WorldWideScience

Sample records for cholinergic lesioned mice

  1. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    Directory of Open Access Journals (Sweden)

    Dawe Gavin S

    2009-06-01

    Full Text Available Abstract Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU. Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.

  2. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  3. Neuroprotective effects of sulforaphane on cholinergic neurons in mice with Alzheimer's disease-like lesions.

    Science.gov (United States)

    Zhang, Rui; Zhang, Jingzhu; Fang, Lingduo; Li, Xi; Zhao, Yue; Shi, Wanying; An, Li

    2014-08-18

    Alzheimer's disease (AD) is a common neurodegenerative disease in elderly individuals, and effective therapies are unavailable. This study was designed to investigate the neuroprotective effects of sulforaphane (an activator of NF-E2-related factor 2) on mice with AD-like lesions induced by combined administration of aluminum and D-galactose. Step-down-type passive avoidance tests showed sulforaphane ameliorated cognitive impairment in AD-like mice. Immunohistochemistry results indicated sulforaphane attenuated cholinergic neuron loss in the medial septal and hippocampal CA1 regions in AD-like mice. However, spectrophotometry revealed no significant difference in acetylcholine level or the activity of choline acetyltransferase or acetylcholinesterase in the cerebral cortex among groups of control and AD-like mice with and without sulforaphane treatment. Sulforaphane significantly increased the numbers of 5-bromo-2'-deoxyuridine-positive neurons in the subventricular and subgranular zones in AD-like mice which were significantly augmented compared with controls. Atomic absorption spectrometry revealed significantly lower aluminum levels in the brains of sulforaphane-treated AD-like mice than in those that did not receive sulforaphane treatment. In conclusion, sulforaphane ameliorates neurobehavioral deficits by reducing cholinergic neuron loss in the brains of AD-like mice, and the mechanism may be associated with neurogenesis and aluminum load reduction. These findings suggest that phytochemical sulforaphane has potential application in AD therapeutics.

  4. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits.

    Science.gov (United States)

    Paolone, Giovanna; Mallory, Caitlin S; Koshy Cherian, Ajeesh; Miller, Thomas R; Blakely, Randy D; Sarter, Martin

    2013-12-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/- mice. Additionally, CHT+/- mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/- mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/- cholinergic terminals. Further analyses of molecular and functional compensations in the CHT+/- model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders.

  5. Basal forebrain cholinergic input is not essential for lesion-induced plasticity in mature auditory cortex.

    Science.gov (United States)

    Kamke, Marc R; Brown, Mel; Irvine, Dexter R F

    2005-11-23

    The putative role of the basal forebrain cholinergic system in mediating lesion-induced plasticity in topographic cortical representations was investigated. Cholinergic immunolesions were combined with unilateral restricted cochlear lesions in adult cats, demonstrating the consequence of cholinergic depletion on lesion-induced plasticity in primary auditory cortex (AI). Immunolesions almost eliminated the cholinergic input to AI, while cochlear lesions produced broad high-frequency hearing losses. The results demonstrate that the near elimination of cholinergic input does not disrupt reorganization of the tonotopic representation of the lesioned (contralateral) cochlea in AI and does not affect the normal representation of the unlesioned (ipsilateral) cochlea. It is concluded that cholinergic basal forebrain input to AI is not essential for the occurrence of lesion-induced plasticity in AI.

  6. The cholinergic anti-inflammatory pathway delays TLR-induced skin allograft rejection in mice: cholinergic pathway modulates alloreactivity.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Activation of innate immunity through Toll-like receptors (TLR can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand. The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.

  7. The cholinergic anti-inflammatory pathway delays TLR-induced skin allograft rejection in mice: cholinergic pathway modulates alloreactivity.

    Science.gov (United States)

    Sadis, Claude; Detienne, Sophie; Vokaer, Benoît; Charbonnier, Louis-Marie; Lemaître, Philippe; Spilleboudt, Chloé; Delbauve, Sandrine; Kubjak, Carole; Flamand, Véronique; Field, Kenneth A; Goldman, Michel; Benghiat, Fleur S; Le Moine, Alain

    2013-01-01

    Activation of innate immunity through Toll-like receptors (TLR) can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR)-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand). The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.

  8. Cholinergic neuronal lesions in the medial septum and vertical limb of the diagonal bands of Broca induce contextual fear memory generalization and impair acquisition of fear extinction.

    Science.gov (United States)

    Knox, Dayan; Keller, Samantha M

    2016-06-01

    Previous research has shown that the ventral medial prefrontal cortex (vmPFC) and hippocampus (Hipp) are critical for extinction memory. Basal forebrain (BF) cholinergic input to the vmPFC and Hipp is critical for neural function in these substrates, which suggests BF cholinergic neurons may be critical for extinction memory. In order to test this hypothesis, we applied cholinergic lesions to different regions of the BF and observed the effects these lesions had on extinction memory. Complete BF cholinergic lesions induced contextual fear memory generalization, and this generalized fear was resistant to extinction. Animals with complete BF cholinergic lesions could not acquire cued fear extinction. Restricted cholinergic lesions in the medial septum and vertical diagonal bands of Broca (MS/vDBB) mimicked the effects that BF cholinergic lesions had on contextual fear memory generalization and acquisition of fear extinction. Cholinergic lesions in the horizontal diagonal band of Broca and nucleus basalis (hDBB/NBM) induced a small deficit in extinction of generalized contextual fear memory with no accompanying deficits in cued fear extinction. The results of this study reveal that MS/vDBB cholinergic neurons are critical for inhibition and extinction of generalized contextual fear memory, and via this process, may be critical for acquisition of cued fear extinction. Further studies delineating neural circuits and mechanisms through which MS/vDBB cholinergic neurons facilitate these emotional memory processes are needed. © 2015 Wiley Periodicals, Inc.

  9. Long-term effects of cholinergic basal forebrain lesions on neuropeptide Y and somatostatin immunoreactivity in rat neocortex

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Compaan, J.C.; Nyakas, C.; Horvath, E.; Luiten, P.G.M.

    1989-01-01

    The effect of cholinergic basal forebrain lesions on immunoreactivity to somatostatin (SOM-i) and neuropeptide-Y (NPY-i) was investigated in the rat parietal cortex, 16-18 months after multiple bilateral ibotenic acid injections in the nucleus basalis complex. As a result of the lesion, the choliner

  10. Differential effects of selective lesions of cholinergic and dopaminergic neurons on serotonin-type 1 receptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Quirion, R.; Richard, J.

    1987-01-01

    Serotonin (5-HT)-type1 receptor binding sites are discretely distributed in rat brain. High densities of (3H)5-HT1 binding sites are especially located in areas enriched with cholinergic and dopaminergic innervation, such as the substantia innominata/ventral pallidum, striatum, septal nuclei, hippocampus and substantia nigra. The possible association of (3H)5-HT1 binding sites with cholinergic or dopaminergic cell bodies and/or nerve fiber terminals was investigated by selective lesions of the substantia innominata/ventral pallidum-cortical and septohippocampal cholinergic pathways and the nigrostriatal dopaminergic projection. (3H)5-HT1 receptor binding sites are possibly located on cholinergic cell bodies in the ventral pallidum-cortical pathway since (3H)5-HT1 binding in the substantia innominata/ventral pallidal area was markedly decreased following kainic acid lesions. Fimbriaectomies markedly decreased (3H)5-HT1 binding in the hippocampus, suggesting the presence of 5-HT1 binding sites on cholinergic nerve fiber terminals in the septohippocampal pathway. Lesions of the nigrostriatal dopaminergic projection did not modify (3H)5-HT1 binding in the substantia nigra and the striatum, suggesting that 5-HT1 receptors are not closely associated with dopaminergic cell bodies and nerve terminals in this pathway. These results demonstrate differential association between 5-HT1 receptors and cholinergic and dopaminergic innervation in rat brain.

  11. Effects of septal cholinergic lesion on rat exploratory behavior in an open-field

    Directory of Open Access Journals (Sweden)

    M.R. Lamprea

    2003-02-01

    Full Text Available The medial septum participates in the modulation of exploratory behavior triggered by novelty. Also, selective lesions of the cholinergic component of the septohippocampal system alter the habituation of rats to an elevated plus-maze without modifying anxiety indices. We investigated the effects of the intraseptal injection of the cholinergic immunotoxin 192 IgG-saporin (SAP on the behavior of rats in an open-field. Thirty-nine male Wistar rats (weight: 194-230 g were divided into three groups, non-injected controls and rats injected with either saline (0.5 µl or SAP (237.5 ng/0.5 µl. Twelve days after surgery, the animals were placed in a square open-field (120 cm and allowed to freely explore for 5 min. After the test, the rats were killed by decapitation and the septum, hippocampus and frontal cortex were removed and assayed for acetylcholinesterase activity. SAP increased acetylcholinesterase activity in the septum, hippocampus and frontal cortex and decreased the total distance run (9.15 ± 1.51 m in comparison to controls (13.49 ± 0.91 m. The time spent in the center and at the periphery was not altered by SAP but the distance run was reduced during the first and second minutes (2.43 ± 0.36 and 1.75 ± 0.34 m compared to controls (4.18 ± 0.26 and 3.14 ± 0.25 m. SAP-treated rats showed decreased but persistent exploration throughout the session. These results suggest that septohippocampal cholinergic mechanisms contribute to at least two critical processes, one related to the motivation to explore new environments and the other to the acquisition and storage of spatial information (i.e., spatial memory.

  12. PROTECTIVE EFFECT OF TETRAMETHYLPYRAZINE ON LEARNING AND MEMORY FUNCTION IN D-GALACTOSE-LESIONED MICE

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Shi-zhen Wang; Ping-ping Zuo; Xu Cui; Jiong Cai

    2004-01-01

    Objective To explore the protective effect of tetramethylpyrazine (TMP) on the learning and memory function in D-galactose (D-gal)-lesioned mice.zine A were respectively given by intragastric administration in different groups from the third week. Learning and memory ability was tested with Morris water maze for 5 days at the sixth week. After completion of behavioral test, the mice were sacrificed by decapitation. The brain was rapidly removed, and the cortex and hippocampus were separated. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the cortex were determined. At the same time, the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), the binding sites (Bmax) and the affinity (KD) of M-cholinergic receptor in the cortex, and Bmax and KD of N-methyl-D-aspartate (NMDA) receptor in the hippocampus were determined.Results In this model group, (1) The deficit of learning and memory ability, (2) elevated MDA content and lowered SOD activity, (3) decreased AChE activity and M-cholinergic receptor binding sites in the cortex, and (4) lowered NMDA receptor binding sites were observed in the hippocampus, as compared with the normal control. TMP could markedly (1)attenuate cognitive dysfunction, (2) lower MDA content and elevate SOD activity, (3) increase the activity of ChAT and AChE, and M-cholinergic receptor binding sites in the cortex in the mice treated with D-gal. NMDA receptor binding sites were also increased in the hippocampus in the treated mice.Conclusion TMP can significantly strengthen antioxidative function, improve central cholinergic system function, protect NMDA receptor activity, and thus enhance the learning and memory ability in D-gal-lesioned mice.

  13. Lesions of cholinergic pedunculopontine tegmental nucleus neurons fail to affect cocaine or heroin self-administration or conditioned place preference in rats.

    Directory of Open Access Journals (Sweden)

    Stephan Steidl

    Full Text Available Cholinergic input to the ventral tegmental area (VTA is known to contribute to reward. Although it is known that the pedunculopontine tegmental nucleus (PPTg provides an important source of excitatory input to the dopamine system, the specific role of PPTg cholinergic input to the VTA in cocaine reward has not been previously determined. We used a diphtheria toxin conjugated to urotensin-II (Dtx::UII, the endogenous ligand for urotensin-II receptors expressed by PPTg cholinergic but not glutamatergic or GABAergic cells, to lesion cholinergic PPTg neurons. Dtx::UII toxin infusion resulted in the loss of 95.78 (±0.65% of PPTg cholinergic cells but did not significantly alter either cocaine or heroin self-administration or the development of cocaine or heroin conditioned place preferences. Thus, cholinergic cells originating in PPTg do not appear to be critical for the rewarding effects of cocaine or of heroin.

