WorldWideScience

Sample records for cholinergic receptor expression

  1. Involvement of M3 Cholinergic Receptor Signal Transduction Pathway in Regulation of the Expression of Chemokine MOB-1, MCP-1 Genes in Pancreatic Acinar Cells

    Institute of Scientific and Technical Information of China (English)

    郑海; 陈道达; 张景輝; 田原

    2004-01-01

    Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay.The results showed that as compared with control group, M3 cholinergic receptor agonist (103mol/L, 104-4ol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10-3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10-5 mol/L atropine) or NF-κB inhibitor (10-2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P <0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.

  2. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons

    OpenAIRE

    Albers, Kathryn M.; Zhang, Xiu Lin; Diges, Charlotte M.; Schwartz, Erica S.; Yang, Charles I; Davis, Brian M.; Gold, Michael S.

    2014-01-01

    Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) s...

  3. Expression of Adrenergic and Cholinergic Receptors in Murine Renal Intercalated Cells

    OpenAIRE

    JUN, Jin-Gon; MAEDA, Seishi; Kuwahara-Otani, Sachi; TANAKA, Koichi; Hayakawa, Tetsu; SEKI, Makoto

    2014-01-01

    ABSTRACT Neurons influence renal function and help to regulate fluid homeostasis, blood pressure and ion excretion. Intercalated cells (ICCs) are distributed throughout the renal collecting ducts and help regulate acid/base equilibration. Because ICCs are located among principal cells, it has been difficult to determine the effects that efferent nerve fibers have on this cell population. In this study, we examined the expression of neurotransmitter receptors on the murine renal epithelial M-1...

  4. Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    NARCIS (Netherlands)

    De Souza Silva, M. A.; Dolga, Amalia; Pieri, I.; Marchetti, L.; Eisel, U. L. M.; Huston, J. P.; Dere, E.

    2006-01-01

    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the n

  5. *118494 CHOLINERGIC RECEPTOR, MUSCARINIC, 3; CHRM3 [OMIM

    Lifescience Database Archive (English)

    Full Text Available FIELD NO 118494 FIELD TI 118494 CHOLINERGIC RECEPTOR, MUSCARINIC, 3; CHRM3 ;;ACETYLCHOLINE RECEP ... tones, and unilateral kidney dysfunction. He had a lean ... habitus since childhood. Urologic testing revealed ... scarinic acetylcholine receptor are hypophagic and lean . Nature 410: 207-212, 2001. FIELD CN Ada Hamosh - ...

  6. The Cholinergic Signaling Responsible for the Expression of a Memory-Related Protein in Primary Rat Cortical Neurons.

    Science.gov (United States)

    Chen, Tsan-Ju; Chen, Shun-Sheng; Wang, Dean-Chuan; Hung, Hui-Shan

    2016-11-01

    Cholinergic dysfunction in the brain is closely related to cognitive impairment including memory loss. In addition to the degeneration of basal forebrain cholinergic neurons, deficits in the cholinergic receptor signaling may also play an important role. In the present study, to examine the cholinergic signaling pathways responsible for the induction of a memory-related postsynaptic protein, a cholinergic agonist carbachol was used to induce the expression of activity-regulated cytoskeleton associated protein (Arc) in primary rat cortical neurons. After pretreating neurons with various antagonists or inhibitors, the levels of carbachol-induced Arc protein expression were detected by Western blot analysis. The results show that carbachol induces Arc protein expression mainly through activating M1 acetylcholine receptors and the downstream phospholipase C pathway, which may lead to the activation of the MAPK/ERK signaling pathway. Importantly, carbachol-mediated M2 receptor activation exerts negative effects on Arc protein expression and thus counteracts the enhanced effects of M1 activation. Furthermore, it is suggested for the first time that M1-mediated enhancement of N-methyl-D-aspartate receptor (NMDAR) responses, leading to Ca(2+) entry through NMDARs, contributes to carbachol-induced Arc protein expression. These findings reveal a more complete cholinergic signaling that is responsible for carbachol-induced Arc protein expression, and thus provide more information for developing treatments that can modulate cholinergic signaling and consequently alleviate cognitive impairment. J. Cell. Physiol. 231: 2428-2438, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895748

  7. Cholinergic receptor binding in the frontal cortex of suicide victims

    International Nuclear Information System (INIS)

    Because there is a high incidence of individuals diagnosed as having an affective disorder who subsequently commit suicide, the author thought it would be of interest to determine QNB binding in the brains of a large sample of suicide victims, and to compare the findings with a well-matched control group. Brain samples were obtained at autopsy from 22 suicide victims and 22 controls. Frontal cortex samples were diseected, frozen, and stored until assayed. Samples of tissue homogenate were incubated in duplicate with 10 concentrations of tritium-QNB. Specific binding was determined with and without atropine. The results confirmed previous studies in which no changes were noted in suicide versus control brains. While the findings neither disprove nor support the cholinergic hypothesis of depression, they do suggest that the neurochemical basis for the in vivo observations of increased responsivity of depressed individuals to muscarinic cholinergic agents might not involve changes in receptors estimated by QNB binding

  8. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    International Nuclear Information System (INIS)

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 μM, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. 45Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45Ca outflux. BPP was also capable of displacing the specific binding of [3H]-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 μM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant

  9. Antagonist of the amylin receptor blocks beta-amyloid toxicity in rat cholinergic basal forebrain neurons.

    Science.gov (United States)

    Jhamandas, Jack H; MacTavish, David

    2004-06-16

    Salvage of cholinergic neurons in the brain through a blockade of the neurotoxic effects of amyloidbeta protein (Abeta) is one of the major, but still elusive, therapeutic goals of current research in Alzheimer's disease (AD). To date, no receptor has been unequivocally identified for Abeta. Human amylin, which acts via a receptor composed of the calcitonin receptor-like receptor and a receptor-associated membrane protein, possesses amyloidogenic properties and has a profile of neurotoxicity that is strikingly similar to Abeta. In this study, using primary cultures of rat cholinergic basal forebrain neurons, we show that acetyl-[Asn30, Tyr32] sCT(8-37) (AC187), an amylin receptor antagonist, blocks Abeta-induced neurotoxicity. Treatment of cultures with AC187 before exposure to Abeta results in significantly improved neuronal survival as judged by MTT and live-dead cell assays. Quantitative measures of Abeta-evoked apoptotic cell death, using Hoechst and phosphotidylserine staining, confirm neuroprotective effects of AC187. We also demonstrate that AC187 attenuates the activation of initiator and effector caspases that mediate Abeta-induced apoptotic cell death. These data are the first to show that expression of Abeta toxicity may occur through the amylin receptor and suggest a novel therapeutic target for the treatment of AD. PMID:15201330

  10. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  11. Enhanced sensitivity of muscarinic cholinergic receptor associated with dopaminergic receptor subsensitivity after chronic antidepressant treatment

    International Nuclear Information System (INIS)

    The chronic effects of antidepressant treatment on striatal dopaminergic (DA) and muscarinic cholinergic (mACh) receptors of the rat brain have been examined comparatively in this study using 3H-spiroperidol (3H-SPD) and 3H-quinuclidinyl benzilate (3H-QNB) as the respective radioactive ligands. Imipramine and desipramine were used as prototype antidepressants. Although a single administration of imipramine or desipramine did not affect each receptor sensitivity, chronic treatment with each drug caused a supersensitivity of mACh receptor subsequent to DA receptor subsensitivity. Furthermore, it has been suggested that anti-mACh properties of imipramine or desipramine may not necessarily be related to the manifestation of mACh receptor supersensitivity and that sustained DA receptor subsensitivity may play some role in the alterations of mACh receptor sensitivity

  12. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    OpenAIRE

    Luiten, PGM; DEJONG, GI; VANDERZEE, EA; vanDijken, H; van Dijken, H.

    1996-01-01

    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a general consensus as to the presence of nicotinic and muscarinic receptors in the domain of the capillary wall, their precise anatomical position is unknown. The subcellular localization of muscarinic re...

  13. Cholinergic receptors as target for cancer therapy in a systems medicine perspective.

    Science.gov (United States)

    Russo, P; Del Bufalo, A; Milic, M; Salinaro, G; Fini, M; Cesario, A

    2014-01-01

    Epithelial cells not innervated by cholinergic neurons express nicotinic and muscarinic acetylcholine (ACh) receptors (nAChR, mAChR). nAChR and mAChR are components of the auto-/paracrine-regulatory loop of non-neuronal ACh release. The cholinergic control of non-neuronal cells may be mediated by different effects (synergistic, additive, or reciprocal) triggered by these receptors. The ionic events (Ca(+2) influx) are generated by the ACh-opening of nAChR channels, while the metabolic events by ACh-binding to G-proteincoupled mAChR. Effective inter- and intracellular signaling is crucial for valuable cancer cells proliferation and survival. Depending on cancer cell type, different AChR have been identified. The proliferation of airways epithelial cancer cells and pancreatic cancer cells may be under the control of α7-nAChR and M3-mAChR, while breast cancer cells and colon cancer cells are regulated by α9-nAChR, and M3-mAChR, respectively. In turn, these receptors may activate different pathways (Ras-Raf-1-Erk-AKT) as well as other receptors (β- adrenergicR). nAChR or mAChR antagonists may inhibit cancer growth. Inhibition of M3 by antisense or antagonists (Darifenacin, Tiotropium) reduces lung or colon cancer proliferation, as well as inhibition of α9- nAChR [polyphenol (-)-epigallocatechin-3-gallate] diminishes breast cancer cells growth. α7-nAChR silencing inhibits lung cancer proliferation. Moreover, inhibition of the nAChR-β-adrenergicR pathway (β-blockers) could be also useful. This review will describe the future translational perspectives of cholinergic receptors druginhibition in a complex disease such as cancer that poses compelling treatment challenges. Cancer happens as consequence of disease-perturbed molecular networks in relevant organ cells that change during progression. The framework for approaching these challenges is a systems approach. PMID:25324001

  14. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    International Nuclear Information System (INIS)

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author)

  15. VPAC1 receptors regulate intestinal secretion and muscle contractility by activating cholinergic neurons in guinea pig jejunum.

    Science.gov (United States)

    Fung, Candice; Unterweger, Petra; Parry, Laura J; Bornstein, Joel C; Foong, Jaime P P

    2014-05-01

    In the gastrointestinal tract, vasoactive intestinal peptide (VIP) is found exclusively within neurons. VIP regulates intestinal motility via neurally mediated and direct actions on smooth muscle and secretion by a direct mucosal action, and via actions on submucosal neurons. VIP acts via VPAC1 and VPAC2 receptors; however, the subtype involved in its neural actions is unclear. The neural roles of VIP and VPAC1 receptors (VPAC1R) were investigated in intestinal motility and secretion in guinea pig jejunum. Expression of VIP receptors across the jejunal layers was examined using RT-PCR. Submucosal and myenteric neurons expressing VIP receptor subtype VPAC1 and/or various neurochemical markers were identified immunohistochemically. Isotonic muscle contraction was measured in longitudinal muscle-myenteric plexus preparations. Electrogenic secretion across mucosa-submucosa preparations was measured in Ussing chambers by monitoring short-circuit current. Calretinin(+) excitatory longitudinal muscle motor neurons expressed VPAC1R. Most cholinergic submucosal neurons, notably NPY(+) secretomotor neurons, expressed VPAC1R. VIP (100 nM) induced longitudinal muscle contraction that was inhibited by TTX (1 μM), PG97-269 (VPAC1 antagonist; 1 μM), and hyoscine (10 μM), but not by hexamethonium (200 μM). VIP (50 nM)-evoked secretion was depressed by hyoscine or PG97-269 and involved a small TTX-sensitive component. PG97-269 and TTX combined did not further depress the VIP response observed in the presence of PG97-269 alone. We conclude that VIP stimulates ACh-mediated longitudinal muscle contraction via VPAC1R on cholinergic motor neurons. VIP induces Cl(-) secretion directly via epithelial VPAC1R and indirectly via VPAC1R on cholinergic secretomotor neurons. No evidence was obtained for involvement of other neural VIP receptors. PMID:24578344

  16. Muscarinic cholinergic receptor (M2 plays a crucial role in the development of myopia in mice

    Directory of Open Access Journals (Sweden)

    Veluchamy A. Barathi

    2013-09-01

    Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2; also known as Chrm2 were less susceptible to lens-induced myopia compared with wild-type mice, which showed significantly increased axial length and vitreous chamber depth when undergoing experimental induction of myopia. The key findings of this present study are that the sclera of M2 mutant mice has higher expression of collagen type I and lower expression of collagen type V than do wild-type mice and mice that are mutant for other muscarinic subtypes, and, therefore, M2 mutant mice were resistant to the development of experimental myopia. Pharmacological blockade of M2 muscarinic receptor proteins retarded myopia progression in the mouse. These results suggest for the first time a role of M2 in growth-related changes in extracellular matrix genes during myopia development in a mammalian model. M2 receptor antagonists might thus provide a targeted therapeutic approach to the management of this refractive error.

  17. Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis.

    Science.gov (United States)

    Muller, Jay F; Mascagni, Franco; Zaric, Violeta; Mott, David D; McDonald, Alexander J

    2016-08-15

    Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R(+) . The main targets of M2R(+) terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R(+) dendritic shafts. M2R-ir was also seen in VAChT(+) cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R-mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ-aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400-2417, 2016. © 2016 Wiley Periodicals, Inc. PMID:26779591

  18. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    International Nuclear Information System (INIS)

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-[3H]nicotine or alpha-[125I]bungarotoxin; [3H]quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the number of sites labeled by [3H]nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-[125I]bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment

  19. Spontaneous Synaptic Activation of Muscarinic Receptors by Striatal Cholinergic Neuron Firing.

    Science.gov (United States)

    Mamaligas, Aphroditi A; Ford, Christopher P

    2016-08-01

    Cholinergic interneurons (CHIs) play a major role in motor and learning functions of the striatum. As acetylcholine does not directly evoke postsynaptic events at most striatal synapses, it remains unclear how postsynaptic cholinergic receptors encode the firing patterns of CHIs in the striatum. To examine the dynamics of acetylcholine release, we used optogenetics and paired recordings from CHIs and medium spiny neurons (MSNs) virally overexpressing G-protein-activated inwardly rectifying potassium (GIRK) channels. Due to the efficient coupling between endogenous muscarinic receptors and GIRK channels, we found that firing of individual CHIs resulted in monosynaptic spontaneous inhibitory post-synaptic currents (IPSCs) in MSNs. Paired CHI-MSN recordings revealed that the high probability of acetylcholine release at these synapses allowed muscarinic receptors to faithfully encode physiological activity patterns from individual CHIs without failure. These results indicate that muscarinic receptors in striatal output neurons reliably decode CHI firing. PMID:27373830

  20. Activation of vascular cholinergic and adrenergic receptors induced by gamma rays

    International Nuclear Information System (INIS)

    Activation of vascular cholinergic receptors and adrenoceptors plays an important role in vasomotoricity and peripheric vascular resistance. These factors are essential in maintaining a stable blood pressure. The aim of this study is to investigate the radiosensitivity differences between vascular cholinergic receptors and adrenoceptors, and consequently to determinate the effects of ionizing radiation (whole body irradiation) on contractile response regulation of vascular smooth muscle fibers VSMF isolated from rat portal vein. Our results show that Clonidine, (non-specific adrenergic agonist), and phenylephrine which is more specific α1-adrenoceptor agonist, increase the VSMF contractions. The maximum effect is obtained at 10-5 - 3.10-5 M. On irradiated rats (1-3-5 Gy), there is an important shift thus, the maximal response (Emax) can be obtained in lower concentrations of clonidine and phenylephrine. Irradiation deceases the contractile responses of VSMF mediated by cholinergic stimulation, in a dose dependant manner. With Emax 1 Gy>Emax 3 Gy>Emax 5 Gy. Irradiated muscular fibers became less sensitive to acetylcholine, thus 3.10-8 M. A. ch induced more than 50% of contraction force increase in normal conditions. This concentration induce generally a negligible effect after irradiation. The results reveal the existence of radiosensitivity differences between vascular cholinergic and adrenergic receptors. (author)

  1. Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Zhi-zhong GUAN

    2008-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, and its pathogenesis is likely to be associated with multiple etiologies and mechanisms in which oxidative stress and deficits of neurotransmitter receptors may play impor-tant roles. It has been indicated that a high level of free radicals can influence the expressions of nicotinic receptors (nAChRs), muscarinic receptors (mAChRs), and N-methyl-D-aspartate (NMDA) receptors, exhibiting disturbances of cellular mem-brane by lipid peroxidation, damages of the protein receptors by protein oxidation, and possible modified gene expressions of these receptors by DNA oxidation. nAChRs have shown an antioxidative effect by a direct or an indirect pathway; mAChR stimulation may generate reactive oxygen species, which might be a physi-ological compensative reaction, or improve oxidative stress; and high stimulation to NMDA receptors can increase the sensitivity of oxidative stress of neurons. This review may provide complemental information" for understanding the correla-tion between oxidative stress and changed cholinergic and glutaminergic recep-tors in AD processing, and for revealing the underlying molecular mechanisms of these factors in the multiple etiologies and pathophysiology of the disorder.

  2. Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons

    OpenAIRE

    Fernández de Sevilla, D.; Núñez Molina, Ángel; Borde, M.; Malinow, R.; Buño, Washinton

    2008-01-01

    Cholinergic-glutamatergic interactions influence forms of synaptic plasticity that are thought to mediate memory and learning. We tested in vitro the induction of long-lasting synaptic enhancement at Schaffer collaterals by acetylcholine (ACh) at the apical dendrite of CA1 pyramidal neurons and in vivo by stimulation of cholinergic afferents. In vitro ACh induced a Ca2+ wave and synaptic enhancement mediated by insertion of AMPA receptors in spines. Activation of muscarinic ACh receptors (mAC...

  3. Muscarinic cholinergic receptor (M2) plays a crucial role in the development of myopia in mice

    OpenAIRE

    Barathi, Veluchamy A.; Kwan, Jia Lin; Tan, Queenie S. W.; Weon, Sung Rhan; Seet, Li Fong; Goh, Liang Kee; Vithana, Eranga N.; Beuerman, Roger W.

    2013-01-01

    SUMMARY Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2 ; also known as Chrm2) were less susceptible to lens-induced myopia compared with wild-type mice, which showed signif...

  4. Muscarinic cholinergic receptor (M2) plays a crucial role in the development of myopia in mice

    OpenAIRE

    Barathi, Veluchamy A.; Jia Lin Kwan; Tan, Queenie S. W.; Sung Rhan Weon; Li Fong Seet; Liang Kee Goh; Vithana, Eranga N.; Beuerman, Roger W.

    2013-01-01

    SUMMARY Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2; also known as Chrm2) were less susceptible to lens-induced myopia compared with wild-type mice, which showed sign...

  5. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    ChristopherSLeonard

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  6. C. elegans dopaminergic D2-like receptors delimit recurrent cholinergic-mediated motor programs during a goal-oriented behavior.

    Directory of Open Access Journals (Sweden)

    Paola Correa

    Full Text Available Caenorhabditis elegans male copulation requires coordinated temporal-spatial execution of different motor outputs. During mating, a cloacal circuit consisting of cholinergic sensory-motor neurons and sex muscles maintains the male's position and executes copulatory spicule thrusts at his mate's vulva. However, distinct signaling mechanisms that delimit these behaviors to their proper context are unclear. We found that dopamine (DA signaling directs copulatory spicule insertion attempts to the hermaphrodite vulva by dampening spurious stimulus-independent sex muscle contractions. From pharmacology and genetic analyses, DA antagonizes stimulatory ACh signaling via the D2-like receptors, DOP-2 and DOP-3, and Gα(o/i proteins, GOA-1 and GPA-7. Calcium imaging and optogenetics suggest that heightened DA-expressing ray neuron activities coincide with the cholinergic cloacal ganglia function during spicule insertion attempts. D2-like receptor signaling also attenuates the excitability of additional mating circuits to reduce the duration of mating attempts with unproductive and/or inappropriate partners. This suggests that, during wild-type mating, simultaneous DA-ACh signaling modulates the activity threshold of repetitive motor programs, thus confining the behavior to the proper situational context.

  7. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus.

    Science.gov (United States)

    Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-06-01

    Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes. PMID:27103432

  8. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  9. In vivo PET imaging of brain nicotinic cholinergic receptors

    International Nuclear Information System (INIS)

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the α4β2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [18F]fluoro-A-85380 (Dolle et al., 1999). The [18F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ 18F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the 18F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [18F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [18F]fluoro-A-85380 was also used in epileptic patients to whom a mutation in the α4 or β2 nAChRs subunit have been identified. We found that, in these patients, the pattern of the brain distribution of the radiotracer was found different when compared to the healthy subjects

  10. Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sciamanna

    Full Text Available BACKGROUND: DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. METHODS AND RESULTS: We characterized the alterations in D2 dopamine receptor (D2R signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT. An abnormal excitatory response to the D2R agonist quinpirole was recorded at postnatal day 14, consisting of a membrane depolarization coupled to an increase in spiking frequency, and persisted unchanged at 3 and 9 months in hMT mice, compared to mice expressing wild-type human torsinA and non-transgenic mice. This response was blocked by the D2R antagonist sulpiride and depended upon G-proteins, as it was prevented by intrapipette GDP-β-S. Patch-clamp recordings from dissociated interneurons revealed a significant increase in the Cav2.2-mediated current fraction at all ages examined. Consistently, chelation of intracellular calcium abolished the paradoxical response to quinpirole. Finally, no gross morphological changes were observed during development. CONCLUSIONS: These results suggest that an imbalanced striatal dopaminergic/cholinergic signaling occurs early in DYT1 dystonia and persists along development, representing a susceptibility factor for symptom generation.

  11. In vivo PET imaging of brain nicotinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bottlaender, M.; Valette, H.; Saba, W.; Schollhorn-Peyronneau, M.A.; Dolle, F.; Syrota, A. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the {alpha}4{beta}2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [{sup 18}F]fluoro-A-85380 (Dolle et al., 1999). The [{sup 18}F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ {sup 18}F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the < 4R2 nAChRs. Competition and pre-blocking studies, using nicotinic agonists, confirm that the radiotracer binds specifically to the heteromeric nAChRs in the brain (Valette et al., 1999). The in vivo, characteristics of the [{sup 18}F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [{sup 18}F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [{sup 18}F

  12. Cholinergic stimulation of pancreatic amylase release and muscarinic receptors: effect of ionophore A23187

    International Nuclear Information System (INIS)

    Dispersed rat pancreatic acini were incubated in 0.5 mM calcium medium with increasing concentrations of carbamylcholine, with or without the ionophore A23187 (10-6M). Addition of the ionophore reduced maximal amylase release, increased the maximal effective concentration of carbamylcholine and dramatically impaired the agonist's capacity to induce enzyme secretion at low concentration. The ionophore also abolished the inhibition of secretion observed at high carbamylcholine concentrations. These effects of the ionophore on the cholinergic secretory response cannot be explained by interaction at the muscarinic receptor since neither the Bmax, the affinity of the receptor for the [3H]QNB nor the binding of carbamylcholine were affected by the ionophore. It is suggested that for the conditions studied, the ionophore can interact with the secretory process at one or several points ulterior to the initial recognition site of carbamylcholine on its receptor. 30 references, 3 figures

  13. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons.

    Science.gov (United States)

    Oswald, Manfred J; Schulz, Jan M; Kelsch, Wolfgang; Oorschot, Dorothy E; Reynolds, John N J

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg(2+)-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg(2+)-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission. PMID:25914618

  14. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H. [and others

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  15. Hook-up of GluA2, GRIP and liprin-α for cholinergic muscarinic receptor-dependent LTD in the hippocampus

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-06-01

    Full Text Available Abstract The molecular mechanism underlying muscarinic acetylcholine receptor-dependent LTD (mAChR-LTD in the hippocampus is less studied. In a recent study, a novel mechanism is described. The induction of mAChR-LTD required the activation of protein tyrosine phosphatase (PTP, and the expression was mediated by AMPA receptor endocytosis via interactions between GluA2, GRIP and liprin-α. The hook-up of these proteins may result in the recruitment of leukocyte common antigen-related receptor (LAR, a PTP that is known to be involved in AMPA receptor trafficking. Interestingly, the similar molecular interaction cannot be applied to mGluR-LTD, despite the fact that the same G-protein involved in LTD is activated by both mAChR and mGluR. This discovery provides key molecular insights for cholinergic dependent cognitive function, and mAChR-LTD can serve as a useful cellular model for studying the roles of cholinergic mechanism in learning and memory.

  16. Dorsal raphe nucleus acetylcholine-mediated neurotransmission modulates post-ictal antinociception: The role of muscarinic and nicotinic cholinergic receptors.

    Science.gov (United States)

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Francisco; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2016-01-15

    The dorsal raphe nucleus (DRN) is a key structure of the endogenous pain inhibitory system. Although the DRN is rich in serotoninergic neurons, cholinergic neurons are also found in that nucleus. Both ictal and inter-ictal states are followed by post-ictal analgesia. The present study investigated the role of cholinergic mechanisms in postictal antinociceptive processes using microinjections of atropine and mecamylamine, muscarinic and nicotinic cholinergic receptor antagonists, respectively, in the DRN of rats. Intraperitoneal injection of pentylenetetrazole (PTZ) (at 64mg/kg) caused tonic and tonic-clonic seizures. The convulsive motor reactions were followed by an increase in pain thresholds, a phenomenon known as post-ictal analgesia. Pre-treatment of the DRN with atropine or mecamylamine at 1µg, 3µg and 5µg/0.2µL decreased the post-ictal antinociceptive phenomenon. The present results showed that the post-ictal analgesia was mediated by muscarinic and nicotinic cholinergic receptors in the DRN, a structure crucially involved in the neural network that organises post-ictal hypoalgesia. PMID:26620541

  17. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine

    OpenAIRE

    Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.; Horner, Richard L.

    2015-01-01

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitr...

  18. Developmental Profile of the Aberrant Dopamine D2 Receptor Response in Striatal Cholinergic Interneurons in DYT1 Dystonia

    OpenAIRE

    Giuseppe Sciamanna; Annalisa Tassone; Giuseppina Martella; Georgia Mandolesi; Francesca Puglisi; Dario Cuomo; Grazia Madeo; Giulia Ponterio; David George Standaert; Paola Bonsi; Antonio Pisani

    2011-01-01

    BACKGROUND: DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. METHODS AND RESULTS: We characterized the alterations in D2 dopamine receptor (D2R) signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT). An abnormal excitatory response to the D2R agonist quinpirole w...

  19. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    NARCIS (Netherlands)

    Luiten, PGM; deJong, GI; VanderZee, EA; vanDijken, H; Dijken, H. van

    1996-01-01

    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a genera

  20. INTRAHIPPOCAMPAL ADMINISTRATION OF IBOTENIC ACID INDUCED CHOLINERGIC DYSFUNCTION via NR2A/NR2B EXPRESSION: IMPLICATIONS OF RESVERATROL AGAINST ALZHEIMER DISEASE PATHOPHYSIOLOGY

    Directory of Open Access Journals (Sweden)

    Chennakesavan eKarthick

    2016-04-01

    Full Text Available Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression towards Alzheimer’s disease (AD pathology. Resveratrol (RSV, a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5µg/µl lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20mg/kg body weight, i.p significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the

  1. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology.

    Science.gov (United States)

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  2. The role of the Cholinergic System on Plasticity in the Basolateral Nucleus of the Amygdala

    OpenAIRE

    Cline, Brandon H.

    2010-01-01

    The amygdala and the cholinergic system play important roles in learning and memory. The amygdala receives substantial cholinergic innervation and in itself ex-presses differences in this innervation. p75NTR is one of the primary receptors of cho-linergic neurons and transgenic mice that are missing exon IV of the p75 neurotro-phin receptor locus, display a change in cholinergic innervation. The loss of p75NTR can induce changes in learning and memory so it was hypothesized p75EXIV animals wo...

  3. Striatal cholinergic neurotransmission requires VGLUT3.

    Science.gov (United States)

    Nelson, Alexandra B; Bussert, Timothy G; Kreitzer, Anatol C; Seal, Rebecca P

    2014-06-25

    It is now clear that many neuronal populations release more than one classical neurotransmitter, yet in most cases the functional role of corelease is unknown. Striatal cholinergic interneurons release both glutamate and acetylcholine, and vesicular loading of glutamate has been shown to enhance acetylcholine content. Using a combination of optogenetics and whole-cell recordings in mice, we now provide physiological evidence that optogenetic stimulation of cholinergic interneurons triggers monosynaptic glutamate- and acetylcholine-mediated currents in striatal fast-spiking interneurons (FSIs), both of which depend on the expression of the vesicular glutamate transporter 3 (VGLUT3). In contrast to corticostriatal glutamatergic inputs onto FSIs, which are mediated primarily by AMPA-type glutamate receptors, glutamate release by cholinergic interneurons activates both AMPA- and NMDA-type glutamate receptors, suggesting a unique role for these inputs in the modulation of FSI activity. Importantly, we find that the loss of VGLUT3 not only markedly attenuates glutamatergic and cholinergic inputs on FSIs, but also significantly decreases disynaptic GABAergic input onto medium spiny neurons (MSNs), the major output neurons of the striatum. Our data demonstrate that VGLUT3 is required for normal cholinergic signaling onto FSIs, as well as for acetylcholine-dependent disynaptic inhibition of MSNs. Thus, by supporting fast glutamatergic transmission as well as by modulating the strength of cholinergic signaling, VGLUT3 has the capacity to exert widespread influence on the striatal network. PMID:24966377

  4. Modulation of non-adrenergic, non-cholinergic neural bronchoconstriction in guinea-pig airways via GABAB-receptors.

    OpenAIRE

    Belvisi, M. G.; M. Ichinose; Barnes, P. J.

    1989-01-01

    1. Evidence suggests that gamma-aminobutyric acid (GABA) and its receptors are present in the peripheral nervous system. We have now investigated the effect of GABA and related substances on non-adrenergic, non-cholinergic (NANC) neurally-evoked bronchoconstriction in the anaesthetised guinea-pig. 2. Bilateral vagal stimulation (5 V, 5 ms, 3 or 5 Hz) for 30 s, after propranolol (1 mg kg-1 i.v.) and atropine (1 mg kg-1 i.v.) evoked a NANC bronchoconstrictor response manifest as a mean tracheal...

  5. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    Science.gov (United States)

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  6. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  7. Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis

    International Nuclear Information System (INIS)

    Previously, we showed that M3 muscarinic receptor (M3R; gene name Chrm3) deficiency attenuates murine intestinal neoplasia, supporting the hypothesis that muscarinic receptors play an important role in intestinal tumorigenesis. To test this hypothesis, in the present study we treated mice with bethanechol, a non-selective muscarinic receptor agonist without nicotinic receptor activity, and examined its effects on azoxymethane (AOM)-induced colon neoplasia. Mice were provided with drinking water containing 400 μg/mL bethanechol chloride or water without additions (control) for a total of 20 weeks, a period that included the initial 6 weeks when mice received intraperitoneal injections of AOM. When euthanized at week 20, control mice had 8.0 ± 1.3 tumors per animal, whereas bethanechol-treated mice had 10.4 ± 1.5 tumors per mouse (mean ± SE; P = 0.023), a 30% increase. Strikingly, tumor volume per animal was increased 52% in bethanechol-treated compared with control mice (179.7 ± 21.0 vs. 111. 8 ± 22.4 mm3; P = 0.047). On histological examination, bethenechol-treated mice also had more adenocarcinomas per animal (8.0 ± 1.0 vs. 4.1 ± 0.6 for control mice, P = 0.0042). Cell proliferation in both normal mucosa and adenocarcinomas was increased in bethanechol-treated compared to control mice. Also, in tumors, bethanechol treatment increased expression of Chrm3, Egfr and post-Egfr signaling molecules Myc and cyclin D1. Bethanechol treatment increased the thickness of normal colonic mucosa and the expression of selected matrix metalloproteinase (Mmp) genes, including Mmp7, Mmp10 and Mmp13. These findings support a prominent role for muscarinic receptors in colon neoplasia, and identify post-receptor signaling molecules as potential therapeutic targets

  8. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    Science.gov (United States)

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors. PMID:26084221

  9. Activity-Dependent Regulation of Substance P Expression and Topographic Map Maintenance by a Cholinergic Pathway

    OpenAIRE

    Tu, Shichun; Christopher M. Butt; Pauly, James R.; Debski, Elizabeth A.

    2000-01-01

    We have assessed the role of activity in the adult frog visual system in modulating two aspects of neuronal plasticity: neurotransmitter expression and topographic map maintenance. Chronic treatment of one tectal lobe with the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione decreased the percentage of substance P-like immunoreactive (SP-IR) tectal cells in the untreated lobe while disrupting topographic map formation in the treated one. Treatment with the NMDA receptor anta...

  10. Two types of functionally different GABAA receptors mediate GABA modulation of cholinergic transmission in cat terminal ileum.

    Science.gov (United States)

    Radomirov, R; Pencheva, N

    1995-08-01

    1. The effects of GABA (1 microM-2 mM) on longitudinally or circularly oriented organ bath preparations of cat terminal ileum consisted of a relaxation phase with an inhibition of the rhythmic spontaneous phasic contractions, followed by a phase of contractions characterized by an elevation in basal tone and an increase in amplitude of the spontaneous phasic contractions. 2. Muscimol (100 microM), but not baclofen (100 microM), mimicked the relaxation phase of the response to applied GABA (100 microM) in all tissue preparations. In addition, muscimol induced a phase of contractile activity in the circular muscle layer whilst baclofen exerted a 'GABA-like' contractile effect on the longitudinal muscle layer. Bicuculline (30 microM) or picrotoxinin (30 microM) antagonized the GABA- or muscimol-induced relaxations in all preparations and decreased the GABA- but not the baclofen-induced contractions of the longitudinal muscle layer. 3. Tetrodotoxin (0.5 microM) or atropine (0.1 microM) prevented the bicuculline-sensitive phases of the GABA or muscimol effects on both muscle layers but not the contractile effect of baclofen on the longitudinal muscle layer. 4. The bicuculline-sensitive phases of the GABA effect on both muscle layers were almost completely eliminated by 1 nM pirenzepine. At this concentration pirenzepine did not affect the electrically-evoked cholinergic twitch contractions or contractile responses to applied acetylcholine of both muscle layers. 5. During electrically-evoked cholinergic twitch contractions of both muscle layers, GABA (100 microM) had an inhibitory effect. The inhibition occurred in the presence of pirenzepine (1 nM) but not of bicuculline (30 microM). 6. It is suggested that two types of functionally different bicuculline-sensitive GABAA receptors mediate an exitatory presynaptic and an inhibitory prejunctional action of GABA on the cholinergic transmission in cat terminal ileum. PMID:8576270

  11. Selective immunolesion of cholinergic neurons leads to long-term changes in 5-HT2A receptor levels in hippocampus and frontal cortex

    DEFF Research Database (Denmark)

    Severino, Maurizio; Pedersen, Anja F; Trajkovska, Viktorija;

    2007-01-01

    Although loss of cholinergic neurons in the basal forebrain is considered a key initial feature in Alzheimer's disease (AD), changes in other transmitter systems, including serotonin and 5-HT(2A) receptors, are also associated with early AD. The aim of this study was to investigate whether elimin...

  12. Cholinesterases: structure of the active site and mechanism of the effect of cholinergic receptor blockers on the rate of interaction with ligands

    International Nuclear Information System (INIS)

    Modern views on the structure of cholinesterase active sites and the mechanism of their interaction with organophosphorus inhibitors are considered. The attention is focused on the mechanism of the effect of cholinergic receptor blockers, acetylcholine antagonists, on the rate of interaction of acetylcholine esterase with organophosphorus inhibitors.

  13. Quantitative autoradiography of muscarine cholinergic receptors and their M1 and M2 subtypes in the rat hippocampus. Influence of a mixed neutron-gamma irradiation. Preliminary study

    International Nuclear Information System (INIS)

    The muscarine cholinergic receptors and their M1 and M2 subtypes are studied by quantitative autoradiography in the hippocampus of 8 shams and 9 rats exposed to a mixed neutron-gamma irradiation at a dose of 8 Gy. 75 minutes post irradiation, no significative difference is noted

  14. Effects of trihexyphenidyl and L-dopa on brain muscarinic cholinergic receptor binding measured by positron emission tomography

    International Nuclear Information System (INIS)

    The effects of pharmacological intervention on brain muscarinic cholinergic receptor (mAChR) binding were assessed in seven patients with Parkinson's disease by positron emission tomography and carbon-11 labelled N-methyl-4-piperidyl benzilate ([11C]NMPB). [11C]NMPB was injected twice, approximately 2 hours apart, in each patient, to assess the effect of single doses of 4 mg of trihexyphenidyl (n=5) or 400 mg of L-dopa with 57 mg of benserazide (n=2) on the binding parameter of mAChRs (K3). There was a mean 28% inhibition of K3 values in the brain in the presence of trihexyphenidyl, which was assumed to reflect mAChR occupancy. No significant change in K3 was observed in the presence of L-dopa. This study demonstrates the feasibility of measuring mAChR occupancy by an anticholinergic medication with PET

  15. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    International Nuclear Information System (INIS)

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  16. Amyloid-β depresses excitatory cholinergic synaptic transmission in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Liqun Fang; Jingjing Duan; Dongzhi Ran; Zihao Fan; Ying Yan; Naya Huang; Huaiyu Gu; Yulan Zhu

    2012-01-01

    Objective Decline,disruption,or alterations of nicotinic cholinergic mechanisms contribute to cognitive dysfunctions like Alzheimer's disease (AD).Although amyloid-β (Aβ) aggregation is a pathological hallmark of AD,the mechanisms by which Aβ peptides modulate cholinergic synaptic transmission and memory loss remain obscure.This study was aimed to investigate the potential synaptic modulation by Aβ of the cholinergic synapses between olfactory receptor neurons and projection neurons (PNs) in the olfactory lobe of the fruit fly.Methods Cholinergic spontaneous and miniature excitatory postsynaptic current (mEPSC) were recorded with whole-cell patch clamp from PNs in Drosophila AD models expressing Aβ40,Aβ42,or Aβ42Arc peptides in neural tissue.Results In fly pupae (2 days before eclosion),overexpression of Aβ42 or Aβ42Arc,but not Aβ40,led to a significant decrease of mEPSC frequency,while overexpression of Aβ40,Aβ42,or Aβ42Arc had no significant effect on mEPSC amplitude.In contrast,Pavlovian olfactory associative learning and lifespan assays showed that both short-term memory and lifespan were decreased in the Drosophila models expressing Aβ40,Aβ42,or Aβ42Arc.Conclusion Both electrophysiological and behavioral results showed an effect of Aβ peptide on cholinergic synaptic transmission and suggest a possible mechanism by which Aβ peptides cause cholinergic neuron degeneration and the consequent memory loss.

  17. Kinetics of in vivo binding of antagonist to muscarinic cholinergic receptor in the human heart studied by Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Syrota, A.; Paillotin, G.; Davy, J.M.; Aumont, M.C.

    1984-08-27

    Positron Emission Tomography (PET) was used to analyze in vivo antagonist binding to human myocardial muscarinic cholinergic receptor. The methiodide salt of the muscarinic antagonist, quinuclidinyl benzilate (MQNB), was labeled with the positron emitter, Carbon-11, and injected intravenously to 8 normal subjects. /sup 11/C-MQNB concentration was determined in vivo in the ventricular septum from 40 cross-sectional images acquired at the same transverse level over a period of 70 minutes. In 4 subjects, various amounts of unlabeled atropine were rapidly injected at 20 minutes to study whether atropine competitively inhibited MQNB. The kinetics of binding of /sup 11/C-MQNB were not the same in vivo and in vitro. The apparent dissociation rate of /sup 11/C-MQNB in vivo was much slower (by 1 to 2 orders of magnitude) than that observed in vitro with /sup 3/H-QNB. After atropine injection, /sup 11/C-MQNB dissociated from its binding sites at a rate that apparently depended on the amount of atropine present. /sup 11/C-MQNB kinetics were analyzed with a mathematical model which assumes the existence of a boundary layer containing free ligand in the vicinity of the binding sites. The dissociation rate of the radioligand depends on the probability of its rebinding to a free receptor site. 11 references, 1 table.

  18. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    Science.gov (United States)

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  19. Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]dexetimide and [11C]levetimide

    International Nuclear Information System (INIS)

    The localization and quantitation of muscarinic cholinergic receptors (m-AChR) in the living human brain using a non-invasive method such as positron emission tomography (PET) may provide valuable information about receptor changes which have been observed post mortem in patients with Huntington's chorea and Alzheimer's dementia, as well as normal brain mechanisms mediated by the m-AChR. We chose to label dexetimide as a radiotracer for studying the m-AChR and levetimide as a radiotracer for assessing non-specific binding associated with the in vivo receptor binding studies. (author)

  20. Paying attention to smell: Cholinergic signaling in the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Rinaldo David D'Souza

    2014-09-01

    Full Text Available The tractable, layered architecture of the olfactory bulb (OB, and its function as a relay between odor input and higher cortical processing, makes it an attractive model to study how sensory information is processed at a synaptic and circuit level. The OB is also the recipient of strong neuromodulatory inputs, chief among them being the central cholinergic system. Cholinergic axons from the basal forebrain modulate the activity of various cells and synapses within the OB, particularly the numerous dendrodendritic synapses, resulting in highly variable responses of OB neurons to odor input that is dependent upon the behavioral state of the animal. Behavioral, electrophysiological, anatomical, and computational studies examining the function of muscarinic and nicotinic cholinergic receptors expressed in the OB have provided valuable insights into the role of acetylcholine (ACh in regulating its function. We here review various studies examining the modulation of OB function by cholinergic fibers and their target receptors, and provide putative models describing the role that cholinergic receptor activation might play in the encoding of odor information.

  1. Monoallelic expression of olfactory receptors.

    Science.gov (United States)

    Monahan, Kevin; Lomvardas, Stavros

    2015-01-01

    The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron's odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture. PMID:26359778

  2. Endogenous cholinergic neurotransmission contributes to behavioral sensitization to morphine.

    Directory of Open Access Journals (Sweden)

    Dusica Bajic

    Full Text Available Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg, a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg.

  3. Nematode cholinergic pharmacology

    International Nuclear Information System (INIS)

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe [3H]N-methylscopolamine ([3H]NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs

  4. Nematode cholinergic pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  5. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    Directory of Open Access Journals (Sweden)

    Luis Armando Sawada

    2014-01-01

    Full Text Available Libidibia ferrea (LF is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF, partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg, naloxone (5 mg/kg in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies.

  6. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    Science.gov (United States)

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies. PMID:24860820

  7. TITERS OF ANTIBODIES TO Β1-ADRENOCEPTOR AND M2 CHOLINERGIC RECEPTORS IN PATIENTS WITH VENTRICULAR ARRHYTHMIAS WITHOUT AN ORGANIC CARDIOVASCULAR DISEASE AND THEIR POSSIBLE CLINICAL SIGNIFICANCE

    Directory of Open Access Journals (Sweden)

    M. M. Rogova

    2015-12-01

    Full Text Available Aim. To identify the most promising epitopes that simulate various sites β1-adrenergic and M2-cholinergic receptors, and to evaluate their possible contribution to the development and maintenance of cardiac arrhythmias, particularly idiopathic ventricular arrhythmia. Material and methods. Patients with ventricular arrhythmias without organic cardiovascular disease (the study group; n=70 were included in the study. The control group consisted of 20 healthy volunteers. Evaluation of levels of antibodies to antigenic determinants, modeling various sites β1-adrenergic and M2-cholinergic performed in all patients. Causal treatment with clarithromycin and valacyclovir performed in part of patients. Results. Antibodies to different peptide sequences of β1-adrenergic and M2-cholinergic receptors have been identified in 25% of main group patients. A direct correlation between the frequency of episodes of ventricular tachycardia and IgG levels to MRI-MRIV (p=0.02 revealed. Increase in titre of antibodies to β1-adrenoceptors, to a peptide sequence β8 (p=0.02, and lower titers of antibodies to the M2 acetylcholine receptor — chimera MRI-MRIV IgM (p=0.06 and ARI-MRIV IgM (p=0.07 were observed when assessing the efficacy of the therapy in the causal dynamics in the group of "untreated" patients. IgG titer reduction of ARI-MRIV (p=0.02, which is 4 times out of 10 with reduction of ventricular ectopic activity , recorded after valacyclovir therapy. Clarithromycin therapy on the level of antibodies exerted no significant effect. Conclusion. Possible involvement of antibodies to β1-adrenoceptor and M2-cholinergic receptors in the development of idiopathic ventricular arrhythmias demonstrated. The relationship between the frequency of episodes of ventricular tachycardia and levels of antibody titers to M2-cholinergic receptors found. Attempt of causal treatment, depending on the possible mechanisms of the autoimmune process is executed. Further studies to

  8. The α7-nicotinic receptor is upregulated in immune cells from HIV-seropositive women: consequences to the cholinergic anti-inflammatory response.

    Science.gov (United States)

    Delgado-Vélez, Manuel; Báez-Pagán, Carlos A; Gerena, Yamil; Quesada, Orestes; Santiago-Pérez, Laura I; Capó-Vélez, Coral M; Wojna, Valerie; Meléndez, Loyda; León-Rivera, Rosiris; Silva, Walter; Lasalde-Dominicci, José A

    2015-12-01

    Antiretroviral therapy partially restores the immune system and markedly increases life expectancy of HIV-infected patients. However, antiretroviral therapy does not restore full health. These patients suffer from poorly understood chronic inflammation that causes a number of AIDS and non-AIDS complications. Here we show that chronic inflammation in HIV+ patients may be due to the disruption of the cholinergic anti-inflammatory pathway by HIV envelope protein gp120IIIB. Our results demonstrate that HIV gp120IIIB induces α7 nicotinic acetylcholine receptor (α7) upregulation and a paradoxical proinflammatory phenotype in macrophages, as activation of the upregulated α7 is no longer capable of inhibiting the release of proinflammatory cytokines. Our results demonstrate that disruption of the cholinergic-mediated anti-inflammatory response can result from an HIV protein. Collectively, these findings suggest that HIV tampering with a natural strategy to control inflammation could contribute to a crucial, unresolved problem of HIV infection: chronic inflammation. PMID:26719799

  9. Determination of reactivity of M-cholinergic receptor/cGMP system of peripheral lymphocytes

    International Nuclear Information System (INIS)

    Lymphocytes were separated from peripheral blood and incubated in Hanks' solution with calcium or buffer solution containing phosphodiesterase inhibitor IBMX. When carbachol at 1-10 mmol/L was added to the incubation medium, the intracellular cGMP content as determined by high-sensitivity RIA was elevated by 66%-80%. Such an elevation could be blocked by atropine and hence is a specific reaction mediated through M-receptors. A method based on this reaction was thus established to reflect the reactivity of M-receptor/cGMP system. Preliminary experiment revealed that the base level of lymphocyte cGMP as well as the elevation of cGMP induced by carbachol in aged (24-26 months old) rats were significantly lower than young rats. The methodology, especially the influence of incubation conditions was discussed

  10. Lesions of cholinergic pedunculopontine tegmental nucleus neurons fail to affect cocaine or heroin self-administration or conditioned place preference in rats.

    Directory of Open Access Journals (Sweden)

    Stephan Steidl

    Full Text Available Cholinergic input to the ventral tegmental area (VTA is known to contribute to reward. Although it is known that the pedunculopontine tegmental nucleus (PPTg provides an important source of excitatory input to the dopamine system, the specific role of PPTg cholinergic input to the VTA in cocaine reward has not been previously determined. We used a diphtheria toxin conjugated to urotensin-II (Dtx::UII, the endogenous ligand for urotensin-II receptors expressed by PPTg cholinergic but not glutamatergic or GABAergic cells, to lesion cholinergic PPTg neurons. Dtx::UII toxin infusion resulted in the loss of 95.78 (±0.65% of PPTg cholinergic cells but did not significantly alter either cocaine or heroin self-administration or the development of cocaine or heroin conditioned place preferences. Thus, cholinergic cells originating in PPTg do not appear to be critical for the rewarding effects of cocaine or of heroin.

  11. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex.

