcinoma of breast in Malaysian patients. Study Design: An observational study. Place and Duration of Study: Advanced Medical and Dental Institute and Hospital, Kepala Batas, from year 2002 to 2007. Methodology: Ethical approval from Ministry of Health of Malaysia was obtained. Retrospective case records of patients presented between 2002- 2007 were reviewed for obtaining information on grade of tumour and expression of ER/PR in unselected carcinoma of breast patients. Records with missing data were discarded. Results: Out of 195 cases evaluated, 42 cases of grade-I tumour were recorded of which 08 (19%) tested positive for ER and 34 (81%) tested negative, 86 cases represented grade-II tumour of which 33 (38%) tested positive for ER and 53 (62%) were negative for ER, while out of 67 grade-III tumours 22 (33%) were positive for ER receptors while 45 (67%) were negative, (x/sup 2/ statistic (df) 4.831, p=0.089). For PR, 192 cases were evaluated and data was missing for 3 cases on PR status. Grade-I tumour consisted of 39 cases of which PR +ve represented 07 (17.94%) and 32 (82.05) cases PR -ve; 86 cases were of grade-II of which 31 (36.04%) were PR +ve and 55 (63.95%) PR -ve. Sixty seven cases of grade-III tumour of which 19 (28.35%) were PR +ve and 48 (71.64) were PR -ve (X/sup 2/ statistic (df): 4.297; p=0.117). Conclusion: ER/PR positivity trend was highest for grade-II tumours compared to grade-I and grade-III tumours. In general ER positivity was more with grade-II and grade-III tumours compared to grade I tumours. Although results did not reach statistical significance but there was a trend towards ER/PR positivity in grade-II and III tumours. So far, studies from South East Asia reported ER/PR expression more with low grade tumours. (author)

  2. Expression of a novel D4 dopamine receptor in the lamprey brain. Evolutionary considerations about dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Juan ePérez-Fernández

    2016-01-01

    Full Text Available Numerous data reported in lampreys, which belong to the phylogenetically oldest branch of vertebrates, show that the dopaminergic system was already well developed at the dawn of vertebrate evolution. The expression of dopamine in the lamprey brain is well conserved when compared to other vertebrates, and this is also true for the D2 receptor. Additionally, the key role of dopamine in the striatum, modulating the excitability in the direct and indirect pathways through the D1 and D2 receptors, has also been recently reported in these animals. The moment of divergence regarding the two whole genome duplications occurred in vertebrates suggests that additional receptors, apart from the D1 and D2 previously reported, could be present in lampreys. We used in situ hybridization to characterize the expression of a novel dopamine receptor, which we have identified as a D4 receptor according to the phylogenetic analysis. The D4 receptor shows in the sea lamprey a more restricted expression pattern than the D2 subtype, as reported in mammals. Its main expression areas are the striatum, lateral and ventral pallial sectors, several hypothalamic regions, habenula, and mesencephalic and rhombencephalic motoneurons. Some expression areas are well conserved through vertebrate evolution, as is the case of the striatum or the habenula, but the controversies regarding the D4 receptor expression in other vertebrates hampers for a complete comparison, especially in rhombencephalic regions. Our results further support that the dopaminergic system in vertebrates is well conserved and suggest that at least some functions of the D4 receptor were already present before the divergence of lampreys.

  3. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers

    Directory of Open Access Journals (Sweden)

    McMillan Catherine R

    2004-10-01

    Full Text Available Abstract Background In order to optimize the potential benefits of neural stem cell (NSC transplantation for the treatment of neurodegenerative disorders, it is necessary to understand their biological characteristics. Although neurotrophin transduction strategies are promising, alternative approaches such as the modulation of intrinsic neurotrophin expression by NSCs, could also be beneficial. Therefore, utilizing the C17.2 neural stem cell line, we have examined the expression of selected neurotrophic factors under different in vitro conditions. In view of recent evidence suggesting a role for the pineal hormone melatonin in vertebrate development, it was also of interest to determine whether its G protein-coupled MT1 and MT2 receptors are expressed in NSCs. Results RT-PCR analysis revealed robust expression of glial cell-line derived neurotrophic factor (GDNF, brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in undifferentiated cells maintained for two days in culture. After one week, differentiating cells continued to exhibit high expression of BDNF and NGF, but GDNF expression was lower or absent, depending on the culture conditions utilized. Melatonin MT1 receptor mRNA was detected in NSCs maintained for two days in culture, but the MT2 receptor was not seen. An immature MT1 receptor of about 30 kDa was detected by western blotting in NSCs cultured for two days, whereas a mature receptor of about 40 – 45 kDa was present in cells maintained for longer periods. Immunocytochemical studies demonstrated that the MT1 receptor is expressed in both neural (β-tubulin III positive and glial (GFAP positive progenitor cells. An examination of the effects of melatonin on neurotrophin expression revealed that low physiological concentrations of this hormone caused a significant induction of GDNF mRNA expression in NSCs following treatment for 24 hours. Conclusions The phenotypic characteristics of C17.2 cells suggest that they are

  4. Expression of Growth Hormone Receptors by Lymphocyte subpopulations in the Human tonsil

    OpenAIRE

    Olivier Thellin; Bernard Coumans; Willy Zorzi; Ross Barnard; Georges Hennen; Ernst Heinen; Ahmed Igout

    1998-01-01

    The ability of human tonsillar lymphoid cells to express growth hormone receptor (hGH-N-R) was analyzed by flow cytometry. FITC-coupled recombinant human growth hormone (hGH-N) was used to reveal the receptors, in combination with phenotype markers. Unlike T cells, tonsillar B cells constitutively express the hGH-N receptor. Quiescent cells separated from activated cells by Percoll-gradient centrifugation bear fewer receptors than activated ones. Activated T cells express hGH-N-R, but the typ...

  5. Decreased cholinergic stimulation of insulin secretion by islets from rats fed a low protein diet is associated with reduced protein kinase calpha expression.

    Science.gov (United States)

    Ferreira, Fabiano; Filiputti, Eliane; Arantes, Vanessa C; Stoppiglia, Luis F; Araújo, Eliana P; Delghingaro-Augusto, Viviane; Latorraca, Márcia Q; Toyama, Marcos H; Boschero, Antonio C; Carneiro, Everardo M

    2003-03-01

    Undernutrition has been shown to affect the autonomic nervous system, leading to permanent alterations in insulin secretion. To understand these interactions better, we investigated the effects of carbamylcholine (CCh) and phorbol 12-myristate 13-acetate (PMA) on insulin secretion in pancreatic islets from rats fed a normal (17%; NP) or low (6%; LP) protein diet for 8 wk. Isolated islets were incubated for 1 h in Krebs-bicarbonate solution containing 8.3 mmol glucose/L, with or without PMA (400 nmol/L) and CCh. Increasing concentrations of CCh (0.1-1000 micro mol/L) dose dependently increased insulin secretion by islets from both groups of rats. However, insulin secretion by islets from rats fed the NP diet was significantly higher than that of rats fed the LP diet, and the dose-response curve to CCh was shifted to the right in islets from rats fed LP with a 50% effective concentration (EC(50)) of 2.15 +/- 0.7 and 4.64 +/- 0.1 micro mol CCh/L in islets of rats fed NP and LP diets, respectively (P < 0.05). PMA-induced insulin secretion was higher in islets of rats fed NP compared with those fed LP. Western blotting revealed that the protein kinase (PK)Calpha and phospholipase (PL)Cbeta(1) contents of islets of rats fed LP were 30% lower than those of islets of rats fed NP (P < 0.05). In addition, PKCalpha mRNA expression was reduced by 50% in islets from rats fed LP. In conclusion, a reduced expression of PKCalpha and PLCbeta(1) may be involved in the decreased insulin secretion by islets from LP rats after stimulation with CCh and PMA. PMID:12612139

  6. Expression and function profiling of orphan nuclear receptors using bacterial artificial chromosome (BAC) transgenesis.

    OpenAIRE

    Nemoz-Gaillard, Eric; Tsai, Ming-Jer; Tsai, Sophia Y.

    2003-01-01

    The long term goal of the Nuclear Receptor Signaling Atlas (NURSA) resides in unraveling the physiological and pathological functions of nuclear receptors (NRs) at the molecular, biochemical and cellular levels. This multi-oriented task requires complementary approaches in order to determine the specific function(s) and precise expression and receptor activity patterns for each individual conventional or orphan receptor. To attain this objective, we have chose to turn to technologies recently...

  7. Erythropoietin and erythropoietin receptor expression in the guinea pig inner ear

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Wagner, Niels; Lidegaard Frederiksen, Birgitte;

    2005-01-01

    . Expression of the EPO receptor was found in the cytoplasm of the inner and outer phalangeal cells (Deiters' cells), as well as the inner sulcus cells and the supporting cells of the organ of Corti (Hensen, Claudius and some Boettcher cells). Some spiral ganglion neurons or glial cells expressed the receptor...

  8. Calcium-Sensing Receptor Gene: Regulation of Expression.

    Science.gov (United States)

    Hendy, Geoffrey N; Canaff, Lucie

    2016-01-01

    The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5'-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2-7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes-promoter methylation of the GC-rich P2 promoter, histone acetylation-as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH)2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2) have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the "tumor suppressor" activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2-the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR-the calciostat-is regulated physiologically and pathophysiologically at the gene level. PMID:27679579

  9. Comparison of albumin receptors expressed on bovine and human group G streptococci.

    OpenAIRE

    Raeder, R; Otten, R. A.; Boyle, M D

    1991-01-01

    The albumin receptor expressed by bovine group G streptococci was extracted and affinity purified. The protein was characterized for species reactivity, and monospecific antibodies were prepared to the purified receptor. The bovine group G albumin receptor was compared functionally, antigenically, and for DNA homology with the albumin-binding protein expressed by human group G streptococci. In agreement with previous reports, the albumin-binding activity of human strains was mediated by a uni...

  10. Expression of soluble Toll-like receptors in pleural effusions

    Institute of Scientific and Technical Information of China (English)

    YANG Hai-bo; XIE Kai-qing; DENG Jing-min; QIN Shou-ming

    2010-01-01

    Background The Toll-like receptors (TLRs) represent a group of single-pass transmembrane receptors expressed on sentinel cells that are central to innate immune responses.The aim of this study was to investigate the presence of soluble TLRs in pleural effusions, and the diagnostic values of TLRs for pleural effusion with various etiologies.Methods Pleural effusion and serum samples were collected from 102 patients (36 with malignant pleural effusion, 36with tuberculous pleural effusion, 18 with bacterial pleural effusion, and 12 with transudative pleural effusion).The concentrations of TLR1 to TLR10 were determined in effusion and serum samples by enzyme linked immunosorbent assay.Four classical parameters (protein, lactate dehydrogenase, glucose and C-reactive protein (CRP)) in the pleural fluid were also assessed.Receiver-operating characteristic curves were used to assess the sensitivity and specificity of pleural fluid TLRs and biochemical parameters for differentiating bacterial pleural effusion.Results The concentrations of TLR1, TLR3, TLR4, TLR7 and TLR9 in bacterial pleural effusion were significantly higher than those in malignant, tuberculous, and transudative groups, respectively.Analysis of receiver operating characteristic curves revealed that the area under the curves of TLR1, TLR3, TLR4, TLR7 and TLR9 were 0.831, 0.843,0.842, 0.883 and 0.786, respectively, suggesting that these TLRs play a role in the diagnosis of bacterial pleural effusion.Also, the diagnostic value of TLRs for bacterial pleural effusions was much better than that of biochemical parameters (protein, lactate dehydrogenase, glucose and CRP).Conclusions The concentrations of TLR1, TLR3, TLR4, TLR7 and TLR9 appeared to be increased in bacterial pleural effusion compared to non-bacterial pleural effusions.Determination of these pleural TLRs may improve the ability of clinicians to differentiate pleural effusion patients of bacterial origin from those with other etiologies.

  11. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats

    OpenAIRE

    Hobson, Benjamin D.; Merritt, Kathryn E.; Bachtell, Ryan K.

    2012-01-01

    Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A1 or A2A receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15...

  12. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits.

    Directory of Open Access Journals (Sweden)

    Sally M Williamson

    2009-07-01

    Full Text Available Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect approximately 1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5:1 (Asu-unc-38ratioAsu-unc-29, nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1:5 Asu-unc-38ratioAsu-unc-29, levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the

  13. Expression profile and prognostic role of sex hormone receptors in gastric cancer

    International Nuclear Information System (INIS)

    Increasing interest has been devoted to the expression and possible role of sex hormone receptors in gastric cancer, but most of these findings are controversial. In the present study, the expression profile of sex hormone receptors in gastric cancer and their clinicopathological and prognostic value were determined in a large Chinese cohort. The mRNA and protein expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), progesterone receptor (PR), and androgen receptor (AR) in primary gastric tumors and corresponding adjacent normal tissues from 60 and 866 Chinese gastric cancer patients was detected by real-time quantitative PCR and immunohistochemistry method, respectively. The expression profile of the four receptors was compared and their associations with clinicopathological characteristics were assessed by using Chi-square test. The prognostic value of the four receptors in gastric cancer was evaluated by using univariate and multivariate Cox regression analysis. The presence of ERα, ERβ, PR, and AR in both gastric tumors and normal tissues was confirmed but their expression levels were extremely low except for the predominance of ERβ. The four receptors were expressed independently and showed a decreased expression pattern in gastric tumors compared to adjacent normal tissues. The positive expression of the four receptors all correlated with high tumor grade and intestinal type, and ERα and AR were also associated with early TNM stage and thereby a favorable outcome. However, ERα and AR were not independent prognostic factors for gastric cancer when multivariate survival analysis was performed. Our findings indicate that the sex hormone receptors may be partly involved in gastric carcinogenesis but their clinicopathological and prognostic significance in gastric cancer appears to be limited

  14. Role of sphingosine 1-phosphate receptor expression in eosinophils of patients with allergic rhinitis, and effect of topical nasal steroid treatment on this receptor expression.

    LENUS (Irish Health Repository)

    Mackle, T

    2008-12-01

    Recent research has indicated that sphingosine 1-phosphate plays a role in allergy. This study examined the effect of allergen challenge on the expression of sphingosine 1-phosphate receptors on the eosinophils of allergic rhinitis patients, and the effect of steroid treatment on this expression.

  15. Cholinergic modulation of the cerebral metabolic response to citalopram in Alzheimer's disease

    OpenAIRE

    Smith, Gwenn S.; Kramer, Elisse; Ma, Yilong; Hermann, Carol R.; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David

    2009-01-01

    Pre-clinical and human neuropharmacological evidence suggests a role of cholinergic modulation of monoamines as a pathophysiological and therapeutic mechanism in Alzheimer's disease. The present study measured the effects of treatment with the cholinesterase inhibitor and nicotinic receptor modulator, galantamine, on the cerebral metabolic response to the selective serotonin reuptake inhibitor, citalopram. Seven probable Alzheimer's disease patients and seven demographically comparable contro...

  16. Endothelin-1 and endothelin-3 regulate endothelin receptor expression in rat coronary arteries

    DEFF Research Database (Denmark)

    Skovsted, Gry Freja; Kilic, Semsi; Edvinsson, Lars

    2015-01-01

    . Organ culture significantly up-regulated ETB receptors and down-regulated ETA receptor expression. Co-incubation with ET-1 (1 nM) or ET-3 (100 nM) induced further down-regulation of the ETA receptor mRNA, while the function and protein level of ETA remained unchanged. ET-3 (100 nM) further up-regulated......In ischaemic hearts, endothelin (ET) levels are increased, and vasoconstrictor responses to ET-1 are greatly enhanced. We previously reported that ETB receptors are up-regulated in the smooth muscle layer of coronary arteries after myocardial ischaemia-reperfusion and that the MEK-ERK1/2 signalling...... pathway is involved in ETB receptor up-regulation. Whether ETs are directly involved in receptor regulation has not been determined. We suggest that ET-1 and ET-3 alter the expression/activity of ET receptors in coronary vascular smooth muscle cells. Vasoconstrictor responses were studied in endothelium...

  17. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, HongYi; Kantekure, Kanchan;

    2011-01-01

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression via......RNA and protein. Stimulation of the ICOS receptor with anti-ICOS antibody or ICOS ligand-expressing B cells markedly enhanced proliferation of the ALK(+) TCL cells. These results demonstrate that NPM-ALK, acting through STAT3 as the gene transcriptional activator, induces the expression of ICOS, a cell growth...

  18. Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats

    Institute of Scientific and Technical Information of China (English)

    Helena F Wrzos; Tarun Tandon; Ann Ouyang

    2004-01-01

    AIM: To investigate the pathway (s) mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent, bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction.METHODS: Circular smooth muscle strips from the antrum of Sprague-Dawley rats were mounted in muscle baths in Krebs buffer. Isometric tension was recorded. Cumulative concentration-response curves were obtained for (+)-cisdioxolane (cD), a nonspecific muscarinic agonist, at 10-8-10-4 mol/L, in the presence of tetrodotoxin (TTX, 10-7 mol/L).Results were normalized to cross sectional area. A repeat concentration-response curve was obtained after incubation of the muscle for 90 min with antagonists for M1 (pirenzepine),M2 (methoctramine) and M3 (darifenacin) muscarinic receptor subtypes. The sensitivity to PTX was tested by the ip injection of 100 mg/kg of PTX 5 d before the experiment. The antral circular smooth muscles were removed from PTX-treated and non-treated rats as strips and dispersed smooth muscle cells to identify whether PTX-linked pathway mediated the contractility to bethanechol.RESULTS: A dose-dependent contractile response observed with bethanechol, was not affected by TTX. The pretreatment of rats with pertussis toxin decreased the contraction induced by bethanechol. Lack of calcium as Well as the presence of the L-type calcium channel blocker, nifedipine, also inhibited the cholinergic contraction, with a reduction in response from 2.5±0.4 g/mm2 to 1.2±0.4 g/mm2 (P<0.05). The doseresponse curves were shifted to the right by muscarinic antagonists in the following order of affinity: darifenacin(M3)>methocramine (M2)>pirenzepine (M1).CONCLUSION: The muscarinic receptors-dependent contraction of rat antral circular smooth muscles was linked to the signal transduction pathway(s) involving pertussis-toxin sensitive GTP-binding proteins and to extracellular calcium via L-type voltage gated calcium channels. The presence of the

  19. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  20. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Liu; Zhigang Mei; Jingping Qian; Yongbao Zeng; Mingzhi Wang

    2013-01-01

    Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that an-ti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic an-ti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be in-volved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) re-duced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-αin brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-κB) inhibition. These observa-tions were inhibited by the alpha7 nicotinic acetylcholine receptor (α7nAchR) antagonistα-bungarotoxin (α-BGT). In addition, puerarin pretreatment increased the expression of α7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory re-sponse. Our results also indicated that the anti-inflammatory effect of puerarin may partly be me-diated through the activation of the cholinergic anti-inflammatory pathway.

  1. Low-level microwave irradiation and central cholinergic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W. (Univ. of Washington School of Medicine, Seattle (USA))

    1989-05-01

    Our previous research showed that 45 min of exposure to low-level, pulsed microwaves (2450-MHz, 2-microseconds pulses, 500 pps, whole-body average specific absorption rate 0.6 W/kg) decreased sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. The effects of microwaves on central cholinergic systems were further investigated in this study. Increases in choline uptake activity in the frontal cortex, hippocampus, and hypothalamus were observed after 20 min of acute microwave exposure, and tolerance to the effect of microwaves developed in the hypothalamus, but not in the frontal cortex and hippocampus, of rats subjected to ten daily 20-min exposure sessions. Furthermore, the effects of acute microwave irradiation on central choline uptake could be blocked by pretreating the animals before exposure with the narcotic antagonist naltrexone. In another series of experiments, rats were exposed to microwaves in ten daily sessions of either 20 or 45 min, and muscarinic cholinergic receptors in different regions of the brain were studied by 3H-QNB binding assay. Decreases in concentration of receptors occurred in the frontal cortex and hippocampus of rats subjected to ten 20-min microwave exposure sessions, whereas increase in receptor concentration occurred in the hippocampus of animals exposed to ten 45-min sessions. This study also investigated the effects of microwave exposure on learning in the radial-arm maze. Rats were trained in the maze to obtain food reinforcements immediately after 20 or 45 min of microwave exposure.

  2. Striatal cholinergic interneuron regulation and circuit effects

    Directory of Open Access Journals (Sweden)

    Sean Austin Lim

    2014-10-01

    Full Text Available The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh. Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI, which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.

  3. Differential Expression of Neurokinin-1 Receptor by Human Mucosal and Peripheral Lymphoid Cells

    OpenAIRE

    Goode, Triona; O'Connell, Joe; HO, WEN-ZHE; O'Sullivan, Gerald C.; Collins, J. Kevin; Douglas, Steven D.; Shanahan, Fergus

    2000-01-01

    Substance P (SP) has been implicated in peripheral and mucosal neuroimmunoregulation. However, confusion remains regarding immunocyte expression of the receptor for SP, neurokinin-1 receptor (NK-1R), and whether there is differential NK-1R expression in the mucosal versus the peripheral immune system. In the same assay systems, we examined the expression of NK-1R in human lamina propria mononuclear cells (LPMC), peripheral blood mononuclear cells (PBMC), peripheral blood lymphocytes (PBL), mo...

  4. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function.

    Science.gov (United States)

    Fragkouli, A; Stamatakis, A; Zographos, E; Pachnis, V; Stylianopoulou, F

    2006-01-01

    It has been reported recently that mice lacking both alleles of the LIM-homeobox gene Lhx7, display dramatically reduced number of forebrain cholinergic neurons. In the present study, we investigated whether the Lhx7 mutation affects male and female mice differently, given the fact that gender differences are consistently observed in forebrain cholinergic function. Our results show that in adult male as well as female Lhx7 homozygous mutants there is a dramatic loss of choline acetyltransferase immunoreactive forebrain neurons, both projection and interneurons. The reduction of forebrain choline acetyltransferase immunoreactive neurons in Lhx7 homozygous mutants is accompanied by a decrease of acetylcholinesterase histochemical staining in all forebrain cholinergic neuron target areas of both male and female homozygous mutants. Furthermore, there was an increase of M1-, but not M2-, muscarinic acetylcholine receptor binding site density in the somatosensory cortex and basal ganglia of only the female homozygous mutant mice. Such an increase can be regarded as a mechanism acting to compensate for the dramatically reduced cholinergic input, raising the possibility that the forebrain cholinergic system in female mice may be more plastic and responsive to situations of limited neurotransmitter availability. Finally, our study provides additional data for the sexual dimorphism of the forebrain cholinergic system, as female mice appear to have a lower density of M1-muscarinic acetylcholine receptors in the striatal areas of the basal ganglia and a higher density of M2-muscarinic acetylcholine receptors, in a number of cortical areas, as well as the striatal areas of the basal ganglia. PMID:16338089

  5. Expression of functional growth hormone receptor in a mouse L cell line infected with recombinant vaccinia virus

    NARCIS (Netherlands)

    Strous, G J; van Kerkhof, P; Verheijen, C; Rossen, J W; Liou, W; Slot, J W; Roelen, C A; Schwartz, A L

    1994-01-01

    The growth hormone receptor is a member of a large family of receptors including the receptors for prolactin and interleukins. Upon binding to one molecule of growth hormone two growth hormone receptor polypeptides dimerize. We have expressed the rabbit growth hormone receptor DNA in transfected mou

  6. Relationship between expression of somatostatin receptors subtype 2 mRNA and estrogen and progesterone receptors in breast cancer

    Institute of Scientific and Technical Information of China (English)

    曾希志; 姚榛祥

    2003-01-01

    Objectives To observe the expression of somatostatin receptor subtype 2 (SSTR2) mRNA, and investigate the relationship between the expression of SSTR2 mRNA and the expressions of estrogen and progesterone receptors (ERs and PRs) in benign and malignant breast tissues.Methods Samples from a total of 23 breast carcinomas, 16 mammary hyperplasias, and 9 mammary fibroadenomas were analyzed. SSTR2 mRNA expression was examined by in situ hybridization using multiphase oligoprobes. ER and PR expressions were detected by immunohistochemical staining. A computerized image analysis system was utilized to estimate the relative content of SSTR2 mRNA.Results The rate of expression (87.0%) and relative content (0.47) of SSTR2 mRNA in breast cancer were higher than those in benign breast tissue (64%,0.26) (P<0.05). SSTR2 mRNA expression was closely correlated with ER and PR expressions in breast cancer (P<0.05). SSTR2 mRNA was also positively correlated with ER expression in benign breast tissues.Conclusions SSTR2 mRNA expression is higher or in benign breast tissues than in malignant ones. There is a significant positive correlation between SSTR2 mRNA and ER and PR expressions. Combined antiestrogen and somatostatin analogue in treatment of ER-positive breast cancers should be further investigated.