  14. Sleep pattern and learning in knockdown mice with reduced cholinergic neurotransmission

    Directory of Open Access Journals (Sweden)

    C.M. Queiroz

    2013-01-01

    Full Text Available Impaired cholinergic neurotransmission can affect memory formation and influence sleep-wake cycles (SWC. In the present study, we describe the SWC in mice with a deficient vesicular acetylcholine transporter (VAChT system, previously characterized as presenting reduced acetylcholine release and cognitive and behavioral dysfunctions. Continuous, chronic ECoG and EMG recordings were used to evaluate the SWC pattern during light and dark phases in VAChT knockdown heterozygous (VAChT-KDHET, n=7 and wild-type (WT, n=7 mice. SWC were evaluated for sleep efficiency, total amount and mean duration of slow-wave, intermediate and paradoxical sleep, as well as the number of awakenings from sleep. After recording SWC, contextual fear-conditioning tests were used as an acetylcholine-dependent learning paradigm. The results showed that sleep efficiency in VAChT-KDHET animals was similar to that of WT mice, but that the SWC was more fragmented. Fragmentation was characterized by an increase in the number of awakenings, mainly during intermediate sleep. VAChT-KDHET animals performed poorly in the contextual fear-conditioning paradigm (mean freezing time: 34.4±3.1 and 44.5±3.3 s for WT and VAChT-KDHET animals, respectively, which was followed by a 45% reduction in the number of paradoxical sleep episodes after the training session. Taken together, the results show that reduced cholinergic transmission led to sleep fragmentation and learning impairment. We discuss the results on the basis of cholinergic plasticity and its relevance to sleep homeostasis. We suggest that VAChT-KDHET mice could be a useful model to test cholinergic drugs used to treat sleep dysfunction in neurodegenerative disorders.

  15. Invasive versus noninvasive measurement of allergic and cholinergic airway responsiveness in mice

    Directory of Open Access Journals (Sweden)

    Hohlfeld Jens M

    2005-11-01

    Full Text Available Abstract Background This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR in intact, spontaneously breathing BALB/c mice. Methods Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF50, we determined early AR (EAR to inhaled Aspergillus fumigatus antigens in conscious mice. These measurements were paralleled by invasive determination of pulmonary conductance (GL, dynamic compliance (Cdyn and EF50 in another group of anesthetized, orotracheally intubated mice. Results With both methods, allergic mice, sensitized and boosted with A. fumigatus, elicited allergen-specific EAR to A. fumigatus (p Conclusion We conclude that invasive and noninvasive pulmonary function tests are capable of detecting both allergen-specific and cholinergic AR in intact, allergic mice. The invasive determination of GL and Cdyn is superior in sensitivity, whereas the noninvasive EF50 method is particularly appropriate for quick and repeatable screening of respiratory function in large numbers of conscious mice.

  16. Repetitive measurements of pulmonary mechanics to inhaled cholinergic challenge in spontaneously breathing mice.

    Science.gov (United States)

    Glaab, Thomas; Mitzner, Wayne; Braun, Armin; Ernst, Heinrich; Korolewitz, Regina; Hohlfeld, Jens M; Krug, Norbert; Hoymann, Heinz G

    2004-09-01

    Precise and repeatable measurements of pulmonary function in intact mice are becoming increasingly important for experimental investigations on various respiratory disorders including asthma. Here, we present validation of a novel in vivo method that, for the first time, combines direct and repetitive recordings of standard pulmonary mechanics with cholinergic aerosol challenges in anesthetized, orotracheally intubated, spontaneously breathing mice. We demonstrate that, in several groups of nonsensitized BALB/c mice, dose-related increases in pulmonary resistance and dynamic compliance to aerosolized methacholine are reproducible over short and extended intervals without causing detectable cytological alterations in the bronchoalveolar lavage or relevant histological changes in the proximal trachea and larynx regardless of the number of orotracheal intubations. Moreover, as further validation, we confirm that allergic mice, sensitized and challenged with Aspergillus fumigatus, were significantly more responsive to cholinergic challenge (P mechanics in studies of various respiratory disorders in mice, including experimental models of asthma and chronic obstructive pulmonary disorder, investigations of pulmonary pharmacology, or more general investigations of the genetic determinants of lung function.

  17. Right Cervical Vagotomy Aggravates Viral Myocarditis in Mice Via the Cholinergic Anti-inflammatory Pathway

    Science.gov (United States)

    Li-Sha, Ge; Xing-Xing, Chen; Lian-Pin, Wu; De-Pu, Zhou; Xiao-Wei, Li; Jia-Feng, Lin; Yue-Chun, Li

    2017-01-01

    The autonomic nervous system dysfunction with increased sympathetic activity and withdrawal of vagal activity may play an important role in the pathogenesis of viral myocarditis. The vagus nerve can modulate the immune response and control inflammation through a ‘cholinergic anti-inflammatory pathway’ dependent on the α7-nicotinic acetylcholine receptor (α7nAChR). Although the role of β-adrenergic stimulation on viral myocarditis has been investigated in our pervious studies, the direct effect of vagal tone in this setting has not been yet studied. Therefore, in the present study, we investigated the effects of cervical vagotomy in a murine model of viral myocarditis. In a coxsackievirus B3 murine myocarditis model (Balb/c), effects of right cervical vagotomy and nAChR agonist nicotine on echocardiography, myocardial histopathology, viral RNA, and proinflammatory cytokine levels were studied. We found that right cervical vagotomy inhibited the cholinergic anti-inflammatory pathway, aggravated myocardial lesions, up-regulated the expression of TNF-α, IL-1β, and IL-6, and worsened the impaired left ventricular function in murine viral myocarditis, and these changes were reversed by co-treatment with nicotine by activating the cholinergic anti-inflammatory pathway. These results indicate that vagal nerve plays an important role in mediating the anti-inflammatory effect in viral myocarditis, and that cholinergic stimulation with nicotine also plays its peripheral anti-inflammatory role relying on α7nAChR, without requirement for the integrity of vagal nerve in the model. The findings suggest that vagus nerve stimulation mediated inhibition of the inflammatory processes likely provide important benefits in myocarditis treatment. PMID:28197102

  18. Long-term effects of immunotoxic cholinergic lesions in the septum on acquisition of the cone-field task and noncognitive measures in rats

    NARCIS (Netherlands)

    Staay, van der F.J.; Bouger, P.; Lehmann, O.; Lazarus, C.; Cosquer, B.; Koenig, J.; Stump, V.; Cassel, J.C.

    2006-01-01

    In rats, nonspecific mechanical or neurotoxic lesions of the septum impair spatial memory in, e.g., Morris water- and radial-maze tasks. Unfortunately, the lack of specificity of such lesions limits inferences about the role of the cholinergic hippocampal projections in spatial cognition. We therefo

  19. Both pre- and post-synaptic alterations contribute to aberrant cholinergic transmission in superior cervical ganglia of APP(-/-) mice.

    Science.gov (United States)

    Cai, Zhao-Lin; Zhang, Jia-Jia; Chen, Ming; Wang, Jin-Zhao; Xiao, Peng; Yang, Li; Long, Cheng

    2016-11-01

    Though amyloid precursor protein (APP) can potentially be cleaved to generate the pathological amyloid β peptide (Aβ), APP itself plays an important role in regulating neuronal activity. APP deficiency causes functional impairment in cholinergic synaptic transmission and cognitive performance. However, the mechanisms underlying altered cholinergic synaptic transmission in APP knock-out mice (APP(-/-)) are poorly understood. In this study, we conducted in vivo extracellular recording to investigate cholinergic compound action potentials (CAPs) of the superior cervical ganglion (SCG) in APP(-/-) and littermate wild-type (WT) mice. Our results demonstrate that APP not only regulates presynaptic activity, but also affects postsynaptic function at cholinergic synapses in SCG. APP deficiency reduces the number of vesicles in presynaptic terminalsand attenuatesthe amplitude of CAPs, likely due to dysfunction of high-affinity choline transporters. Pharmacological and biochemical examination showed that postsynaptic responsesmediated by α4β2 and α7 nicotinic acetylcholine receptors are reduced in the absence of APP. Our research provides evidences on how APP regulates cholinergic function and therefore may help to identify potential therapeutic targets to treat cholinergic dysfunction associated with Alzheimer's disease pathogenesis.

  20. Interleukin-6 impairs chronotropic responsiveness to cholinergic stimulation and decreases heart rate variability in mice.

    Science.gov (United States)

    Hajiasgharzadeh, Khalil; Mirnajafi-Zadeh, Javad; Mani, Ali R

    2011-12-30

    Heart rate variability is reduced in several clinical settings associated with systemic inflammation. The underlying mechanism of decreased heart rate variability during systemic inflammation is unknown. It appears that the inflammatory cytokines might play a role, since epidemiologic studies has shown that circulating levels of interleukine-6 (IL-6) correlate significantly with indexes of depressed heart rate variability in various clinical conditions. The present investigation was carried out to study the peripheral and central effects of IL-6 on heart rate dynamic in mice. Adult male BALB/c mice were used in the study. RT-PCR was performed to study the expression of IL-6 receptor in mouse atrial and the results showed that gp130 mRNA was detectable in the atrium. The effect of IL-6 was also studies on chronotropic responsiveness of isolated atria to adrenergic and cholinergic stimulations. Incubation of isolated atria with 10 ng/ml of IL-6 was associated with a significant hypo-responsiveness to cholinergic stimulation (log IC₅₀ of carbacholine changed from -6.26±0.10 in controls to -5.59±0.19 following incubation with IL-6, Pheart rate variability parameters (SDNN, SD1, and SD2). While intracerebroventricular injection of IL-6 (50 ng/mouse) had no significant effect on heart rate variability parameters. These data are in line with a peripheral role for IL-6 in the genesis of decreased heart rate variability during systemic inflammation.

  1. Muscarinic cholinergic receptor (M2 plays a crucial role in the development of myopia in mice

    Directory of Open Access Journals (Sweden)

    Veluchamy A. Barathi

    2013-09-01

    Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2; also known as Chrm2 were less susceptible to lens-induced myopia compared with wild-type mice, which showed significantly increased axial length and vitreous chamber depth when undergoing experimental induction of myopia. The key findings of this present study are that the sclera of M2 mutant mice has higher expression of collagen type I and lower expression of collagen type V than do wild-type mice and mice that are mutant for other muscarinic subtypes, and, therefore, M2 mutant mice were resistant to the development of experimental myopia. Pharmacological blockade of M2 muscarinic receptor proteins retarded myopia progression in the mouse. These results suggest for the first time a role of M2 in growth-related changes in extracellular matrix genes during myopia development in a mammalian model. M2 receptor antagonists might thus provide a targeted therapeutic approach to the management of this refractive error.

  2. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  3. Neuroglobin-overexpression reduces traumatic brain lesion size in mice

    Directory of Open Access Journals (Sweden)

    Zhao Song

    2012-06-01

    Full Text Available Abstract Background Accumulating evidence has demonstrated that over-expression of Neuroglobin (Ngb is neuroprotective against hypoxic/ischemic brain injuries. In this study we tested the neuroprotective effects of Ngb over-expression against traumatic brain injury (TBI in mice. Results Both Ngb over-expression transgenic (Ngb-Tg and wild-type (WT control mice were subjected to TBI induced by a controlled cortical impact (CCI device. TBI significantly increased Ngb expression in the brains of both WT and Ngb-Tg mice, but Ngb-Tg mice had significantly higher Ngb protein levels at the pre-injury baseline and post-TBI. Production of oxidative tissue damage biomarker 3NT in the brain was significantly reduced in Ngb-Tg mice compared to WT controls at 6 hours after TBI. The traumatic brain lesion volume was significantly reduced in Ngb Tg mice compared to WT mice at 3 weeks after TBI; however, there were no significant differences in the recovery of sensorimotor and spatial memory functional deficits between Ngb-Tg and WT control mice for up to 3 weeks after TBI. Conclusion Ngb over-expression reduced traumatic lesion volume, which might partially be achieved by decreasing oxidative stress.