    Science.gov (United States)

    Lucas-Meunier, Estelle; Monier, Cyril; Amar, Muriel; Baux, Gérard; Frégnac, Yves; Fossier, Philippe

    2009-10-01

    This study aims to clarify how endogenous release of cortical acetylcholine (ACh) modulates the balance between excitation and inhibition evoked in visual cortex. We show that electrical stimulation in layer 1 produced a significant release of ACh measured intracortically by chemoluminescence and evoked a composite synaptic response recorded intracellularly in layer 5 pyramidal neurons of rat visual cortex. The pharmacological specificity of the ACh neuromodulation was determined from the continuous whole-cell voltage clamp measurement of stimulation-locked changes of the input conductance during the application of cholinergic agonists and antagonists. Blockade of glutamatergic and gamma-aminobutyric acid (GABAergic) receptors suppressed the evoked response, indicating that stimulation-induced release of ACh does not directly activate a cholinergic synaptic conductance in recorded neurons. Comparison of cytisine and mecamylamine effects on nicotinic receptors showed that excitation is enhanced by endogenous evoked release of ACh through the presynaptic activation of alpha(*)beta4 receptors located on glutamatergic fibers. DHbetaE, the selective alpha4beta2 nicotinic receptor antagonist, induced a depression of inhibition. Endogenous ACh could also enhance inhibition by acting directly on GABAergic interneurons, presynaptic to the recorded cell. We conclude that endogenous-released ACh amplifies the dominance of the inhibitory drive and thus decreases the excitability and sensory responsiveness of layer 5 pyramidal neurons. PMID:19176636

  12. Evidence for cholinergic participation in the control of bird song; acetylcholinesterase distribution and muscarinic receptor autoradiography in the zebra finch brain

    International Nuclear Information System (INIS)

    Brain regions thought to be involved in the control of song in the zebra finch (Poephila guttata), were examined histochemically using the Karnovsky and Roots direct-coloring method for the detection of acetylcholinesterase (AChE) and the autoradiographic method for the localization of muscarinic cholinergic receptors following injection of tritiated quinuclidinyl benzilate (3H QNB). All presently identified vocal control nuclei in both males and females contain AChE. These nuclei include Area X, magnocellular nucleus of the anterior neostriatum (MAN), nucleus interface (NIF), caudal nucleus of the hyperstriatum ventrale (HVc), intercollicular nucleus (ICo), nucleus uva, robust nucleus of the archistriatum (RA), and tracheosyringeal portion of the hypoglossal nerve nucleus (nXIIts). All nuclei except Area X contain mostly AChE-synthesizing cell bodies. All of these nuclei contain some AChE in the neuropil, with particularly intense staining in Area X, the surrounding LPO, and the dorsomedial portion of ICo. In agreement with this description are very high concentrations of 3H QNB in both Area X and the dorsomedial ICo. HVc also appears specifically labeled. Evidence from these two histological technique suggests that efferent projections of most vocal control area may utilize acetylcholine, and that several of the vocal control nuclei may themselves receive muscarinic cholinergic projection. In Area X, there are sex differences of AChE neuropil staining. This evidence suggesting that sexually dimorphic projections to or within Area X are cholinergic or cholinoceptive

  13. Modulation of non-adrenergic, non-cholinergic neural bronchoconstriction in guinea-pig airways via GABAB-receptors.

    Science.gov (United States)

    Belvisi, M G; Ichinose, M; Barnes, P J

    1989-08-01

    1. Evidence suggests that gamma-aminobutyric acid (GABA) and its receptors are present in the peripheral nervous system. We have now investigated the effect of GABA and related substances on non-adrenergic, non-cholinergic (NANC) neurally-evoked bronchoconstriction in the anaesthetised guinea-pig. 2. Bilateral vagal stimulation (5 V, 5 ms, 3 or 5 Hz) for 30 s, after propranolol (1 mg kg-1 i.v.) and atropine (1 mg kg-1 i.v.) evoked a NANC bronchoconstrictor response manifest as a mean tracheal pressure rise of 21.9 +/- 1.04 cmH2O (n = 70). The bronchoconstrictor response was reproducible for any given animal. 3. GABA (10 micrograms-10 mg kg-1 i.v.) did not alter basal tracheal pressure but reduced the NANC bronchoconstrictor response to vagal stimulation in a dose-dependent manner (ED50 = 186 micrograms kg-1 with a maximal inhibition of 74 +/- 3.4% at 10 mg kg-1). Neither the opioid antagonist naloxone (1 mg kg-1 i.v.) nor the alpha-adrenoceptor antagonist phentolamine (2.5 mg kg-1 i.v.) had any significant effect on the inhibitory response produced by GABA (500 micrograms kg-1). 4. GABA-induced inhibition was not antagonised by the GABAA-antagonist bicuculline (2 mg kg-1 i.v.). 5. The GABAB-agonist baclofen (10 micrograms-3 mg kg-1 i.v.) caused a dose-dependent inhibition of the NANC response (ED50 = 100 micrograms kg-1 with a maximal inhibition of 35.5 +/- 2.8% at 3 mg kg-1). The GABAA-agonist, 4,5,6,7-tetrahydroisoxazolo[5,4-C] pyridin-3-ol (THIP), also inhibited the NANC bronchoconstrictor response. However, the dose of THIP required for this effect was high (3 mg kg- ') and the effect ( Substance P (SP; 5upgkg-1 or 25pgkg-1), produced a bronchoconstrictor response equivalent to that produced by NANC vagal stimulation. This response was significantly increased by injection of GABA. Baclofen had no significant effect on responses evoked by exogenous SP. 7. We conclude that GABA inhibits the release of transmitter from NANC nerves via an action at GABAB receptors

  14. Activation of nicotinic cholinergic receptors prevents ventilator-induced lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Fabienne Brégeon

    Full Text Available Respiratory distress syndrome is responsible for 40 to 60 percent mortality. An over mortality of about 10 percent could result from additional lung injury and inflammation due to the life-support mechanical ventilation, which stretches the lung. It has been recently demonstrated, in vitro, that pharmacological activation of the alpha 7 nicotinic receptors (α7-nAChR could down regulate intracellular mediators involved in lung cell inflammatory response to stretch. Our aim was to test in vivo the protective effect of the pharmacological activation of the α7-nAChR against ventilator-induced lung injury (VILI. Anesthetized rats were ventilated for two hours with a high stretch ventilation mode delivering a stroke volume large enough to generate 25-cmH(2O airway pressure, and randomly assigned to four groups: pretreated with parenteral injection of saline or specific agonist of the α7-nAChR (PNU-282987, or submitted to bilateral vagus nerve electrostimulation while pre-treated or not with the α7-nAChR antagonist methyllycaconitine (MLA. Controls ventilated with a conventional stroke volume of 10 mL/kg gave reference data. Physiological indices (compliance of the respiratory system, lung weight, blood oxygenation, arterial blood pressure and lung contents of inflammatory mediators (IL-6 measured by ELISA, substance P assessed using HPLC were severely impaired after two hours of high stretch ventilation (sham group. Vagal stimulation was able to maintain the respiratory parameters close to those obtained in Controls and reduced lung inflammation except when associated to nicotinic receptor blockade (MLA, suggesting the involvement of α7-nAChR in vagally-mediated protection against VILI. Pharmacological pre-treatment with PNU-282987 strongly decreased lung injury and lung IL-6 and substance P contents, and nearly abolished the increase in plasmatic IL-6 levels. Pathological examination of the lungs confirmed the physiological differences observed

  15. Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Animal experiments and preliminary results in humans have indicated alterations of hippocampal muscarinic acetylcholine receptors (mAChR) in temporal lobe epilepsy. Patients with temporal lobe epilepsy often present with a reduction in hippocampal volume. The aim of this study was to investigate the influence of hippocampal atrophy on the quantification of mAChR with single photon emission tomography (SPET) in patients with temporal lobe epilepsy. Cerebral uptake of the muscarinic cholinergic antagonist [123I]4-iododexetimide (IDex) was investigated by SPET in patients suffering from temporal lobe epilepsy of unilateral (n=6) or predominantly unilateral (n=1) onset. Regions of interest were drawn on co-registered magnetic resonance images. Hippocampal volume was determined in these regions and was used to correct the SPET results for partial volume effects. A ratio of hippocampal IDex binding on the affected side to that on the unaffected side was used to detect changes in muscarinic cholinergic receptor density. Before partial volume correction a decrease in hippocampal IDex binding on the focus side was found in each patient. After partial volume no convincing differences remained. Our results indicate that the reduction in hippocampal IDex binding in patients with epilepsy is due to a decrease in hippocampal volume rather than to a decrease in receptor concentration. (orig.). With 2 figs., 2 tabs

  16. [Involvement and plasticity of brainstem cholinergic neurons in cocaine-induced addiction].

    Science.gov (United States)

    Kaneda, Katsuyuki; Shinohara, Fumiya; Kurosawa, Ryo; Taoka, Naofumi; Ide, Soichiro; Minami, Masabumi

    2014-04-01

    Although the involvement and plasticity of the mesocorticolimbic dopamine (DA) system in cocaine-induced addiction have been studied extensively, the role of the brainstem cholinergic system in cocaine addiction remains largely unexplored. The laterodorsal tegmental nucleus (LDT) contains cholinergic neurons that innervate the ventral tegmental area (VTA) and is crucial for regulating the activity of VTA DA neurons, implying that LDT may also be associated with cocaine addiction. In this review, we summarize our recent findings showing that cholinergic transmission from the LDT to the VTA is involved in acquisition and expression of cocaine-induced conditioned place preference and that, after repeated cocaine exposures, these neurons exhibit synaptic plasticity, which is dependent on NMDA receptor activation, nitric oxide production, and the activity of medial prefrontal cortex. The findings strongly suggest that LDT cholinergic neurons may critically contribute to developing cocaine-induced addiction. PMID:24946392

  17. Effects of ginger constituents on the gastrointestinal tract: role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors.

    Science.gov (United States)

    Pertz, Heinz H; Lehmann, Jochen; Roth-Ehrang, René; Elz, Sigurd

    2011-07-01

    The herbal drug ginger (Zingiber officinale Roscoe) may be effective for treating nausea, vomiting, and gastric hypomotility. In these conditions, cholinergic M (3) receptors and serotonergic 5-HT (3) and 5-HT (4) receptors are involved. The major chemical constituents of ginger are [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol. We studied the interaction of [6]-gingerol, [8]-gingerol, [10]-gingerol (racemates), and [6]-shogaol with guinea pig M (3) receptors, guinea pig 5-HT (3) receptors, and rat 5-HT (4) receptors. In whole segments of guinea pig ileum (bioassay for contractile M (3) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol slightly but significantly depressed the maximal carbachol response at an antagonist concentration of 10 µM. In the guinea pig myenteric plexus preparation (bioassay for contractile 5-HT (3) receptors), 5-HT maximal responses were depressed by [10]-gingerol from 93 ± 3 % to 65 ± 6 % at an antagonist concentration of 3 µM and to 48 ± 3 % at an antagonist concentration of 5 µM following desensitization of 5-HT (4) receptors and blockade of 5-HT (1) and 5-HT (2) receptors. [6]-Shogaol (3 µM) induced depression to 61 ± 3 %. In rat esophageal tunica muscularis mucosae (bioassay for relaxant 5-HT (4) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol (2-6.3 µM) showed no agonist effects. The maximal 5-HT response remained unaffected in the presence of the compounds. It is concluded that the efficiency of ginger in reducing nausea and vomiting may be based on a weak inhibitory effect of gingerols and shogaols at M (3) and 5-HT (3) receptors. 5-HT (4) receptors, which play a role in gastroduodenal motility, appear not to be involved in the action of these compounds. PMID:21305447

  18. Novel aspects of cholinergic regulation of colonic ion transport.

    Science.gov (United States)

    Bader, Sandra; Diener, Martin

    2015-06-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (I sc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on I sc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport - up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors - is more complex than previously assumed. PMID:26236483

  19. Hypertension favors the endothelial non-neuronal cholinergic system

    OpenAIRE

    Zou, Qian; 鄒倩

    2013-01-01

    This thesis investigates the involvement of the non-neuronal cholinergic system in endothelium-dependent relaxations and the impact of hypertension on the function of this system. In Study1 the contribution of nicotinic receptors (nAChRs) to endothelium-dependent relaxations evoked by acetylcholine was examined. Both muscarinic (mAChRs) and nAChR were expressed in the aortic endothelium of spontaneously hypertensive (SHR)and Wistar-Kyoto rats (WKY). However, isometric tension measurements sho...

  20. Eosinophil-Mediated Cholinergic Nerve Remodeling

    OpenAIRE

    Durcan, Niamh; Costello, Richard W; McLean, W. Graham; Blusztajn, Jan; Madziar, Beata; Fenech, Anthony G; Hall, Ian P; Gleich, Gerard J.; McGarvey, Lorcan; Walsh, Marie-Therese

    2006-01-01

    Eosinophils are observed to localize to cholinergic nerves in a variety of inflammatory conditions such as asthma, rhinitis, eosinophilic gastroenteritis, and inflammatory bowel disease, where they are also responsible for the induction of cell signaling.Wehypothesized that a consequence of eosinophil localization to cholinergic nerves would involve a neural remodeling process. Eosinophil co-culture with cholinergic IMR32 cells led to increased expression of the M2 muscar...

  1. [Examination of ontogenetic-morphologic growth of cholinergic receptor system in isolated preparation of human trachea in vitro].

    Science.gov (United States)

    Islami, Hilmi; Sukalo, Aziz; Shabani, R; Disha, M; Kutllovci, S

    2006-01-01

    Morphologic growth of cholinergic bronchial respiratory system was examined at live and dead newborns. Tracheal smooth musculature was examined at 18 experimental preparations taken by the autopsy after exiting from different factors. Samples were divided into three groups based on gestational weeks. First group: from 23-29 gestational weeks (immature, N=5); second group: from 30-37 gestational weeks (premature, N=7); third group: from 38-41 gestational weeks (mature, N=6). Based on morphological examination of isolated preparations human trachea fingings are the following: in 23-29 week are found nerve endings with axo-axonal synapses mainly at ramification phase of lungs blood vessels net, without trachea bronchial innervations with axo-axonal synapses, and with perichondrial localization. In 30-37 gestational weeks axo-xonal synapses are found in between glands acinus's and vessels net, and also emphatic choline reactivity at lung ganglions: this suggests existing of cholinergic system at alive newborns. At 38-41 gestational weeks exists a wealthy nerve neuromuscular net in smooth tracheal musculature with different vesicles. Choline reactivity is emphasized peri and intrachondrial at lamina propria, at most around sensory glands and in smooth musculature. This suggests that there is no choline reactivity at epithelium and of existence of cholinergic system in tracheal bronchial smooth musculature. PMID:16425526

  2. Hormone activation of baculovirus expressed progesterone receptors.

    Science.gov (United States)

    Elliston, J F; Beekman, J M; Tsai, S Y; O'Malley, B W; Tsai, M J

    1992-03-15

    Human and chicken progesterone receptors (A form) were overproduced in a baculovirus expression system. These recombinant progesterone receptors were full-length bound progesterone specifically and were recognized by monoclonal antibodies, AB52 and PR22, specific for human and chicken progesterone receptor, respectively. In gel retardation studies, binding of recombinant human and chicken progesterone receptors to their progesterone response element (PRE) was specific and was enhanced in the presence of progesterone. Binding of human progesterone receptor to the PRE was also enhanced in the presence of the antiprogestin, RU486, but very little effect was observed in the presence of estradiol, dexamethasone, testosterone, and vitamin D. In our cell-free transcription system, human progesterone receptor induced transcription in a receptor-dependent and hormone-activable manner. Receptor-stimulated transcription required the presence of the PRE in the test template and could be specifically inhibited by excess PRE oligonucleotides. Furthermore, chicken progesterone receptor also induced in vitro transcription in a hormone-activable manner. These results demonstrate that steroid receptors overexpressed in a baculovirus expression system are functional and exhibit steroid-responsive binding and transcription. These observations support our present understanding of the mechanism of steroid receptor-regulated gene expression and provide a technological format for studies of the role of hormone and antihormone in altering gene expression. PMID:1544902

  3. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  4. Further proof of the existence of a non-neuronal cholinergic system in the human Achilles tendon: Presence of the AChRα7 receptor in tendon cells and cells in the peritendinous tissue.

    Science.gov (United States)

    Forsgren, Sture; Alfredson, Håkan; Andersson, Gustav

    2015-11-01

    Human tendon cells have the capacity for acetylcholine (ACh) production. It is not known if the tendon cells also have the potential for ACh breakdown, nor if they show expression of the nicotinic acetylcholine receptor AChRα7 (α7nAChR). Therefore, tendon tissue specimens from patients with midportion Achilles tendinopathy/tendinosis and from normal midportion Achilles tendons were examined. Reaction for the degradative enzyme acetylcholinesterase (AChE) was found in some tenocytes in only a few tendinopathy tendons, and was never found in those of control tendons. Tenocytes displayed more regularly α7nAChR immunoreactivity. However, there was a marked heterogeneity in the degree of this reaction within and between the specimens. α7nAChR immunoreactivity was especially pronounced for tenocytes showing an oval/widened appearance. There was a tendency that the magnitude of α7nAChR immunoreactivity was higher in tendinopathy tendons as compared to control tendons. A stronger α7nAChR immunoreactivity than seen for tenocytes was observed for the cells in the peritendinous tissue. It is likely that the α7nAChR may be an important part of an auto-and paracrine loop of non-neuronal ACh that is released from the tendon cells. The effects may be related to proliferative and blood vessel regulatory functions as well as features related to collagen deposition. ACh can furthermore be of importance in leading to anti-inflammatory effects in the peritendinous tissue, a tissue nowadays considered to be of great relevance for the tendinopathy process. Overall, the findings show that tendon tissue, a tissue known to be devoid of cholinergic innervation, is a tissue in which there is a marked non-neuronal cholinergic system. PMID:25981114

  5. c-fos expression in brainstem premotor interneurons during cholinergically induced active sleep in the cat.

    Science.gov (United States)

    Morales, F R; Sampogna, S; Yamuy, J; Chase, M H

    1999-11-01

    The present study was undertaken to identify trigeminal premotor interneurons that become activated during carbachol-induced active sleep (c-AS). Their identification is a critical step in determining the neural circuits responsible for the atonia of active sleep. Accordingly, the retrograde tracer cholera toxin subunit B (CTb) was injected into the trigeminal motor nuclei complex to label trigeminal interneurons. To identify retrograde-labeled activated neurons, immunocytochemical techniques, designed to label the Fos protein, were used. Double-labeled (i.e., CTb(+), Fos(+)) neurons were found exclusively in the ventral portion of the medullary reticular formation, medial to the facial motor nucleus and lateral to the inferior olive. This region, which encompasses the ventral portion of the nucleus reticularis gigantocellularis and the nucleus magnocellularis, corresponds to the rostral portion of the classic inhibitory region of. This region contained a mean of 606 +/- 41.5 ipsilateral and 90 +/- 32.0 contralateral, CTb-labeled neurons. These cells were of medium-size with an average soma diameter of 20-35 micrometer. Approximately 55% of the retrogradely labeled cells expressed c-fos during a prolonged episode of c-AS. We propose that these neurons are the interneurons responsible for the nonreciprocal postsynaptic inhibition of trigeminal motoneurons that occurs during active sleep. PMID:10531453

  6. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system.

    Science.gov (United States)

    Kruk-Slomka, Marta; Michalak, Agnieszka; Biala, Grazyna

    2015-05-01

    The purpose of the experiments was to explore the role of the endocannabinoid system, through cannabinoid (CB) receptor ligands, nicotine and scopolamine, in the depression-related responses using the forced swimming test (FST) in mice. Our results revealed that acute injection of oleamide (10 and 20 mg/kg), a CB1 receptor agonist, caused antidepressant-like effect in the FST, while AM 251 (0.25-3 mg/kg), a CB1 receptor antagonist, did not provoke any effect in this test. Moreover, acute administration of both CB2 receptor agonist, JWH 133 (0.5 and 1 mg/kg) and CB2 receptor antagonist, AM 630 (0.5 mg/kg), exhibited antidepressant action. Antidepressant effects of oleamide and JWH 133 were attenuated by acute injection of both non-effective dose of AM 251, as well as AM 630. Among the all CB compounds used, only the combination of non-effective dose of oleamide (2.5 mg/kg) with non-effective dose of nicotine (0.5 mg/kg) caused an antidepressant effect. However, none of the CB receptor ligands, had influence on the antidepressant effects provoked by nicotine (0.2 mg/kg) injection. In turn, the combination of non-effective dose of oleamide (2.5 mg/kg); JWH (2 mg/kg) or AM 630 (2 mg/kg), but not of AM 251 (0.25 mg/kg), with non-effective dose of scopolamine (0.1 mg/kg), exhibited antidepressant properties. Indeed, all of the CB compounds used, intensified the antidepressant-like effects induced by an acute injection of scopolamine (0.3 mg/kg). Our results provide clear evidence that the endocannabinoid system participates in the depression-related behavior and through interactions with cholinergic system modulate these kind of responses. PMID:25660201

  7. Effects of melatonin on learning abilities, cholinergic fibers and nitric oxide synthase expression in rat cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Bin Xu; Junpao Chen; Hailing Zhao

    2006-01-01

    BACKGROUND: Melatonin is a kind of hormones derived from pineal gland. Recent researches demonstrate that melatonin is characterized by anti-oxidation, anti-senility and destroying free radicals. While, effect and pathogenesis of pineal gland on learning ability should be further studied.OBJ ECTIVE: To investigate the effects of pinealectomy on learning abiliy, distribution of cholinesterase and expression of neuronal nitric oxide synthase (nNOS) in cerebral cortex of rats and probe into the effect of melatonin on learning ability, central cholinergic system and nNOS expression.DESIGN: Randomized grouping design and animal study.SETTING: Department of Neurology, the 187 Hospital of Chinese PLA.MATERIALS: A total of 12 male SD rats, of normal learning ability testing with Y-tape maze, of clean grade,weighing 190-210 g, aged 6 weeks, were selected in this study.METHODS: The experiment was carried out in the Department of Neurology, Zhujiang Hospital from July 1997to June 2000. All SD rats were divided into experimental group (n =6,pinealectomy) and control group (n =6, sham operation). Seven days later, rats in both two groups were continuously fed for 33 days. ①Learning ability test: The learning ability of rats was tested by trisection Y-type maze and figured as attempting times. ②Expression of acetylcholinesterase (AchE) was detected by enzyme histochemistry and nNOS was measured by SABC method. ③ Quantitative analysis of AchE fibers: AchE fibers density in unit area (surface density)was surveyed with Leica Diaplan microscope and Leica Quantimet 500+ image analytic apparatus and quantitative parameter was set up for AchE fibers covering density (μm2) per 374 693.656 μm2, moreover, the AchE fibers density was measured in Ⅱ -Ⅳ layers of motor and somatosensory cortex (showing three layers per field of vision at one time), in radiative, lacunaria and molecular layers of CA1, CA2 and CA3 areas, and in lamina multiforms of dentate gyrus. Three tissue slices

  8. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  9. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  10. Electron microscopic localization of M2-muscarinic receptors in cholinergic and noncholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei of the rat mesopontine tegmentum.

    Science.gov (United States)

    Garzón, Miguel; Pickel, Virginia M

    2016-10-15

    Muscarinic m2 receptors (M2Rs) are implicated in autoregulatory control of cholinergic output neurons located within the pedunculopontine (PPT) and laterodorsal tegmental (LTD) nuclei of the mesopontine tegmentum (MPT). However, these nuclei contain many noncholinergic neurons in which activation of M2R heteroceptors may contribute significantly to the decisive role of the LTD and PPT in sleep-wakefulness. We examined the electron microscopic dual immunolabeling of M2Rs and the vesicular acetylcholine transporter (VAchT) in the MPT of rat brain to identify the potential sites for M2R activation. M2R immunogold labeling was predominately seen in somatodendritic profiles throughout the PPT/LTD complex. In somata, M2R immunogold particles were often associated with Golgi lamellae and cytoplasmic endomembrannes, but were rarely in contact with the plasma membrane, as was commonly seen in dendrites. Approximately 36% of the M2R-labeled somata and 16% of the more numerous M2R-labeled dendrites coexpressed VAchT. M2R and M2R/VAchT-labeled dendritic profiles received synapses from inhibitory- and excitatory-type axon terminals, over 88% of which were unlabeled and others contained exclusively M2R or VAchT immunoreactivity. In axonal profiles M2R immunogold was localized to plasmalemmal and cytoplasmic regions and showed a similar distribution in many VAchT-negative glial profiles. These results provide ultrastructural evidence suggestive of somatic endomembrane trafficking of M2Rs, whose activation serves to regulate the postsynaptic excitatory and inhibitory responses in dendrites of cholinergic and noncholinergic neurons in the MPT. They also suggest the possibility that M2Rs in this brain region mediate the effects of acetylcholine on the release of other neurotransmitters and on glial signaling. J. Comp. Neurol. 524:3084-3103, 2016. © 2016 Wiley Periodicals, Inc. PMID:27038330

  11. Cholinergic activation enhances retinoic acid-induced differentiation in the human NB-4 acute promyelocytic leukemia cell line.

    Science.gov (United States)

    Chotirat, Sadudee; Suriyo, Tawit; Hokland, Marianne; Hokland, Peter; Satayavivad, Jutamaad; Auewarakul, Chirayu U

    2016-07-01

    The non-neuronal cholinergic system (NNCS) has been shown to play a role in regulating hematopoietic differentiation. We determined the expression of cholinergic components in leukemic cell lines by Western blotting and in normal leukocyte subsets by flow cytometry and found a heterogeneous expression of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), choline transporter (CHT), M3 muscarinic acetylcholine receptor (M3-mAChR) and α7 nicotinic acetylcholine receptor (α7-nAChR). We then evaluated NNCS role in differentiation of human NB-4 acute promyelocytic leukemia cell line and discovered a dramatic induction of M3-mAChR after all-trans retinoic acid (ATRA) treatment (p<0.0001). Adding carbachol which is a cholinergic agonist to the ATRA treatment resulted in an increase of a granulocytic differentiation marker (CD11b) as compared with ATRA treatment alone (p<0.05), indicating that cholinergic activation enhanced ATRA in inducing NB-4 maturation. The combination of carbachol and ATRA treatment for 72h also resulted in decreased viability and increased cleaved caspase-3 expression when compared with ATRA treatment alone (p<0.05). However, this combination did not cause poly (ADP-ribose) polymerase (PARP) cleavage. Overall, we have shown that NB-4 cells expressed M3-mAChR in a differentiation-dependent manner and cholinergic stimulation induced maturation and death of ATRA-induced differentiated NB-4 cells. PMID:27282572

  12. Cholinergic regulation of the vasopressin neuroendocrine system

    Energy Technology Data Exchange (ETDEWEB)

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The median eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.

  13. Chemokine receptor expression by mast cells.

    Science.gov (United States)

    Juremalm, Mikael; Nilsson, Gunnar

    2005-01-01

    There is a growing interest in the role of chemokines and their receptors in the determination of mast cell tissue localization and how chemokines regulate mast cell function. At least nine chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4, CX3CR1, CCR1, CCR3, CCR4 and CCR5) have been described to be expressed by human mast cells of different origins. Seven chemokines (CXCL1, CXCL5, CXCL8, CXCL14, CX3CL1, CCL5 and CCL11) have been shown to act on some of these receptors and to induce mast cell migration. Mast cells have a unique expression pattern of CCR3, CXCR1 and CXCR2. These receptors are mainly expressed intracellularly on cytoplasmic membranes. Upon an allergic activation, CCR3 expression is increased on the cell surface and the cell becomes vulnerable for CCL11 treatment. Chemokines do not induce mast cell degranulation but CXCL14 causes secretion of de novo synthesized CXCL8. Because of the expression of CCR3, CCR5 and CXCR4 on mast cell progenitors, these cells are susceptible to HIV infection and mast cells might therefore be a persistent HIV reservoir in AIDS. In this review, we summarize the knowledge about chemokine receptor expression and function on mast cells. PMID:16107768

  14. Cannabinoid-receptor expression in human leukocytes.

    Science.gov (United States)

    Bouaboula, M; Rinaldi, M; Carayon, P; Carillon, C; Delpech, B; Shire, D; Le Fur, G; Casellas, P

    1993-05-15

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS), probably through the cannabinoid receptor, which has recently been cloned in rat and human. While numerous reports have also described effects of cannabinoids on the immune system, the observation of both mRNA and cannabinoid receptor has hitherto been exclusively confined to the brain, a reported detection in the testis being the sole example of its presence at the periphery. Here we report the expression of the cannabinoid receptor on human immune tissues using a highly sensitive polymerase-chain-reaction-based method for mRNA quantification. We show that, although present in a much lower abundance than in brain, cannabinoid receptor transcripts are found in human spleen, tonsils and peripheral blood leukocytes. The distribution pattern displays important variations of the mRNA level for the cannabinoid receptor among the main human blood cell subpopulations. The rank order of mRNA levels in these cells is B cells > natural killer cells > or = polymorphonuclear neutrophils > or = T8 cells > monocytes > T4 cells. Cannabinoid-receptor mRNA, which is also found in monocytic, as well as T and B leukemia cell lines but not in Jurkat cells, presents a great diversity of expression on these cells as well, B-cell lines expressing a much higher level than T-cell lines. The cannabinoid receptor PCR products from leukocytes and brain are identical both in size and sequence suggesting a strong similarity between central and peripheral cannabinoid receptors. The expression of this receptor was demonstrated on membranes of the myelomonocytic U937 cells using the synthetic cannabinoid [3H]CP-55940 as ligand. The Kd determined from Scatchard analysis was 0.1 nM and the Bmax for membranes was 525 fmol/mg protein. The demonstration of cannabinoid-receptor expression at both mRNA and protein levels on human leukocytes provides a molecular basis for cannabinoid action on these cells. PMID

  15. Disassembly of the cholinergic postsynaptic apparatus induced by axotomy in mouse sympathetic neurons: the loss of dystrophin and beta-dystroglycan immunoreactivity precedes that of the acetylcholine receptor.

    Science.gov (United States)

    Zaccaria, M L; De Stefano, M E; Properzi, F; Gotti, C; Petrucci, T C; Paggi, P

    1998-08-01

    In mouse sympathetic superior cervical ganglion (SCG), cortical cytoskeletal proteins such as dystrophin (Dys) and beta1sigma2 spectrin colocalize with beta-dystroglycan (beta-DG), a transmembrane dystrophin-associated protein, and the acetylcholine receptor (AChR) at the postsynaptic specialization. The function of the dystrophin-dystroglycan complex in the organization of the neuronal cholinergic postsynaptic apparatus was studied following changes in the immunoreactivity of these proteins during the disassembly and subsequent reassembly of the postsynaptic specializations induced by axotomy of the ganglionic neurons. After axotomy, a decrease in the number of intraganglionic synapses was observed (t1/2 8 h 45'), preceded by a rapid decline of postsynaptic specializations immunopositive for beta-DG, Dys, and alpha3 AChR subunit (alpha3AChR) (t1/2 3 h 45', 4 h 30' and 6 h, respectively). In contrast, the percentage of postsynaptic densities immunopositive for beta1sigma2 spectrin remained unaltered. When the axotomized neurons began to regenerate their axons, the number of intraganglionic synapses increased, as did that of postsynaptic specializations immunopositive for beta-DG, Dys, and alpha3AChR. The latter number increased more slowly than that of Dys and beta-DG. These observations suggest that in SCG neurons, the dystrophin-dystroglycan complex might play a role in the assembly-disassembly of the postsynaptic apparatus, and is probably involved in the stabilization of AChR clusters. PMID:9720492

  16. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission.

    Science.gov (United States)

    Ovsepian, Saak V; O'Leary, Valerie B; Zaborszky, Laszlo

    2016-06-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  17. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees

    OpenAIRE

    Palmer, Mary J; Moffat, Christopher; Saranzewa, Nastja; Harvey, Jenni; Wright, Geraldine A.; Connolly, Christopher N.

    2013-01-01

    Pesticides that target cholinergic neurotransmission are highly effective, but their use has been implicated in insect pollinator population decline. Honeybees are exposed to two widely used classes of cholinergic pesticide: neonicotinoids (nicotinic receptor agonists) and organophosphate miticides (acetylcholinesterase inhibitors). Although sublethal levels of neonicotinoids are known to disrupt honeybee learning and behaviour, the neurophysiological basis of these effects has not been shown...

  18. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...... studies of vitamin D's effect on TCC cells in vitro are necessary before the efficacy of treatment with vitamin D analogues in TCC can be evaluated in patients....

  19. Androgen Receptor Is Expressed in Genital Warts

    Institute of Scientific and Technical Information of China (English)

    Jiang Haiyang; Zhang Li; Fan Min; Yang Dexiu

    2003-01-01

    Objective:To study the expression of androgen receptor(AR) in genital warts. Methods:The expressions of AR weredetected in 40 samples of genital warts from 28 males and 12 females and 9 normal foreskins by immunohistochemical stain S-Pmethod. The status of AR expression in wart and normal foreskin were compared. Results:The AR expression was revealed in all 40samples of genital wart and 9 samples of normal foreskin.There weren's any differences in AR expression between the genital wartsand normal foreskins. Conclusions:It' s supposed that androgens may play an important role in regulating the metabolism of GW andthe HPV might be one of viruses which addicts to the tissues expressing AR properly.

  20. Cholinergic Mechanisms in Spinal Locomotion - Potential Target for Rehabilitation Approaches

    Directory of Open Access Journals (Sweden)

    L M Jordan

    2014-11-01

    Full Text Available Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a hyper-cholinergic state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in supressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed

  1. Novel Fast Adapting Interneurons Mediate Cholinergic-Induced Fast GABAA IPSCs In Striatal Spiny Neurons

    OpenAIRE

    Faust, Thomas W.; Assous, Maxime; Shah, Fulva; Tepper, James M.; Koós, Tibor

    2015-01-01

    Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism only one such cell type, the neuropeptide-Y expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that el...

  2. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    OpenAIRE

    Fomina Alla F; Dadsetan Sepehr; Chen Huaiyang; Gong Qizhi

    2008-01-01

    Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic...

  3. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder

    OpenAIRE

    Silva-Ramos, M.; Silva, I; Faria, M.; Magalhães-Cardoso, M. T.; Correia, J.; Ferreirinha, F; Correia-de-Sá, P.

    2015-01-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [3H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n...

  4. Muscarinic signaling influences the patterning and phenotype of cholinergic amacrine cells in the developing chick retina

    Directory of Open Access Journals (Sweden)

    Fischer Andy J

    2008-02-01

    Full Text Available Abstract Background Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT. Results We found that as ChAT-immunoreactive cells differentiate they expressed the homeodomain transcription factors Pax6 and Islet1, and the cell-cycle inhibitor p27kip1. As differentiation proceeds, type-II cholinergic cells, displaced to the ganglion cell layer, transiently expressed high levels of cellular retinoic acid binding protein (CRABP and neurofilament, while type-I cells in the inner nuclear layer did not. Although there is a 1:1 ratio of type-I to type-II cells in vivo, in dissociated cell cultures the type-I cells (ChAT-positive and CRABP-negative out-numbered the type-II cells (ChAT and CRABP-positive cells by 2:1. The relative abundance of type-I to type-II cells was not influenced by Sonic Hedgehog (Shh, but was affected by compounds that act at muscarinic acetylcholine receptors. In addition, the abundance and mosaic patterning of type-II cholinergic amacrine cells is disrupted by interfering with muscarinic signaling. Conclusion We conclude that: (1 during development type-I and type-II cholinergic amacrine cells are not homotypic, (2 the phenotypic differences between these subtypes of cells is controlled by the local microenvironment, and (3 appropriate levels of muscarinic signaling between the cholinergic amacrine cells are required for proper mosaic patterning.

  5. Effects of bone morphogenetic protein-4 on spatial memory and cholinergic expression in the dentate gyrus after fornix-fimbria transection in rats

    Institute of Scientific and Technical Information of China (English)

    Lei Liu; Yilong Xue; Jingkun Pan; Yazhuo Hu; Yuhong Gao; Yun Luo

    2008-01-01

    BACKGROUND: Previous experiments have confirmed bone morphogenetic proteins (BMPs) upregulate cholinergic expression in neurons isolated from the embryonic rat hippocampus and cerebral cortex. Therefore, BMPs could be useful for treating Alzheimer's disease and other neurodegenerative diseases. OBJECTIVE: BMP-4 was infused into the hippocampal dentate gyrus of fornix-fimbria transected rats to test the effects of BMP-4 on cholinergic expression in dentate gyrus neurons, and to observe changes in spatial memory behavior. DESIGN: A randomized controlled animal experiment. SETTING: Department of Neurosurgery and Laboratory for Cell Biology, Institute of Geriatrics, General Hospital of Chinese PLA.MATERIALS: Twenty-seven healthy adult male Sprague Dawley (SD) rats, weighing 250-300 g, were provided by the Laboratory Animal Center of the General Hospital of Chinese PLA. Reagents: BMP-4 (B-2680, Sigma Company) and choline acetyl transferase (ChAT) antibody (AB5042, Chemicon Company) were used in this study. Equipments: a rat stereotaxic instrument (type: SN-2N, Narushige Group, Japan) and Image-prog-plus image analysis software (Media Cybernetics company, USA) were used in this study. The protocol was carried out in accordance with ethical guidelines for the use and care of animals.METHODS: This experiment was performed in the Institute of Geriatrics, General Hospital of Chinese PLA between July 2004 and March 2005. Rats were randomly divided into 4 groups: Alzheimer's disease group (n = 7), normal control group (n = 5), BMP-4-Alzheimer's disease group (n = 8), and model group (n = 7). In the Alzheimer's disease group, the left hippocampal fornix-fimbria of rats was transected to mimic Alzheimer's disease symptoms. In the BMP-4-Alzheimer's disease group, 1 μL BMP-4 (10 mg/L) was perfused into the left dentate gyrus with a microinjector at 1 μL/min. In the model group, 1 μL saline was perfused into the same position by the same method. Twenty-eight days after injection

  6. The expression of the ACTH receptor

    Directory of Open Access Journals (Sweden)

    L.L.K. Elias

    2000-10-01

    Full Text Available Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH acting through a specific cell membrane receptor (ACTH-R. The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.

  7. IL-21 Receptor Expression in Human Tendinopathy

    Directory of Open Access Journals (Sweden)

    Abigail L. Campbell

    2014-01-01

    Full Text Available The pathogenetic mechanisms underlying tendinopathy remain unclear, with much debate as to whether inflammation or degradation has the prominent role. Increasing evidence points toward an early inflammatory infiltrate and associated inflammatory cytokine production in human and animal models of tendon disease. The IL-21/IL-21R axis is a proinflammatory cytokine complex that has been associated with chronic inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. This project aimed to investigate the role and expression of the cytokine/receptor pair IL-21/IL-21R in human tendinopathy. We found significantly elevated expression of IL-21 receptor message and protein in human tendon samples but found no convincing evidence of the presence of IL-21 at message or protein level. The level of expression of IL-21R message/protein in human tenocytes was significantly upregulated by proinflammatory cytokines (TNFα/IL-1β in vitro. These findings demonstrate that IL-21R is present in early human tendinopathy mainly expressed by tenocytes and macrophages. Despite a lack of IL-21 expression, these data again suggest that early tendinopathy has an inflammatory/cytokine phenotype, which may provide novel translational targets in the treatment of tendinopathy.

  8. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Science.gov (United States)

    Guzman, Monica S; De Jaeger, Xavier; Raulic, Sanda; Souza, Ivana A; Li, Alex X; Schmid, Susanne; Menon, Ravi S; Gainetdinov, Raul R; Caron, Marc G; Bartha, Robert; Prado, Vania F; Prado, Marco A M

    2011-11-01

    Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease. PMID:22087075

  9. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Directory of Open Access Journals (Sweden)

    Monica S Guzman

    2011-11-01

    Full Text Available Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.

  10. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A;

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated ...

  11. Human basophils express interleukin-4 receptors

    International Nuclear Information System (INIS)

    Interleukin-4 (IL-4), a multipotential lymphokine reputed to play an important role in the regulation of immune responses, interacts with a variety of hemopoietic target cells through specific cell surface membrane receptors. The present study was designed to investigate whether human basophils express IL-4 binding sites. For this purpose, basophils were enriched to homogeneity (93% and 98% purity, respectively) from the peripheral blood of two chronic granulocytic leukemia (CGL) donors using a cocktail of monoclonal antibodies (MoAbs) and complement. Purified basophils bound 125I-radiolabeled recombinant human (rh) IL-4 in a specific manner. Quantitative binding studies and Scatchard plot analysis revealed the presence of a single class of high affinity IL-4 binding sites (280 +/- 40 sites per cell in donor 1 and 640 +/- 45 sites per cell in donor 2) with an apparent dissociation constant, kd, of 7.12 x 10(-11) +/- 2.29 x 10(-11) and 9.55 +/- 3.5 x 10(-11) mol/L, respectively. KU812-F, a human basophil precursor cell line, was found to express a single class of 810 to 1,500 high affinity IL-4 binding sites with a kd of 2.63 to 5.54 x 10(-10) mol/L. No change in the numbers or binding constants of IL-4 receptors was found after exposure of KU812-F cells to rhIL-3 (a potent activator of basophils) for 60 minutes. No effect of rhIL-4 on 3H-thymidine uptake, release or synthesis of histamine, or expression of basophil differentiation antigens (Bsp-1, CD11b, CD25, CD40, CD54) on primary human CGL basophils or KU812-F cells was observed

  12. Heavy metal uranium affects the brain cholinergic system in rat following sub-chronic and chronic exposure

    International Nuclear Information System (INIS)

    Uranium is a heavy metal naturally present in the environment that may be chronically ingested by the population. Previous studies have shown that uranium is present in the brain and alters behaviour, notably locomotor activity, sensorimotor ability, sleep/wake cycle and the memory process, but also metabolism of neurotransmitters. The cholinergic system mediates many cognitive systems, including those disturbed after chronic exposure to uranium i.e., spatial memory, sleep/wake cycle and locomotor activity. The objective of this study was to assess whether these disorders follow uranium-induced alteration of the cholinergic system. In comparison with 40 control rats, 40 rats drank 40 mg/L uranyl nitrate for 1.5 or 9 months. Cortex and hippocampus were removed and gene expression and protein level were analysed to determine potential changes in cholinergic receptors and acetylcholine levels. The expression of genes showed various alterations in the two brain areas after short- and long-term exposure. Nevertheless, protein levels of the choline acetyltransferase enzyme (ChAT), the vesicular transporter of acetylcholine (VAChT) and the nicotinic receptor β2 sub-unit (nAChRβ2) were unmodified in all cases of the experiment and muscarinic receptor type 1 (m1AChR) protein level was disturbed only after 9 months of exposure in the cortex (-30%). Acetylcholine levels were unchanged in the hippocampus after 1.5 and 9 months, but were decreased in the cortex after 1.5 months only (-22%). Acetylcholinesterase (AChE) activity was also unchanged in the hippocampus but decreased in the cortex after 1.5 and 9 months (-16% and -18%, respectively). Taken together, these data indicate that the cholinergic system is a target of uranium exposure in a structure-dependent and time-dependent manner. These cholinergic alterations could participate in behavioural impairments.

  13. Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias.

    Science.gov (United States)

    Bordia, Tanuja; Perez, Xiomara A; Heiss, Jaime E; Zhang, Danhui; Quik, Maryka

    2016-07-01

    L-dopa-induced dyskinesias (LIDs) are a serious complication of L-dopa therapy for Parkinson's disease. Emerging evidence indicates that the nicotinic cholinergic system plays a role in LIDs, although the pathways and mechanisms are poorly understood. Here we used optogenetics to investigate the role of striatal cholinergic interneurons in LIDs. Mice expressing cre-recombinase under the control of the choline acetyltransferase promoter (ChAT-Cre) were lesioned by unilateral injection of 6-hydroxydopamine. AAV5-ChR2-eYFP or AAV5-control-eYFP was injected into the dorsolateral striatum, and optical fibers implanted. After stable virus expression, mice were treated with L-dopa. They were then subjected to various stimulation protocols for 2h and LIDs rated. Continuous stimulation with a short duration optical pulse (1-5ms) enhanced LIDs. This effect was blocked by the general muscarinic acetylcholine receptor (mAChR) antagonist atropine indicating it was mAChR-mediated. By contrast, continuous stimulation with a longer duration optical pulse (20ms to 1s) reduced LIDs to a similar extent as nicotine treatment (~50%). The general nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine blocked the decline in LIDs with longer optical pulses showing it was nAChR-mediated. None of the stimulation regimens altered LIDs in control-eYFP mice. Lesion-induced motor impairment was not affected by optical stimulation indicating that cholinergic transmission selectively regulates LIDs. Longer pulse stimulation increased the number of c-Fos expressing ChAT neurons, suggesting that changes in this immediate early gene may be involved. These results demonstrate that striatal cholinergic interneurons play a critical role in LIDs and support the idea that nicotine treatment reduces LIDs via nAChR desensitization. PMID:26921469

  14. Cholinergic Mechanisms in Spinal Locomotion - Potential Target for Rehabilitation Approaches

    OpenAIRE

    Jordan, L M; Noga, B. R.; Cabaj, A. M.; J Provencher

    2014-01-01

    Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Test...

  15. Cholinergic plasticity in the hippocampus

    OpenAIRE

    Colgin, Laura Lee; Kubota, Don; Lynch, Gary

    2003-01-01

    Tests were made for use-dependent plasticity in the cholinergic projections to hippocampus. Transient infusion of the cholinergic agonist carbachol into hippocampal slices induced rhythmic activity that persisted for hours after washout. Comparable effects were obtained with physostigmine, a drug that blocks acetylcholine breakdown and thereby enhances cholinergic transmission. It thus seems that activation of cholinergic synapses induces lasting changes in hippocampal physiology. Two lines o...

  16. Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression

    OpenAIRE

    Schlenker, Evelyn H; Rio, Rodrigo Del; Schultz, Harold D.

    2014-01-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a periphera...

  17. Chronic Morphine Reduces Surface Expression of δ-Opioid Receptors in Subregions of Rostral Striatum.

    Science.gov (United States)

    Leah, Paul M; Heath, Emily M L; Balleine, Bernard W; Christie, Macdonald J

    2016-03-01

    The delta opioid receptor (DOPr), whilst not the primary target of clinically used opioids, is involved in development of opioid tolerance and addiction. There is growing evidence that DOPr trafficking is involved in drug addiction, e.g., a range of studies have shown increased plasma membrane DOPr insertion during chronic treatment with opioids. The present study used a transgenic mouse model in which the C-terminal of the DOPr is tagged with enhanced-green fluorescence protein to examine the effects of chronic morphine treatment on surface membrane expression in striatal cholinergic interneurons that are implicated in motivated learning following both chronic morphine and morphine sensitization treatment schedules in male mice. A sex difference was noted throughout the anterior striatum, which was most prominent in the nucleus accumbens core region. Incontrast with previous studies in other neurons, chronic exposure to a high dose of morphine for 6 days had no effect, or slightly decreased (anterior dorsolateral striatum) surface DOPr expression. A morphine sensitization schedule produced similar results with a significant decrease in surface DOPr expression in nucleus accumbens shell. These results suggest that chronic morphine and morphine sensitisation treatment may have effects on instrumental reward-seeking behaviours and learning processes related to drug addiction, via effects on striatal DOPr function. PMID:26093651

  18. Alternative splicing of human and mouse NPFF2 receptor genes: Implications to receptor expression.

    Science.gov (United States)

    Ankö, Minna-Liisa; Ostergård, Maria; Lintunen, Minnamaija; Panula, Pertti

    2006-12-22

    Alternative splicing has an important role in the tissue-specific regulation of gene expression. Here we report that similar to the human NPFF2 receptor, the mouse NPFF2 receptor is alternatively spliced. In human the presence of three alternatively spliced receptor variants were verified, whereas two NPFF2 receptor variants were identified in mouse. The alternative splicing affected the 5' untranslated region of the mouse receptor and the variants in mouse were differently distributed. The mouse NPFF system may also have species-specific features since the NPFF2 receptor mRNA expression differs from that reported for rat. PMID:17157836

  19. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells

    Science.gov (United States)

    Elgueta, Claudio; Vielma, Alex H.; Palacios, Adrian G.; Schmachtenberg, Oliver

    2015-01-01

    Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca2+ accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca2+ stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing. PMID:25709566

  20. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne;

    2015-01-01

    BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival in...

  1. Stress-induced altered cholinergic-glutamatergic interactions in the mouse hippocampus.

    Science.gov (United States)

    Pavlovsky, Lev; Bitan, Yifat; Shalev, Hadar; Serlin, Yonatan; Friedman, Alon

    2012-09-01

    Psychological stress may lead to long-lasting brain dysfunction, specifically altered emotional and cognitive capabilities. Previous studies have demonstrated persistent changes in the expression of key cholinergic genes in the neocortex and hippocampus following stress with muscarinic receptor-mediated enhanced excitability. In the present study we examined cholinergic-mediated glutamatergic transmission in the hippocampus of mice after exposure to stress and its potential role in synaptic plasticity and altered behavior. Adult male mice were tested one month after repeated forced swimming test. Non-treated age-matched animals served as controls. Electrophysiological recordings were performed in the acute in-vitro slice preparation. CA1 pyramidal neurons were recorded using whole cell patch configuration. Extracellular recordings were done in response to Shaffer collaterals (SC) or stratum orien (SO) stimulation. Animal behavior in response to inhibition of acetylcholinesterase (AChE) was tested in open field paradigms. In whole cell patch recordings the frequency of excitatory post-synaptic currents (EPSCs) was significantly increased in response to muscarinic activation in stress-exposed animals. This enhanced cholinergic-modulated excitatory transmission is associated with facilitation of long-term potentiation (LTP) in response to tetanic stimulation at the SO but not at the SC. Stress-related behavioral modulation via central cholinergic pathways was enhanced by the central AChE inhibitor, physostigmine, thus further supporting the notion that stress is associated with long lasting hypersensitivity to acetylcholine. Our results revealed a pathway-specific enhancement of cholinergic-dependent glutamatergic transmission in the hippocampus after stress. These changes may underlie specific hippocampal malfunction, including cognitive and emotional disturbances, as observed in patients with post-traumatic stress disorder (PTSD). PMID:22796599

  2. Thyroid hormone receptor expression in cardiovascular disease and pharmacology

    OpenAIRE

    Shahrara, Shiva

    1999-01-01

    The heart is a major target organ for thyroid hormone actions. Thyroid hormone exerts effects on the myocardium, which are mediated by specific nuclear receptors. The thyroid hormone receptors (TR) are members of the steroid hormone receptor superfamily. These receptors regulate gene expression by binding to the promotor region of target genes as monomers, homodimers or heterodimers depending on the thyroid hormone response element (TRE) and the presence or absence of th...