  7. Beta-Adrenergic Receptor Expression in Muscle Cells

    Science.gov (United States)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  8. Cardiovascular risk factors regulate the expression of vascular endothelin receptors

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Sun, Yang; Edvinsson, Lars

    2010-01-01

    , cigarette smoking and hypertension (both strongly related to arterial wall injury), inflammation and atherosclerosis. The vascular endothelin receptors are a protein family that belongs to the larger family of G-protein coupled receptors. They mediate vascular smooth muscle contraction, proliferation......-activated protein kinase pathways and downstream transcription factors such as nuclear factor-kappaB. Understanding the mechanisms involved in vascular endothelin receptor upregulation during cardiovascular disease may provide novel therapeutic approaches....

  9. Rescue of NGF-deficient mice II: basal forebrain cholinergic projections require NGF for target innervation but not guidance.

    Science.gov (United States)

    Phillips, Heidi S; Nishimura, Merry; Armanini, Mark P; Chen, Karen; Albers, Kathryn M; Davis, Brian M

    2004-04-29

    Basal forebrain cholinergic (BFC) neurons are an important substrate of cognitive function and are hypothesized to require the presence of nerve growth factor (NGF) for survival and target innervation. NGF-deficient mice develop BFC neurons that extend projections into telencephalic targets, but the mice perish before innervation is fully established. Rescue of NGF-deficient mice by transgenic expression of NGF under the keratin promoter yields viable mice with disrupted CNS expression of NGF. In the current study, rescued NGF-deficient mice contain normal numbers of septal cholinergic neurons yet reveal severe compromise of cholinergic innervation of both cortex and hippocampus. Surprisingly, intracerebroventricular infusion of NGF into juvenile mice can induce an essentially normal pattern of cholinergic innervation of the hippocampus. These results indicate that NGF is required for induction of proper innervation by BFC neurons, but that the cellular pattern of expression of this factor is not critical for specifying the distribution of axon terminals. PMID:15093680

  10. Gene expression and function of adenosine A(2A) receptor in the rat carotid body.

    Science.gov (United States)

    Kobayashi, S; Conforti, L; Millhorn, D E

    2000-08-01

    The present study was undertaken to determine whether rat carotid bodies express adenosine (Ado) A(2A) receptors and whether this receptor is involved in the cellular response to hypoxia. Our results demonstrate that rat carotid bodies express the A(2A) and A(2B) Ado receptor mRNAs but not the A(1) or A(3) receptor mRNAs as determined by reverse transcriptase-polymerase chain reaction. In situ hybridization confirmed the expression of the A(2A) receptor mRNA. Immunohistochemical studies further showed that the A(2A) receptor is expressed in the carotid body and that it is colocalized with tyrosine hydroxylase in type I cells. Whole cell voltage-clamp studies using isolated type I cells showed that Ado inhibited the voltage-dependent Ca(2+) currents and that this inhibition was abolished by the selective A(2A) receptor antagonist ZM-241385. Ca(2+) imaging studies using fura 2 revealed that exposure to severe hypoxia induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in type I cells and that extracellularly applied Ado significantly attenuated the hypoxia-induced elevation of [Ca(2+)](i). Taken together, our findings indicate that A(2A) receptors are present in type I cells and that activation of A(2A) receptors modulates Ca(2+) accumulation during hypoxia. This mechanism may play a role in regulating intracellular Ca(2+) homeostasis and cellular excitability during hypoxia. PMID:10926550

  11. Plasticity in D1-like receptor expression is associated with different components of cognitive processes.

    Directory of Open Access Journals (Sweden)

    Christina Herold

    Full Text Available Dopamine D1-like receptors consist of D1 (D1A and D5 (D1B receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression.

  12. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression,

  13. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    OpenAIRE

    Jala Venkatakrishna Rao; Radde Brandie N; Haribabu Bodduluri; Klinge Carolyn M

    2012-01-01

    Abstract Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in...

  14. Expression of thyroid stimulating hormone receptor in differentiated thyroid carcinoma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    李清怀

    2013-01-01

    Objective To explore the expression of thyroid stimulating hormone (TSH) receptor in differentiated thyroid carcinoma and its clinical significance.Methods Seventy-four patients with differentiated thyroid carcinoma treated in our department from January 2009 to January 2011were selected as the observation group,and 28 patients with nodular goiter were selected as the control group.Expression of TSH receptor in the two groups were detected by immunohistochemistry.Results The positive rate of TSH receptor expression in the observation group was55.4 (41/74) ,significantly lower than that of the control

  15. Neural Stem Cell Transplant-Induced Effect on Neurogenesis and Cognition in Alzheimer Tg2576 Mice Is Inhibited by Concomitant Treatment with Amyloid-Lowering or Cholinergic α7 Nicotinic Receptor Drugs.

    Science.gov (United States)

    Lilja, Anna M; Malmsten, Linn; Röjdner, Jennie; Voytenko, Larysa; Verkhratsky, Alexei; Ögren, Sven Ove; Nordberg, Agneta; Marutle, Amelia

    2015-01-01

    Stimulating regeneration in the brain has the potential to rescue neuronal networks and counteract progressive pathological changes in Alzheimer's disease (AD). This study investigated whether drugs with different mechanisms of action could enhance neurogenesis and improve cognition in mice receiving human neural stem cell (hNSC) transplants. Six- to nine-month-old AD Tg2576 mice were treated for five weeks with the amyloid-modulatory and neurotrophic drug (+)-phenserine or with the partial α7 nicotinic receptor (nAChR) agonist JN403, combined with bilateral intrahippocampal hNSC transplantation. We observed improved spatial memory in hNSC-transplanted non-drug-treated Tg2576 mice but not in those receiving drugs, and this was accompanied by an increased number of Doublecortin- (DCX-) positive cells in the dentate gyrus, a surrogate marker for newly generated neurons. Treatment with (+)-phenserine did however improve graft survival in the hippocampus. An accumulation of α7 nAChR-expressing astrocytes was observed around the injection site, suggesting their involvement in repair and scarring processes. Interestingly, JN403 treatment decreased the number of α7 nAChR-expressing astrocytes, correlating with a reduction in the number of DCX-positive cells in the dentate gyrus. We conclude that transplanting hNSCs enhances endogenous neurogenesis and prevents further cognitive deterioration in Tg2576 mice, while simultaneous treatments with (+)-phenserine or JN403 result in countertherapeutic effects.

  16. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Science.gov (United States)

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  17. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Directory of Open Access Journals (Sweden)

    Marta Słoniecka

    Full Text Available Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP and neurokinin A (NKA, and of the neurotransmitters acetylcholine (ACh, catecholamines (adrenaline, noradrenaline and dopamine, and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R, dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT, M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that

  18. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors

    Directory of Open Access Journals (Sweden)

    Antonio eLuchicchi

    2014-10-01

    Full Text Available Acetylcholine (ACh signaling underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. Alterations in ACh signaling are involved in the pathophysiology of multiple neuropsychiatric disorders. In the central nervous system, ACh transmission is mainly guaranteed by dense innervation of select cortical and subcortical regions from disperse groups of cholinergic neurons within the basal forebrain (e.g. diagonal band, medial septal, nucleus basalis and the pontine-mesencephalic nuclei, respectively. Despite the fundamental role of cholinergic signaling in the CNS and the long standing knowledge of the organization of cholinergic circuitry, remarkably little is known about precisely how ACh release modulates cortical and subcortical neural activity and the behaviors these circuits subserve. Growing interest in cholinergic signaling in the CNS focuses on the mechanism(s of action by which endogenously released ACh regulates cognitive functions, acting as a neuromodulator and /or as a direct transmitter via nicotinic and muscarinic receptors. The development of optogenetic techniques has provided a valuable toolbox with which we can address these questions, as it allows the selective manipulation of the excitability of cholinergic inputs to the diverse array of cholinergic target fields within cortical and subcortical domains. Here, we review recent papers that use the light-sensitive opsins in the cholinergic system to elucidate the role of ACh in circuits related to attention and emotionally salient behaviors. In particular, we highlight recent optogenetic studies which have tried to disentangle the precise role of ACh in the modulation of cortical-, hippocampal- and striatal-dependent functions.

  19. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum

    Directory of Open Access Journals (Sweden)

    Ralph J Oude-Ophuis

    2014-03-01

    Full Text Available The striatum harbors two neuronal populations that enable action selection. One population represents the striatonigral pathway, expresses the dopamine receptor D1 (DRD1 and promotes the execution of motor programs, while the other population represents the striatopallidal pathway, expresses the dopamine receptor D2 (DRD2 and suppresses voluntary activity. The two populations integrate distinct sensorimotor, cognitive and emotional information streams and their combined activity enables the selection of adaptive behaviors. Characterization of these populations is critical to the understanding of their role in action selection, because it aids the identification of the molecular mechanisms that separate them. To that end, we used fluorescent in-situ hybridization to quantify the percentage of striatal cells that (coexpress dopaminergic receptors and receptors of the cannabinoid, melanocortin or opioid neurotransmitters systems. Our main findings are that the cannabinoid 1 receptor is equally expressed on both populations with a gradient from dorsal to ventral striatum, that the opioid receptors have a preference for expression with either the DRD1 or DRD2 and that the melanocortin 4 receptor (MC4R is predominantly expressed in ventral parts of the striatum. In addition, we find that the level of MC4R expression determines its localization to either the DRD1 or the DRD2 population. Thereby, we provide insight into the sensitivity of the two dopaminoceptive populations to these neurotransmitters and progress the understanding of the mechanisms that enable action selection.

  20. Effects of chemotherapy agents on Sphingosine-1-Phosphate receptors expression in MCF-7 mammary cancer cells.

    Science.gov (United States)

    Ghosal, P; Sukocheva, O A; Wang, T; Mayne, G C; Watson, D I; Hussey, D J

    2016-07-01

    Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in the regulation of cell proliferation and cancer progression. Increased expression of S1P receptors has been detected in advanced breast tumours with poor prognosis suggesting that S1P receptors might control tumour response to chemotherapy. However, it remains unclear how the levels of S1P receptor expression are influenced by chemotherapy agents. Western immunoblotting, PCR analysis and fluorescent microscopy techniques were used in this study to analyze expression patterns of S1P receptors 2 and 3 (S1P2/S1P3) in MCF-7 breast adenocarcinoma cells treated by Tamoxifen (TAM) and/or Medroxyprogesterone acetate (MPA). We found that TAM/MPA induce downregulation of S1P3 receptors, but stimulate expression of S1P2. According to cell viability and caspase activity analyses, as expected, TAM activated apoptosis. We also detected TAM/MPA-induced autophagy marked by formation of macroautophagosomes and increased level of Beclin 1. Combined application of TAM and MPA resulted in synergistic apoptosis- and autophagy-stimulating effects. Assessed by fluorescent microscopy with autophagosome marker LAMP-2, changes in S1P receptor expression coincided with activation of autophagy, suggestively, directing breast cancer cells towards death. Further studies are warranted to explore the utility of manipulation of S1P2 and S1P3 receptor expression as a novel treatment approach. PMID:27261597

  1. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    Directory of Open Access Journals (Sweden)

    Christophe Verbeurgt

    Full Text Available Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems, containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men. Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were

  2. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T;

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  3. THE EXPRESSION OF RECEPTORS FOR VASOACTIVE INTESTINAL PEPTIDE AND SECRETIN IN COLON NEOPLASMS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To investigate the expression of the receptors for vasoactive intestinal peptide (VIP) and secretin in colon cancer. Methods: This study visualized and characterized the receptors for VIP and secretin in the sequence of human tumor-free colon, adenoma, carcinoma, liver metastasis using storage phosphor autoradiography. Results: Receptors for VIP and secretin were demonstrated in tumor-free colon and colon tumors. A decrease in affinity of VIP receptors was shown in the colonic liver metastasis (Kd = 3.30 nmol) when compared with tumor-free colon (Kd = 0.82 nmol). An up-regulation of receptors for secretin was found in colonic liver metastases. Conclusions: VIP and secretin were both expressed on normal colon tissues. Binding of VIP decreased while secretin increased in colonic liver metastasis. A down-regulation of receptors for VIP in colonic liver metastases may helpful to understand the migration of colon cancer.

  4. High-level expression of a full-length Eph receptor.

    Science.gov (United States)

    Paavilainen, Sari; Grandy, David; Karelehto, Eveliina; Chang, Elizabeth; Susi, Petri; Erdjument-Bromage, Hediye; Nikolov, Dimitar; Himanen, Juha

    2013-11-01

    Eph receptors are the largest family of Receptor Tyrosine Kinases containing a single membrane-spanning segment. They are involved in a various developmental and cell-cell communication events. Although there is extensive structural information available on both the extra- and intracellular regions of Eph's in isolation, no structures are available for the entire receptor. To facilitate structural studies on functionally relevant Eph/ephrin complexes, we have developed an expression system for producing the full-length human EphA2 receptor. We successfully expressed milligram amounts of the receptor using baculovirus-based vector and insect cells. We were also able to extract the protein from the cell membranes and purify it to near homogeneity in two simple steps. The purified receptor was shown to retain its biological activity in terms of both binding to its functional ligands and being able to auto-phosphorylate the key tyrosine residues of the cytoplasmic kinase domain.

  5. Expression of the human interleukin-2 receptor gamma chain in insect cells using a baculovirus expression vector.

    Science.gov (United States)

    Raivio, E; Oetken, C; Oker-Blom, C; Engberg, C; Akerman, K; Lindqvist, C

    1995-04-01

    The gene encoding the gamma-chain of the human Interleukin-2 receptor was expressed in lepidopteran insect cells using the baculovirus expression vector system. The corresponding gene was inserted under the polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus and expressed in the Spodoptera frugiperda insect cell line Sf9 during viral infection. The recombinant receptor protein was identified by immunoblotting in cell lysates, prepared from insect cells infected with the recombinant virus. At 40 h post infection the corresponding protein was detected as two major bands with apparent molecular weights of 50-60 kDa using a rabbit anti-human IL-2R gamma-receptor specific antiserum. Metabolic labelling with [35S]-methionine and SDS-PAGE analysis of the recombinant baculovirus infected insect cells verified the immunoblotting data. The expressed IL-2R gamma- protein could also be determined on the surface of infected insect cells by flow cytometer analysis. PMID:7899821

  6. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  7. In adult female hamsters hypothyroidism stimulates D1 receptor-mediated breathing without altering D1 receptor expression.

    Science.gov (United States)

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2015-11-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH 23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors.

  8. Expression of D2 dopamine receptor mRNA in the arterial chemoreceptor afferent pathway.

    Science.gov (United States)

    Czyzyk-Krzeska, M F; Lawson, E E; Millhorn, D E

    1992-11-01

    Dopamine is a major neurotransmitter in the arterial chemoreceptor pathway. In the present study we wished to determine if messenger RNAs for dopamine D1 and D2 receptor are expressed in carotid body (type I cells), in sensory neurons of the petrosal ganglion which innervate the carotid body and in sympathetic neurons of the superior cervical ganglion. We failed to detect D1 receptor mRNA in any of these tissues. However, we found that D2 receptor mRNA was expressed by dopaminergic carotid body type I cells. D2 receptor mRNA was also found in petrosal ganglion neurons that innervated the carotid sinus and carotid body. In addition, a large number of sympathetic postganglionic neurons in the superior cervical ganglion expressed D2 receptor mRNA. PMID:1362730

  9. Histaminergic modulation of cholinergic release from the nucleus basalis magnocellularis into insular cortex during taste aversive memory formation.

    Directory of Open Access Journals (Sweden)

    Liliana Purón-Sierra

    Full Text Available The ability of acetylcholine (ACh to alter specific functional properties of the cortex endows the cholinergic system with an important modulatory role in memory formation. For example, an increase in ACh release occurs during novel stimulus processing, indicating that ACh activity is critical during early stages of memory processing. During novel taste presentation, there is an increase in ACh release in the insular cortex (IC, a major structure for taste memory recognition. There is extensive evidence implicating the cholinergic efferents of the nucleus basalis magnocellularis (NBM in cortical activity changes during learning processes, and new evidence suggests that the histaminergic system may interact with the cholinergic system in important ways. However, there is little information as to whether changes in cholinergic activity in the IC are modulated during taste memory formation. Therefore, in the present study, we evaluated the influence of two histamine receptor subtypes, H1 in the NBM and H3 in the IC, on ACh release in the IC during conditioned taste aversion (CTA. Injection of the H3 receptor agonist R-α-methylhistamine (RAMH into the IC or of the H1 receptor antagonist pyrilamine into the NBM during CTA training impaired subsequent CTA memory, and simultaneously resulted in a reduction of ACh release in the IC. This study demonstrated that basal and cortical cholinergic pathways are finely tuned by histaminergic activity during CTA, since dual actions of histamine receptor subtypes on ACh modulation release each have a significant impact during taste memory formation.

  10. Role of desensitization and subunit expression for kainate receptor-mediated neurotoxicity in murine neocortical cultures

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S;

    1999-01-01

    The neurotoxic actions of kainate and domoate were studied in cultured murine neocortical neurons at various days in culture and found to be developmentally regulated involving three components of neurotoxicity: (1) toxicity via indirect activation of N-methyl-D-aspartate (NMDA) receptors, (2) to...... produced by kainate receptors in mature cultures. Examining the subunit expression of the kainate receptor subunits GluR6/7 and KA2 did, however, not reveal any major change during development of the cultures....

  11. Calreticulin chaperones regulate functional expression of vomeronasal type 2 pheromone receptors

    OpenAIRE

    Dey, Sandeepa; Matsunami, Hiroaki

    2011-01-01

    A variety of social behaviors like intermale aggression, fear, and mating rituals are important for sustenance of a species. In mice, these behaviors have been implicated to be mediated by peptide pheromones that are sensed by a class of G protein-coupled receptors, vomeronasal receptor type 2 (V2Rs), expressed in the pheromone detecting vomeronasal organ. Matching V2Rs with their cognate ligands is required to learn what receptors the biologically relevant pheromones are acting on. However, ...

  12. BMP9 protects septal neurons from axotomy-evoked loss of cholinergic phenotype.

    Directory of Open Access Journals (Sweden)

    Ignacio Lopez-Coviella

    Full Text Available BACKGROUND: Cholinergic projection from the septum to the hippocampus is crucial for normal cognitive function and degeneration of cells and nerve fibers within the septohippocampal pathway contributes to the pathophysiology of Alzheimer's disease. Bone morphogenetic protein (BMP 9 is a cholinergic differentiating factor during development both in vivo and in vitro. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether BMP9 could protect the adult cholinergic septohippocampal pathway from axotomy-evoked loss of the cholinergic phenotype, we performed unilateral fimbria-fornix transection in mice and treated them with a continuous intracerebroventricular infusion of BMP9 for six days. The number of choline acetyltransferase (CHAT-positive cells was reduced by 50% in the medial septal nucleus ipsilateral to the lesion as compared to the intact, contralateral side, and BMP9 infusion prevented this loss in a dose-dependent manner. Moreover, BMP9 prevented most of the decline of hippocampal acetylcholine levels ipsilateral to the lesion, and markedly increased CHAT, choline transporter CHT, NGF receptors p75 (NGFR-p75 and TrkA (NTRK1, and NGF protein content in both the lesioned and unlesioned hippocampi. In addition, BMP9 infusion reduced bilaterally hippocampal levels of basic FGF (FGF2 protein. CONCLUSIONS/SIGNIFICANCE: These data indicate that BMP9 administration can prevent lesion-evoked impairment of the cholinergic septohippocampal neurons in adult mice and, by inducing NGF, establishes a trophic environment for these cells.

  13. The histaminergic system in human thalamus: correlation of innervation to receptor expression.

    Science.gov (United States)

    Jin, C Y; Kalimo, H; Panula, Pertti

    2002-04-01

    The mRNA expression of three histamine receptors (H1, H2 and H3) and H1 and H3 receptor binding were mapped and quantified in normal human thalamus by in situ hybridization and receptor binding autoradiography, respectively. Immunohistochemistry was applied to study the distribution of histaminergic fibres and terminals in the normal human thalamus. mRNAs for all three histamine receptors were detected mainly in the dorsal thalamus, but the expression intensities were different. Briefly, H1 and H3 receptor mRNAs were relatively enriched in the anterior, medial, and part of the lateral nuclei regions; whereas the expression level was much lower in the ventral and posterior parts of the thalamus, and the reticular nucleus. H2 receptor mRNA displayed in general very low expression intensity with slightly higher expression level in the anterior and lateropolar regions. H1 receptor binding was mainly detected in the mediodorsal, ventroposterolateral nuclei, and the pulvinar. H3 receptor binding was detected mainly in the dorsal thalamus, predominantly the periventricular, mediodorsal, and posterior regions. Very high or high histaminergic fibre densities were observed in the midline nuclear region and other nuclei next to the third ventricle, ventroposterior lateral nucleus and medial geniculate nucleus. In most of the core structures of the thalamus, the fibre density was very low or absent. The results suggest that histamine in human brain regulates tactile and proprioceptory thalamocortical functions through multiple receptors. Also, other, e.g. visual areas and those not making cortical connections expressed histamine receptors and contained histaminergic nerve fibres.

  14. Vascular endothelial growth factor and its receptor expression during the process of fracture healing

    Institute of Scientific and Technical Information of China (English)

    CHU Tong-wei; LIU Yu-gang; WANG Zheng-guo; ZHU Pei-fang; LIU Da-wei

    2008-01-01

    Objective: To study the expression regularity of vascular endothelial growth factor (VEGF) during the process of fracture healing, and the type of VEGF receptor expressed in the vascular endothelial cells of the fracture site.Methods: The fracture model was made in the middle part of left radius in 35 rabbits. The specimens from the fracture site were harvested at 8, 24, 72 hours and 1, 3, 5, 8 weeks, and then fixed, decalcified, and sectioned frozenly to detect the expression of VEGF and its receptor at the fracture site by in situ hybridization and immunochemical assays. Results: VEGF mRNA and VEGF expression was detected in many kinds of cells at the fracture site during 8hours to 8 weeks after fracture. Flt1 receptor of VEGF was found in the vascular endothelial cells at the fracture site during 8 hours to 8 weeks after fracture, and strong expression of flk1 receptor was detected from 3 days to 3 weeks after fracture. Conclusions: The expression of VEGF and flt1 receptor appears during the whole course of fracture healing, especially from 1 to 3 weeks. Flk1 receptor is highly expressed in a definite period after fracture. VEGF is proved to be involved in the vascular reconstruction and fracture healing.

  15. Interleukin-1 receptors are differentially expressed in normal and psoriatic T cells.

    Science.gov (United States)

    Bebes, Attila; Kovács-Sólyom, Ferenc; Prihoda, Judit; Kui, Róbert; Kemény, Lajos; Gyulai, Rolland

    2014-01-01

    This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4(+)CD25(-) effector and CD4(+)CD25(+)CD127(low) regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1) mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2) upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.

  16. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    Science.gov (United States)

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  17. Expression of soluble triggering receptor expression on myeloid cells-1 in pleural effusion

    Institute of Scientific and Technical Information of China (English)

    HUANG Lu-ying; SHI Huan-zhong; LIANG Qiu-li; WU Yan-bin; QIN Xue-jun; CHEN Yi-qiang

    2008-01-01

    Background Tdggedng receptors expressed on myeloid cells(TREM)proteins are a family of cell surface receptors expressed broadly by cells of the myeloid lineage.The aim of this study was to investigate the clinical significance of soluble TREM-1(sTREM-1)in pleural effusions,and to determine the effects of pneumonia on pleural sTREM-1 concentrations.Methods PleuraI fluid was collected from 109 patients who presented to the respiratory institute (35 with malignant pleural effusion,31 with tuberculous pleural effusion,21 with bacteriaI pleural effusion,and 22 with transudate).The concentrations of sTREM-1,tumor necrosis factor-o(TNF-α)and interleukin-1β(IL-1β)were determined jn effusion and serum samples by enzyme Iinked immunosorbent assay(ELISA).Results The concentrations of sTREM-1 in bacterial pleural effusion were significantly higher than those in malignant.tuberculous,and transudative groups(all P<0.001).An sTREM-1 cutoff value of 768.1 ng/L had a sensitivity of 86%and a specificity of 93%.Pleural sTREM-1 Ievels were positively correlated with Ievels of TNF-α and IL-1β.Patients with complicating bacterial pneumonia did not have elevated concentration of STREM-1 jn pleural effusion when compared with patients without pneumonia.Conclusions Determination of pleural sTREM-1 may improve the ability of clinicians to differentiate pleural effusion patients of bacterial origin from those with other etiologies.The occurrence of bacterial pneumonia did not affect pleural sTREM-1 concentrations.

  18. The cholinergic anti-inflammatory pathway delays TLR-induced skin allograft rejection in mice: cholinergic pathway modulates alloreactivity.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Activation of innate immunity through Toll-like receptors (TLR can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand. The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.

  19. Viral Engineering of Chimeric Antigen Receptor Expression on Murine and Human T Lymphocytes.

    Science.gov (United States)

    Hammill, Joanne A; Afsahi, Arya; Bramson, Jonathan L; Helsen, Christopher W

    2016-01-01

    The adoptive transfer of a bolus of tumor-specific T lymphocytes into cancer patients is a promising therapeutic strategy. In one approach, tumor specificity is conferred upon T cells via engineering expression of exogenous receptors, such as chimeric antigen receptors (CARs). Here, we describe the generation and production of both murine and human CAR-engineered T lymphocytes using retroviruses. PMID:27581020

  20. Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor

    Science.gov (United States)

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...