  4. Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism

    Institute of Scientific and Technical Information of China (English)

    Talita Cavalcante Morais; Synara Cavalcante Lopes; Karine Maria Martins Bezerra Carvalho; Bruno Rodrigues Arruda; Francisco Thiago Correia de Souza; Maria Teresa Salles Trevisan; Vietla Satyanarayana Rao; Flávia Almeida Santos

    2012-01-01

    AIM:To investigate the effects of mangiferin on gastrointestinal transit (GIT) in normal and constipated mice,together with the possible mechanism.METHODS:Intragastrically-administered charcoal meal was used to measure GIT in overnight starved Swiss mice.In the first experiments,mangiferin (3 mg/kg,10mg/kg,30 mg/kg,and 100 mg/kg,po) or tegaserod (1mg/kg,ip) were administered 30 min before the charcoal meal to study their effects on normal transit.In the second series,mangiferin (30 mg/kg) was tested on delayed GIT induced by several different pharmacological agonists (morphine,clonidine,capsaicin) or antagonists (ondansetron,verapamil,and atropine) whereas in the third series,mangiferin (30 mg/kg,100mg/kg and 300 mg/kg) or tegaserod (1 mg/kg) were tested on 6 h fecal pellets outputted by freely fed mice.The ratio of wet to dry weight was calculated and used as a marker of fecal water content.RESULTS:Mangiferin administered orally significantly (P < 0.05) accelerated GIT at 30 mg/kg and 100 mg/kg (89%and 93%,respectively),similarly to 5-hydroxytryptamine4 (5-HT4) agonist tegaserod (81%) when compared to vehicle-treated control (63%).Co-administered mangiferin (30 mg/kg) totally reversed the inhibitory effect of opioid agonist morphine,5-HT3-receptor antagonist ondansetron and transient receptor potential vanilloid-1 receptor agonist capsaicin on GIT,but only to a partial extent with the GIT-delay induced by α2-adrenoceptor agonist clonidine,and calcium antagonist verapamil.However,co-administered atropine completely blocked the stimulant effect of mangiferin on GIT,suggesting the involvement of muscarinic acetylcholine receptor activation.Although mangiferin significantly enhanced the 6 h fecal output at higher doses (245.5 ± 10.43 mg vs 161.9 ± 10.82 mg and 227.1 ± 20.11 mg vs 161.9 ±10.82 mg of vehicle-treated control,at 30 and 100 mg/kg,P < 0.05,respectively),the effect of tegaserod was more potent (297.4 ± 7.42 mg vs 161.9 ± 10.82 mg of

  5. Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism

    Science.gov (United States)

    Morais, Talita Cavalcante; Lopes, Synara Cavalcante; Carvalho, Karine Maria Martins Bezerra; Arruda, Bruno Rodrigues; de Souza, Francisco Thiago Correia; Trevisan, Maria Teresa Salles; Rao, Vietla Satyanarayana; Santos, Flávia Almeida

    2012-01-01

    AIM: To investigate the effects of mangiferin on gastrointestinal transit (GIT) in normal and constipated mice, together with the possible mechanism. METHODS: Intragastrically-administered charcoal meal was used to measure GIT in overnight starved Swiss mice. In the first experiments, mangiferin (3 mg/kg, 10 mg/kg, 30 mg/kg, and 100 mg/kg, po) or tegaserod (1 mg/kg, ip) were administered 30 min before the charcoal meal to study their effects on normal transit. In the second series, mangiferin (30 mg/kg) was tested on delayed GIT induced by several different pharmacological agonists (morphine, clonidine, capsaicin) or antagonists (ondansetron, verapamil, and atropine) whereas in the third series, mangiferin (30 mg/kg, 100 mg/kg and 300 mg/kg) or tegaserod (1 mg/kg) were tested on 6 h fecal pellets outputted by freely fed mice. The ratio of wet to dry weight was calculated and used as a marker of fecal water content. RESULTS: Mangiferin administered orally significantly (P < 0.05) accelerated GIT at 30 mg/kg and 100 mg/kg (89% and 93%, respectively), similarly to 5-hydroxytryptamine4 (5-HT4) agonist tegaserod (81%) when compared to vehicle-treated control (63%). Co-administered mangiferin (30 mg/kg) totally reversed the inhibitory effect of opioid agonist morphine, 5-HT3-receptor antagonist ondansetron and transient receptor potential vanilloid-1 receptor agonist capsaicin on GIT, but only to a partial extent with the GIT-delay induced by α2-adrenoceptor agonist clonidine, and calcium antagonist verapamil. However, co-administered atropine completely blocked the stimulant effect of mangiferin on GIT, suggesting the involvement of muscarinic acetylcholine receptor activation. Although mangiferin significantly enhanced the 6 h fecal output at higher doses (245.5 ± 10.43 mg vs 161.9 ± 10.82 mg and 227.1 ± 20.11 mg vs 161.9 ± 10.82 mg of vehicle-treated control, at 30 and 100 mg/kg, P < 0.05, respectively), the effect of tegaserod was more potent (297.4 ± 7.42 mg

  6. Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Plath, Niels;

    2013-01-01

    , respectively. Conversely, there was no deterioration of cognitive functioning in sham lesioned Tg2576 mice or wild type littermates (wt) receiving the immunotoxin. At 10 months of age, release of acetylcholine (ACh) was addressed by microdialysis in conscious mice. Scopolamine-induced increases in hippocampal...

  7. Deficit in sustained attention following selective cholinergic lesion of the pedunculopontine tegmental nucleus in rat, as measured with both post-mortem immunocytochemistry and in vivo PET imaging with [¹⁸F]fluoroethoxybenzovesamicol.

    Science.gov (United States)

    Cyr, Marilyn; Parent, Maxime J; Mechawar, Naguib; Rosa-Neto, Pedro; Soucy, Jean-Paul; Clark, Stewart D; Aghourian, Meghmik; Bedard, Marc-Andre

    2015-02-01

    Cholinergic neurons of the pedunculopontine tegmental nucleus (PPTg) are thought to be involved in cognitive functions such as sustained attention, and lesions of these cells have been documented in patients showing fluctuations of attention such as in Parkinson's disease or dementia with Lewy Body. Animal studies have been conducted to support the role of these cells in attention, but the lesions induced in these animals were not specific to the cholinergic PPTg system, and were assessed by post-mortem methods remotely performed from the in vivo behavioral assessments. Moreover, sustained attention have not been directly assessed in these studies, but rather deduced from indirect measurements. In the present study, rats were assessed on the 5-Choice Serial Reaction Time Task (5-CSRTT), and a specific measure of variability in response latency was created. Animals were observed both before and after selective lesion of the PPTg cholinergic neurons. Brain cholinergic denervation was assessed both in vivo and ex vivo, using PET imaging with [(18)F]fluoroethoxybenzovesamicol ([(18)F]FEOBV) and immunocytochemistry respectively. Results showed that the number of correct responses and variability in response latency in the 5-CSRTT were the only behavioral measures affected following the lesions. These measures were found to correlate significantly with the number of PPTg cholinergic cells, as measured with both [(18)F]FEOBV and immunocytochemistry. This suggests the primary role of the PPTg cholinergic cells in sustained attention. It also allows to reliably use the PET imaging with [(18)F]FEOBV for the purpose of assessing the relationship between behavior and cholinergic innervation in living animals.

  8. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo.

    Science.gov (United States)

    Koszegi, Zsombor; Szego, Éva M; Cheong, Rachel Y; Tolod-Kemp, Emeline; Ábrahám, István M

    2011-09-01

    17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.

  9. Increased Airway Reactivity and Hyperinsulinemia in Obese Mice Are Linked by ERK Signaling in Brain Stem Cholinergic Neurons

    Directory of Open Access Journals (Sweden)

    Luiz O.S. Leiria

    2015-05-01

    Full Text Available Obesity is a major risk factor for asthma, which is characterized by airway hyperreactivity (AHR. In obesity-associated asthma, AHR may be regulated by non-TH2 mechanisms. We hypothesized that airway reactivity is regulated by insulin in the CNS, and that the high levels of insulin associated with obesity contribute to AHR. We found that intracerebroventricular (ICV-injected insulin increases airway reactivity in wild-type, but not in vesicle acetylcholine transporter knockdown (VAChT KDHOM−/−, mice. Either neutralization of central insulin or inhibition of extracellular signal-regulated kinases (ERK normalized airway reactivity in hyperinsulinemic obese mice. These effects were mediated by insulin in cholinergic nerves located at the dorsal motor nucleus of the vagus (DMV and nucleus ambiguus (NA, which convey parasympathetic outflow to the lungs. We propose that increased insulin-induced activation of ERK in parasympathetic pre-ganglionic nerves contributes to AHR in obese mice, suggesting a drug-treatable link between obesity and asthma.

  10. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system.

    Science.gov (United States)

    Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C

    2013-06-15

    The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.

  11. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  12. Effects of Cholinergic Stimulation with Pyridostigmine Bromide on Chronic Chagasic Cardiomyopathic Mice

    Directory of Open Access Journals (Sweden)

    Marília Beatriz de Cuba

    2014-01-01

    Full Text Available The aim of the present study was to assess the effects of an anticholinesterase agent, pyridostigmine bromide (Pyrido, on experimental chronic Chagas heart disease in mice. To this end, male C57BL/6J mice noninfected (control:Con or chronically infected (5 months with Trypanosoma cruzi (chagasic:Chg were treated or not (NT with Pyrido for one month. At the end of this period, electrocardiogram (ECG; cardiac autonomic function; heart histopathology; serum cytokines; and the presence of blood and tissue parasites by means of immunohistochemistry and PCR were assessed. In NT-Chg mice, significant changes in the electrocardiographic, autonomic, and cardiac histopathological profiles were observed confirming a chronic inflammatory response. Treatment with Pyrido in Chagasic mice caused a significant reduction of myocardial inflammatory infiltration, fibrosis, and hypertrophy, which was accompanied by a decrease in serum levels of IFNγ with no change in IL-10 levels, suggesting a shift of immune response toward an anti-inflammatory profile. Lower nondifferent numbers of parasite DNA copies were observed in both treated and nontreated chagasic mice. In conclusion, our findings confirm the marked neuroimmunomodulatory role played by the parasympathetic autonomic nervous system in the evolution of the inflammatory-immune response to T. cruzi during experimental chronic Chagas heart disease in mice.

  13. Topical Treatment of Dermatophytic Lesion on Mice (Mus musculus) Model.

    Science.gov (United States)

    Sharma, Bindu; Kumar, Padma; Joshi, Suresh Chandra

    2011-06-01

    Antidermatophytic potential of three weed plants viz. Tridax procumbens L., Capparis decidua (forsk) Edgew and Lantana camara L. were explored and experimentally induced dermatophytic lesion was topically treated in mice. Microbroth dilution method was carried out for determination of MIC and MFC of different extracts of selected plants. In animal studies, mice were experimentally inoculated with Trichophyton mentagrophytes and infected animals were topically treated with 5 mg/g terbinafine and two concentrations, i.e., 5 and 10 mg/g of test extract ointment. Complete recovery from the infection was observed on 12th day of treatment for reference drug terbinafine (5 mg/g) and 10 mg/g concentration of test extract ointment whereas 5 mg/g concentration of test extract ointment showed complete cure on 16th day of treatment. Fungal burden was also calculated by culturing skin scrapings from infected animals of different groups. Test extract ointment successfully treated induced dermatophytosis in mice without any disease recurrence incidences, thereby indicating efficacy of test extract as an excellent topical antifungal agent for the cure of dermatophytosis.

  14. Cholinergic dermographism.

    Science.gov (United States)

    Mayou, S C; Kobza Black, A; Eady, R A; Greaves, M W

    1986-09-01

    We report a patient with cholinergic urticaria in whom stroking the skin produced a band of erythema studded with the small weals characteristics of cholinergic urticaria. This response was suppressed by pre-treatment with topical scopolamine. Light and electron microscopy of the weal showed mast cell degranulation and a moderate mononuclear cell infiltrate.

  15. Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice.