  3. Protective role of the cholinergic anti-inflammatory pathway in a mouse model of viral myocarditis.

    Directory of Open Access Journals (Sweden)

    Zheng Cheng

    Full Text Available Activation of the cholinergic anti-inflammatory pathway, which relies on the α7nAchR (alpha 7 nicotinic acetylcholine receptor, has been shown to decrease proinflammatory cytokines. This relieves inflammatory responses and improves the prognosis of patients with experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, pancreatitis, arthritis and other inflammatory syndromes. However, whether the cholinergic anti-inflammatory pathway has an effect on acute viral myocarditis has not been investigated. Here, we studied the effects of the cholinergic anti-inflammatory pathway on acute viral myocarditis.In a coxsackievirus B3 murine myocarditis model (Balb/c, nicotine and methyllycaconitine were used to stimulate and block the cholinergic anti-inflammatory pathway, respectively. Relevant signal pathways were studied to compare their effects on myocarditis, survival rate, histopathological changes, ultrastructural changes, and cytokine levels. Nicotine treatments significantly improved survival rate, attenuated myocardial lesions, and downregulated the expression of TNF-α and IL-6. Methyllycaconitine decreased survival rate, aggravated myocardial lesions, and upregulated the expression of TNF-α and IL-6. In addition, levels of the signaling protein phosphorylated STAT3 were higher in the nicotine group and lower in the methyllycaconitine group compared with the untreated myocarditis group.These results show that nicotine protects mice from CVB3-induced viral myocarditis and that methyllycaconitine aggravates viral myocarditis in mice. Because nicotine is a α7nAchR agonist and methyllycaconitine is a α7nAchR antagonist, we conclude that α7nAchR activation increases the phosphorylation of STAT3, reduces the expression of TNF-α and IL-6, and, ultimately, alleviates viral myocarditis. We also conclude that blocking α7nAchR reduces the phosphorylation of STAT3, increases the expression of TNF-α and IL-6, aggravating viral

  4. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pranay [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Yadav, Rajesh S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003 (India); Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Dwivedi, Hari N. [Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015 (India); Pant, Aditiya B. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Khanna, Vinay K., E-mail: vkkhanna1@gmail.com [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India)

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  5. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    International Nuclear Information System (INIS)

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  6. Cholinergic dysfunction in Parkinson's disease.

    Science.gov (United States)

    Müller, Martijn L T M; Bohnen, Nicolaas I

    2013-09-01

    There is increasing interest in the clinical effects of cholinergic basal forebrain and tegmental pedunculopontine complex (PPN) projection degeneration in Parkinson's disease (PD). Recent evidence supports an expanded role beyond cognitive impairment, including effects on olfaction, mood, REM sleep behavior disorder, and motor functions. Cholinergic denervation is variable in PD without dementia and may contribute to clinical symptom heterogeneity. Early in vivo imaging evidence that impaired cholinergic integrity of the PPN associates with frequent falling in PD is now confirmed by human post-mortem evidence. Brainstem cholinergic lesioning studies in primates confirm the role of the PPN in mobility impairment. Degeneration of basal forebrain cholinergic projections correlates with decreased walking speed. Cumulatively, these findings provide evidence for a new paradigm to explain dopamine-resistant features of mobility impairments in PD. Recognition of the increased clinical role of cholinergic system degeneration may motivate new research to expand indications for cholinergic therapy in PD. PMID:23943367

  7. Expression of the endocannabinoid receptors in human fascial tissue.

    Science.gov (United States)

    Fede, C; Albertin, G; Petrelli, L; Sfriso, M M; Biz, C; De Caro, R; Stecco, C

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  8. Estrogen Receptor α Is Required for Maintaining Baseline Renin Expression.

    Science.gov (United States)

    Lu, Ko-Ting; Keen, Henry L; Weatherford, Eric T; Sequeira-Lopez, Maria Luisa S; Gomez, R Ariel; Sigmund, Curt D

    2016-05-01

    Enzymatic cleavage of angiotensinogen by renin represents the critical rate-limiting step in the production of angiotensin II, but the mechanisms regulating the initial expression of the renin gene remain incomplete. The purpose of this study is to unravel the molecular mechanism controlling renin expression. We identified a subset of nuclear receptors that exhibited an expression pattern similar to renin by reanalyzing a publicly available microarray data set. Expression of some of these nuclear receptors was similarly regulated as renin in response to physiological cues, which are known to regulate renin. Among these, only estrogen receptor α (ERα) and hepatic nuclear factor α have no known function in regulating renin expression. We determined that ERα is essential for the maintenance of renin expression by transfection of small interfering RNAs targeting Esr1, the gene encoding ERα, in renin-expressing As4.1 cells. We also observed that previously characterized negative regulators of renin expression, Nr2f2 and vitamin D receptor, exhibited elevated expression in response to ERα inhibition. Therefore, we tested whether ERα regulates renin expression through an interaction with Nr2f2 and vitamin D receptor. Renin expression did not return to baseline when we concurrently suppressed both Esr1 and Nr2f2 or Esr1 and vitamin D receptor mRNAs, strongly suggesting that Esr1 regulates renin expression independent of Nr2f2 and vitamin D receptor. ERα directly binds to the hormone response element within the renin enhancer region. We conclude that ERα is a previously unknown regulator of renin that directly binds to the renin enhancer hormone response element sequence and is critical in maintaining renin expression in renin-expressing As4.1 cells. PMID:26928806

  9. Cholinergic imaging in dementia spectrum disorders.

    Science.gov (United States)

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios

    2016-07-01

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [(11)C]MP4A and [(11)C]PMP PET for acetylcholinesterase (AChE), [(123)I]5IA SPECT for the α4β2 nicotinic acetylcholine receptor and [(123)I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. PMID:26984612

  10. Cholinergic imaging in dementia spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios [Institute of Psychiatry, Psychology and Neuroscience, King' s College London, Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, London (United Kingdom)

    2016-07-15

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [{sup 11}C]MP4A and [{sup 11}C]PMP PET for acetylcholinesterase (AChE), [{sup 123}I]5IA SPECT for the α{sub 4}β{sub 2} nicotinic acetylcholine receptor and [{sup 123}I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. (orig.)

  11. Basal ganglia cholinergic and dopaminergic function in progressive supranuclear palsy.

    Science.gov (United States)

    Warren, Naomi M; Piggott, Margaret A; Greally, Elizabeth; Lake, Michelle; Lees, Andrew J; Burn, David J

    2007-08-15

    Progressive Supranuclear Palsy (PSP) is a progressive neurodegenerative disorder. In contrast to Parkinson's disease (PD) and dementia with Lewy bodies (DLB), replacement therapy with dopaminergic and cholinergic agents in PSP has been disappointing. The neurochemical basis for this is unclear. Our objective was to measure dopaminergic and cholinergic receptors in the basal ganglia of PSP and control brains. We measured, autoradiographically, dopaminergic (dopamine transporter, 125I PE2I and dopamine D2 receptors, 125I epidepride) and cholinergic (nicotinic alpha4beta2 receptors, 125I 5IA85380 and muscarinic M1 receptors, 3H pirenzepine) parameters in the striatum and pallidum of pathologically confirmed PSP cases (n=15) and controls (n=32). In PSP, there was a marked loss of dopamine transporter and nicotinic alpha4beta2 binding in the striatum and pallidum, consistent with loss of nigrostriatal neurones. Striatal D2 receptors were increased in the caudate and muscarinic M1 receptors were unchanged compared with controls. These results do not account for the poor response to dopaminergic and cholinergic replacement therapies in PSP, and suggest relative preservation of postsynaptic striatal projection neurones bearing D2/M1 receptors. PMID:17534953

  12. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  13. Brain gangliosides of a transgenic mouse model of Alzheimer's disease with deficiency in GD3-synthase: expression of elevated levels of a cholinergic-specific ganglioside, GT1aα

    Directory of Open Access Journals (Sweden)

    Toshio Ariga

    2013-05-01

    Full Text Available In order to examine the potential involvement of gangliosides in AD (Alzheimer's disease, we compared the ganglioside compositions of the brains of a double-transgenic (Tg mouse model [APP (amyloid precursor protein/PSEN1 (presenilin] of AD and a triple mutant mouse model with an additional deletion of the GD3S (GD3-synthase gene (APP/PSEN1/GD3S−/−. These animals were chosen since it was previously reported that APP/PSEN1/GD3S−/− triple-mutant mice performed as well as WT (wild-type control and GD3S−/− mice on a number of reference memory tasks. Cholinergic neuron-specific gangliosides, such as GT1aα and GQ1bα, were elevated in the brains of double-Tg mice (APP/PSEN1, as compared with those of WT mice. Remarkably, in the triple mutant mouse brains (APP/PSEN1/GD3S−/−, the concentration of GT1aα was elevated and as expected there was no expression of GQ1bα. On the other hand, the level of c-series gangliosides, including GT3, was significantly reduced in the double-Tg mouse brain as compared with the WT. Thus, the disruption of the gene of a specific ganglioside-synthase, GD3S, altered the expression of cholinergic neuron-specific gangliosides. Our data thus suggest the intriguing possibility that the elevated cholinergic-specific ganglioside, GT1aα, in the triple mutant mouse brains (APP/PSEN1/GD3S−/− may contribute to the memory retention in these mice.

  14. Regulation of gonadotropin receptor gene expression

    NARCIS (Netherlands)

    A.P.N. Themmen (Axel); R. Kraaij (Robert); J.A. Grootegoed (Anton)

    1994-01-01

    textabstractThe receptors for the gonadotropins differ from the other G protein-coupled receptors by having a large extracellular hormone-binding domain, encoded by nine or ten exons. Alternative splicing of the large pre-mRNA of approximately 100 kb can result in mRNA species that encode truncated

  15. Vitamin D3 receptor is highly expressed in Hodgkin's lymphoma

    OpenAIRE

    Christoph, Renné; Benz, Alexander H; Hansmann, Martin L

    2012-01-01

    Background: Hodkin s lymphoma is one of the most frequent lymphoma in western world. Despite an overall good prognosis some patients suffer relapsing tumors which are difficult to cure. Over a long period Vitamin D has been shown to be a potential treatment for cancer. Vitamin D acts via the vitamin D receptor, a nuclear receptor, acting as an inducible transcription factor. We aimed to investigate the expression of vitamin D receptor as potential therapeutic target structure in Hodgkin s lym...

  16. Expression of Tas1 taste receptors in mammalian spermatozoa

    OpenAIRE

    Meyer, Dorke; Voigt, Anja; Widmayer, Patricia; Borth, Heike; Huebner, Sandra; Breit, Andreas; Marschall, Susan; Hrabé de Angelis, Martin; Boehm, Ulrich; Meyerhof, Wolfgang; Gudermann, Thomas; Boekhoff, Ingrid

    2012-01-01

    Background: During their transit through the female genital tract, sperm have to recognize and discriminate numerous chemical compounds. However, our current knowledge of the molecular identity of appropriate chemosensory receptor proteins in sperm is still rudimentary. Considering that members of the Tas1r family of taste receptors are able to discriminate between a broad diversity of hydrophilic chemosensory substances, the expression of taste receptors in mammalian spermatozoa was examined...

  17. Dopamine receptor expression and function in corticotroph pituitary tumors

    OpenAIRE

    Pivonello, Rosario; Lamberts, Steven; Ferone, Diego; De Herder, Wouter; Kros, Johan; Caro, M.L.; M. Arvigo; Annunziato, L; Lombardi, Gaetano; Colao, Annamaria; Hofland, Leo

    2004-01-01

    textabstractThe role of dopamine agonist treatment in corticotroph pituitary tumors is controversial. The aim of this study was to evaluate D(2) receptor expression in 20 corticotroph pituitary tumors and to correlate it to the in vitro effect of dopamine agonists on ACTH secretion and the in vivo effect of short-term cabergoline treatment on cortisol secretion. D(2) expression was evaluated by receptor-ligand binding, immunohistochemistry, and RT-PCR. A 50% or more decrease in daily urinary ...

  18. Organization and expression of canine olfactory receptor genes.

    OpenAIRE

    Issel-Tarver, L; Rine, J

    1996-01-01

    Four members of the canine olfactory receptor gene family were characterized. The predicted proteins shared 40-64% identity with previously identified olfactory receptors. The four subfamilies identified in Southern hybridization experiments had as few as 2 and as many as 20 members. All four genes were expressed exclusively in olfactory epithelium. Expression of multiple members of the larger subfamilies was detected, suggesting that most if not all of the cross-hybridizing bands in genomic ...

  19. Giant vesicles functionally expressing membrane receptors for an insect pheromone.

    Science.gov (United States)

    Hamada, Satoshi; Tabuchi, Masashi; Toyota, Taro; Sakurai, Takeshi; Hosoi, Tomohiro; Nomoto, Tomonori; Nakatani, Kei; Fujinami, Masanori; Kanzaki, Ryohei

    2014-03-18

    To date, biochemical approaches to membrane receptors have been limited to the following methods: knockout or overexpression of membrane receptors by gene introduction and genome engineering or extraction of membrane receptor-surfactant complexes from innate cells and their introduction into model biomembranes. Here, we describe the development of a third method involving gene expression using cell-free in situ protein synthesis inside model biomembrane capsules. We verified this method by synthesizing olfactory receptors from the silkmoth Bombyx mori inside giant vesicles and found that they were excited in the presence of their ligand the Bombyx mori sex pheromone. PMID:24509495

  20. GABAergic actions on cholinergic laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Kohlmeier, K A; Kristiansen, Uffe

    2010-01-01

    Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated. In...... vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored...... neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for d-subunit containing GABA(A) receptors, induced inward currents, suggesting the...

  1. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Carlos M. Carballosa

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  2. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    International Nuclear Information System (INIS)

    The effects of brief incubation with carbamylcholine on subsequent binding of [3H]N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with [3H]N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent [3H]N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation

  3. Identification of novel viral receptors with cell line expressing viral receptor-binding protein.

    Science.gov (United States)

    Mei, Mei; Ye, Jianqiang; Qin, Aijian; Wang, Lin; Hu, Xuming; Qian, Kun; Shao, Hongxia

    2015-01-01

    The viral cell receptors and infection can be blocked by the expression of the viral receptor-binding protein. Thus, the viral cell receptor is an attractive target for anti-viral strategies, and the identification of viral cell receptor is critical for better understanding and controlling viral disease. As a model system for viral entry and anti-retroviral approaches, avian sarcoma/leukosis virus (ASLV, including the A-J ten subgroups) has been studied intensively and many milestone discoveries have been achieved based on work with ASLV. Here, we used a DF1 cell line expressed viral receptor-binding protein to efficiently identify chicken Annexin A2 (chANXA2) as a novel receptor for retrovirus ALV-J (avian leukosis virus subgroup J). Our data demonstrate that antibodies or siRNA to chANXA2 significantly inhibited ALV-J infection and replication, and over-expression of chANXA2 permitted the entry of ALV-J into its non-permissible cells. Our findings have not only identified chANXA2 as a novel biomarker for anti-ALV-J, but also demonstrated that cell lines with the expression of viral receptor-binding protein could be as efficient tools for isolating functional receptors to identify novel anti-viral targets. PMID:25604889

  4. Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster.

    Science.gov (United States)

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Proost, Paul; Vanden Broeck, Jozef

    2015-06-01

    Leucine-rich repeat containing G protein-coupled receptors (LGRs) comprise a cluster of transmembrane proteins, characterized by the presence of a large N-terminal extracellular domain. This receptor group can be classified into three subtypes. Belonging to the subtype C LGRs are the mammalian relaxin receptors LGR7 (RXFP1) and LGR8 (RXFP2), which mediate important reproductive and other processes. We identified two related receptors in the genome of the fruit fly and cloned their open reading frames into an expression vector. Interestingly, dLGR3 demonstrated constitutive activity at very low doses of transfected plasmid, whereas dLGR4 did not show any basal activity. Both receptors exhibited a similar expression pattern during development, with relatively high transcript levels during the first larval stage. In addition, both receptors displayed higher expression in male adult flies as compared to female flies. Analysis of the tissue distribution of both receptor transcripts revealed a high expression of dLGR3 in the female fat body, while the expression of dLGR4 peaked in the midgut of both the wandering and adult stage. PMID:25064813

  5. Impairment of cognitive function and reduced hippocampal cholinergic activity in a rat model of chronic intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    Chunling Zhao; Yan Chen; Chunlai Zhang; Linya Lü; Qian Xu

    2011-01-01

    The present study established a rat model of chronic intermittent hypoxia (CIH) to simulate obstructive sleep apnea syndrome. CIH rats were evaluated for cognitive function using the Morris water maze, and neuronal pathology in the hippocampus was observed using hematoxylin-eosin staining. In addition, hippocampal choline acetyl transferase (ChAT) and nicotinic acetylcholine receptor (nAChR) expression was determined by immunohistochemistry. Our results revealed necrotic hippocampal neurons, decreased ChAT and nAChR expression, as well as cognitive impairment in CIH rats. These results suggest that hippocampal neuronal necrosis and decreased cholinergic activity may be involved in CIH-induced cognitive impairment in rats.

  6. Expression of somatotropin receptor messenger ribonucleic acid in bovine tissues

    International Nuclear Information System (INIS)

    The somatotropin receptor mRNA is controlled by at least two different gene promoters that generate 2 two variants with different exon 1 sequences (1A and 1B). The location of 1A and 1B somatotropin receptor mRNA within cattle tissues and, hence, the tissue specificity of the 1A and 1B promoters are unknown. In addition, the cDNA sequence of the 1B somatotropin receptor has not been determined. Our objective, therefore, was to sequence a cDNA for the 1B somatotropin receptor and to analyze bovine tissues for expression of 1A and 1B somatotropin receptor mRNA. Twenty adult tissues and six fetal tissues were collected at slaughter from each of four cows and two fetuses. Messenger RNA was analyzed using ribonuclease protection assays. The adult liver expressed both 1A and 1B mRNA. All other adult tissues expressed 1B mRNA but not 1A mRNA. The greatest amount of 1B mRNA was detected in liver and adipose (abdominal and subcutaneous) tissues. Other tissues had approximately one-half to one-tenth of the amount of 1B mRNA in the liver or adipose tissue. Fetal tissues (including fetal liver) expressed 1B mRNA and not 1A mRNA. Based on cDNA sequencing, the protein encoded by the 1A and 1B mRNA was nearly identical. We concluded that 1A somatotropin receptor mRNA is specific to adult bovine liver. Other adult and fetal bovine tissues expressed 1B somatotropin receptor mRNA with a predicted protein sequence that was similar to the 1A somatotropin receptor

  7. Gut feeling: MicroRNA discriminators of the intestinal TLR9-cholinergic links.

    Science.gov (United States)

    Nadorp, Bettina; Soreq, Hermona

    2015-11-01

    The intestinal tissue notably responds to stressful, cholinergic and innate immune signals by microRNA (miRNA) changes, but whether and how those miRNA regulators modify the intestinal cholinergic and innate immune pathways remained unexplored. Here, we report changes in several miRNA regulators of cholinesterases (ChEs) and correspondingly modified ChE activities in intestine, splenocytes and the circulation of mice exposed to both stress and canonical or alternative Toll-Like Receptor 9 (TLR9) oligonucleotide (ODN) aptamer activators or blockers. Stressful intraperitoneal injection of saline, the anti-inflammatory TLR9 agonist mEN101 aptamer or the inflammation-activating TLR9 aptamer ODN 1826 all increased the expression of the acetylcholinesterase (AChE)-targeting miR-132. In comparison, mEN101 but neither ODN 1826 nor saline injections elevated intestinal miR-129-5p, miR-186 and miR-200c, all predicted to target both AChE and the homologous enzyme butyrylcholinesterase (BChE). In cultured immune cells, BL-7040, the human counterpart of mEN101, reduced AChE activity reflecting inflammatory reactions in a manner preventable by the TLR9 blocking ODN 2088. Furthermore, the anti-inflammatory BL-7040 TLR9 aptamer caused reduction in nitric oxide and AChE activity in both murine splenocytes and human mononuclear cells at molar concentrations four orders of magnitude lower than ODN 1826. Our findings demonstrate differential reaction of cholinesterase-targeting miRNAs to distinct TLR9 challenges, indicating upstream miRNA co-regulation of the intestinal alternative NFκB pathway and cholinergic signaling. TLR9 aptamers may hence potentiate miRNA regulation that enhances cholinergic signaling and the resolution of inflammation, which opens new venues for manipulating bowel diseases. PMID:26003847

  8. Regulation of fibrinogen receptor expression on human platelets

    International Nuclear Information System (INIS)

    Platelet aggregation requires the binding of fibrinogen to specific receptors on the plasma membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The authors have developed a monoclonal anti-IIb-IIIa antibody (PAC-1) that binds only to stimulated platelets and only in the presence of Ca. In order to better understand the steps leading to platelet aggregation, the authors used radiolabeled PAC-1 and fibrinogen to examine the effect of the α2-adrenergic agonist, epinephrine, on the expression and function of the fibrinogen receptor. The addition of epinephrine to unstirred platelets caused and immediate increase in PAC-1 and fibrinogen binding that was associated with platelet aggregation once the platelets were stirred. Even after prolonged incubation of the platelets with epinephrine, fibrinogen receptor expression could be reversed by adding EGTA, PGl2, or the α2-adrenergic antagonist, phentolamine. When unstirred platelets were exposed to epinephrine for more than 10 min, the extent of aggregation caused by subsequent stirring was decreased by 70%. Surprisingly, these desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due to a decrease in fibrinogen receptor expression or function. These studies demonstrate that: (1) fibrinogen receptor expression is dependent on extracellular CA; (2) induction of the fibrinogen receptor by epinephrine requires the continued presence of the agonist; and (3) prolonged stimulation of the platelet by epinephrine can lead to a reduced aggregation response by a mechanism that does not involve a loss of either fibrinogen recepor expression or fibrinogen binding

  9. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    Science.gov (United States)

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  10. The involvement of cholinergic neurons in the spreading of tau pathology

    Directory of Open Access Journals (Sweden)

    Diana eSimon

    2013-06-01

    Full Text Available Long time ago, it was described the selective loss of cholinergic neurons during the development of Alzheimer disease. Recently, it has been suggested that tau protein may play a role in that loss of cholinergic neurons through a mechanism involving the interaction of extracellular tau with M1/M3 muscarinic receptors present in the cholinergic neurons. This interaction between tau and muscarinic receptors may be a way, although not the only one, to explain the spreading of tau pathology occurring in Alzheimer disease.

  11. The cholinergic system in the olfactory center of the terrestrial slug Limax.

    Science.gov (United States)

    Matsuo, Ryota; Kobayashi, Suguru; Wakiya, Kyoko; Yamagishi, Miki; Fukuoka, Masayuki; Ito, Etsuro

    2014-09-01

    Acetylcholine plays various important roles in the central nervous system of invertebrates as well as vertebrates. In the olfactory center of the terrestrial slug Limax, the local field potential (LFP) oscillates, and the change in its oscillatory frequency is thought to correlate with the detection of odor that potentially changes an ongoing behavior of the animal. Acetylcholine is known to upregulate the frequency of the LFP oscillation, and is one of the candidates for the neurotransmitters that are involved in such higher cognitive functions. However, there have been no histological data on the cholinergic system in gastropods, nor are there data on the receptors that are responsible for the upregulation of the oscillatory frequency of LFP due to the lack of analytical tools (such as antibodies or cDNA sequence information on cholinergic system-related genes). Here we cloned the cDNAs of choline acetyltransferase (ChAT), acetylcholinesterase, vesicular acetylcholine transporter, and several nicotinic acetylcholine receptors (nAChRs), and investigated their localization in the brain of Limax. We also generated a polyclonal antibody against ChAT to examine its localization, and investigated pharmacologically the involvement of nAChRs in the LFP oscillation. Our data showed: 1) dense distribution of the neurons expressing mRNAs of ChAT and vesicular acetylcholine transporter in the olfactory center; 2) spatially unique expression patterns of different nAChRs in the olfactory center; 3) involvement of nAChRs in the upregulation of the oscillation; 4) localization of ChAT protein in nerve fibers and/or terminals; and 5) the presence of cholinergic nerves in the tentacles. PMID:24523205

  12. Multiple melanocortin receptors are expressed in bone cells

    Science.gov (United States)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  13. Recombinant expression of the Aryl Hydrocarbon Receptor

    OpenAIRE

    Shaikh-Omar, Osama

    2007-01-01

    Aryl Hydrocarbon Receptor (AhR) mediates drug and toxin action. The AhR proteins have been characterised in several mammalian species, and are soluble proteins found in various tissues. The AhR is normally found in the cytoplasm in a complex with 90 KDa heat shock protein (hsp90) and cellular chaperones such as ARA9 (AIP or XAP2) and p23. However, there has not been a systematic analysis of the proteins which chaperone the AhR ligand-binding domain (LBD). This work investigates the interactio...

  14. The chicken progesterone receptor: sequence, expression and functional analysis.

    OpenAIRE

    Gronemeyer, H; Turcotte, B; Quirin-Stricker, C; Bocquel, M T; Meyer, M E; Krozowski, Z; Jeltsch, J M; Lerouge, T; Garnier, J M; P. Chambon

    1987-01-01

    The complete mRNA sequence of the chicken progesterone receptor (cPR) has been determined. Expression of the cloned cDNA both in vivo and in vitro produces a protein that has the same apparent mol. wt on SDS--polyacrylamide gels as the 'natural' cPR form B (109 kd) as determined by immunoblotting and photoaffinity labelling. When expressed in HeLa or in Cos-1 cells the 'cloned' cPR displays hormone binding characteristics indistinguishable from the 'natural' receptor and, in the presence of p...

  15. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  16. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    International Nuclear Information System (INIS)

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade

  17. Glucocorticoid programming of the mesopontine cholinergic system

    Directory of Open Access Journals (Sweden)

    Sónia eBorges

    2013-12-01

    Full Text Available Stress perception, response, adaptation and coping strategies are individually distinct, and the sequel of stress and/or glucocorticoids is also distinct between subjects. In the last years, it has become clear that early life stress is a powerful modulator of neuroendocrine stress-responsive circuits, programming intrinsic susceptibility to stress, and potentiating the appearance of stress-related disorders such as depression, anxiety and addiction. Herein we were interested in understanding how early life experiences reset the normal processing of negative stimuli, leading to emotional dysfunction. Animals prenatally exposed to glucocorticoids (iuGC present hyperanxiety, increased fear behaviour and hyper-reactivity to negative stimuli. In parallel, we found a remarkable increase in the number of aversive 22kHz ultrasonic vocalizations in response to an aversive cue. Considering the suggested role of the mesopontine tegmentum cholinergic pathway, arising from the laterodorsal tegmental nucleus (LDT and pedunculopontine tegmental nucleus (PPT, in the initiation of 22kHz vocalizations and hypothetically in the control of emotional arousal and tone, we decided to evaluate the condition of this circuit in iuGC animals. Notably, in a basal situation, iuGC animals present increased choline acetyltransferase (ChAT expression in the LDT and PPT, but not in other cholinergic nuclei, namely in the nucleus basalis of Meynert. In addition, and in accordance with the amplified response to an adverse stimulus of iuGC animals, we found marked changes in the cholinergic activation pattern of LDT and PPT regions. Altogether, our results suggest a specific cholinergic pathway programing by prenatal GC, and hint that this may be of relevance in setting individuals stress vulnerability threshold.

  18. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  19. Up-regulated expression of the alpha7 nicotinic acetylcholine receptor subunit on inflammatory infiltrates during Dictyocaulus viviparus infection.

    Science.gov (United States)

    Lazari, O; Kipar, A; Johnson, D R; Selkirk, M E; Matthews, J B

    2006-09-01

    Cholinergic signalling is known to affect immune cell function, but few studies have addressed its relevance during nematode infection. We therefore analysed the anatomical distribution and expression pattern of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in lungs obtained from Dictyocaulus viviparus-infected and uninfected control cattle. The analysis was performed on trachea and lung parenchyma from uninfected animals and animals necropsied at 15, 22 and 43 days post-infection (DPI). Localization of the alpha7 nAChR was evaluated by immunohistology and mRNA expression analysed by gene-specific reverse transcription-polymerase chain reaction (RT-PCR). In uninfected animals, tracheal, bronchial and bronchiolar epithelium and smooth muscle cells constitutively expressed the alpha7 nAChR, as did type I and II alveolar epithelial cells and alveolar macrophages and a few infiltrating leucocytes. By 15 DPI, immunohistology revealed a massive influx of alpha7 nAChR+ inflammatory cells into the lung parenchyma and tracheal wall. This was reflected in the RT-PCR results. At later time points, both parenchyma and tracheal wall contained large numbers of alpha7 nAChR+ leucocytes, but detection of transcript was restricted to the trachea. Recruitment of nAChR-containing leucocytes to the lungs of D. viviparus-infected cattle suggests that these cells may represent possible downstream targets for parasite-secreted acetylcholinesterases. PMID:16916366

  20. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    Science.gov (United States)

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  1. Characterization of urokinase receptor expression by human placental trophoblasts.

    Science.gov (United States)

    Zini, J M; Murray, S C; Graham, C H; Lala, P K; Karikó, K; Barnathan, E S; Mazar, A; Henkin, J; Cines, D B; McCrae, K R

    1992-06-01

    The processes of implantation and placentation are both dependent on the invasion and remodeling of the uterine endometrium and vasculature by trophoblasts. Because the secretion and autocrine binding of urokinase (uPA) appears to be a common mechanism used by cells to facilitate plasmin-dependent tissue invasion, we measured the production of uPA and expression of uPA receptors by trophoblasts. Prourokinase bound specifically, reversibly, and with high affinity to cultured trophoblasts, via the uPA epidermal growth factor-like domain. Trophoblasts derived from two first-trimester placentae bound more prourokinase than cells isolated from term placentae. Furthermore, in vitro differentiation of cultured cytotrophoblasts into syncytiotrophoblasts was associated with diminished expression of urokinase receptors and a parallel decrease in the cellular content of uPA receptor mRNA. Trophoblasts also secreted prourokinase and plasminogen activator inhibitors types 1 and 2 (PAI-1 and PAI-2). Although prourokinase was secreted in amounts sufficient to endogenously saturate trophoblast uPA receptors, trophoblasts secreted greater amounts of PAI-1 and PAI-2 than uPA, and no net plasminogen activator activity was detected in trophoblast conditioned medium. In contrast, plasminogen added directly to cultured trophoblasts was readily converted to plasmin. Although the invasion and remodeling of uterine tissues by trophoblasts is a complex process dependent on several proteases of varying specificity, our findings suggest that the expression and modulation of urokinase receptors on the trophoblast cell surface may play an important role in this process. PMID:1316787

  2. Protocol for Heterologous Expression of Insect Odourant Receptors in Drosophila

    OpenAIRE

    Gonzalez, Francisco; Witzgall, Peter; Walker, William B.

    2016-01-01

    Insect olfactory receptors (ORs) are tuned to volatile chemicals, they are expressed in the membrane of olfactory sensory neurons (OSNs), housed in sensilla on the antenna. The olfactory apparatus is under strong selection and ORs are tuned to vital chemical signals, mediating social communication, feeding and oviposition, and avoidance of predators and pathogens. An emerging technique to reliably and efficiently identify the key ligands of ORs is to express single ORs in heterologous cell sy...

  3. Epidermal growth factor receptor expression in canine transitional cell carcinoma

    OpenAIRE

    HANAZONO, Kiwamu; Fukumoto, Shinya; KAWAMURA, Yoshio; ENDO, Yoshifumi; Kadosawa, Tsuyoshi; IWANO, Hidetomo; UCHIDE, Tsuyoshi

    2014-01-01

    Transitional cell carcinoma (TCC), a urinary bladder tumor with high mortality, is encountered commonly in dogs. Whereas overexpression of epidermal growth factor receptor (EGFR) is associated with development of human urinary bladder cancer, information on EGFR expression in canine TCC is lacking. In this study, EGFR protein and mRNA expression in canine normal bladder (n=5), polypoid cystitis (n=5) and TCC (n=25) were examined by immunohistochemistry and real-time polymerase chain reaction....

  4. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  5. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    Science.gov (United States)

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  6. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    André M. Xavier

    2016-04-01

    Full Text Available Glucocorticoids (GCs are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GCs effects on inflammation are generally mediated through GC receptors (GRs. Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors (TLRs pathway, or subject key transcription factors, such as NF-B and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins (APPs and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective glucocorticoid receptor modulators; SEGRMs, cell culture, animal treatment or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive.

  7. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    Science.gov (United States)

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  8. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    cell membranes, with a varying pattern in individual carcinomas. EGF-R expression was not correlated with histologic grade, surgical stage, or estrogen/progesterone receptor status evaluated immunohistochemically or biochemically in adjacent tissue sections of the tumor. Ten of 13 (77%) atrophic...

  9. Evaluation of leptin receptor expression on buffalo leukocytes.

    Science.gov (United States)

    De Matteis, Giovanna; Grandoni, Francesco; Scatà, Maria Carmela; Catizone, Angela; Reale, Anna; Crisà, Alessandra; Moioli, Bianca

    2016-09-01

    Experimental evidences support a direct role for leptin in immunity. Besides controlling food intake and energy expenditure, leptin was reported to be involved in the regulation of the immune system in ruminants. The aim of this work was to highlight the expression of leptin receptor (LEPR) on Bubalus bubalis immune cells using a multi-approach assessment: flow cytometry, confocal microscopy and gene expression analysis. Flow cytometric analysis of LEPR expression showed that peripheral blood monocytes were the predominant cells expressing LEPR. This result was corroborated by confocal microscopy and RT-PCR analysis. Moreover, among lymphocytes, LEPR was mainly expressed by B lymphocytes and Natural Killer cells. Evidence of LEPR expression on buffalo blood leukocytes showed to be a good indicator of the responsivity of these cells to leptin, so confirming the involvement of leptin in buffalo immune response. PMID:27436440

  10. Melanocortin 4 Receptor and Dopamine D2 Receptor Expression in Brain Areas Involved in Food Intake

    OpenAIRE

    Yoon, Ye Ran; Baik, Ja-Hyun

    2015-01-01

    Background The melanocortin 4 receptor (MC4R) is involved in the regulation of homeostatic energy balance by the hypothalamus. Recent reports showed that MC4R can also control the motivation for food in association with a brain reward system, such as dopamine. We investigated the expression levels of MC4R and the dopamine D2 receptor (D2R), which is known to be related to food rewards, in both the hypothalamus and brain regions involved in food rewards. Methods We examined the expression leve...

  11. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells

    OpenAIRE

    Basu, Sreyashi; Srivastava, Pramod

    2005-01-01

    Capsaicin (CP), the pungent component of chili pepper, acts on sensory neurons to convey the sensation of pain. The CP receptor, vanilloid receptor 1 (VR1), has been shown to be highly expressed by nociceptive neurons in dorsal root and trigeminal ganglia. We demonstrate here that the dendritic cell (DC), a key cell type of the vertebrate immune system, expresses VR1. Engagement of VR1 on immature DCs such as by treatment with CP leads to maturation of DCs as measured by up-regulation of anti...

  12. TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy.

    Science.gov (United States)

    Smith, Terry J

    2015-03-01

    Thyroid-associated ophthalmopathy (TAO) is a vexing and undertreated ocular component of Graves disease in which orbital tissues undergo extensive remodelling. My colleagues and I have introduced the concept that fibrocytes expressing the haematopoietic cell antigen CD34 (CD34(+) fibrocytes), which are precursor cells of bone-marrow-derived monocyte lineage, express the TSH receptor (TSHR). These cells also produce several other proteins whose expression was traditionally thought to be restricted to the thyroid gland. TSHR-expressing fibrocytes in which the receptor is activated by its ligand generate extremely high levels of several inflammatory cytokines. Acting in concert with TSHR, the insulin-like growth factor 1 receptor (IGF-1R) expressed by orbital fibroblasts and fibrocytes seems to be necessary for TSHR-dependent cytokine production, as anti-IGF-1R blocking antibodies attenuate these proinflammatory actions of TSH. Furthermore, circulating fibrocytes are highly abundant in patients with TAO and seem to infiltrate orbital connective tissues, where they might transition to CD34(+) fibroblasts. My research group has postulated that the infiltration of fibrocytes into the orbit, their unique biosynthetic repertoire and their proinflammatory and profibrotic phenotype account for the characteristic properties exhibited by orbital connective tissues that underlie susceptibility to TAO. These insights, which have emerged in the past few years, might be of use in therapeutically targeting pathogenic orbit-infiltrating fibrocytes selectively by utilizing novel biologic agents that interfere with TSHR and IGF-1R signalling. PMID:25560705

  13. The expression of nicotinic receptor alpha7 during cochlear development

    OpenAIRE

    Rogers, Scott W.; Myers, Elizabeth J.; Gahring, Lorise C.

    2012-01-01

    Nicotinic acetylcholine receptor alpha7 expression was examined in the developing and adult auditory system using mice that were modified through homologous recombination to coexpress either GFP (alpha7GFP) or Cre (alpha7Cre), respectively. The expression of alpha7GFP is first detected at embryonic (E) day E13.5 in cells of the spiral prominence. By E14.5, sensory regions including the putative outer hair cells and Deiters' cells express alpha7GFP as do solitary efferent fibers. This pattern ...

  14. Properties of cholinergic and non-cholinergic submucosal neurons along the mouse colon.

    Science.gov (United States)

    Foong, Jaime Pei Pei; Tough, Iain R; Cox, Helen M; Bornstein, Joel C

    2014-02-15

    Submucosal neurons are vital regulators of water and electrolyte secretion and local blood flow in the gut. Due to the availability of transgenic models for enteric neuropathies, the mouse has emerged as the research model of choice, but much is still unknown about the murine submucosal plexus. The progeny of choline acetyltransferase (ChAT)-Cre × ROSA26(YFP) reporter mice, ChAT-Cre;R26R-yellow fluorescent protein (YFP) mice, express YFP in every neuron that has ever expressed ChAT. With the aid of the robust YFP staining in these mice, we correlated the neurochemistry, morphology and electrophysiology of submucosal neurons in distal colon. We also examined whether there are differences in neurochemistry along the colon and in neurally mediated vectorial ion transport between the proximal and distal colon. All YFP(+) submucosal neurons also contained ChAT. Two main neurochemical but not electrophysiological groups of neurons were identified: cholinergic (containing ChAT) or non-cholinergic. The vast majority of neurons in the middle and distal colon were non-cholinergic but contained vasoactive intestinal peptide. In the distal colon, non-cholinergic neurons had one or two axons, whereas the cholinergic neurons examined had only one axon. All submucosal neurons exhibited S-type electrophysiology, shown by the lack of long after-hyperpolarizing potentials following their action potentials and fast excitatory postsynaptic potentials (EPSPs). Fast EPSPs were predominantly nicotinic, and somatic action potentials were mediated by tetrodotoxin-resistant voltage-gated channels. The size of submucosal ganglia decreased but the proportion of cholinergic neurons increased distally along the colon. The distal colon had a significantly larger nicotinic ion transport response than the proximal colon. This work shows that the properties of murine submucosal neurons and their control of epithelial ion transport differ between colonic regions. There are several key differences

  15. Expression of serotonin receptor genes in cranial ganglia.

    Science.gov (United States)

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  16. Dopamine receptor expression and function in corticotroph pituitary tumors.

    Science.gov (United States)

    Pivonello, Rosario; Ferone, Diego; de Herder, Wouter W; Kros, Johan M; De Caro, Maria Laura Del Basso; Arvigo, Marica; Annunziato, Lucio; Lombardi, Gaetano; Colao, Annamaria; Hofland, Leo J; Lamberts, Steven W J

    2004-05-01

    The role of dopamine agonist treatment in corticotroph pituitary tumors is controversial. The aim of this study was to evaluate D(2) receptor expression in 20 corticotroph pituitary tumors and to correlate it to the in vitro effect of dopamine agonists on ACTH secretion and the in vivo effect of short-term cabergoline treatment on cortisol secretion. D(2) expression was evaluated by receptor-ligand binding, immunohistochemistry, and RT-PCR. A 50% or more decrease in daily urinary cortisol levels was considered a significant clinical response. At receptor-ligand binding, specific binding of [(125)I]epidepride was found in 80% of cases. At immunohistochemistry, specific D(2) immunostaining was found in 75% of cases. D(2) expression was found in 83.3% of cases (D(2long) in 40%, D(2short) in 20%, and both in 40%) by RT-PCR. Significant in vitro inhibition of ACTH secretion was found in 100% of D(2)-positive cases, but not in 100% of D(2)-negative cases by either bromocriptine or cabergoline. A significant in vivo inhibition of cortisol secretion after 3-month cabergoline treatment was found in 60%, although a normalization of cortisol secretion was found in 40% of cases. All cabergoline-responsive cases were associated with D(2) expression, whereas all noncabergoline-responsive cases but one were not associated with D(2) expression. In conclusion, functional D(2) receptors were expressed in approximately 80% of corticotroph pituitary tumors. The effectiveness of cabergoline in normalizing cortisol secretion in 40% of cases supports its therapeutic use in the management of Cushing's disease. PMID:15126577

  17. Novel G Protein-Coupled Oestrogen Receptor GPR30 Shows Changes in mRNA Expression in the Rat Brain over the Oestrous Cycle

    Directory of Open Access Journals (Sweden)

    Emma J. Spary

    2012-02-01

    Full Text Available Oestrogen influences autonomic function via actions at classical nuclear oestrogen receptors α and β in the brain, and recent evidence suggests the orphan G protein-coupled receptor GPR30 may also function as a cytoplasmic oestrogen receptor. We investigated the expression of GPR30 in female rat brains throughout the oestrous cycle and after ovariectomy to determine whether GPR30 expression in central autonomic nuclei is correlated with circulating oestrogen levels. In the nucleus of the solitary tract (NTS, ventrolateral medulla (VLM and periaqueductal gray (PAG GPR30 mRNA, quantified by real-time PCR, was increased in proestrus and oestrus. In ovariectomised (OVX rats, expression in NTS and VLM appeared increased compared to metoestrus, but in the hypothalamic paraventricular nucleus and PAG lower mRNA levels were seen in OVX. GPR30-like immunoreactivity (GPR30-LI colocalised with Golgi in neurones in many brain areas associated with autonomic pathways, and analysis of numbers of immunoreactive neurones showed differences consistent with the PCR data. GPR30-LI was found in a variety of transmitter phenotypes, including cholinergic, serotonergic, catecholaminergic and nitrergic neurones in different neuronal groups. These observations support the view that GPR30 could act as a rapid transducer responding to oestrogen levels and thus modulate the activity of central autonomic pathways.

  18. Expression of serotonin receptors in human lower esophageal sphincter

    OpenAIRE

    LI, HE-FEI; Liu, Jun-feng; Zhang, Ke; Feng, Yong

    2014-01-01

    Serotonin (5-HT) is a neurotransmitter and vasoactive amine that is involved in the regulation of a large number of physiological functions. The wide variety of 5-HT-mediated functions is due to the existence of different classes of serotonergic receptors in the mammalian gastrointestinal tract and nervous system. The aim of this study was to explore the expression of multiple types of 5-HT receptor (5-HT1AR, 5-HT2AR, 5-HT3AR, 5-HT4R, 5-HT5AR, 5-HT6R and 5-HT7R) in sling and clasp fibers from...

  19. Axotomy-induced neurotrophic withdrawal causes the loss of phenotypic differentiation and downregulation of NGF signalling, but not death of septal cholinergic neurons

    Directory of Open Access Journals (Sweden)

    Inestrosa Nibaldo C

    2010-01-01

    Full Text Available Abstract Background Septal cholinergic neurons account for most of the cholinergic innervations of the hippocampus, playing a key role in the regulation of hippocampal synaptic activity. Disruption of the septo-hippocampal pathway by an experimental transection of the fimbria-fornix drastically reduces the target-derived trophic support received by cholinergic septal neurons, mainly nerve growth factor (NGF from the hippocampus. Axotomy of cholinergic neurons induces a reduction in the number of neurons positive for cholinergic markers in the medial septum. In several studies, the reduction of cholinergic markers has been interpreted as analogous to the neurodegeneration of cholinergic cells, ruling out the possibility that neurons lose their cholinergic phenotype without dying. Understanding the mechanism of cholinergic neurodegeneration after axotomy is relevant, since this paradigm has been extensively explored as an animal model of the cholinergic impairment observed in neuropathologies such as Alzheimer's disease. The principal aim of this study was to evaluate, using modern quantitative confocal microscopy, neurodegenerative changes in septal cholinergic neurons after axotomy and to assess their response to delayed infusion of NGF in rats. Results We found that there is a slow reduction of cholinergic cells labeled by ChAT and p75 after axotomy. However, this phenomenon is not accompanied by neurodegenerative changes or by a decrease in total neuronal number in the medial septum. Although the remaining axotomized-neurons appear healthy, they are unable to respond to delayed NGF infusion. Conclusions Our results demonstrate that at 3 weeks, axotomized cholinergic neurons lose their cholinergic phenotype without dying and down-regulate their NGF-receptors, precluding the possibility of a response to NGF. Therefore, the physiological role of NGF in the adult septal cholinergic system is to support phenotypic differentiation and not survival

  20. Development and evaluation of muscarinic cholinergic receptor ligands n-[11c]ethyl-4-piperidyl benzilate and n-[11c]propyl-4-piperidyl benzilate: a PET study in comparison with n-[11c]methyl-4-piperidyl benzilate in the conscious monkey brain

    International Nuclear Information System (INIS)

    The muscarinic cholinergic receptor ligands N-[11C]ethyl-4-piperidyl benzilate (4-EPB) and N-[11C]propyl-4-piperidyl benzilate (4-PPB) were developed and evaluated in comparison with N-[11C]methyl-4-piperidyl benzilate (4-MPB) in the conscious monkey brain using positron emission tomography (PET). Time-activity curves of [11C]4-EPB, unlike [11C]4-MPB, showed peaks within 91 min in regions rich in muscarinic receptors. [11C]4-PPB showed no specific binding even in the regions rich in these receptors. These observation demonstrated that increases in [11C]alkyl chain length could alter the kinetic properties of receptor ligands for PET

  1. Unique expression pattern of the three insulin receptor family members in the rat mammary gland

    DEFF Research Database (Denmark)

    Hvid, Henning; Klopfleisch, Robert; Vienberg, Sara Gry; Hansen, Bo F.; Thorup, Inger; Jensen, Henrik Elvang; Oleksiewicz, Martin B.

    2011-01-01

    mammary gland. Using laser micro-dissection, quantitative RT-PCR and immunohistochemistry, we examined the expression of IR (insulin receptor), IGF-1R (IGF-1 receptor), IRR (insulin receptor-related receptor), ERα (estrogen receptor alpha), ERβ (estrogen receptor beta) and PR (progesteron receptor) in...... young, virgin, female Sprague-Dawley rats and compared to expression in reference organs. The mammary gland displayed the highest expression of IRR and IGF-1R. In contrast, low expression of IR transcripts was observed in the mammary gland tissue with expression of the IR-A isoform being 5-fold higher...... than the expression of the IR-B. By immunohistochemistry, expression of IR and IGF-1R was detected in all mammary gland epithelial cells. Expression of ERα and PR was comparable between mammary gland and ovary, whereas expression of ERβ was lower in mammary gland than in the ovary. Finally, expression...

  2. Expression of urokinase receptors by human trophoblast. A histochemical and ultrastructural analysis

    DEFF Research Database (Denmark)

    Multhaupt, H A; Mazar, A; Cines, D B;

    1994-01-01

    vivo has not been examined. EXPERIMENTAL DESIGN: Immunohistochemistry and immunoelectron microscopy were used to characterize the expression of urokinase receptors by villous and extravillous trophoblast at several points in gestation. RESULTS: Urokinase receptors were expressed in a polarized fashion...

  3. Triggering Receptor Expressed on Myeloid Cells in Cutaneous Melanoma.

    Science.gov (United States)

    Nguyen, Austin Huy; Koenck, Carleigh; Quirk, Shannon K; Lim, Victoria M; Mitkov, Mario V; Trowbridge, Ryan M; Hunter, William J; Agrawal, Devendra K

    2015-10-01

    The tumor microenvironment plays an important role in the progression of melanoma, the prototypical immunologic cutaneous malignancy. The triggering receptor expressed on myeloid cells (TREM) family of innate immune receptors modulates inflammatory and innate immune signaling. It has been investigated in various neoplastic diseases, but not in melanoma. This study examines the expression of TREM-1 (a proinflammatory amplifier) and TREM-2 (an anti-inflammatory modulator and phagocytic promoter) in human cutaneous melanoma and surrounding tissue. Indirect immunofluorescence staining was performed on skin biopsies from 10 melanoma patients and staining intensity was semiquantitatively scored. Expression of TREM-1 and TREM-2 was higher in keratinocytes than melanoma tissue (TREM-1: p < 0.01; TREM-2: p < 0.01). Whereas TREM-2 was the dominant isoform expressed in normal keratinocytes, TREM-1 expression predominated in melanoma tissue (TREM-1 to TREM-2 ratio: keratinocytes = 0.78; melanoma = 2.08; p < 0.01). The increased TREM ratio in melanoma tissue could give rise to a proinflammatory and protumor state of the microenvironment. This evidence may be suggestive of a TREM-1/TREM-2 paradigm in which relative levels dictate inflammatory and immune states, rather than absolute expression of one or the other. Further investigation regarding this paradigm is warranted and could carry prognostic or therapeutic value in treatment for melanoma. PMID:26184544

  4. Kallikrein and kinin receptor expression in inflammation and cancer.

    Science.gov (United States)

    Bhoola, K; Ramsaroop, R; Plendl, J; Cassim, B; Dlamini, Z; Naicker, S

    2001-01-01

    The kallikrein family of serine proteases has been investigated in many inflammatory disorders as molecular mapping, gene characterisation and cloning of kinin receptor genes have unfolded experimentally. In the molecular events of the inflammatory response the kallikrein cascade plays a significant role, since it is considered to initiate and maintain systemic inflammatory responses and immune-modulated disorders. A primary event is the chemotactic attraction of neutrophils which deliver the kallikrein-kinin cascade to sites of cellular injury and carcinogenic transformation of cells. The present study establishes the casual involvement of the kallikrein cascade in infection, inflammatory joint disease, acute transplant rejection, renal glomerular diseases, angiogenesis and carcinoma. We provide strong evidence for new or enhanced expression of kinin B1 receptors in inflammation, and additionally the induction of kallikrein genes in angiogenesis and carcinoma. The results provide insights into possible roles of kallikrein inhibitors and kinin receptor antagonists. PMID:11258677

  5. Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma

    Directory of Open Access Journals (Sweden)

    John Davies

    2012-01-01

    Full Text Available Canine osteosarcoma (OS is an aggressive malignant bone tumor. Prognosis is primarily determined by clinical parameters. Vitamin D has been postulated as a novel therapeutic option for many malignancies. Upon activation, vitamin D receptors (VDRs combine with retinoid receptor (RXR forming a heterodimer initiating a cascade of events. Vitamin D's antineoplastic activity and its mechanism of action in OS remain to be clearly established. Expression of VDR, RXR, Ki-67, survivin, and ezrin was studied in 33 archived, canine OS specimens. VDR, RXR, survivin, and ezrin were expressed in the majority of cases. There was no statistically significant difference in VDR expression in relationship with tumor grade, type, or locations or animal breed, age, and/or sex. No significant association (p=0.316 between tumor grade and Ki-67 expression was found; in particular, no difference in Ki-67 expression between grades 2 and 3 OSs was found, while a negative correlation was noted between Ki-67 and VDR expression (ρ=−0.466, a positive correlation between survivin and RXR expression was found (p=0.374. A significant relationship exists between VDR and RXR expression in OSs and proliferative/apoptosis markers. These results establish a foundation for elucidating mechanisms by which vitamin D induces antineoplastic activity in OS.