  1. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression

    Science.gov (United States)

    Prolactin (PRL), acting via the prolactin receptor, fulfills a diversity of biological functions including the maintenance of solute balance and mineral homeostasis via tissues such as the heart, kidneys and intestine. Expression and activity of the prolactin receptor (PRLR) is regulated by various ...

  2. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  3. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies

    NARCIS (Netherlands)

    E. Zurolo; A.M. Iyer; W.G.M. Spliet; P.C. van Rijen; D. Troost; J.A. Gorter; E. Aronica

    2010-01-01

    Recent data support the involvement of the endocannabinoid signaling in early brain development, as well as a key role of cannabinoid receptors (CBR) in pathological conditions associated with unbalanced neuronal excitability and inflammation. Using immunocytochemistry, we explored the expression an

  4. Effect of Curcumin on the Gene Expression of Low Density Lipoprotein Receptors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To investigate the molecular mechanisms and effective target ponits of lipid-lowering drug, Rhizoma Curcumae Longae, and study the effect of curcumin on the expression of low density lipoprotein (LDL) receptors in macrophages in mice. Methods: Macrophages in mice were treated with curcumin, which was purified from the ethanolly extraction of Rhizoma Curcumae Longae for 24 h. The LDL receptors expressed in the macrophages were determined by enzyme-linked immunosorbent assay (ELISA) and assay of Dil labeled LDL uptake by flow cytometer. Results: It was found for the first time that 10 μmol/L-50μmol/L curcumin could obviously up-regulate the expression of LDL receptor in macrophages in mice, and a dose-effect relationship was demonstrated. Conclusion: One of the lipid-lowering mechanisms of traditional Chinese medicine, Rhizoma Curcumae Longae, was completed by the effect of curcumin through the up-regulation of the expression of LDL receptor.

  5. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali;

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  6. Expression of urokinase receptors by human trophoblast. A histochemical and ultrastructural analysis

    DEFF Research Database (Denmark)

    Multhaupt, H A; Mazar, A; Cines, D B;

    1994-01-01

    BACKGROUND: Through their ability to invade endometrium, remodel the uterine spiral arteries, and sustain placental blood fluidity, trophoblast cells play a central role in establishing and maintaining the integrity of the uteroplacental vasculature. The expression of urokinase receptors by troph...

  7. A case of postganglionic cholinergic dysautonomia.

    OpenAIRE

    Takayama, H; Kazahaya, Y; Kashihara, N.; Kuroda, H.; Miyawaki, S; Ota, Z; Ogawa, N.

    1987-01-01

    A 24 year old female presented with signs and symptoms of postganglionic cholinergic autonomic dysfunction manifested by impaired lachrymation and salivation, mydriasis of the pupil, decreased gastrointestinal motility, atony of the bladder, and sweating and taste disturbance. Clinical and pharmacological studies confirmed that the abnormalities were restricted mainly to the postganglionic cholinergic autonomic systems. The titre of serum complement was low, antinuclear antibodies revealed a ...

  8. Upregulation of neurokinin-1 receptor expression in the lungs of patients with sarcoidosis.

    LENUS (Irish Health Repository)

    O'Connor, Terence M

    2012-02-03

    Substance P (SP) is a proinflammatory neuropeptide that is secreted by sensory nerves and inflammatory cells. Increased levels of SP are found in sarcoid bronchoalveolar lavage fluid. SP acts by binding to the neurokinin-1 receptor and increases secretion of tumor necrosis factor-alpha in many cell types. We sought to determine neurokinin-1 receptor expression in patients with sarcoidosis compared with normal controls. Neurokinin-1 receptor messenger RNA and protein expression were below the limits of detection by reverse transcriptase-polymerase chain reaction and immunohistochemistry in peripheral blood mononuclear cells of healthy volunteers (n = 9) or patients with stage 1 or 2 pulmonary sarcoidosis (n = 10), but were detected in 1\\/9 bronchoalveolar lavage cells of controls compared with 8\\/10 patients with sarcoidosis (p = 0.012) and 2\\/9 biopsies of controls compared with 9\\/10 patients with sarcoidosis (p = 0.013). Immunohistochemistry localized upregulated neurokinin-1 receptor expression to bronchial and alveolar epithelial cells, macrophages, lymphocytes, and sarcoid granulomas. The patient in whom neurokinin-1 receptor was not detected was taking corticosteroids. Incubation of the type II alveolar and bronchial epithelial cell lines A549 and SK-LU 1 with dexamethasone downregulated neurokinin-1 receptor expression. Upregulated neurokinin-1 receptor expression in patients with sarcoidosis may potentiate substance P-induced proinflammatory cytokine production in patients with sarcoidosis.

  9. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain

    OpenAIRE

    Galea, Ian; Palin, Karine; Newman, Tracey A; van Rooijen, Nico; Perry, V. Hugh; Boche, Delphine

    2005-01-01

    Perivascular macrophages are believed to have a significant role in inflammation in the central nervous system (CNS). They express a number of different receptors that point toward functions in both innate immunity, through pathogen-associated molecular pattern recognition, phagocytosis, and cytokine responsiveness, and acquired immunity, through antigen presentation and co-stimulation. We are interested in the receptors that are differentially expressed by perivascular macrophages and microg...

  10. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ

    OpenAIRE

    Ackels, Tobias; Von Der Weid, Benoît; Rodriguez, Ivan; Spehr, Marc

    2014-01-01

    The mouse vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Based on largely monogenic expression of either type 1 or 2 vomeronasal receptors (V1Rs/V2Rs) or members of the formyl peptide receptor (FPR) family, the vomeronasal sensory epithelium harbors at least three neuronal subpopulations. While various neurophysiological properties of both V1R- and V2R-expressing neurons have been described using genetically engineered mouse models, ...

  11. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ

    OpenAIRE

    Tobias Ackels; Ivan Rodriguez

    2014-01-01

    The mouse vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Based on largely monogenic expression of either type 1 or 2 vomeronasal receptors (V1Rs / V2Rs) or members of the formyl peptide receptor (FPR) family, the vomeronasal sensory epithelium harbors at least three neuronal subpopulations. While various neurophysiological properties of both V1R- and V2R-expressing neurons have been described using genetically engineered mouse models...

  12. Expression of basic fibroblast growth factor and its receptor in human pancreatic carcinomas.

    OpenAIRE

    Ohta, T.(Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan); Yamamoto, M.; Numata, M; Iseki, S.; Tsukioka, Y.; Miyashita, T; Kayahara, M.; Nagakawa, T.; Miyazaki, I.; Nishikawa, K.; Yoshitake, Y

    1995-01-01

    We examined the expression of basic fibroblast growth factor (FGF) and FGF receptor by immunohistochemistry in 32 human pancreatic ductal adenocarcinomas. Mild to marked basic FGF immunoreactivity was noted in 19 (59.4%) of the 32 tumours examined, and 30 (93.3%) of the tumours exhibited a cytoplasmic staining pattern against FGF receptor. The tumours were divided into two groups according to the proportion of positively stained tumour cells: a low expression group (positive cells < 25%) and ...

  13. Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood

    OpenAIRE

    Brydges, Nichola M.; Jin, Rowen; Seckl, Jonathan,; Holmes, Megan C; Drake, Amanda J.; Hall, Jeremy

    2013-01-01

    BackgroundExposure to stress in early life is correlated with the development of anxiety disorders in adulthood. The underlying mechanisms are not fully understood, but an imbalance in corticosteroid receptor (CR) expression in the limbic system, particularly the hippocampus, has been implicated in the etiology of anxiety disorders. However, little is known about how prepubertal stress in the so called “juvenile” period might alter the expression of these receptors.AimsTherefore, the aim of t...

  14. Role of a ubiquitously expressed receptor in the vertebrate olfactory system.

    Science.gov (United States)

    DeMaria, Shannon; Berke, Allison P; Van Name, Eric; Heravian, Anisa; Ferreira, Todd; Ngai, John

    2013-09-18

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the "one receptor, one neuron" rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed. PMID:24048853

  15. Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, Hanne; Sellebjerg, Finn

    2002-01-01

    We investigated the B-cell expression of chemokine receptors CXCR3, CXCR5 and CCR5 in the blood and cerebrospinal fluid (CSF) from patients in relapse of multiple sclerosis (MS) and in neurological controls. Chemokine receptor expression was also studied in interferon-beta-treated patients...... with relapsing-remitting or secondary progressive MS. We observed significantly higher expression of CXCR3 on B cells in the CSF in active MS than in controls. Patients with active MS also had higher B-cell expression of CCR5 in blood. No major differences between RRMS and SPMS patients were detected...

  16. Expression of nicotinic acetylcholine receptor subunit α9 in type Ⅱ vestibular hair cells of rats

    Institute of Scientific and Technical Information of China (English)

    Wei-jia KONG; Hua-mao CHENG; Paul van CAUWENBERGE

    2006-01-01

    Aim: To explore the cell specific existence of α9 AChR in the vestibular type Ⅱ hair cells (VHC Ⅱ) of rats. Methods: To detect the expression of α9 AChR messenger RNA (mRNA) in the vestibular endorgans and single VHC Ⅱ of rats by using the reverse transcription polymerase chain reaction (RT-PCR) technique and the single cell RT-PCR technique, respectively. Results: It was shown that α9 AChR mRNA was detected in the vestibular endorgans. By using single-cell RT-PCR, mRNA encoding α9 AChR was also detected in the VHC Ⅱ of the rats. Sequence analysis of the PCR products confirmed identity to corresponding cDNA sequence in the predicted region. Conclusion: We established a method which could effectively detect the cell specific expression of mRNA in an individual VHC. Present data confirm that α9 AChR mRNA is expressed in the VHC Ⅱ of rats and indicates that α9 AChR may function as a mediator of efferent cholinergic signaling in mammalian VHC.

  17. Selective Expression of Progesterone Receptor in Malignant Melanoma Was Inversely Correlated with PCNA

    Institute of Scientific and Technical Information of China (English)

    Jiawen LI; Xianfeng FANG; Xu'e CHEN; Jing CHEN

    2008-01-01

    To investigate the role of progesterone receptor (PR) expression in malignant melanoma (MM), PR and proliferative cell nuclear antigen (PCNA) expression were immunohistochemistri- tally evaluated in a series of 35 specimens of MM, and the correlation between the immunohisto- chemistrical findings and clinicopathological data was also analyzed. PR expression was detected in 25.7% (9/35) of the patients with MM. No PR expression was observed in nevi. PR expression was inversely correlated with PCNA expression (r=-0.353, P=0.026). PR expression was slightly in- creased in females, subjects aged under 55 y, those with ulceration, non-acral subtype and diagnosis delay longer than 1 y, but the difference was not statistically significant. Selective expression of pro- gesterone receptor in malignant melanoma might be correlated with inhibited tumor growth.

  18. Expression cloning of a cDNA encoding the bovine histamine H1 receptor.

    OpenAIRE

    Yamashita, M; Fukui, H; Sugama, K; Horio, Y; Ito, S.; Mizuguchi, H.; Wada, H

    1991-01-01

    A functional cDNA clone for the histamine H1 receptor was isolated from a cDNA library of bovine adrenal medulla by a combination of molecular cloning in an expression vector and electrophysiological assay in Xenopus oocytes. The H1 receptor cDNA encodes a protein of 491 amino acids (Mr 55,954) with seven putative transmembrane domains, illustrating the similarity to other receptors that couple with guanine nucleotide-binding regulatory proteins (G protein-coupled receptors). The sequence hom...

  19. Molecular cloning of a new bombesin receptor subtype expressed in uterus during pregnancy

    OpenAIRE

    Gorboulev, Valentin; Akhundova, Aida; Büchner, Hubert; Fahrenholz, Falk

    2011-01-01

    The homology screening approach has been used to clone a new member of the guanine-nucleotidebinding-protein-coupled receptor superfamily from guinea pig uterus. The cloned cDNA encodes a 399-amino-acid protein and shows the highest amino acid similarity to members of the bombesin receptor family; 52% and 47% similarity to the gastrin-releasing-peptide (GRP) receptor and the neuromedin-B receptor, respectively. Bindingexperiments with the stably transfected LLC-PK1 cell line expressing the ne...

  20. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars;

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  1. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    OpenAIRE

    Monica S Guzman; Xavier De Jaeger; Sanda Raulic; Souza, Ivana A; Li, Alex X.; Susanne Schmid; Menon, Ravi S.; Gainetdinov, Raul R.; Caron, Marc G.; Robert Bartha; Prado, Vania F.; Prado, Marco A. M.

    2011-01-01

    Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent...

  2. Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study.

    Science.gov (United States)

    Meneses, A; Manuel-Apolinar, L; Castillo, C; Castillo, E

    2007-03-12

    Traditionally, the search for memory circuits has been centered on examinations of amnesic and AD patients, cerebral lesions and, neuroimaging. A complementary alternative might be the use of autoradiography with radioligands. Indeed, ex vivo autoradiographic studies offer the advantage to detect functionally active receptors altered by pharmacological tools and memory formation. Hence, herein the 5-HT(6) receptor antagonist SB-399885 and the amnesic drugs scopolamine or dizocilpine were used to manipulate memory consolidation and 5-HT(6) receptors expression was determined by using [(3)H]-SB-258585. Thus, memory consolidation was impaired in scopolamine and dizocilpine treated groups relative to control vehicle but improved it in SB-399885-treated animals. SB-399885 improved memory consolidation seems to be associated with decreased 5-HT(6) receptors expression in 15 out 17 brain areas. Scopolamine or dizocilpine decreased 5-HT(6) receptors expression in nine different brain areas and increased it in CA3 hippocampus or other eight areas, respectively. In brain areas thought to be in charge of procedural memory such basal ganglia (i.e., nucleus accumbens, caudate putamen, and fundus striate) data showed that relative to control animals amnesic groups showed diminished (scopolamine) or augmented (dizocilpine) 5-HT(6) receptor expression. SB-399885 showing improved memory displayed an intermediate expression in these same brain regions. A similar intermediate expression occurs with regard to amygdala, septum, and some cortical areas in charge of explicit memory storage. However, relative to control group amnesic and SB-399885 rats in the hippocampus, region where explicit memory is formed, showed a complex 5-HT(6) receptors expression. In conclusion, these results indicate neural circuits underlying the effects of 5-HT(6) receptor antagonists in autoshaping task and offer some general clues about cognitive processes in general. PMID:17267053

  3. Hedonic taste in Drosophila revealed by olfactory receptors expressed in taste neurons.

    Directory of Open Access Journals (Sweden)

    Makoto Hiroi

    Full Text Available Taste and olfaction are each tuned to a unique set of chemicals in the outside world, and their corresponding sensory spaces are mapped in different areas in the brain. This dichotomy matches categories of receptors detecting molecules either in the gaseous or in the liquid phase in terrestrial animals. However, in Drosophila olfactory and gustatory neurons express receptors which belong to the same family of 7-transmembrane domain proteins. Striking overlaps exist in their sequence structure and in their expression pattern, suggesting that there might be some functional commonalities between them. In this work, we tested the assumption that Drosophila olfactory receptor proteins are compatible with taste neurons by ectopically expressing an olfactory receptor (OR22a and OR83b for which ligands are known. Using electrophysiological recordings, we show that the transformed taste neurons are excited by odor ligands as by their cognate tastants. The wiring of these neurons to the brain seems unchanged and no additional connections to the antennal lobe were detected. The odor ligands detected by the olfactory receptor acquire a new hedonic value, inducing appetitive or aversive behaviors depending on the categories of taste neurons in which they are expressed i.e. sugar- or bitter-sensing cells expressing either Gr5a or Gr66a receptors. Taste neurons expressing ectopic olfactory receptors can sense odors at close range either in the aerial phase or by contact, in a lipophilic phase. The responses of the transformed taste neurons to the odorant are similar to those obtained with tastants. The hedonic value attributed to tastants is directly linked to the taste neurons in which their receptors are expressed.

  4. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  5. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    Science.gov (United States)

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted. PMID:25967984

  6. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-04-01

    Full Text Available Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was to determine the extent of α7 mRNA and protein expression in the human lung. Methods Experiments were done using reverse transcription polymerase chain reaction (RT-PCR, a nuclease protection assay and western blotting using membrane proteins. Results We detected mRNA for the neuronal nicotinic acetylcholine receptor α7 receptor in seven small cell lung cancer (SCLC cell lines, in two pulmonary adenocarcinoma cell lines, in cultured normal human small airway epithelial cells (SAEC, one carcinoid cell line, three squamous cell lines and tissue samples from nine patients with various types of lung cancer. A nuclease protection assay showed prominent levels of α7 in the NCI-H82 SCLC cell line while α7 was not detected in SAEC, suggesting that α7 mRNA levels may be higher in SCLC compared to normal cells. Using a specific antibody to the α7 nicotinic receptor, protein expression of α7 was determined. All SCLC cell lines except NCI-H187 expressed protein for the α7 receptor. In the non-SCLC cells and normal cells that express the α7 nAChR mRNA, only in SAEC, A549 and NCI-H226 was expression of the α7 nicotinic receptor protein shown. When NCI-H69 SCLC cell line was exposed to 100 pm NNK, protein expression of the α7 receptor was increased at 60 and 150 min. Conclusion Expression of mRNA for the neuronal nicotinic acetylcholine receptor α7 seems to be ubiquitously expressed in all human lung cancer cell lines tested (except for NCI-H441 as well as normal

  7. A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131.

    Directory of Open Access Journals (Sweden)

    Simone Prandi

    Full Text Available The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs, direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r expression in mice. RT-PCR experiments assessed the presence of mRNA for Tas2rs and taste signaling molecules in the gut. A gene-targeted mouse strain was established to visualize and identify cell types expressing the bitter receptor Tas2r131. Messenger RNA for various Tas2rs and taste signaling molecules were detected by RT-PCR in the gut. Using our knock-in mouse strain we demonstrate that a subset of colonic goblet cells express Tas2r131. Cells that express this receptor are absent in the upper gut and do not correspond to enteroendocrine and brush cells. Expression in colonic goblet cells is consistent with a role of Tas2rs in defense mechanisms against potentially harmful xenobiotics.

  8. Vitamin D3 receptor is highly expressed in Hodgkin’s lymphoma

    Directory of Open Access Journals (Sweden)

    Renné Christoph

    2012-06-01

    Full Text Available Abstract Background Hodgkin lymphoma (HL is one of the most frequent lymphoma in the western world. Despite a good overall prognosis, some patients suffer relapsing tumors which are difficult to cure. Over a long period Vitamin D has been shown to be a potential treatment for cancer. Vitamin D acts via the vitamin D receptor, a nuclear receptor, acting as an inducible transcription factor. We aimed to investigate the expression of vitamin D receptor as a possible diagnostic marker and potential therapeutic target in HL as well as in B-cell derived non-Hodgkin lymphoma (B-NHL. Methods We used a panel of 193 formalin fixed tissues of lymphoma cases consisting of 55 cases of HL and 138 cases on several B-NHL entities. Results Vitamin D receptor is strongly expressed in tumor cells of HL, regardless of the sub entity with an overall positivity of 80% of all HL cases. In contrast, only about 17% of the analyzed origin-NHL showed positivity for vitamin D receptor. The detection of nuclear localization of vitamin D receptor in the tumor cells of HL suggests activated status of the vitamin D receptor. Conclusions Our study suggests VDR as a specific marker for tumor cells of HL, but not of B-NHL subtypes. Further, the observed nuclear localization suggests an activated receptor status in tumor cells of HL. Further investigations of mutational status and functional studies may shed some light in functional relevance of vitamin D receptor signaling in HL.

  9. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues

    International Nuclear Information System (INIS)

    A cDNA encoding a specific form of thyroid hormone receptor expressed in human liver, kidney, placenta, and brain was isolated from a human kidney library. Identical clones were found in human placenta and HepG2 cDNA libraries. The cDNA encodes a 490-amino acid protein. When expressed and translated in vitro, the protein products binds triiodothyronine with K/sub a/ of 2.3 /times/ 109 M/sup /minus/1/. This protein, designated human thyroid hormone receptor type α2 (hTRα2), has the same domain structure as other members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type α described in chicken and rat and less similar to human thyroid hormone receptor type β (formerly referred to as c-erbAβ) from placenta. However, it is distinguished from these receptors by an extension of the C-terminal hormone binding domain making it 80 amino acids longer than rat thyroid hormone receptor type α1. Different sizes of mRNA found in liver and kidney suggest that there may be tissue-specific processing of the primary transcript of this gene. Identification of human thyroid hormone receptor type α2 indicates that two or more forms of thyroid hormone receptor exist in human tissues and may explain the normal variation in thyroid hormone responsiveness of various organs and the selective tissue abnormalities found in the thyroid hormone resistance syndromes

  10. Vitamin D3 receptor is highly expressed in Hodgkin’s lymphoma

    International Nuclear Information System (INIS)

    Hodgkin lymphoma (HL) is one of the most frequent lymphoma in the western world. Despite a good overall prognosis, some patients suffer relapsing tumors which are difficult to cure. Over a long period Vitamin D has been shown to be a potential treatment for cancer. Vitamin D acts via the vitamin D receptor, a nuclear receptor, acting as an inducible transcription factor. We aimed to investigate the expression of vitamin D receptor as a possible diagnostic marker and potential therapeutic target in HL as well as in B-cell derived non-Hodgkin lymphoma (B-NHL). We used a panel of 193 formalin fixed tissues of lymphoma cases consisting of 55 cases of HL and 138 cases on several B-NHL entities. Vitamin D receptor is strongly expressed in tumor cells of HL, regardless of the sub entity with an overall positivity of 80% of all HL cases. In contrast, only about 17% of the analyzed origin-NHL showed positivity for vitamin D receptor. The detection of nuclear localization of vitamin D receptor in the tumor cells of HL suggests activated status of the vitamin D receptor. Our study suggests VDR as a specific marker for tumor cells of HL, but not of B-NHL subtypes. Further, the observed nuclear localization suggests an activated receptor status in tumor cells of HL. Further investigations of mutational status and functional studies may shed some light in functional relevance of vitamin D receptor signaling in HL

  11. Delineation of the GPRC6A Receptor Signaling Pathways Using a Mammalian Cell Line Stably Expressing the Receptor

    DEFF Research Database (Denmark)

    Jacobsen, Stine Engesgaard; Nørskov-Lauritsen, Lenea; Thomsen, Alex Rojas Bie;

    2013-01-01

    receptor has been suggested to couple to multiple G protein classes albeit via indirect methods. Thus, the exact ligand preferences and signaling pathways are yet to be elucidated. In the present study, we generated a Chinese hamster ovary (CHO) cell line that stably expresses mouse GPRC6A. In an effort...... of the stable CHO cell line with robust receptor responsiveness and optimization of the highly sensitive homogeneous time resolved fluorescence technology allow fast assessment of Gq activation without previous manipulations like cotransfection of mutated G proteins. This cell-based assay system for GPRC6A...

  12. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig;

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  13. Substantial expression of luteinizing hormone-releasing hormone (LHRH) receptor type I in human uveal melanoma

    Science.gov (United States)

    Schally, Andrew V.; Block, Norman L; Dezso, Balazs; Olah, Gabor; Rozsa, Bernadett; Fodor, Klara; Buglyo, Armin; Gardi, Janos; Berta, Andras; Halmos, Gabor

    2013-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with a very high mortality rate due to frequent liver metastases. Consequently, the therapy of uveal melanoma remains a major clinical challenge and new treatment approaches are needed. For improving diagnosis and designing a rational and effective therapy, it is essential to elucidate molecular characteristics of this malignancy. The aim of this study therefore was to evaluate as a potential therapeutic target the expression of luteinizing hormone-releasing hormone (LHRH) receptor in human uveal melanoma. The expression of LHRH ligand and LHRH receptor transcript forms was studied in 39 human uveal melanoma specimens by RT-PCR using gene specific primers. The binding charachteristics of receptors for LHRH on 10 samples were determined by ligand competition assays. The presence of LHRH receptor protein was further evaluated by immunohistochemistry. The expression of mRNA for type I LHRH receptor was detected in 18 of 39 (46%) of tissue specimens. mRNA for LHRH-I ligand could be detected in 27 of 39 (69%) of the samples. Seven of 10 samples investigated showed high affinity LHRH-I receptors. The specific presence of full length LHRH receptor protein was further confirmed by immunohistochemistry. A high percentage of uveal melanomas express mRNA and protein for type-I LHRH receptors. Our results support the merit of further investigation of LHRH receptors in human ophthalmological tumors. Since diverse analogs of LHRH are in clinical trials or are already used for the treatment of various cancers, these analogs could be considered for the LHRH receptor-based treatment of uveal melanoma. PMID:24077773

  14. Expression and localization of the omega-3 fatty acid receptor GPR120 in human term placenta.

    Science.gov (United States)

    Lager, S; Ramirez, V I; Gaccioli, F; Jansson, T; Powell, T L

    2014-07-01

    Fatty acids can function as signaling molecules, acting through receptors in the cytosol or on the cell surface. G-Protein Receptor (GPR)120 is a membrane-bound receptor mediating anti-inflammatory and insulin-sensitizing effects of the omega-3 fatty acid docohexaenoic acid (DHA). GPR120 dysfunction is associated with obesity in humans. Cellular localization of GPR120 and the influence of maternal obesity on GPR120 protein expression in the placenta are unknown. Herein we demonstrate that GPR120 is predominantly expressed in the microvillous membrane (MVM) of human placenta and that the expression level of this receptor in MVM is not altered by maternal body mass index (BMI).