    Science.gov (United States)

    Golechha, Mahaveer; Bhatia, Jagriti; Arya, Dharmveer Singh

    2012-01-01

    Emblica officinalis, commonly known as amla, is an important medicinal plant of India. Its fruits have potent antioxidant activity due to the presence of tannoids, tannins, vitamin C and flavonoids. The aim of this study was to investigate the beneficial effect of the hydroalcoholic extract of the fruits of Emblica officinalis (EO) on memory impairment in Swiss albino mice. Scopolamine (1 mg kg(-1), i.p)was administered to induce amnesia and the memory was evaluated by using elevated plus-maze and passive avoidance tests. Piracetam (200 mg kg(-1), i.p.) was used as a standard nootropic agent. The EO extract was administered intraperitoneally in four graded doses (150, 300, 450 and 600 mg kg(-1)) for 7 consecutive days to different groups of mice. The mice were sacrificed on the 8th day following assessment of memory. The brain malondialdehyde (MDA) and glutathione (GSH) as well as acetylcholinesterase (AchE)) activity was determined. It was observed that EO extract reversed the amnesia induced by scopolamine. The mean transfer latency and retention latency in the EO extract 600 mg kg(-1) group vs the vehicle treated scopolamine group was 13.46 sec (p<0.001) and 134.4 sec (p<0.001) vs 23.99 sec and 44.55 sec, respectively. EO extract treatment also significantly (p<0.001) ameliorated the oxidative stress induced by scopolamine administration. The mice brain MDA and GSH levels in the EO extract 600 mg kg(-1) group vs the scopolamine group were 29.95 nmol g(-1) of wet tissue and 51.87 microg g(-1) tissue vs 55.22 nmol g(-1) of wet tissue and 28.33 microg g(-1) tissue, respectively. Further, EO extract (300, 450 and 600 mg kg(-1), i.p) significantly (p<0.001) reversed the rise in brain acetyl cholinesterase (AchE) level induced by scopolamine. The mice brain Ach E levels in the EO extract 600 mg kg(-1) group as compared to the scopolamine group was 70.23 vs 151.49 U mg(-1) protein(-1), respectively. These results suggestthat EO possesses memory enhancing, antioxidant

  16. The synthetic thyroid hormone, levothyroxine, protects cholinergic neurons in the hippocampus of naturally aged mice

    Institute of Scientific and Technical Information of China (English)

    Ailing Fu; Rumei Zhou; Xingran Xu

    2014-01-01

    The thyroid hormones, triiodothyronine and thyroxine, play important roles in cognitive func-tion during the mammalian lifespan. However, thyroid hormones have not yet been used as a therapeutic agent for normal age-related cognitive deficits. In this study, CD-1 mice (aged 24 months) were intraperitoneally injected with levothyroxine (L-T4;1.6μg/kg per day) for 3 consecutive months. Our findings revealed a significant improvement in hippocampal cyto-skeletal rearrangement of actin and an increase in serum hormone levels of L-T4-treated aged mice. Furthermore, the survival rate of these mice was dramatically increased from 60%to 93.3%. The Morris water maze task indicated that L-T4 restored impaired spatial memory in aged mice. Furthermore, level of choline acetyltransferase, acetylcholine, and superoxide dismutase were in-creased in these mice, thus suggesting that a possible mechanism by which L-T4 reversed cognitive impairment was caused by increased activity of these markers. Overall, supplement of low-dosage L-T4 may be a potential therapeutic strategy for normal age-related cognitive deifcits.

  17. Hyperbaric Oxygen Prevents Cognitive Impairments in Mice Induced by D-Galactose by Improving Cholinergic and Anti-apoptotic Functions.

    Science.gov (United States)

    Chen, Chunxia; Huang, Luying; Nong, Zhihuan; Li, Yaoxuan; Chen, Wan; Huang, Jianping; Pan, Xiaorong; Wu, Guangwei; Lin, Yingzhong

    2017-01-11

    Our previous study demonstrated that hyperbaric oxygen (HBO) improved cognitive impairments mainly by regulating oxidative stress, inflammatory responses and aging-related gene expression. However, a method for preventing cognitive dysfunction has yet to be developed. In the present study, we explored the protective effects of HBO on the cholinergic system and apoptosis in D-galactose (D-gal)-treated mice. A model of aging was established via systemic intraperitoneal injection of D-gal daily for 8 weeks. HBO was administered during the last 2 weeks of D-gal injection. Our results showed that HBO in D-gal-treated mice significantly improved behavioral performance on the open field test and passive avoidance task. Studies on the potential mechanisms of this effect showed that HBO significantly reduced oxidative stress and blocked the nuclear factor-κB pathway. Moreover, HBO significantly increased the levels of choline acetyltransferase and acetylcholine and decreased the activity of acetylcholinesterase in the hippocampus. Furthermore, HBO markedly increased expression of the anti-apoptosis protein Bcl-2 and glial fibrillary acidic protein meanwhile decreased expression of the pro-apoptosis proteins Bax and caspase-3. Importantly, there was a significant reduction in expression of Aβ-related genes, such as amyloid precursor protein, β-site amyloid cleaving enzyme-1 and cathepsin B mRNA. These decreases were accompanied by significant increases in expression of neprilysin and insulin-degrading enzyme mRNA. Moreover, compared with the Vitamin E group, HBO combined with Vitamin E exhibited significant difference in part of the above mention parameters. These findings suggest that HBO may act as a neuroprotective agent in preventing cognitive impairments.

  18. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  19. Modulation of specific sensory cortical areas by segregated basal forebrain cholinergic neurons demonstrated by neuronal tracing and optogenetic stimulation in mice

    Directory of Open Access Journals (Sweden)

    Irene eChaves-Coira

    2016-04-01

    Full Text Available Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-gold and Fast Blue fluorescent retrograde tracers were deposited into the primary somatosensory (S1 and primary auditory (A1 cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP under the control of the choline-acetyl transferase promoter (ChAT. Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  20. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage

    Institute of Scientific and Technical Information of China (English)

    Yifan He; Jihong Zhu; Fang Huang; Liu Qin; Wenguo Fan; Hongwen He

    2014-01-01

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory be-haviors and structural changes in related brain regions, in a mouse model of Alzheimer’s disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learn-ing and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltrans-ferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic ifbers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no signiifcant differences in histology or be-havior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present ifndings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer’s disease, and

  1. Papillomas and other lesions in the stomachs of pine mice. [Microtus pinctorum

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, G.E.; O' Farrell, T.P.

    1965-08-26

    This paper describes a research project which took place from January to May 1964. Fifty pine mice were trapped in Roane County, TN. None of the sites were near a radioactive area. The mice were fed mixed seed and oatmeal mixed with peanut butter. They also had access to fresh greens and water. The mice were necropsied soon after capture. Histological examination of the stomach linings of these mice revealed papillomas and other lesions. The cause of the papillary lesions was not determined. 6 figures, 1 table.

  2. Characterization of atherosclerotic lesions in apo E3-leiden transgenic mice

    NARCIS (Netherlands)

    Leppänen, P.; Luoma, J.S.; Hofker, M.H.; Havekes, L.M.; Ylä-Herttuala, S.

    1998-01-01

    Apo E3-leiden transgenic mice express human dysfunctional apo E variant and develop hyperlipidemia and atherosclerosis on a high fat/high cholesterol diet. We characterized diet-induced atherosclerotic lesions in apo E3-leiden transgenic mice using immunocytochemical methods in order to examine foam

  3. Ultrastructural Study of Moniliformin Induced Lesions of Myocardium in Rats and Mice

    Institute of Scientific and Technical Information of China (English)

    ZhaoDeyu; FengQl; 等

    1993-01-01

    Effects of moliliformin on the ultrastructure of the myocardium of mice and rats were studies.Mice were given moniliformin orally at a dose of 29.46mg·kg-1 the LD50.One h after dosing,lesions of the mitochondria of the myocardial cells were found which became more severe in 2 and 3 h.Ultrastructrual olesions were also observed in the myofibrils and sarcolemma.Rats were given moniliformin orally at the dosage of 6mg·kg-1 once daily for 56d.Lesions of mitochondria and myofibrils were relatively mild.In the myocardiac specimens taken from the 21d post-toxin administration,lesions of the sarcolemma became more obvious.These moniliformin-induced lesions were simillar to the ultrastructural changes in the myocardium of patients with Keshan disease.Our findings indicate that there may be a close and important relationship between moniliformin intoxication and Keshan disease.

  4. MR histology of advanced atherosclerotic lesions of ApoE- knockout mice

    Science.gov (United States)

    Naumova, A.; Yarnykh, V.; Ferguson, M.; Rosenfeld, M.; Yuan, C.

    2016-02-01

    The purposes of this study were to examine the feasibility of determining the composition of advanced atherosclerotic plaques in fixed ApoE-knockout mice and to develop a time-efficient microimaging protocol for MR histological imaging on mice. Five formalin-fixed transgenic ApoE-knockout mice were imaged at the 9.4T Bruker BioSpec MR scanner using 3D spoiled gradient-echo sequence with an isotropic field of view of 24 mm3; TR 20.8 ms; TE 2.6 ms; flip angle 20°, resulted voxel size 47 × 63 × 94 pm3. MRI examination has shown that advanced atherosclerotic lesions of aorta, innominate and carotid arteries in ApoE-knockout mice are characterized by high calcification and presence of the large fibrofatty nodules. MRI quantification of atherosclerotic lesion components corresponded to histological assessment of plaque composition with a correlation coefficient of 0.98.

  5. N-palmitoyl serotonin alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of BDNF and p-CREB in mice.

    Science.gov (United States)

    Min, A Young; Doo, Choon Nan; Son, Eun Jung; Sung, Nak Yun; Lee, Kun Jong; Sok, Dai-Eun; Kim, Mee Ree

    2015-12-05

    N-Palmitoyl-5-hydroxytryptamines (Pal-5HT), a cannabinoid, has recently been reported to express anti-allergic and anti-inflammatory actions in RBL-2H3 cells, and ameliorate glutamate-induced cytotoxicity in HT-22 cells. In this study, we examined the effect of Pal-5HT on deficits of learning and memory induced by scopolamine in mice. Memory performance was evaluated using Morris water maze test and passive avoidance test. Activities of acetylcholinesterase (AChE) and choline acetyltransferase (ChAT), level of oxidative stress markers, and expression of brain-derived neurotrophic factor (BDNF), phosphorylation of cAMP response element-binding protein (p-CREB) were determined. Loss of neuronal cells in hippocampus was evaluated by histological examinations. Pal-5HT significantly improved the amnesia in the behavioral assessment. Pal-5HT regulated cholinergic function by inhibiting scopolamine-induced elevation of AChE activity and decline of ChAT activity. Pal-5HT suppressed oxidative stress by increasing activities of glutathione peroxidase (GPx), glutathione reductase (GR) or NAD(P)H quinine oxidoreductase-1 (NQO-1) and lowering MDA level. Additionally, it prevented against scopolamine-induced expression of iNOS and COX-2. Moreover, Pal-5HT suppressed the death of neuronal cells in CA1 and CA3 regions, while it restored expression of p-CREB and BDNF in hippocampus. Taken together, Pal-5HT is suggested to ameliorate deficits of memory and learning through regulation of cholinergic function, activation of antioxidant systems as well as restoration of BDNF and p-CREB expression. From these, Pal-5HT may be a potential candidate to prevent against neurodegeneration related to the memory deficit.

  6. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells in the hippocampal neurogenesis involving myelin vacuolation of cholinergic and glutamatergic inputs in mice.

    Science.gov (United States)

    Kato, Mizuho; Abe, Hajime; Itahashi, Megu; Kikuchihara, Yoh; Kimura, Masayuki; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2016-02-01

    Hexachlorophene (HCP) has been shown to induce myelin vacuolation due to intramyelinic edema of the nerve fibers in animal neural tissue. We investigated the maternal exposure effect of HCP on hippocampal neurogenesis in the offspring of pregnant mice supplemented with 0 (control), 33 or 100 ppm HCP in diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, offspring as examined in males exhibited decreased granule cell lineage populations expressing paired box 6, sex-determining region Y-box 2 and eomesodermin in the hippocampal subgranular zone (SGZ) accompanied by myelin vacuolation involving white matter tracts of the hippocampal fimbria at ≥ 33 ppm. However, SGZ cellular populations expressing brain lipid binding protein and doublecortin were unchanged at any dose. Transcript expression of cholinergic receptor genes, Chrna4 and Chrnb2, and glutamate receptor genes, Grm1 and Grin2d, examined at 100 ppm, decreased in the dentate gyrus. HCP exposure did not alter the number of proliferating or apoptotic cells in the SGZ, or reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)ergic interneurons in the dentate hilus, on PND 21 and PND 77. All neurogenesis-related changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77, suggesting that maternal HCP exposure at ≥ 33 ppm reversibly decreased type 2 intermediate-stage progenitor cells in the hippocampal neurogenesis. Myelin vacuolation might be responsible for changes in neurogenesis possibly by reducing nerve conduction velocity of cholinergic inputs from the septal-hippocampal pathway to granule cell lineages and/or GABAergic interneurons, and of glutamatergic inputs to granule cell lineages.

  7. Distribution of secretagogin-containing neurons in the basal forebrain of mice, with special reference to the cholinergic corticopetal system.