  6. Gut feeling: MicroRNA discriminators of the intestinal TLR9–cholinergic links

    OpenAIRE

    Nadorp, Bettina; Soreq, Hermona

    2015-01-01

    The intestinal tissue notably responds to stressful, cholinergic and innate immune signals by microRNA (miRNA) changes, but whether and how those miRNA regulators modify the intestinal cholinergic and innate immune pathways remained unexplored. Here, we report changes in several miRNA regulators of cholinesterases (ChEs) and correspondingly modified ChE activities in intestine, splenocytes and the circulation of mice exposed to both stress and canonical or alternative Toll-Like Receptor 9 (TL...

  7. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    Directory of Open Access Journals (Sweden)

    Jenny-Maria Jönsson

    2015-10-01

    Full Text Available Background and Aims: Although most ovarian cancers express estrogen (ER, progesterone (PR, and androgen (AR receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival in epithelial ovarian cancer. Methods: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer in an independent data set, hypothesizing that the expression levels and prognostic impact may differ between the subtypes. Results: Expression of PR or AR protein was associated with improved 5-year progression-free (P = .001 for both and overall survival (P < .001 for both, log-rank test. ERα and ERβ did not provide prognostic information. Patients whose tumors coexpressed PR and AR had the most favorable prognosis, and this effect was retained in multivariable analyses. Analyses of the corresponding genes using an independent data set revealed differences among the molecular subtypes, but no clear relationship between high coexpression of PGR and AR and prognosis. Conclusions: A favorable outcome was seen for patients whose tumors coexpressed PR and AR. Gene expression data suggested variable effects in the different molecular subtypes. These findings demonstrate a prognostic role for PR and AR in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer.

  8. Parathyroid hormone decreases renal vitamin D receptor expression in vivo

    OpenAIRE

    Healy, Kevin D.; Vanhooke, Janeen L.; Prahl, Jean M.; DeLuca, Hector F.

    2005-01-01

    The vitamin D receptor (VDR) is a nuclear transcription factor responsible for mediating the biological activities of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Renal and parathyroid gland VDR content is an important factor in calcium homeostasis, vitamin D metabolism, and the treatment of secondary hyperparathyroidism and renal osteodystrophy. In these tissues, VDR expression is highly regulated by the calcium and vitamin D status. Although 1,25(OH)2D3 up-regulates VDR expression, hypocalcemia ...

  9. Chemokine receptor expression by inflammatory T cells in EAE

    Directory of Open Access Journals (Sweden)

    Jyothi Thyagabhavan Mony

    2014-07-01

    Full Text Available Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS. The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS. The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4+ T cells that produce the cytokine IL-17 (Th17 cells. Th17 cells and interferon-gamma (IFNγ-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE. We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4+ T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 7.7% of CD4+ T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8+ T cells. CD8+ T cells expressed CXCR3, which was also expressed by CD4+ T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6+ and CXCR3+ CD4+ T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8+ T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4+ T cells expressed CCR6 within infiltrates. CD4-negative CCR6+ cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4+ and CD8+ T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  10. Spatiotemporal expression of Nogo-66 receptor after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yue Cao; Ya-xian Dong; Jie Xu; Guo-liang Chu; Zhi-hua Yang; Yan-ming Liu

    2016-01-01

    NgR, the receptor for the neurite outgrowth inhibitor Nogo-66, plays a critical role in the plasticity and regeneration of the nervous system after injury such as ischemic stroke. In the present study, we used immunohistochemistry to investigate the regional expression of NgR in rat brain following middle cerebral artery occlusion (MCAO). NgR protein expression was not observed in the center of the lesion, but was elevated in the marginal zone compared with control and sham-operated rats. The cerebral cortex and hippocampus (CA1, CA2, and CA3) showed the greatest expression of NgR. Furthermore, NgR expression was higher in the ipsilesional hemisphere than on the control side in the same coronal section. Although time-dependent changes in NgR expression across brain regions had their own characteristics, the overall trend complied with the following rules: NgR expression changes with time showed two peaks and one trough; the ifrst peak in expression appeared between 1 and 3 days after MCAO; expression declined at 5 days; and the second peak occurred at 28 days.

  11. A tale of two receptors: Dual roles for ionotropic acetylcholine receptors in regulating motor neuron excitation and inhibition.

    Science.gov (United States)

    Philbrook, Alison; Barbagallo, Belinda; Francis, Michael M

    2013-07-01

    Nicotinic or ionotropic acetylcholine receptors (iAChRs) mediate excitatory signaling throughout the nervous system, and the heterogeneity of these receptors contributes to their multifaceted roles. Our recent work has characterized a single iAChR subunit, ACR-12, which contributes to two distinct iAChR subtypes within the C. elegans motor circuit. These two receptor subtypes regulate the coordinated activity of excitatory (cholinergic) and inhibitory (GABAergic) motor neurons. We have shown that the iAChR subunit ACR-12 is differentially expressed in both cholinergic and GABAergic motor neurons within the motor circuit. In cholinergic motor neurons, ACR-12 is incorporated into the previously characterized ACR-2 heteromeric receptor, which shows non-synaptic localization patterns and plays a modulatory role in controlling circuit function.(1) In contrast, a second population of ACR-12-containing receptors in GABAergic motor neurons, ACR-12GABA, shows synaptic expression and regulates inhibitory signaling.(2) Here, we discuss the two ACR-12-containing receptor subtypes, their distinct expression patterns, and functional roles in the C. elegans motor circuit. We anticipate our continuing studies of iAChRs in the C. elegans motor circuit will lead to novel insights into iAChR function in the nervous system as well as mechanisms for their regulation. PMID:24778941

  12. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    OpenAIRE

    Shogo Sato; Ken Shirato; Kaoru Tachiyashiki; Kazuhiko Imaizumi

    2011-01-01

    We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented ...

  13. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  14. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  15. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  16. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    Science.gov (United States)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  17. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    Science.gov (United States)

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  18. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection.

    Science.gov (United States)

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-08-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP(-/-) MEF cells, and quite substantially decreased in TRIF(-/-) MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP(-/-) MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  19. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice.

    Science.gov (United States)

    Abdus-Saboor, Ishmail; Al Nufal, Mohammed J; Agha, Maha V; Ruinart de Brimont, Marion; Fleischmann, Alexander; Shykind, Benjamin M

    2016-04-25

    Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice. PMID:27040780

  20. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene

    OpenAIRE

    Kratsios, Paschalis; Stolfi, Alberto; Levine, Michael; Hobert, Oliver

    2011-01-01

    Cholinergic motor neurons are defined by the co-expression of a battery of genes which encode proteins that act sequentially to synthesize, package and degrade acetylcholine and reuptake its breakdown product, choline. How expression of these critical motor neuron identity determinants is controlled and coordinated is not understood. We show here that in the nematode Caenorhabditis elegans all members of the cholinergic gene battery, as well as many other markers of terminal motor neuron fate...

  1. The M4 muscarinic acetylcholine receptor play a key role in the control of murine hair follicle cycling and pigmentation

    OpenAIRE

    Hasse, Sybille; Chernyavsky, Alex I; Grando, Sergei A.; Paus, Ralf

    2007-01-01

    Cholinergic receptors of the muscarinic class (M1-M5) are expressed in epidermal keratinocytes and melanocytes as well as in the hair follicle. Knockout (KO) mice of all five receptors have been created and resulted in different phenotypes. KO mice with a deletion of the M4 muscarinic acetylcholine receptor (M4R) present a striking hair phenotype, which we have analyzed here in greater detail by quantitative histomorphometry. Earlier studies revealed a retarded hair follicle morphogenesis in ...

  2. A cholinergic hypothesis of the unconscious in affective disorders.

    Directory of Open Access Journals (Sweden)

    Costa eVakalopoulos

    2013-11-01

    Full Text Available The interactions between distinct pharmacological systems are proposed as a key dynamic in the formation of unconscious memories underlying rumination and mood disorder, but also reflect the plastic capacity of neural networks that can aid recovery. An inverse and reciprocal relationship is postulated between cholinergic and monoaminergic receptor subtypes. M1-type muscarinic receptor transduction facilitates encoding of unconscious, prepotent behavioural repertoires at the core of affective disorders and ADHD. Behavioural adaptation to new contingencies is mediated by the classic prototype receptor: 5-HT1A (Gi/o and its modulation of m1-plasticity. Reversal of learning is dependent on increased phasic activation of midbrain monoaminergic nuclei and is a function of hippocampal theta. Acquired hippocampal dysfunction due to abnormal activation of the hypothalamic-pituitary-adrenal (HPA axis predicts deficits in hippocampal-dependent memory and executive function and further impairments to cognitive inhibition. Encoding of explicit memories is mediated by Gq/11 and Gs signalling of monoamines only. A role is proposed for the phasic activation of the basal forebrain cholinergic nucleus by cortical projections from the complex consisting of the insula and claustrum. Although controversial. recent studies suggest a common ontogenetic origin of the two structures and a functional coupling. Lesions of the region result in loss of motivational behaviour and familiarity based judgements. A major hypothesis of the paper is that these lost faculties result indirectly, from reduced cholinergic tone.

  3. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs during inflammation induced visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2009-09-01

    Full Text Available Abstract Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs, co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG neurons expressing the transient receptor potential vanilloid-1 (TRPV1 receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned

  4. Prevalence of androgen receptors in invasive breast carcinoma and its relation with estrogen receptor, progesterone receptor and Her2/neu expression

    International Nuclear Information System (INIS)

    Background and aims: Although Breast carcinoma had many targeted bio markers for its treatment, however, it is a heterogeneous disease with different outcomes and need new markers especially for the triple negative group when estrogen receptor, progesterone receptors and Her2/ neu are negative. Androgen receptor is a new target with unclear role. The aim of this study was to examine the prevalence of androgen receptors in invasive breast cancer and tries to elucidate its relation to some well recognized clinico pathological and immunohistochemical markers. Materials and methods: One hundred and fifty cases of invasive breast carcinoma were evaluated for type, grade and stage and studied immunohistochemically for estrogen receptor, progesterone receptor, Her2/neu and androgen expression. Androgen receptor expression was correlated with histopathological factors and the three studied markers separately then the studied cases were classified into three groups according to estrogen, progesterone receptor and Her2/neu expression and correlated with androgen receptor expression. Results: Androgen receptor was expressed in 71% of breast cancer cases. Its expression is associated significantly with both the stage and the grade. Also it was significantly associated with estrogen receptor and Her2/neu expression. It was expressed in a significant number of triple negative breast carcinoma, in Her2/neu positive cases and in estrogen negative cases which indicate that androgen receptor could be a new target for the treatment of these groups. Conclusions: Although the impact of androgen receptor on breast cancer outcomes had not been clearly established, this result may provide evidence that androgen receptor is a good prognostic and predictive marker.

  5. Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer’s Disease

    OpenAIRE

    Kim, Hyeon-Joong; Shin, Eun-Joo; Lee, Byung-Hwan; Choi, Sun-Hye; Jung, Seok-Won; Cho, Ik-Hyun; Hwang, Sung-Hee; Kim, Joon Yong; Han, Jung-Soo; Chung, ChiHye; Jang, Choon-Gon; Rhim, Hyewon; Kim, Hyoung-Chun; Nah, Seung-Yeol

    2015-01-01

    Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer’s disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to i...

  6. GABAERGIC MODULATION OF STRIATAL CHOLINERGIC INTERNEURONS - AN IN-VIVO MICRODIALYSIS STUDY

    NARCIS (Netherlands)

    DEBOER, P; WESTERINK, BHC

    1994-01-01

    Striatal cholinergic interneurons have been shown to receive input from striatal gamma-aminobutyric acid (GABA)-containing cell elements. GABA is known to act on two different types of receptors, the GABA(A) and the GABA(B) receptor. Using in vivo microdialysis, we have studied the effect of intrast

  7. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    International Nuclear Information System (INIS)

    Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive

  8. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    Science.gov (United States)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  9. Downregulation of transferrin receptor surface expression by intracellular antibody

    International Nuclear Information System (INIS)

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 ± 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors

  10. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  11. Deregulated Fcγ receptor expression in patients with CIDP

    OpenAIRE

    Quast, Isaak; Cueni, Flavio; Nimmerjahn, Falk; Tackenberg, Björn; Lünemann, Jan D.

    2015-01-01

    Objective: To evaluate the expression of activating and inhibitory Fc-gamma receptors (FcγRs) before and during clinically effective therapy with IV immunoglobulin (IVIg) in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Methods: Peripheral blood leukocyte subsets, including classical CD14highCD16− and nonclassical inflammatory CD14lowCD16+ monocytes as well as naive CD19+CD27− and memory CD19+CD27+ B cells, were obtained at baseline and monitored at 2 and 4–8 weeks a...

  12. Expression of Interleukin 1 Receptor Antagonist in Human Cornea

    OpenAIRE

    Heur, Martin; Shyam S. Chaurasia; Wilson, Steven E.

    2008-01-01

    The purpose of this study was to confirm the expression of interleukin-1 receptor antagonist (IL-1 Ra) in the human cornea. Four samples of human ex vivo corneal epithelium were obtained from patients undergoing photorefractive keratectomy. RT-PCR was performed using mRNA isolated from the corneal epithelium and oligo-dT primers. PCR was performed on the cDNA products using primers specific for human IL-1Ra. The PCR products were subcloned and sequenced. Human cornea sections were prepared fr...

  13. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability

    Science.gov (United States)

    He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T.; Morgan, Dave; Burns, Jeffery M.; Swerdlow, Russell H.; Suo, William Z.

    2016-01-01

    Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer’s disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration. PMID:27193825

  14. Androgen receptor transcriptionally regulates μ-opioid receptor expression in rat trigeminal ganglia.

    Science.gov (United States)

    Lee, Ki Seok; Zhang, Youping; Asgar, Jamila; Auh, Q-Schick; Chung, Man-Kyo; Ro, Jin Y

    2016-09-01

    The involvement of testosterone in pain, inflammation, and analgesia has been reported, but the role of androgen receptor (AR), a steroid receptor for testosterone, is not well understood. We have previously shown that peripheral inflammation upregulates μ-opioid receptor (MOR) in rat trigeminal ganglia (TG) in a testosterone-dependent manner. In this study, we hypothesized that testosterone regulates MOR expression via transcriptional activities of AR in TG. We first examined whether AR is co-expressed with MOR in TG neurons. Our immunohistochemical experiment revealed that AR staining is detected in neurons of all sizes in TG and that a subset of AR is expressed in MOR as well as in TRPV1-positive neurons. We identified the promoter region of the rat MOR gene contains putative AR binding sites. Using chromatin immunoprecipitation assay, we demonstrated that AR directly binds to these sites in TG extracts. We confirmed with luciferase reporter assay that AR activated the MOR promoter in response to androgens in a human neuroblastoma cell line (5H-5YSY). These data demonstrated that AR functions as a transcriptional regulator of the MOR gene activity. Finally, we showed that flutamide, a specific AR antagonist, prevents complete Freund's adjuvant (CFA)-induced upregulation of MOR mRNA in TG, and that flutamide dose-dependently blocks the efficacy of DAMGO, a specific MOR agonist, on CFA-induced mechanical hypersensitivity. Our results expand the knowledge regarding the role of androgens and their receptor in pain and analgesia and have important clinical implications, particularly for inflammatory pain patients with low or compromised plasma testosterone levels. PMID:27320211

  15. Ionotropic glutamate receptor expression in human white matter.

    Science.gov (United States)

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-01

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. PMID:27443784

  16. Expression of CysLT2 receptors in asthma lung, and their possible role in bronchoconstriction

    Directory of Open Access Journals (Sweden)

    Tomohiko Sekioka

    2015-10-01

    Conclusions: CysLT2 receptors were expressed in lung specimens isolated from asthma subjects. Activation of CysLT2 receptors may contribute to antigen-induced bronchoconstriction in certain asthma population.

  17. Toll-like receptor 2 ligands regulate monocyte Fcγ receptor expression and function.

    Science.gov (United States)

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P

    2013-04-26

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy. PMID:23504312

  18. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Park

    Full Text Available The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF, locustatachykinin (LTK, and diuretic hormone 31 (DH31. RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis.

  19. Altered expression of epidermal growth factor receptor and estrogen receptor in MCF-7 cells after single and repeated radiation exposures

    International Nuclear Information System (INIS)

    This study focuses on the characterization of expression modulation of two critical growth regulatory genes, estrogen receptor and epidermal growth factor-receptor, in malignant mammary epithelial cells in response to single and repeated ionizing radiation exposures. MCF-7 cells were used for single radiation exposure (2-50 Gy) experiments and MCF-IR-3 cells, generated by exposure to cumulative doses of 60 Gy in 2 Gy fractions, respectively, were used to study the effects of repeated exposures. Steady-state messenger ribonucleic acid levels for estrogen receptor, epidermal growth factor-receptor, and transforming growth factor-α were determined by ribonucleic acid protection experiments. Estrogen receptor and epidermal growth factor-receptor protein expression was quantitated by competitive binding studies with 3H-estradiol and 125I-EGF. MCF-IR-3 cells showed a permanent three-fold down-regulation of the estrogen receptor messenger ribonucleic acid and protein, while epidermal growth factor-receptor was upregulated about nine-fold. Epidermal growth factor-receptor was substantially up-regulated in MCF-7 cells, at both the mRNA and protein levels, within 24 h of a single 2 Gy exposures, while there was a two-fold concomitant increase in transforming growth factor-α messenger ribonucleic acid expression. A decrease in estrogen receptor messenger ribonucleic acid and protein was suggested only after higher doses of single radiation exposures. The inverse expression of estrogen receptor and epidermal growth factor-receptor established for estrogen receptor-positive malignant mammary epithelial cells is maintained in MCF-7 cells after single and repeated exposures, suggesting that radiation acts through common regulatory circuits and may modulate the cellular phenotype. 40 refs., 2 figs., 2 tabs

  20. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Maelle Jospin

    2009-12-01

    Full Text Available In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.

  1. Expression of androgen receptor target genes in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kesha Rana; Nicole KL Lee; Jeffrey D Zajac; Helen E MacLean

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor(AR)‑regulated genes ininvitroandinvivomodels. The expression of the myogenic regulatory factormyogenin was signiifcantly decreased in skeletal muscle from testosterone‑treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity(ARΔZF2) versus wildtype mice, demonstrating thatmyogenin is repressed by the androgen/AR pathway. The ubiquitin ligaseFbxo32 was repressed by 12h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, andc‑Myc expression was decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, Igf2 andcalcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all butp57Kip2was also decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase‑mediated atrophy pathways to preserve muscle mass in adult muscle.

  2. Expression of estrogen receptor alpha in preimplantation mice embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To study the expression of estrogen receptor alpha (ERα) in preimplantation mice embryos.Methods:Mice zygotes were collected from superovulated Kunming mice and cultured in vitro.Embryos at different developmental stages were collected at 0,24,36,48,72 and 96hours after cultivation.The expression of ERα in early mice embryos was detected by reverse transcription-PCR (RT-PCR) and immunocytochemistry.Results:The expression of ERα mRNA was detected in all of the examined embryonic stages.The relative amount of ERα mRNA showed no significant difference between 1-cell stage embryos and 4-cell stage embryos (P>0.05).However,the relative level of ERα mRNA significantly decreased (P<0.05) at 2-cell stage and was the lowest at this stage.Over 2-cell stage,the ERα mRNA relative level would increase and achieve the peak level at blastocyst stage.The location of immunocytochemistry showed that ERα immunopositive cells could be firstly detected at 8-cell stage,after which they are consistently detected until blastocyst stage.In addition,the intensity of ERα positive staining was higher at blastocyst stage compared with that at 8-cell stage and morula stage.Conclusion:ERα is expressed in preimplantation mice embryos in a temporal and spatial pattern and may be involved in regulating the development of early mice embryos,which probably plays crucial roles in early embryonic development.

  3. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  4. Overnight fasting regulates inhibitory tone to cholinergic neurons of the dorsomedial nucleus of the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Florian Groessl

    Full Text Available The dorsomedial nucleus of the hypothalamus (DMH contributes to the regulation of overall energy homeostasis by modulating energy intake as well as energy expenditure. Despite the importance of the DMH in the control of energy balance, DMH-specific genetic markers or neuronal subtypes are poorly defined. Here we demonstrate the presence of cholinergic neurons in the DMH using genetically modified mice that express enhanced green florescent protein (eGFP selectively in choline acetyltransferase (Chat-neurons. Overnight food deprivation increases the activity of DMH cholinergic neurons, as shown by induction of fos protein and a significant shift in the baseline resting membrane potential. DMH cholinergic neurons receive both glutamatergic and GABAergic synaptic input, but the activation of these neurons by an overnight fast is due entirely to decreased inhibitory tone. The decreased inhibition is associated with decreased frequency and amplitude of GABAergic synaptic currents in the cholinergic DMH neurons, while glutamatergic synaptic transmission is not altered. As neither the frequency nor amplitude of miniature GABAergic or glutamatergic postsynaptic currents is affected by overnight food deprivation, the fasting-induced decrease in inhibitory tone to cholinergic neurons is dependent on superthreshold activity of GABAergic inputs. This study reveals that cholinergic neurons in the DMH readily sense the availability of nutrients and respond to overnight fasting via decreased GABAergic inhibitory tone. As such, altered synaptic as well as neuronal activity of DMH cholinergic neurons may play a critical role in the regulation of overall energy homeostasis.

  5. Tissue distribution and differential expression of melanocortin 1 receptor, a malignant melanoma marker

    OpenAIRE

    Salazar-Onfray, F; López, M.; Lundqvist, A.; Aguirre, A.; Escobar, A; Serrano, A; Korenblit, C; PETERSSON,M; Chhajlani, V.; Larsson, O; Kiessling, R.

    2002-01-01

    The melanocortin 1 receptor is a G-protein-coupled receptor, described to be expressed on melanomas and melanocytes. Subsequent RT–PCR studies demonstrated the presence of melanocortin 1 receptor mRNA in other tissues such as pituitary gland and testis. Previously, we have demonstrated that three HLA-A2 binding nonamer peptides derived from melanocortin 1 receptor can elicit peptide-specific CTL which can recognize target cells transfected with the melanocortin 1 receptor gene and MHC class I...

  6. Characterization of Mouse Striatal Precursor Cell Lines Expressing Functional Dopamine Receptors

    OpenAIRE

    Araki, Kiyomi Y.; Fujimura, Satoshi; MacDonald, Marcy E.; Bhide, Pradeep G

    2006-01-01

    Dopamine and its receptors appear in the developing brain early in the embryonic period and dopamine receptor activation influences proliferation and differentiation of neuroepithelial precursor cells. Since dopamine D1 and D2 receptor activation produces opposing effects on precursor cell activity, dopamine's overall effects may correlate with relative numbers and activity of each receptor subtype on the precursor cells. Dopamine receptor expression and activity in individual precursor cells...

  7. Regulation of drugs affecting striatal cholinergic activity by corticostriatal projections

    International Nuclear Information System (INIS)

    Research demonstrates that the chronic degeneration of the corticostriatal excitatory pathway makes the cholinergic neurons of the striatum insensitive to the neuropharmacological action of a number of different drugs. Female rats were used; they were killed and after the i.v. infusion of tritium-choline precursor, choline acetyltransferase activity was measured. Striatal noradrenaline, dopamine and serotonin content was measured by electrochemical detection coupled with high pressure liquid chromatography. Uptake of tritium-glutamic acid was estimated. The data were analyzed statistically. It is shown that there is evidence that the effects of a number of drugs capable of depressing cholinergic activity through receptor-mediated responses are operative only if the corticostriatal pathway is integral. Neuropharmacological responses in the brain appear to be the result of an interaction between several major neurotransmitter systems

  8. Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex.

    Science.gov (United States)

    Shao, Yu-Feng; Wang, Can; Xie, Jun-Fan; Kong, Xiang-Pan; Xin, Le; Dong, Chao-Yu; Li, Jing; Ren, Wen-Ting; Hou, Yi-Ping

    2016-07-01

    Our previous studies have demonstrated that neuropeptide S (NPS), via selective activation of the neurons bearing NPS receptor (NPSR) in the olfactory cortex, facilitates olfactory function. High level expression of NPSR mRNA in the subiculum complex of hippocampal formation suggests that NPS-NPSR system might be involved in the regulation of olfactory spatial memory. The present study was undertaken to investigate effects of NPS on the scopolamine- or MK801-induced impairment of olfactory spatial memory using computer-assisted 4-hole-board spatial memory test, and by monitoring Fos expression in the subiculum complex in mice. In addition, dual-immunofluorescence microscopy was employed to identify NPS-induced Fos-immunereactive (-ir) neurons that also bear NPSR. Intracerebroventricular administration of NPS (0.5 nmol) significantly increased the number of visits to switched odorants in recall trial in mice suffering from odor-discriminating inability induced by scopolamine, a selective muscarinic cholinergic receptor antagonist, or MK801, a N-methyl-D-aspartate receptor antagonist, after training trials. The improvement of olfactory spatial memory by NPS was abolished by the NPSR antagonist [D-Val(5)]NPS (40 nmol). Ex vivo c-Fos and NPSR immunohistochemistry revealed that, as compared with vehicle-treated mice, NPS markedly enhanced Fos expression in the subiculum complex encompassing the subiculum (S), presubiculum (PrS) and parasubiculum (PaS). The percentages of Fos-ir neurons that also express NPSR were 91.3, 86.5 and 90.0 % in the S, PrS and PaS, respectively. The present findings demonstrate that NPS, via selective activation of the neurons bearing NPSR in the subiculum complex, ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 in mice. PMID:26323488

  9. Expression of estrogen receptor β in human colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Qun Xie; Jie-Ping Yu; He-Sheng Luo

    2004-01-01

    AIM: To determine the expression of estrogen receptor (ER)β in Chinese colorectal carcinoma (CRC) patients.METHODS: Erβ expression in CRC was investigated by immunohistochemical staining of formalin-fixed, paraffin-embedded tissue sections from 40 CRCs, 10 colonic adenomas,and 10 normal colon mucosa biopsies. The percentage of positive cells was recorded, mRNA expression of Erα and Erβ in 12 CRC tissues and paired normal colon tissues were detected by RT-PCR.RESULTS: Positive ER immunoreactivity was present in part of normal epithelium of biopsy (2/10), adenomas (3/10),and the sections of CRC tissue, most of them were nuclear positive. In CRCs, nuclear Erβ immunoreactivity was detected in over 10% of the cancer cells in 57.5% of the cases and was always associated with cytoplasmic immunoreactivity.There was no statistical significance between Erβ positive and negative groups in regard to depth of invasion and nodal metastases. Of the 12 CRC tissues and paired normal colon tissues, the expression rate of Erα mRNA in CRC tissue and corresponding normal colon tissue was 25% and 16.6%,respectively. Erβ mRNA was expressed in 83.3% CRC tissue and 91.7% paired normal colon tissue, respectively. Therewas no significant difference in Erβ mRNA level between CRC tissues and paired normal colon tissues.CONCLUSION: A large number of CRCs are positive for Erβ, which can also be detected in normal colonic epithelia.There is a different localization of Erβ immunoreactivity among normal colon mucosae, adenomas and CRCs. Erαand Erβ mRNA can be detected both in CRC tissue and in corresponding normal colon tissue. A post-transcriptional mechanism may account for the decrease of Erβ protein expression in CRC tissues.

  10. Expression of tumor necrosis factor related apoptosis inducing ligand receptor in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Dongling Gao; Zhongwei Zhao; Hongxin Zhang; Lan Zhang; Kuisheng Chen; Yunhan Zhang

    2008-01-01

    BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells.OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR and to compare this expression to that in normal brain tissue.DESIGN: Observational analysis.SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory.PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P>0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee.METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase

  11. A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131

    OpenAIRE

    Simone Prandi; Marta Bromke; Sandra Hübner; Anja Voigt; Ulrich Boehm; Wolfgang Meyerhof; Maik Behrens

    2013-01-01

    The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs), direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r express...

  12. Bombesin family receptor and ligand gene expression in human colorectal cancer and normal mucosa

    OpenAIRE

    Chave, H S; Gough, A C; Palmer, K.; Preston, S. R.; Primrose, J N

    1999-01-01

    Bombesin-like peptides and their receptors are widely distributed throughout the gut and are potential mitogens for a number of gastrointestinal (GI) cancers. We have analysed the expression of bombesin-like peptides and their receptor subtypes in normal and neoplastic colorectal tissue. Expression was analysed by reverse transcription polymerase chain reaction (RT-PCR) using receptor and ligand subtype-specific primers and then expression localized by in situ hybridization (ISH) with ribopro...

  13. Mouse neutrophils express functional umami taste receptor T1R1/T1R3

    OpenAIRE

    Lee, NaHye; Jung, Young Su; Lee, Ha Young; Kang, NaNa; Park, Yoo Jung; Hwang, Jae Sam; Bahk, Young Yil; Koo, JaeHyung; Bae, Yoe-Sik

    2014-01-01

    Neutrophils play an important role in the initiation of innate immunity against infection and injury. Although many different types of G-protein coupled receptors are functionally expressed in neutrophils, no reports have demonstrated functional expression of umami taste receptor in these cells. We observed that mouse neutrophils express the umami taste receptor T1R1/T1R3 through RNA sequencing and quantitative RT-PCR analysis. Stimulation of mouse neutrophils with L-alanine or L-serine, whic...

  14. Novel dimeric DOTA-coupled peptidic Y1-receptor antagonists for targeting of neuropeptide Y receptor-expressing cancers

    OpenAIRE

    Chatenet, David; Cescato, Renzo; Waser, Beatrice; Erchegyi, Judit; Jean E Rivier; Reubi, Jean Claude

    2011-01-01

    Background Several peptide hormone receptors were identified that are specifically over-expressed on the cell surface of certain human tumors. For example, high incidence and density of the Y1 subtype of neuropeptide Y (NPY) receptors are found in breast tumors. Recently, we demonstrated that the use of potent radiolabeled somatostatin or bombesin receptor antagonists considerably improved the sensitivity of in vivo imaging when compared to agonists. We report here on the first DOTA-coupled p...

  15. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Hong Zhu; Zhi-Bin Yang

    2009-01-01

    BACKGROUND: The mda-7/IL-24 receptor belongs to the typeⅡ cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. METHODS: With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were ampliifed by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. RESULTS: PLC/PRF/5 and SMMC-7721 expressed IL-20R1;BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. CONCLUSION: Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  16. Expression of histamine H4 receptor in human epidermal tissues and attenuation of experimental pruritus using H4 receptor antagonist.

    Science.gov (United States)

    Yamaura, Katsunori; Oda, Manabu; Suwa, Eriko; Suzuki, Masahiko; Sato, Hiromi; Ueno, Koichi

    2009-10-01

    Many medicines exist which can cause pruritus (itching) as "serious adverse events." Many severe pruritic conditions respond poorly to histamine H1 receptor antagonists; there is no generally accepted antipruritic treatment. Recently described histamine H4 receptors are expressed in haematopoietic cells and have been linked to the pathology of allergy and asthma. We previously reported their expression in human dermal fibroblasts; in this study we have investigated H4 receptor expression in human epidermal tissue and found it to be greater in keratinocytes in the epidermal upper layer than in the lower layer. We have also investigated the effect of histamine H4 receptor antagonists on histamine H1 receptor antagonist-resistant pruritus using a mouse model. Scratching behavior was induced by histamine (300 nmol) or substance P (100 nmol) injected intradermally into the rostral part of the back of each mouse. Fexofenadine, a histamine H1 receptor antagonist, reduced scratching induced by histamine but not by substance P, whereas JNJ7777120, a histamine H4 receptor antagonist, significantly reduced both histamine- and substance P-induced scratching. These results suggest that H4 receptor antagonists may be useful for treatment of H1 receptor antagonist-resistant pruritus. PMID:19652466

  17. Myoglobin expression in prostate cancer is correlated to androgen receptor expression and markers of tumor hypoxia.

    Science.gov (United States)

    Meller, Sebastian; Bicker, Anne; Montani, Matteo; Ikenberg, Kristian; Rostamzadeh, Babak; Sailer, Verena; Wild, Peter; Dietrich, Dimo; Uhl, Barbara; Sulser, Tullio; Moch, Holger; Gorr, Thomas A; Stephan, Carsten; Jung, Klaus; Hankeln, Thomas; Kristiansen, Glen

    2014-10-01

    Recent studies identified unexpected expression and transcriptional complexity of the hemoprotein myoglobin (MB) in human breast cancer but its role in prostate cancer is still unclear. Expression of MB was immunohistochemically analyzed in three independent cohorts of radical prostatectomy specimens (n = 409, n = 625, and n = 237). MB expression data were correlated with clinicopathological parameters and molecular parameters of androgen and hypoxia signaling. Expression levels of novel tumor-associated MB transcript variants and the VEGF gene as a hypoxia marker were analyzed using qRT-PCR. Fifty-three percent of the prostate cancer cases were MB positive and significantly correlated with androgen receptor (AR) expression (p < 0.001). The positive correlation with CAIX (p < 0.001) and FASN (p = 0.008) as well as the paralleled increased expression of the tumor-associated MB transcript variants and VEGF suggest that hypoxia participates in MB expression regulation. Analogous to breast cancer, MB expression in prostate cancer is associated with steroid hormone signaling and markers of hypoxia. Further studies must elucidate the novel functional roles of MB in human carcinomas, which probably extend beyond its classic intramuscular function in oxygen storage. PMID:25172328

  18. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels

    DEFF Research Database (Denmark)

    Jennings, Katie Ann; Licht, Cecilie Löe; Bruce, Aynsley;

    2012-01-01

    Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT kno......). Together, these findings suggest that variation in 5-HTT expression causes adaptive changes in 5-HT4 receptor levels which are directly linked to alterations in 5-HT availability.......Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT...

  19. CHARACTERIZATION OF THE OLFACTORY RECEPTORS EXPRESSED IN HUMAN SPERMATOZOA

    Directory of Open Access Journals (Sweden)

    Caroline eFlegel

    2016-01-01

    Full Text Available The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicated that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa and demonstrates that ORs are involved in the physiological processes.

  20. Steroid hormone receptor expression in ovarian cancer: progesterone receptor B as prognostic marker for patient survival

    International Nuclear Information System (INIS)

    There is partially conflicting evidence on the influence of the steroid hormones estrogen (E) and progesterone (P) on the development of ovarian cancer (OC). The aim of this study was to assess the expression of the receptor isoforms ER-α/-β and PR-A/-B in OC tissue and to analyze its impact on clinical and pathological features and patient outcome. 155 OC patients were included who had been diagnosed and treated between 1990 and 2002. Patient characteristics, histology and follow-up data were available. ER-α/-β and PR-A/-B expression were determined by immunohistochemistry. OC tissue was positive for ER-α/-β in 31.4% and 60.1% and PR-A/-B in 36.2% and 33.8%, respectively. We identified significant differences in ER-β expression related to the histological subtype (p=0.041), stage (p=0.002) and grade (p=0.011) as well as PR-A and tumor stage (p=0.03). Interestingly, median receptor expression for ER-α and PR-A/-B was significantly higher in G1 vs. G2 OC. Kaplan Meier analysis revealed a good prognosis for ER-α positive (p=0.039) and PR-B positive (p<0.001) OC. In contrast, ER-β negative OC had a favorable outcome (p=0.049). Besides tumor grade and stage, Cox-regression analysis showed PR-B to be an independent prognostic marker for patient survival (p=0.009, 95% CI 0.251-0.823, HR 0.455). ER-α/-β and PR-A/-B are frequently expressed in OC with a certain variability relating to histological subtype, grade and stage. Univariate analysis indicated a favorable outcome for ER-α positive and PR-B positive OC, while multivariate analysis showed PR-B to be the only independent prognostic marker for patient survival. In conclusion, ER and PR receptors may be useful targets for a more individualized OC therapy

  1. Impairment of reward-related learning by cholinergic cell ablation in the striatum.

    Science.gov (United States)

    Kitabatake, Yasuji; Hikida, Takatoshi; Watanabe, Dai; Pastan, Ira; Nakanishi, Shigetada

    2003-06-24

    The striatum in the basal ganglia-thalamocortical circuitry is a key neural substrate that is implicated in motor balance and procedural learning. The projection neurons in the striatum are dynamically modulated by nigrostriatal dopaminergic input and intrastriatal cholinergic input. The role of intrastriatal acetylcholine (ACh) in learning behaviors, however, remains to be fully clarified. In this investigation, we examine the involvement of intrastriatal ACh in different categories of learning by selectively ablating the striatal cholinergic neurons with use of immunotoxin-mediated cell targeting. We show that selective ablation of cholinergic neurons in the striatum impairs procedural learning in the tone-cued T-maze memory task. Spatial delayed alternation in the T-maze learning test is also impaired by cholinergic cell elimination. In contrast, the deficit in striatal ACh transmission has no effect on motor learning in the rota-rod test or spatial learning in the Morris water-maze test or on contextual- and tone-cued conditioning fear responses. We also report that cholinergic cell elimination adaptively up-regulates nicotinic ACh receptors not only within the striatum but also in the cerebral cortex and substantia nigra. The present investigation indicates that cholinergic modulation in the local striatal circuit plays a pivotal role in regulation of neural circuitry involving reward-related procedural learning and working memory. PMID:12802017

  2. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  3. A complex pattern of chemokine receptor expression is seen in osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is the most frequent bone tumor in childhood and adolescence. Patients with primary metastatic disease have a poor prognosis. It is therefore important to better characterize the biology of this tumor to define new prognostic markers or therapeutic targets for tailored therapy. Chemokines and their receptors have been shown to be involved in the development and progression of malignant tumors. They are thought to be active participants in the biology of osteosarcoma. The function of specific chemokines and their receptors is strongly associated with the biological context and microenvironment of their expression. In this report we characterized the expression of a series of chemokine receptors in the complex environment that defines osteosarcoma. The overall level of chemokine receptor mRNA expression was determined using TaqMan RT-PCR of microdissected archival patient biopsy samples. Expression was then verified at the protein level by immunohistochemistry using a series of receptor specific antibody reagents to elucidate the cellular association of expression. Expression at the RNA level was found for most of the tested receptors. CCR1 expression was found on infiltrating mononuclear and polynuclear giant cells in the tumor. Cells associated with the lining of intratumoral vessels were shown to express CCR4. Infiltrating mononuclear cells and tumor cells both showed expression of the receptor CCR5, while CCR7 was predominantly expressed by the mononuclear infiltrate. CCR10 was only very rarely detected in few scattered infiltrating cells. Our data elucidate for the first time the cellular context of chemokine receptor expression in osteosarcoma. This is an important issue for better understanding potential chemokine/chemokine receptor function in the complex biologic processes that underlie the development and progression of osteosarcoma. Our data support the suggested involvement of chemokines and their receptors in diverse aspects of the biology

  4. Increased expression of the nicotinic acetylcholine receptor in stimulated muscle.

    Science.gov (United States)

    O'Reilly, Clare; Pette, Dirk; Ohlendieck, Kay

    2003-01-10

    Chronic low-frequency stimulation has been used as a model for investigating responses of skeletal muscle fibres to enhanced neuromuscular activity under conditions of maximum activation. Fast-to-slow isoform shifting of markers of the sarcoplasmic reticulum and the contractile apparatus demonstrated successful fibre transitions prior to studying the effect of chronic electro-stimulation on the expression of the nicotinic acetylcholine receptor. Comparative immunoblotting revealed that the alpha- and delta-subunits of the receptor were increased in 10-78 day stimulated specimens, while an associated component of the surface utrophin-glycoprotein complex, beta-dystroglycan, was not drastically changed in stimulated fast skeletal muscle. Previous studies have shown that electro-stimulation induces degeneration of fast glycolytic fibres, trans-differentiation leading to fast-to-slow fibre transitions and activation of muscle precursor cells. In analogy, our results indicate a molecular modification of the central functional unit of the post-synaptic muscle surface within existing neuromuscular junctions and/or during remodelling of nerve-muscle contacts. PMID:12504123

  5. Expression of estrogen receptor and estrogen receptor messenger RNA in gastric carcinoma tissues

    Institute of Scientific and Technical Information of China (English)

    Xin-Han Zhao; Shan-Zhi Gu; Shan-Xi Liu; Bo-Rong Pan

    2003-01-01

    AIM: To study estrogen receptor (ER) and estrogen receptor messenger RNA (ERmRNA) expression in gastric carcinoma tissues and to investigate their association with the pathologic types of gastric carcinoma.METHODS: The expression of ER and ERmRNA in gastric carcinoma tissues (15 males and 15 females, 42-70 years old) was detected by immunohistochemistry and in situ hybridization, respectively.RESULTS: The positive rate of ER (immunohistochemistry)was 33.3% in males and 46.7% in females. In Borrmann Ⅳ gastric carcinoma ER positive rate was greater than that in other pathologic types, and in poorly differentiated adenocarcinoma and signet ring cell carcinoma the positive rates were greater than those in other histological types of both males and females (P<0.05). The ER was more highly expressed in diffused gastric carcinoma than in non-diffused gastric carcinoma (P<0.05). The ER positive rate was also related to regional lymph nodes metastases (P<0.05), and was significantly higher in females above 55 years old, and higher in males under 55 years old (P<0.05). The ERmRNA (in situ hybridization) positive rate was 73.3% in males and 86.7% in females. The ERmRNA positive rates were almost the same in Borrmann Ⅰ, Ⅱ, Ⅲ and Ⅳ gastric carcinoma (P>0.05). ERmRNA was expressed in all tubular adenocarcinoma, poorly differentiated adenocarcinoma and signet ring cell carcinoma (P<0.05). The ERmRNA positive rate was related to both regional lymph nodes metastases and gastric carcinoma growth patterns, and was higher in both sexes above 55 years old but without statistical significance (P>0.05). The positive rate of ERmRNA expression by in situ hybridization was higher than that of ER expression by immunohistochemistry (P<0.05).CONCLUSION: ERmRNA expression is related to the pathological behaviors of gastric carcinoma, which might help to predict the prognosis and predict the effectiveness of endocrine therapy for gastric carcinoma.

  6. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    Science.gov (United States)

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  7. Electroacupuncture at Zusanli (ST36 Prevents Intestinal Barrier and Remote Organ Dysfunction following Gut Ischemia through Activating the Cholinergic Anti-Inflammatory-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Sen Hu

    2013-01-01

    Full Text Available This study investigated the protective effect and mechanism of electroacupuncture at ST36 points on the intestinal barrier dysfunction and remote organ injury after intestinal ischemia and reperfusion injury in rats. Rats were subjected to gut ischemia for 30 min, and then received electroacupuncture for 30 min with or without abdominal vagotomy or intraperitoneal administration of cholinergic α7 nicotinic acetylcholine receptor (α7nAChR inhibitor. Then we compared its effects with electroacupuncture at nonchannel points, vagal nerve stimulation, or intraperitoneal administration of cholinergic agonist. Cytokine levels in plasma and tissue of intestine, lung, and liver were assessed 60 min after reperfusion. Intestinal barrier injury was detected by histology, gut injury score, the permeability to 4 kDa FITC-dextran, and changes in tight junction protein ZO-1 using immunofluorescence and Western blot. Electroacupuncture significantly lowered the levels of tumor necrosis factor-α and interleukin-8 in plasma and organ tissues, decreased intestinal permeability to FITC-dextran, and prevented changes in ZO-1 protein expression and localization. However, abdominal vagotomy or intraperitoneal administration of cholinergic α7nAChR inhibitor reversed these effects of electroacupuncture. These findings suggest that electroacupuncture attenuates the systemic inflammatory response through protection of intestinal barrier integrity after intestinal ischemia injury in the presence of an intact vagus nerve.

  8. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor

    DEFF Research Database (Denmark)

    Fink-Jensen, Anders; Schmidt, Lene S; Dencker, Ditte;

    2011-01-01

    A delicate balance exists between the central dopaminergic and cholinergic neurotransmitter systems with respect to motor function. An imbalance can result in motor dysfunction as observed in Parkinson's disease patients and in patients treated with antipsychotic compounds. Cholinergic receptor a...

  9. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  10. Expression of the transferrin receptor gene during the process of mononuclear phagocyte maturation

    International Nuclear Information System (INIS)

    The expression of transferrin receptors by blood monocytes, human alveolar macrophages, and in vitro matured macrophages was evaluated by immunofluorescence, radioligand binding, and Northern analysis, using the monoclonal anti-human transferrin receptor antibody OKT9, [125I]-labeled human transferrin and a [32P]-labeled human transferrin receptor cDNA probe, respectively. By immunofluorescence, the majority of alveolar macrophages expressed transferrin receptors (86 +/- 3%). The radioligand binding assay demonstrated the affinity constant (K/sub a/) of the alveolar macrophage transferrin receptor was 4.4 +/- 0.7 x 108 M-1, and the number of receptors per cell was 4.4 +/- 1.2 x 104. In marked contrast, transferrin receptors were not present on the surface or in the cytoplasm of blood monocytes, the precursors of the alveolar macrophages. However, when monocytes were cultured in vitro and allowed to mature, > 80% expressed transferrin receptors by day 6, and the receptors could be detected by day 3. Consistent with these observations, a transferrin receptor mRNA with a molecular size of 4.9 kb was demonstrated in alveolar macrophages and in vitro matured macrophages but not in blood monocytes. Thus, although blood monocytes do not express the transferrin receptor gene, it is expressed by mature macrophages, an event that probably occurs relatively early in the process of monocyte differentiation to macrophages

  11. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  12. Expression of leptin and leptin receptor isoforms in the human stomach

    OpenAIRE

    Mix, H; Widjaja, A.; Jandl, O.; Cornberg, M.; Kaul, A.; GOKE, M; Beil, W.; Kuske, M; Brabant, G.; Manns, M; Wagner, S.

    2000-01-01

    BACKGROUND—Leptin is an important regulator of food intake and energy expenditure. Initially it was thought to be expressed exclusively in and secreted by adipocytes. Recently, leptin expression was also noted in other tissues, including rat gastric mucosa. Information on leptin and leptin receptor expression in the human stomach is lacking.
AIM—To investigate expression of leptin and its corresponding receptors in human gastric epithelial cells.
METHODS—Fundic and antral gastric mucosal biop...

  13. Association of carcinoma breast: grade and estrogen progesterone receptor expression

    International Nuclear Information System (INIS)

    To determine the association between histological grade of tumour and estrogen progesterone receptors (ER/PR) expression in unselected invasive carcinoma of breast in Malaysian patients. Study Design: An observational study. Place and Duration of Study: Advanced Medical and Dental Institute and Hospital, Kepala Batas, from year 2002 to 2007. Methodology: Ethical approval from Ministry of Health of Malaysia was obtained. Retrospective case records of patients presented between 2002- 2007 were reviewed for obtaining information on grade of tumour and expression of ER/PR in unselected carcinoma of breast patients. Records with missing data were discarded. Results: Out of 195 cases evaluated, 42 cases of grade-I tumour were recorded of which 08 (19%) tested positive for ER and 34 (81%) tested negative, 86 cases represented grade-II tumour of which 33 (38%) tested positive for ER and 53 (62%) were negative for ER, while out of 67 grade-III tumours 22 (33%) were positive for ER receptors while 45 (67%) were negative, (x/sup 2/ statistic (df) 4.831, p=0.089). For PR, 192 cases were evaluated and data was missing for 3 cases on PR status. Grade-I tumour consisted of 39 cases of which PR +ve represented 07 (17.94%) and 32 (82.05) cases PR -ve; 86 cases were of grade-II of which 31 (36.04%) were PR +ve and 55 (63.95%) PR -ve. Sixty seven cases of grade-III tumour of which 19 (28.35%) were PR +ve and 48 (71.64) were PR -ve (X/sup 2/ statistic (df): 4.297; p=0.117). Conclusion: ER/PR positivity trend was highest for grade-II tumours compared to grade-I and grade-III tumours. In general ER positivity was more with grade-II and grade-III tumours compared to grade I tumours. Although results did not reach statistical significance but there was a trend towards ER/PR positivity in grade-II and III tumours. So far, studies from South East Asia reported ER/PR expression more with low grade tumours. (author)

  14. Expression of Growth Hormone Receptors by Lymphocyte subpopulations in the Human tonsil

    OpenAIRE

    Olivier Thellin; Bernard Coumans; Willy Zorzi; Ross Barnard; Georges Hennen; Ernst Heinen; Ahmed Igout

    1998-01-01

    The ability of human tonsillar lymphoid cells to express growth hormone receptor (hGH-N-R) was analyzed by flow cytometry. FITC-coupled recombinant human growth hormone (hGH-N) was used to reveal the receptors, in combination with phenotype markers. Unlike T cells, tonsillar B cells constitutively express the hGH-N receptor. Quiescent cells separated from activated cells by Percoll-gradient centrifugation bear fewer receptors than activated ones. Activated T cells express hGH-N-R, but the typ...