  15. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5AH......-T2-clone B was studied. The binding characteristics with regard to specificity for the native 22 kDa hGH, and the 20 kDa variant were similar to that reported on rat adipocytes. Normal rat islet cells showed a similar affinity for hGH. The RIN cells express GH receptors similar to the cloned liver...... receptor. It is hypothesized that defects in the receptor expression on the beta-cells may contribute to the susceptibility to develop diabetes....

  16. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. PMID:26166135

  17. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  18. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    Directory of Open Access Journals (Sweden)

    Thomas C. Wehler

    2008-01-01

    Full Text Available Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P=.039, tumor dedifferentiation (P = .0005, and low hemoglobin (P = .039. In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma.

  19. 5-HT2 receptors modulate the expression of antipsychotic-induced dopamine supersensitivity.

    Science.gov (United States)

    Charron, Alexandra; Hage, Cynthia El; Servonnet, Alice; Samaha, Anne-Noël

    2015-12-01

    Antipsychotic treatment can produce supersensitivity to dopamine receptor stimulation. This compromises the efficacy of ongoing treatment and increases the risk of relapse to psychosis upon treatment cessation. Serotonin 5-HT2 receptors modulate dopamine function and thereby influence dopamine-dependent responses. Here we evaluated the hypothesis that 5-HT2 receptors modulate the behavioural expression of antipsychotic-induced dopamine supersensitivity. To this end, we first treated rats with the antipsychotic haloperidol using a clinically relevant treatment regimen. We then assessed the effects of a 5-HT2 receptor antagonist (ritanserin; 0.01 and 0.1mg/kg) and of a 5-HT2A receptor antagonist (MDL100,907; 0.025-0.1mg/kg) on amphetamine-induced psychomotor activity. Antipsychotic-treated rats showed increased amphetamine-induced locomotion relative to antipsychotic-naïve rats, indicating a dopamine supersensitive state. At the highest dose tested (0.1mg/kg for both antagonists), both ritanserin and MDL100,907 suppressed amphetamine-induced locomotion in antipsychotic-treated rats, while having no effect on this behaviour in control rats. In parallel, antipsychotic treatment decreased 5-HT2A receptor density in the prelimbic cortex and nucleus accumbens core and increased 5-HT2A receptor density in the caudate-putamen. Thus, activation of either 5-HT2 receptors or of 5-HT2A receptors selectively is required for the full expression of antipsychotic-induced dopamine supersensitivity. In addition, antipsychotic-induced dopamine supersensitivity enhances the ability of 5-HT2/5-HT2A receptors to modulate dopamine-dependent behaviours. These effects are potentially linked to changes in 5-HT2A receptor density in the prefrontal cortex and the striatum. These observations raise the possibility that blockade of 5-HT2A receptors might overcome some of the behavioural manifestations of antipsychotic-induced dopamine supersensitivity. PMID:26508706

  20. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS.

    Science.gov (United States)

    Zhang, Qian; Wang, Hongyi; Kantekure, Kanchan; Paterson, Jennifer C; Liu, Xiaobin; Schaffer, Andras; Paulos, Chrystal; Milone, Michael C; Odum, Niels; Turner, Suzanne; Marafioti, Teresa; Wasik, Mariusz A

    2011-09-15

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression via STAT3, which triggers the transcriptional activity of the ICOS gene promoter. In addition, STAT3 suppresses the expression of miR-219 that, in turn, selectively inhibits ICOS expression. ALK(+) TCL cell lines display extensive DNA methylation of the CpG island located within intron 1, the putative enhancer region, of the ICOS gene, whereas cutaneous T-cell lymphoma cell lines, which strongly express ICOS, show no methylation of the island. Treatment of the ALK(+) TCL cell lines with DNA methyltransferase inhibitor reversed the CpG island methylation and augmented the expression of ICOS mRNA and protein. Stimulation of the ICOS receptor with anti-ICOS antibody or ICOS ligand-expressing B cells markedly enhanced proliferation of the ALK(+) TCL cells. These results demonstrate that NPM-ALK, acting through STAT3 as the gene transcriptional activator, induces the expression of ICOS, a cell growth promoting receptor. These data also show that the DNA methylation status of the intronic CpG island affects transcriptional activity of the ICOS gene and, consequently, modulates the concentration of the expressed ICOS protein.

  1. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening.

    Directory of Open Access Journals (Sweden)

    Wenjing Law

    2015-04-01

    Full Text Available Monoamines, such as 5-HT and tyramine (TA, paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for

  2. THE CORRELATIONS OF RETINOIC ACID RECEPTOR-α AND ESTROGEN RECEPTOR EXPRESSION IN HUMAN BREAST CANCER CELL LINES AND TUMORS

    Institute of Scientific and Technical Information of China (English)

    余黎明; 邵志敏; 蔡三军; 韩企夏; 沈镇宙

    1998-01-01

    Retinoic acid receptor-α(RAR α) plays a major role in the growth inhibitory effect of retinoic acid on human breast cancer ceils, may be it could serve as an indicator to guide the treatment and prevent of breast cancer with retinoic acid in ciiinc. All previous researchs were based on observing the changes ofRAR a mRAN expression. In this study, the expression of RAR a in human breast cell lines was studied by Northern Blot, Western Blot and Immunohistochemistry in mRNA level and protein level. Results showed that RAR a protein expression was correlated with RAR a mRNA expression. RAR α mRNA expression was higher in estrogen receptor (ER)-positive human breast cancer cell lines than in ER-negative ones. So was RAR α protein expression. Both RAR α mRNA amd RAR α protein expression were associated with ER status. The expression of RAR α and the relationship between RAR α and ER status were also determined by immunohistochemistry in 58 human primary breast cancer tumors. 37 (63.8%) tumors were ER-positive and of these 28 (75. 7%) were also RAR α -positive. The coexpression of ER and RAR α was statistleally significant (P<0. 01, by X2 contingency analysis), It was reported that RAR α expression in cultured breast cancer ceils was regulated by estrogen acting via the ER. Our study demonstrated that RAR α expression may be modulated in breast cancer in vivo by estrogen via ER.

  3. Expression of histamine receptors in the human endolymphatic sac

    DEFF Research Database (Denmark)

    Møller, M Nue; Kirkeby, S; Vikeså, J.;

    2016-01-01

    in 2012. This leaves betahistine (Betaserc) as the only drug for potential prevention of the incapacitating attacks of dizziness, tinnitus and hearing loss. However, the histamine receptors targeted by betahistine have never been demonstrated in the human ES. Accordingly, this study aims to investigate...

  4. Gene expression analysis of CL-20-induced reversible neurotoxicity reveals GABA(A) receptors as potential targets in the earthworm Eisenia fetida.

    Science.gov (United States)

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J

    2012-01-17

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. End points such as survival, growth, and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we apply a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm(2) of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at days 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control, and 13-day exposed (i.e., 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shotgun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by noncompetitively blocking the ligand-gated GABA(A) receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress. PMID:22191394

  5. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  6. Differential expression of androgen, estrogen, and progesterone receptors in benign prostatic hyperplasia.

    Science.gov (United States)

    Song, Lingmin; Shen, Wenhao; Zhang, Heng; Wang, Qiwu; Wang, Yongquan; Zhou, Zhansong

    2016-07-01

    This study aimed to identify the differential expression levels of androgen receptor (AR), estrogen receptors (ERα, ERβ), and progesterone receptor (PGR) between normal prostate and benign prostatic hyperplasia (BPH). The combination of immunohistochemistry, quantitative real-time reverse transcription polymerase chain reaction, and Western blotting assay was used to identify the distribution and differential expression of these receptors at the immunoactive biomarker, transcriptional, and protein levels between 5 normal human prostate tissues and 40 BPH tissues. The results were then validated in a rat model of BPH induced by testosterone propionate and estradiol benzoate. In both human and rat prostate tissues, AR was localized mainly to epithelial and stromal cell nuclei; ERα was distributed mainly to stromal cells, but not exclusively; ERβ was interspersed in the basal layer of epithelium, but sporadically in epithelial and stromal cells; PGR was expressed abundantly in cytoplasm of epithelial and stromal cells. There were decreased expression of ERα and increased expression of PGR, but no difference in the expression of ERβ in the BPH compared to the normal prostate of both human and rat. Increased expression of AR in the BPH compared to the normal prostate of human was observed, however, the expression of AR in the rat prostate tissue was decreased. This study identified the activation of AR and PGR and repression of ERα in BPH, which indicate a promoting role of AR and PGR and an inhibitory role of ERα in the pathogenesis of BPH. PMID:27483178

  7. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  8. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers

    DEFF Research Database (Denmark)

    Hersom, Maria; Helms, Hans Christian; Pretzer, Natasia;

    2016-01-01

    across the endothelial cells by transcytosis. The aim of the present study was to investigate transferrin receptor expression and role in transendothelial transferrin transport in cultured bovine brain endothelial cell monolayers. Transferrin receptor mRNA and protein levels were investigated...... in endothelial mono-cultures and co-cultures with astrocytes, as well as in freshly isolated brain capillaries using qPCR, immunocytochemistry and Western blotting. Transendothelial transport and luminal association of holo-transferrin was investigated using [125I]holo-transferrin or [59Fe......]-transferrin. Transferrin receptor mRNA expression in all cell culture configurations was lower than in freshly isolated capillaries, but the expression slightly increased during six days of culture. The mRNA expression levels were similar in mono-cultures and co-cultures. Immunostaining demonstrated comparable transferrin...

  9. Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W.; Ferrer-Montiel, A.V.; Schinder, A.F.; Montal, M. (Univ. of California, San Diego, La Jolla (United States)); McPherson, J.P. (Univ. of California, Irvine (United States)); Evans, G.A. (Salk Inst. for Biological Studies, La Jolla, CA (United States))

    1992-02-15

    A full-length cDNA clone encoding a glutamate receptor was isolated from a human brain cDNA library, and the gene product was characterized after expression in Xenopus oocytes. Degenerate PCR primers to conserved regions of published rat brain glutamate receptor sequences amplified a 1-kilobase fragment from a human brain cDNA library. This fragment was used as a probe for subsequent hybridization screening. Two clones were isolated that, based on sequence information, code for different receptors: a 3-kilobase clone, HBGR1, contains a full-length glutamate receptor cDNA highly homologous to the rat brain clone GluR1, and a second clone, HBGR2, contains approximately two-thirds of the coding region of a receptor homologous to rat brain clone GluR2. Southern and PCr analysis of a somatic cell-hybrid panel mapped HBGR1 to human chromosome 5q31.3-33.3 and mapped HBGR2 to chromosome 4q25-34.3. Xenopus oocytes injected with in vitro-synthesized HBGR1 cRNA expressed currents activated by glutamate receptor agonists. These results indicate that clone HBGR1 codes for a glutamate receptor of the kainate subtype cognate to members of the glutamate receptor family from rodent brain.

  10. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    Science.gov (United States)

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST.

  11. Montelukast modulates lung CysLT1 receptor expression and eosinophilic inflammation in asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    Yan-jun ZHANG; Lei ZHANG; Shao-bin WANG; Hua-hao SHEN; Er-qing WEI

    2004-01-01

    AIM: To determine the expressions of cysteinyl leukotriene receptors, CysLT1 and CysLT2, in airway eosinophilic inflammation of OVA-induced asthmatic mice and the modulation by montelukast, a CysLT1 receptor antagonist.METHODS: Asthma model was induced by chronic exposure to ovalbumin (OVA) in C57BL/6 mice. The eosinophils in bronchoalveolar lavage (BAL) fluid and lung tissues were counted, IL-5 level in BAL fluid was measured,and CysLT1 and CysLT2 receptor mRNA expressions were detected by semi-quantitative RT-PCR. RESULTS:Montelukast (6 mg/kg, once per day for 20 d) significantly suppressed the increased eosinophils in BAL fluid and lung tissue, and increased IL-5 level in BAL fluid in OVA challenged mice. OVA challenge increased CysLT1 but decreased CysLT2 receptor mRNA expression. Montelukast inhibited the increased CysLT1 but not the reduced CysLT2 expression after OVA challenge. CONCLUSION: CysLT receptors are modulated immunologically, and montelukast inhibits up-regulation of CysLT1 receptor and airway eosinophilic inflammation in asthmatic mice.

  12. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    Science.gov (United States)

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  13. Expression of Adiponectin Receptors in Human Placenta and Its Possible Implication in Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Naglaa F. Al Husseini

    2010-01-01

    Full Text Available Problem statement: Similar to obese patients and type 2 diabetic patients, adiponectin levels are reduced in former Gestational Diabetes Mellitus (GDM patients and are lower in GDM women during late pregnancy compared with pregnant control subjects matched for BMI. Diabetic insult at later stages in gestation, such as may occur in gestational diabetes, will foremost lead to short-term changes in a variety of molecules for key functions including gene expression in the placenta. Approach: In this study we assessed the expression of adiponectin receptors in human placenta to identify the site (s of expression and to clarify the effect of gestational diabetes in this expression. This study was carried on 10 normoglycemic pregnant women and 20 GDM women. The placental tissue was collected immediately after delivery and tissue biopsies were taken from both fetal and maternal sides of each placenta. One step-RT-PCR for ADIPOR1 and ADIPOR2 was done by Real Time PCR using Syber Green technique. Relative quantification of mRNA of the ADIPOR1 and ADIPOR2 genes was measured using ABI7900 Real Time machine. Results: Both types of Adiponectin Receptors (ADIPOR1 and ADIPOR2 are expressed in human placenta. ADIPOR1 is more highly expressed than ADIPOR2 in both fetal and maternal sides of GDM cases and normal pregnant women. ADIPOR1 mRNA expression was significantly up regulated in GDM women compared to normal pregnant women, whereas no significant difference in the expression of ADIPOR2 was detected between the two groups. There was no evidence of maternal-fetal side difference in the expression of adiponectin receptors in GDM cases but in normal pregnant women there is a statistically significant difference between both sides in the expression of both ADIPOR1 and ADIPOR2. Conclusion: We concluded that adiponectin plays an important role in mediation the glucose metabolism in fetal tissues through its receptors, mainly Adiponectin Receptor 1 (ADIPOR1.

  14. Chemokine receptor expression on the surface of peripheral blood mononuclear cells in Chagas disease.

    Science.gov (United States)

    Talvani, Andre; Rocha, Manoel O C; Ribeiro, Antonio L; Correa-Oliveira, Rodrigo; Teixeira, Mauro M

    2004-01-15

    We evaluated the expression of chemokine receptors (CCR1, CCR2, CCR5, and CXCR4) on the surface of peripheral blood mononuclear cells obtained from patients with chronic chagasic cardiomyopathy (CCC) and noninfected individuals. Only CCR5 and CXCR4 expression was different on the surface of the subsets (CD4, CD8, and CD14) evaluated. Patients with mild CCC had elevated leukocyte expression of CCR5, compared with noninfected individuals or those with severe disease. CXCR4 expression was lower on leukocytes from patients with severe CCC. The differential expression of both receptors on leukocytes of patients with CCC was consistent and clearly correlated with the degree of heart function such that the lower the heart function, the lower the expression of either CCR5 or CXCR4. These results highlight the possible participation of the chemokine system in early forms of chagasic cardiomyopathy and the relevance of heart failure-induced remodeling in modifying immune parameters in infected individuals.

  15. Co-expressed peptide receptors in breast cancer as a molecular basis for in vivo multireceptor tumour targeting

    International Nuclear Information System (INIS)

    Breast cancers can express different types of peptide receptors such as somatostatin, vasoactive intestinal peptide (VIP), gastrin-releasing peptide (GRP) and NPY(Y1) receptors. The aim of this in vitro study was to evaluate which is the most appropriate peptide receptor or peptide receptor combination for in vivo diagnostic and therapeutic targeting of breast cancers. Seventy-seven primary breast cancers and 15 breast cancer lymph node metastases were investigated in vitro for their expression of somatostatin, VPAC1, GRP and NPY(Y1) receptors using in vitro receptor autoradiography on successive tissue sections with 125I-[Tyr3]-octreotide, 125I-VIP, 125I-[Tyr4]-bombesin and 125I-[Leu31,Pro34]-PYY respectively. This study identified two groups of tumours: a group of 68 tumours (88%) with at least one receptor expressed at high density (>2,000 dpm/mg tissue) that may provide a strong predictive value for successful in vivo targeting, and a group of nine tumours (12%) with no receptors or only a low density of them (1) receptors, 25 (37%) expressed VPAC1 receptors and 14 (21%) expressed somatostatin receptors. Mean density was 9,819±530 dpm/mg tissue for GRP receptors, 9,135±579 dpm/mg for NPY(Y1) receptors, 4,337±528 dpm/mg for somatostatin receptors and 3,437±306 dpm/mg for VPAC1 receptors. It is of note that tumours expressing NPY(Y1) or GRP receptors, or both, were found in 63/68 (93%) cases. Lymph node metastases showed a similar receptor profile to the corresponding primary tumour. This in vitro study strongly suggests that the combination of radiolabelled GRP and Y1 analogues should allow targeting of breast carcinomas and their lymph node metastases for in vivo peptide receptor scintigraphy and radiotherapy. (orig.)

  16. Influence of ginsenoside on expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in the medial septum of aged rats

    Institute of Scientific and Technical Information of China (English)

    Liang Zeng; Haihua Zhao; Yongli Lü; Wenbo Dai

    2008-01-01

    BACKGROUND: It has been shown that ginsenoside, the effective component of ginseng, can enhance expression of choline acetyl transferase, as well as brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB), in cholinergic neurons of the basal forebrain.OBJECTIVE: To qualitatively and quantitatively verify the influence of ginsenoside on expression of BDNF and its receptor, TrkB, in the medial septum of aged rats, and to provide a molecular basis for clinical application.DESIGN, TIME AND SETTING: A contrast study, which was performed in the Department of Anatomy, China Medical University, and the Department of Anatomy, Shenyang Medical College between December 2005 and May 2007.MATERIALS: Thirty-five, healthy, female, Sprague Dawley rats were selected for this study. Ginsenoside (81% purity) was provided by Jilin Ji'an Wantai Chinese Medicine Factory; anti-BDNF antibody, anti-TrkB antibody, and their kits were provided by Wuhan Boster Company.METHODS: A total of 35 rats were divided into three groups: young (four months old), aging (26 months old), and ginsenoside. Rats in the ginsenoside group were administered ginsenoside (25mg/kg/d) between 17 months and 26 months.MAIN OUTCOME MEASURES: Immunohistochemistry and in situ hybridization were used to measure expression of BDNF and TrkB in the medial septum of aged rats, and the detected results were expressed as gray values.RESULTS: ①Qualitative detection: using microscopy, degenerative neurons were visible in the medial septum in the aging group. However, neuronal morphology in the ginsenoside group was similar to neurons in the young group.②Quantitative detection: the mean gray value of BDNF-positive and TrkB-positive products in the aging group were significantly higher than in the young group (t=3.346,4.169, P<0.01); however, the mean gray value in the ginsenoside group was significantly lower than in the aging group (t=2.432,2.651, P<0.01).CONCLUSION: Ginsenoside can increase

  17. Cloning and olfactory expression of progestin receptors in the Chinese black sleeper Bostrichthys sinensis.

    Science.gov (United States)

    Zhang, Yu Ting; Liu, Dong Teng; Zhu, Yong; Chen, Shi Xi; Hong, Wan Shu

    2016-05-01

    Our previous studies suggested that 17α,20β-dihydroxy-4-pregnen-3-one (DHP), an oocyte maturation inducing progestin, also acts as a sex pheromone in Chinese black sleeper Bostrichthys sinensis, a fish species that inhabits intertidal zones and mates and spawns inside a muddy burrow. The electro-olfactogram response to DHP increased during the breeding season. In the present study, we cloned the cDNAs of the nine progestin receptors (pgr, paqr5, 6, 7(a, b), 8, 9, pgrmc1, 2) from B. sinensis, analyzed their tissue distribution, and determined the expression in the olfactory rosette during the reproductive cycle in female and male fish. The deduced amino acid sequences of the nine progestin receptors share high sequence identities with those of other fish species and relatively lower homology with their mammalian counterparts, and phylogenetic analyses classified the nine B. sinensis progestin receptors into their respective progestin receptor groups. Tissue distribution of B. sinensis progestin receptors showed differential expression patterns, but all these nine genes were expressed in the olfactory rosette. Interestingly, paqr5 mRNA was found in the intermediate and basal parts of the olfactory epithelium but not in the central core using in situ hybridization, and its expression level was the highest in the olfactory rosette among the tissues examined. These results suggested Paqr5 may have an important role for transmitting progestin signaling in the olfactory system. The expression levels of paqr7a and paqr7b, pgr and pgrmc2 mRNA peaked around the mid meiotic stage, and that of paqr8 peaked at late meiotic stage in the olfactory rosette in males, while the olfactory expression of paqr5 decreased gradually as spermatogenesis progressed. In contrast, the expression of the progestin receptors did not change significantly during the development of the ovary in the olfactory rosette in females, except that of pgr. Interestingly, the changes of paqr8 expression in

  18. EXPRESSION OF VEGF RECEPTOR KDR IN DIFFERENT ORIGINATED CARCINOMAS

    Institute of Scientific and Technical Information of China (English)

    Song Shumei; Wujian; Shou Chengchao

    1998-01-01

    Objective: To detect the expression of KDR in different originated carcinomas and to explore its expressed ways and the relationship with tumor progression. Methods: KDR cDNA (Ⅴ-Ⅶ domains)fragment was cloned from human umbilical vein with RTPCR and was expressed in Ecoli.Jm109. The fusion protein of GST-KDR was used for immunizing Balb/c mice to prepare monoclonal antibodies against KDR.The different tumor tissues and related normal tissues were examined with KDR McAb by S-P immunohistochemistry. Results: the rate and intensification of KDR expression among different originated cancers are very different, bladder cancers from transmigrated epidermis are 100% positive and highest intensification.The expression of KDR in breast cancer and intestinal cancer lie in the second-rate, the weakest expression of KDR is in lung squamous carcinoma. Moreover,expression of KDR in tumor tissues lie both in endothelial cells (EC) of tumor blood vessels and tumor cells.Conclusion: VEGF may be not only the para-secretory factor making EC proliferation but also auto-secretory factor stimulating the proliferation of tumor cells to benefit the growth and metastasis of malignant tumors.The different expression of KDR in different originated carcinomas may relate with malignant degree of tumor.

  19. Modulation of interleukin 2 receptor expression on normal human lymphocytes by thymic hormones.

    OpenAIRE

    Sztein, M B; Serrate, S A; Goldstein, A. L.

    1986-01-01

    The expression of interleukin 2 receptors (IL-2R) is a critical step leading to normal lymphocyte proliferation. Since thymosin fraction 5 (TF5), a thymic hormone preparation, enhances lymphoproliferative responses of human cells, we examined the effects of TF5 on the expression of IL-2R on mitogen-stimulated human lymphocytes. TF5 significantly increased the percentage and antigen density of cells expressing IL-2R after stimulation with an optimal concentration of phytohemagglutinin (PHA) wh...

  20. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats

    International Nuclear Information System (INIS)

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus regulate HPA axis by glucocorticoid negative feedback. Abnormalities in negative feedback are found in PTSD, suggesting that GR and MR might be involved in the pathophysiology of these disorders. In the present study, we performed immunohistochemistry and western blotting to examine the changes in hippocampal MR- and GR-expression after SPS. Immunohistochemistry revealed decreased MR- and GR-immunoreactivity (ir) in the CA1 of hippocampus in SPS animals. Change in GR sub-distribution was also observed, where GR-ir was shifted from nucleus to cytoplasm in SPS rats. Western blotting showed that SPS induced significantly decreased MR- and GR-protein in the whole hippocampus, although the degree of decreased expression of both receptors was different. Meanwhile, we also found the MR/GR ratio decreased in SPS rats. In general, SPS induced down-regulation of MR- and GR-expression. These findings suggest that MR and GR play critical roles in affecting hippocampal function. Changes in MR/GR ratio may be relevant for behavioral syndrome in PTSD

  1. Regulation of expression of citrate synthase by the retinoic acid receptor-related orphan receptor α (RORα.

    Directory of Open Access Journals (Sweden)

    Christine Crumbley

    Full Text Available The retinoic acid receptor-related orphan receptor α (RORα is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression.