    Science.gov (United States)

    Gyengesi, Erika; Andrews, Zane B; Paxinos, George; Zaborszky, Laszlo

    2013-05-01

    Cholinergic and GABAergic corticopetal neurons in the basal forebrain play important roles in cortical activation, sensory processing, and attention. Cholinergic neurons are intermingled with peptidergic, and various calcium binding protein-containing cells, however, the functional role of these neurons is not well understood. In this study we examined the expression pattern of secretagogin (Scgn), a newly described calcium-binding protein, in neurons of the basal forebrain. We also assessed some of the corticopetal projections of Scgn neurons and their co-localization with choline acetyltransferase (ChAT), neuropeptide-Y, and other calcium-binding proteins (i.e., calbindin, calretinin, and parvalbumin). Scgn is expressed in cell bodies of the medial and lateral septum, vertical and horizontal diagonal band nuclei, and of the extension of the amygdala but it is almost absent in the ventral pallidum. Scgn is co-localized with ChAT in neurons of the bed nucleus of the stria terminalis, extension of the amygdala, and interstitial nucleus of the posterior limb of the anterior commissure. Scgn was co-localized with calretinin in the accumbens nucleus, medial division of the bed nucleus of stria terminalis, the extension of the amygdala, and interstitial nucleus of the posterior limb of the anterior commissure. We have not found co-expression of Scgn with parvalbumin, calbindin, or neuropeptide-Y. Retrograde tracing studies using Fluoro Gold in combination with Scgn-specific immunohistochemistry revealed that Scgn neurons situated in the nucleus of the horizontal limb of the diagonal band project to retrosplenial and cingulate cortical areas.

  8. Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice

    Directory of Open Access Journals (Sweden)

    Tong Wei-Ming

    2010-07-01

    Full Text Available Abstract Background Mutations of the MEN1 gene predispose to multiple endocrine neoplasia type 1 (MEN1 syndrome. Our group and others have shown that Men1 disruption in mice recapitulates MEN1 pathology. Intriguingly, rare lesions in hormone-dependent tissues, such as prostate and mammary glands, were also observed in the Men1 mutant mice. Methods To study the occurrence of prostate lesions, we followed a male mouse cohort of 47 Men1+/- mice and 23 age-matched control littermates, starting at 18 months of age, and analysed the prostate glands from the cohort. Results Six Men1+/- mice (12.8% developed prostate cancer, including two adenocarcinomas and four in situ carcinomas, while none of the control mice developed cancerous lesions. The expression of menin encoded by the Men1 gene was found to be drastically reduced in all carcinomas, and partial LOH of the wild-type Men1 allele was detected in three of the five analysed lesions. Using immunostaining for the androgen receptor and p63, a basal epithelial cell marker, we demonstrated that the menin-negative prostate cancer cells did not display p63 expression and that the androgen receptor was expressed but more heterogeneous in these lesions. Furthermore, our data showed that the expression of the cyclin-dependent kinase inhibitor CDKN1B (p27, a Men1 target gene known to be inactivated during prostate cell tumorigenesis, was notably decreased in the prostate cancers that developed in the mutant mice. Conclusion Our work suggests the possible involvement of Men1 inactivation in the tumorigenesis of the prostate gland.

  9. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.;

    2015-01-01

    closure. Colonic lesions in plg(tm1Jld) mice, which were characterized by necrotizing ulcerations and cystically dilated glands, were restricted to the intermediate and distal parts of the colon. The cytokine profile was indicative of chronic tissue damage, but the genetic modification did not change...

  10. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  11. [Facilitation of the retention and acceleration of operant conditioning extinction after cingulate cortex lesions in BALB/c mice].

    Science.gov (United States)

    Destrade, C; Gauthier, M

    1981-12-21

    One week after receiving bilateral electrolytic lesions of the cingulate cortex, BALB/c Mice underwent acquisition, retention and extinction of an appetitive operant-conditioning task in a Skinner box. There was no significant difference between lesioned and control animals in acquisition; however, lesioned mice exhibited improved retention and faster extinction. These results suggest a possible involvement of the cingulate cortex in memory processes.

  12. Lesion profiling at primary isolation in RIII mice is insufficient in distinguishing BSE from classical scrapie.

    Science.gov (United States)

    Beck, Katy E; Chaplin, Melanie; Stack, Michael; Sallis, Rosemary E; Simonini, Sarah; Lockey, Richard; Spiropoulos, John

    2010-03-01

    Primary isolation of bovine spongiform encephalopathy (BSE) in RIII mice generates a lesion profile believed to be reproducible and distinct from that produced by classical scrapie. This profile, which is characterized by peaks at gray matter areas 1, 4 and 7 (dorsal medulla, hypothalamus and septal nuclei), is used to diagnose BSE on primary isolation. The aim of this study was to investigate whether the BSE agent could be present in sheep diagnosed with classical scrapie, using lesion profiles in RIII mice as a discriminatory method. Sixty-two positive scrapie field cases were collected from individual farms between 1996 and 1999 and bioassayed in RIII mice. Fifty-five of these isolates transmitted successfully to at least one mouse. Of the 31 that produced adequate data to allow lesion profile analysis, 10 showed a consistent profile with peaks at brain areas 1, 4 and 7. All inocula for this subgroup were derived from sheep of genotype ARQ/ARQ. While the 1-4-7-scrapie profile exhibited similarities to BSE in RIII mice at primary isolation, it was distinguishable based on histopathology, immunohistochemistry and cluster analysis. We conclude that caution should be taken to distinguish this profile from BSE and that additional parameters should be considered to reach a final diagnosis.

  13. Involvement of mu(1)-opioid receptors and cholinergic neurotransmission in the endomorphins-induced impairment of passive avoidance learning in mice.

    Science.gov (United States)

    Ukai, Makoto; Lin, Hui Ping

    2002-02-01

    The effects of naloxonazine, a mu(1)-opioid receptor antagonist, and physostigmine, a cholinesterase inhibitor, on the endomorphins-induced impairment of passive avoidance learning were investigated in mice. Endomorphin-1 (10 microg) and endomorphin-2 (10 microg) significantly impaired passive avoidance learning, while naloxonazine (35 mg/kg, s.c.), a mu(1)-opioid receptor antagonist, which alone failed to influence passive avoidance learning significantly inhibited the endomorphin-1 (10 microg)- but not endomorphin-2 (10 microg)-induced disturbance of such learning. A rather nonselective higher dose (50 mg/kg, s.c.) of naloxonazine almost completely antagonized the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced impairment of passive avoidance learning. In contrast, physostigmine (0.025 and 0.05 mg/kg, i.p.) significantly reversed the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced disturbance of passive avoidance learning, whereas physostigmine (0.025 and 0.05 mg/kg, i.p.) alone did not influence such learning. These results suggest that endomorphin-1 but not endomorphin-2 impairs learning and memory resulting from cholinergic dysfunction, and from activation of mu(1)-opioid receptors.

  14. Reversibility of muscle and heart lesions in chronic Trypanosoma cruzi infected mice after late trypanomicidal treatment

    Directory of Open Access Journals (Sweden)

    M. A. Segura

    1994-06-01

    Full Text Available The effect of trypanomicidal treatment upon established histopathological Trypanosoma cruzi induced lesions was studied in Swiss mice. The animals were inoculated with 50 trypomastigotes and infection was allowed to progress without treatment for 99 days. After this period, the animals were divided in three groups, treated for 30 days with either placebo, benznidazole (200 mg/kg/day or nifurtimox (100 mg/kg/day. These treatments induced 94 and 100 (per cent cure rates respectively as detected by xenodiagnosis and reduction of antibody levels. Autopsies and histopathological studies of heart, urinary bladderand skeletal muscle performed on day 312 after infection showed almost complete healing without residual lesions. As long periods were allowed between infection, treatment and autopsy, the results indicate that tissue lesions depend, up to advances stages, on the continuous presence of the parasite.

  15. Behavioural alterations relevant to developmental brain disorders in mice with neonatally induced ventral hippocampal lesions.

    Science.gov (United States)

    Naert, Arne; Gantois, Ilse; Laeremans, Annelies; Vreysen, Samme; Van den Bergh, Gert; Arckens, Lut; Callaerts-Vegh, Zsuzsanna; D'Hooge, Rudi

    2013-05-01

    Neonatal lesioning of the ventral hippocampus (vHc) in rats has served as a useful heuristic animal model to elucidate neurodevelopmental mechanisms of schizophrenia (SCZ). In the current study we have established that this procedure can be applied to model SCZ symptomatology in mice. Neonatal mice (postnatal day 6) were anaesthetised by hypothermia and electrolytic lesions of the vHc were induced. We observed locomotor hyperactivity at prepubertal and adult age and hypersensitivity to amphetamine. Furthermore, working memory deficits were observed in Y-maze (spontaneous alternation) and T-maze (exploration of a novel arm) test protocols. Decreased anxious behaviour in the elevated plus maze and increased sociability were also observed. These changes were dependent on lesion size. No differences were observed in prepulse inhibition of the startle reflex, latent inhibition, spatial memory (Morris water maze), problem solving capacities (syringe puzzle) and ability to discriminate between different unfamiliar mice. The presented findings might further help to identify neurobiological mechanisms of neurodevelopmental disorders.

  16. Topical Application of Eupatilin Ameliorates Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice

    Science.gov (United States)

    Lee, Ji Hyun; Lee, Ye Jin; Lee, Jun Young

    2017-01-01

    Background Atopic dermatitis (AD) is an inflammatory skin disorder with severe pruritus. Despite advancements in medicine, therapeutic treatments for AD are still limited. Eupatilin (5,7-dihydroxy-30,40,6-trimethoxyflavone) is one of the lipophilic flavonoids from Artemisia umbelliformis Lam. and Artemisia genipi Weber. Objective Although it has been reported to act a role in improving inflammation, its action on AD is uncertain. In this study, we examined the role of eupatilin on AD-like skin lesions in NC/Nga mice. Methods 2,4-dinitrochlorobenzene was repeatedly applied to the ear of NC/Nga mice to produce AD-like skin lesions. Eupatilin (1%, once a day for 5 consecutive days/week) was applied topically for four weeks for the evaluation of its therapeutic effects. Results 1% eupatilin cream significantly reduced the clinical severity score of AD-like lesions, compared to the vehicle (p<0.005). A histopathological analysis revealed that 1% eupatilin cream significantly decreased the mast cell infiltration as well as inflammatory cell infiltration, compared to the vehicle (p<0.005). We showed that 1% eupatilin cream significantly reduced the expression of thymic stromal lymphopoietin, tumor necrosis factor-α, interleukin-4, and interleukin-19, but not interferon-γ, compared to the vehicle (p<0.005). Conclusion Considering the therapeutic reaction of eupatilin on AD-like lesions as in this study, the substance has a promising to be an adjuvant topical agent for the control of AD.

  17. Pathological features of Cryptosporidium andersoni-induced lesions in SCID mice.

    Science.gov (United States)

    Masuno, Koichi; Yanai, Tokuma; Sakai, Hiroki; Satoh, Masaaki; Kai, Chieko; Nakai, Yutaka

    2013-07-01

    To assess the infectivity and the istopathological features of Cryptosporidium andersoni (C. andersoni) in laboratory animals, SCID mice were orally inoculated with oocysts of C. andersoni. Starting one week after inoculation, the SCID mice began shedding oocysts, and this continued for ten weeks. Histopathologically, myriads of C. andersoni were observed on the apical surface of the epithelium in the gastric pit of the glandular stomach. There were few lesions in the gastric epithelium except C. andersoni adhesion. In the lamina propria of the affected mucosa, minimum infiltration of inflammatory cells was observed. Immunohistochemically, C. andersoni demonstrated a positive reaction to a number of primary antibodies of Cryptosporidium parvum. In the experiment described here, few increases were seen in apoptotic epithelial cells in the affected mucosas of the SCID mice, and the nuclear augmentation was not enhanced. It was hypothesized that the absence of apoptosis and cell division were due to a lack of inflammatory cell reaction in the lamina propria.

  18. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system.

    Science.gov (United States)

    Kruk-Slomka, Marta; Michalak, Agnieszka; Biala, Grazyna

    2015-05-01

    The purpose of the experiments was to explore the role of the endocannabinoid system, through cannabinoid (CB) receptor ligands, nicotine and scopolamine, in the depression-related responses using the forced swimming test (FST) in mice. Our results revealed that acute injection of oleamide (10 and 20 mg/kg), a CB1 receptor agonist, caused antidepressant-like effect in the FST, while AM 251 (0.25-3 mg/kg), a CB1 receptor antagonist, did not provoke any effect in this test. Moreover, acute administration of both CB2 receptor agonist, JWH 133 (0.5 and 1 mg/kg) and CB2 receptor antagonist, AM 630 (0.5 mg/kg), exhibited antidepressant action. Antidepressant effects of oleamide and JWH 133 were attenuated by acute injection of both non-effective dose of AM 251, as well as AM 630. Among the all CB compounds used, only the combination of non-effective dose of oleamide (2.5 mg/kg) with non-effective dose of nicotine (0.5 mg/kg) caused an antidepressant effect. However, none of the CB receptor ligands, had influence on the antidepressant effects provoked by nicotine (0.2 mg/kg) injection. In turn, the combination of non-effective dose of oleamide (2.5 mg/kg); JWH (2 mg/kg) or AM 630 (2 mg/kg), but not of AM 251 (0.25 mg/kg), with non-effective dose of scopolamine (0.1 mg/kg), exhibited antidepressant properties. Indeed, all of the CB compounds used, intensified the antidepressant-like effects induced by an acute injection of scopolamine (0.3 mg/kg). Our results provide clear evidence that the endocannabinoid system participates in the depression-related behavior and through interactions with cholinergic system modulate these kind of responses.