  15. Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, Hanne; Sellebjerg, Finn

    We investigated the B-cell expression of chemokine receptors CXCR3, CXCR5 and CCR5 in the blood and cerebrospinal fluid (CSF) from patients in relapse of multiple sclerosis (MS) and in neurological controls. Chemokine receptor expression was also studied in interferon-beta-treated patients with r...

  16. Heterologously expressed serotonin 1A receptors couple to muscarinic K+ channels in heart

    OpenAIRE

    Karschin, A; Ho, B Y; Labarca, C; Elroy-Stein, O; Moss, B; Davidson, N.; Lester, H A

    1991-01-01

    In cardiac atrial cells, muscarinic acetylcholine receptors activate a K+ current directly via a guanine nucleotide-binding protein (G protein). Serotonin type 1A receptors may activate a similar pathway in hippocampal neurons. To develop a system in which receptor/G protein/K+ channel coupling can be experimentally manipulated, we have used a highly efficient recombinant vaccinia virus vector system to express human serotonin 1A receptors in primary cultures of rat atrial myocytes. The expre...

  17. Expression and function profiling of orphan nuclear receptors using bacterial artificial chromosome (BAC) transgenesis.

    OpenAIRE

    Nemoz-Gaillard, Eric; Tsai, Ming-Jer; Tsai, Sophia Y.

    2003-01-01

    The long term goal of the Nuclear Receptor Signaling Atlas (NURSA) resides in unraveling the physiological and pathological functions of nuclear receptors (NRs) at the molecular, biochemical and cellular levels. This multi-oriented task requires complementary approaches in order to determine the specific function(s) and precise expression and receptor activity patterns for each individual conventional or orphan receptor. To attain this objective, we have chose to turn to technologies recently...

  18. Stratum-Specific Expression of Human Transferrin Receptor Increases Iron in Mouse Epidermis

    OpenAIRE

    Milstone, Leonard M.; Brian D. Adams; Zhou, Jing; Sanchez, Victoria L. Bruegel; Shofner, Joshua

    2006-01-01

    Epidermal desquamation accounts for 20% of the body's iron loss each day. Yet, little is known about how iron content in epidermis is regulated. To test the importance of the transferrin receptor in regulating iron content in epidermis, we created transgenic mice that have stratum-specific expression of the human transferrin receptor. The keratin 14 promoter targeted the receptor primarily to basal, proliferating keratinocytes; the involucrin (Inv) promoter targeted the receptor to suprabasal...

  19. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B; Noraberg, J

    2000-01-01

    -induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use for...... studies of excitotoxic, glutamate receptor-induced neuronal cell death, receptor modulation and related neuroprotection....

  20. Folate Receptor Alpha Expression in Lung Cancer: Diagnostic and Prognostic Significance

    OpenAIRE

    O'Shannessy, Daniel J.; Yu, Gordon; Smale, Robert; Fu, Yao-Shi; Singhal, Sunil; Thiel, Robert P.; Somers, Elizabeth B; Vachani, Anil

    2012-01-01

    With the advent of targeted therapies directed towards folate receptor alpha, with several such agents in late stage clinical development, the sensitive and robust detection of folate receptor alpha in tissues is of importance relative to patient selection and perhaps prognosis and prediction of response. The goal of the present study was to evaluate the expression of folate receptor alpha in non-small cell lung cancer specimens to determine its frequency of expression and its potential for p...

  1. Comparison of albumin receptors expressed on bovine and human group G streptococci.

    OpenAIRE

    Raeder, R; Otten, R. A.; Boyle, M D

    1991-01-01

    The albumin receptor expressed by bovine group G streptococci was extracted and affinity purified. The protein was characterized for species reactivity, and monospecific antibodies were prepared to the purified receptor. The bovine group G albumin receptor was compared functionally, antigenically, and for DNA homology with the albumin-binding protein expressed by human group G streptococci. In agreement with previous reports, the albumin-binding activity of human strains was mediated by a uni...

  2. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    International Nuclear Information System (INIS)

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve and tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system

  3. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  4. Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells.

    Science.gov (United States)

    Marchwicka, Aleksandra; Cebrat, Małgorzata; Łaszkiewicz, Agnieszka; Śnieżewski, Łukasz; Brown, Geoffrey; Marcinkowska, Ewa

    2016-05-01

    Acute myeloid leukemia (AML) is the predominant acute leukemia among adults, characterized by an accumulation of malignant immature myeloid precursors. A very promising way to treat AML is differentiation therapy using either all-trans-retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D), or the use of both these differentiation-inducing agents. However, the effect of combination treatment varies in different AML cell lines, and this is due to ATRA either down- or up-regulating transcription of vitamin D receptor (VDR) in the cells examined. The mechanism of transcriptional regulation of VDR in response to ATRA has not been fully elucidated. Here, we show that the retinoic acid receptor α (RARα) is responsible for regulating VDR transcription in AML cells. We have shown that a VDR transcriptional variant, originating in exon 1a, is regulated by RARα agonists in AML cells. Moreover, in cells with a high basal level of RARα protein, the VDR gene is transcriptionally repressed as long as RARα agonist is absent. In these cells down-regulation of the level of RARα leads to increased expression of VDR. We consider that our findings provide a mechanistic background to explain the different outcomes from treating AML cell lines with a combination of ATRA and 1,25D. PMID:26969398

  5. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits.

    Directory of Open Access Journals (Sweden)

    Sally M Williamson

    2009-07-01

    Full Text Available Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect approximately 1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5:1 (Asu-unc-38ratioAsu-unc-29, nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1:5 Asu-unc-38ratioAsu-unc-29, levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the

  6. Cholinergic modulation of the cerebral metabolic response to citalopram in Alzheimer's disease

    OpenAIRE

    Smith, Gwenn S.; Kramer, Elisse; Ma, Yilong; Hermann, Carol R.; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David

    2009-01-01

    Pre-clinical and human neuropharmacological evidence suggests a role of cholinergic modulation of monoamines as a pathophysiological and therapeutic mechanism in Alzheimer's disease. The present study measured the effects of treatment with the cholinesterase inhibitor and nicotinic receptor modulator, galantamine, on the cerebral metabolic response to the selective serotonin reuptake inhibitor, citalopram. Seven probable Alzheimer's disease patients and seven demographically comparable contro...

  7. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats

    OpenAIRE

    Hobson, Benjamin D.; Merritt, Kathryn E.; Bachtell, Ryan K.

    2012-01-01

    Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A1 or A2A receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15...

  8. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Liu; Zhigang Mei; Jingping Qian; Yongbao Zeng; Mingzhi Wang

    2013-01-01

    Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that an-ti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic an-ti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be in-volved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) re-duced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-αin brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-κB) inhibition. These observa-tions were inhibited by the alpha7 nicotinic acetylcholine receptor (α7nAchR) antagonistα-bungarotoxin (α-BGT). In addition, puerarin pretreatment increased the expression of α7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory re-sponse. Our results also indicated that the anti-inflammatory effect of puerarin may partly be me-diated through the activation of the cholinergic anti-inflammatory pathway.

  9. Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats

    Institute of Scientific and Technical Information of China (English)

    Helena F Wrzos; Tarun Tandon; Ann Ouyang

    2004-01-01

    AIM: To investigate the pathway (s) mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent, bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction.METHODS: Circular smooth muscle strips from the antrum of Sprague-Dawley rats were mounted in muscle baths in Krebs buffer. Isometric tension was recorded. Cumulative concentration-response curves were obtained for (+)-cisdioxolane (cD), a nonspecific muscarinic agonist, at 10-8-10-4 mol/L, in the presence of tetrodotoxin (TTX, 10-7 mol/L).Results were normalized to cross sectional area. A repeat concentration-response curve was obtained after incubation of the muscle for 90 min with antagonists for M1 (pirenzepine),M2 (methoctramine) and M3 (darifenacin) muscarinic receptor subtypes. The sensitivity to PTX was tested by the ip injection of 100 mg/kg of PTX 5 d before the experiment. The antral circular smooth muscles were removed from PTX-treated and non-treated rats as strips and dispersed smooth muscle cells to identify whether PTX-linked pathway mediated the contractility to bethanechol.RESULTS: A dose-dependent contractile response observed with bethanechol, was not affected by TTX. The pretreatment of rats with pertussis toxin decreased the contraction induced by bethanechol. Lack of calcium as Well as the presence of the L-type calcium channel blocker, nifedipine, also inhibited the cholinergic contraction, with a reduction in response from 2.5±0.4 g/mm2 to 1.2±0.4 g/mm2 (P<0.05). The doseresponse curves were shifted to the right by muscarinic antagonists in the following order of affinity: darifenacin(M3)>methocramine (M2)>pirenzepine (M1).CONCLUSION: The muscarinic receptors-dependent contraction of rat antral circular smooth muscles was linked to the signal transduction pathway(s) involving pertussis-toxin sensitive GTP-binding proteins and to extracellular calcium via L-type voltage gated calcium channels. The presence of the

  10. Expression profile and prognostic role of sex hormone receptors in gastric cancer

    International Nuclear Information System (INIS)

    Increasing interest has been devoted to the expression and possible role of sex hormone receptors in gastric cancer, but most of these findings are controversial. In the present study, the expression profile of sex hormone receptors in gastric cancer and their clinicopathological and prognostic value were determined in a large Chinese cohort. The mRNA and protein expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), progesterone receptor (PR), and androgen receptor (AR) in primary gastric tumors and corresponding adjacent normal tissues from 60 and 866 Chinese gastric cancer patients was detected by real-time quantitative PCR and immunohistochemistry method, respectively. The expression profile of the four receptors was compared and their associations with clinicopathological characteristics were assessed by using Chi-square test. The prognostic value of the four receptors in gastric cancer was evaluated by using univariate and multivariate Cox regression analysis. The presence of ERα, ERβ, PR, and AR in both gastric tumors and normal tissues was confirmed but their expression levels were extremely low except for the predominance of ERβ. The four receptors were expressed independently and showed a decreased expression pattern in gastric tumors compared to adjacent normal tissues. The positive expression of the four receptors all correlated with high tumor grade and intestinal type, and ERα and AR were also associated with early TNM stage and thereby a favorable outcome. However, ERα and AR were not independent prognostic factors for gastric cancer when multivariate survival analysis was performed. Our findings indicate that the sex hormone receptors may be partly involved in gastric carcinogenesis but their clinicopathological and prognostic significance in gastric cancer appears to be limited

  11. Role of sphingosine 1-phosphate receptor expression in eosinophils of patients with allergic rhinitis, and effect of topical nasal steroid treatment on this receptor expression.

    LENUS (Irish Health Repository)

    Mackle, T

    2008-12-01

    Recent research has indicated that sphingosine 1-phosphate plays a role in allergy. This study examined the effect of allergen challenge on the expression of sphingosine 1-phosphate receptors on the eosinophils of allergic rhinitis patients, and the effect of steroid treatment on this expression.

  12. Striatal cholinergic interneuron regulation and circuit effects

    Directory of Open Access Journals (Sweden)

    Sean Austin Lim

    2014-10-01

    Full Text Available The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh. Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI, which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.

  13. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function.

    Science.gov (United States)

    Fragkouli, A; Stamatakis, A; Zographos, E; Pachnis, V; Stylianopoulou, F

    2006-01-01

    It has been reported recently that mice lacking both alleles of the LIM-homeobox gene Lhx7, display dramatically reduced number of forebrain cholinergic neurons. In the present study, we investigated whether the Lhx7 mutation affects male and female mice differently, given the fact that gender differences are consistently observed in forebrain cholinergic function. Our results show that in adult male as well as female Lhx7 homozygous mutants there is a dramatic loss of choline acetyltransferase immunoreactive forebrain neurons, both projection and interneurons. The reduction of forebrain choline acetyltransferase immunoreactive neurons in Lhx7 homozygous mutants is accompanied by a decrease of acetylcholinesterase histochemical staining in all forebrain cholinergic neuron target areas of both male and female homozygous mutants. Furthermore, there was an increase of M1-, but not M2-, muscarinic acetylcholine receptor binding site density in the somatosensory cortex and basal ganglia of only the female homozygous mutant mice. Such an increase can be regarded as a mechanism acting to compensate for the dramatically reduced cholinergic input, raising the possibility that the forebrain cholinergic system in female mice may be more plastic and responsive to situations of limited neurotransmitter availability. Finally, our study provides additional data for the sexual dimorphism of the forebrain cholinergic system, as female mice appear to have a lower density of M1-muscarinic acetylcholine receptors in the striatal areas of the basal ganglia and a higher density of M2-muscarinic acetylcholine receptors, in a number of cortical areas, as well as the striatal areas of the basal ganglia. PMID:16338089

  14. Endothelin-1 and endothelin-3 regulate endothelin receptor expression in rat coronary arteries

    DEFF Research Database (Denmark)

    Skovsted, Gry Freja; Kilic, Semsi; Edvinsson, Lars

    2015-01-01

    . Organ culture significantly up-regulated ETB receptors and down-regulated ETA receptor expression. Co-incubation with ET-1 (1 nM) or ET-3 (100 nM) induced further down-regulation of the ETA receptor mRNA, while the function and protein level of ETA remained unchanged. ET-3 (100 nM) further up-regulated......In ischaemic hearts, endothelin (ET) levels are increased, and vasoconstrictor responses to ET-1 are greatly enhanced. We previously reported that ETB receptors are up-regulated in the smooth muscle layer of coronary arteries after myocardial ischaemia-reperfusion and that the MEK-ERK1/2 signalling...... pathway is involved in ETB receptor up-regulation. Whether ETs are directly involved in receptor regulation has not been determined. We suggest that ET-1 and ET-3 alter the expression/activity of ET receptors in coronary vascular smooth muscle cells. Vasoconstrictor responses were studied in endothelium...

  15. Vanilloid receptor-1 (TRPV1) expression and function in the vasculature of the rat

    OpenAIRE

    Tóth Attila (1971-) (molekuláris biológus); Czikora Ágnes (1982-) (molekuláris biológus); Pásztorné Tóth Enikő (1966-) (laboratóriumi analitikus); Dienes Beatrix (1972-) (élettanász, molekuláris biológus); Bai Péter (1976-) (biokémikus); Csernoch László (1961-) (élettanász); Rutkai Ibolya (1985-) (molekuláris biológus); Csató Viktória (1986-) (molekuláris biológus); Mányiné Siket Ivetta (1962-) (laborasszisztens); Pórszász Róbert (1965-) (farmakológus, klinikai farmakológus); Édes István (1952-) (kardiológus); Papp Zoltán (1959-) (fizikus); Boczán Judit (1972-) (neurológus)

    2014-01-01

    Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1...

  16. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    International Nuclear Information System (INIS)

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves' patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves' disease will be elucidated. (author). 25 refs

  17. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  18. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M; Poulsen, H S

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... lung cancer cell lines express the EGF receptor....... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression of...

  19. Association of estrogen receptor-α and progesterone receptor A expression with hormonal mammary carcinogenesis: role of the host microenvironment

    OpenAIRE

    Montero Girard, Guadalupe; Silvia I. Vanzulli; Cerliani, Juan Pablo; Bottino, María Cecilia; Bolado, Julieta; Vela, Jorge; Becu-Villalobos, Damasia; Benavides, Fernando; Gutkind, Silvio; Patel, Vyomesh; Molinolo, Alfredo; Lanari, Claudia

    2007-01-01

    Introduction Medroxyprogesterone acetate (MPA) induces estrogen receptor (ER)-positive and progesterone receptor (PR)-positive ductal invasive mammary carcinomas in BALB/c mice. We sought to reproduce this MPA cancer model in C57BL/6 mice because of their widespread use in genetic engineering. Within this experimental setting, we studied the carcinogenic effects of MPA, the morphologic changes in mammary glands that are induced by MPA and progesterone, and the levels of ER and PR expression i...

  20. Rescue of NGF-deficient mice II: basal forebrain cholinergic projections require NGF for target innervation but not guidance.

    Science.gov (United States)

    Phillips, Heidi S; Nishimura, Merry; Armanini, Mark P; Chen, Karen; Albers, Kathryn M; Davis, Brian M

    2004-04-29

    Basal forebrain cholinergic (BFC) neurons are an important substrate of cognitive function and are hypothesized to require the presence of nerve growth factor (NGF) for survival and target innervation. NGF-deficient mice develop BFC neurons that extend projections into telencephalic targets, but the mice perish before innervation is fully established. Rescue of NGF-deficient mice by transgenic expression of NGF under the keratin promoter yields viable mice with disrupted CNS expression of NGF. In the current study, rescued NGF-deficient mice contain normal numbers of septal cholinergic neurons yet reveal severe compromise of cholinergic innervation of both cortex and hippocampus. Surprisingly, intracerebroventricular infusion of NGF into juvenile mice can induce an essentially normal pattern of cholinergic innervation of the hippocampus. These results indicate that NGF is required for induction of proper innervation by BFC neurons, but that the cellular pattern of expression of this factor is not critical for specifying the distribution of axon terminals. PMID:15093680

  1. Expression of functional growth hormone receptor in a mouse L cell line infected with recombinant vaccinia virus

    NARCIS (Netherlands)

    Strous, G J; van Kerkhof, P; Verheijen, C; Rossen, J W; Liou, W; Slot, J W; Roelen, C A; Schwartz, A L

    1994-01-01

    The growth hormone receptor is a member of a large family of receptors including the receptors for prolactin and interleukins. Upon binding to one molecule of growth hormone two growth hormone receptor polypeptides dimerize. We have expressed the rabbit growth hormone receptor DNA in transfected mou

  2. Beta-Adrenergic Receptor Expression in Muscle Cells

    Science.gov (United States)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  3. Relationship between expression of somatostatin receptors subtype 2 mRNA and estrogen and progesterone receptors in breast cancer

    Institute of Scientific and Technical Information of China (English)

    曾希志; 姚榛祥

    2003-01-01

    Objectives To observe the expression of somatostatin receptor subtype 2 (SSTR2) mRNA, and investigate the relationship between the expression of SSTR2 mRNA and the expressions of estrogen and progesterone receptors (ERs and PRs) in benign and malignant breast tissues.Methods Samples from a total of 23 breast carcinomas, 16 mammary hyperplasias, and 9 mammary fibroadenomas were analyzed. SSTR2 mRNA expression was examined by in situ hybridization using multiphase oligoprobes. ER and PR expressions were detected by immunohistochemical staining. A computerized image analysis system was utilized to estimate the relative content of SSTR2 mRNA.Results The rate of expression (87.0%) and relative content (0.47) of SSTR2 mRNA in breast cancer were higher than those in benign breast tissue (64%,0.26) (P<0.05). SSTR2 mRNA expression was closely correlated with ER and PR expressions in breast cancer (P<0.05). SSTR2 mRNA was also positively correlated with ER expression in benign breast tissues.Conclusions SSTR2 mRNA expression is higher or in benign breast tissues than in malignant ones. There is a significant positive correlation between SSTR2 mRNA and ER and PR expressions. Combined antiestrogen and somatostatin analogue in treatment of ER-positive breast cancers should be further investigated.

  4. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression,

  5. Comparative study of histamine H4 receptor expression in human dermal fibroblasts.

    Science.gov (United States)

    Ikawa, Yoshiko; Shiba, Kayoko; Ohki, Emi; Mutoh, Nanami; Suzuki, Masahiko; Sato, Hiromi; Ueno, Koichi

    2008-10-01

    The histamine H4 receptor (H4R) is the newest receptor identified of four histamine receptors. Its expression in numerous immune and inflammatory organs has been implicated in relation to immune systems and allergic diseases. In the present study, we demonstrate the expression of H4R in human dermal fibroblasts and investigate changes in its expression level when stimulated by histamine, phorbol 12-myristate 13-acetate (PMA), lipopolysaccharides (LPS), dexamethasone and indomethacin. Histamine and PMA showed no effects on H4R expression. LPS and indomethacin up-regulated H4R mRNA expression, and 20 microM dexamethasone increased H4R protein levels. These results indicate a good prospective for this new receptor in the development of effective treatments of inflammatory diseases and pruritus or for the appropriate prevention of toxicities. PMID:18827451

  6. Gene expression and function of adenosine A(2A) receptor in the rat carotid body.

    Science.gov (United States)

    Kobayashi, S; Conforti, L; Millhorn, D E

    2000-08-01

    The present study was undertaken to determine whether rat carotid bodies express adenosine (Ado) A(2A) receptors and whether this receptor is involved in the cellular response to hypoxia. Our results demonstrate that rat carotid bodies express the A(2A) and A(2B) Ado receptor mRNAs but not the A(1) or A(3) receptor mRNAs as determined by reverse transcriptase-polymerase chain reaction. In situ hybridization confirmed the expression of the A(2A) receptor mRNA. Immunohistochemical studies further showed that the A(2A) receptor is expressed in the carotid body and that it is colocalized with tyrosine hydroxylase in type I cells. Whole cell voltage-clamp studies using isolated type I cells showed that Ado inhibited the voltage-dependent Ca(2+) currents and that this inhibition was abolished by the selective A(2A) receptor antagonist ZM-241385. Ca(2+) imaging studies using fura 2 revealed that exposure to severe hypoxia induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in type I cells and that extracellularly applied Ado significantly attenuated the hypoxia-induced elevation of [Ca(2+)](i). Taken together, our findings indicate that A(2A) receptors are present in type I cells and that activation of A(2A) receptors modulates Ca(2+) accumulation during hypoxia. This mechanism may play a role in regulating intracellular Ca(2+) homeostasis and cellular excitability during hypoxia. PMID:10926550

  7. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)+mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta2-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using [3H] dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in the control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta2-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 μM, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta1- as well as beta2-adrenergic receptors

  8. Plasticity in D1-like receptor expression is associated with different components of cognitive processes.

    Directory of Open Access Journals (Sweden)

    Christina Herold

    Full Text Available Dopamine D1-like receptors consist of D1 (D1A and D5 (D1B receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression.

  9. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  10. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    OpenAIRE

    Jala Venkatakrishna Rao; Radde Brandie N; Haribabu Bodduluri; Klinge Carolyn M

    2012-01-01

    Abstract Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in...

  11. Expression of thyroid stimulating hormone receptor in differentiated thyroid carcinoma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    李清怀

    2013-01-01

    Objective To explore the expression of thyroid stimulating hormone (TSH) receptor in differentiated thyroid carcinoma and its clinical significance.Methods Seventy-four patients with differentiated thyroid carcinoma treated in our department from January 2009 to January 2011were selected as the observation group,and 28 patients with nodular goiter were selected as the control group.Expression of TSH receptor in the two groups were detected by immunohistochemistry.Results The positive rate of TSH receptor expression in the observation group was55.4 (41/74) ,significantly lower than that of the control

  12. Localized low-level re-expression of high-affinity mesolimbic nicotinic acetylcholine receptors restores nicotine-induced locomotion but not place conditioning.

    Science.gov (United States)

    Mineur, Y S; Brunzell, D H; Grady, S R; Lindstrom, J M; McIntosh, J M; Marks, M J; King, S L; Picciotto, M R

    2009-04-01

    High-affinity, beta2-subunit-containing (beta2*) nicotinic acetylcholine receptors (nAChRs) are essential for nicotine reinforcement; however, these nAChRs are found on both gamma-aminobutyric acid (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) and also on terminals of glutamatergic and cholinergic neurons projecting from the pedunculopontine tegmental area and the laterodorsal tegmental nucleus. Thus, systemic nicotine administration stimulates many different neuronal subtypes in various brain nuclei. To identify neurons in which nAChRs must be expressed to mediate effects of systemic nicotine, we investigated responses in mice with low-level, localized expression of beta2* nAChRs in the midbrain/VTA. Nicotine-induced GABA and DA release were partially rescued in striatal synaptosomes from transgenic mice compared with tissue from beta2 knockout mice. Nicotine-induced locomotor activation, but not place preference, was rescued in mice with low-level VTA expression, suggesting that low-level expression of beta2* nAChRs in DA neurons is not sufficient to support nicotine reward. In contrast to control mice, transgenic mice with low-level beta2* nAChR expression in the VTA showed no increase in overall levels of cyclic AMP response element-binding protein (CREB) but did show an increase in CREB phosphorylation in response to exposure to a nicotine-paired chamber. Thus, CREB activation in the absence of regulation of total CREB levels during place preference testing was not sufficient to support nicotine place preference in beta2 trangenic mice. This suggests that partial activation of high-affinity nAChRs in VTA might block the rewarding effects of nicotine, providing a potential mechanism for the ability of nicotinic partial agonists to aid in smoking cessation. PMID:19077117

  13. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Directory of Open Access Journals (Sweden)

    Marta Słoniecka

    Full Text Available Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP and neurokinin A (NKA, and of the neurotransmitters acetylcholine (ACh, catecholamines (adrenaline, noradrenaline and dopamine, and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R, dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT, M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that

  14. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum

    Directory of Open Access Journals (Sweden)

    Ralph J Oude-Ophuis

    2014-03-01

    Full Text Available The striatum harbors two neuronal populations that enable action selection. One population represents the striatonigral pathway, expresses the dopamine receptor D1 (DRD1 and promotes the execution of motor programs, while the other population represents the striatopallidal pathway, expresses the dopamine receptor D2 (DRD2 and suppresses voluntary activity. The two populations integrate distinct sensorimotor, cognitive and emotional information streams and their combined activity enables the selection of adaptive behaviors. Characterization of these populations is critical to the understanding of their role in action selection, because it aids the identification of the molecular mechanisms that separate them. To that end, we used fluorescent in-situ hybridization to quantify the percentage of striatal cells that (coexpress dopaminergic receptors and receptors of the cannabinoid, melanocortin or opioid neurotransmitters systems. Our main findings are that the cannabinoid 1 receptor is equally expressed on both populations with a gradient from dorsal to ventral striatum, that the opioid receptors have a preference for expression with either the DRD1 or DRD2 and that the melanocortin 4 receptor (MC4R is predominantly expressed in ventral parts of the striatum. In addition, we find that the level of MC4R expression determines its localization to either the DRD1 or the DRD2 population. Thereby, we provide insight into the sensitivity of the two dopaminoceptive populations to these neurotransmitters and progress the understanding of the mechanisms that enable action selection.

  15. Effects of chemotherapy agents on Sphingosine-1-Phosphate receptors expression in MCF-7 mammary cancer cells.

    Science.gov (United States)

    Ghosal, P; Sukocheva, O A; Wang, T; Mayne, G C; Watson, D I; Hussey, D J

    2016-07-01

    Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in the regulation of cell proliferation and cancer progression. Increased expression of S1P receptors has been detected in advanced breast tumours with poor prognosis suggesting that S1P receptors might control tumour response to chemotherapy. However, it remains unclear how the levels of S1P receptor expression are influenced by chemotherapy agents. Western immunoblotting, PCR analysis and fluorescent microscopy techniques were used in this study to analyze expression patterns of S1P receptors 2 and 3 (S1P2/S1P3) in MCF-7 breast adenocarcinoma cells treated by Tamoxifen (TAM) and/or Medroxyprogesterone acetate (MPA). We found that TAM/MPA induce downregulation of S1P3 receptors, but stimulate expression of S1P2. According to cell viability and caspase activity analyses, as expected, TAM activated apoptosis. We also detected TAM/MPA-induced autophagy marked by formation of macroautophagosomes and increased level of Beclin 1. Combined application of TAM and MPA resulted in synergistic apoptosis- and autophagy-stimulating effects. Assessed by fluorescent microscopy with autophagosome marker LAMP-2, changes in S1P receptor expression coincided with activation of autophagy, suggestively, directing breast cancer cells towards death. Further studies are warranted to explore the utility of manipulation of S1P2 and S1P3 receptor expression as a novel treatment approach. PMID:27261597

  16. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells.

    Science.gov (United States)

    White, Steven R; Martin, Linda D; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A

    2010-11-01

    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  17. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T;

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  18. Expression of D2 dopamine receptor mRNA in the arterial chemoreceptor afferent pathway.

    Science.gov (United States)

    Czyzyk-Krzeska, M F; Lawson, E E; Millhorn, D E

    1992-11-01

    Dopamine is a major neurotransmitter in the arterial chemoreceptor pathway. In the present study we wished to determine if messenger RNAs for dopamine D1 and D2 receptor are expressed in carotid body (type I cells), in sensory neurons of the petrosal ganglion which innervate the carotid body and in sympathetic neurons of the superior cervical ganglion. We failed to detect D1 receptor mRNA in any of these tissues. However, we found that D2 receptor mRNA was expressed by dopaminergic carotid body type I cells. D2 receptor mRNA was also found in petrosal ganglion neurons that innervated the carotid sinus and carotid body. In addition, a large number of sympathetic postganglionic neurons in the superior cervical ganglion expressed D2 receptor mRNA. PMID:1362730

  19. Striatal Cholinergic Neurotransmission Requires VGLUT3

    OpenAIRE

    Nelson, Alexandra B.; Bussert, Timothy G.; Kreitzer, Anatol C.; Seal, Rebecca P.

    2014-01-01

    It is now clear that many neuronal populations release more than one classical neurotransmitter, yet in most cases the functional role of corelease is unknown. Striatal cholinergic interneurons release both glutamate and acetylcholine, and vesicular loading of glutamate has been shown to enhance acetylcholine content. Using a combination of optogenetics and whole-cell recordings in mice, we now provide physiological evidence that optogenetic stimulation of cholinergic interneurons triggers mo...

  20. Brain cholinergic impairment in liver failure

    OpenAIRE

    García Ayllón, María Salud; Cauli, Omar; Silveyra, María Ximena; Rodrigo, Regina; Candela, Asunción; Compañ, Antonio; Jover, Rodrigo; Pérez-Mateo, Miguel; Martínez, Salvador; Felipo, Vicente; Sáez-Valero, Javier

    2008-01-01

    The cholinergic system is involved in specific behavioural responses and cognitive processes. Here, we examined potential alterations in the brain levels of key cholinergic enzymes in cirrhotic patients and animal models with liver failure. An increase (∼30%) in the activity of the acetylcholine-hydrolyzing enzyme, acetylcholinesterase (AChE) is observed in the brain cortex from patients deceased from hepatic coma, while the activity of the acetylcholine-synthesizing enzyme, choline acetyltra...

  1. A case of postganglionic cholinergic dysautonomia.

    OpenAIRE

    Takayama, H; Kazahaya, Y; Kashihara, N.; Kuroda, H.; Miyawaki, S; Ota, Z; Ogawa, N.

    1987-01-01

    A 24 year old female presented with signs and symptoms of postganglionic cholinergic autonomic dysfunction manifested by impaired lachrymation and salivation, mydriasis of the pupil, decreased gastrointestinal motility, atony of the bladder, and sweating and taste disturbance. Clinical and pharmacological studies confirmed that the abnormalities were restricted mainly to the postganglionic cholinergic autonomic systems. The titre of serum complement was low, antinuclear antibodies revealed a ...

  2. Expression and localization of the omega-3 fatty acid receptor GPR120 in human term placenta

    OpenAIRE

    Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Jansson, Thomas; Powell, Theresa L.

    2014-01-01

    Fatty acids can function as signaling molecules, acting through receptors in the cytosol or on the cell surface. G-Protein Receptor (GPR)120 is a membrane-bound receptor mediating anti-inflammatory and insulin-sensitizing effects of the omega-3 fatty acid docohexaenoic acid (DHA). GPR120 dysfunction is associated with obesity in humans. Cellular localization of GPR120 and the influence of maternal obesity on GPR120 protein expression in the placenta are unknown. Herein we demonstrate that GPR...

  3. Role of desensitization and subunit expression for kainate receptor-mediated neurotoxicity in murine neocortical cultures

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S;

    1999-01-01

    The neurotoxic actions of kainate and domoate were studied in cultured murine neocortical neurons at various days in culture and found to be developmentally regulated involving three components of neurotoxicity: (1) toxicity via indirect activation of N-methyl-D-aspartate (NMDA) receptors, (2) to...... produced by kainate receptors in mature cultures. Examining the subunit expression of the kainate receptor subunits GluR6/7 and KA2 did, however, not reveal any major change during development of the cultures....

  4. Calreticulin chaperones regulate functional expression of vomeronasal type 2 pheromone receptors

    OpenAIRE

    Dey, Sandeepa; Matsunami, Hiroaki

    2011-01-01

    A variety of social behaviors like intermale aggression, fear, and mating rituals are important for sustenance of a species. In mice, these behaviors have been implicated to be mediated by peptide pheromones that are sensed by a class of G protein-coupled receptors, vomeronasal receptor type 2 (V2Rs), expressed in the pheromone detecting vomeronasal organ. Matching V2Rs with their cognate ligands is required to learn what receptors the biologically relevant pheromones are acting on. However, ...

  5. Vascular endothelial growth factor and its receptor expression during the process of fracture healing

    Institute of Scientific and Technical Information of China (English)

    CHU Tong-wei; LIU Yu-gang; WANG Zheng-guo; ZHU Pei-fang; LIU Da-wei

    2008-01-01

    Objective: To study the expression regularity of vascular endothelial growth factor (VEGF) during the process of fracture healing, and the type of VEGF receptor expressed in the vascular endothelial cells of the fracture site.Methods: The fracture model was made in the middle part of left radius in 35 rabbits. The specimens from the fracture site were harvested at 8, 24, 72 hours and 1, 3, 5, 8 weeks, and then fixed, decalcified, and sectioned frozenly to detect the expression of VEGF and its receptor at the fracture site by in situ hybridization and immunochemical assays. Results: VEGF mRNA and VEGF expression was detected in many kinds of cells at the fracture site during 8hours to 8 weeks after fracture. Flt1 receptor of VEGF was found in the vascular endothelial cells at the fracture site during 8 hours to 8 weeks after fracture, and strong expression of flk1 receptor was detected from 3 days to 3 weeks after fracture. Conclusions: The expression of VEGF and flt1 receptor appears during the whole course of fracture healing, especially from 1 to 3 weeks. Flk1 receptor is highly expressed in a definite period after fracture. VEGF is proved to be involved in the vascular reconstruction and fracture healing.

  6. CD46 Measles Virus Receptor Polymorphisms Influence Receptor Protein Expression and Primary Measles Vaccine Responses in Naive Australian Children

    OpenAIRE

    Clifford, Holly D.; Hayden, Catherine M.; Khoo, Siew-Kim; Zhang, Guicheng; Le Souëf, Peter N.; Richmond, Peter

    2012-01-01

    Despite the availability of measles vaccines, infants continue to die from measles. Measles vaccine responses vary between individuals, and poor immunogenicity is likely to preclude protection against measles. CD46 is a ubiquitously expressed specific receptor for vaccine strains of measles virus. CD46 polymorphisms have not been functionally investigated but may affect CD46 protein expression, which in turn may mediate primary measles antibody responses in infants. In a cohort of children ag...

  7. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels

    DEFF Research Database (Denmark)

    Ljungstrom, Trine; Grunnet, Morten; Jensen, Bo Skaaning;

    2003-01-01

    Activation of KCNQ potassium channels by stimulation of co-expressed dopamine D(2) receptors was studied electrophysiologically in Xenopus laevis oocytes and in mammalian cells. To address the specificity of the interaction between D(2)-like receptors and KCNQ channels, combinations of KCNQ1......-5 channels and D(2)-like receptors (D(2L), D(3), and D(4)) were investigated in Xenopus oocytes. Activation of either receptor with the selective D(2)-like receptor agonist quinpirole (100 nM) stimulated all the KCNQ currents, independently of the subunit combination, indicating a common pathway of receptor......-channel interaction. The KCNQ4 current was investigated in further detail and was increased by 19.9+/-1.6% ( n=20) by D(2L) receptor stimulation. The effect could be mimicked by injection of GTPgammaS and prevented by injection of Bordetella pertussis toxin, indicating that channel stimulation was mediated via a G...

  8. Reduced expression of epidermal growth factor receptor related protein in gastric cancer

    OpenAIRE

    Moon, W. S.; Tarnawski, A S; Chai, J.; Yang, J. T.; Majumdar, A.P.N.

    2005-01-01

    Objectives: The recently cloned epidermal growth factor receptor related protein (ERRP) has been proposed to be a negative regulator of the epidermal growth factor receptor (EGFR). Because of the causal involvement of EGFR and its ligands in gastric cancer growth, we investigated expression of ERRP and cell proliferation in human gastric cancer.

  9. Viral Engineering of Chimeric Antigen Receptor Expression on Murine and Human T Lymphocytes.

    Science.gov (United States)

    Hammill, Joanne A; Afsahi, Arya; Bramson, Jonathan L; Helsen, Christopher W

    2016-01-01

    The adoptive transfer of a bolus of tumor-specific T lymphocytes into cancer patients is a promising therapeutic strategy. In one approach, tumor specificity is conferred upon T cells via engineering expression of exogenous receptors, such as chimeric antigen receptors (CARs). Here, we describe the generation and production of both murine and human CAR-engineered T lymphocytes using retroviruses. PMID:27581020

  10. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne;

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development,...

  11. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei;

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  12. Erythropoietin and erythropoietin receptor expression in the guinea pig inner ear

    DEFF Research Database (Denmark)

    Cayé-Thomasen, Per; Wagner, Niels; Lidegaard Frederiksen, Birgitte;

    2005-01-01

    The erythropoietin receptor (EPOR) is expressed in the brain and erythropoietin (EPO) has been shown to have neurotrophic and neuroprotective functions in the central nervous system and in the retina. These findings may be applied to the inner ear, pending EPO receptor presence. Accordingly, this...

  13. Effect of Curcumin on the Gene Expression of Low Density Lipoprotein Receptors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To investigate the molecular mechanisms and effective target ponits of lipid-lowering drug, Rhizoma Curcumae Longae, and study the effect of curcumin on the expression of low density lipoprotein (LDL) receptors in macrophages in mice. Methods: Macrophages in mice were treated with curcumin, which was purified from the ethanolly extraction of Rhizoma Curcumae Longae for 24 h. The LDL receptors expressed in the macrophages were determined by enzyme-linked immunosorbent assay (ELISA) and assay of Dil labeled LDL uptake by flow cytometer. Results: It was found for the first time that 10 μmol/L-50μmol/L curcumin could obviously up-regulate the expression of LDL receptor in macrophages in mice, and a dose-effect relationship was demonstrated. Conclusion: One of the lipid-lowering mechanisms of traditional Chinese medicine, Rhizoma Curcumae Longae, was completed by the effect of curcumin through the up-regulation of the expression of LDL receptor.

  14. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-κB (RANK)

    International Nuclear Information System (INIS)

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A-/- mice. The femoral osseous density of SR-A-/- mice was higher than that of SR-A+/+ mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A-/- mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  15. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  16. Upregulation of neurokinin-1 receptor expression in the lungs of patients with sarcoidosis.

    LENUS (Irish Health Repository)

    O'Connor, Terence M

    2012-02-03

    Substance P (SP) is a proinflammatory neuropeptide that is secreted by sensory nerves and inflammatory cells. Increased levels of SP are found in sarcoid bronchoalveolar lavage fluid. SP acts by binding to the neurokinin-1 receptor and increases secretion of tumor necrosis factor-alpha in many cell types. We sought to determine neurokinin-1 receptor expression in patients with sarcoidosis compared with normal controls. Neurokinin-1 receptor messenger RNA and protein expression were below the limits of detection by reverse transcriptase-polymerase chain reaction and immunohistochemistry in peripheral blood mononuclear cells of healthy volunteers (n = 9) or patients with stage 1 or 2 pulmonary sarcoidosis (n = 10), but were detected in 1\\/9 bronchoalveolar lavage cells of controls compared with 8\\/10 patients with sarcoidosis (p = 0.012) and 2\\/9 biopsies of controls compared with 9\\/10 patients with sarcoidosis (p = 0.013). Immunohistochemistry localized upregulated neurokinin-1 receptor expression to bronchial and alveolar epithelial cells, macrophages, lymphocytes, and sarcoid granulomas. The patient in whom neurokinin-1 receptor was not detected was taking corticosteroids. Incubation of the type II alveolar and bronchial epithelial cell lines A549 and SK-LU 1 with dexamethasone downregulated neurokinin-1 receptor expression. Upregulated neurokinin-1 receptor expression in patients with sarcoidosis may potentiate substance P-induced proinflammatory cytokine production in patients with sarcoidosis.

  17. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain

    OpenAIRE

    Galea, Ian; Palin, Karine; Newman, Tracey A; van Rooijen, Nico; Perry, V. Hugh; Boche, Delphine

    2005-01-01

    Perivascular macrophages are believed to have a significant role in inflammation in the central nervous system (CNS). They express a number of different receptors that point toward functions in both innate immunity, through pathogen-associated molecular pattern recognition, phagocytosis, and cytokine responsiveness, and acquired immunity, through antigen presentation and co-stimulation. We are interested in the receptors that are differentially expressed by perivascular macrophages and microg...

  18. Expression of basic fibroblast growth factor and its receptor in human pancreatic carcinomas.

    OpenAIRE

    Ohta, T.(Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan); Yamamoto, M.; Numata, M; Iseki, S.; Tsukioka, Y.; Miyashita, T; Kayahara, M.; Nagakawa, T.; Miyazaki, I.; Nishikawa, K.; Yoshitake, Y

    1995-01-01

    We examined the expression of basic fibroblast growth factor (FGF) and FGF receptor by immunohistochemistry in 32 human pancreatic ductal adenocarcinomas. Mild to marked basic FGF immunoreactivity was noted in 19 (59.4%) of the 32 tumours examined, and 30 (93.3%) of the tumours exhibited a cytoplasmic staining pattern against FGF receptor. The tumours were divided into two groups according to the proportion of positively stained tumour cells: a low expression group (positive cells < 25%) and ...

  19. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ

    OpenAIRE

    Ackels, Tobias; Von Der Weid, Benoît; Rodriguez, Ivan; Spehr, Marc

    2014-01-01

    The mouse vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Based on largely monogenic expression of either type 1 or 2 vomeronasal receptors (V1Rs/V2Rs) or members of the formyl peptide receptor (FPR) family, the vomeronasal sensory epithelium harbors at least three neuronal subpopulations. While various neurophysiological properties of both V1R- and V2R-expressing neurons have been described using genetically engineered mouse models, ...

  20. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ

    OpenAIRE

    Tobias Ackels; Ivan Rodriguez

    2014-01-01

    The mouse vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Based on largely monogenic expression of either type 1 or 2 vomeronasal receptors (V1Rs / V2Rs) or members of the formyl peptide receptor (FPR) family, the vomeronasal sensory epithelium harbors at least three neuronal subpopulations. While various neurophysiological properties of both V1R- and V2R-expressing neurons have been described using genetically engineered mouse models...

  1. Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood

    OpenAIRE

    Brydges, Nichola M.; Jin, Rowen; Seckl, Jonathan,; Holmes, Megan C; Drake, Amanda J.; Hall, Jeremy

    2013-01-01

    BackgroundExposure to stress in early life is correlated with the development of anxiety disorders in adulthood. The underlying mechanisms are not fully understood, but an imbalance in corticosteroid receptor (CR) expression in the limbic system, particularly the hippocampus, has been implicated in the etiology of anxiety disorders. However, little is known about how prepubertal stress in the so called “juvenile” period might alter the expression of these receptors.AimsTherefore, the aim of t...

  2. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    OpenAIRE

    Monica S Guzman; Xavier De Jaeger; Sanda Raulic; Souza, Ivana A; Li, Alex X.; Susanne Schmid; Menon, Ravi S.; Gainetdinov, Raul R.; Caron, Marc G.; Robert Bartha; Prado, Vania F.; Prado, Marco A. M.

    2011-01-01

    Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent...

  3. Central cholinergic control of vasopressin release in conscious rats

    International Nuclear Information System (INIS)

    Intracerebroventricular (icv) administration of carbachol into conscious rats evoked a substantial increase in vasopressin secretion and blood pressure in a dose-dependent manner. These effects were blocked by pretreatment with the muscarinic blocker, atropine (10 μg icv), but not by the nicotinic blocker, hexamethonium (10 μg icv). Hexamethonium did, however, block the increase in blood pressure, the decrease in heart rate, and they very small elevation in the plasma vasopressin concentration induced by nicotine (10 μg icv). These results indicate that stimulation of either central nicotinic or muscarinic receptors can affect the cardiovascular system and suggest that the cholinergic stimulation of vasopressin secretion may involve primarily muscarinic receptors in the conscious rat

  4. Expression of nicotinic acetylcholine receptor subunit α9 in type Ⅱ vestibular hair cells of rats

    Institute of Scientific and Technical Information of China (English)

    Wei-jia KONG; Hua-mao CHENG; Paul van CAUWENBERGE

    2006-01-01

    Aim: To explore the cell specific existence of α9 AChR in the vestibular type Ⅱ hair cells (VHC Ⅱ) of rats. Methods: To detect the expression of α9 AChR messenger RNA (mRNA) in the vestibular endorgans and single VHC Ⅱ of rats by using the reverse transcription polymerase chain reaction (RT-PCR) technique and the single cell RT-PCR technique, respectively. Results: It was shown that α9 AChR mRNA was detected in the vestibular endorgans. By using single-cell RT-PCR, mRNA encoding α9 AChR was also detected in the VHC Ⅱ of the rats. Sequence analysis of the PCR products confirmed identity to corresponding cDNA sequence in the predicted region. Conclusion: We established a method which could effectively detect the cell specific expression of mRNA in an individual VHC. Present data confirm that α9 AChR mRNA is expressed in the VHC Ⅱ of rats and indicates that α9 AChR may function as a mediator of efferent cholinergic signaling in mammalian VHC.

  5. Role of a ubiquitously expressed receptor in the vertebrate olfactory system.

    Science.gov (United States)

    DeMaria, Shannon; Berke, Allison P; Van Name, Eric; Heravian, Anisa; Ferreira, Todd; Ngai, John

    2013-09-18

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the "one receptor, one neuron" rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed. PMID:24048853

  6. The effect of heart-and kidney-Benefiting Chinese Herbal Medicine on the function of cholinergic M-and Gamma amino-butyric acid (GABA) receptor in brain tissues of analogue dementia rats

    International Nuclear Information System (INIS)

    3H-QNB and 3H-GABA were used as radioactive ligand for M-and GABA receptors respectively. M-and GABA receptors were assayed by radioligand binding assay (RBA) in cerebral cortex, hippocampus and cerebellum of analogue dementia rats. It was found that Rt of M receptor was decreased in cerebral cortex and hippocampus and Rt of GABA receptor was decreased in cerebellum of analogue dementia rats. The dissociation constant (KD) of M-receptor was decreased significantly in cerebral cortex and KD value of (GABA) receptor was decreased in cerebellum of analogue dementia rats. The decreased Rt of M-and GABA receptor in brain tissue of analogue dementia rats was raised by Heart- and Kidney-Benefiting Chinese Herbs as well as hydergin

  7. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, HongYi; Kantekure, Kanchan; Paterson, Jennifer C.; Liu, Xiaobin; Schaffer, Andreas; Paulos, Chrystal; Milone, Michael C.; Ødum, Niels; Turner, Suzanne; Marafioti, Teresa; Wasik, Mariusz A.

    2011-01-01

    protein. Stimulation of the ICOS receptor with anti-ICOS antibody or ICOS ligand-expressing B cells markedly enhanced proliferation of the ALK(+) TCL cells. These results demonstrate that NPM-ALK, acting through STAT3 as the gene transcriptional activator, induces the expression of ICOS, a cell growth......Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression via...... STAT3, which triggers the transcriptional activity of the ICOS gene promoter. In addition, STAT3 suppresses the expression of miR-219 that, in turn, selectively inhibits ICOS expression. ALK(+) TCL cell lines display extensive DNA methylation of the CpG island located within intron 1, the putative...

  8. Differential expression of the Wnt putative receptors Frizzled during mouse somitogenesis.

    Science.gov (United States)

    Borello, U; Buffa, V; Sonnino, C; Melchionna, R; Vivarelli, E; Cossu, G

    1999-12-01

    The expression of eight murine Frizzled (1,3-9) genes was studied during mouse somitogenesis, in order to correlate the Wnt-dependent activation of myogenesis with the expression of specific Frizzled putative receptors. Frizzled 1, 3, 6, 7, 8, and 9 have specific expression in the forming and differentiating somites. The genes analyzed have a complex and partly overlapping pattern of expression in other regions of the embryo. PMID:10559494

  9. Expression cloning of a cDNA encoding the bovine histamine H1 receptor.

    OpenAIRE

    Yamashita, M; Fukui, H; Sugama, K; Horio, Y; Ito, S.; Mizuguchi, H.; Wada, H

    1991-01-01

    A functional cDNA clone for the histamine H1 receptor was isolated from a cDNA library of bovine adrenal medulla by a combination of molecular cloning in an expression vector and electrophysiological assay in Xenopus oocytes. The H1 receptor cDNA encodes a protein of 491 amino acids (Mr 55,954) with seven putative transmembrane domains, illustrating the similarity to other receptors that couple with guanine nucleotide-binding regulatory proteins (G protein-coupled receptors). The sequence hom...