  2. Expression and characterization of purinergic receptors in rat middle meningeal artery-potential role in migraine.

    Directory of Open Access Journals (Sweden)

    Kristian Agmund Haanes

    Full Text Available The dura mater and its vasculature have for decades been central in the hypothesis of migraine and headache pathophysiology. Although recent studies have questioned the role of the vasculature as the primary cause, dural vessel physiology is still relevant in understanding the complex pathophysiology of migraine. The aim of the present study was to isolate the middle meningeal artery (MMA from rodents and characterize their purinergic receptors using a sensitive wire myograph method and RT-PCR. The data presented herein suggest that blood flow through the MMA is, at least in part, regulated by purinergic receptors. P2X1 and P2Y6 receptors are the strongest contractile receptors and, surprisingly, ADPβS caused contraction most likely via P2Y1 or P2Y13 receptors, which is not observed in other arteries. Adenosine addition, however, caused relaxation of the MMA. The adenosine relaxation could be inhibited by SCH58261 (A2A receptor antagonist and caffeine (adenosine receptor antagonist. This gives one putative molecular mechanism for the effect of caffeine, often used as an adjuvant remedy of cranial pain. Semi-quantitative RT-PCR expression data for the receptors correlate well with the functional findings. Together these observations could be used as targets for future understanding of the in vivo role of purinergic receptors in the MMA.

  3. Activation profiles of opioid ligands in HEK cells expressing δ opioid receptors

    Directory of Open Access Journals (Sweden)

    Clark J

    2002-11-01

    Full Text Available Abstract Background The aim of the present study was to characterize the activation profiles of 15 opioid ligands in transfected human embryonic kidney cells expressing only δ opioid receptors. Activation profiles of most of these ligands at δ opioid receptors had not been previously characterized in vitro. Receptor activation was assessed by measuring the inhibition of forskolin-stimulated cAMP production. Results Naltrexone and nalorphine were classified as antagonists at δ opioid receptor. The other ligands studied were agonists at δ opioid receptors and demonstrated IC50 values of 0.1 nM to 2 μM, maximal inhibition of 39–77% and receptor binding affinities of 0.5 to 243 nM. The rank order of efficacy of the ligands tested was metazocine = xorphanol ≥ fentanyl = SKF 10047 = etorphine = hydromorphone = butorphanol = lofentanil > WIN 44,441 = Nalbuphine = cyclazocine ≥ met-enkephalin >> morphine = dezocine. For the first time these data describe and compare the function and relative efficacy of several ligands at δ opioid receptors. Conclusions The data produced from this study can lead to elucidation of the complete activation profiles of several opioid ligands, leading to clarification of the mechanisms involved in physiological effects of these ligands at δ opioid receptors. Furthermore, these data can be used as a basis for novel use of existing opioid ligands based on their pharmacology at δ opioid receptors.

  4. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells.

    Science.gov (United States)

    Du, Xing; Li, Qiqi; Pan, Zengxiang; Li, Qifa

    2016-08-01

    Androgen, which acts via the androgen receptor (AR), plays crucial roles in mammalian ovarian function. Recent studies showed that androgen/AR signaling regulates follicle-stimulating hormone receptor (FSHR) expression in follicles; however, the detailed mechanism underlying this regulation remained unknown. Here, we demonstrate that AR and miR-126* cooperate to inhibit FSHR expression and function in pig follicular granulosa cells (pGCs). In pGCs, overexpression of AR decreased, whereas knockdown increased, FSHR mRNA and protein expression; however, neither manipulation affected FSHR promoter activity. Using a dual-luciferase reporter assay, we found that the FSHR gene is a direct target of miR-126*, which inhibits FSHR expression and increases the rate of AR-induced apoptosis in pGCs. Collectively, our data show for the first time that the AR/miR-126* axis exerts synergetic effects in the regulation of FSHR expression and apoptosis in pGCs. Our findings thus define a novel pathway, AR/miR-126*/FSHR, that regulates mammalian GC functions. PMID:27222597

  5. Characterization of a novel Eph receptor tyrosine kinase, EphA10, expressed in testis.

    Science.gov (United States)

    Aasheim, Hans-Christian; Patzke, Sebastian; Hjorthaug, Hanne Sagsveen; Finne, Eivind Farmen

    2005-05-25

    In mammals, 14 members of the Eph receptor tyrosine kinase family have been described so far. Here we present a not yet described member of this family denoted EphA10. We report the identification of three putative EphA10 isoforms: one soluble and two transmembrane isoforms. One of the latter isoforms lacked the sterile alpha motif commonly found in Eph receptors. The gene encoding EphA10 is located on chromosome 1p34 and expression studies show that EphA10 mRNA is mainly expressed in testis. Binding studies to ephrin ligands suggests that this receptor belongs to the EphA subclass of Eph receptors binding mainly to ephrin-A ligands. PMID:15777695

  6. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells.

    LENUS (Irish Health Repository)

    O'Callaghan, G

    2012-02-03

    Fas ligand (FasL\\/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E(2) (PGE(2)), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE(2) increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E(2)-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE(2) positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE(2).

  7. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  8. Interleukin-1 Receptors Are Differentially Expressed in Normal and Psoriatic T Cells

    Directory of Open Access Journals (Sweden)

    Attila Bebes

    2014-01-01

    Full Text Available This study was carried out to examine the possible role of interleukin-1 (IL-1 in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4+CD25− effector and CD4+CD25+CD127low regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2 was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1 mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2 upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.

  9. Altered endothelin receptor expression and affinity in spontaneously hypertensive rat cerebral and coronary arteries

    DEFF Research Database (Denmark)

    Cao, Lei; Cao, Yong-Xiao; Xu, Cang-Bao;

    2013-01-01

    BACKGROUND: Hypertension is associated with arterial hyperreactivity, and endothelin (ET) receptors are involved in vascular pathogenesis. The present study was performed to examine the hypothesis that ET receptors were altered in cerebral and coronary arteries of spontaneously hypertensive rats...... (SHR). METHODOLOGY/PRINCIPAL FINDINGS: Cerebral and coronary arteries were removed from SHR. Vascular contraction was recorded using a sensitive myograph system. Real-time PCR and Western blotting were used to quantify mRNA and protein expression of receptors and essential MAPK pathway molecules. The...... results demonstrated that both ETA and ETB receptor-mediated contractile responses in SHR cerebral arteries were shifted to the left in a nonparallel manner with increased maximum contraction compared with Wistar-Kyoto (WKY) rats. In SHR coronary arteries, the ETA receptor-mediated contraction curve was...

  10. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells in the hippocampal neurogenesis involving myelin vacuolation of cholinergic and glutamatergic inputs in mice.

    Science.gov (United States)

    Kato, Mizuho; Abe, Hajime; Itahashi, Megu; Kikuchihara, Yoh; Kimura, Masayuki; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2016-02-01

    Hexachlorophene (HCP) has been shown to induce myelin vacuolation due to intramyelinic edema of the nerve fibers in animal neural tissue. We investigated the maternal exposure effect of HCP on hippocampal neurogenesis in the offspring of pregnant mice supplemented with 0 (control), 33 or 100 ppm HCP in diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, offspring as examined in males exhibited decreased granule cell lineage populations expressing paired box 6, sex-determining region Y-box 2 and eomesodermin in the hippocampal subgranular zone (SGZ) accompanied by myelin vacuolation involving white matter tracts of the hippocampal fimbria at ≥ 33 ppm. However, SGZ cellular populations expressing brain lipid binding protein and doublecortin were unchanged at any dose. Transcript expression of cholinergic receptor genes, Chrna4 and Chrnb2, and glutamate receptor genes, Grm1 and Grin2d, examined at 100 ppm, decreased in the dentate gyrus. HCP exposure did not alter the number of proliferating or apoptotic cells in the SGZ, or reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)ergic interneurons in the dentate hilus, on PND 21 and PND 77. All neurogenesis-related changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77, suggesting that maternal HCP exposure at ≥ 33 ppm reversibly decreased type 2 intermediate-stage progenitor cells in the hippocampal neurogenesis. Myelin vacuolation might be responsible for changes in neurogenesis possibly by reducing nerve conduction velocity of cholinergic inputs from the septal-hippocampal pathway to granule cell lineages and/or GABAergic interneurons, and of glutamatergic inputs to granule cell lineages.

  11. Rabbit Forebrain cholinergic system : Morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus

    NARCIS (Netherlands)

    Varga, C; Hartig, W; Grosche, J; Luiten, PGM; Seeger, J; Brauer, K; Harkany, T; Härtig, Wolfgang; Keijser, Jan N.

    2003-01-01

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output p

  12. Glucocorticoid and Mineralocorticoid Receptor Expression in the Human Hippocampus in Major Depressive Disorder

    OpenAIRE

    Medina, Adriana; Seasholtz, Audrey F.; Sharma, Vikram; Burke, Sharon; Bunney, William,; Myers, Richard M.; Schatzberg, Alan,; Akil, Huda; Watson, Stanley J.

    2012-01-01

    Approximately 50% of mood disorder patients exhibit hypercortisolism. Cortisol normally exerts its functions in the CNS via binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Both MR and GR are highly expressed in human hippocampus and several studies have suggested that alterations in the levels of MR or GR within this region may contribute to the dysregulation in major depressive disorder (MDD). Studies have also shown functional heterogeneity across the hippocam...

  13. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;

    1992-01-01

    demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  14. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in severe asthma

    OpenAIRE

    McGarvey, Lorcan P.; Butler, Claire A; Stokesberry, Susan; Polley, Liam; McQuaid, Stephen; Abdullah, Hani'ah; Ashraf, Sadaf; McGahon, Mary K; Curtis, Tim M; Arron, Joe; Choy, David; Warke, Tim J.; Bradding, Peter; Ennis, Madeleine; Zholos, Alexander

    2014-01-01

    BACKGROUND: The airway epithelium is exposed to a range of physical and chemical irritants in the environment that are known to trigger asthma. Transient receptor potential (TRP) cation channels play a central role in sensory responses to noxious physical and chemical stimuli. Recent genetic evidence suggests an involvement of transient receptor potential vanilloid 1 (TRPV1), one member of the vanilloid subfamily of TRP channels, in the pathophysiology of asthma. The functional expression of ...

  15. Bile Acids Induce Cdx2 Expression Through the Farnesoid X Receptor in Gastric Epithelial Cells

    OpenAIRE

    Xu, Yingji; Watanabe, Toshio; Tanigawa, Tetsuya; Machida, Hirohisa; Okazaki, Hirotoshi; Yamagami, Hirokazu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Oshitani, Nobuhide; Arakawa, Tetsuo

    2009-01-01

    Clinical and experimental studies showed that the reflux of bile into the stomach contributes to the induction of intestinal metaplasia of the stomach and gastric carcinogenesis. Caudal-type homeobox 2 (Cdx2) plays a key role in the exhibition of intestinal phenotypes by regulating the expression of intestine-specific genes such as goblet-specific gene mucin 2 (MUC2). We investigated the involvement of the farnesoid X receptor (FXR), a nuclear receptor for bile acids, in the chenodeoxycholic ...

  16. Expression of leptin and its receptor in female breast cancer in relation with selected apoptotic markers.

    Directory of Open Access Journals (Sweden)

    Stanislaw Sulkowski

    2008-04-01

    Full Text Available Leptin and its receptor may be engaged in pathogenesis of breast cancer among various human tumors. In vitro investigations showed leptin-mediated escalation of estrogen synthesis and boosted activity of estrogen receptor ERalpha. Furthermore, leptin induced growth of malignant cells, counteracted apoptosis and stimulated cell migration as well as overexpression of angiogenic factors and degrading enzymes that split network of intercellular matrix. On the other side, leptin has been reported to favor apoptosis, lately. Proapoptotic effect of leptin action was revealed in interstitial cells of bone marrow and adipocytes. Our past reports provide evidences for overexpression of leptin and its receptor in breast cancer in comparison with benign mammary lesions. In current study we aimed at assessment of eventual relationships between leptin, leptin receptor and selected protein regulators of apoptosis in breast cancer. We applied immunohistochemistry for leptin, leptin receptor, anti-apoptotic Bcl-2 and Bcl-xL as well as pro-apoptotic Bak and Bax expression assessment in 106 cases of human breast cancers. The immunoreaction was graded and statistically evaluated. Expression of leptin was positively correlated with Bcl-xL, Bak and Bax (p<0.001, r=0.614; p<0.001, r=0.518; p<0.001, r=0.511, respectively. Statistical significances were noted between expression of leptin receptor and Bcl-xL or Bax (p=0.011, r=0.210; p<0.001, r=0.313, respectively. No correlation was encountered between leptin and Bcl-2, either leptin receptor and Bcl-2 or leptin receptor and Bak. On the basis of obtained results, leptin system could interfere in balance among expressions of pro- and anti-apoptotic proteins and regulate cell turnover and--by means of it--facilitate breast cancer progression.

  17. Progesterone receptor expression in the brain of the socially monogamous and paternal male prairie vole

    OpenAIRE

    Williams, Brittany; Northcutt, Katharine V.; Rusanowsky, Rebecca D.; Mennella, Thomas A.; Lonstein, Joseph S.; Quadros-Mennella, Princy S.

    2013-01-01

    Differences in the social organization and behavior of male mammals are attributable to species differences in neurochemistry, including differential expression of steroid hormone receptors. However, the distribution of progestin receptors (PR) in a socially monogamous and spontaneously parental male rodent has never been examined. Here we determined if PR exists and is regulated by testicular hormones in forebrain sites traditionally influencing socioreproductive behaviors in male prairie vo...

  18. Construction and Stable Expression of a Truncated Human Receptor Tyrosine Kinase Ror1 (Ror1-ECD)

    OpenAIRE

    Forouzesh, Flora; Tabarian, Samira Shakeri; Emami, Shaghayegh; Tehrani, Mahmood-Jeddi; Hadavi, Reza; Rabbani, Hodjattallah

    2012-01-01

    Expression of receptor tyrosine kinase Ror1 in a wide variety of cancers has emerged as a new era focusing on targeting this receptor in cancer therapy. Our preliminary results indicate the presence of a truncated transcript of Ror1 in tumor cells. The truncated Ror1 encompasses extracellular and transmembrane domains, lacking catalytic kinase domain (Ror1-ECD). As enzyme activity is highly dependent on the catalytic domain, we were wondering how this transcript and its encoded protein could ...

  19. Expression Levels of Estrogen Receptor β Are Modulated by Components of the Molecular Clock▿

    OpenAIRE

    Cai, Wen; Rambaud, Juliette; Teboul, Michèle; Masse, Ingrid; Benoit, Gerard; Gustafsson, Jan-Åke; Delaunay, Franck; Laudet, Vincent; Pongratz, Ingemar

    2007-01-01

    Circadian regulation of gene expression plays a major role in health and disease. The precise role of the circadian system remains to be clarified, but it is known that circadian proteins generate physiological rhythms in organisms by regulating clock-controlled target genes. The estrogen receptor beta (ERβ) is, together with ERα, a member of the nuclear receptor superfamily and a key mediator of estrogen action. Interestingly, recent studies show that disturbed circadian rhythmicity in human...

  20. Prognostic Relevance of Cytokine Receptor Expression in Acute Myeloid Leukemia: Interleukin-2 Receptor α-Chain (CD25) Expression Predicts a Poor Prognosis

    Science.gov (United States)

    Nakase, Kazunori; Kita, Kenkichi; Kyo, Taiichi; Ueda, Takanori; Tanaka, Isao; Katayama, Naoyuki

    2015-01-01

    A variety of cytokine/cytokine receptor systems affect the biological behavior of acute leukemia cells. However, little is known about the clinical relevance of cytokine receptor expression in acute myeloid leukemia (AML). We quantitatively examined the expression of interleukin-2 receptor α-chain (IL-2Rα, also known as CD25), IL-2Rβ, IL-3Rα, IL-4Rα, IL-5Rα, IL-6Rα, IL-7Rα, the common β-chain (βc), γc, granulocyte-macrophage colony-stimulating factor (GM-CSF)Rα, G-CSFR, c-fms, c-mpl, c-kit, FLT3, and GP130 in leukemia cells from 767 adult patients with AML by flow cytometry and determined their prevalence and clinical significance. All cytokine receptors examined were expressed at varying levels, whereas the levels of IL-3Rα, GM-CSFRα, IL-2Rα, γc, c-kit, and G-CSFR exhibited a wide spectrum of ≥10,000 sites/cell. In terms of their French-American-British classification types, GM-CSFRα and c-fms were preferentially expressed in M4/M5 patients, G-CSF in M3 patients, and IL-2Rα in non-M3 patients. Elevated levels of IL-3Rα, GM-CSFRα, and IL-2Rα correlated with leukocytosis. In patients ≤60 years old, higher levels of these 3 receptors correlated with poor responses to conventional chemotherapy, but only IL-2Rα was associated with a shorter overall survival. By incorporating IL-2Rα status into cytogenetic risk stratification, we could sort out a significantly adverse-risk cohort from the cytogenetically intermediate-risk group. Analyses with various phenotypical risk markers revealed the expression of IL-2Rα as an independent prognostic indicator in patients with intermediate-risk cytogenetics. These findings were not observed in patients >60 years old. Our results indicate that several cytokine receptors were associated with certain cellular and clinical features, but IL-2Rα alone had prognostic value that provides an additional marker to improve current risk evaluation in AML patients ≤60 years old. PMID:26375984

  1. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  2. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor.

    Directory of Open Access Journals (Sweden)

    Lili Jiang

    Full Text Available Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2 receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.

  3. GABA Acts as a Ligand Chaperone in the Early Secretory Pathway to Promote Cell Surface Expression of GABAA Receptors

    OpenAIRE

    Eshaq, Randa S.; Stahl, Letha D.; Stone, Randolph; Smith, Sheryl S.; Robinson, Lucy C.; Leidenheimer, Nancy J.

    2010-01-01

    GABA (γ-aminobutyric acid) is the primary inhibitory neurotransmitter in brain. The fast inhibitory effect of GABA is mediated through the GABAA receptor, a postsynaptic ligand-gated chloride channel. We propose that GABA can act as a ligand chaperone in the early secretory pathway to facilitate GABAA receptor cell surface expression. Forty-two hrs of GABA treatment increased the surface expression of recombinant receptors expressed in HEK 293 cells, an effect accompanied by an increase in GA...

  4. Complex Control of GABA(A) Receptor Subunit mRNA Expression: Variation, Covariation, and Genetic Regulation

    OpenAIRE

    Mulligan, Megan K.; Wang, Xusheng; Adler, Adrienne L.; Mozhui, Khyobeni; Lu, Lu; Williams, Robert W.

    2012-01-01

    GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly...

  5. Age-related alterations in innate immune receptor expression and ability of macrophages to respond to pathogen challenge in vitro

    OpenAIRE

    Liang, Shuang; Domon, Hisanori; Hosur, Kavita B.; WANG Min; Hajishengallis, George

    2009-01-01

    The impact of ageing in innate immunity is poorly understood. Studies in the mouse model have described altered innate immune functions in aged macrophages, although these were not generally linked to altered expression of receptors or regulatory molecules. Moreover, the influence of ageing in the expression of these molecules has not been systematically examined. We investigated age-dependent expression differences in selected Toll-like and other pattern-recognition receptors, receptors invo...

  6. Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain.

    OpenAIRE

    Erlander, M G; Lovenberg, T W; Baron, B M; de Lecea, L; Danielson, P E; Racke, M; Slone, A L; Siegel, B W; Foye, P. E.; Cannon, K

    1993-01-01

    We report two serotonin (5-hydroxytryptamine, 5-HT) receptors, MR22 and REC17, that belong to the G-protein-associated receptor superfamily. MR22 and REC17 are 371 and 357 amino acids long, respectively, as deduced from nucleotide sequence and share 68% mutual amino acid identity and 30-35% identity with known catecholamine and 5-HT receptors. Saturable binding of 125I-labeled (+)-lysergic acid diethylamide to transiently expressed MR22 in COS-M6 cells was inhibited by ergotamine > methiothep...

  7. Expression of the rat muscarinic receptor gene m3 in Dictyostelium discoideum.

    Science.gov (United States)

    Voith, G; Kramm, H; Zündorf, I; Winkler, T; Dingermann, T

    1998-10-01

    We functionally expressed the rat muscarinic m3 receptor (rm3) in the cellular slime mold Dictyostelium discoideum under the control of the homologous discoidin I gamma promoter. Cells transfected with the authentic rm3 receptor gene expressed about 100 functional receptor molecules per cell, corresponding to a Bmax for [3H]-NMS of 36 +/- 9 fmol/mg of protein in isolated membranes. Genetic fusion of the Dictyostelium contact site A (csA) leader peptide to the amino terminus of rm3 increased the receptor expression by about 17-fold. Remarkable, in [3H]-NMS ligand binding experiments performed with whole cells no characteristic saturable binding was observed and there was no significant difference in [3H]-NMS binding to whole cells of rm3 and csA/rm3 transformants. The recombinant rm3 receptor showed an about 10-fold higher affinity to the M3-selective antagonist p-F-HHSiD compared to the M2-selective antagonist AQ-RA 741, suggesting that membranes derived from transgenic D. discoideum cells may be useful for the search of new subtype-specific muscarinic receptor ligands. PMID:9812338

  8. Cell Cycle-dependent Expression of Thyroid Hormone Receptor-β Is a Mechanism for Variable Hormone SensitivityD⃞

    OpenAIRE

    Maruvada, Padma; Dmitrieva, Natalia I.; East-Palmer, Joyce; Yen, Paul M.

    2004-01-01

    Thyroid hormone receptors (TRs) are ligand-regulatable transcription factors. Currently, little is known about the expression of TRs or other nuclear hormone receptors during the cell cycle. We thus developed a stable expression system to express green fluorescent protein-TRβ in HeLa cells under tetracycline regulation, and studied TR expression during the cell cycle by laser scanning cytometry. Only ∼9-15% of the nonsynchronized cell population expressed TR because the majority of cells were...

  9. Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Martin Ligr

    Full Text Available Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR and estrogen receptor (ER in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis.

  10. Cellular expression of the neurokinin 1 receptor in the human antrum.

    Science.gov (United States)

    Smith, V C; Sagot, M A; Wong, H; Buchan, A M

    2000-03-15

    The localization of the neurokinin 1 receptor in rat and guinea pig gastrointestinal tract has been extensively studied but not in human tissues. The present study used antibodies to characterize the cellular expression of neurokinin 1 receptors in human antrum. Cryostat sections (40-80 microm) were immunostained for the neurokinin 1 receptor double labeled with substance P, von Willebrand's factor, c-kit, fibronectin, S-100, serotonin, gastrin and somatostatin. Neurokinin 1 receptor-immunoreactivity was observed on neurons within the myenteric and submucosal plexuses surrounded by substance P-immunoreactive fibers and on von Willebrand's factor-immunoreactive endothelial cells lining blood vessels throughout the antral wall. c-Kit-immunoreactive interstitial cells of Cajal and gastrin cells were co-stained by the monoclonal neurokinin 1 receptor antibody. Finally, there was no evidence for the presence of the neurokinin 1 receptor on fibroblasts, Schwann, somatostatin, serotonin or smooth muscle cells. This study clearly demonstrates an expanded cellular expression of the neurokinin 1 receptor in the human antrum.

  11. Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model.