  19. Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

    Science.gov (United States)

    Nguyen, Thuy-Vi V.; Shen, Lin; Griend, Lilith Vander; Quach, Lisa N.; Belichenko, Nadia P.; Saw, Nay; Yang, Tao; Shamloo, Mehrdad; Wyss-Coray, Tony; Massa, Stephen M.; Longo, Frank M.

    2014-01-01

    The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds. PMID:24898660

  20. Slit2 overexpression results in increased microvessel density and lesion size in mice with induced endometriosis.

    Science.gov (United States)

    Guo, Sun-Wei; Zheng, Yu; Lu, Yuan; Liu, Xishi; Geng, Jian-Guo

    2013-03-01

    We recently reported that Slit/Roundabout (ROBO) 1 pathway may be a constituent biomarker for recurrence of endometriosis, likely through promoting angiogenesis. In this study, we sought to determine as whether Slit2 overexpression can facilitate angiogenesis, increase lesion size, and induce hyperalgesia in mice with induced endometriosis. We used 30 Slit2 transgenic (S) and 29 wild-type (W) mice and cross-transplanted endometrial fragments from S to W (group SW) and vice versa (group WS), and also within the S and W (groups SS and WW, respectively), into the peritoneal cavity, inducing endometriosis. We also performed a sham surgery within both S and W mice (groups Sm and Wm, respectively). The size of the ectopic implants, microvessel density (MVD) and immunoreactivity to ROBO1, and vascular endothelial cell growth factor (VEGF) in ectopic and eutopic endometrium, along with hotplate and tail-flick tests in all mice, were then evaluated. We found that the induction of endometriosis resulted in generalized hyperalgesia, which was unaffected by Slit2 overexpression. Slit2 overexpression did increase the lesion size significantly and correlated positively with the MVD in ectopic and eutopic endometrium. Slit2 expression levels appear to correlate with the MVD, but not with VEGF immunoreactivity, in ectopic endometrium. Consequently, we conclude that Slit2 may play an important role in angiogenesis in endometriosis. The increased angiogenesis, as measured by MVD, but not VEGF immunoreactivity, likely resulted in increased lesion size in induced endometriosis. Thus, SLIT2/ROBO1 pathway may be a potential therapeutic target for treating endometriosis.

  1. Muscarinic cholinergic regulation of L-type calcium channel in heart of embryonic mice at different developmental stages

    Institute of Scientific and Technical Information of China (English)

    Hua-min LIANG; Su-yun LI; Ling-ling LAI; Juergen HESCHELER; Ming TANG; Chang-jin LIU; Hong-yan LUO; Yuan-long SONG; Xin-wu HU; Jiao-ya XI; Lin-lin GAO; Bin NIE

    2004-01-01

    AIM: To investigate the muscarinic regulation of L-type calcium current (ICa-L) during development. METHODS:The whole cell patch-clamp technique was used to record Ica- L in mice embryonic cardiomyocytes at different stages (the early developmental stage, EDS; the intermediate developmental stage, IDS; and the late developmental stage, LDS). Carbachol (CCh) was used to stimulate M-receptor in the embryonic cardiomyocytes of mice.RESULTS: The expression of Ica-L density did not change in different developmental stages (P>0.05). There was no difference in the sensitivity of ICa-L to CCh during development (P>0.05). This inhibitory action of CCh was mediated by inhibition of cyclic AMP since 8-bromo-cAMP completely reversed the muscarinic inhibitory action.IBMX, a non-selective inhibitor of phosphodiesterase (PDE), reversed the inhibitory action of M-receptor on ICa-Lcurrent by 71.2 %±9.2 % (n=8) and 11.3 %±2.5 % (n=9) in EDS and LDS respectively. However forskolin, an agonist of adenylyl cyclase (AC), reversed the action of CCh by 14.5 %±3.5 % (n=5) and 82.7 %±10.4 % (n=7) in EDS and LDS respectively. CONCLUSION: The inhibitory action of CCh on ICa-L current was mediated in different pathways: in EDS, the inhibitory action of M-receptor on ICa-L channel mainly depended on the stimulation of PDE. However, in LDS, the regulation by M-receptor on ICa-L channel mainly depended on the inactivation of AC.

  2. Muscarinic cholinergic regulation of L-type calcium channel in heart of embryonic mice at different developmental stages

    Institute of Scientific and Technical Information of China (English)

    Hua-minLIANG; MingTANG; Chang-jinLIU; Hong-yanLUO; Yuan-longSONG; Xin-wuHU; Jiao-yaXI; Lin-linGAO; BinNIE; Su-yunLI; Ling-lingLAI; JuergenHESCHELER

    2004-01-01

    AIM: To investigate the muscarinic regulation of L-type calcium current (ICa-L) during development. METHODS:The whole cell patch-clamp technique was used to record ICa-L in mice embryonic cardiomyocytes at different stages (the early developmental stage, EDS; the intermediate developmental stage, IDS; and the late developmental stage, LDS). Carbachol (CCh) was used to stimulate M-receptor in the embryonic cardiomyocytes of mice.RESULTS: The expression of lCa.L density did not change in different developmental stages (P>0.05). There was no difference in the sensitivity of ICa-L to CCh during development (P>0.05). This inhibitory action of CCh was mediated by inhibition of cyclic AMP since 8-bromo-cAMP completely reversed the muscarinic inhibitory action. IBMX, a non-selective inhibitor of phosphodiesterase (PDE), reversed the inhibitory action of M-receptor on ICa-L current by 71.2 %±9.2% (n=8) and 11.3%±2.5% (n=9) in EDS and LDS respectively. However forskolin, an agonist of adenylyl cyclase (AC), reversed the action of CCh by 14.5%±3.5% (n=5) and 82.7%± 10.4% (n=7) in EDS and LDS respectively. CONCLUSION: The inhibitory action of CCh on lca.L current was mediated in different pathways: in EDS, the inhibitory action of M-receptor on ICa-L channel mainly depended on the stimulation of PDE. However, in LDS, the regulation by M-receptor on lCa.L channel mainly depended on the inactivation of AC.

  3. Preventive Effects of Pentoxifylline on the Development of Colonic Premalignant Lesions in Obese and Diabetic Mice

    Science.gov (United States)

    Fukuta, Kazufumi; Shirakami, Yohei; Maruta, Akinori; Obara, Koki; Iritani, Soichi; Nakamura, Nobuhiko; Kochi, Takahiro; Kubota, Masaya; Sakai, Hiroyasu; Tanaka, Takuji; Shimizu, Masahito

    2017-01-01

    Obesity and its related metabolic abnormalities, including enhanced oxidative stress and chronic inflammation, are closely related to colorectal tumorigenesis. Pentoxifylline (PTX), a methylxanthine derivative, has been reported to suppress the production of tumor necrosis factor (TNF)-α and possess anti-inflammatory properties. The present study investigated the effects of PTX on the development of carcinogen-induced colorectal premalignant lesions in obese and diabetic mice. Male C57BL/KsJ-db/db mice, which are severely obese and diabetic, were administered weekly subcutaneous injections of the colonic carcinogen azoxymethane (15 mg/kg body weight) for four weeks and then received drinking water containing 125 or 500 ppm PTX for eight weeks. At the time of sacrifice, PTX administration markedly suppressed the development of premalignant lesions in the colorectum. The levels of oxidative stress markers were significantly decreased in the PTX-treated group compared with those in the untreated control group. In PTX-administered mice, the mRNA expression levels of cyclooxygenase (COX)-2, interleukin (IL)-6, and TNF-α, and the number of proliferating cell nuclear antigen (PCNA)-positive cells in the colonic mucosa, were significantly reduced. These observations suggest that PTX attenuated chronic inflammation and oxidative stress, and prevented the development of colonic tumorigenesis in an obesity-related colon cancer model. PMID:28212276

  4. Influence of particle size on the distributions of liposomes to atherosclerotic lesions in mice.

    Science.gov (United States)

    Chono, Sumio; Tauchi, Yoshihiko; Morimoto, Kazuhiro

    2006-01-01

    In order to confirm the efficacy of liposomes as a drug carrier for atherosclerotic therapy, the influence of particle size on the distribution of liposomes to atherosclerotic lesions in mice was investigated. In brief, liposomes of three different particle sizes (500, 200, and 70 nm) were prepared, and the uptake of liposomes by the macrophages and foam cells in vitro and the biodistributions of liposomes administered intravenously to atherogenic mice in vivo were examined. The uptake by the macrophages and foam cells increased with the increase in particle size. Although the elimination rate from the blood circulation and the hepatic and splenic distribution increased with the increase in particle size in atherogenic mice, the aortic distribution was independent of the particle size. The aortic distribution of 200 nm liposomes was the highest in comparison with the other sizes. Surprisingly, the aortic distribution of liposomes in vivo did not correspond with the uptake by macrophages and foam cells in vitro. These results suggest that there is an optimal size for the distribution of liposomes to atherosclerotic lesions.

  5. The role of cholinergic pathway lesions in vascular cognitive impairment%胆碱能通路损伤在血管性认知功能障碍中的作用

    Institute of Scientific and Technical Information of China (English)

    黄纯臣; 李林昕; 韩翔; 王亮; 董强

    2010-01-01

    目的 通过比较胆碱能通路高信号评分(CHIPS)与缺血性脑卒中患者认知功能之间的关系,探索胆碱能通路损伤在血管性认知功能障碍中的作用.方法 采用MRI对住院缺血性脑卒中患者进行CHIPS评分、总体白质高信号Schelten评分,同时使用北京版蒙特利尔认知量表(MoCA)进行认知功能评估,分析影像学评分与认知评估间的相关性.结果 共纳入34例研究对象[45~82岁,平均(62.2±8.8)岁],该群体CHIPS评分与MoCA得分间标准化回归系数β=-0.382,P=0.026,而Schelten评分与MoCA得分间β=-0.357,P=0.042;在视空间与执行功能、命名、注意与抽象分项评分中,CHIPS与分项评分存在相关性;Schelten评分与命名、注意和抽象评分亦存在相关性.结论 胆碱能通路损伤在白质病变所致血管性认知功能障碍中起作用,其主要作用可能是影响视空间与执行功能.%Objective To investigate the relationship between white matter lesions (WML) within the cholinergic pathway and vascular cognitive impairment.Method Middle-aged and elderly stroke patients underwent brain MRI examination and Montreal Cognitive Assessment (MoCA).Cholinergic Pathways Hyperintensities Scale (CHIPS) scores and the overall WML burden by Schelten on fluidattenuated inversion recovery MRI images were determined and compared with MoCA scores.Spearman partial rank correlation coefficients and standardized regression coefficients were calculated.Results Thirty four patients were included ( mean age ( 62.2 ± 8.8 ) years, 45-82 years).MoCA scores negatively correlated with WML burdens by Schelten scores ( β = - 0.357, P = 0.042) and CHIPS scores ( β =-0.382,P=0.026).CHIPS scores were negatively associated with visuospatial and executive function (r = - 0.290, P = 0.048 ), naming function ( r = - 0.486, P = 0.002 ), attention ( r = - 0.311, P =0.037) and abstraction ( r = - 0.344, P = 0.023).Schelten scores were negatively associated with naming

  6. Effects of Tang Mai Kang Capsule on Angioneurotic Lesions in Alloxan-Induced Diabetic Mice

    Institute of Scientific and Technical Information of China (English)

    李华; 王军; 高丽君; 郭永成

    2004-01-01

    The effects of Tang Mai Kang Capsule (糖脉康胶囊) on blood sugar level, gangrene of the tail-tip, pain threshold and learning and memory abilities were investigated in alloxan-induced diabetic mice. The results showed that Tang Mai Kang Capsule could significantly decrease blood sugar level and incidence rate of gangrene of the tail-tip, increase pain threshold, and strengthen learning and memory abilities, suggesting that Tang Mai Kang Capsule functions to decrease blood sugar level and improve the complicated angioneurotic lesions of diabetes.