  10. Molecular cloning of a new bombesin receptor subtype expressed in uterus during pregnancy

    OpenAIRE

    Gorboulev, Valentin; Akhundova, Aida; Büchner, Hubert; Fahrenholz, Falk

    2011-01-01

    The homology screening approach has been used to clone a new member of the guanine-nucleotidebinding-protein-coupled receptor superfamily from guinea pig uterus. The cloned cDNA encodes a 399-amino-acid protein and shows the highest amino acid similarity to members of the bombesin receptor family; 52% and 47% similarity to the gastrin-releasing-peptide (GRP) receptor and the neuromedin-B receptor, respectively. Bindingexperiments with the stably transfected LLC-PK1 cell line expressing the ne...

  11. Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study.

    Science.gov (United States)

    Meneses, A; Manuel-Apolinar, L; Castillo, C; Castillo, E

    2007-03-12

    Traditionally, the search for memory circuits has been centered on examinations of amnesic and AD patients, cerebral lesions and, neuroimaging. A complementary alternative might be the use of autoradiography with radioligands. Indeed, ex vivo autoradiographic studies offer the advantage to detect functionally active receptors altered by pharmacological tools and memory formation. Hence, herein the 5-HT(6) receptor antagonist SB-399885 and the amnesic drugs scopolamine or dizocilpine were used to manipulate memory consolidation and 5-HT(6) receptors expression was determined by using [(3)H]-SB-258585. Thus, memory consolidation was impaired in scopolamine and dizocilpine treated groups relative to control vehicle but improved it in SB-399885-treated animals. SB-399885 improved memory consolidation seems to be associated with decreased 5-HT(6) receptors expression in 15 out 17 brain areas. Scopolamine or dizocilpine decreased 5-HT(6) receptors expression in nine different brain areas and increased it in CA3 hippocampus or other eight areas, respectively. In brain areas thought to be in charge of procedural memory such basal ganglia (i.e., nucleus accumbens, caudate putamen, and fundus striate) data showed that relative to control animals amnesic groups showed diminished (scopolamine) or augmented (dizocilpine) 5-HT(6) receptor expression. SB-399885 showing improved memory displayed an intermediate expression in these same brain regions. A similar intermediate expression occurs with regard to amygdala, septum, and some cortical areas in charge of explicit memory storage. However, relative to control group amnesic and SB-399885 rats in the hippocampus, region where explicit memory is formed, showed a complex 5-HT(6) receptors expression. In conclusion, these results indicate neural circuits underlying the effects of 5-HT(6) receptor antagonists in autoshaping task and offer some general clues about cognitive processes in general. PMID:17267053

  12. Expression of group III metabotropic glutamate receptors in the reproductive system of male mice.

    Science.gov (United States)

    Marciniak, Marcin; Chruścicka, Barbara; Lech, Tomasz; Burnat, Grzegorz; Pilc, Andrzej

    2016-03-01

    Although the presence of metabotropic glutamate (mGlu) receptors in the central nervous system is well documented, they have recently been found in peripheral and non-neuronal tissues. In the present study we investigated the expression of group III mGlu receptors in the reproductive system of male mice. Reverse transcription-polymerase chain reaction analysis revealed the presence of mGlu6, mGlu7 and mGlu8 (but not mGlu4) receptor transcripts in testes and epididymides from adult mice. In addition, expression of mGlu6 (Grm6) and mGlu8 receptor (Grm8) mRNA was detected in spermatozoa isolated from the vas deferens. The vas deferens was found to contain only mGlu7 receptor (Grm7) mRNA, which was particularly intense in 21-day-old male mice. In penile homogenates, only the mGlu7 receptor signal was detected. Genetic ablation of the mGlu7 receptor in males led to fertility disorders manifested by decreased insemination capability as well as deterioration of sperm parameters, particularly sperm motility, vitality, sperm membrane integrity and morphology, with a simultaneous increase in sperm concentration. These results indicate that constitutively expressed mGlu receptors in the male reproductive system may play an important role in ejaculation and/or erection processes, as well as in the formation and maturation of spermatozoa. PMID:25066043

  13. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  14. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    Science.gov (United States)

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted. PMID:25967984

  15. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-04-01

    Full Text Available Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was to determine the extent of α7 mRNA and protein expression in the human lung. Methods Experiments were done using reverse transcription polymerase chain reaction (RT-PCR, a nuclease protection assay and western blotting using membrane proteins. Results We detected mRNA for the neuronal nicotinic acetylcholine receptor α7 receptor in seven small cell lung cancer (SCLC cell lines, in two pulmonary adenocarcinoma cell lines, in cultured normal human small airway epithelial cells (SAEC, one carcinoid cell line, three squamous cell lines and tissue samples from nine patients with various types of lung cancer. A nuclease protection assay showed prominent levels of α7 in the NCI-H82 SCLC cell line while α7 was not detected in SAEC, suggesting that α7 mRNA levels may be higher in SCLC compared to normal cells. Using a specific antibody to the α7 nicotinic receptor, protein expression of α7 was determined. All SCLC cell lines except NCI-H187 expressed protein for the α7 receptor. In the non-SCLC cells and normal cells that express the α7 nAChR mRNA, only in SAEC, A549 and NCI-H226 was expression of the α7 nicotinic receptor protein shown. When NCI-H69 SCLC cell line was exposed to 100 pm NNK, protein expression of the α7 receptor was increased at 60 and 150 min. Conclusion Expression of mRNA for the neuronal nicotinic acetylcholine receptor α7 seems to be ubiquitously expressed in all human lung cancer cell lines tested (except for NCI-H441 as well as normal

  16. A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131.

    Directory of Open Access Journals (Sweden)

    Simone Prandi

    Full Text Available The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs, direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r expression in mice. RT-PCR experiments assessed the presence of mRNA for Tas2rs and taste signaling molecules in the gut. A gene-targeted mouse strain was established to visualize and identify cell types expressing the bitter receptor Tas2r131. Messenger RNA for various Tas2rs and taste signaling molecules were detected by RT-PCR in the gut. Using our knock-in mouse strain we demonstrate that a subset of colonic goblet cells express Tas2r131. Cells that express this receptor are absent in the upper gut and do not correspond to enteroendocrine and brush cells. Expression in colonic goblet cells is consistent with a role of Tas2rs in defense mechanisms against potentially harmful xenobiotics.

  17. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    Science.gov (United States)

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  18. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening.

    Directory of Open Access Journals (Sweden)

    Wenjing Law

    2015-04-01

    Full Text Available Monoamines, such as 5-HT and tyramine (TA, paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for

  19. Vitamin D3 receptor is highly expressed in Hodgkin’s lymphoma

    Directory of Open Access Journals (Sweden)

    Renné Christoph

    2012-06-01

    Full Text Available Abstract Background Hodgkin lymphoma (HL is one of the most frequent lymphoma in the western world. Despite a good overall prognosis, some patients suffer relapsing tumors which are difficult to cure. Over a long period Vitamin D has been shown to be a potential treatment for cancer. Vitamin D acts via the vitamin D receptor, a nuclear receptor, acting as an inducible transcription factor. We aimed to investigate the expression of vitamin D receptor as a possible diagnostic marker and potential therapeutic target in HL as well as in B-cell derived non-Hodgkin lymphoma (B-NHL. Methods We used a panel of 193 formalin fixed tissues of lymphoma cases consisting of 55 cases of HL and 138 cases on several B-NHL entities. Results Vitamin D receptor is strongly expressed in tumor cells of HL, regardless of the sub entity with an overall positivity of 80% of all HL cases. In contrast, only about 17% of the analyzed origin-NHL showed positivity for vitamin D receptor. The detection of nuclear localization of vitamin D receptor in the tumor cells of HL suggests activated status of the vitamin D receptor. Conclusions Our study suggests VDR as a specific marker for tumor cells of HL, but not of B-NHL subtypes. Further, the observed nuclear localization suggests an activated receptor status in tumor cells of HL. Further investigations of mutational status and functional studies may shed some light in functional relevance of vitamin D receptor signaling in HL.

  20. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues

    International Nuclear Information System (INIS)

    A cDNA encoding a specific form of thyroid hormone receptor expressed in human liver, kidney, placenta, and brain was isolated from a human kidney library. Identical clones were found in human placenta and HepG2 cDNA libraries. The cDNA encodes a 490-amino acid protein. When expressed and translated in vitro, the protein products binds triiodothyronine with K/sub a/ of 2.3 /times/ 109 M/sup /minus/1/. This protein, designated human thyroid hormone receptor type α2 (hTRα2), has the same domain structure as other members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type α described in chicken and rat and less similar to human thyroid hormone receptor type β (formerly referred to as c-erbAβ) from placenta. However, it is distinguished from these receptors by an extension of the C-terminal hormone binding domain making it 80 amino acids longer than rat thyroid hormone receptor type α1. Different sizes of mRNA found in liver and kidney suggest that there may be tissue-specific processing of the primary transcript of this gene. Identification of human thyroid hormone receptor type α2 indicates that two or more forms of thyroid hormone receptor exist in human tissues and may explain the normal variation in thyroid hormone responsiveness of various organs and the selective tissue abnormalities found in the thyroid hormone resistance syndromes

  1. Vitamin D3 receptor is highly expressed in Hodgkin’s lymphoma

    International Nuclear Information System (INIS)

    Hodgkin lymphoma (HL) is one of the most frequent lymphoma in the western world. Despite a good overall prognosis, some patients suffer relapsing tumors which are difficult to cure. Over a long period Vitamin D has been shown to be a potential treatment for cancer. Vitamin D acts via the vitamin D receptor, a nuclear receptor, acting as an inducible transcription factor. We aimed to investigate the expression of vitamin D receptor as a possible diagnostic marker and potential therapeutic target in HL as well as in B-cell derived non-Hodgkin lymphoma (B-NHL). We used a panel of 193 formalin fixed tissues of lymphoma cases consisting of 55 cases of HL and 138 cases on several B-NHL entities. Vitamin D receptor is strongly expressed in tumor cells of HL, regardless of the sub entity with an overall positivity of 80% of all HL cases. In contrast, only about 17% of the analyzed origin-NHL showed positivity for vitamin D receptor. The detection of nuclear localization of vitamin D receptor in the tumor cells of HL suggests activated status of the vitamin D receptor. Our study suggests VDR as a specific marker for tumor cells of HL, but not of B-NHL subtypes. Further, the observed nuclear localization suggests an activated receptor status in tumor cells of HL. Further investigations of mutational status and functional studies may shed some light in functional relevance of vitamin D receptor signaling in HL

  2. PKC and MAPK signalling pathways regulate vascular endothelin receptor expression

    DEFF Research Database (Denmark)

    Nilsson, David; Wackenfors, Angelica; Gustafsson, Lotta; Ugander, Martin; Ingemansson, Richard; Edvinsson, Lars; Malmsjö, Malin

    immunofluorescence techniques. Sarafotoxin 6c and endothelin ET-1 were used to examine the endothelin ET(A) and ET(B) receptor effects. The involvement of PKC and MAPK in the receptor regulation was examined by culture in the presence of antagonists. Organ culture resulted in increased sarafotoxin 6c and endothelin......-1 contractions, endothelin ET(A) and ET(B) receptor immunofluorescence staining intensities and endothelin ET(B), but not ET(A), receptor mRNA levels. The general PKC inhibitors, bisindolylmaleimide I (10 microM) or Ro-32-0432 (10 microM), inhibited these effects. Also, the increase in sarafotoxin 6......c contraction, endothelin ET(B) receptor and mRNA levels and endothelin ET(A) and ET(B) immunofluorescence staining intensities were inhibited by MAPK inhibitors for extracellular signal related kinases 1 and 2 (ERK1/2), PD98059 (10 microM), C-jun terminal kinase (JNK), SP600125 (10 microM), but not...

  3. Substantial expression of luteinizing hormone-releasing hormone (LHRH) receptor type I in human uveal melanoma

    Science.gov (United States)

    Schally, Andrew V.; Block, Norman L; Dezso, Balazs; Olah, Gabor; Rozsa, Bernadett; Fodor, Klara; Buglyo, Armin; Gardi, Janos; Berta, Andras; Halmos, Gabor

    2013-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with a very high mortality rate due to frequent liver metastases. Consequently, the therapy of uveal melanoma remains a major clinical challenge and new treatment approaches are needed. For improving diagnosis and designing a rational and effective therapy, it is essential to elucidate molecular characteristics of this malignancy. The aim of this study therefore was to evaluate as a potential therapeutic target the expression of luteinizing hormone-releasing hormone (LHRH) receptor in human uveal melanoma. The expression of LHRH ligand and LHRH receptor transcript forms was studied in 39 human uveal melanoma specimens by RT-PCR using gene specific primers. The binding charachteristics of receptors for LHRH on 10 samples were determined by ligand competition assays. The presence of LHRH receptor protein was further evaluated by immunohistochemistry. The expression of mRNA for type I LHRH receptor was detected in 18 of 39 (46%) of tissue specimens. mRNA for LHRH-I ligand could be detected in 27 of 39 (69%) of the samples. Seven of 10 samples investigated showed high affinity LHRH-I receptors. The specific presence of full length LHRH receptor protein was further confirmed by immunohistochemistry. A high percentage of uveal melanomas express mRNA and protein for type-I LHRH receptors. Our results support the merit of further investigation of LHRH receptors in human ophthalmological tumors. Since diverse analogs of LHRH are in clinical trials or are already used for the treatment of various cancers, these analogs could be considered for the LHRH receptor-based treatment of uveal melanoma. PMID:24077773

  4. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  5. Expression of transcobalamin II receptors by human leukemia K562 and HL-60 cells

    International Nuclear Information System (INIS)

    Plasma membrane receptors for the serum cobalamin-binding protein transcobalamin II (TCII) were identified on human leukemia K562 and HL-60 cells using immunoaffinity-purified human TCII labeled with [57Co]cyanocobalamin. The Bmax values for TCII receptors on proliferating K562 and HL-60 cells were 4,500 and 2,700 per cell, respectively. Corresponding dissociation constants (kd) were 8.0 x 10(-11) mol/L and 9.0 x 10(-11) mol/L. Rabbit TCII also bound to K562 and HL-60 cells but with slightly reduced affinities. Calcium was required for the binding of transcobalamin II to K562 cells. Brief treatment of these cells with trypsin resulted in almost total loss of surface binding activity. After removal of trypsin, surface receptors for TCII slowly reappeared, reaching pretrypsin treatment densities only after 24 hours. Reappearance of receptors was blocked by cycloheximide. TCII receptor densities on K562 and HL-60 cells correlated inversely with the concentration of cobalamin in the culture medium. This suggests that intracellular stores of cobalamin may affect the expression of transcobalamin receptors. Nonproliferating stationary-phase K562 cells had low TCII receptor densities. However, the density of TCII receptors increased substantially when cells were subcultured in fresh medium. Up-regulation of receptor expression coincided with increased 3H-thymidine incorporation, which preceded the resumption of cellular proliferation as measured by cell density. In the presence of cytosine arabinoside, which induces erythroid differentiation, K562 cells down-regulated expression of TCII receptors. When HL-60 cells were subcultured in fresh medium containing dimethysulfoxide to induce granulocytic differentiation, the up-regulation of TCII receptors was suppressed. This event occurred well before a diminution of 3H-thymidine incorporation and cessation of proliferation

  6. Regulation of interferon receptor expression in human blood lymphocytes in vitro and during interferon therapy

    International Nuclear Information System (INIS)

    Interferons (IFN) elicit antiviral and antineoplastic activities by binding to specific receptors on the cell surface. The binding characteristics of IFN to human lymphocytes were studied using IFN alpha 2 labeled with 125I to high specific activity. The specific binding curves generated were analyzed by the LIGAND program of Munson and Rodbard to determine receptor numbers. The number of receptors in peripheral blood lymphocytes (PBL) and tonsillar B-lymphocytes (TBL) from normal individuals were 505 +/- 293 (n = 10) and 393 +/- 147 (n = 3) respectively. When these cells were preincubated in vitro with unlabeled IFN alpha 2, the receptor number decreased to 82 +/- 45 and 61 +/- 16 respectively. Receptor binding activities recovered gradually over a period of 72 h when the cells were incubated in IFN-free medium. This recovery of receptors could be blocked by the addition of actinomycin D to the incubation medium. A similar decrease in receptor expression was observed in vivo in PBL from patients being treated daily with 5 X 10(6) units/m2 per d of IFN alpha 2 by subcutaneous injection, for acute lymphoblastic leukemia or papilloma virus infections. Receptor numbers in PBL in vivo were further reduced concurrent with the progression of IFN therapy. Thus, the reduction in IFN receptor expression observed in vitro can be demonstrated in vivo. These studies indicate that monitoring IFN receptor expression in vivo can provide information regarding the availability of IFN receptors at the cell surface for the mediation of IFN actions during the course of IFN therapy

  7. Endothelin ETA and ETB receptor expression in the human trigeminal ganglion

    DEFF Research Database (Denmark)

    Uddman, Rolf; Tajti, Janos; Cardell, Lars-Olaf; Sundler, Frank; Uddman, Erik; Edvinsson, Lars

    2006-01-01

    study was designed to investigate the presence of these two receptors in the human trigeminal ganglion. METHODS: Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to show the presence of mRNA encoding ETA and ETB receptors in the human trigeminal ganglion. To localize the protein...... immunocytochemistry with antibodies against the endothelin receptors was used. RESULTS: Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed mRNA for both receptor subtypes in the human trigeminal ganglion. Immunocytochemistry revealed numerous cell bodies containing the ETA and the ETB receptor...... proteins. CONCLUSIONS: The expression of ETA and ETB receptors in the human trigeminal ganglion suggests a role for endothelin in autonomic and sensory neural transmission....

  8. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice

    DEFF Research Database (Denmark)

    de la Cour, Cecilie; Sørensen, Gunnar; Wörtwein, Gitta;

    2015-01-01

    Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system and i......4+/+ littermates. The highest alcohol concentration used (10%) did not immediately result in divergent drinking patterns, but after 4 weeks of 10% alcohol self-administration, baseline levels as well as a pattern of M4-/- mice consuming more alcohol than their M4+/+ controls were re...... as a potential target for pharmacological (positive allosteric modulators or future agonists) treatment of alcohol use disorders....

  9. Influence of Gα protein subtype and expression level on receptor phenotypes generated from calcitonin receptor and RAMP interaction

    International Nuclear Information System (INIS)

    Full text: The calcitonin receptor (CTR) is a class II G protein-coupled receptor (GPCR). Co-expression of CTR with receptor activity modifying protein (RAMP) 1, 2 or 3 yields multiple amylin receptor phenotypes that vary in pharmacology dependent upon CTR isoform and cellular background. In COS-7 cells, co-expression of hCTRI1- with either RAMP1 or-3 generates amylin receptors (125I-rat amylin binding = 482 fmol/106 cells), while RAMP2 (85 fmol/106 cells) has no significant effect. To examine the potential role of Gα subtype and expression level in RAMP modulation of CTR, individual Gα subtypes (Gαs, Gαo, Gαi, or Gαq) were cloned either 5' or 3' of hCTRI1- in the pCIN bicistronic vector. Cells transfected with these constructs express Gα and CTR, in either a higher or lower Gα:hCTR stoichiometry, depending on the relative position of their cloning. In COS-7 cells, augmented Gαs:hCTRI1- potentiated the RAMP2 interaction with hCTR to yield an amylin receptor (125I-rat amylin binding = 604 fmol/106 cells). Increased amylin binding in the presence of higher Gαs was accompanied by enhanced potency of rat amylin (EC50 = ∼ 1 nM υ 80 nM for hCTR+RAMP1 only) in stimulating cAMP production. Strikingly, enhanced expression of Gα1, or Gαo (but not Gαs or Gαq) resulted in a significant loss of 125I-salmon CT binding (423 fmol/106 cells compared with 26,900 fmol/1066 cells when hCTR is overexpressed relative to Gαi, or Gαo), both in the presence and absence of RAMPs, while amylin binding in the presence of RAMPs was maintained. Transfection of Gαi or Gαo, but not Gαs, into CHO-K1 cells that express an endogenous CTR also led to lower 125I-sCT binding. The data suggest that Gα protein subtype and level can have profound effects on CTR phenotypes. These findings may have implications for other GPCRs as well. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  10. Hormone receptor and ERBB2 status in gene expression profiles of human breast tumor samples.

    Directory of Open Access Journals (Sweden)

    Anna Dvorkin-Gheva

    Full Text Available The occurrence of large publically available repositories of human breast tumor gene expression profiles provides an important resource to discover new breast cancer biomarkers and therapeutic targets. For example, knowledge of the expression of the estrogen and progesterone hormone receptors (ER and PR, and that of the ERBB2 in breast tumor samples enables choice of therapies for the breast cancer patients that express these proteins. Identifying new biomarkers and therapeutic agents affecting the activity of signaling pathways regulated by the hormone receptors or ERBB2 might be accelerated by knowledge of their expression levels in large gene expression profiling data sets. Unfortunately, the status of these receptors is not invariably reported in public databases of breast tumor gene expression profiles. Attempts have been made to employ a single probe set to identify ER, PR and ERBB2 status, but the specificity or sensitivity of their prediction is low. We enquired whether estimation of ER, PR and ERBB2 status of profiled tumor samples could be improved by using multiple probe sets representing these three genes and others with related expression.We used 8 independent datasets of human breast tumor samples to define gene expression signatures comprising 24, 51 and 14 genes predictive of ER, PR and ERBB2 status respectively. These signatures, as demonstrated by sensitivity and specificity measures, reliably identified hormone receptor and ERBB2 expression in breast tumors that had been previously determined using protein and DNA based assays. Our findings demonstrate that gene signatures can be identified which reliably predict the expression status of the estrogen and progesterone hormone receptors and that of ERBB2 in publically available gene expression profiles of breast tumor samples. Using these signatures to query transcript profiles of breast tumor specimens may enable discovery of new biomarkers and therapeutic targets for

  11. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  12. Oestrogen and progesterone receptor expression in subtypes of canine mammary tumours in intact and ovariectomised dogs.

    Science.gov (United States)

    Mainenti, M; Rasotto, R; Carnier, P; Zappulli, V

    2014-10-01

    The objective of this study was to investigate as a potential prognostic indicator the relationship between histological subtype of canine mammary tumours (CMTs) and oestrogen-α (ORα) and progesterone (PR) receptor expression. Using immunohistochemistry, receptor expression in neoplastic epithelial cells was assessed in 12 different subtypes in 113 CMTs (34 benign, 79 malignant) and 101 surrounding normal tissues. Sixty-eight and 45 CMTs were from intact and ovariectomised bitches, respectively. Histological subtype strongly influenced ORα/PR expression: simple and complex adenomas as well as simple tubular carcinomas exhibited the greatest expression, whereas immunohistochemical labelling for these receptors was weakest in carcinoma and malignant myoepitheliomas, as well as in solid/anaplastic carcinomas and comedocarcinomas. Receptor expression was generally higher in benign relative to malignant neoplasms, and in the latter it was significantly lower in ovariectomised vs. intact bitches. Lymphatic invasion, mitotic index, nodule diameter, and tumour grade were significantly associated with ORα/PR expression. Although not found to be an independent prognostic indicator, tumours from dogs with <10% cells with ORα/PR expression had a poorer prognosis. Lymphatic invasion, the state of the margins of excision, and mitotic index were found to be independent prognostic indicators. Overall, the results suggest that differences in histological subtype and whether or not a bitch has been ovariectomised should be considered when evaluating the significance of ORα and PR expression in CMTs. PMID:24980810

  13. Adult Mouse Basal Forebrain Harbors Two Distinct Cholinergic Populations Defined By Their Electrophysiology

    Directory of Open Access Journals (Sweden)

    Jorge P Golowasch

    2012-05-01

    Full Text Available We performed whole-cell recordings from basal forebrain cholinergic neurons in transgenic mice expressing enhanced green fluorescent protein under the control of choline acetyltransferase promoter. Basal forebrain cholinergic neurons can be differentiated into two electrophysiologically identifiable subtypes: early and late firing neurons. Early firing neurons (70% are more excitable, show prominent spike frequency adaptation and more susceptible to depolarization blockade, a phenomenon characterized by complete silencing of the neuron following initial action potentials. Late firing neurons (30%, albeit being less excitable, could maintain a tonic discharge at low frequencies. In voltage clamp analysis, we have shown that early firing neurons have a higher density of low voltage activated calcium currents. These two cholinergic cell populations might be involved in distinct functions: the early firing group being more suitable for phasic changes in cortical acetylcholine release associated with attention while the late firing neurons could support general arousal by maintaining tonic acetylcholine level.

  14. THE CORRELATIONS OF RETINOIC ACID RECEPTOR-α AND ESTROGEN RECEPTOR EXPRESSION IN HUMAN BREAST CANCER CELL LINES AND TUMORS

    Institute of Scientific and Technical Information of China (English)

    余黎明; 邵志敏; 蔡三军; 韩企夏; 沈镇宙

    1998-01-01

    Retinoic acid receptor-α(RAR α) plays a major role in the growth inhibitory effect of retinoic acid on human breast cancer ceils, may be it could serve as an indicator to guide the treatment and prevent of breast cancer with retinoic acid in ciiinc. All previous researchs were based on observing the changes ofRAR a mRAN expression. In this study, the expression of RAR a in human breast cell lines was studied by Northern Blot, Western Blot and Immunohistochemistry in mRNA level and protein level. Results showed that RAR a protein expression was correlated with RAR a mRNA expression. RAR α mRNA expression was higher in estrogen receptor (ER)-positive human breast cancer cell lines than in ER-negative ones. So was RAR α protein expression. Both RAR α mRNA amd RAR α protein expression were associated with ER status. The expression of RAR α and the relationship between RAR α and ER status were also determined by immunohistochemistry in 58 human primary breast cancer tumors. 37 (63.8%) tumors were ER-positive and of these 28 (75. 7%) were also RAR α -positive. The coexpression of ER and RAR α was statistleally significant (P<0. 01, by X2 contingency analysis), It was reported that RAR α expression in cultured breast cancer ceils was regulated by estrogen acting via the ER. Our study demonstrated that RAR α expression may be modulated in breast cancer in vivo by estrogen via ER.

  15. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    Science.gov (United States)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  16. Prenatal Oxycodone Exposure Alters CNS Endothelin Receptor Expression in Neonatal Rats.

    Science.gov (United States)

    Devarapalli, M; Leonard, M; Briyal, S; Stefanov, G; Puppala, B L; Schweig, L; Gulati, A

    2016-05-01

    Prenatal opioid exposure such as oxycodone is linked to significant adverse effects on the developing brain. Endothelin (ET) and its receptors are involved in normal development of the central nervous system. Opioid tolerance and withdrawal are mediated through ET receptors. It is possible that adverse effect of oxycodone on the developing brain is mediated through ET receptors. We evaluated brain ETA and ETB receptor expression during postnatal development in rats with prenatal oxycodone exposure. Timed pregnant Sprague-Dawley rats received either oxycodone or placebo throughout gestation. After birth, male rat pups were sacrificed on postnatal day (PND) 1, 7, 14 or 28. Brain ETA and ETB receptor expression was determined by Western blot analysis. Oxycodone pups compared to placebo demonstrated congenital malformations of the face, mouth, and vertebrae at the time of birth [4/69 (5.7%) vs. 0/60 (0%); respectively] and intrauterine growth retardation [10/69 (15%) vs. 2/60 (3.3%); respectively]. On PND 28, oxycodone pups compared to placebo had lower body and kidney weight. ETA receptor expression in the oxycodone group was significantly higher compared to placebo on PND 1 (p=0.035), but was similar on PND 7, 14, or 28. ETB receptor expression decreased in oxycodone compared to placebo on PND 1 and 7 (p=0.001); and increased on PND 28 (p=0.002), but was similar on PND 14. Oxycodone-exposed rat pups had lower birth weight and postnatal weight gain and greater congenital malformations. ETB receptor expression is altered in the brain of oxycodone-treated rat pups indicating a possible delay in CNS development. PMID:26676852

  17. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    Science.gov (United States)

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  18. Expression of Adiponectin Receptors in Human Placenta and Its Possible Implication in Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Naglaa F. Al Husseini

    2010-01-01

    Full Text Available Problem statement: Similar to obese patients and type 2 diabetic patients, adiponectin levels are reduced in former Gestational Diabetes Mellitus (GDM patients and are lower in GDM women during late pregnancy compared with pregnant control subjects matched for BMI. Diabetic insult at later stages in gestation, such as may occur in gestational diabetes, will foremost lead to short-term changes in a variety of molecules for key functions including gene expression in the placenta. Approach: In this study we assessed the expression of adiponectin receptors in human placenta to identify the site (s of expression and to clarify the effect of gestational diabetes in this expression. This study was carried on 10 normoglycemic pregnant women and 20 GDM women. The placental tissue was collected immediately after delivery and tissue biopsies were taken from both fetal and maternal sides of each placenta. One step-RT-PCR for ADIPOR1 and ADIPOR2 was done by Real Time PCR using Syber Green technique. Relative quantification of mRNA of the ADIPOR1 and ADIPOR2 genes was measured using ABI7900 Real Time machine. Results: Both types of Adiponectin Receptors (ADIPOR1 and ADIPOR2 are expressed in human placenta. ADIPOR1 is more highly expressed than ADIPOR2 in both fetal and maternal sides of GDM cases and normal pregnant women. ADIPOR1 mRNA expression was significantly up regulated in GDM women compared to normal pregnant women, whereas no significant difference in the expression of ADIPOR2 was detected between the two groups. There was no evidence of maternal-fetal side difference in the expression of adiponectin receptors in GDM cases but in normal pregnant women there is a statistically significant difference between both sides in the expression of both ADIPOR1 and ADIPOR2. Conclusion: We concluded that adiponectin plays an important role in mediation the glucose metabolism in fetal tissues through its receptors, mainly Adiponectin Receptor 1 (ADIPOR1.

  19. Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina

    DEFF Research Database (Denmark)

    Klitten, Laura L; Rath, Martin F; Coon, Steven L;

    2008-01-01

    in the photoreceptors via Drd4 receptors located on the cell membrane of these cells. In this study, we show by semiquantitative in situ hybridization a prominent day/night variation in Drd4 expression in the retina of the Sprague-Dawley rat with a peak during the nighttime. Drd4 expression is seen...... in all retinal layers but the nocturnal increase is confined to the photoreceptors. Retinal Drd4 expression is not affected by removal of the sympathetic input to the eye, but triiodothyronine treatment induces Drd4 expression in the photoreceptors. In a developmental series, we show that the...... expression of Drd4 is restricted to postnatal stages with a peak at postnatal day 12. The high Drd4 expression in the rat retinal photoreceptors during the night supports physiological and pharmacologic evidence that the Drd4 receptor is involved in the dopaminergic inhibition of melatonin synthesis upon...

  20. Influence of ginsenoside on expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in the medial septum of aged rats

    Institute of Scientific and Technical Information of China (English)

    Liang Zeng; Haihua Zhao; Yongli Lü; Wenbo Dai

    2008-01-01

    BACKGROUND: It has been shown that ginsenoside, the effective component of ginseng, can enhance expression of choline acetyl transferase, as well as brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB), in cholinergic neurons of the basal forebrain.OBJECTIVE: To qualitatively and quantitatively verify the influence of ginsenoside on expression of BDNF and its receptor, TrkB, in the medial septum of aged rats, and to provide a molecular basis for clinical application.DESIGN, TIME AND SETTING: A contrast study, which was performed in the Department of Anatomy, China Medical University, and the Department of Anatomy, Shenyang Medical College between December 2005 and May 2007.MATERIALS: Thirty-five, healthy, female, Sprague Dawley rats were selected for this study. Ginsenoside (81% purity) was provided by Jilin Ji'an Wantai Chinese Medicine Factory; anti-BDNF antibody, anti-TrkB antibody, and their kits were provided by Wuhan Boster Company.METHODS: A total of 35 rats were divided into three groups: young (four months old), aging (26 months old), and ginsenoside. Rats in the ginsenoside group were administered ginsenoside (25mg/kg/d) between 17 months and 26 months.MAIN OUTCOME MEASURES: Immunohistochemistry and in situ hybridization were used to measure expression of BDNF and TrkB in the medial septum of aged rats, and the detected results were expressed as gray values.RESULTS: ①Qualitative detection: using microscopy, degenerative neurons were visible in the medial septum in the aging group. However, neuronal morphology in the ginsenoside group was similar to neurons in the young group.②Quantitative detection: the mean gray value of BDNF-positive and TrkB-positive products in the aging group were significantly higher than in the young group (t=3.346,4.169, P<0.01); however, the mean gray value in the ginsenoside group was significantly lower than in the aging group (t=2.432,2.651, P<0.01).CONCLUSION: Ginsenoside can increase

  1. Aging of cholinergic synapses: fiction or reality?

    International Nuclear Information System (INIS)

    The authors make use of the ciliary ganglion iris preparation of the aging chicken as a model of senescent peripheral cholinergic synapses. Based on the studies performed on the iris, an hypothesis of aging of the cholinergic synapse has been suggested. In order to establish the nature of a deficit, the authors examine the ability of chloinergic synapses in the iris at various ages to take up the precursor tritium-choline and release the formed tritium-ACh in response to high K+ (115 mM) depolarization. A summary of preliminary results of morphometric analysis of nerve endings and synaptic components in the iris of young adult and aged chickens is shown. The experiments suggest that severe changes may occur at later stages of life. A specific functional defect in the cholinergic synapse during aging is found

  2. Co-expressed peptide receptors in breast cancer as a molecular basis for in vivo multireceptor tumour targeting

    International Nuclear Information System (INIS)

    Breast cancers can express different types of peptide receptors such as somatostatin, vasoactive intestinal peptide (VIP), gastrin-releasing peptide (GRP) and NPY(Y1) receptors. The aim of this in vitro study was to evaluate which is the most appropriate peptide receptor or peptide receptor combination for in vivo diagnostic and therapeutic targeting of breast cancers. Seventy-seven primary breast cancers and 15 breast cancer lymph node metastases were investigated in vitro for their expression of somatostatin, VPAC1, GRP and NPY(Y1) receptors using in vitro receptor autoradiography on successive tissue sections with 125I-[Tyr3]-octreotide, 125I-VIP, 125I-[Tyr4]-bombesin and 125I-[Leu31,Pro34]-PYY respectively. This study identified two groups of tumours: a group of 68 tumours (88%) with at least one receptor expressed at high density (>2,000 dpm/mg tissue) that may provide a strong predictive value for successful in vivo targeting, and a group of nine tumours (12%) with no receptors or only a low density of them (1) receptors, 25 (37%) expressed VPAC1 receptors and 14 (21%) expressed somatostatin receptors. Mean density was 9,819±530 dpm/mg tissue for GRP receptors, 9,135±579 dpm/mg for NPY(Y1) receptors, 4,337±528 dpm/mg for somatostatin receptors and 3,437±306 dpm/mg for VPAC1 receptors. It is of note that tumours expressing NPY(Y1) or GRP receptors, or both, were found in 63/68 (93%) cases. Lymph node metastases showed a similar receptor profile to the corresponding primary tumour. This in vitro study strongly suggests that the combination of radiolabelled GRP and Y1 analogues should allow targeting of breast carcinomas and their lymph node metastases for in vivo peptide receptor scintigraphy and radiotherapy. (orig.)

  3. Modulation of interleukin 2 receptor expression on normal human lymphocytes by thymic hormones.

    OpenAIRE

    Sztein, M B; Serrate, S A; Goldstein, A. L.

    1986-01-01

    The expression of interleukin 2 receptors (IL-2R) is a critical step leading to normal lymphocyte proliferation. Since thymosin fraction 5 (TF5), a thymic hormone preparation, enhances lymphoproliferative responses of human cells, we examined the effects of TF5 on the expression of IL-2R on mitogen-stimulated human lymphocytes. TF5 significantly increased the percentage and antigen density of cells expressing IL-2R after stimulation with an optimal concentration of phytohemagglutinin (PHA) wh...

  4. Vascular endothelial growth factor receptor-3 expression in mycosis fungoides

    DEFF Research Database (Denmark)

    Pedersen, Ida Holst; Willerslev-Olsen, Andreas; Vetter-Kauczok, Claudia; Krejsgaard, Thorbjørn; Lauenborg, Britt; Kopp, Katharina Luise; Geisler, Carsten; Bonefeld, Charlotte M; Zhang, Qian; Wasik, Mariusz A; Dabelsteen, Sally; Andersen, Anders Woetmann; Becker, Jurgen C; Odum, Niels

    2012-01-01

    induced during tumor formation in vivo in a xenograft mouse model of MF. In conclusion, malignant and stromal cells express high levels of VEGFR-3 in all stages of MF. Moreover, malignant T cells trigger enhanced VEGF-C expression in fibroblasts, suggesting that cross-talk between tumor and stromal cells...

  5. Expression of the Wnt Receptor Frizzled-4 in the Human Enteric Nervous System of Infants

    Science.gov (United States)

    Nothelfer, Katharina; Obermayr, Florian; Belz, Nadine; Reinartz, Ellen; Bareiss, Petra M.; Bühring, Hans-Jörg; Beschorner, Rudi; Just, Lothar

    2016-01-01

    The Wnt signalling pathway plays a crucial role in the development of the nervous system. This signalling cascade is initiated upon binding of the secreted Wnt ligand to a member of the family of frizzled receptors. In the present study, we analysed the presence of frizzled-4 in the enteric nervous system of human infants. Frizzled-4 could be identified by immunohistochemistry in a subpopulation of enteric neuronal and glial cells in the small and large intestine. Detection of frizzled-4 in the tunica muscularis by RT-PCR confirmed this receptor's expression on the mRNA level. Interestingly, we observed distinct cell populations that co-expressed frizzled-4 with the intermediate filament protein nestin and the neurotrophin receptor p75NTR, which have been reported to be expressed in neural progenitor cells. Flow cytometry analysis revealed that 60% of p75NTR positive cells of the tunica muscularis were positive for frizzled-4. Additionally, in pathological samples of Hirschsprung's disease, the expression of this Wnt receptor correlated with the number of myenteric ganglion cells and decreased from normoganglionic to aganglionic areas of large intestine. The expression pattern of frizzled-4 indicates that this Wnt receptor could be involved in postnatal development and/or function of the enteric nervous system. PMID:26697080

  6. TRPV1 Receptor in Expression of Opioid-induced hyperalgesia

    OpenAIRE

    Vardanyan, Anna; Wang, Ruizhong; Vanderah, Todd W.; Ossipov, Michael H.; Lai, Josephine; Porreca, Frank; King, Tamara

    2008-01-01

    Opiates are currently the mainstay for treatment of moderate to severe pain. However, prolonged administration of opiates has been reported to elicit hyperalgesia in animals and examples of opiate-induced hyperalgesia have been reported in humans as well. In spite of the potential clinical significance of such opiate-induced actions, the mechanisms of opiate-induced hypersensitivity remain unknown. The TRPV1 receptor, a molecular sensor of noxious heat, acts as an integrator of multiple forms...

  7. Structure, characterization, and expression of the rat oxytocin receptor gene.

    OpenAIRE

    1995-01-01

    The multiple hormonal and neurotransmitter functions of the nonapeptide oxytocin are mediated by specific oxytocin receptors (OTRs). In most target tissues, the number of OTRs is strongly regulated. Specifically, in the uterus, a dramatic OTR upregulation precedes the onset of parturition. To study the molecular mechanisms underlying OTR regulation, we have isolated and characterized recombinant bacteriophage lambda EMBL3 genomic clones containing the rat OTR gene, using sequence information ...

  8. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells.

    LENUS (Irish Health Repository)

    O'Callaghan, G

    2012-02-03

    Fas ligand (FasL\\/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E(2) (PGE(2)), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE(2) increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E(2)-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE(2) positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE(2).

  9. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  10. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats

    International Nuclear Information System (INIS)

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus regulate HPA axis by glucocorticoid negative feedback. Abnormalities in negative feedback are found in PTSD, suggesting that GR and MR might be involved in the pathophysiology of these disorders. In the present study, we performed immunohistochemistry and western blotting to examine the changes in hippocampal MR- and GR-expression after SPS. Immunohistochemistry revealed decreased MR- and GR-immunoreactivity (ir) in the CA1 of hippocampus in SPS animals. Change in GR sub-distribution was also observed, where GR-ir was shifted from nucleus to cytoplasm in SPS rats. Western blotting showed that SPS induced significantly decreased MR- and GR-protein in the whole hippocampus, although the degree of decreased expression of both receptors was different. Meanwhile, we also found the MR/GR ratio decreased in SPS rats. In general, SPS induced down-regulation of MR- and GR-expression. These findings suggest that MR and GR play critical roles in affecting hippocampal function. Changes in MR/GR ratio may be relevant for behavioral syndrome in PTSD

  11. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells.

    Science.gov (United States)

    Du, Xing; Li, Qiqi; Pan, Zengxiang; Li, Qifa

    2016-08-01

    Androgen, which acts via the androgen receptor (AR), plays crucial roles in mammalian ovarian function. Recent studies showed that androgen/AR signaling regulates follicle-stimulating hormone receptor (FSHR) expression in follicles; however, the detailed mechanism underlying this regulation remained unknown. Here, we demonstrate that AR and miR-126* cooperate to inhibit FSHR expression and function in pig follicular granulosa cells (pGCs). In pGCs, overexpression of AR decreased, whereas knockdown increased, FSHR mRNA and protein expression; however, neither manipulation affected FSHR promoter activity. Using a dual-luciferase reporter assay, we found that the FSHR gene is a direct target of miR-126*, which inhibits FSHR expression and increases the rate of AR-induced apoptosis in pGCs. Collectively, our data show for the first time that the AR/miR-126* axis exerts synergetic effects in the regulation of FSHR expression and apoptosis in pGCs. Our findings thus define a novel pathway, AR/miR-126*/FSHR, that regulates mammalian GC functions. PMID:27222597

  12. Binding studies using Pichia pastoris expressed human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins.

    Science.gov (United States)

    Zheng, Yujuan; Xie, Jinghang; Huang, Xin; Dong, Jin; Park, Miki S; Chan, William K

    2016-06-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor which activates gene transcription by binding to its corresponding enhancer as the heterodimer, which is consisted of AHR and the aryl hydrocarbon receptor nuclear translocator (ARNT). Human AHR can be rather difficult to study, when compared among the AHR of other species, since it is relatively unstable and less sensitive to some ligands in vitro. Overexpression of human AHR has been limited to the baculovirus expression, which is costly and tedious due to the need of repetitive baculovirus production. Here we explored whether we could generate abundant amounts of human AHR and ARNT in a better overexpression system for functional study. We observed that human AHR and ARNT can be expressed in Pichia pastoris with yields that are comparable to the baculovirus system only if their cDNAs are optimized for Pichia expression. Fusion with a c-myc tag at their C-termini seems to increase the expression yield. These Pichia expressed proteins can effectively heterodimerize and form the ternary AHR/ARNT/enhancer complex in the presence of β-naphthoflavone or kynurenine. Limited proteolysis using thermolysin can be used to study the heterodimerization of these human AHR and ARNT proteins. PMID:26923060

  13. Characterization of a novel Eph receptor tyrosine kinase, EphA10, expressed in testis.

    Science.gov (United States)

    Aasheim, Hans-Christian; Patzke, Sebastian; Hjorthaug, Hanne Sagsveen; Finne, Eivind Farmen

    2005-05-25

    In mammals, 14 members of the Eph receptor tyrosine kinase family have been described so far. Here we present a not yet described member of this family denoted EphA10. We report the identification of three putative EphA10 isoforms: one soluble and two transmembrane isoforms. One of the latter isoforms lacked the sterile alpha motif commonly found in Eph receptors. The gene encoding EphA10 is located on chromosome 1p34 and expression studies show that EphA10 mRNA is mainly expressed in testis. Binding studies to ephrin ligands suggests that this receptor belongs to the EphA subclass of Eph receptors binding mainly to ephrin-A ligands. PMID:15777695

  14. Altered endothelin receptor expression and affinity in spontaneously hypertensive rat cerebral and coronary arteries

    DEFF Research Database (Denmark)

    Cao, Lei; Cao, Yong-Xiao; Xu, Cang-Bao;

    2013-01-01

    BACKGROUND: Hypertension is associated with arterial hyperreactivity, and endothelin (ET) receptors are involved in vascular pathogenesis. The present study was performed to examine the hypothesis that ET receptors were altered in cerebral and coronary arteries of spontaneously hypertensive rats...... (SHR). METHODOLOGY/PRINCIPAL FINDINGS: Cerebral and coronary arteries were removed from SHR. Vascular contraction was recorded using a sensitive myograph system. Real-time PCR and Western blotting were used to quantify mRNA and protein expression of receptors and essential MAPK pathway molecules. The...... results demonstrated that both ETA and ETB receptor-mediated contractile responses in SHR cerebral arteries were shifted to the left in a nonparallel manner with increased maximum contraction compared with Wistar-Kyoto (WKY) rats. In SHR coronary arteries, the ETA receptor-mediated contraction curve was...

  15. Expression of c-kit receptor and its autophosphorylation in immature rat type A spermatogonia.

    Science.gov (United States)

    Dym, M; Jia, M C; Dirami, G; Price, J M; Rabin, S J; Mocchetti, I; Ravindranath, N

    1995-01-01

    The objective of this study was to examine the expression and activation of the c-kit receptor, a specific receptor for kit ligand (stem cell factor, steel factor), in rat type A spermatogonia. Testes were obtained from 9-day-old rats, decapsulated, and then subjected to sequential enzymatic digestion. The mixture of testicular cell types was then separated by sedimentation velocity at unit gravity. The isolated type A spermatogonia were characterized by light and electron microscopy. They exhibited spherical nuclei containing several nucleoli and associated chromatin clumps and organelles generally in a perinuclear location similar to that found in the in vivo 9-day-old testis. The synthesis of the c-kit receptor by the spermatogonia was established by hybridization of total RNA with a specific cDNA for mouse c-kit receptor. Two mRNA transcripts migrating at 4.8 kb and 12 kb were observed. Localization of the c-kit receptor in the isolated cells was determined by immunocytochemistry using an antibody to c-kit protein. Specific staining for c-kit receptor was observed in the cytoplasm of the isolated type A spermatogonia. Furthermore, the presence of the c-kit receptor protein in the spermatogonia was confirmed by Western blot analysis using the same antibody. The antibody recognized the c-kit receptor at approximately 160 kDa. In an attempt to determine whether this receptor has a functional significance, we examined the effect of kit ligand on the phosphorylation of the c-kit receptor. The c-kit receptor appeared to be constitutively autophosphorylated on tyrosine at low basal levels, and upon stimulation with kit ligand, the amount of phosphorylated protein increased significantly. These observations indicate that kit ligand induces autophosphorylation of the c-kit receptor, which may lead to the activation of other cellular target proteins responsible for spermatogonial proliferation and/or differentiation. PMID:7536046

  16. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in severe asthma

    OpenAIRE

    McGarvey, Lorcan P.; Butler, Claire A; Stokesberry, Susan; Polley, Liam; McQuaid, Stephen; Abdullah, Hani'ah; Ashraf, Sadaf; McGahon, Mary K; Curtis, Tim M; Arron, Joe; Choy, David; Warke, Tim J.; Bradding, Peter; Ennis, Madeleine; Zholos, Alexander

    2014-01-01

    BACKGROUND: The airway epithelium is exposed to a range of physical and chemical irritants in the environment that are known to trigger asthma. Transient receptor potential (TRP) cation channels play a central role in sensory responses to noxious physical and chemical stimuli. Recent genetic evidence suggests an involvement of transient receptor potential vanilloid 1 (TRPV1), one member of the vanilloid subfamily of TRP channels, in the pathophysiology of asthma. The functional expression of ...

  17. Bile Acids Induce Cdx2 Expression Through the Farnesoid X Receptor in Gastric Epithelial Cells

    OpenAIRE

    Xu, Yingji; Watanabe, Toshio; Tanigawa, Tetsuya; Machida, Hirohisa; Okazaki, Hirotoshi; Yamagami, Hirokazu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Oshitani, Nobuhide; Arakawa, Tetsuo

    2009-01-01

    Clinical and experimental studies showed that the reflux of bile into the stomach contributes to the induction of intestinal metaplasia of the stomach and gastric carcinogenesis. Caudal-type homeobox 2 (Cdx2) plays a key role in the exhibition of intestinal phenotypes by regulating the expression of intestine-specific genes such as goblet-specific gene mucin 2 (MUC2). We investigated the involvement of the farnesoid X receptor (FXR), a nuclear receptor for bile acids, in the chenodeoxycholic ...

  18. Somatostatin and Somatostatin Receptor Gene Expression in Dominant and Subordinate Males of an African Cichlid Fish

    OpenAIRE

    Trainor, Brian C.; Hofmann, Hans A.

    2007-01-01

    Somatostatin is a neuropeptide best known for its inhibitory effects on growth hormone secretion and has recently been implicated in the control of social behavior. Several somatostatin receptor subtypes have been identified in vertebrates, but the functional basis for this diversity is still unclear. Here we investigate the expression levels of the somatostatin prepropeptide and two of its receptors, sstR2, and sstR3, in the brains of socially dominant and subordinate A. burtoni males using ...

  19. Expression Levels of Estrogen Receptor β Are Modulated by Components of the Molecular Clock▿

    OpenAIRE

    Cai, Wen; Rambaud, Juliette; Teboul, Michèle; Masse, Ingrid; Benoit, Gerard; Gustafsson, Jan-Åke; Delaunay, Franck; Laudet, Vincent; Pongratz, Ingemar

    2007-01-01

    Circadian regulation of gene expression plays a major role in health and disease. The precise role of the circadian system remains to be clarified, but it is known that circadian proteins generate physiological rhythms in organisms by regulating clock-controlled target genes. The estrogen receptor beta (ERβ) is, together with ERα, a member of the nuclear receptor superfamily and a key mediator of estrogen action. Interestingly, recent studies show that disturbed circadian rhythmicity in human...