    Science.gov (United States)

    Kerbler, Georg M; Hamlin, Adam S; Pannek, Kerstin; Kurniawan, Nyoman D; Keller, Marianne D; Rose, Stephen E; Coulson, Elizabeth J

    2013-02-01

    Loss of basal forebrain cholinergic neurons is an early and key feature of Alzheimer's disease, and magnetic resonance imaging (MRI) volumetric measurement of the basal forebrain has recently gained attention as a potential diagnostic tool for this condition. The aim of this study was to determine whether loss of basal forebrain cholinergic neurons underpins changes which can be detected through diffusion MRI using diffusion tensor imaging (DTI) and probabilistic tractography in a mouse model. To cause selective basal forebrain cholinergic degeneration, the toxin saporin conjugated to a p75 neurotrophin receptor antibody (mu-p75-SAP) was used. This resulted in ~25% loss of the basal forebrain cholinergic neurons and significant loss of terminal cholinergic projections in the hippocampus, as determined by histology. To test whether lesion of cholinergic neurons caused basal forebrain, hippocampal, or whole brain atrophy, we performed manual segmentation analysis, which revealed no significant atrophy in lesioned animals compared to controls (Rb-IgG-SAP). However, analysis by DTI of the basal forebrain area revealed a significant increase in fractional anisotropy (FA; +7.7%), mean diffusivity (MD; +6.1%), axial diffusivity (AD; +8.5%) and radial diffusivity (RD; +4.0%) in lesioned mice compared to control animals. These parameters strongly inversely correlated with the number of choline acetyl transferase-positive neurons, with FA showing the greatest association (r(2)=0.72), followed by MD (r(2)=0.64), AD (r(2)=0.64) and RD (r(2)=0.61). Moreover, probabilistic tractography analysis of the septo-hippocampal tracts originating from the basal forebrain revealed an increase in streamline MD (+5.1%) and RD (+4.3%) in lesioned mice. This study illustrates that moderate loss of basal forebrain cholinergic neurons (representing only a minor proportion of all septo-hippocampal axons) can be detected by measuring either DTI parameters of the basal forebrain nuclei or

  12. Cloning, expression and pharmacological characterization of rabbit adenosine A1 and A3 receptors.

    Science.gov (United States)

    Hill, R J; Oleynek, J J; Hoth, C F; Kiron, M A; Weng, W; Wester, R T; Tracey, W R; Knight, D R; Buchholz, R A; Kennedy, S P

    1997-01-01

    The role of adenosine A1 and A3 receptors in mediating cardioprotection has been studied predominantly in rabbits, yet the pharmacological characteristics of rabbit adenosine A1 and A3 receptor subtypes are unknown. Thus, the rabbit adenosine A3 receptor was cloned and expressed, and its pharmacology was compared with that of cloned adenosine A1 receptors. Stable transfection of rabbit A1 or A3 cDNAs in Chinese hamster ovary-K1 cells resulted in high levels of expression of each of the receptors, as demonstrated by high-affinity binding of the A1/A3 adenosine receptor agonist N6-(4-amino-3-[125I]iodobenzyl)adenosine (125I-ABA). For both receptors, binding of 125I-ABA was inhibited by the GTP analog 5'-guanylimidodiphosphate, and forskolin-stimulated cyclic AMP accumulation was inhibited by the adenosine receptor agonist (R)-phenylisopropyladenosine. The rank orders of potency of adenosine receptor agonists for inhibition of 125I-ABA binding were as follows: rabbit A1, N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N-ethylcarboxamidoadenosine > or = I-ABA > or = N6-2-(4-aminophenyl) ethyladenosine > > N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > N6-(4-amino-3-benzyl)adenosine; rabbit A3, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > or = I-ABA > > N-ethylcarboxamidoadenosine > N6-2-(4-aminophenyl) ethyladenosine = N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N6-(4-amino-3-benzyl)adenosine. The adenosine receptor antagonist rank orders were as follow: rabbit A1, 8-cyclopentyl-1,3-dipropylxanthine > 1,3- dipropyl-8-(4-acrylate)phenylxanthine > or = xanthine amine congener > > 8-(p-sulfophenyl)theophylline; rabbit A3, xanthine amine congener > 1,3-dipropyl-8-(4-acrylate)phenylxanthine > or = 8-cyclopentyl-1,3-dipropylxanthine > > 8-(p-sulfophenyl)theophylline. These observations confirm the identity of the expressed proteins as A1 and A3 receptors. The results will facilitate further in-depth studies of the roles of A1 and A3 receptors in

  13. Expression of prostaglandin receptors in Chlamydia trachomatis-infected recurrent spontaneous aborters.

    Science.gov (United States)

    Singh, Namita; Prasad, Priya; Singh, Laishram Chandreshwar; Das, Banashree; Rastogi, Sangita

    2016-06-01

    A study was undertaken to quantify the expression of prostaglandin (PG) receptors and find the effect of gestational age on expression of PG receptor genes in Chlamydia trachomatis-infected recurrent spontaneous aborters (RSA). Endometrial curettage tissue (ECT) was collected from 130 RSA (Group I) and 100 age-matched controls (Group II) at the Department of Obstetrics and Gynecology, Safdarjung Hospital, New Delhi (India). PCR was performed for diagnosis of C. trachomatis cryptic plasmid; mRNA expression of PG receptor genes was assessed by real-time PCR (q-PCR), while serum progesterone/estrogen levels were determined by respective commercial kits. Data were evaluated statistically. A total of 15.4 % RSA (GroupI) were diagnosed as C. trachomatis-positive (200 bp), whereas controls were uninfected. q-PCR showed significant upregulation (PRSA, mean serum progesterone level was significantly low (PRSA. PMID:27028620

  14. Dynamic T-lymphocyte chemokine receptor expression induced by interferon-beta therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, M; Sorensen, P S; Khademi, M;

    2006-01-01

    as these influence central nervous system (CNS) transmigration and inflammation. At 'steady state' (>/=1 day after the most recent IFN-beta injection), IFN-beta treatment increased CD4(+) T-cell surface expression of CC chemokine receptor (CCR)4, CCR5 and CCR7 after 3 months of treatment, whereas that of CXC...... and immunoregulatory genes. In conclusion, IFN-beta treatment caused 'steady-state' increases of several chemokine receptors relevant for CD4(+) T-lymphocyte trafficking and function, possibly facilitating lymphocyte migration into the CNS. An important therapeutic effect of IFN-beta treatment may be the normalization...... of a decreased Th2-related CD4(+) T-cell CCR4 expression in MS patients. Surface chemokine receptor expression and CXCL10 varied according to the timing of blood sampling in relation to the most recent IFN-beta injection. Thus, it is imperative to distinguish acute effects of IFN-beta from steady-state effects....

  15. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  16. Use of adenovirus vector expressing the mouse full estrogen receptor alpha gene to infect mouse primary neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao HU; Lei Lou; Jun Yuan; Xing Wan; Jianyi Wang; Xinyue Qin

    2010-01-01

    Estrogen plays important regulatory and protective roles in the central nervous system through estrogen receptor a mediation.Previous studies applied eukaryotic expression and lentiviral vectors carrying estrogen receptor a to clarify the undedying mechanisms,in the present study,an adenovirus vector expressing the mouse full estrogen receptor a gene was constructed to identify biological characteristics of estrogen receptor a recombinant adenovirus infecting nerve cells.Primary cultured mouse nerve cells were first infected with estrogen receptor a recombinant adenovirus at various multiplicities of infection,followed by 100 multiplicity of infection.Results showed overexpression of estrogen receptor a mRNA and protein in the infected nerve cells.Estrogen receptor a recombinant adenovirus at 100 multiplicity of infection successfully infected neurons and upregulated estrogen receptor a mRNA and protein expression.

  17. EXPRESSION OF EPIDERMAL GROWTH FACTOR RECEPTOR IN DIFFERENT SALIVARY ADENOID CYSTIC CARCINOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    MA Jie; ZONG Zhi-hong; WANG Zhao-yuan

    2005-01-01

    Objective: To investigate the expression of epidermal growth factor receptor, a receptor tyrosine protein kinase, in the subcellular fractions of human salivary adenoid cystic carcinoma cell lines SACC-83 and SACC-LM. Methods: Low metastatic and high metastatic cells of the adenoid cystic carcinoma, SACC-83 and SACC-LM, were cultured. Their subcellular fractions were extracted. The expression of epidermal growth factor receptor was detected with Western blot method, and the results of protein expression were quantitatively analyzed by FluorChem V2.0 software. Results: The results of Western blot analysis indicated that, EGFR expression on the membrane of SACC-83 cells was significantly higher than that of SACC-LM cells, but its expression in cytoplasm was significantly less in the former than the later (P<0.01). In SACC-83 cell line, EGFR was over-expressed in membrane (P<0.01), but in SACC-LM cell line, EGFR was over-expressed in cytoplasm (P<0.01). Conclusion: The results suggest that the obtaining of metastasis ability is related to the high expression of EGFR protein in cytoplasm, so the molecular targeting therapy to EGFR may be an ideal treatment for the invasion and metastasis of salivary adenoid cystic carcinoma.

  18. Expression of anti-Mullerian hormone receptor on the appendix testis in connection with urological disorders

    Institute of Scientific and Technical Information of China (English)

    Kornél Kistamás; Olga Ruzsnavszky; Andrea Telek; Lívia Kosztka; Ilona Kovács; Beatrix Dienes; László Csernoch

    2013-01-01

    The female internal sex organs develop from the paramesonephric (Mullerian) duct.In male embryos,the regression of the Mullerian duct is caused by the anti-Mullerian hormone (AMH),which plays an important role in the process of testicular descent.The physiological remnant of the Mullerian duct in males is the appendix testis (AT).In our previous study,we presented evidence for the decreased incidence of AT in cryptorchidism with intraoperative surgery.In this report,the expression of the anti-Mullerian hormone receptor type 2 (AMHR2),the specific receptor of AMH,on the AT was investigated in connection with different urological disorders,such as hernia inguinalis,torsion of AT,cysta epididymis,varicocele,hydrocele testis and various forms of undescended testis.The correlation between the age of the patients and the expression of the AMHR2 was also examined.Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were used to detect the receptor's mRNA and protein levels,respectively.We demonstrate that AMHR2 is expressed in the ATs.Additionally,the presence of this receptor was proven at the mRNA and protein levels.The expression pattern of the receptor correlated with neither the examined urological disorders nor the age of the patients;therefore,the function of the AT remains obscure.

  19. [Receptor tyrosine kinase KIT may regulate expression of genes involved in spontaneous regression of neuroblastoma].

    Science.gov (United States)

    Lebedev, T D; Spirin, P V; Suntsova, M V; Ivanova, A V; Buzdin, A A; Prokofjeva, M M; Rubtsov, P M; Prassolov, V S

    2015-01-01

    Hallmark of neuroblastoma is an ability of this malignant tumor to undergo spontaneous regression or differentiation into benign tumor during any stage of the disease, but it is little known about mechanisms of these phenomena. We studied effect of receptor tyrosine kinase receptor KIT on expression of genes, which may be involved in tumor spontaneous regression. Downregulation of KIT expression by RNA interference in SH-SY5Y cells causes suppression of neurotrophin receptor NGFR expression that may promote the loss of sensibility of cells to nerve growth factors, also it causes upregulation of TrkA receptor expression which can stimulate cell differentiation or apoptosis in NGF dependent manner. Furthermore there is an upregulation of genes which stimulate malignant cell detection by immune system, such as genes of major histocompatibility complex HLA class I HLA-B and HLA-C, and interferon-γ receptors IFNGR1 and IFNGR2 genes. Thus KIT can mediate neuroblastoma cell sensibility to neurotrophins and immune system components--two factors directly contributing to spontaneous regression of neuroblastoma.

  20. Immunohistochemical Expression of Estrogen and Progesterone Receptors in Epulis Fissuratum

    Directory of Open Access Journals (Sweden)

    Maryam Seyedmajidi

    2013-01-01

    Full Text Available Background: Epulis Fissuratum (Epulis Fissuratum (EF or Denture Epulis or inflammatory fibrous hyperplasia is a common hyperplastic tumor-like lesion with reactive nature, related to loose and ill-fitting, full or partial removable dentures and it is more common in women than men. For this reason, hormonal influences may also play role in its creation. The effect of steroid hormones especially sex hormones (Estrogen and progesterone on oral mucosa is identified in some studies. In the present study, the distribution pattern and presence of estrogen and progesterone receptors in epithelial, stromal, endothelial and inflammatory cells in Epulis Fissuratum was investigated. Materials and Methods: This cross-sectional study was carried out on 30 samples of paraffin blocks with Epulis Fissuratum diagnosis and 30 samples of normal mucosal tissues as a control group who have had surgery as a margin beside the above lesions and had been obtained from the oral and maxillofacial pathology departement of Babol Dental School since 2003 up to 2010. Intensity of staining and immunoreactivity were evaluated using subjective index and considering the positive control group (breast carcinoma.Results: Epithelial, stromal, endothelial and inflammatory cells didn’t show reaction with monoclonal antibodies against estrogen and progesterone in none of the samples. Conclusion: It seems that the hypothesis of the existence of estrogen and progesterone receptors in epulis fissuratum and normal oral mucosa is ruled out. The possibility of direct effect of estrogen and progesterone in occurring of epulis fissuratum is rejected.

  1. Identification and expression of GABAc receptor in rat testis and spermatozoa

    Institute of Scientific and Technical Information of China (English)

    Shifeng Li; Yunbin Zhang; Haixiong Liu; Yuanchang Yan; Yiping Li

    2008-01-01

    Our previous studies showed that γ-aminobutyric acid (GABA)A and GABAB receptors are involved in rat sperm acrosome reaction induced by progesterone or GABA. Here,we report the presence of GABAc receptor in rat testis and spermatozoa.Full-length complementary DNA encoding the ρ1,ρ2 and ρ3 subunits of GABAc receptor were cloned from rat testis;their sequences are identical to those of rat GABAc receptor in retina.Reverse transcription-polymerase chain reaction analysis showed that during the development of rat testis,the transcript levels of the ρ1 and ρ2 subunits showed little change,while the expression of ρ3 was gradually up-regulated.Immunofluorescence analysis using an anti-ρ1 antibody revealed that GABAc receptor exists on the elongated spermatid and sperm.Using a chlortetracycline assay,we found that N(4)-chloroacetylcytosine arabinoside, a GABAc receptor agonist,triggered rat sperm acrosome reaction;whereas(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid,a GABAc receptor antagonist, inhibited the ability of N(4)-chloroacetylcytosine arabinoside to induce acrosome reaction.These results suggested that GABAc receptors are also involved in rat sperm acrosome reaction.

  2. Effect of Dexamethasone on Expression of Glucocorticoid Receptor in Human Monocyte Cell Line THP-1

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of dexamethasone with differentconcentrations and different stimulating periods on the expression of glucocorticoid receptors (GRα, GRβ) protein was investigated in human monocyte cell line THP-1. The cultured human monocyte line THP-1 cells were stimulated by dexamethasone with different concentrations and different periods. The expression of GRα and GRβ protein was detected by Western blotting. The results showed that the expression of GRα and GRβ was detected in the THP-1 cells. The quantity of GRα expression was reduced by dexamethasone under the same concentration with the prolongation of the stimulating periods. The quantity of GRβ expression was increased by dexamethasone treatment in a time- and dose-dependent manner. It was concluded that dexamethasone stimulation time-dependently reduced the GRα expression in THP-1 cells. Dexamethasone stimulation time- and dose-dependently increased the GRβ expression in THP1 cells. The expression of GRα and GRβ was regulated by glucocorticoid.

  3. Presenilin-1 Mutation Impairs Cholinergic Modulation of Synaptic Plasticity and Suppresses NMDA Currents in Hippocampus slices

    OpenAIRE

    Wang, Yue; Greig, Nigel H.; Yu, Qian-Sheng; Mattson, Mark P.

    2008-01-01

    Presenilin-1 (PS1) mutations cause many cases of early-onset inherited Alzheimer's disease, in part, by increasing the production of neurotoxic forms of amyloid β-peptide (A β). However, Aβ -independent effects of mutant PS1 on neuronal Ca2+ homeostasis and sensitivity to excitatory neurotransmitters have been reported. Here we show that cholinergic modulation of hippocampal synaptic plasticity is impaired in PS1 mutant knockin (PS1KI) mice. Whereas activation of muscarinic receptors enhances...

  4. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    OpenAIRE

    FlorenciaMarcucci

    2010-01-01

    We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R) repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computa...

  5. High-Throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    OpenAIRE

    Zhang, Xiaohong; Marcucci, Florencia; Firestein, Stuart

    2010-01-01

    We performed comprehensive data mining to explore the vomeronasal receptor (V1R and V2R) repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on comput...

  6. Angiotensin II receptor mRNA expression and vasoconstriction in human coronary arteries

    DEFF Research Database (Denmark)

    Wackenfors, Angelica; Pantev, Emil; Emilson, Malin;

    2004-01-01

    Angiotensin II is a potent vasoconstrictor that is implicated in the pathogenesis of hypertension, heart failure and atherosclerosis. In the present study, angiotensin II receptor mRNA expression levels were quantified by real-time polymerase chain reaction and the vasocontractile responses...... to angiotensin II were characterised by in vitro pharmacology in endothelium-denuded human coronary arteries. Angiotensin II type 1 (AT(1)) and type 2 (AT(2)) receptor mRNA expression levels were significantly down-regulated in arteries from patients with heart failure as compared to controls. The angiotensin II...

  7. The relationship of cerb B 2 expression with estrogen receptor and progesterone receptor and prognostic parameters in endometrial carcinomas

    Directory of Open Access Journals (Sweden)

    Kandemir Nilufer

    2010-02-01

    Full Text Available Abstract Background Endometrial carcinoma (EC is the most common malignancy of the female genital tract. Gene alterations and overexpression of various oncogenes are important in tumor development. The human HER 2 neu (c-erbB-2 gene product is a transmembrane receptor with an intracellular tyrosine kinase that plays an important role in coordinating the endometrial growth factor receptor signaling network. The aim of this study was to investigate the expression of c-erbB-2 in endometrial cancer, to study its correlation to established prognostic parameters and estrogen receptor (ER and progesterone receptor (PR status. Methods Immunohistochemical (IHC analyses of ER, PR and c-erbB-2 were performed in 72 EC cases. Results We detected a positive staining with c erbB 2 in 18.1% of the cases and determined a statistically significant relation between c-erbB-2 and PR. We could not find a statistically significant relation between c-erbB-2 staining and ER. There was not a statistically significant difference between c-erbB-2 and histological grade. The highest level of c-erbB-2 was found in grade 2 cases. There was not any statistically significant relation between c-erbB-2 and menstrual status, myometrial invasion, lymph node status, stage and survival. Conclusions Although our study provides additional evidence of the potential prognostic role of c-erbB-2, further prospective and controlled studies are required to validate their clinical usefulness.

  8. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    Science.gov (United States)

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development. PMID:25986534

  9. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  10. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons. PMID:23152192

  11. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons.

  12. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  13. Association of haemolytic uraemic syndrome with dysregulation of chemokine receptor expression in circulating monocytes.

    Science.gov (United States)

    Ramos, Maria Victoria; Ruggieri, Matias; Panek, Analia Cecilia; Mejias, Maria Pilar; Fernandez-Brando, Romina Jimena; Abrey-Recalde, Maria Jimena; Exeni, Andrea; Barilari, Catalina; Exeni, Ramon; Palermo, Marina Sandra

    2015-08-01

    Haemolytic uraemic syndrome (HUS) is the major complication of Escherichia coli gastrointestinal infections that are Shiga toxin (Stx) producing. Monocytes contribute to HUS evolution by producing cytokines that sensitize endothelial cells to Stx action and migration to the injured kidney. As CC chemokine receptors (CCRs) are involved in monocyte recruitment to injured tissue, we analysed the contribution of these receptors to the pathogenesis of HUS. We analysed CCR1, CCR2 and CCR5 expression in peripheral monocytes from HUS patients during the acute period, with healthy children as controls. We observed an increased expression of CCRs per cell in monocytes from HUS patients, accompanied by an increase in the absolute number of monocytes CCR1+, CCR2+ and CCR5+. It is interesting that prospective analysis confirmed that CCR1 expression positively correlated with HUS severity. The evaluation of chemokine levels in plasma showed that regulated on activation of normal T-cell-expressed and -secreted (RANTES) protein was reduced in plasma from patients with severe HUS, and this decrease correlated with thrombocytopenia. Finally, the expression of the higher CCRs was accompanied by a loss of functionality which could be due to a mechanism for desensitization to compensate for altered receptor expression. The increase in CCR expression correlates with HUS severity, suggesting that the dysregulation of these receptors might contribute to an increased risk of renal damage. Activated monocytes could be recruited by chemokines and then receptors could be dysregulated. The dysregulation of CCRs and their ligands observed during the acute period suggests that a chemokine pathway would participate in HUS development.

  14. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangkyu, E-mail: 49park@cku.ac.kr [Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of); Ko, Eun Hee [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  15. Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells

    OpenAIRE

    Parker, M. Rockwell; Feng, Dianna; Chamuris, Brianna; Margolskee, Robert F.

    2014-01-01

    Stress increases the secretion of glucocorticoids (GCs), potent steroid hormones that exert their effects on numerous target tissues by acting through glucocorticoid receptors (GRs). GC signaling significantly affects ingestive behavior and taste preferences in humans and rodent models, but far less is known about the hormonal modulation of the peripheral sensory system that detects and assesses nutrient content of foods. A previous study linked restraint stress in rats to diminished expressi...

  16. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    Directory of Open Access Journals (Sweden)

    Cohen Cynthia

    2010-09-01

    Full Text Available Abstract Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA and prostate-specific acid phosphatase (PSAP are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC, female breast carcinoma (FBC, and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%, focally positive in one of thirty MBC (3.3%, and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82. Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions.

  17. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice.

    Science.gov (United States)

    Qiu, Guozhen; Chen, Shengqiang; Guo, Jialing; Wu, Jie; Yi, Yong-Hong

    2016-10-01

    Hyperactivity is a symptom found in several neurological and psychiatric disorders, including Fragile X syndrome (FXS). The animal model of FXS, fragile X mental retardation gene (Fmr1) knockout (KO) mouse, exhibits robust locomotor hyperactivity. Alpha (α)-asarone, a major bioactive component isolated from Acorus gramineus, has been shown in previous studies to improve various disease conditions including central nervous system disorders. In this study, we show that treatment with α-asarone alleviates locomotor hyperactivity in Fmr1 KO mice. To elucidate the mechanism underlying this improvement, we evaluated the expressions of various cholinergic markers, as well as acetylcholinesterase (AChE) activity and acetylcholine (ACh) levels, in the striatum of Fmr1 KO mice. We also analyzed the AChE-inhibitory activity of α-asarone. Striatal samples from Fmr1 KO mice showed decreased m1 muscarinic acetylcholine receptor (m1 mAChR) expression, increased AChE activity, and reduced ACh levels. Treatment with α-asarone improved m1 mAChR expression and ACh levels, and attenuated the increased AChE activity. In addition, α-asarone dose-dependently inhibited AChE activity in vitro. These results indicate that direct inhibition of AChE activity and up-regulation of m1 mAChR expression in the striatum might contribute to the beneficial effects of α-asarone on locomotor hyperactivity in Fmr1 KO mice. These findings might improve understanding of the neurobiological mechanisms responsible for locomotor hyperactivity. PMID:27316341

  18. TIMING IS EVERYTHING, EVEN FOR CHOLINERGIC CONTROL

    OpenAIRE

    Berg, Darwin K.

    2011-01-01

    Synaptic plasticity is widely considered to be a cellular mechanism underlying learning and memory. In this issue of Neuron, Gu and Yakel show that the precise timing of a single cholinergic pulse of activity can determine whether plasticity will occur at a glutamatergic synapse and confer long-term potentiation versus depression.

  19. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    Directory of Open Access Journals (Sweden)

    Patak Eva

    2009-07-01

    Full Text Available Abstract Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h and late (24 h responses to estrogen were evaluated and the participation of the estrogen receptors (ER, ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4 and tachykinin receptors (Tacr1, Tacr2 and Tacr3 were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  20. Cloning and Expression of Ecdysone Receptor and Retinoid X Receptor from Procambarus clarkii: Induction by Eyestalk Ablation

    Directory of Open Access Journals (Sweden)

    Tian-Hao Dai

    2016-10-01

    Full Text Available Ecdysone receptor and retinoid X receptor are key regulators in molting. Here, full length ecdysone receptor (PcEcR and retinoid X receptor (PcRXR cDNAs from Procambarus clarkii were cloned. Full length cDNA of PcEcR has 2500 bp, encoding 576 amino acid proteins, and full length cDNA of PcRXR has 2593 bp, in which a 15 bp and a 204 bp insert/deletion splice variant regions in DNA binding domain and hinge domain were identified. The two splice variant regions in PcRXR result four isoforms: PcRXR1-4, encoding 525, 520, 457 and 452 amino acids respectively. PcEcR was highly expressed in the hepatopancreas and eyestalk and PcRXR was highly expressed in the eyestalk among eight examined tissues. Both PcEcR and PcRXR had induced expression after eyestalk ablation (ESA in the three examined tissues. In muscle, PcEcR and PcRXR were upregulated after ESA, PcEcR reached the highest level on day 3 after ESA and increased 33.5-fold relative to day 0, and PcRXR reached highest the level on day 1 after ESA and increased 2.7-fold relative to day 0. In the hepatopancreas, PcEcR and PcRXR dEcReased continuously after ESA, and the expression levels of PcEcR and PcRXR were only 0.7% and 1.7% on day 7 after ESA relative to day 0, respectively. In the ovaries, PcEcR was upregulated after ESA, reached the highest level on day 3 after ESA, increased 3.0-fold relative to day 0, and the expression level of PcRXR changed insignificantly after ESA (p > 0.05. The different responses of PcEcR and PcRXR after ESA indicates that different tissues play different roles (and coordinates their functions in molting.

  1. Undifferentiated embryonic stem cells express ionotropic glutamate receptor mRNAs

    Directory of Open Access Journals (Sweden)

    Svenja ePachernegg

    2013-12-01

    Full Text Available Ionotropic glutamate receptors (iGluRs do not only mediate the majority of excitatory neurotransmission in the vertebrate CNS, but also modulate pre- and postnatal neurogenesis. Most of the studies on the developmental role of iGluRs are performed on neural progenitors and neural stem cells. We took a step back in our study by examining the role of iGluRs in the earliest possible cell type, embryonic stem cells (ESCs, by looking at the mRNA expression of the major iGluR subfamilies in undifferentiated mouse ESCs. For that, we used two distinct murine ES cell lines, 46C ESCs and J1 ESCs. Regarding 46C ESCs, we found transcripts of kainate receptors (GluK2 to GluK5, AMPA receptors (GluA1, GluA3, and GluA4, and NMDA receptors (GluN1, and GluN2A to GluN2D. Analysis of 46C-derived cells of later developmental stages, namely neuroepithelial precursor cells (NEPs and neural stem cells (NSCs, revealed that the mRNA expression of KARs is significantly upregulated in NEPs and, subsequently, downregulated in NSCs. However, we could not detect any protein expression of any of the KAR subunits present on the mRNA level either in ESCs, NEPs, or NSCs. Regarding AMPARs and NMDARs, GluN2A is weakly expressed at the protein level only in NSCs. Matching our findings for GluRs, all three cell types were found to weakly express pre- and postsynaptic markers of glutamatergic synapses only at the mRNA level. Finally, we performed patch-clamp recordings of 46C ESCs and could not detect any current upon iGluR agonist application. Similar to 46C ESCs, J1 ESCs express kainate receptors (GluK2 to GluK5, AMPA receptors (GluA3, and NMDA receptors (GluN1, and GluN2A to GluN2D at the mRNA level, but these transcripts are not translated into receptor proteins either. Thus, we conclude that ESCs do not contain functional iGluRs, although they do express an almost complete set of iGluR subunit mRNAs.