  7. A dual drug sensitive L. major induces protection without lesion in C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Noushin Davoudi

    Full Text Available Leishmaniasis is a major health problem in some endemic areas and yet, no vaccine is available against any form of the disease. Historically, leishmanization (LZ which is an inoculation of individual with live Leishmania, is the most effective control measure at least against cutaneous leishmaniasis (CL. Due to various reasons, LZ is not used today. Several live attenuated Leishmania have been developed but their use is limited. Previously, we developed a transgenic strain of L. major that harbors two suicide genes tk and cd genes (lmtkcd+/+ for use as a challenge strain in vaccine studies. These genes render the parasite susceptible to Ganciclovir (GCV and 5-flurocytosine (5-FC. The dual drug sensitive strain of L. major was developed using gene targeting technology using a modified Herpes Simplex Virus thymidine kinase gene (hsv-tk sensitive to Ganciclovir antibiotic and Saccharomyces cerevisae cytosine deaminase gene (cd sensitive to 5-flurocytosine that were stably introduced into L. major chromosome. BALB/c mice inoculated with lmtkcd+/+ developed lesions which upon treatment with GCV and 5-FC completely healed. In the current study, the transgenic lmtkcd+/+strain was assessed as a live vaccine model to determine the time necessary to develop a protective immune response. C57BL/6 mice were inoculated with the transgenic lmtkcd+/+strain, and treated at the time of inoculation (day 0 or at day 8 after inoculation. Immunized animals were challenged with wild-type L. major, and complete protection was induced in mice that were treated at day 8. The results show that in contrast to leishmanization, in group of mice inoculated with a dual sensitive L. major development and persistence of lesion is not necessary to induce Th1 response and protection.

  8. Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis.

    Science.gov (United States)

    Romualdo, Guilherme Ribeiro; Goto, Renata Leme; Henrique Fernandes, Ana Angélica; Cogliati, Bruno; Barbisan, Luis Fernando

    2016-10-01

    Although there is a concomitance of zinc deficiency and high incidence/mortality for hepatocellular carcinoma in certain human populations, there are no experimental studies investigating the modifying effects of zinc on hepatocarcinogenesis. Thus, we evaluated whether dietary zinc deficiency or supplementation alter the development of hepatocellular preneoplastic lesions (PNL). Therefore, neonatal male Balb/C mice were submitted to a diethylnitrosamine/2-acetylaminefluorene-induced hepatocarcinogenesis model. Moreover, mice were fed adequate (35 mg/kg diet), deficient (3 mg/kg) or supplemented (180 mg/kg) zinc diets. Mice were euthanized at 12 (early time-point) or 24 weeks (late time-point) after introducing the diets. At the early time-point, zinc deficiency decreased Nrf2 protein expression and GSH levels while increased p65 and p53 protein expression and the number of PNL/area. At the late time-point, zinc deficiency also decreased GSH levels while increased liver genotoxicity, cell proliferation into PNL and PNL size. In contrast, zinc supplementation increased antioxidant defense at both time-points but not altered PNL development. Our findings are the first to suggest that zinc deficiency predisposes mice to the PNL development in chemically-induced hepatocarcinogenesis. The decrease of Nrf2/GSH pathway and increase of liver genotoxicity, as well as the increase of p65/cell proliferation, are potential mechanisms to this zinc deficiency-mediated effect.

  9. Characteristics of testicular lesions in mice infected with a low dose of encephalomyocarditis (EMC) virus.

    Science.gov (United States)

    Yamanouchi-Ueno, Aito; Nakayama, Yumi; Doi, Kunio

    2004-08-01

    We investigated the characteristics of testicular lesions induced in mice with a low dose (10 plaque forming units/mouse) of the D variant of encephalomyocarditis (EMC-D) virus. The virus titers of blood and testis peaked at 5 days post-inoculation (5 DPI) and were no longer detected at 14 DPI. The IFN-gamma and iNOS mRNAs expression in the testis and spleen detected by RT-PCR was prominently elevated at 7 DPI, although the expression level of TNF-alpha mRNA was not affected. Signals of viral RNA were clearly detected in degenerative germinal epithelia (in situ hybridization) at 7 DPI, which were surrounded by a small number of macrophages and a few CD4 + T cells and CD8 + T cells (immunohistochemistry). Signals were no longer detected at 21 DPI when seminiferous tubules were highly degenerative and accompanied with infiltration of many macrophages and a small numbers of CD4 + T cells and CD8 + T cells. At 35 DPI, marked atrophy of germinal epithelia composed of Sertoli cells alone was observed, and there were almost no infiltrating cells detected. The present results suggest that macrophages may play an important role in the development of testicular lesions induced in mice with a low dose of EMC-D.

  10. Coriander alleviates 2,4-dinitrochlorobenzene-induced contact dermatitis-like skin lesions in mice.

    Science.gov (United States)

    Park, Gunhyuk; Kim, Hyo Geun; Lim, Soonmin; Lee, Wonil; Sim, Yeomoon; Oh, Myung Sook

    2014-08-01

    Contact dermatitis (CD) is a pattern of inflammatory responses in the skin that occurs through contact with external factors. The clinical picture is a polymorphic pattern of skin inflammation characterized by a wide range of clinical features, including itching, redness, scaling, and erythema. Coriandrum sativum L. (CS), commonly known as coriander, is a member of the Apiaceae family and is cultivated throughout the world for its nutritional and culinary values. Linoleic acid and linolenic acid in CS have various pharmacological activities. However, no study of the inhibitory effects of CS on CD has been reported. In this study, we demonstrated the protective effect of CS against 2,4-dinitrochlorobenzene-induced CD-like skin lesions. CS, at doses of 0.5-1%, applied to the dorsal skin inhibited the development of CD-like skin lesions. Moreover, the Th2-mediated inflammatory cytokines, immunoglobulin E, tumor necrosis factor-α, interferon-γ, interleukin (IL)-1, IL-4, and IL-13, were significantly reduced. In addition, CS increased the levels of total glutathione and heme oxygenase-1 protein. Thus, CS can inhibit the development of CD-like skin lesions in mice by regulating immune mediators and may be an effective alternative therapy for contact diseases.

  11. Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice.

    Directory of Open Access Journals (Sweden)

    Fei Bao

    Full Text Available BACKGROUND: Rheumatoid arthritis (RA is an inflammatory articular disease with cartilage and bone damage due to hyperplasic synoviocyte invasion and subsequent matrix protease digestion. Although monoclonal antibodies against tumor necrosis factor alpha (TNFα have been approved for clinical use in patients with RA, desired therapeutic regimens suitable for non-responders are still unavailable because etiological initiators leading to RA remain enigmatic and unidentified. METHODOLOGY/PRINCIPAL FINDINGS: Bacteria-induced arthritis (BIA that simulates collagen-induced arthritis (CIA is developed in mice upon daily live bacterial feeding. The morphological lesions of paw erythema and edema together with the histological alterations of synovial hyperplasia and lymphocytic infiltration emerge as the early-phase manifestations of BIA and CIA. Bacteria- or collagen-mediated global upregulation of pro-inflammatory cytokines is accompanied by the burst of nitric oxide (NO. Elevation of the serum NO level is correlated with decline of the blood oxygen saturation percentage (SpO2, reflecting a hypoxic consequence during development towards arthritis. NO-driven hypoxia is further evident from a positive relationship between NO and lactic acid (LA, an end product from glycolysis. Upregulation of hypoxia inducible factor 1 alpha (HIF-1α and vascular endothelial growth factor (VEGF validates hypoxia-induced angiogenesis in the inflamed synovium of modeling mice. Administration of the NO donor compound sodium nitroprusside (SNP causes articular inflammation by inducing synovial hypoxia. Anti-bacteria by the antibiotic cefotaxime and/or the immunosuppressant rapamycin or artesunate that also inhibits nitric oxide synthase (NOS can abrogate NO production, mitigate hypoxia, and considerably ameliorate or even completely abort synovitis, hence highlighting that NO may serve as an initiator of inflammatory arthritis. CONCLUSIONS/SIGNIFICANCE: Like collagen

  12. Focal lesions within the ventral striato-pallidum abolish attraction for male chemosignals in female mice.

    Science.gov (United States)

    Agustín-Pavón, Carmen; Martínez-García, Fernando; Lanuza, Enrique

    2014-02-01

    In rodents, socio-sexual behaviour is largely mediated by chemosensory cues, some of which are rewarding stimuli. Female mice display an innate attraction towards male chemosignals, dependent on the vomeronasal system. This behaviour likely reflects the hedonic value of sexual chemosignals. The anteromedial aspect of the olfactory tubercle, along with its associated islands of Calleja, receives vomeronasal inputs and sexually-dimorphic vasopressinergic innervation. Thus, we hypothesised that this portion of the ventral striato-pallidum, known to be involved in reward processing, might be important for sexual odorant-guided behaviours. In this study, we demonstrate that lesions of this region, but not of regions in the posterolateral striato-pallidum, abolish the attraction of female mice for male chemosignals, without affecting significantly their preference for a different natural reward (a sucrose solution). These results show that, at least in female mice, the integrity of the anterior aspect of the medioventral striato-pallidum, comprising a portion of the olfactory tubercle and associated islands of Calleja, is necessary for the attraction for male chemosignals. We suggest that this region contributes to the processing of the hedonic properties of biologically significant odorants.

  13. Blocking TLR2 activity diminishes and stabilizes advanced atherosclerotic lesions in apolipoprotein E-deficient mice

    Institute of Scientific and Technical Information of China (English)

    Xiao-xing WANG; Xiao-xi LV; Jia-ping WANG; Hui-min YAN; Zi-yan WANG; Han-zhi LIU; Xiao-ming FU

    2013-01-01

    Aim:Toll-like receptor 2 (TLR2) signaling plays a critical role in the initiation of atherosclerosis.The aim of this study was to investigate whether blocking TLR2 activity could produce therapeutic effects on advanced atherosclerosis.Methods:Forty-week old apolipoprotein E-deficient (ApoE-/-) mice fed on a normal diet were intravenously injected with a TLR2-neutralizing antibody or with an isotype-matched IgG for 18 weeks.Double-knockout ApoE-/-Tlr2-/-mice were taken as a positive control.At the end of the treatments,the plasma lipid levels were measured,and the plaque morphology,pro-inflammatory cytokines expression and apoptosis in arteries were analyzed.In the second part of this study,6-week old ApoE-/-and ApoE-/-Tlr2-/-mice fed on a high-cholesterol diet for 12 to 24 weeks,the expression levels of TLR2 and apoptotic markers in arteries were examined.Results:Blockade of TLR2 activity with TLR2-neutralizing antibody or knockout of Tlr2 gene did not alter the plasma lipid levels in ApoE-/-mice.However,the pharmacologic and genetic manipulations significantly reduced the plaque size and vessel stenosis,and increased plaque stability in the brachiocephalic arteries.The protective effects of TLR2 antagonism were associated with the suppressed expression of pro-inflammatory cytokines IL-6 and TNF-α and the inactivation of transcription factors NF-KB and Stat3.In addition,blocking TLR2 activity attenuated ER stress-induced macrophage apoptosis in the brachiocephalic arteries,which could promote the resolution of necrotic cores in advanced atherosclerosis.Moreover,high-cholesterol diet more prominently accelerated atherosclerotic formation and increased the expression of pro-apoptotic protein CHOP and apoptosis in ApoE-/-mice than in ApoE-/-Tlr2-/-mice.Conclusion:The pharmacologic or genetic blockade of TLR2 activity diminishes and stabilizes advanced atherosclerotic lesions in ApoE-/-mice.Thus,targeting TLR2 signaling may be a promising therapeutic strategy against

  14. Capsaicin-induced corneal lesions in mice and the effects of chemical sympathectomy.

    Science.gov (United States)

    Shimizu, T; Izumi, K; Fujita, S; Koja, T; Sorimachi, M; Ohba, N; Fukuda, T

    1987-11-01

    Effects of chemical sympathectomy on corneal changes induced in mice by a s.c. injection of capsaicin were investigated. Pretreatment with a s.c. injection of 6-hydroxydopamine (6-OHDA) on the 1st and 2nd postnatal day or on the 14th and 15th postnatal day led to a marked suppression of the capsaicin-induced corneal lesions. This suppressive effect also was evident in case of administration after capsaicin treatment. Intraventricular injection of 6-OHDA had a slight, transient effect. DSP4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], another potent substance used for sympathetic denervation, had a suppressive effect similar to that of 6-OHDA. The concentration of capsaicin in tissues of the head was unaltered with 6-OHDA. The content of substance P (SP) in the ocular anterior segments was decreased, dose-dependently, with capsaicin administration. Neonatal administration of 6-OHDA decreased the rate of capsaicin-induced reduction of SP. However, this effect of 6-OHDA was too slight to explain the suppression of the corneal lesions, as the intensity score of lesions with a large dose of capsaicin after 6-OHDA was lower than that with a small dose of capsaicin without 6-OHDA, whereas SP content in the former was still much lower than that in the latter. On the other hand, the content of norepinephrine in the ocular tissues was decreased in the presence of 6-OHDA but not capsaicin. These results suggest that the corneal changes induced by capsaicin are largely inhibited by a decreased activity in the peripheral sympathetic system.