  20. A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species

    OpenAIRE

    Vaure, Céline; Liu, Yuanqing

    2014-01-01

    Toll-like receptors (TLRs) belong to the pattern recognition receptor (PRR) family, a key component of the innate immune system. TLRs detect invading pathogens and initiate an immediate immune response to them, followed by a long-lasting adaptive immune response. Activation of TLRs leads to the synthesis of pro-inflammatory cytokines and chemokines and the expression of co-stimulatory molecules. TLR4 specifically recognizes bacterial lipopolysaccharide, along with several other components of ...

  1. Glucocorticoid and Mineralocorticoid Receptor Expression in the Human Hippocampus in Major Depressive Disorder

    OpenAIRE

    Medina, Adriana; Seasholtz, Audrey F.; Sharma, Vikram; Burke, Sharon; Bunney, William,; Myers, Richard M.; Schatzberg, Alan,; Akil, Huda; Watson, Stanley J.

    2012-01-01

    Approximately 50% of mood disorder patients exhibit hypercortisolism. Cortisol normally exerts its functions in the CNS via binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Both MR and GR are highly expressed in human hippocampus and several studies have suggested that alterations in the levels of MR or GR within this region may contribute to the dysregulation in major depressive disorder (MDD). Studies have also shown functional heterogeneity across the hippocam...

  2. Construction and Stable Expression of a Truncated Human Receptor Tyrosine Kinase Ror1 (Ror1-ECD)

    OpenAIRE

    Forouzesh, Flora; Tabarian, Samira Shakeri; Emami, Shaghayegh; Tehrani, Mahmood-Jeddi; Hadavi, Reza; Rabbani, Hodjattallah

    2012-01-01

    Expression of receptor tyrosine kinase Ror1 in a wide variety of cancers has emerged as a new era focusing on targeting this receptor in cancer therapy. Our preliminary results indicate the presence of a truncated transcript of Ror1 in tumor cells. The truncated Ror1 encompasses extracellular and transmembrane domains, lacking catalytic kinase domain (Ror1-ECD). As enzyme activity is highly dependent on the catalytic domain, we were wondering how this transcript and its encoded protein could ...

  3. Role of serotonergic signaling in GABAA receptor phosphorylation and functional expression

    OpenAIRE

    Vithlani, M.

    2009-01-01

    γ-aminobutyric acid type-A (GABAA) receptors are heteropentameric ligand-gated chloride channels that mediate the majority of fast synaptic inhibition in the brain. Emerging evidence indicates that their functional expression is subject to dynamic modulation by phosphorylation. However, the cell signaling molecules responsible for regulating GABAA receptor phosphorylation and thus the efficacy of neuronal inhibition remain to be identified. The β subunits are of particular interest in this co...

  4. Progesterone receptor expression in the brain of the socially monogamous and paternal male prairie vole

    OpenAIRE

    Williams, Brittany; Northcutt, Katharine V.; Rusanowsky, Rebecca D.; Mennella, Thomas A.; Lonstein, Joseph S.; Quadros-Mennella, Princy S.

    2013-01-01

    Differences in the social organization and behavior of male mammals are attributable to species differences in neurochemistry, including differential expression of steroid hormone receptors. However, the distribution of progestin receptors (PR) in a socially monogamous and spontaneously parental male rodent has never been examined. Here we determined if PR exists and is regulated by testicular hormones in forebrain sites traditionally influencing socioreproductive behaviors in male prairie vo...

  5. Prognostic Relevance of Cytokine Receptor Expression in Acute Myeloid Leukemia: Interleukin-2 Receptor α-Chain (CD25) Expression Predicts a Poor Prognosis

    Science.gov (United States)

    Nakase, Kazunori; Kita, Kenkichi; Kyo, Taiichi; Ueda, Takanori; Tanaka, Isao; Katayama, Naoyuki

    2015-01-01

    A variety of cytokine/cytokine receptor systems affect the biological behavior of acute leukemia cells. However, little is known about the clinical relevance of cytokine receptor expression in acute myeloid leukemia (AML). We quantitatively examined the expression of interleukin-2 receptor α-chain (IL-2Rα, also known as CD25), IL-2Rβ, IL-3Rα, IL-4Rα, IL-5Rα, IL-6Rα, IL-7Rα, the common β-chain (βc), γc, granulocyte-macrophage colony-stimulating factor (GM-CSF)Rα, G-CSFR, c-fms, c-mpl, c-kit, FLT3, and GP130 in leukemia cells from 767 adult patients with AML by flow cytometry and determined their prevalence and clinical significance. All cytokine receptors examined were expressed at varying levels, whereas the levels of IL-3Rα, GM-CSFRα, IL-2Rα, γc, c-kit, and G-CSFR exhibited a wide spectrum of ≥10,000 sites/cell. In terms of their French-American-British classification types, GM-CSFRα and c-fms were preferentially expressed in M4/M5 patients, G-CSF in M3 patients, and IL-2Rα in non-M3 patients. Elevated levels of IL-3Rα, GM-CSFRα, and IL-2Rα correlated with leukocytosis. In patients ≤60 years old, higher levels of these 3 receptors correlated with poor responses to conventional chemotherapy, but only IL-2Rα was associated with a shorter overall survival. By incorporating IL-2Rα status into cytogenetic risk stratification, we could sort out a significantly adverse-risk cohort from the cytogenetically intermediate-risk group. Analyses with various phenotypical risk markers revealed the expression of IL-2Rα as an independent prognostic indicator in patients with intermediate-risk cytogenetics. These findings were not observed in patients >60 years old. Our results indicate that several cytokine receptors were associated with certain cellular and clinical features, but IL-2Rα alone had prognostic value that provides an additional marker to improve current risk evaluation in AML patients ≤60 years old. PMID:26375984

  6. GABA Acts as a Ligand Chaperone in the Early Secretory Pathway to Promote Cell Surface Expression of GABAA Receptors

    OpenAIRE

    Eshaq, Randa S.; Stahl, Letha D.; Stone, Randolph; Smith, Sheryl S.; Robinson, Lucy C.; Leidenheimer, Nancy J.

    2010-01-01

    GABA (γ-aminobutyric acid) is the primary inhibitory neurotransmitter in brain. The fast inhibitory effect of GABA is mediated through the GABAA receptor, a postsynaptic ligand-gated chloride channel. We propose that GABA can act as a ligand chaperone in the early secretory pathway to facilitate GABAA receptor cell surface expression. Forty-two hrs of GABA treatment increased the surface expression of recombinant receptors expressed in HEK 293 cells, an effect accompanied by an increase in GA...

  7. Age-related alterations in innate immune receptor expression and ability of macrophages to respond to pathogen challenge in vitro

    OpenAIRE

    Liang, Shuang; Domon, Hisanori; Hosur, Kavita B.; WANG Min; Hajishengallis, George

    2009-01-01

    The impact of ageing in innate immunity is poorly understood. Studies in the mouse model have described altered innate immune functions in aged macrophages, although these were not generally linked to altered expression of receptors or regulatory molecules. Moreover, the influence of ageing in the expression of these molecules has not been systematically examined. We investigated age-dependent expression differences in selected Toll-like and other pattern-recognition receptors, receptors invo...

  8. Complex Control of GABA(A) Receptor Subunit mRNA Expression: Variation, Covariation, and Genetic Regulation

    OpenAIRE

    Mulligan, Megan K.; Wang, Xusheng; Adler, Adrienne L.; Mozhui, Khyobeni; Lu, Lu; Williams, Robert W.

    2012-01-01

    GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly...

  9. Cell Cycle-dependent Expression of Thyroid Hormone Receptor-β Is a Mechanism for Variable Hormone SensitivityD⃞

    OpenAIRE

    Maruvada, Padma; Dmitrieva, Natalia I.; East-Palmer, Joyce; Yen, Paul M.

    2004-01-01

    Thyroid hormone receptors (TRs) are ligand-regulatable transcription factors. Currently, little is known about the expression of TRs or other nuclear hormone receptors during the cell cycle. We thus developed a stable expression system to express green fluorescent protein-TRβ in HeLa cells under tetracycline regulation, and studied TR expression during the cell cycle by laser scanning cytometry. Only ∼9-15% of the nonsynchronized cell population expressed TR because the majority of cells were...

  10. Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain.

    OpenAIRE

    Erlander, M G; Lovenberg, T W; Baron, B M; de Lecea, L; Danielson, P E; Racke, M; Slone, A L; Siegel, B W; Foye, P. E.; Cannon, K

    1993-01-01

    We report two serotonin (5-hydroxytryptamine, 5-HT) receptors, MR22 and REC17, that belong to the G-protein-associated receptor superfamily. MR22 and REC17 are 371 and 357 amino acids long, respectively, as deduced from nucleotide sequence and share 68% mutual amino acid identity and 30-35% identity with known catecholamine and 5-HT receptors. Saturable binding of 125I-labeled (+)-lysergic acid diethylamide to transiently expressed MR22 in COS-M6 cells was inhibited by ergotamine > methiothep...

  11. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  12. The interleukin-1 type I receptor is expressed in human hypothalamus.

    Science.gov (United States)

    Hammond, E A; Smart, D; Toulmond, S; Suman-Chauhan, N; Hughes, J; Hall, M D

    1999-09-01

    Several lines of evidence suggest that interleukin-1 (IL-1) acts directly on the central nervous system, probably within the hypothalamus, causing effects such as fever, activation of the immune response and sickness behaviour. IL-1 has also been shown to be involved in the aetiology of several neuronal diseases, including neurodegeneration, stroke and Alzheimer's disease. However, the question as to whether the full-length type I IL-1 receptor (IL-1RI) is expressed in the human hypothalamus has yet to be addressed. Using the polymerase chain reaction, we cloned a full-length cDNA encoding the human hypothalamic IL-1RI from human hypothalamic cDNA. The DNA sequence of the human hypothalamic receptor was identical to that of the human fibroblast IL-1RI. The IL-1RI receptor protein was detected in astrocytes of normal human hypothalamic brain sections using immunocytochemical techniques. To ascertain that the cloned receptor was functional, Chinese hamster ovary (CHO) cells were transfected with a plasmid vector containing the IL-1RI coding region. IL-1RI-mediated-signal transduction was assessed by microphysiometry and activation of p38 MAP (mitogen-activated protein) kinase. We report the first demonstration that both the type I IL-1 transcript and the protein are expressed in the human hypothalamus. The receptor was expressed in a stable CHO cell line, providing a tool with which to embark on a thorough analysis of the signalling mechanisms mediated by IL-1 via this receptor. PMID:10468509

  13. Expression of the rat muscarinic receptor gene m3 in Dictyostelium discoideum.

    Science.gov (United States)

    Voith, G; Kramm, H; Zündorf, I; Winkler, T; Dingermann, T

    1998-10-01

    We functionally expressed the rat muscarinic m3 receptor (rm3) in the cellular slime mold Dictyostelium discoideum under the control of the homologous discoidin I gamma promoter. Cells transfected with the authentic rm3 receptor gene expressed about 100 functional receptor molecules per cell, corresponding to a Bmax for [3H]-NMS of 36 +/- 9 fmol/mg of protein in isolated membranes. Genetic fusion of the Dictyostelium contact site A (csA) leader peptide to the amino terminus of rm3 increased the receptor expression by about 17-fold. Remarkable, in [3H]-NMS ligand binding experiments performed with whole cells no characteristic saturable binding was observed and there was no significant difference in [3H]-NMS binding to whole cells of rm3 and csA/rm3 transformants. The recombinant rm3 receptor showed an about 10-fold higher affinity to the M3-selective antagonist p-F-HHSiD compared to the M2-selective antagonist AQ-RA 741, suggesting that membranes derived from transgenic D. discoideum cells may be useful for the search of new subtype-specific muscarinic receptor ligands. PMID:9812338

  14. Expression of Dihydropyridine and Ryanodine Receptors in Type IIA Fibers of Rat Skeletal Muscle

    International Nuclear Information System (INIS)

    In this study, the fiber type specificity of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) in different rat limb muscles was investigated. Western blot and histochemical analyses provided for the first time evidence that the expression of both receptors correlates to a specific myosin heavy chain (MHC) composition. We observed a significant (p=0.01) correlation between DHP as well as Ry receptor density and the expression of MHC IIa (correlation factor r=0.674 and r=0.645, respectively) in one slow-twitch, postural muscle (m. soleus), one mixed, fast-twitch muscle (m. gastrocnemius) and two fast-twitch muscles (m. rectus femoris, m. extensor digitorum longus). The highest DHP and Ry receptor density was found in the white part of m. rectus femoris (0.058±0.0060 and 0.057±0.0158 ODu, respectively). As expected, the highest relative percentage of MHC IIa was also found in the white part of m. rectus femoris (70.0±7.77%). Furthermore, histochemical experiments revealed that the IIA fibers stained most strongly for the fluorophore-conjugated receptor blockers. Our data clearly suggest that the expression of DHPRs and RyRs follows a fiber type-specific pattern, indicating an important role for these proteins in the maintenance of an effective Ca2+ cycle in the fast contracting fiber type IIA

  15. Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Martin Ligr

    Full Text Available Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR and estrogen receptor (ER in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis.

  16. Expression of prostaglandin receptors in Chlamydia trachomatis-infected recurrent spontaneous aborters.

    Science.gov (United States)

    Singh, Namita; Prasad, Priya; Singh, Laishram Chandreshwar; Das, Banashree; Rastogi, Sangita

    2016-06-01

    A study was undertaken to quantify the expression of prostaglandin (PG) receptors and find the effect of gestational age on expression of PG receptor genes in Chlamydia trachomatis-infected recurrent spontaneous aborters (RSA). Endometrial curettage tissue (ECT) was collected from 130 RSA (Group I) and 100 age-matched controls (Group II) at the Department of Obstetrics and Gynecology, Safdarjung Hospital, New Delhi (India). PCR was performed for diagnosis of C. trachomatis cryptic plasmid; mRNA expression of PG receptor genes was assessed by real-time PCR (q-PCR), while serum progesterone/estrogen levels were determined by respective commercial kits. Data were evaluated statistically. A total of 15.4 % RSA (GroupI) were diagnosed as C. trachomatis-positive (200 bp), whereas controls were uninfected. q-PCR showed significant upregulation (PRSA, mean serum progesterone level was significantly low (PRSA. PMID:27028620

  17. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  18. Presenilin-1 Mutation Impairs Cholinergic Modulation of Synaptic Plasticity and Suppresses NMDA Currents in Hippocampus slices

    OpenAIRE

    Wang, Yue; Greig, Nigel H.; Yu, Qian-Sheng; Mattson, Mark P.

    2008-01-01

    Presenilin-1 (PS1) mutations cause many cases of early-onset inherited Alzheimer's disease, in part, by increasing the production of neurotoxic forms of amyloid β-peptide (A β). However, Aβ -independent effects of mutant PS1 on neuronal Ca2+ homeostasis and sensitivity to excitatory neurotransmitters have been reported. Here we show that cholinergic modulation of hippocampal synaptic plasticity is impaired in PS1 mutant knockin (PS1KI) mice. Whereas activation of muscarinic receptors enhances...

  19. Cloning, expression and pharmacological characterization of rabbit adenosine A1 and A3 receptors.

    Science.gov (United States)

    Hill, R J; Oleynek, J J; Hoth, C F; Kiron, M A; Weng, W; Wester, R T; Tracey, W R; Knight, D R; Buchholz, R A; Kennedy, S P

    1997-01-01

    The role of adenosine A1 and A3 receptors in mediating cardioprotection has been studied predominantly in rabbits, yet the pharmacological characteristics of rabbit adenosine A1 and A3 receptor subtypes are unknown. Thus, the rabbit adenosine A3 receptor was cloned and expressed, and its pharmacology was compared with that of cloned adenosine A1 receptors. Stable transfection of rabbit A1 or A3 cDNAs in Chinese hamster ovary-K1 cells resulted in high levels of expression of each of the receptors, as demonstrated by high-affinity binding of the A1/A3 adenosine receptor agonist N6-(4-amino-3-[125I]iodobenzyl)adenosine (125I-ABA). For both receptors, binding of 125I-ABA was inhibited by the GTP analog 5'-guanylimidodiphosphate, and forskolin-stimulated cyclic AMP accumulation was inhibited by the adenosine receptor agonist (R)-phenylisopropyladenosine. The rank orders of potency of adenosine receptor agonists for inhibition of 125I-ABA binding were as follows: rabbit A1, N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N-ethylcarboxamidoadenosine > or = I-ABA > or = N6-2-(4-aminophenyl) ethyladenosine > > N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > N6-(4-amino-3-benzyl)adenosine; rabbit A3, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide > or = I-ABA > > N-ethylcarboxamidoadenosine > N6-2-(4-aminophenyl) ethyladenosine = N6-cyclopentyladenosine = (R)-phenylisopropyladenosine > N6-(4-amino-3-benzyl)adenosine. The adenosine receptor antagonist rank orders were as follow: rabbit A1, 8-cyclopentyl-1,3-dipropylxanthine > 1,3- dipropyl-8-(4-acrylate)phenylxanthine > or = xanthine amine congener > > 8-(p-sulfophenyl)theophylline; rabbit A3, xanthine amine congener > 1,3-dipropyl-8-(4-acrylate)phenylxanthine > or = 8-cyclopentyl-1,3-dipropylxanthine > > 8-(p-sulfophenyl)theophylline. These observations confirm the identity of the expressed proteins as A1 and A3 receptors. The results will facilitate further in-depth studies of the roles of A1 and A3 receptors in

  20. Use of adenovirus vector expressing the mouse full estrogen receptor alpha gene to infect mouse primary neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao HU; Lei Lou; Jun Yuan; Xing Wan; Jianyi Wang; Xinyue Qin

    2010-01-01

    Estrogen plays important regulatory and protective roles in the central nervous system through estrogen receptor a mediation.Previous studies applied eukaryotic expression and lentiviral vectors carrying estrogen receptor a to clarify the undedying mechanisms,in the present study,an adenovirus vector expressing the mouse full estrogen receptor a gene was constructed to identify biological characteristics of estrogen receptor a recombinant adenovirus infecting nerve cells.Primary cultured mouse nerve cells were first infected with estrogen receptor a recombinant adenovirus at various multiplicities of infection,followed by 100 multiplicity of infection.Results showed overexpression of estrogen receptor a mRNA and protein in the infected nerve cells.Estrogen receptor a recombinant adenovirus at 100 multiplicity of infection successfully infected neurons and upregulated estrogen receptor a mRNA and protein expression.

  1. Glutamate Receptor Interacting Protein 1 Regulates CD4(+) CTLA-4 Expression and Transplant Rejection.

    Science.gov (United States)

    Modjeski, K L; Levy, S C; Ture, S K; Field, D J; Shi, G; Ko, K; Zhu, Q; Morrell, C N

    2016-05-01

    PDZ domains are common 80- to 90-amino-acid regions named after the first three proteins discovered to share these domains: postsynaptic density 95, discs large, and zonula occludens. PDZ domain-containing proteins typically interact with the C-terminus of membrane receptors. Glutamate receptor interacting protein 1 (GRIP1), a seven-PDZ domain protein scaffold, regulates glutamate receptor surface expression and trafficking in neurons. We have found that human and mouse T cells also express GRIP1. T cell-specific GRIP1(-/-) mice >11 weeks old had prolonged cardiac allograft survival. Compared with wild-type T cells, in vitro stimulated GRIP1(-/-) T cells had decreased expression of activation markers and increased apoptotic surface marker expression. Surface expression of the strong T cell inhibitory molecule cytotoxic T lymphocyte antigen-4 (CTLA-4) was increased on GRIP1(-/-) T cells from mice >11 weeks old. CTLA-4 increases with T cell stimulation and its surface expression on GRIP1(-/-) T cells remained high after stimulation was removed, indicating a possible internalization defect in GRIP1-deficient T cells. CTLA-4-blocking antibody treatment following heart transplantation led to complete rejection in T cell GRIP1(-/-) mice, indicating that increased CTLA-4 surface expression contributed to the extended graft survival. Our data indicate that GRIP1 regulates T cell activation by regulating CTLA-4 surface expression. PMID:26601915

  2. EXPRESSION OF EPIDERMAL GROWTH FACTOR RECEPTOR IN DIFFERENT SALIVARY ADENOID CYSTIC CARCINOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    MA Jie; ZONG Zhi-hong; WANG Zhao-yuan

    2005-01-01

    Objective: To investigate the expression of epidermal growth factor receptor, a receptor tyrosine protein kinase, in the subcellular fractions of human salivary adenoid cystic carcinoma cell lines SACC-83 and SACC-LM. Methods: Low metastatic and high metastatic cells of the adenoid cystic carcinoma, SACC-83 and SACC-LM, were cultured. Their subcellular fractions were extracted. The expression of epidermal growth factor receptor was detected with Western blot method, and the results of protein expression were quantitatively analyzed by FluorChem V2.0 software. Results: The results of Western blot analysis indicated that, EGFR expression on the membrane of SACC-83 cells was significantly higher than that of SACC-LM cells, but its expression in cytoplasm was significantly less in the former than the later (P<0.01). In SACC-83 cell line, EGFR was over-expressed in membrane (P<0.01), but in SACC-LM cell line, EGFR was over-expressed in cytoplasm (P<0.01). Conclusion: The results suggest that the obtaining of metastasis ability is related to the high expression of EGFR protein in cytoplasm, so the molecular targeting therapy to EGFR may be an ideal treatment for the invasion and metastasis of salivary adenoid cystic carcinoma.

  3. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons. PMID:23152192

  4. Expression of anti-Mullerian hormone receptor on the appendix testis in connection with urological disorders

    Institute of Scientific and Technical Information of China (English)

    Kornél Kistamás; Olga Ruzsnavszky; Andrea Telek; Lívia Kosztka; Ilona Kovács; Beatrix Dienes; László Csernoch

    2013-01-01

    The female internal sex organs develop from the paramesonephric (Mullerian) duct.In male embryos,the regression of the Mullerian duct is caused by the anti-Mullerian hormone (AMH),which plays an important role in the process of testicular descent.The physiological remnant of the Mullerian duct in males is the appendix testis (AT).In our previous study,we presented evidence for the decreased incidence of AT in cryptorchidism with intraoperative surgery.In this report,the expression of the anti-Mullerian hormone receptor type 2 (AMHR2),the specific receptor of AMH,on the AT was investigated in connection with different urological disorders,such as hernia inguinalis,torsion of AT,cysta epididymis,varicocele,hydrocele testis and various forms of undescended testis.The correlation between the age of the patients and the expression of the AMHR2 was also examined.Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were used to detect the receptor's mRNA and protein levels,respectively.We demonstrate that AMHR2 is expressed in the ATs.Additionally,the presence of this receptor was proven at the mRNA and protein levels.The expression pattern of the receptor correlated with neither the examined urological disorders nor the age of the patients;therefore,the function of the AT remains obscure.

  5. Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B.

    Science.gov (United States)

    Digby, J E; Chen, J; Tang, J Y; Lehnert, H; Matthews, R N; Randeva, H S

    2006-10-01

    Orexin-A and orexin-B, via their receptors orexin-1 receptor (OX1R) and orexin-2 receptor (OX2R) have been shown to play a role in the regulation of feeding, body weight, and energy expenditure. Adipose tissue also contributes significantly to the maintenance of body weight by interacting with a complex array of bioactive peptides; however, there are no data as yet on the expression of orexin components in adipose tissue. We, therefore, analyzed the expression of OX1R and OX2R in human adipose tissue and determined functional responses to orexin-A and orexin-B. OX1R and OX2R mRNA expression was detected in subcutaneous (s.c.) and omental adipose tissue and in isolated adipocytes. Protein for OX1R and OX2R was also detected in whole adipose tissue sections and lysates. Treatment with orexin-A, and orexin-B (100 nM, 24 h) resulted in a significant increase in peroxisome proliferator-activated receptors gamma-2 mRNA expression in s.c. adipose tissue (P B treatment (P < 0.05). Glycerol release from omental adipose tissue was also significantly reduced with orexin-A treatment (P < 0.05). These findings demonstrate for the first time the presence of functional orexin receptors in human adipose tissue and suggest a role for orexins in adipose tissue metabolism and adipogenesis. PMID:17065396

  6. Multiple cholinergic differentiation factors are present in footpad extracts: comparison with known cholinergic factors

    OpenAIRE

    Rao, M S; Patterson, Paul H.; Landis, S C

    1992-01-01

    Sweat glands in rat footpads contain a neuronal differentiation activity that switches the phenotype of sympathetic neurons from noradrenergic to cholinergic during normal development in vivo. Extracts of developing and adult sweat glands induce changes in neurotransmitter properties in cultured sympathetic neurons that mimic those observed in vivo. We have characterized further the factors present in the extract and compared their properties to those of known cholinergic factors. When assaye...

  7. Effect of Dexamethasone on Expression of Glucocorticoid Receptor in Human Monocyte Cell Line THP-1

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of dexamethasone with differentconcentrations and different stimulating periods on the expression of glucocorticoid receptors (GRα, GRβ) protein was investigated in human monocyte cell line THP-1. The cultured human monocyte line THP-1 cells were stimulated by dexamethasone with different concentrations and different periods. The expression of GRα and GRβ protein was detected by Western blotting. The results showed that the expression of GRα and GRβ was detected in the THP-1 cells. The quantity of GRα expression was reduced by dexamethasone under the same concentration with the prolongation of the stimulating periods. The quantity of GRβ expression was increased by dexamethasone treatment in a time- and dose-dependent manner. It was concluded that dexamethasone stimulation time-dependently reduced the GRα expression in THP-1 cells. Dexamethasone stimulation time- and dose-dependently increased the GRβ expression in THP1 cells. The expression of GRα and GRβ was regulated by glucocorticoid.

  8. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice.

    Science.gov (United States)

    Qiu, Guozhen; Chen, Shengqiang; Guo, Jialing; Wu, Jie; Yi, Yong-Hong

    2016-10-01

    Hyperactivity is a symptom found in several neurological and psychiatric disorders, including Fragile X syndrome (FXS). The animal model of FXS, fragile X mental retardation gene (Fmr1) knockout (KO) mouse, exhibits robust locomotor hyperactivity. Alpha (α)-asarone, a major bioactive component isolated from Acorus gramineus, has been shown in previous studies to improve various disease conditions including central nervous system disorders. In this study, we show that treatment with α-asarone alleviates locomotor hyperactivity in Fmr1 KO mice. To elucidate the mechanism underlying this improvement, we evaluated the expressions of various cholinergic markers, as well as acetylcholinesterase (AChE) activity and acetylcholine (ACh) levels, in the striatum of Fmr1 KO mice. We also analyzed the AChE-inhibitory activity of α-asarone. Striatal samples from Fmr1 KO mice showed decreased m1 muscarinic acetylcholine receptor (m1 mAChR) expression, increased AChE activity, and reduced ACh levels. Treatment with α-asarone improved m1 mAChR expression and ACh levels, and attenuated the increased AChE activity. In addition, α-asarone dose-dependently inhibited AChE activity in vitro. These results indicate that direct inhibition of AChE activity and up-regulation of m1 mAChR expression in the striatum might contribute to the beneficial effects of α-asarone on locomotor hyperactivity in Fmr1 KO mice. These findings might improve understanding of the neurobiological mechanisms responsible for locomotor hyperactivity. PMID:27316341

  9. Identification and expression of GABAc receptor in rat testis and spermatozoa

    Institute of Scientific and Technical Information of China (English)

    Shifeng Li; Yunbin Zhang; Haixiong Liu; Yuanchang Yan; Yiping Li

    2008-01-01

    Our previous studies showed that γ-aminobutyric acid (GABA)A and GABAB receptors are involved in rat sperm acrosome reaction induced by progesterone or GABA. Here,we report the presence of GABAc receptor in rat testis and spermatozoa.Full-length complementary DNA encoding the ρ1,ρ2 and ρ3 subunits of GABAc receptor were cloned from rat testis;their sequences are identical to those of rat GABAc receptor in retina.Reverse transcription-polymerase chain reaction analysis showed that during the development of rat testis,the transcript levels of the ρ1 and ρ2 subunits showed little change,while the expression of ρ3 was gradually up-regulated.Immunofluorescence analysis using an anti-ρ1 antibody revealed that GABAc receptor exists on the elongated spermatid and sperm.Using a chlortetracycline assay,we found that N(4)-chloroacetylcytosine arabinoside, a GABAc receptor agonist,triggered rat sperm acrosome reaction;whereas(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid,a GABAc receptor antagonist, inhibited the ability of N(4)-chloroacetylcytosine arabinoside to induce acrosome reaction.These results suggested that GABAc receptors are also involved in rat sperm acrosome reaction.

  10. Carotid body AT4 receptor expression and its upregulation in chronic hypoxia

    OpenAIRE

    Fung, Man-Lung; Lam, Siu-Yin; Wong, Tung-Po; Tjong, Yung-Wui; Leung, Po-Sing

    2007-01-01

    Hypoxia regulates the local expression of angiotensin-generating system in the rat carotid body and the me-tabolite angiotensin IV (Ang IV) may be involved in the modulation of carotid body function. We tested the hypothesis that Ang IV-binding angiotensin AT(4) receptors play a role in the adaptive change of the carotid body in hypoxia. The expression and localization of Ang IV-binding sites and AT(4) receptors in the rat carotid bodies were studied with histochemistry. Specific fluorescein-...

  11. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    OpenAIRE

    FlorenciaMarcucci

    2010-01-01

    We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R) repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computa...

  12. High-Throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    OpenAIRE

    Zhang, Xiaohong; Marcucci, Florencia; Firestein, Stuart

    2010-01-01

    We performed comprehensive data mining to explore the vomeronasal receptor (V1R and V2R) repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on comput...

  13. TIMING IS EVERYTHING, EVEN FOR CHOLINERGIC CONTROL

    OpenAIRE

    Berg, Darwin K.

    2011-01-01

    Synaptic plasticity is widely considered to be a cellular mechanism underlying learning and memory. In this issue of Neuron, Gu and Yakel show that the precise timing of a single cholinergic pulse of activity can determine whether plasticity will occur at a glutamatergic synapse and confer long-term potentiation versus depression.

  14. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    Science.gov (United States)

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development. PMID:25986534

  15. Increased angiotensin II AT(1) receptor expression in paraventricular nucleus and hypothalamic-pituitary-adrenal axis stimulation in AT(2) receptor gene disrupted mice.

    Science.gov (United States)

    Armando, Inés; Terrón, José A; Falcón-Neri, Alicia; Takeshi, Ito; Häuser, Walter; Inagami, Tadashi; Saavedra, Juan M

    2002-09-01

    Angiotensin II AT(2) receptor gene-disrupted mice have increased blood pressure and response to angiotensin II, behavioral alterations, greater response to stress, and increased adrenal AT(1) receptors. We studied hypothalamic AT(1) receptor binding and mRNA by receptor autoradiography and in situ hybridization, adrenal catecholamines by HPLC, adrenal tyrosine hydroxylase mRNA by in situ hybridization and pituitary and adrenal hormones by RIA in AT(2) receptor-gene disrupted mice and wild-type controls. To confirm the role of adrenal AT(1) receptors, we treated wild-type C57 BL/6J mice with the AT(1) antagonist candesartan for 2 weeks, and measured adrenal hormones, catecholamines and tyrosine hydroxylase mRNA. In the absence of AT(2) receptor transcription, we found increased AT(1) receptor binding in brain areas involved in the regulation of the hypothalamic-pituitary-adrenal axis, the hypothalamic paraventricular nucleus and the median eminence, and increased adrenal catecholamine synthesis as shown by higher adrenomedullary tyrosine hydroxylase mRNA and higher adrenal dopamine, norepinephrine and epinephrine levels when compared to wild-type mice. In addition, in AT(2) receptor gene-disrupted mice there were higher plasma adrenocorticotropin (ACTH) and corticosterone levels and lower adrenal aldosterone content when compared to wild-type controls. Conversely, AT(1) receptor inhibition in CB57 BL/6J mice reduced adrenal tyrosine hydroxylase mRNA and catecholamine content and increased adrenal aldosterone content. These results can help to explain the enhanced response of AT(2) receptor gene-disrupted mice to exogenous angiotensin II, support the hypothesis of cross-talk between AT(1) and AT(2) receptors, indicate that the activity of the hypothalamic-pituitary-adrenal axis parallels the AT(1) receptor expression, and suggest that expression of AT(1) receptors can be dependent on AT(2) receptor expression. Our results provide an explanation for the increased

  16. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  17. Expression of chemokine receptors on peripheral blood lymphocytes in multiple sclerosis and neuromyelitis optica

    Directory of Open Access Journals (Sweden)

    Nomura Fumio

    2010-11-01

    Full Text Available Abstract Background The role of different chemokine receptors in the pathogenesis of multiple sclerosis (MS has been extensively investigated; however, little is known about the difference in the role of chemokine receptors between the pathogenesis of neuromyelitis optica (NMO and MS. Therefore, we examined the expression of chemokine receptors on peripheral blood lymphocytes (PBL in MS and NMO. Methods We used flow cytometry to analyse lymphocyte subsets in 12 patients with relapsing NMO, 24 with relapsing-remitting MS during relapse, 3 with NMO and 5 with MS during remission. Results Compared with healthy controls (HC, the percentage of lymphocytes in white blood cells was significantly lower in NMO and MS patients. The percentage of T cells expressing CD4+CD25+ and CD4+CD45RO+ was higher, while that of CD4+CC chemokine receptor (CCR3+ (T helper 2, Th2 was significantly lower in MS patients than in HC. The ratios of CD4+CXC chemokine receptors (CXCR3+/CD4+CCR3+ (Th1/Th2 and CD8+CXCR3+/CD8+CCR4+ (T cytotoxic 1, Tc1/Tc2 were higher in MS patients than in HC. The percentage of CD8+CXCR3+ T cell (Tc1 and CD4+CXCR3+ T cell (Th1 decreased significantly during remission in MS patients (P 0.05. No significant differences were identified in the expression of the chemokine receptors on PBL in NMO patients compared with MS patients and HC. Conclusions Th1 dominance of chemokine receptors on blood T cells and the correlation between CXCR3+ T cell (Th1 and Tc1 and disease activity in MS patients were confirmed by analysing chemokines receptors on PBL. In contrast, deviation in the Th1/Th2 balance was not observed in NMO patients.

  18. GABAA receptor B subunit expression in the superior frontal cortex of human alcoholics

    International Nuclear Information System (INIS)

    Full text: Changes in GABAA receptor pharmacology can be ascribed to alterations in expression of specific GABAA receptor subunits. Ethanol is known to be a potent agonist of the GABAA receptor. Chronic abuse of alcohol in humans results in damage of selective brain regions such as the superior frontal cortex (SFC), leading to neuronal cell loss. Studies in our laboratory 1 and elsewhere 2 have shown differences in expression of a number of GABAA receptor subunits in chronic human alcoholism. This suggests that alterations in GABAA receptor composition may be involved in the pathogenesis of alcoholic brain damage. We analysed the expression of the β1 ,β2 and β3 isoforms of the GABAA receptor by a competitive reverse transcription polymerase chain reaction (RT-PCR) technique, which utilised an internal standard (IS) for quantitation. 35 S-dATP was incorporated to enable visualisation of the PCR products. Human brain tissue was obtained at autopsy and stored in 0.32 M sucrose at -80 deg C. Total RNA was extracted from pathologically susceptible and spared regions, SFC and motor cortex respectively,of 22 control and 22 alcoholic patients. 1 μg of total RNA from each sample was co-amplified with 0.5 pg of IS and a ratio determined. A standard consisting of known amounts of β1 cRNA titrated against 0.5 pg of IS enabled a standard curve to be generated for quantitation of each unknown sample. The samples were subjected to polyacrylamide gel electrophoresis and the dried gel exposed to a phosphorimager screen. Data analysis was performed using the ImageQuant program. Initial results indicate that there is a reduction in expression of all the β transcripts in alcoholics when compared with controls, which supports the hypothesis that the GABAA receptor is altered by alcohol abuse. Supported by NHMRC. Copyright (2001) Australian Neuroscience Society

  19. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  20. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    International Nuclear Information System (INIS)

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 106 cells mL−1 with a detection limit of 40 cells mL−1 was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 105 with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening

  1. Prefrontal cortical-striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity.

    Science.gov (United States)

    Simon, Nicholas W; Beas, Blanca S; Montgomery, Karienn S; Haberman, Rebecca P; Bizon, Jennifer L; Setlow, Barry

    2013-06-01

    Variation in dopamine receptor levels has been associated with different facets of impulsivity. To further delineate the neural substrates underlying impulsive action (inability to withhold a prepotent motor response) and impulsive choice (delay aversion), we characterised rats in the Differential Reinforcement of Low Rates of Responding task and a delay discounting task. We also measured performance on an effort-based discounting task. We then assessed D1 and D2 dopamine receptor mRNA expression in subregions of the prefrontal cortex and nucleus accumbens using in situ hybridisation, and compared these data with behavioral performance. Expression of D1 and D2 receptor mRNA in distinct brain regions was predictive of impulsive action. A dissociation within the nucleus accumbens was observed between subregions and receptor subtypes; higher D1 mRNA expression in the shell predicted greater impulsive action, whereas lower D2 mRNA expression in the core predicted greater impulsive action. We also observed a negative correlation between impulsive action and D2 mRNA expression in the prelimbic cortex. Interestingly, a similar relationship was present between impulsive choice and prelimbic cortex D2 mRNA, despite the fact that behavioral indices of impulsive action and impulsive choice were uncorrelated. Finally, we found that both high D1 mRNA expression in the insular cortex and low D2 mRNA expression in the infralimbic cortex were associated with willingness to exert effort for rewards. Notably, dopamine receptor mRNA in these regions was not associated with either facet of impulsivity. The data presented here provide novel molecular and neuroanatomical distinctions between different forms of impulsivity, as well as effort-based decision-making. PMID:23510331

  2. Prefrontal cortical–striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity

    Science.gov (United States)

    Simon, Nicholas W.; Beas, Blanca S.; Montgomery, Karienn S.; Haberman, Rebecca P.; Bizon, Jennifer L.; Setlow, Barry

    2014-01-01

    Variation in dopamine receptor levels has been associated with different facets of impulsivity. To further delineate the neural substrates underlying impulsive action (inability to withhold a prepotent motor response) and impulsive choice (delay aversion), we characterised rats in the Differential Reinforcement of Low Rates of Responding task and a delay discounting task. We also measured performance on an effort-based discounting task. We then assessed D1 and D2 dopamine receptor mRNA expression in subregions of the prefrontal cortex and nucleus accumbens using in situ hybridisation, and compared these data with behavioral performance. Expression of D1 and D2 receptor mRNA in distinct brain regions was predictive of impulsive action. A dissociation within the nucleus accumbens was observed between subregions and receptor subtypes; higher D1 mRNA expression in the shell predicted greater impulsive action, whereas lower D2 mRNA expression in the core predicted greater impulsive action. We also observed a negative correlation between impulsive action and D2 mRNA expression in the prelimbic cortex. Interestingly, a similar relationship was present between impulsive choice and prelimbic cortex D2 mRNA, despite the fact that behavioral indices of impulsive action and impulsive choice were uncorrelated. Finally, we found that both high D1 mRNA expression in the insular cortex and low D2 mRNA expression in the infralimbic cortex were associated with willingness to exert effort for rewards. Notably, dopamine receptor mRNA in these regions was not associated with either facet of impulsivity. The data presented here provide novel molecular and neuroanatomical distinctions between different forms of impulsivity, as well as effort-based decision-making. PMID:23510331

  3. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangkyu, E-mail: 49park@cku.ac.kr [Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of); Ko, Eun Hee [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  4. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    International Nuclear Information System (INIS)

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα

  5. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    Directory of Open Access Journals (Sweden)

    Cohen Cynthia

    2010-09-01

    Full Text Available Abstract Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA and prostate-specific acid phosphatase (PSAP are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC, female breast carcinoma (FBC, and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%, focally positive in one of thirty MBC (3.3%, and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82. Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions.

  6. 次声作用对大鼠记忆功能及隔内侧核和 斜角带核胆碱能神经元表达的影响%Expression of cholinergic neurons in the memory and medial septal nucleus and nucleus of diagonal band of the rats exposed to infrasound

    Institute of Scientific and Technical Information of China (English)

    魏智钧; 李玲; 陈景藻; 贾克勇; 饶志仁; 邱建勇; 刘惠玲

    2001-01-01

    目的 探讨次声作用对大鼠记忆功能及斜角带核和隔内侧核胆碱能神经元表达的影响。方法 记忆保持SD大鼠接受16 Hz,90 dB或130 dB次声照射,2 h/次.d-1, 作用7 d或14 d,观察不同声强、不同时间次声作用对大鼠回避反应的潜伏期及隔内侧核/斜角带核(MS/DB)胆碱能神经元表达的影响。结果 130 dB次声作用组大鼠记忆功能显著降低(P<0.01),隔内侧核和斜角带核胆碱能神经元数目明显降低(P<0.01),90 dB组差异不明显。结论 次声作用可以导致隔内侧核和斜角带核胆碱能神经元的数目减少,使大鼠记忆功能下降,效应与次声的声强有关。声强相同时, 14 d与7 d的效应差异不显著。%Objective To explore the influence on memory function and expression of cholinergic neurons in the medial septal nucleus/nucleus of diagonal band(MS/DB) of the rats exposed to 16 Hz infrasound. MethodsThe SD rats with memory-keeping were exposed to infrasound of 16 Hz with intensity of 90dB or 130 dB for 7,14 d and two hours every time in a day,then observed the latency of avoidance response and expression of cholinergic neurons in the MS/DB with immunohistochemical technique at the different time.Results The memory function of rats exposed to 130 dB infrasound were reduced (P<0.01),the number of the cholinergic neurons in the MS/DB was decreased dramatically (P<0.01) ,no difference was observed in the group exposed to 90 dB infrasound. Conclusion Infrasound can induce number of cholinergic neurons in the MS/DB decreased and memory function as well.The effects are related to the intensity and times of infrasound.When the intensity is same,the effect of 14 d group is no signifcant with 7d group.

  7. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    Directory of Open Access Journals (Sweden)

    Patak Eva

    2009-07-01

    Full Text Available Abstract Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h and late (24 h responses to estrogen were evaluated and the participation of the estrogen receptors (ER, ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4 and tachykinin receptors (Tacr1, Tacr2 and Tacr3 were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  8. Undifferentiated embryonic stem cells express ionotropic glutamate receptor mRNAs

    Directory of Open Access Journals (Sweden)

    Svenja Pachernegg

    2013-12-01

    Full Text Available Ionotropic glutamate receptors (iGluRs do not only mediate the majority of excitatory neurotransmission in the vertebrate CNS, but also modulate pre- and postnatal neurogenesis. Most of the studies on the developmental role of iGluRs are performed on neural progenitors and neural stem cells. We took a step back in our study by examining the role of iGluRs in the earliest possible cell type, embryonic stem cells (ESCs, by looking at the mRNA expression of the major iGluR subfamilies in undifferentiated mouse ESCs. For that, we used two distinct murine ES cell lines, 46C ESCs and J1 ESCs. Regarding 46C ESCs, we found transcripts of kainate receptors (GluK2 to GluK5, AMPA receptors (GluA1, GluA3, and GluA4, and NMDA receptors (GluN1, and GluN2A to GluN2D. Analysis of 46C-derived cells of later developmental stages, namely neuroepithelial precursor cells (NEPs and neural stem cells (NSCs, revealed that the mRNA expression of KARs is significantly upregulated in NEPs and, subsequently, downregulated in NSCs. However, we could not detect any protein expression of any of the KAR subunits present on the mRNA level either in ESCs, NEPs, or NSCs. Regarding AMPARs and NMDARs, GluN2A is weakly expressed at the protein level only in NSCs. Matching our findings for GluRs, all three cell types were found to weakly express pre- and postsynaptic markers of glutamatergic synapses only at the mRNA level. Finally, we performed patch-clamp recordings of 46C ESCs and could not detect any current upon iGluR agonist application. Similar to 46C ESCs, J1 ESCs express kainate receptors (GluK2 to GluK5, AMPA receptors (GluA3, and NMDA receptors (GluN1, and GluN2A to GluN2D at the mRNA level, but these transcripts are not translated into receptor proteins either. Thus, we conclude that ESCs do not contain functional iGluRs, although they do express an almost complete set of iGluR subunit mRNAs.

  9. Interleukin-2 (IL-2) dependent expression of biologically relevant IL-2 receptors: uncoupling of anti-T3 induced receptor expression with cyclosporin

    International Nuclear Information System (INIS)

    Human peripheral blood T cell expression of IL-2 receptors (IL-2R), detected by both immunocytofluorometry and 125I-IL-2 binding, was studied using lymphocytes stimulated with monoclonal anti-T3 antibodies (Leu-4, OKT3). Lymphocytes, isolated from healthy individuals, were prescreened and classified as Leu-4 responders or non-responders according to 72 h 3H-thymidine incorporation experiments. Leu-4 non-responder lymphocytes, though capable of normal IL-2R expression and IL-2 secretion when cultured with OKT3 (IgG2a), expressed little to no IL-2R nor secreted IL-2 when stimulated with Leu-4 (IgG1). In addition, the amount of IL-2 secreted by Leu-4 stimulated, Leu-4 responder cells, was one-third- to one-fifth of that detected when OKT3 was used as the stimulant. The addition of recombinant IL-2 (rIL-2) to a Leu-4 stimulated, Leu-4 non-responder lymphocyte culture, resulted in the expression of IL-2R and cellular proliferation, indicating that IL-2 upregulated its biologically relevant receptor. As expected, cyclosporin-A (CSA) inhibited the secretion of IL-2 and subsequent proliferation of Leu-4 stimulated, Leu-4 responder cells. Unexpectedly, however, the expression of IL-2R was also blocked. Exogenous rIL-2 partially reversed the effect of CSA on IL-2R expression and proliferation. The results indicate that IL-2 may provide an additional, required signal for optimal IL-2R expression

  10. Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells

    OpenAIRE

    Parker, M. Rockwell; Feng, Dianna; Chamuris, Brianna; Margolskee, Robert F.

    2014-01-01

    Stress increases the secretion of glucocorticoids (GCs), potent steroid hormones that exert their effects on numerous target tissues by acting through glucocorticoid receptors (GRs). GC signaling significantly affects ingestive behavior and taste preferences in humans and rodent models, but far less is known about the hormonal modulation of the peripheral sensory system that detects and assesses nutrient content of foods. A previous study linked restraint stress in rats to diminished expressi...

  11. Expression of amygdala mineralocorticoid receptor and glucocorticoid receptor in the single-prolonged stress rats

    OpenAIRE

    Han, Fang; Ding, Jinlan; Shi, Yuxiu

    2014-01-01

    Background Post-traumatic stress disorder (PTSD) is an anxious disorder associated with low levels of corticosterone and enhanced negative feedback of the hypothalamic–pituitary–adrenal (HPA) axis. Previous studies showed that the amygdala not only has an excitatory effect on the HPA axis but also plays a key role in fear-related behaviors. Coticosterone exert actions through binding to the mineralocorticoid (MR) and glucocorticoid receptor (GR), which are abundant in the amygdala. In our pre...

  12. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina;

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...

  13. Up-regulation of interleukin 4/B-cell stimulatory factor 1 receptor expression

    International Nuclear Information System (INIS)

    The expression of interleukin 4 (IL-4) receptors on resting T and B lymphocytes was enhanced 4- to 8-fold by IL-4 stimulation of these cells. Other agents such as lipopolysaccharide and anti-IgM for B cells and concanvalain A for T cells also caused increased IL-4 receptor expression, although to a somewhat smaller degree than IL-4. Using a newly developed flow cytometric analysis based on the binding of biotinylated IL-4 and phycoerythrin-streptavidin, it was observed that receptor up-regulation in a T-cell population treated with IL-4 was a feature of the majority of the T cells. Analysis of IL-4 by cross-linkage of 125I-labeled IL-4 to IL-4 receptor with disuccinimidyl suberate indicated that the IL-4 IL-4 receptor complex was the same size in the resting and up-regulated cells, implying that the same receptor species found in resting cells was up-regulated in response IL-4

  14. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene

    International Nuclear Information System (INIS)

    Epidermal growth factor (EGF), transforming growth factor α (TGF-α), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-α in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-β. Amphiregulin also appears to abrogate the stimulatory effect of TGF-α on the growth of several aggressive epithelial carcinomas that over-express EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here the authors report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which were named HER3/ERRB3. The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. They have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth

  15. The putative AKH receptor of the tobacco hornworm, Manduca sexta, and its expression.

    Science.gov (United States)

    Ziegler, R; Isoe, J; Moore, W; Riehle, M A; Wells, M A

    2011-01-01

    Adipokinetic hormones are peptide hormones that mobilize lipids and/or carbohydrates for flight in adult insects and activate glycogen Phosphorylase in larvae during starvation and during molt. We previously examined the functional roles of adipokinetic hormone in Manduca sexta L. (Lepidoptera: Sphingidae). Here we report the cloning of the full-length cDNA encoding the putative adipokinetic hormone receptor from the fat body of M. sexta. The sequence analysis shows that the deduced amino acid sequence shares common motifs of G protein-coupled receptors, by having seven hydrophobic transmembrane segments. We examined the mRNA expression pattern of the adipokinetic hormone receptor by quantitative Real-Time PCR in fat body during development and in different tissues and found the strongest expression in fat body of larvae two days after molt to the fifth instar. We discuss these results in relation to some of our earlier results. We also compare the M. sexta adipokinetic hormone receptor with the known adipokinetic hormone receptors of other insects and with gonadotropin releasing hormone-like receptors of invertebrates. PMID:21529255

  16. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice.