  2. Expression of Notch 1 receptor associated with tumor aggressiveness in papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Fu H

    2016-03-01

    Full Text Available Hongliang Fu,1 Chao Ma,1 Wenbin Guan,2 Weiwei Cheng,1 Fang Feng,1 Hui Wang1 1Department of Nuclear Medicine, 2Department of Pathology, Xin Hua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China Aim: The aim of this study was to assess if the expression of Notch 1 receptor is associated with tumor aggressiveness in papillary thyroid carcinomas (PTCs.Patients and methods: By searching the electronic medical record system of Xin Hua Hospital, all cases of PTC patients who underwent thyroidectomy in the hospital between 2013 and 2014 were retrieved. Then, the cases of patients who had a history of any other malignancy or whose thyroid tumor specimen was not available for assay were rejected. Finally, 68 cases of PTC patients were obtained. Formalin-fixed paraffin-embedded tissue blocks of these patients were studied by immunohistochemistry to learn the expression of Notch 1 receptor. Meanwhile, the clinical data of these patients including sex, age, size of the tumor, presence of node metastasis or distant metastasis, and presence of capsule invasion and tumor multicentricity were collected. Pearson’s chi-square test or Fisher’s exact test was used for measuring statistical differences in categorical variables. All the statistical tests were two-sided. A P-value <0.05 was considered to be statistically significant.Results: A total of 19 male and 49 female PTC patients with a mean age of 44.8±13.6 years (range 18–78 years were studied. Notch 1 receptor expression was found in 15/68 (22% samples of PTC. The expression of Notch 1 receptor was significantly associated with tumor size (P=0.021, distant metastasis (P=0.008, capsule invasion (P=0.001, tumor multicentricity (P=0.018, and age (P=0.033. However, the expression of Notch 1 receptor was not significantly correlated with node metastasis (P=0.096 and sex (P=0.901.Conclusion: The expression of Notch 1 receptor is associated with tumor

  3. Interleukin-2 (IL-2) dependent expression of biologically relevant IL-2 receptors: uncoupling of anti-T3 induced receptor expression with cyclosporin

    International Nuclear Information System (INIS)

    Human peripheral blood T cell expression of IL-2 receptors (IL-2R), detected by both immunocytofluorometry and 125I-IL-2 binding, was studied using lymphocytes stimulated with monoclonal anti-T3 antibodies (Leu-4, OKT3). Lymphocytes, isolated from healthy individuals, were prescreened and classified as Leu-4 responders or non-responders according to 72 h 3H-thymidine incorporation experiments. Leu-4 non-responder lymphocytes, though capable of normal IL-2R expression and IL-2 secretion when cultured with OKT3 (IgG2a), expressed little to no IL-2R nor secreted IL-2 when stimulated with Leu-4 (IgG1). In addition, the amount of IL-2 secreted by Leu-4 stimulated, Leu-4 responder cells, was one-third- to one-fifth of that detected when OKT3 was used as the stimulant. The addition of recombinant IL-2 (rIL-2) to a Leu-4 stimulated, Leu-4 non-responder lymphocyte culture, resulted in the expression of IL-2R and cellular proliferation, indicating that IL-2 upregulated its biologically relevant receptor. As expected, cyclosporin-A (CSA) inhibited the secretion of IL-2 and subsequent proliferation of Leu-4 stimulated, Leu-4 responder cells. Unexpectedly, however, the expression of IL-2R was also blocked. Exogenous rIL-2 partially reversed the effect of CSA on IL-2R expression and proliferation. The results indicate that IL-2 may provide an additional, required signal for optimal IL-2R expression

  4. GM-CSF and phorbol esters modulate GM-CSF receptor expression by independent mechanisms.

    Science.gov (United States)

    Brizzi, M F; Arduino, C; Avanzi, G C; Bussolino, F; Pegoraro, L

    1991-07-01

    Human granulocyte-macrophage colony-stimulating factor (GM-CSF) (0.1 nM) down-modulates its receptor in IL-3/GM-CSF dependent M-07e cells, in KG-1 cells and normal granulocytes, whereas phorbol esters 12-O-tetradecanoylphorbol-13-acetate (TPA) (2 nM) down-modulates the GM-CSF receptor in M-07e cells and granulocytes but not in KG-1 cells. As data analysis shows by nonlinear regression, the decreased binding ability depends on a reduction of the binding sites with no significant change of their dissociation constant. To gain insight into the mechanisms involved in the GM-CSF receptor regulation, we investigated the role of protein kinase C (PKC). GM-CSF, unlike TPA, was unable to activate PKC in all the cells studied. Moreover, unlike TPA, GM-CSF was still able to down-modulate its receptor in cells where PKC was inhibited by 1-(5-isoquinolonesulphonyl)-2-methylpiperazine (H7) and staurosporine or in cells where PKC was exhausted by prolonged incubation with 1 microM TPA. Finally, the receptor re-expression rate was accelerated by protein kinases inhibitors. These results, taken together, indicate the presence of a PKC-dependent and -independent down-modulation mechanism and a negative role of the endogeneous protein kinases in GM-CSF receptor re-expression.

  5. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene

    Energy Technology Data Exchange (ETDEWEB)

    Plowman, G.D.; Whitney, G.S.; Neubauer, M.G.; Green, J.M.; McDonald, V.L.; Todaro, G.J.; Shoyab, M. (Oncogen, Seattle, WA (USA))

    1990-07-01

    Epidermal growth factor (EGF), transforming growth factor {alpha} (TGF-{alpha}), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-{alpha} in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-{beta}. Amphiregulin also appears to abrogate the stimulatory effect of TGF-{alpha} on the growth of several aggressive epithelial carcinomas that over-express EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here the authors report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which were named HER3/ERRB3. The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. They have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth.

  6. The putative AKH receptor of the tobacco hornworm, Manduca sexta, and its expression.

    Science.gov (United States)

    Ziegler, R; Isoe, J; Moore, W; Riehle, M A; Wells, M A

    2011-01-01

    Adipokinetic hormones are peptide hormones that mobilize lipids and/or carbohydrates for flight in adult insects and activate glycogen Phosphorylase in larvae during starvation and during molt. We previously examined the functional roles of adipokinetic hormone in Manduca sexta L. (Lepidoptera: Sphingidae). Here we report the cloning of the full-length cDNA encoding the putative adipokinetic hormone receptor from the fat body of M. sexta. The sequence analysis shows that the deduced amino acid sequence shares common motifs of G protein-coupled receptors, by having seven hydrophobic transmembrane segments. We examined the mRNA expression pattern of the adipokinetic hormone receptor by quantitative Real-Time PCR in fat body during development and in different tissues and found the strongest expression in fat body of larvae two days after molt to the fifth instar. We discuss these results in relation to some of our earlier results. We also compare the M. sexta adipokinetic hormone receptor with the known adipokinetic hormone receptors of other insects and with gonadotropin releasing hormone-like receptors of invertebrates. PMID:21529255

  7. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Li; Qingming Shu; Lingzhi Li; Maolin Ge; Yongliang Zhang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott’s method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cycloox-ygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and pro-tein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury.

  8. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina;

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...

  9. Expression of nicotinic acetylcholine receptors on human B-lymphoma cells

    Directory of Open Access Journals (Sweden)

    Skok M. V.

    2009-12-01

    Full Text Available Aim. To find a correlation between the level of nicotinic acetylcholine receptor (nAChR expression and B lymphocyte differentiation or activation state. Methods. Expression of nAChRs in the REH, Ramos and Daudi cell lines was studied by flow cytometry using nAChR subunit-specific antibodies; cell proliferation was studied by MTT test. Results. It is shown that the level of 42/4 and 7 nAChRs expression increased along with B lymphocyte differentiation (Ramos > REH and activation (Daudi > > Ramos and depended on the antigen-specific receptor expression. The nAChR stimulation/blockade did not influence the intensity of cell proliferation.

  10. Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells.

    Directory of Open Access Journals (Sweden)

    Yutaka Maruyama

    Full Text Available Recently, we reported that calcium-sensing receptor (CaSR is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca(2+ concentration ([Ca(2+](i in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca(2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami.

  11. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors

    Directory of Open Access Journals (Sweden)

    Zucca Gianpiero

    2009-06-01

    Full Text Available Abstract Background Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. Results RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. Conclusion The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  12. The expression of peripheral benzodiazepine receptors in human skin: the relationship with epidermal cell differentiation.

    Science.gov (United States)

    Stoebner, P E; Carayon, P; Penarier, G; Fréchin, N; Barnéon, G; Casellas, P; Cano, J P; Meynadier, J; Meunier, L

    1999-06-01

    The peripheral benzodiazepine receptor (PBR) is a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. PBR is part of a heteromeric receptor complex involved in the formation of mitochondrial permeability transition pores and in the early events of apoptosis. PBR may function as an oxygen-dependent signal generator; recent data indicate that these receptors may preserve the mitochondria of haematopoietic cell lines from damage caused by oxygen radicals. To identify PBRs in human skin, we used a specific monoclonal antibody directed against the C-terminus fragment of the human receptor. PBR immunoreactivity was found in keratinocytes, Langerhans cells, hair follicles and dermal vascular endothelial cells. Interestingly, confocal microscopic examination of skin sections revealed that PBR expression was strongly upregulated in the superficial differentiated layers of the epidermis. Ultrastructurally, PBRs were distributed throughout the cytoplasm but were selectively expressed on the mitochondrial membranes of epidermal cells. The elevated level of PBRs in the spinous layer was not associated with an increased number of mitochondria nor with an increased amount of mRNA as assessed by in situ hybridization on microautoradiographed skin sections. The present work provides, for the first time, evidence of PBR immunoreactivity in human skin. This mitochondrial receptor may modulate apoptosis in the epidermis; its increased expression in differentiated epidermal layers may represent a novel mechanism of natural skin protection against free radical damage generated by ultraviolet exposure. PMID:10354064

  13. Vascular endothelial cells express a functional fas-receptor due to lack of hemodynamic forces.

    Science.gov (United States)

    Freyberg, M A; Kaiser, D; Graf, R; Friedl, P

    2001-10-01

    The fas system is present in atherosclerotic lesions. However, its role in the initiation and progression is still unclear. Here we show that in endothelial cells (EC) the expression of the fas receptor is regulated by flow conditions. The EC of the vascular system are regularly exposed to a range of hemodynamic forces with great impact on cellular structures and functions. Recently it was reported that in endothelial cells the lack of hemodynamic forces as well as irregular flow conditions trigger apoptosis by induction of a mechanosensitive autocrine loop of thrombospondin-1 and the alpha(V)beta(3) integrin/integrin-associated protein complex. Here we show that EC cultivated under regular laminar flow conditions are devoid of the fas-receptor whereas cultivation under static conditions as well as under turbulence leads to its expression. Stimulation of the fas-receptor by its ligand increases the amount of apoptotic cells by twofold; the increase can be prevented by blocking the fas-receptor. The availability of the expressed fas receptor for stimulation by its ligand hints at a role as a tool for progression of atherosclerosis. PMID:11483857

  14. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells

    Institute of Scientific and Technical Information of China (English)

    MinZHANG; XinZHANG; Chun-xueBAI; JieCHEN; MinQWEI

    2004-01-01

    AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).

  15. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice.

    Science.gov (United States)

    Tobón, Krishna E; Catuzzi, Jennifer E; Cote, Samantha R; Sonaike, Adenike; Kuzhikandathil, Eldo V

    2015-07-01

    The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression have been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady-state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within 30 min when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated with the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within 5 min of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggest a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals. PMID:25900179

  16. The expression levels of platelet adhesive receptors in PRP derived platelet concentrates during storage

    Directory of Open Access Journals (Sweden)

    Fatemeh Nassaji

    2016-04-01

    Full Text Available Background: Major platelet adhesive receptors that contribute significantly to thrombus formation include platelet receptor glycoprotein Ibα (GPIbα of the GPIb-IX-V complex and platelet glycoprotein VI (GPVI. GPIbα plays a crucial role in platelet tethering to sub-endothelial matrix, which initiates thrombus formation at arterial shear rates, whereas GPVI is critically involved in platelets firm adhesion to the site of injury regardless of shear condition. During storage, platelets experience some changes that deleteriously affect the expression levels of platelet receptors, which in turn can alter platelet functional behaviors. Considering the important roles of GPIbα and GPVI in platelet adhesion, it seems that any dramatic changes in the expression levels of these receptors can influence adhesive function of transfused platelets. Thereby examining GPIbα and GPVI expression during the storage of platelet concentrates may provide some useful information about the functional quality of these products after transfusion. Methods: In our experimental study, 5 PRP-platelet concentrates were randomly obtained from Iranian Blood Transfusion Organization (IBTO. All the platelet products met the standard quality assessment based on AABB (American Association of Blood Banks guidelines. Washed platelets were subjected to flowcytometry analysis for the evaluation of GPIbα and GPVI receptor expression in day 1, 3 and 5 after storage. Data were presented as mean fluorescence intensity (MFI and analyzed by Kruskal-Wallis test with Dunn’s multiple comparison test. Results: The GPIbα expression on first day (MFI=86±5.9 was reduced three days after storage (MFI= 69±6.9. The expression levels continued to reduce until day 5 in which GPIbα expression was markedly decreased to (MFI= 61±7.7 (P= 0.0094. GPVI expression on the days 1, 3 and 5 after storage were 20.6±3.3, 24±2.5 and 14±4.9, respectively. The results showed a significant decrease of

  17. Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure.

    Science.gov (United States)

    Lara, Aline; Damasceno, Denis D; Pires, Rita; Gros, Robert; Gomes, Enéas R; Gavioli, Mariana; Lima, Ricardo F; Guimarães, Diogo; Lima, Patricia; Bueno, Carlos Roberto; Vasconcelos, Anilton; Roman-Campos, Danilo; Menezes, Cristiane A S; Sirvente, Raquel A; Salemi, Vera M; Mady, Charles; Caron, Marc G; Ferreira, Anderson J; Brum, Patricia C; Resende, Rodrigo R; Cruz, Jader S; Gomez, Marcus Vinicius; Prado, Vania F; de Almeida, Alvair P; Prado, Marco A M; Guatimosim, Silvia

    2010-04-01

    Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.

  18. Expression of HIV receptors, alternate receptors and co-receptors on tonsillar epithelium: implications for HIV binding and primary oral infection

    Directory of Open Access Journals (Sweden)

    Maher Diane M

    2006-04-01

    Full Text Available Abstract Background Primary HIV infection can develop from exposure to HIV in the oral cavity. In previous studies, we have documented rapid and extensive binding of HIV virions in seminal plasma to intact mucosal surfaces of the palatine tonsil and also found that virions readily penetrated beneath the tissue surfaces. As one approach to understand the molecular interactions that support HIV virion binding to human mucosal surfaces, we have examined the distribution of the primary HIV receptor CD4, the alternate HIV receptors heparan sulfate proteoglycan (HS and galactosyl ceramide (GalCer and the co-receptors CXCR4 and CCR5 in palatine tonsil. Results Only HS was widely expressed on the surface of stratified squamous epithelium. In contrast, HS, GalCer, CXCR4 and CCR5 were all expressed on the reticulated epithelium lining the tonsillar crypts. We have observed extensive variability, both across tissue sections from any tonsil and between tonsils, in the distribution of epithelial cells expressing either CXCR4 or CCR5 in the basal and suprabasal layers of stratified epithelium. The general expression patterns of CXCR4, CCR5 and HS were similar in palatine tonsil from children and adults (age range 3–20. We have also noted the presence of small clusters of lymphocytes, including CD4+ T cells within stratified epithelium and located precisely at the mucosal surfaces. CD4+ T cells in these locations would be immediately accessible to HIV virions. Conclusion In total, the likelihood of oral HIV transmission will be determined by macro and micro tissue architecture, cell surface expression patterns of key molecules that may bind HIV and the specific properties of the infectious inoculum.

  19. 次声作用对大鼠记忆功能及隔内侧核和 斜角带核胆碱能神经元表达的影响%Expression of cholinergic neurons in the memory and medial septal nucleus and nucleus of diagonal band of the rats exposed to infrasound

    Institute of Scientific and Technical Information of China (English)

    魏智钧; 李玲; 陈景藻; 贾克勇; 饶志仁; 邱建勇; 刘惠玲

    2001-01-01

    目的 探讨次声作用对大鼠记忆功能及斜角带核和隔内侧核胆碱能神经元表达的影响。方法 记忆保持SD大鼠接受16 Hz,90 dB或130 dB次声照射,2 h/次.d-1, 作用7 d或14 d,观察不同声强、不同时间次声作用对大鼠回避反应的潜伏期及隔内侧核/斜角带核(MS/DB)胆碱能神经元表达的影响。结果 130 dB次声作用组大鼠记忆功能显著降低(P<0.01),隔内侧核和斜角带核胆碱能神经元数目明显降低(P<0.01),90 dB组差异不明显。结论 次声作用可以导致隔内侧核和斜角带核胆碱能神经元的数目减少,使大鼠记忆功能下降,效应与次声的声强有关。声强相同时, 14 d与7 d的效应差异不显著。%Objective To explore the influence on memory function and expression of cholinergic neurons in the medial septal nucleus/nucleus of diagonal band(MS/DB) of the rats exposed to 16 Hz infrasound. MethodsThe SD rats with memory-keeping were exposed to infrasound of 16 Hz with intensity of 90dB or 130 dB for 7,14 d and two hours every time in a day,then observed the latency of avoidance response and expression of cholinergic neurons in the MS/DB with immunohistochemical technique at the different time.Results The memory function of rats exposed to 130 dB infrasound were reduced (P<0.01),the number of the cholinergic neurons in the MS/DB was decreased dramatically (P<0.01) ,no difference was observed in the group exposed to 90 dB infrasound. Conclusion Infrasound can induce number of cholinergic neurons in the MS/DB decreased and memory function as well.The effects are related to the intensity and times of infrasound.When the intensity is same,the effect of 14 d group is no signifcant with 7d group.

  20. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars;

    2008-01-01

    /ml for 24h) resulted in markedly elevated contractile responses to the Tx analog U46619, compared with the control DMSO. There was no increase in TP receptor mRNA expression, while the protein expression was significantly enhanced. This up-regulation was not affected by a general transcriptional...... pathways are not involved in TP receptor up-regulation. Study on TP receptor mRNA stability showed that during organ culture, the TP receptor mRNA was stable in both DMSO and DSP group, but the latter elicited a tendency to stabilize the TP receptor mRNA at higher level. Thus, post...

  1. Co-expressed peptide receptors in breast cancer as a molecular basis for in vivo multireceptor tumour targeting

    Energy Technology Data Exchange (ETDEWEB)

    Reubi, Jean Claude; Gugger, Mathias; Waser, Beatrice [Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne (Switzerland)

    2002-07-01

    Breast cancers can express different types of peptide receptors such as somatostatin, vasoactive intestinal peptide (VIP), gastrin-releasing peptide (GRP) and NPY(Y{sub 1}) receptors. The aim of this in vitro study was to evaluate which is the most appropriate peptide receptor or peptide receptor combination for in vivo diagnostic and therapeutic targeting of breast cancers. Seventy-seven primary breast cancers and 15 breast cancer lymph node metastases were investigated in vitro for their expression of somatostatin, VPAC{sub 1}, GRP and NPY(Y{sub 1}) receptors using in vitro receptor autoradiography on successive tissue sections with {sup 125}I-[Tyr{sup 3}]-octreotide, {sup 125}I-VIP, {sup 125}I-[Tyr{sup 4}]-bombesin and {sup 125}I-[Leu{sup 31},Pro{sup 34}]-PYY respectively. This study identified two groups of tumours: a group of 68 tumours (88%) with at least one receptor expressed at high density (>2,000 dpm/mg tissue) that may provide a strong predictive value for successful in vivo targeting, and a group of nine tumours (12%) with no receptors or only a low density of them (<2,000 dpm/mg tissue). In the group with high receptor density, 50 of the 68 tumours (74%) expressed GRP receptors, 45 (66%) expressed NPY(Y{sub 1}) receptors, 25 (37%) expressed VPAC{sub 1} receptors and 14 (21%) expressed somatostatin receptors. Mean density was 9,819{+-}530 dpm/mg tissue for GRP receptors, 9,135{+-}579 dpm/mg for NPY(Y{sub 1}) receptors, 4,337{+-}528 dpm/mg for somatostatin receptors and 3,437{+-}306 dpm/mg for VPAC{sub 1} receptors. It is of note that tumours expressing NPY(Y{sub 1}) or GRP receptors, or both, were found in 63/68 (93%) cases. Lymph node metastases showed a similar receptor profile to the corresponding primary tumour. This in vitro study strongly suggests that the combination of radiolabelled GRP and Y{sub 1} analogues should allow targeting of breast carcinomas and their lymph node metastases for in vivo peptide receptor scintigraphy and radiotherapy

  2. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    Directory of Open Access Journals (Sweden)

    Sbarbati Andrea

    2011-01-01

    Full Text Available Abstract Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs. The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP. Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and

  3. Insulin-like growth factor-1 receptor expression in oral squamous cell carcinoma

    OpenAIRE

    Joseph, Boby K.; Sundaram, Devipriyaa B.

    2011-01-01

    Objectives: The Insulin-like growth factor-I receptor (IGF-1R) plays critical roles in cancer development, proliferation, motility and survival. IGF-1R over expression is frequently found in various tumours and is often associated with an aggressive phenotype. Hence, the aim of the present study was to examine the expression of IGF-1R in normal oral mucosa, fibroepithelial polyps, dysplastic oral mucosa and well-differentiated squamous cell carcinomas. Materials and methods: A 3-layered s...

  4. Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma.

    OpenAIRE

    Segal, R. A.; Goumnerova, L C; Kwon, Y. K.; Stiles, C D; Pomeroy, S. L.

    1994-01-01

    Medulloblastoma, the most common malignant brain tumor of childhood, has a variable prognosis. Although half of the children and young adults with the disease survive longer than 10 years after diagnosis, the others relapse and die despite identical therapy. We have examined the expression of neurotrophins and their receptors in medulloblastoma samples snap frozen in the operating room to preserve RNA integrity. All tumors (n = 12) were found to express mRNA encoding neurotrophin 3 and its re...

  5. Gene Expression of Leptin and Long Leptin Receptor Isoform in Endometriosis: A Case-Control Study

    OpenAIRE

    Andrea Prestes Nácul; Sheila Bunecker Lecke; Maria Isabel Edelweiss; Débora Martinho Morsch; Poli Mara Spritzer

    2013-01-01

    In this study, leptin/BMI ratio in serum and peritoneal fluid and gene expression of leptin and long form leptin receptor (OB-RL) were assessed in eutopic and ectopic endometria of women with endometriosis and controls. Increased serum leptin/BMI ratio was found in endometriosis patients. Leptin and OB-RL gene expression was significantly higher in ectopic versus eutopic endometrium of patients and controls. A positive, significant correlation was observed between leptin and OB-RL transcripts...

  6. Differential expression of pancreatic protein and chemosensing receptor mRNAs in NKCC1-null intestine

    Science.gov (United States)

    Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E

    2016-01-01

    AIM: To investigate the intestinal functions of the NKCC1 Na+-K+-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. METHODS: Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. RESULTS: Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. CONCLUSION: The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors. PMID:26909237

  7. Serotonin Transporter and Receptor Expression in Osteocytic MLO-Y4 Cells

    OpenAIRE

    BLIZIOTES, M.; ESHLEMAN, A.; BURT-PICHAT, B.; Zhang, X.-W.; Hashimoto, J; WIREN, K.; C. Chenu

    2006-01-01

    Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistr...

  8. Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression.

    Science.gov (United States)

    Núñez, Vanessa; Alameda, Daniel; Rico, Daniel; Mota, Rubén; Gonzalo, Pilar; Cedenilla, Marta; Fischer, Thierry; Boscá, Lisardo; Glass, Christopher K; Arroyo, Alicia G; Ricote, Mercedes

    2010-06-01

    The retinoid X receptor alpha (RXRalpha) plays a central role in the regulation of many intracellular receptor signaling pathways and can mediate ligand-dependent transcription by forming homodimers or heterodimers with other nuclear receptors. Although several members of the nuclear hormone receptor superfamily have emerged as important regulators of macrophage gene expression, the existence in vivo of an RXR signaling pathway in macrophages has not been established. Here, we provide evidence that RXRalpha regulates the transcription of the chemokines Ccl6 and Ccl9 in macrophages independently of heterodimeric partners. Mice lacking RXRalpha in myeloid cells exhibit reduced levels of CCL6 and CCL9, impaired recruitment of leukocytes to sites of inflammation, and lower susceptibility to sepsis. These studies demonstrate that macrophage RXRalpha plays key roles in the regulation of innate immunity and represents a potential target for immunotherapy of sepsis.

  9. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas;

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...... a markedly reduced capability of GH internalization. In contrast to cells transfected with GH-R1-638, none of the cell lines expressing truncated GH receptors exhibited any increase of the GH-stimulated insulin production. We conclude that domains within the COOH-terminal half of the cytoplasmic part...... of the GH receptor are required for transduction of the signal for GH-stimulated insulin synthesis, whereas cytoplasmic domains proximal to the transmembrane region are involved in receptor-mediated GH internalization....

  10. Human macrophage scavenger receptors: Primary structure, expression, and localization in atherosclerotic lesions

    International Nuclear Information System (INIS)

    Two types of cDNAs for human macrophage scavenger receptors were cloned from a cDNA library derived from the phorbol ester-treated human monocytic cell line THP-1. The type I and type II human scavenger receptors encoded by these cDNAs are homologous (73% and 71% amino acid identity) to their previously characterized bovine counterparts and consist of six domains: cytoplasmic (I), membrane-spanning (II), spacer (III), α-helical coiled-coil (IV), collagen-like (V), and a type-specific C-terminal (VI). The receptor gene is located on human chromosome 8. The human receptors expressed in CHO-K1 cells mediated endocytosis of modified low density lipoproteins. Two mRNAs, 4.0 and 3.2 kilobases, have been detected in human liver, placenta, and brain. Immunohistochemical studies using an anti-peptide antibody which recognizes human scavenger receptors indicated the presence of the scavenger receptors in the macrophages of lipid-rich atherosclerotic lesions, suggesting the involvement of scavenger receptors in atherogenesis

  11. Novel primary thymic defect with T lymphocytes expressing gamma delta T cell receptor

    DEFF Research Database (Denmark)

    Geisler, C; Pallesen, G; Platz, P;

    1989-01-01

    Flow cytometric analysis of the peripheral blood mononuclear cells in a six year old girl with a primary cellular immune deficiency showed a normal fraction of CD3 positive T cells. Most (70%) of the CD3 positive cells, however, expressed the gamma delta and not the alpha beta T cell receptor....... Immunoprecipitation and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that most of the gamma delta T cell receptors existed as disulphide-linked heterodimers. Proliferative responses to mitogens were severely reduced, but specific antibody responses after vaccination could be detected...... deficiency associated with a high proportion of T cells expressing the gamma delta T cell receptor has been described in nude mice, and it is suggested that the immune deficiency of this patient may represent a human analogue....

  12. Neuropeptide Y and leptin receptor expression in the hypothalamus of rats with chronic immobilization stress

    Institute of Scientific and Technical Information of China (English)

    Shaoxian Wang; Jiaxu Chen; Guangxin Yue; Minghua Bai; Meijing Kou; Zhongye Jin

    2013-01-01

    In this study, Sprague-Dawley rats were immobilized to a frame for 3 hours a day for 21 days to establish a model of chronic immobilization stress. The body weight and food intake of rats subjected to chronic immobilization stress were significantly decreased compared with the control group. Dual-labeling immunofluorescence revealed that the expression of leptin receptor and the co-localization coeffient in these leptic receptor neurons in the arcuate nucleus of the hypothalamus were both upregulated, while the number of neuropeptide Y neurons was decreased. Chronic immobilization stress induced high expression of leptin receptor in the arcuate nucleus and suppressed the synthesis and secretion of neuropeptide Y, thereby disrupting the pathways in the arcuate nucleus that regulate feeding behavior, resulting in diminished food intake and reduced body weight.

  13. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  14. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression.

    Directory of Open Access Journals (Sweden)

    Shadi Jafari

    Full Text Available The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

  15. Clinical significance of the leptin and leptin receptor expressions in prostate tissues

    Institute of Scientific and Technical Information of China (English)

    Jung Hoon Kim; Shin Young Lee; Soon Chul Myung; Young Sun Kim; Tae-Hyoung Kim; Mi Kyung Kim

    2008-01-01

    Aim: To evaluate the expression of leptin and leptin receptor in benign prostatic hyperplasia (BPH) and prostate cancer (Pca), and to investigate whether they are associated with the development and progression of Pca. Methods:Immunohistochemical staining was performed to examine the expression of leptin and leptin receptor in BPH and Pca.Pca was divided into three groups: localized Pca, locally advanced Pca and metastatic Pca. The positive staining was identified and the percentage of the positive staining was graded. We also assessed the relationship between both the Gleason score and body mass index (BMI) and Pca. Results: The percentage of the leptin expression in Pca was significantly higher than that in BPH (P < 0.01). For the Pca group, the expressed levels of leptin showed a considerable correlation with localized Pca and metastatic Pca (P < 0.05). Leptin receptor, however, did not reveal a definite difference between BPH and Pca. The expression of leptin indicated a significant difference between well-differen-tiated Pca (Gleason score < 6) and poorly differentiated Pca (Gleason score 8-10) (P < 0.05), The relation between the leptin expression level in Pca and the BMI was not remarkable (P = 0.447). Conclusion: Our results suggest that leptin might have a promoting effect on the carcinogenesis and progression of Pca.

  16. TREM-2 Receptor Expression Increases with 25(OHD Vitamin Serum Levels in Patients with Pulmonary Sarcoidosis

    Directory of Open Access Journals (Sweden)

    Maria Bucova

    2015-01-01

    Full Text Available TREM-1 and TREM-2 molecules are members of the TREM transmembrane glycoproteins. In our previous study we identified increased expressions of TREM-1 and TREM-2 receptors in pulmonary sarcoidosis (PS. Only a few studies concerning the association between vitamin D and TREM receptor expression can be found. The aim of our current study was to determine the association between the levels of an inactive form of 25(OHD vitamin and TREM-1 and TREM-2 receptor expressions. We have detected low levels of 25(OHD vitamin in 79% of PS patients. Only 21% of patients had normal serum level of 25(OHD vitamin with values clustered within the low-normal range. The most striking findings were the increased TREM-2 expressions on myeloid cells surfaces in BALF of PS patients with normal 25(OHD vitamin serum levels compared with those with its decreased levels. The total number of TREM-2 positive cells was 5.7 times higher and the percentage of TREM-2 positive cells was also significantly increased in BALF of PS patients with normal compared to PS patients with low 25(OHD vitamin serum levels. A significant correlation between total TREM-2 expression and vitamin D levels has been detected too. However, we have not detected similar differences in TREM-1expression and 25(OHD vitamin serum levels.

  17. Efficient silkworm expression of human GPCR (nociceptin receptor) by a Bombyx mori bacmid DNA system

    Energy Technology Data Exchange (ETDEWEB)

    Kajikawa, Mizuho; Sasaki, Kaori [Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Wakimoto, Yoshitaro; Toyooka, Masaru [Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Motohashi, Tomoko; Shimojima, Tsukasa [National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 (Japan); Takeda, Shigeki [Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Park, Enoch Y. [Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka, Shizuoka 422-8529 (Japan); Maenaka, Katsumi, E-mail: kmaenaka-umin@umin.net [Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2009-07-31

    Guanine nucleotide-binding protein (G protein) coupled receptors (GPCRs) are frequently expressed by a baculovirus expression vector system (BEVS). We recently established a novel BEVS using the bacmid system of Bombyx mori nucleopolyhedrovirus (BmNPV), which is directly applicable for protein expression in silkworms. Here, we report the first example of GPCR expression in silkworms by the simple injection of BmNPV bacmid DNA. Human nociceptin receptor, an inhibitory GPCR, and its fusion protein with inhibitory G protein alpha subunit (G{sub i}{alpha}) were both successfully expressed in the fat bodies of silkworm larvae as well as in the BmNPV viral fraction. Its yield was much higher than that from Sf9 cells. The microsomal fractions including the nociceptin receptor fusion, which are easily prepared by only centrifugation steps, exhibited [{sup 35}S]GTP{gamma}S-binding activity upon specific stimulation by nociceptin. Therefore, this rapid method is easy-to-use and has a high expression level, and thus will be an important tool for human GPCR production.

  18. Changes of epidermal mu-opiate receptor expression and nerve endings in chronic atopic dermatitis.

    Science.gov (United States)

    Bigliardi-Qi, M; Lipp, B; Sumanovski, L T; Buechner, S A; Bigliardi, P L

    2005-01-01

    There is increasing evidence that neuropeptides such as a substance P, neurotrophins or beta-endorphin, an endogenous agonist for mu-opioid receptor, are involved in the pathogenesis of atopic dermatitis in which mental stress and scratching deteriorate the disease. mu-Opioid receptor, a G-protein-coupled receptor, can be downregulated and internalized by agonists and other factors in vitro. In this study, we investigated the regulation of mu-opioid receptor and nerve endings in atopic dermatitis patients. Skin biopsies from atopic dermatitis patients revealed a significant downregulation of mu-opiate receptor expression in epidermis of atopic dermatitis. Permeabilization of the skin showed that the receptor in keratinocytes from atopic dermatitis is internalized. The mRNA expression pattern of the mu-opiate receptor is different in epidermis taken from patients with chronic atopic dermatitis compared to normal skin. In atopic dermatitis, the mRNA is concentrated in the subcorneal layers of the epidermis and in normal skin in the suprabasal layers. Staining of the nerve endings using protein gene product 9.5 shows a different pattern of epidermal nerve endings in normal skin compared to atopic dermatitis. In normal skin, the epidermal nerve endings are rather thick. However, in atopic dermatitis, the epidermal nerve endings are thin and run straight through the epidermis. Based on these observations and combining the 'intensity' and 'pattern' hypothesis, we propose a new theory especially for histamine-unrelated, peripheral induction of chronic pruritus. We suggest that 'itch' is elicited in the epidermal unmyelinated nerve C-fibers and 'pain' in the dermal unmyelinated nerve fibers. The downregulation of the opioid receptor in the epidermis contributes to the chronic itching. We call this new hypothesis the 'layer hypothesis'.

  19. Reduced expression of C5a receptors on neutrophils from cord blood

    DEFF Research Database (Denmark)

    Nybo, Mads; Sørensen, O; Leslie, R;

    1998-01-01

    AIM: To describe further functional deficiencies of neonatal neutrophils by measuring the expression of C5a receptors. METHODS: C5a uptake was measured using flow cytometry with fluorescein isothiocynate labelled recombinant C5a. The response of neutrophils to stimulation with C5a and fMLP was te...

  20. Stilbenes inhibit androgen receptor expression in 22Rv1 castrate-resistant prostate cancer cells

    Science.gov (United States)

    Androgen receptor (AR) signaling plays an important role in the development and progression of prostate cancer (PCa). Importantly, AR continues to be expressed in advanced stages of castrate-resistant PCa (CRPC), where it can have ligand- independent activity. Identification of naturally occurring s...

  1. Increased expression of endothelin B receptor in static stretch exposed porcine mitral valve leaflets

    DEFF Research Database (Denmark)

    Pedersen, Lotte Gam; Zhao, J.; Yang, J.;

    2007-01-01

    The aim of this study was to evaluate the effect of mechanical stretch on the expression of ET-1 and ETA- and ETB-receptors in porcine mitral valve leaflets. Leaflet segments from 10 porcine mitral valves were exposed to a static stretch load of 1.5 N for 3.5 h in buffer at 37oC together...

  2. Expression of FSH receptor in ovary tissue of rats with letrozole-induced polycystic ovary syndrome

    International Nuclear Information System (INIS)

    Objective: To investigate the expressions of FSH receptor mRNA and protein in ovary tissue in rats with letrozole-induced polycystic ovary syndrome (PCOS), and to provide experimental data for the model application. Methods: Forty rats were randomly divided into two groups (n=20), in PCOS model group letrozole was administered once daily during 21 d, and in control group without any treatment. The gonadal hormone concentrations in serum were determined by radioimmunoassay, the histologic changes in ovaries were observed by HE staining, the expression of FSH receptor gene in ovary tissue was detected by realtime -PCR, Western blotting and immunohistochemistry. Results: Compared with control group, estradiol (E2) and progesterone in model group showed a considerable reduction (P0.05). Compared with control group, the ovaries from model group showed high incidence of subcapsular ovarian cyst and capsular thickening and decreased number of corpora lute a. The expressions of FSH receptor mRNA and protein were significantly higher in model group than those in control group (P<0.05). Conclusion: The expression of FSH receptor gene in letrozole-induced polycystic ovaries is similar with that of PCOS women, the rat model is proved to be an ideal PCOS animal model to study the pathophysiology of PCOS. (authors)

  3. Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Ansar, Saema; Larsen, Carl; Maddahi, Aida;

    2010-01-01

    on the smooth muscle cells (SMCs) was increased in SAH compared to sham. Global and regional CBFs were reduced in SAH as compared to sham. The results demonstrate that SAH results in CBF reduction and this is associated with the enhanced expression of TP receptors in the SMC of cerebral arteries...

  4. Soluble triggering receptor expressed on myeloid cells 1: a biomarker for bacterial meningitis

    NARCIS (Netherlands)

    R.M. Determann; M. Weisfelt; J. de Gans; A. van der Ende; M.J. Schultz; D. van de Beek

    2006-01-01

    Objective: To evaluate whether soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) in CSF can serve as a biomarker for the presence of bacterial meningitis and outcome in patients with this disease. Design: Retrospective study of diagnostic accuracy. Setting and patients: CSF was coll

  5. Intra-uterine Growth Restriction Downregulates the Hepatic Toll Like Receptor-4 Expression and Function

    OpenAIRE

    Ozlem Equils; Sapna Singh; Semra Karaburun; Daning Lu; Manikkavasagar Thamotharan; Devaskar, Sherin U.

    2005-01-01

    Maternal starvation is a significant cause of intrauterine growth restriction (IUGR) in the world and increases the risk of infection in the neonate. We examined the effect of maternal starvation on Toll like receptor (TLR)4 expression in hepatic, splenic and intestinal tissues obtained from the adult IUGR offspring of prenatal calorie restricted rats. The hepatic TLR4 protein concentration was undetectable in the...

  6. Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells

    Directory of Open Access Journals (Sweden)

    Helen Soedling

    2015-09-01

    Conclusions/interpretation: The use here of a highly selective Cre recombinase indicates that leptin signalling plays a relatively minor, age- and sex-dependent role in the control of β cell function in the mouse. No in vivo role for leptin receptors on α cells, nor in other proglucagon-expressing cells, was detected in this study.

  7. Prolonged expression of the c-kit receptor in germ cells of intersex fetal testes

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Jørgensen, N; Müller, Jørn;

    1996-01-01

    Stem cell factor (SCF) and its receptor Kit encoded by the c-kit proto-oncogene are crucial for the development and migration of primordial germ cells in rodents. The expression of Kit has been examined immunohistochemically in gonads obtained from five specimens of fetal tissues with intersex co...

  8. Kappa Opioid Receptors Mediate where Fear Is Expressed Following Extinction Training

    Science.gov (United States)

    Cole, Sindy; Richardson, Rick; McNally, Gavan P.

    2011-01-01

    Six experiments used a within-subjects renewal design to examine the involvement of kappa opioid receptors (KORs) in regulating the expression and recovery of extinguished fear. Rats were trained to fear a tone conditioned stimulus (CS) via pairings with foot shock in a distinctive context (A). This was followed by extinction training of the CS in…

  9. Androgen, estrogen and progesterone receptor expression in the human uterus during the menstrual cycle

    NARCIS (Netherlands)

    Mertens, HJMM; Heineman, MJ; Theunissen, PHMH; de Jong, FH; Evers, JLH

    2001-01-01

    Cyclic changes in steroid receptor expression in endometrial cells are considered a reflection of its differential functions. Besides estrogen and progestogens, androgens have also been suggested to affect the biological function of the female reproductive tract. We investigated the distribution and

  10. Expression of neuropeptides and their receptors in the developing retina of mammals

    OpenAIRE

    bagnoli, P; M. Dal Monte; Casini, G.

    2003-01-01

    The present review examines various aspects of the developmental expression of neuropeptides and of their receptors in mammalian retinas, emphasizing their possible roles in retinal maturation. Different peptidergic systems have been investigated with some detail during retinal development, including substance P (SP), somatostatin (SRIF), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY...

  11. PET Imaging of Steroid Receptor Expression in Breast and Prostate Cancer

    NARCIS (Netherlands)

    Hospers, G. A. P.; Helmond, F. A.; Dierckx, R. A.; de Vries, Emma; de Vries, Erik

    2008-01-01

    The vast majority of breast and prostate cancers express specific receptors for steroid hormones, which play a pivotal role in tumor progression. Because of the efficacy of endocrine therapy combined with its relatively mild side-effects, this intervention has nowadays become the treatment of choice

  12. Preclinical evaluation of radiolabeled DOTA-derivatized cyclic minigastrin analogs for targeting cholecystokinin receptor expressing malignancies.

    NARCIS (Netherlands)

    Guggenberg, E. von; Rangger, C.; Sosabowski, J.; Laverman, P.; Reubi, J.C.; Virgolini, I.J.; Decristoforo, C.

    2012-01-01

    PURPOSE: Targeting of cholecystokinin receptor expressing malignancies such as medullary thyroid carcinoma is currently limited by low in vivo stability of radioligands. To increase the stability, we have developed and preclinically evaluated two cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraa

  13. Expression of the Inhibitory CD200 Receptor Is Associated with Alternative Macrophage Activation

    NARCIS (Netherlands)

    N. Koning; M. van Eijk; W. Pouwels; M.S.M. Brouwer; D. Voehringer; I. Huitinga; R.M. Hoek; G. Raes; J. Hamann

    2010-01-01

    Classical macrophage activation is inhibited by the CD200 receptor (CD200R). Here, we show that CD200R expression was specifically induced on human in vitro polarized macrophages of the alternatively activated M2a subtype, generated by incubation with IL-4 or IL-13. In mice, peritoneal M2 macrophage

  14. Effect of fluoride on expression of insulinlike growth factor-1 and its receptor of rat osteoblasts

    Institute of Scientific and Technical Information of China (English)

    喻茂娟

    2013-01-01

    Objective To explore the influence of fluorine on mRNA and protein expression of the insulin-like growth factor-1 (IGF-1) and its receptor of rat osteoblasts.Methods Osteoblasts were isolated from rat bone by enzyme digestion.Different fluorine concentration[0 (con-

  15. Tissue-specific Regulation of Porcine Prolactin Receptor Expression by Estrogen, Progesterone and Prolactin

    Science.gov (United States)

    Prolactin (PRL) acts through its receptor (PRLR) via both endocrine and local paracrine/autocrine pathways to regulate biological processes including reproduction and lactation. We analyzed the tissue and stage of gestation-specific regulation of PRL and PRLR expression in various tissues of pigs. ...

  16. Re-evaluation of the prolactin receptor expression in human breast cancer

    DEFF Research Database (Denmark)

    Galsgaard, Elisabeth Douglas; Rasmussen, Birgitte Bruun; Folkesson, Charlotta Grånäs;

    2009-01-01

    The pituitary hormone PRL is involved in tumorigenesis in rodents and humans. PRL promotes proliferation, survival and migration of cancer cells acting via the PRL receptor (PRLR). Aiming to perform a large-scale immunohistochemical (IHC) screening of human mammary carcinomas for PRLR expression,...

  17. Functional pharmacology of cloned heterodimeric GABA-B receptors expressed in mammalian cells

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Krogsgaard-Larsen, P

    1999-01-01

    1. In this study we report a new assay of heterodimeric gamma-amino-butanoic acid subtype B (GABAB) receptors where either GABABR1a or GABABR1b are co-expressed with GABABR2 and the chimeric G-protein Galphaq-z5 in tsA cells. In this manner we obtained a robust response to GABAB agonists measured...

  18. A novel brain receptor is expressed in a distinct population of olfactory sensory neurons

    NARCIS (Netherlands)

    Conzelmann, S; Levai, O; Bode, B; Eisel, U; Raming, K; Breer, H; Strotmann, J

    2000-01-01

    Three novel G-protein-coupled receptor genes related to the previously described RA1c gene have been isolated from the mouse genome. Expression of these genes has been detected in distinct areas of the brain and also in the olfactory epithelium of the nose. Developmental studies revealed a different

  19. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Boato, Francesco; Schwengel, Katja;

    2013-01-01

    outgrowth was absent in neurons derived from AT2R-KO mice. In primary neurons, treatment with C21 further induced RNA expression of anti-apoptotic Bcl-2 (+75.7%), brain-derived neurotrophic factor (BDNF) (+53.7%), the neurotrophin receptors TrkA (+57.4%) and TrkB (+67.9%) and a marker for neurite growth...

  20. Identification of an MRAP-Independent Melanocortin-2 Receptor: Functional Expression of the Cartilaginous Fish, Callorhinchus milii, Melanocortin-2 Receptor in CHO Cells

    OpenAIRE

    Reinick, Christina L.; Liang, Liang; Angleson, Joseph K.; Dores, Robert M.

    2012-01-01

    Phylogenetic analyses indicate that the genome of the cartilaginous fish, Callorhynchus milii (elephant shark), encodes a melanocortin-2 receptor (MC2R) ortholog. Expression of the elephant shark mc2r cDNA in Chinese hamster ovary (CHO) cells revealed that trafficking to the plasma membrane and functional activation of the receptor do not require coexpression with an exogenous melanocortin receptor-2 accessory protein (mrap) cDNA. Ligand selectivity studies indicated that elephant shark MC2R-...

  1. Increased gene and protein expressions of the transient receptor potential vanilloid receptor 4 following sustained pure mechanical pressure on rat dorsal root ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    Yang Zhang; Juan Huai; Yonghui Wang; Yanqin Wang; Shouwei Yue

    2011-01-01

    Dorsal root ganglion (DRG) neurons from newborn Wistar rats cultured in vitro were pressurized with 20, 40, 80 or 120 mm Hg compressive loadings (1 mm Hg = 0.133 kPa) for 12, 24, 48 or 72 hours, respectively. The 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide test showed that pressures less than 80 mm Hg had no obvious impact on the activity of DRG neurons. The protein expression levels of transient receptor potential vanilloid receptor 4 (TRPV4), transient receptor potential vanilloid receptor 1, transient receptor potential channel of melastatin type 8, and transient receptor potential subtype ankyrin 1 were assessed by western blot analysis. The mRNA expression of TRPV4 was assessed by real-time PCR. The results showed that sustained mechanical compression up-regulated TRPV4 mRNA and protein expression in the rat DRG neurons, in a time-dependent fashion. Similar changes were not found in the protein expression of transient receptor potential vanilloid receptor 1, transient receptor potential channel of melastatin type 8, and transient receptor potential subtype ankyrin 1. Images of cells using a laser scanning confocal microscope showed that the sustained mechanical pressure increased the number of responsive DRG neurons and was synergistic on the enhanced Ca2+ responses to the TRPV4 phorbol ester agonist 4a-phorbol 12, 13-didecanoate and hypotonic solutions. These findings demonstrate that sustained mechanical compressive loading in vitro increases the expression of TRPV4 mRNA and protein in DRG neurons and sensitizes TRPV4 Ca2+ signals. Mechanical compression does not impact other ion channels in thetransient receptor potential family.

  2. Expression of murine Fc receptors for IgG.

    Science.gov (United States)

    Schreiber, R E; Buku, A; Unkeless, J C

    1990-06-15

    There are two distinct genes that encode murine low affinity Fc gamma RII, murine Fc gamma RII alpha, and murine Fc gamma RII beta, which are transcribed in specific cell lineages. Fc gamma RII alpha transcripts are present in macrophages, NK cells, and mesangial cells; Fc gamma RII beta transcripts are expressed in Fc gamma R-bearing B cells, T cells, and macrophages. We have devised a sandwich ELISA to quantify the expression of Fc gamma RII alpha protein. The ELISA is specific for Fc gamma RII alpha, and does not detect the closely related Fc gamma RII beta protein. Upon stimulation with IFN-gamma the Fc gamma RII beta- macrophage cell line J774a expressed a twelvefold enhanced level of Fc gamma RII alpha protein. Peritoneal macrophages synthesized varying amounts of Fc gamma RII alpha. High levels of Fc gamma RII alpha were observed in resident and thioglycollate-elicited peritoneal macrophages, but no Fc gamma RII alpha was detected in Bacillus Calmette Guérin-elicited macrophages. J774a cells stimulated with rIL-6 bound approximately twice as much anti-Fc gamma RII mAb 2.4G2 IgG as did unstimulated controls. However, the Fc gamma RII alpha-specific ELISA showed no change in the amount of Fc gamma RII alpha expressed. A probe encompassing the extracellular coding sequence of Fc gamma RII beta hybridized to two distinct transcripts that were elevated in rIL-6-st