    Science.gov (United States)

    Tobón, Krishna E; Catuzzi, Jennifer E; Cote, Samantha R; Sonaike, Adenike; Kuzhikandathil, Eldo V

    2015-07-01

    The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression have been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady-state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within 30 min when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated with the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within 5 min of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggest a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals. PMID:25900179

  17. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Li; Qingming Shu; Lingzhi Li; Maolin Ge; Yongliang Zhang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott’s method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cycloox-ygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and pro-tein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury.

  18. The expression of peripheral benzodiazepine receptors in human skin: the relationship with epidermal cell differentiation.

    Science.gov (United States)

    Stoebner, P E; Carayon, P; Penarier, G; Fréchin, N; Barnéon, G; Casellas, P; Cano, J P; Meynadier, J; Meunier, L

    1999-06-01

    The peripheral benzodiazepine receptor (PBR) is a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. PBR is part of a heteromeric receptor complex involved in the formation of mitochondrial permeability transition pores and in the early events of apoptosis. PBR may function as an oxygen-dependent signal generator; recent data indicate that these receptors may preserve the mitochondria of haematopoietic cell lines from damage caused by oxygen radicals. To identify PBRs in human skin, we used a specific monoclonal antibody directed against the C-terminus fragment of the human receptor. PBR immunoreactivity was found in keratinocytes, Langerhans cells, hair follicles and dermal vascular endothelial cells. Interestingly, confocal microscopic examination of skin sections revealed that PBR expression was strongly upregulated in the superficial differentiated layers of the epidermis. Ultrastructurally, PBRs were distributed throughout the cytoplasm but were selectively expressed on the mitochondrial membranes of epidermal cells. The elevated level of PBRs in the spinous layer was not associated with an increased number of mitochondria nor with an increased amount of mRNA as assessed by in situ hybridization on microautoradiographed skin sections. The present work provides, for the first time, evidence of PBR immunoreactivity in human skin. This mitochondrial receptor may modulate apoptosis in the epidermis; its increased expression in differentiated epidermal layers may represent a novel mechanism of natural skin protection against free radical damage generated by ultraviolet exposure. PMID:10354064

  19. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors

    Directory of Open Access Journals (Sweden)

    Zucca Gianpiero

    2009-06-01

    Full Text Available Abstract Background Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. Results RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. Conclusion The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  20. Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells.

    Directory of Open Access Journals (Sweden)

    Yutaka Maruyama

    Full Text Available Recently, we reported that calcium-sensing receptor (CaSR is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca(2+ concentration ([Ca(2+](i in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca(2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami.

  1. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas;

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation of...... the GH receptor. Two mutated cDNAs encoding truncated GH receptors, GH-R1-294 and GH-R1-454, respectively, were generated by site-directed mutagenesis and transfected into the RIN cells. Both receptor mutants were expressed on the cell surface and displayed normal GH binding affinity. Whereas GH-R1......-638 had a molecular mass of about 110 kDa, GH-R1-294 and GH-R1-454 showed molecular masses of 49 and 80 kDa, respectively. Cells expressing GH-R1-454 internalized GH to a similar extent as cells transfected with the full length receptor and the parent cell line, but GH-R1-294-expressing cells showed a...

  2. Two unrelated putative membrane-bound progestin receptors, progesterone membrane receptor component 1 (PGMRC1 and membrane progestin receptor (mPR beta, are expressed in the rainbow trout oocyte and exhibit similar ovarian expression patterns

    Directory of Open Access Journals (Sweden)

    Fostier Alexis

    2006-02-01

    Full Text Available Abstract Background In lower vertebrates, steroid-induced oocyte maturation is considered to involve membrane-bound progestin receptors. Two totally distinct classes of putative membrane-bound progestin receptors have been reported in vertebrates. A first class of receptors, now termed progesterone membrane receptor component (PGMRC; subtypes 1 and 2 has been studied since 1996 but never studied in a fish species nor in the oocyte of any animal species. A second class of receptors, termed membrane progestin receptors (mPR; subtypes alpha, beta and gamma, was recently described in vertebrates and implicated in the progestin-initiated induction of oocyte maturation in fish. Methods In the present study, we report the characterization of the full coding sequence of rainbow trout PGMRC1 and mPR beta cDNAs, their tissue distribution, their ovarian expression profiles during oogenesis, their hormonal regulation in the full grown ovary and the in situ localization of PGMRC1 mRNA in the ovary. Results Our results clearly show, for the first time in any animal species, that rainbow trout PGMRC1 mRNA is present in the oocyte and has a strong expression in ovarian tissue. In addition, we show that both mPR beta and PGMRC1, two members of distinct membrane-bound progestin receptor classes, exhibit highly similar ovarian expression profiles during the reproductive cycle with maximum levels during vitellogenesis and a down-expression during late vitellogenesis. In addition, the mRNA abundance of both genes is not increased after in vitro hormonal stimulation of full grown follicles by maturation inducing hormones. Conclusion Together, our findings suggest that PGMRC1 is a new possible participant in the progestin-induced oocyte maturation in fish. However, its participation in the process of oocyte maturation, which remains to be confirmed, would occur at post-transcriptional levels.

  3. Insulin-like growth factor-1 receptor expression in oral squamous cell carcinoma

    OpenAIRE

    Joseph, Boby K.; Sundaram, Devipriyaa B.

    2011-01-01

    Objectives: The Insulin-like growth factor-I receptor (IGF-1R) plays critical roles in cancer development, proliferation, motility and survival. IGF-1R over expression is frequently found in various tumours and is often associated with an aggressive phenotype. Hence, the aim of the present study was to examine the expression of IGF-1R in normal oral mucosa, fibroepithelial polyps, dysplastic oral mucosa and well-differentiated squamous cell carcinomas. Materials and methods: A 3-layered s...

  4. Hypothalamic oxytocin attenuates CRF expression via GABA(A) receptors in rats.

    Science.gov (United States)

    Bülbül, Mehmet; Babygirija, Reji; Cerjak, Diana; Yoshimoto, Sazu; Ludwig, Kirk; Takahashi, Toku

    2011-04-28

    Centrally released oxytocin (OXT) has anxiolytic and anti-stress effects. Delayed gastric emptying (GE) induced by acute restraint stress (ARS) for 90 min is completely restored following 5 consecutive days of chronic homotypic restraint stress (CHS), via up-regulating hypothalamic OXT expression in rats. However, the mechanism behind the restoration of delayed GE following CHS remains unclear. Gamma-aminobutyric acid (GABA)-projecting neurons in the paraventricular nucleus (PVN) have been shown to inhibit corticotropin releasing factor (CRF) synthesis via GABA(A) receptors. We hypothesized that GABA(A) receptors are involved in mediating the inhibitory effect of OXT on CRF expression in the PVN, which in turn restores delayed GE following CHS. OXT (0.5 μg) and selective GABA(A) receptor antagonist, bicuculline methiodide (BMI) (100 ng), were administered intracerebroventricularly (icv). Solid GE was measured under non-stressed (NS), ARS and CHS conditions. Expression of CRF mRNA in the PVN was evaluated by real time RT-PCR. Neither OXT nor BMI changed GE and CRF mRNA expression under NS conditions. Delayed GE and increased CRF mRNA expression induced by ARS were restored by icv-injection of OXT. The effects of OXT on delayed GE and increased CRF mRNA expression in ARS were abolished by icv-injection of BMI. Following CHS, delayed GE was completely restored in saline (icv)-injected rats, whereas daily injection of BMI (icv) attenuated the restoration of delayed GE. Daily injection of BMI (icv) significantly increased CRF mRNA expression following CHS. It is suggested that central OXT inhibits ARS-induced CRF mRNA expression via GABA(A) receptors in the PVN. GABAergic system is also involved in OXT-mediated adaptation response of delayed GE under CHS conditions. PMID:21382355

  5. Gene Expression of Leptin and Long Leptin Receptor Isoform in Endometriosis: A Case-Control Study

    OpenAIRE

    Andrea Prestes Nácul; Sheila Bunecker Lecke; Maria Isabel Edelweiss; Débora Martinho Morsch; Poli Mara Spritzer

    2013-01-01

    In this study, leptin/BMI ratio in serum and peritoneal fluid and gene expression of leptin and long form leptin receptor (OB-RL) were assessed in eutopic and ectopic endometria of women with endometriosis and controls. Increased serum leptin/BMI ratio was found in endometriosis patients. Leptin and OB-RL gene expression was significantly higher in ectopic versus eutopic endometrium of patients and controls. A positive, significant correlation was observed between leptin and OB-RL transcripts...

  6. Expression of oestrogen and progesterone receptors in gastric cancer: a flow cytometric study

    OpenAIRE

    Karat, D; Brotherick, I; Shenton, B. K.; Scott, D.; Raimes, S. A.; S. M. Griffin

    1999-01-01

    Increased expression of oestrogen (ER) and progesterone (PR) receptors have been reported in gastric adenocarcinoma, although results have been variable. Immunohistochemical staining methodologies, in particular in the detection of ER, have been inconsistent with many tumours being classified ER-negative. In this study we have used flow cytometry to quantify expression of ER and PR in gastric adenocarcinoma and examine their relationships with established prognostic indicators. Cytokeratin-po...

  7. Expression of Toll-like receptors 7-10 in human fallopian tubes

    OpenAIRE

    Nasrin Ghasemi; Fatemehsadat Amjadi; Ensieh Salehi; Mojgan Shakeri; Abbas Aflatoonian; Reza Aflatoonian

    2014-01-01

    Background: The human female reproductive tract (FRT) is constantly deal with the invading pathogens. Recognition of these pathogens is attributed to the family of Toll like receptors (TLR) as a major part of the innate immune system. We and others have previously revealed that TLRs1-6 express in the female reproductive tract. However, more studies should be done to detect TLRs 7-10 in the female reproductive tract, especially in the fallopian tubes. Objective: To examine the expression of TL...

  8. Serotonin Transporter and Receptor Expression in Osteocytic MLO-Y4 Cells

    OpenAIRE

    BLIZIOTES, M.; ESHLEMAN, A.; BURT-PICHAT, B.; Zhang, X.-W.; Hashimoto, J; WIREN, K.; C. Chenu

    2006-01-01

    Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistr...

  9. Unexpected Novel Relational Links Uncovered by Extensive Developmental Profiling of Nuclear Receptor Expression

    OpenAIRE

    Bertrand, Stéphanie; Thisse, Bernard; Tavares, Raquel; Sachs, Laurent; Chaumot, Arnaud; Bardet, Pierre-Luc; Escriva, Hector; Duffraisse, Marilyne; Marchand, Oriane; Safi, Rachid; Thisse, Christine; Laudet, Vincent

    2007-01-01

    Nuclear receptors (NRs) are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR...

  10. Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma.

    OpenAIRE

    Segal, R. A.; Goumnerova, L C; Kwon, Y. K.; Stiles, C D; Pomeroy, S. L.

    1994-01-01

    Medulloblastoma, the most common malignant brain tumor of childhood, has a variable prognosis. Although half of the children and young adults with the disease survive longer than 10 years after diagnosis, the others relapse and die despite identical therapy. We have examined the expression of neurotrophins and their receptors in medulloblastoma samples snap frozen in the operating room to preserve RNA integrity. All tumors (n = 12) were found to express mRNA encoding neurotrophin 3 and its re...

  11. Expression of neurotrophins and their receptors in human CD34+ bone marrow cells.

    Science.gov (United States)

    Paczkowska, E; Piecyk, K; Luczkowska, K; Kotowski, M; Roginska, D; Pius-Sadowska, E; Oronowicz, K; Ostrowski, M; Machalinski, B

    2016-02-01

    Bone marrow (BM) CD34+ cells have the ability to secrete growth factors, cytokines, and chemotactic factors. We sought to better characterize this population and to investigate whether human BM CD34+ cells express neurotrophins (NTs) and their relevant receptors. We also compared their expression levels with BM nucleated cells (NCs). BM CD34+ cells were evaluated with respect to the expression levels of neurotrophins using qRT-PCR, immunofluorescent staining, and Western blotting. Next, the expression of specific (TrkA, TrkB, TrkC) and non-specific (p75NTR) neurotrophin receptors was detected by qRT-PCR and immunofluorescent staining in BM CD34+ cells. Using qRT- PCR, we show that even in the absence of inducing factors, CD34+ cells spontaneously express neurotrophins such as NGF, BDNF, NT-3, and NT-4. In addition, the NT expression levels in BM CD34+ cells are considerably higher than in NCs. Furthermore, we confirmed intracellular NT expression in BM CD34+ cells at the protein level using immunofluorescent staining and Western blotting. Using qRT-PCR, we found that immunomagnetically separated BM CD34+ cells spontaneously express high-affinity neurotrophin receptors (TrkA, TrkB, and TrkC) and the low-affinity receptor p75NTR at higher levels than NCs. Immunomagnetic CD34+ cell separation enables for the rapid and gentle sorting of stem/progenitor cells (SPCs) to prepare specific cell types for use in research and clinical applications. Our study suggests that BM CD34+ cells have the potential to support trophic factors for neural tissue and could contribute towards the protection and regeneration of neural cells. PMID:27010904

  12. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars;

    2008-01-01

    /ml for 24h) resulted in markedly elevated contractile responses to the Tx analog U46619, compared with the control DMSO. There was no increase in TP receptor mRNA expression, while the protein expression was significantly enhanced. This up-regulation was not affected by a general transcriptional...... pathways are not involved in TP receptor up-regulation. Study on TP receptor mRNA stability showed that during organ culture, the TP receptor mRNA was stable in both DMSO and DSP group, but the latter elicited a tendency to stabilize the TP receptor mRNA at higher level. Thus, post...

  13. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    Directory of Open Access Journals (Sweden)

    Sbarbati Andrea

    2011-01-01

    Full Text Available Abstract Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs. The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP. Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and

  14. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus.

    Science.gov (United States)

    Gangarossa, Giuseppe; Longueville, Sophie; De Bundel, Dimitri; Perroy, Julie; Hervé, Denis; Girault, Jean-Antoine; Valjent, Emmanuel

    2012-12-01

    The hippocampal formation is part of an anatomical system critically involved in learning and memory. Increasing evidence suggests that dopamine plays an important role in learning and memory as well as in several forms of synaptic plasticity. However, the precise identification of neuronal populations expressing D1 or D2 dopamine receptors within the hippocampus is still lacking. To clarify this issue, we used BAC transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter of dopamine D1 or D2 receptors. In Drd1a-EGFP mice, sparse GFP-expressing neurons were detected among glutamatergic projecting neurons of the granular layer of the dentate gyrus and GABAergic interneurons located in the hilus. A dense immunofluorescence was observed in the outer and medial part of the molecular layer of the dentate gyrus as well as in the inner part of the molecular layer of CA1 corresponding to the terminals of pyramidal neurons of the entorhinal cortex defining the perforant and the temporo-ammonic pathway respectively. Finally, scattered D1 receptor-expressing neurons were also identified as GABAergic interneurons in the CA3/CA1 fields of the hippocampus. In Drd2-EGFP transgenic mice, GFP was exclusively detected in the glutamatergic mossy cells located in the polymorphic layer of the dentate gyrus. This pattern was confirmed in Drd2-Cre mice crossed with NLS-LacZ-Tau(mGFP) :LoxP and RCE:LoxP reporter lines. Our results demonstrate that D1 and D2 receptor-expressing neurons are strictly segregated in the mouse hippocampus. By clarifying the identity of D1 and D2 receptor-expressing neurons in the hippocampus, this study establishes a basis for future investigations aiming at elucidating their roles in the hippocampal network. PMID:22777829

  15. Gene expression of ionotropic glutamate receptor subunits in the tectofugal pathway of the pigeon.

    Science.gov (United States)

    Atoji, Y

    2016-03-01

    The tectofugal pathway in birds consists of four stations, the retina, optic tectum, rotundal nucleus, and entopallium, and it conveys visual information via three ascending pathways. These pathways consist of retino-tectal, tecto-rotundal and rotundo-entopallial cells, all of which are glutamatergic. The present study examined the localization of ionotropic glutamate receptors (iGluRs) to identify the target areas of glutamatergic projections in the tectofugal pathway in pigeons. Nine subunits of iGluRs were analyzed using in situ hybridization as follows: AMPA receptors (GluA1, GluA2, GluA3, and GluA4), kainate receptors (GluK1, GluK2, and GluK4), and NMDA receptors (GluN1 and GluN2A). Hybridization signals of subunits showed various intensities in different cells. In the optic tectum, a strong to moderate expression was observed in layer 10 (GluA2, GluA3, GluK4, and GluN1) and layer 13 (GluA2, GluK4, GluN1, and GluN2A). The rotundal nucleus intensely expressed GluA3, GluA4, GluK1, and GluK4. In the entopallium, an intense to moderate expression of GluK1 and GluK4, and a moderate to weak expression of AMPA and NMDA receptors were observed. Furthermore, the parvocellular and magnocellular parts of the isthmic nuclei showed a strong expression of GluA2, GluA3, GluK4, and GluN1. The present findings demonstrate the expression of iGluRs in glutamatergic projection targets of the tectofugal pathway in birds and suggest a diversity of iGluRs in the transmission of visual information. PMID:26718600

  16. Eph receptors and ephrin class B ligands are expressed at tissue boundaries in Hydra vulgaris.

    Science.gov (United States)

    Tischer, Susanne; Reineck, Mona; Söding, Johannes; Münder, Sandra; Böttger, Angelika

    2013-01-01

    Eph receptors and ephrins are important players in axon guidance, cell sorting and boundary formation. Both the receptors and the ligands are integrated transmembrane proteins and signalling is bidirectional. The prevalent outcome of signal transduction is repulsion of adjacent cells or cell populations. Eph/ephrins have been identified in all multicellular animals from human to sponge, their functions however appear to have been altered during evolution. Here we have identified four Eph receptors and three class B ligands in the cnidarian Hydra vulgaris, indicating that those are the evolutionary older ones. In situ hybridisation experiments revealed a striking complementarity of expression of receptors and ligands in tentacles and in developing buds. This suggests that the original function of ephrin signalling may have been in epithelial cell adhesion and the formation of tissue boundaries. PMID:24307295

  17. Angiotensin II receptor mRNA expression and vasoconstriction in human coronary arteries

    DEFF Research Database (Denmark)

    Wackenfors, Angelica; Pantev, Emil; Emilson, Malin;

    2004-01-01

    -induced vasoconstriction diminished with increasing age in patients with heart failure (r(2)=0.31, P<0.05). Also, the AT(1) receptor mRNA expression levels decreased with increasing age in patients with heart failure (r(2)=0.74, P<0.05), while no such correlation could be shown in the control group (r(2)=0.04, P......=n.s.). The AT(2) receptor mRNA expression levels did not correlate with age in patients with heart failure or controls. In conclusion, the diminished angiotensin II vasoconstriction with age in heart failure patients is most likely due to a lower density of AT(1) receptors and may result from a longer period...

  18. Expression of HIV receptors, alternate receptors and co-receptors on tonsillar epithelium: implications for HIV binding and primary oral infection

    Directory of Open Access Journals (Sweden)

    Maher Diane M

    2006-04-01

    Full Text Available Abstract Background Primary HIV infection can develop from exposure to HIV in the oral cavity. In previous studies, we have documented rapid and extensive binding of HIV virions in seminal plasma to intact mucosal surfaces of the palatine tonsil and also found that virions readily penetrated beneath the tissue surfaces. As one approach to understand the molecular interactions that support HIV virion binding to human mucosal surfaces, we have examined the distribution of the primary HIV receptor CD4, the alternate HIV receptors heparan sulfate proteoglycan (HS and galactosyl ceramide (GalCer and the co-receptors CXCR4 and CCR5 in palatine tonsil. Results Only HS was widely expressed on the surface of stratified squamous epithelium. In contrast, HS, GalCer, CXCR4 and CCR5 were all expressed on the reticulated epithelium lining the tonsillar crypts. We have observed extensive variability, both across tissue sections from any tonsil and between tonsils, in the distribution of epithelial cells expressing either CXCR4 or CCR5 in the basal and suprabasal layers of stratified epithelium. The general expression patterns of CXCR4, CCR5 and HS were similar in palatine tonsil from children and adults (age range 3–20. We have also noted the presence of small clusters of lymphocytes, including CD4+ T cells within stratified epithelium and located precisely at the mucosal surfaces. CD4+ T cells in these locations would be immediately accessible to HIV virions. Conclusion In total, the likelihood of oral HIV transmission will be determined by macro and micro tissue architecture, cell surface expression patterns of key molecules that may bind HIV and the specific properties of the infectious inoculum.

  19. Human macrophage scavenger receptors: Primary structure, expression, and localization in atherosclerotic lesions

    International Nuclear Information System (INIS)

    Two types of cDNAs for human macrophage scavenger receptors were cloned from a cDNA library derived from the phorbol ester-treated human monocytic cell line THP-1. The type I and type II human scavenger receptors encoded by these cDNAs are homologous (73% and 71% amino acid identity) to their previously characterized bovine counterparts and consist of six domains: cytoplasmic (I), membrane-spanning (II), spacer (III), α-helical coiled-coil (IV), collagen-like (V), and a type-specific C-terminal (VI). The receptor gene is located on human chromosome 8. The human receptors expressed in CHO-K1 cells mediated endocytosis of modified low density lipoproteins. Two mRNAs, 4.0 and 3.2 kilobases, have been detected in human liver, placenta, and brain. Immunohistochemical studies using an anti-peptide antibody which recognizes human scavenger receptors indicated the presence of the scavenger receptors in the macrophages of lipid-rich atherosclerotic lesions, suggesting the involvement of scavenger receptors in atherogenesis

  20. TREM-2 Receptor Expression Increases with 25(OHD Vitamin Serum Levels in Patients with Pulmonary Sarcoidosis

    Directory of Open Access Journals (Sweden)

    Maria Bucova

    2015-01-01

    Full Text Available TREM-1 and TREM-2 molecules are members of the TREM transmembrane glycoproteins. In our previous study we identified increased expressions of TREM-1 and TREM-2 receptors in pulmonary sarcoidosis (PS. Only a few studies concerning the association between vitamin D and TREM receptor expression can be found. The aim of our current study was to determine the association between the levels of an inactive form of 25(OHD vitamin and TREM-1 and TREM-2 receptor expressions. We have detected low levels of 25(OHD vitamin in 79% of PS patients. Only 21% of patients had normal serum level of 25(OHD vitamin with values clustered within the low-normal range. The most striking findings were the increased TREM-2 expressions on myeloid cells surfaces in BALF of PS patients with normal 25(OHD vitamin serum levels compared with those with its decreased levels. The total number of TREM-2 positive cells was 5.7 times higher and the percentage of TREM-2 positive cells was also significantly increased in BALF of PS patients with normal compared to PS patients with low 25(OHD vitamin serum levels. A significant correlation between total TREM-2 expression and vitamin D levels has been detected too. However, we have not detected similar differences in TREM-1expression and 25(OHD vitamin serum levels.

  1. Efficient silkworm expression of human GPCR (nociceptin receptor) by a Bombyx mori bacmid DNA system

    International Nuclear Information System (INIS)

    Guanine nucleotide-binding protein (G protein) coupled receptors (GPCRs) are frequently expressed by a baculovirus expression vector system (BEVS). We recently established a novel BEVS using the bacmid system of Bombyx mori nucleopolyhedrovirus (BmNPV), which is directly applicable for protein expression in silkworms. Here, we report the first example of GPCR expression in silkworms by the simple injection of BmNPV bacmid DNA. Human nociceptin receptor, an inhibitory GPCR, and its fusion protein with inhibitory G protein alpha subunit (Giα) were both successfully expressed in the fat bodies of silkworm larvae as well as in the BmNPV viral fraction. Its yield was much higher than that from Sf9 cells. The microsomal fractions including the nociceptin receptor fusion, which are easily prepared by only centrifugation steps, exhibited [35S]GTPγS-binding activity upon specific stimulation by nociceptin. Therefore, this rapid method is easy-to-use and has a high expression level, and thus will be an important tool for human GPCR production.

  2. Clinical significance of the leptin and leptin receptor expressions in prostate tissues

    Institute of Scientific and Technical Information of China (English)

    Jung Hoon Kim; Shin Young Lee; Soon Chul Myung; Young Sun Kim; Tae-Hyoung Kim; Mi Kyung Kim

    2008-01-01

    Aim: To evaluate the expression of leptin and leptin receptor in benign prostatic hyperplasia (BPH) and prostate cancer (Pca), and to investigate whether they are associated with the development and progression of Pca. Methods:Immunohistochemical staining was performed to examine the expression of leptin and leptin receptor in BPH and Pca.Pca was divided into three groups: localized Pca, locally advanced Pca and metastatic Pca. The positive staining was identified and the percentage of the positive staining was graded. We also assessed the relationship between both the Gleason score and body mass index (BMI) and Pca. Results: The percentage of the leptin expression in Pca was significantly higher than that in BPH (P < 0.01). For the Pca group, the expressed levels of leptin showed a considerable correlation with localized Pca and metastatic Pca (P < 0.05). Leptin receptor, however, did not reveal a definite difference between BPH and Pca. The expression of leptin indicated a significant difference between well-differen-tiated Pca (Gleason score < 6) and poorly differentiated Pca (Gleason score 8-10) (P < 0.05), The relation between the leptin expression level in Pca and the BMI was not remarkable (P = 0.447). Conclusion: Our results suggest that leptin might have a promoting effect on the carcinogenesis and progression of Pca.

  3. Efficient silkworm expression of human GPCR (nociceptin receptor) by a Bombyx mori bacmid DNA system

    Energy Technology Data Exchange (ETDEWEB)

    Kajikawa, Mizuho; Sasaki, Kaori [Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Wakimoto, Yoshitaro; Toyooka, Masaru [Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Motohashi, Tomoko; Shimojima, Tsukasa [National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 (Japan); Takeda, Shigeki [Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Park, Enoch Y. [Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka, Shizuoka 422-8529 (Japan); Maenaka, Katsumi, E-mail: kmaenaka-umin@umin.net [Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2009-07-31

    Guanine nucleotide-binding protein (G protein) coupled receptors (GPCRs) are frequently expressed by a baculovirus expression vector system (BEVS). We recently established a novel BEVS using the bacmid system of Bombyx mori nucleopolyhedrovirus (BmNPV), which is directly applicable for protein expression in silkworms. Here, we report the first example of GPCR expression in silkworms by the simple injection of BmNPV bacmid DNA. Human nociceptin receptor, an inhibitory GPCR, and its fusion protein with inhibitory G protein alpha subunit (G{sub i}{alpha}) were both successfully expressed in the fat bodies of silkworm larvae as well as in the BmNPV viral fraction. Its yield was much higher than that from Sf9 cells. The microsomal fractions including the nociceptin receptor fusion, which are easily prepared by only centrifugation steps, exhibited [{sup 35}S]GTP{gamma}S-binding activity upon specific stimulation by nociceptin. Therefore, this rapid method is easy-to-use and has a high expression level, and thus will be an important tool for human GPCR production.

  4. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression.

    Directory of Open Access Journals (Sweden)

    Shadi Jafari

    Full Text Available The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

  5. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  6. Stilbenes inhibit androgen receptor expression in 22Rv1 castrate-resistant prostate cancer cells

    Science.gov (United States)

    Androgen receptor (AR) signaling plays an important role in the development and progression of prostate cancer (PCa). Importantly, AR continues to be expressed in advanced stages of castrate-resistant PCa (CRPC), where it can have ligand- independent activity. Identification of naturally occurring s...

  7. Preclinical evaluation of radiolabeled DOTA-derivatized cyclic minigastrin analogs for targeting cholecystokinin receptor expressing malignancies.

    NARCIS (Netherlands)

    Guggenberg, E. von; Rangger, C.; Sosabowski, J.; Laverman, P.; Reubi, J.C.; Virgolini, I.J.; Decristoforo, C.

    2012-01-01

    PURPOSE: Targeting of cholecystokinin receptor expressing malignancies such as medullary thyroid carcinoma is currently limited by low in vivo stability of radioligands. To increase the stability, we have developed and preclinically evaluated two cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraa

  8. Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells

    Directory of Open Access Journals (Sweden)

    Helen Soedling

    2015-09-01

    Conclusions/interpretation: The use here of a highly selective Cre recombinase indicates that leptin signalling plays a relatively minor, age- and sex-dependent role in the control of β cell function in the mouse. No in vivo role for leptin receptors on α cells, nor in other proglucagon-expressing cells, was detected in this study.

  9. High glucose-induced oxidative stress increases transient receptor potential channel expression in human monocytes

    DEFF Research Database (Denmark)

    Wuensch, Tilo; Thilo, Florian; Krueger, Katharina; Scholze, Alexandra; Ristow, Michael; Tepel, Martin

    2010-01-01

    Transient receptor potential (TRP) channel-induced cation influx activates human monocytes, which play an important role in the pathogenesis of atherosclerosis. In the present study, we investigated the effects of high glucose-induced oxidative stress on TRP channel expression in human monocytes....

  10. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5...

  11. Expression of glucocorticoid receptors α and ß in steroid sensitive and steroid insensitive interstitial lung diseases

    OpenAIRE

    Pujols, L; Xaubet, A.; Ramirez, J.; Mullol, J; Roca-Ferrer, J; Torrego, A; Cidlowski, J.; Picado, C

    2004-01-01

    Background: Sensitivity to glucocorticoids may be related to the concentration of glucocorticoid receptors α (GRα) and ß (GRß). A study was undertaken to assess GRα and GRß expression in steroid insensitive interstitial lung disease (idiopathic pulmonary fibrosis (IPF)) and steroid sensitive interstitial lung diseases (sarcoidosis and cryptogenic organising pneumonia (COP)).

  12. Intra-uterine Growth Restriction Downregulates the Hepatic Toll Like Receptor-4 Expression and Function

    OpenAIRE

    Ozlem Equils; Sapna Singh; Semra Karaburun; Daning Lu; Manikkavasagar Thamotharan; Devaskar, Sherin U.

    2005-01-01

    Maternal starvation is a significant cause of intrauterine growth restriction (IUGR) in the world and increases the risk of infection in the neonate. We examined the effect of maternal starvation on Toll like receptor (TLR)4 expression in hepatic, splenic and intestinal tissues obtained from the adult IUGR offspring of prenatal calorie restricted rats. The hepatic TLR4 protein concentration was undetectable in the...

  13. Soluble triggering receptor expressed on myeloid cells 1: a biomarker for bacterial meningitis

    NARCIS (Netherlands)

    R.M. Determann; M. Weisfelt; J. de Gans; A. van der Ende; M.J. Schultz; D. van de Beek

    2006-01-01

    Objective: To evaluate whether soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) in CSF can serve as a biomarker for the presence of bacterial meningitis and outcome in patients with this disease. Design: Retrospective study of diagnostic accuracy. Setting and patients: CSF was coll

  14. INCREASED EXPRESSION OF RECEPTORS FOR OREXIGENIC FACTORS IN NODOSE GANGLION OF DIET-INDUCED OBESE RATS

    Science.gov (United States)

    The vagal afferent pathway is important in short-term regulation of food intake and decreased activation of this neural pathway with long-term ingestion of a high fat diet may contribute to hyperphagic weight gain. We test the hypothesis that expression of genes encoding receptors for orexigenic fac...

  15. Prolonged expression of the c-kit receptor in germ cells of intersex fetal testes

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Jørgensen, N; Müller, Jørn;

    1996-01-01

    Stem cell factor (SCF) and its receptor Kit encoded by the c-kit proto-oncogene are crucial for the development and migration of primordial germ cells in rodents. The expression of Kit has been examined immunohistochemically in gonads obtained from five specimens of fetal tissues with intersex co...

  16. Expression of FSH receptor in ovary tissue of rats with letrozole-induced polycystic ovary syndrome

    International Nuclear Information System (INIS)

    Objective: To investigate the expressions of FSH receptor mRNA and protein in ovary tissue in rats with letrozole-induced polycystic ovary syndrome (PCOS), and to provide experimental data for the model application. Methods: Forty rats were randomly divided into two groups (n=20), in PCOS model group letrozole was administered once daily during 21 d, and in control group without any treatment. The gonadal hormone concentrations in serum were determined by radioimmunoassay, the histologic changes in ovaries were observed by HE staining, the expression of FSH receptor gene in ovary tissue was detected by realtime -PCR, Western blotting and immunohistochemistry. Results: Compared with control group, estradiol (E2) and progesterone in model group showed a considerable reduction (P0.05). Compared with control group, the ovaries from model group showed high incidence of subcapsular ovarian cyst and capsular thickening and decreased number of corpora lute a. The expressions of FSH receptor mRNA and protein were significantly higher in model group than those in control group (P<0.05). Conclusion: The expression of FSH receptor gene in letrozole-induced polycystic ovaries is similar with that of PCOS women, the rat model is proved to be an ideal PCOS animal model to study the pathophysiology of PCOS. (authors)

  17. HIGH GLUCOSE INDUCES TOLL-LIKE RECEPTOR EXPRESSION IN HUMAN MONOCYTES: MECHANISM OF ACTIVATION

    Science.gov (United States)

    Objective: Hyperglycemia induced inflammation is central in diabetes complications and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses as well as inflammation. However, there is a paucity of data examining the expression a...

  18. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    International Nuclear Information System (INIS)

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression

  19. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30 in lung cancer

    Directory of Open Access Journals (Sweden)

    Jala Venkatakrishna Rao

    2012-12-01

    Full Text Available Abstract Background G-protein-coupled estrogen receptor (GPER/GPR30 was reported to bind 17β-estradiol (E2, tamoxifen, and ICI 182,780 (fulvestrant and promotes activation of epidermal growth factor receptor (EGFR-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ, the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels, Western blot and immunohistochemistry (IHC methods (at protein levels. The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC lines relative to immortalized normal lung bronchial epithelial cells (HBECs. The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.

  20. UVB increases urokinase-type plasminogen activator receptor (uPAR) expression.

    Science.gov (United States)

    Marschall, C; Lengyel, E; Nobutoh, T; Braungart, E; Douwes, K; Simon, A; Magdolen, V; Reuning, U; Degitz, K

    1999-07-01

    Keratinocytes synthesize and secrete urokinase-type plasminogen activator, which binds to its specific receptor on keratinocytes. When bound to urokinase-type plasminogen activator receptor, urokinase-type plasminogen activator proteolytically converts surface bound plasminogen to plasmin, which in turn cleaves many extracellular components leading to pericellular proteolysis. The activation of the urokinase system has been observed during re-epithelialization of skin wounds and in lesions of the autoimmune blistering skin disease pemphigus. As pemphigus is photoinducible, we investigated the effect of ultraviolet B on urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor expression in the epidermal keratinocyte cell line A431. Ultraviolet B increased cellular and secreted urokinase-type plasminogen activator protein (enzyme-linked immunosorbent assay) and urokinase-type plasminogen activator receptor cell surface expression (flow cytometry) 24 h postirradiation. Northern blot analysis indicated that ultraviolet B increased urokinase-type plasminogen activator receptor mRNA. Compared with a more rapid mRNA induction by epidermal growth factor (maximal after 4 h) the ultraviolet B response was maximal after 24 h and prolonged up to 36 h. The mRNA induction was not dependent on protein synthesis as judged by cycloheximide incubation. Ultraviolet B did not influence urokinase-type plasminogen activator receptor mRNA stability (actinomycin D incubation). A transiently transfected chloramphenicol acetyltransferase-reporter construct containing a -398/+51 urokinase-type plasminogen activator receptor promoter fragment was activated when cells were exposed to ultraviolet B. This induction was almost completely abolished by mutating a -182/-176 AP-1 binding sequence. Ultraviolet B increased the binding capacity at this AP-1 motif in electrophoretic mobility shift assays. These data identify a distinct transcriptional mechanism by which

  1. Expression and function of TNF and IL-1 receptors on human regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Frances Mercer

    Full Text Available Regulatory T cells (Tregs suppress immune activation and are critical in preventing autoimmune diseases. While the ability of Tregs to inhibit proliferation of other T cells is well established, it is not yet clear whether Tregs also modulate inflammatory cytokines during an immune response. Here, we show that the expression of inflammatory cytokine receptors IL-1R1 and TNFR2 were higher on resting mature Tregs compared to naïve or memory T cells. While upon activation through the T cell receptor (TCR, expression of IL-1R1 and TNFR2 were upregulated on all T cell subsets, IL-1R1 maintained significantly higher expression on activated Tregs as compared to other T cell subsets. The decoy receptor for IL-1 (IL-1R2 was not expressed by any of the resting T cells but was rapidly upregulated and preferentially expressed upon TCR-stimulation on Tregs. In addition, we found that Tregs also expressed high levels of mRNA for IL-1 antagonist, IL-1RA. TCR-stimulation of naïve T cells in the presence of TGFbeta, which induces FOXP3 expression, however did not result in upregulation of IL-1R1 or IL-1R2. In addition, ectopic expression of FOXP3 in non-Tregs, while causing significant upregulation of IL-1R1 and IL-1R2, did not achieve the levels seen in bona fide Tregs. We also determined that resting human Tregs expressing IL-1R1 did not have higher suppressive capacity compared to IL-1R1- Tregs, suggesting that IL-1R1 does not discriminate suppressive resting Tregs in healthy individuals. Functionally, activated human Tregs displayed a capacity to neutralize IL-1beta, which suggests a physiological significance for the expression of IL-1 decoy receptor on Tregs. In conclusion, our findings that human Tregs preferentially express receptors for TNF and IL-1 suggest a potential function in sensing and dampening local inflammation.

  2. Expression of murine Fc receptors for IgG.

    Science.gov (United States)

    Schreiber, R E; Buku, A; Unkeless, J C

    1990-06-15

    There are two distinct genes that encode murine low affinity Fc gamma RII, murine Fc gamma RII alpha, and murine Fc gamma RII beta, which are transcribed in specific cell lineages. Fc gamma RII alpha transcripts are present in macrophages, NK cells, and mesangial cells; Fc gamma RII beta transcripts are expressed in Fc gamma R-bearing B cells, T cells, and macrophages. We have devised a sandwich ELISA to quantify the expression of Fc gamma RII alpha protein. The ELISA is specific for Fc gamma RII alpha, and does not detect the closely related Fc gamma RII beta protein. Upon stimulation with IFN-gamma the Fc gamma RII beta- macrophage cell line J774a expressed a twelvefold enhanced level of Fc gamma RII alpha protein. Peritoneal macrophages synthesized varying amounts of Fc gamma RII alpha. High levels of Fc gamma RII alpha were observed in resident and thioglycollate-elicited peritoneal macrophages, but no Fc gamma RII alpha was detected in Bacillus Calmette Guérin-elicited macrophages. J774a cells stimulated with rIL-6 bound approximately twice as much anti-Fc gamma RII mAb 2.4G2 IgG as did unstimulated controls. However, the Fc gamma RII alpha-specific ELISA showed no change in the amount of Fc gamma RII alpha expressed. A probe encompassing the extracellular coding sequence of Fc gamma RII beta hybridized to two distinct transcripts that were elevated in rIL-6-stimulated J774a cells. One of these transcripts had the same mobility in electrophoresis as Fc gamma RII alpha mRNA and hybridized to an Fc gamma RII alpha-specific probe, whereas the other transcript was larger and did not hybridize to probes specific for either Fc gamma RII alpha or Fc gamma RII beta. Moreover, we confirmed, with an Fc gamma RII beta-specific probe, that J774a cells do not make Fc gamma RII beta mRNA. Thus, the larger transcript appears to encode a novel Fc gamma RII. We suggest that the increased level of binding of the anti-Fc gamma RII mAb 2.4G2 to rIL-6-induced cells represents

  3. Identification of an MRAP-Independent Melanocortin-2 Receptor: Functional Expression of the Cartilaginous Fish, Callorhinchus milii, Melanocortin-2 Receptor in CHO Cells

    OpenAIRE

    Reinick, Christina L.; Liang, Liang; Angleson, Joseph K.; Dores, Robert M.

    2012-01-01

    Phylogenetic analyses indicate that the genome of the cartilaginous fish, Callorhynchus milii (elephant shark), encodes a melanocortin-2 receptor (MC2R) ortholog. Expression of the elephant shark mc2r cDNA in Chinese hamster ovary (CHO) cells revealed that trafficking to the plasma membrane and functional activation of the receptor do not require coexpression with an exogenous melanocortin receptor-2 accessory protein (mrap) cDNA. Ligand selectivity studies indicated that elephant shark MC2R-...

  4. Transient expression of functional serotonin 5-HT3 receptors by glutamatergic granule cells in the early postnatal mouse cerebellum

    NARCIS (Netherlands)

    M. Oostland; J. Sellmeijer; J.A. van Hooft

    2011-01-01

    The serotonin 5-HT3 receptor is the only ligand-gated ion channel activated by serotonin and is expressed by GABAergic interneurons in many brain regions, including the cortex, amygdala and hippocampus. Furthermore, 5-HT3 receptors are expressed by glutamatergic Cajal-Retzius cells in the cerebral c

  5. Dysregulated cholinergic network as a novel biomarker of poor prognostic in patients with head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    In airways, a proliferative effect is played directly by cholinergic agonists through nicotinic and muscarinic receptors activation. How tumors respond to aberrantly activated cholinergic signalling is a key question in smoking-related cancer. This research was addressed to explore a possible link of cholinergic signalling changes with cancer biology. Fifty-seven paired pieces of head and neck squamous cell carcinoma (HNSCC) and adjacent non-cancerous tissue (ANCT) were compared for their mRNA levels for ACh-related proteins and ACh-hydrolyzing activity. The measurement in ANCT of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities (5.416 ± 0.501 mU/mg protein and 6.350 ± 0.599 mU/mg protein, respectively) demonstrated that upper respiratory tract is capable of controlling the availability of ACh. In HNSCC, AChE and BChE activities dropped to 3.584 ± 0.599 mU/mg protein (p = 0.002) and 3.965 ± 0.423 mU/mg protein (p < 0.001). Moreover, tumours with low AChE activity and high BChE activity were associated with shorter patient overall survival. ANCT and HNSCC differed in mRNA levels for AChE-T, α3, α5, α9 and β2 for nAChR subunits. Tobacco exposure had a great impact on the expression of both AChE-H and AChE-T mRNAs. Unaffected and cancerous pieces contained principal AChE dimers and BChE tetramers. The lack of nerve-born PRiMA-linked AChE agreed with pathological findings on nerve terminal remodelling and loss in HNSCC. Our results suggest that the low AChE activity in HNSCC can be used to predict survival in patients with head and neck cancer. So, the ChE activity level can be used as a reliable prognostic marker. The online version of this article (doi:10.1186/s12885-015-1402-y) contains supplementary material, which is available to authorized users

  6. The androgen receptor: Functional structure and expression in transplanted human prostate tumors and prostate tumor cell lines

    OpenAIRE

    Trapman, Jan; Ris-Stalpers, Carolyn; Korput, J. A G M; Kuiper, George; Faber, P.W.; Romijn, Johannes; Mulder, Eppo; Brinkmann, Albert

    1990-01-01

    markdownabstractAbstract The growth of the majority of prostate tumors is androgen-dependent, for which the presence of a functional androgen receptor is a prerequisite. Tumor growth can be inhibited by blockade of androgen receptor action. However, this inhibition is transient. To study the role of the androgen receptor in androgen-dependent and androgen-independent prostate tumor cell growth, androgen receptor mRNA expression was monitored in six different human prostate tumor cell lines an...

  7. Impairment of Bilirubin Clearance and Intestinal Interleukin-6 Expression in Bile Duct-Ligated Vitamin D Receptor Null Mice

    OpenAIRE

    Ishizawa, Michiyasu; Ogura, Michitaka; Kato, Shigeaki; Makishima, Makoto

    2012-01-01

    The vitamin D receptor (VDR) mediates the physiological and pharmacological actions of 1α,25-dihydroxyvitamin D3 in bone and calcium metabolism, cellular growth and differentiation, and immunity. VDR also responds to secondary bile acids and belongs to the NR1I subfamily of the nuclear receptor superfamily, which regulates expression of xenobiotic metabolism genes. When compared to knockout mouse investigations of the other NR1I nuclear receptors, pregnane X receptor and constitutive androsta...

  8. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  9. Potential clinical relevance of Eph receptors and ephrin ligands expressed in prostate carcinoma cell lines.

    Science.gov (United States)

    Fox, Brian P; Tabone, Christopher J; Kandpal, Raj P

    2006-04-21

    The family of Eph and ephrin receptors is involved in a variety of functions in normal cells, and the alterations in their expression profiles have been observed in several cancers. We have compared the transcripts for Eph receptors and ephrin ligands in cell lines established from normal prostate epithelium and several carcinoma cell lines isolated from prostate tumors of varying degree of metastasis. These cell lines included NPTX, CTPX, LNCaP, DU145, PC-3, and PC-3ML. The cell lines displayed characteristic pattern of expression for specific Eph receptors and ephrin ligands, thus allowing identification of Eph receptor signatures for a particular cell line. The sensitivity of these transcripts to genome methylation is also investigated by treating the cells with 5-aza-2'-deoxycytidine. The comparison of expression profiles revealed that normal prostate and primary prostate tumor cell lines differ in the expression of EphA3, EphB3, and ephrin A3 that are over-expressed in normal prostate. Furthermore, the transcript levels for EphA1 decrease progressively from normal prostate to primary prostate tumor cell line and metastatic tumor cells. A converse relationship was observed for ephrin B2. The treatment of cells with 5-aza-2'-deoxycytidine revealed the sensitivity of EphA3, EphA10, EphB3, and EphB6 to methylation status of genomic DNA. The utility of methylation specific PCR to identify prostate tumor cells and the importance of specific Eph receptors and ephrin ligands in initiation and progression of prostate tumor are discussed. PMID:16516143

  10. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    Science.gov (United States)

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. PMID:26970582

  11. Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Ewald Grosse-Wilde

    2015-02-01

    Full Text Available Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.

  12. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi;

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether the length of the THRA1 microsatellite, which resides in a noncoding portion of the thyroid hormone receptor-alpha1 gene, affects receptor expression and is linked to clinicopathological parameters in thyroid cancer. EXPERIMENTAL DESIGN:...

  13. Estrogen and the selective estrogen receptor modulator (SERM) protection against cell death in estrogen receptor alpha and beta expressing U2OS cells

    OpenAIRE

    Kallio, Anu; Guo, Tao; Lamminen, Elisa; Seppänen, Jani; Kangas, Lauri; Väänänen, H Kalervo; Härkönen, Pirkko

    2008-01-01

    Estrogen and the selective estrogen receptor modulator (SERM) protection against cell death in estrogen receptor alpha and beta expressing U2OS cells SWEDEN (Kallio, Anu) SWEDEN Received: 2007-12-01 Revised: 2008-03-12 Accepted: 2008-03-12

  14. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...... not accurately reveal the EGFR expression. In addition, EGFR expression may also change during chemotherapy. The current study investigates the magnitude of these two issues. MATERIALS AND METHODS: EGFR expression in diagnostic biopsies and resection specimen was compared in 53 NSCLC patients stage T1......-4N0-1M0 treated with surgery without preceding chemotherapy (OP group), and 65 NSCLC patients stage T1-3N0-2M0 (NAC group) treated with preoperative carboplatin and paclitaxel in order to evaluate the discordance of EGFR expression between samples. RESULTS: Discordance between tumors dichotomized...

  15. Tumour necrosis factor receptor gene expression and shedding in human whole lung tissue and pulmonary epithelium

    International Nuclear Information System (INIS)

    This study aimed to investigate the expression of tumour necrosis factor receptor (TNF-R) at the gene and surface level, and its shedding in human lung tissue and a pulmonary epithelial cell line, A549. Levels of gene expression of TNF-R were evaluated by Northern blot analysis. Human lung issue expressed both type I and type II TNF-R gene, while A549 cells expressed only type I TNF-R gene. Phorbol ester upregulated and TNF-α down-regulated the TNF-R gene expression in A549 cells. Consistent with these modulations of TNF-R gene expression, 125I-TNF binding capacities were increased with phorbol ester stimulation and decreased with TNF stimulation after 24 h in A549 cells. The shedding of TNF-R from A549 cells was investigated using enzyme-linked immunosorbent assay (ELISA) for soluble type I TNF-R. Not only lung tissues but also A549 cells spontaneously released soluble type I TNF-R into the culture medium. Both phorbol ester and TNF stimulation accelerated the shedding of soluble TNF-R from A549 cells. These results suggest that type I TNF-R gene expression and shedding of soluble TNF-R are differentially regulated in A549 cells. We conclude that tumour necrosis factor receptor surface expression is regulated, at least in part, at the gene expression level and shedding of soluble tumour necrosis factor receptor is modulated by inflammatory mediators, such as tumour necrosis factor in A549 cells. (au) 39 refs

  16. Growth hormone receptor expression and function in pituitary adenomas

    DEFF Research Database (Denmark)

    Clausen, Lene R; Kristiansen, Mikkel T; Rasmussen, Lars M;

    2004-01-01

    OBJECTIVE AND DESIGN: Hypopituitarism, in particular GH deficiency, is prevalent in patients with clinically nonfunctioning pituitary adenomas (NFPAs) both before and after surgery. The factors regulating the growth of pituitary adenomas in general and residual tumour tissue in particular are not...... transcription 5) phosphorylation was measured by Western blot analysis as an index of GHR signalling; cell proliferation was evaluated by [H3]-thymidine incorporation and glycoprotein hormone production analysed by radioimmunoassay (RIA). RESULTS: All adenomas investigated expressed the GHR, but there was no......