  15. Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    NARCIS (Netherlands)

    De Souza Silva, M. A.; Dolga, Amalia; Pieri, I.; Marchetti, L.; Eisel, U. L. M.; Huston, J. P.; Dere, E.

    2006-01-01

    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the n

  16. Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice.

    Directory of Open Access Journals (Sweden)

    Erik van Kampen

    Full Text Available INTRODUCTION: Oxysterol binding protein Related Proteins (ORPs mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown. METHODS AND RESULTS: LDL receptor knockout (KO mice were transplanted with bone marrow (BM from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity. CONCLUSIONS: Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.

  17. Pharmacological characteristics of catalepsy induced by intracerebroventricular administration of histamine in mice: the importance of muscarinic step in central cholinergic neurons.

    Science.gov (United States)

    Onodera, K; Shinoda, H

    1991-05-01

    Histamine-induced catalepsy was antagonized potently by scopolamine, an antimuscarinic drug, and partially blocked by sparteine. Neither methylatropine nor antinicotinic drugs could reverse histamine-induced catalepsy. These results indicate the greater importance of muscarinic receptors rather than their nicotinic counterparts in histamine-induced catalepsy. Various antiparkinson drugs, i.e. biperiden and trihexyphenidyl, which have antimuscarinic activity or dopamine agonists, i.e. L-dopa, amantadine and bromocriptine, could antagonize the histamine-induced catalepsy to various degrees. Thus, catalepsy induced by icv histamine can be evoked not only by an activation of the histamine receptor, but also indirectly due to cholinergic and dopaminergic imbalance.

  18. IL-1α and IL-1β-producing macrophages populate lung tumor lesions in mice.

    Science.gov (United States)

    Terlizzi, Michela; Colarusso, Chiara; Popolo, Ada; Pinto, Aldo; Sorrentino, Rosalinda

    2016-09-06

    Macrophages highly populate tumour microenvironment and are referred to as tumor-associated macrophages (TAMs). The inflammasome is a multiprotein complex responsible of IL-1 like cytokines release, which biology has been widely studied by using bone-marrow-derived macrophages to mimic a physiological and/or host defense condition. To understand the role of this complex in lung tumor-associated macrophages (TAMs), we isolated and cultured broncho-alveolar lavage (BAL)-derived cells of lung tumor-bearing mice. The stimulation of lung TAMs with LPS+ATP increased the release of IL-1β. The inhibition of NLRP3 by means of glybenclamide significantly reduced IL-1β release. Similarly, C3H-derived, caspase-1 ko and caspase-11 ko TAMs released significantly reduced levels of IL-1β. Moreover, the stimulation of lung TAMs with the sole LPS induced a significant release of IL-1α, which was significantly reduced after caspase-1 pharmacological inhibition, and in TAMs genetically lacking caspase-1 and caspase-11. The inhibition of calpain I/II by means of MDL28170 did not alter IL-1α release after LPS treatment of lung TAMs. To note, the inoculation of LPS-treated bone marrow-derived macrophages into carcinogen-exposed mice increased lung tumor formation. In contrast, the depletion of TAMs by means of clodronate liposomes reduced lung tumorigenesis, associated to lower in vivo release of IL-1α and IL-1β.In conclusion, our data imply lung tumor lesions are populated by macrophages which pro-tumor activity is regulated by the activation of the NLRP3 inflammasome that leads to the release of IL-1α and IL-1β in a caspase-11/caspase-1-dependent manner.

  19. BRAINSTEM CHOLINERGIC MODULATION OF MUSCLE TONE IN INFANT RATS

    OpenAIRE

    Gall, Andrew J.; Poremba, Amy; Blumberg, Mark S.

    2007-01-01

    In week-old rats, lesions of the dorsolateral pontine tegmentum (DLPT) and nucleus pontis oralis (PnO) have opposing effects on nuchal muscle tone. Specifically, pups with DLPT lesions exhibit prolonged bouts of nuchal muscle atonia (indicative of sleep) and pups with PnO lesions exhibit prolonged bouts of high nuchal muscle tone (indicative of wakefulness). Here we test the hypothesis that nuchal muscle tone is modulated, at least in part, by cholinergically mediated interactions between the...

  20. Intrinsic cholinergic neurons in the hippocampus: fact or artefact?

    Directory of Open Access Journals (Sweden)

    Jan Krzysztof Blusztajn

    2016-03-01

    Full Text Available It is generally agreed that hippocampal acetylcholine (ACh is synthesized and released exclusively from the terminals of the long-axon afferents whose cell bodies reside in the medial septum and diagonal band. The search for intrinsic cholinergic neurons in the hippocampus has a long history; however evidence for the existence of these neurons has been inconsistent, with most investigators failing to detect them using in situ hybridization or immunohistochemical staining of the cholinergic markers, choline acetyltransferase (CHAT or vesicular acetylcholine transporter (VACHT. Advances in the use of bacterial artificial chromosome (BAC transgenic mice expressing a reporter protein under the control of the genomic elements of the Chat gene (Chat-BAC mice have facilitated studies of cholinergic neurons. Such mice show robust and faithful expression of the reporter proteins in all known cholinergic cell populations. The availability of the Chat-BAC mice re-ignited interest in hippocampal cholinergic interneurons, because a small number of such reporter-expressing cells is frequently observed in the hippocampus of these mice. However, to date, attempts to confirm that these neurons co-express the endogenous cholinergic markers CHAT or VACHT, or release ACh, have been unsuccessful. Without such confirmatory evidence it is best to conclude that there are no cholinergic neurons in the hippocampus. Similar considerations apply to other BAC transgenic lines, whose utility as a discovery tool for cell populations heretofore not known to express the genes of interest encoded by the BACs, must be validated by methods that detect expression of the endogenous genes.

  1. Effects of Age and Parity on Mammary Gland Lesions and Progenitor Cells in the FVB/N-RC Mice

    OpenAIRE

    Ahmed Raafat; Luigi Strizzi; Karim Lashin; Erika Ginsburg; David McCurdy; David Salomon; Gilbert H Smith; Daniel Medina; Robert Callahan

    2012-01-01

    The FVB/N mouse strain is extensively used in the development of animal models for breast cancer research. Recently it has been reported that the aging FVB/N mice develop spontaneous mammary lesions and tumors accompanied with abnormalities in the pituitary glands. These observations have a great impact on the mouse models of human breast cancer. We have developed a population of inbred FVB/N mice (designated FVB/N-RC) that have been genetically isolated for 20 years. To study the effects of ...

  2. Cholinergic receptor blockade by scopolamine and mecamylamine exacerbates global cerebral ischemia induced memory dysfunction in C57BL/6J mice.

    Science.gov (United States)

    Ray, R S; Rai, S; Katyal, A

    2014-12-01

    Global cerebral ischemia/reperfusion (GCI/R) injury encompasses complex pathophysiological sequalae, inducing loss of hippocampal neurons and behavioural deficits. Progressive neuronal death and memory dysfunctions culminate from several different mechanisms like oxidative stress, excitotoxicity, neuroinflammation and cholinergic hypofunction. Experimental evidences point to the beneficial effects of cholinomimetic agents such as rivastigmine and galantamine in improving memory outcomes following GCI/R injury. However, the direct implications of muscarinic and nicotinic receptor blockade during global cerebral ischemia/reperfusion injury have not been investigated. Therefore, we evaluated the relative involvement of muscarinic and nicotinic receptors in spatial/associative memory functions and neuronal damage during global cerebral ischemia reperfusion injury. The outcomes of present study support the idea that preservation of both muscarinic and nicotinic receptor functions is essential to alleviate hippocampal neuronal death in CA1 region following global cerebral ischemia/reperfusion injury.

  3. Early postnatal nicotine exposure causes hippocampus-dependent memory impairments in adolescent mice: Association with altered nicotinic cholinergic modulation of LTP, but not impaired LTP.

    Science.gov (United States)

    Nakauchi, Sakura; Malvaez, Melissa; Su, Hailing; Kleeman, Elise; Dang, Richard; Wood, Marcelo A; Sumikawa, Katumi

    2015-02-01

    Fetal nicotine exposure from smoking during pregnancy causes long-lasting cognitive impairments in offspring, yet little is known about the mechanisms that underlie this effect. Here we demonstrate that early postnatal exposure of mouse pups to nicotine via maternal milk impairs long-term, but not short-term, hippocampus-dependent memory during adolescence. At the Schaffer collateral (SC) pathway, the most widely studied synapses for a cellular correlate of hippocampus-dependent memory, the induction of N-methyl-D-aspartate receptor-dependent transient long-term potentiation (LTP) and protein synthesis-dependent long-lasting LTP are not diminished by nicotine exposure, but rather unexpectedly the threshold for LTP induction becomes lower after nicotine treatment. Using voltage sensitive dye to visualize hippocampal activity, we found that early postnatal nicotine exposure also results in enhanced CA1 depolarization and hyperpolarization after SC stimulation. Furthermore, we show that postnatal nicotine exposure induces pervasive changes to the nicotinic modulation of CA1 activity: activation of nicotinic receptors no longer increases CA1 network depolarization, acute nicotine inhibits rather than facilitates the induction of LTP at the SC pathway by recruiting an additional nicotinic receptor subtype, and acute nicotine no longer blocks LTP induction at the temporoammonic pathway. These findings reflect the pervasive impact of nicotine exposure during hippocampal development, and demonstrate an association of hippocampal memory impairments with altered nicotinic cholinergic modulation of LTP, but not impaired LTP. The implication of our results is that nicotinic cholinergic-dependent plasticity is required for long-term memory formation and that postnatal nicotine exposure disrupts this form of plasticity.

  4. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents.

    Science.gov (United States)

    Kanazawa, Hideaki; Ieda, Masaki; Kimura, Kensuke; Arai, Takahide; Kawaguchi-Manabe, Haruko; Matsuhashi, Tomohiro; Endo, Jin; Sano, Motoaki; Kawakami, Takashi; Kimura, Tokuhiro; Monkawa, Toshiaki; Hayashi, Matsuhiko; Iwanami, Akio; Okano, Hideyuki; Okada, Yasunori; Ishibashi-Ueda, Hatsue; Ogawa, Satoshi; Fukuda, Keiichi

    2010-02-01

    Although several cytokines and neurotrophic factors induce sympathetic neurons to transdifferentiate into cholinergic neurons in vitro, the physiological and pathophysiological roles of this remain unknown. During congestive heart failure (CHF), sympathetic neural tone is upregulated, but there is a paradoxical reduction in norepinephrine synthesis and reuptake in the cardiac sympathetic nervous system (SNS). Here we examined whether cholinergic transdifferentiation can occur in the cardiac SNS in rodent models of CHF and investigated the underlying molecular mechanism(s) using genetically modified mice. We used Dahl salt-sensitive rats to model CHF and found that, upon CHF induction, the cardiac SNS clearly acquired cholinergic characteristics. Of the various cholinergic differentiation factors, leukemia inhibitory factor (LIF) and cardiotrophin-1 were strongly upregulated in the ventricles of rats with CHF. Further, LIF and cardiotrophin-1 secreted from cultured failing rat cardiomyocytes induced cholinergic transdifferentiation in cultured sympathetic neurons, and this process was reversed by siRNAs targeting Lif and cardiotrophin-1. Consistent with the data in rats, heart-specific overexpression of LIF in mice caused cholinergic transdifferentiation in the cardiac SNS. Further, SNS-specific targeting of the gene encoding the gp130 subunit of the receptor for LIF and cardiotrophin-1 in mice prevented CHF-induced cholinergic transdifferentiation. Cholinergic transdifferentiation was also observed in the cardiac SNS of autopsied patients with CHF. Thus, CHF causes target-dependent cholinergic transdifferentiation of the cardiac SNS via gp130-signaling cytokines secreted from the failing myocardium.

  5. Reevaluation and Classification of Duodenal Lesions in B6C3F1 Mice and F344 Rats from 4 Studies of Hexavalent Chromium in Drinking Water.

    Science.gov (United States)

    Cullen, John M; Ward, Jerrold M; Thompson, Chad M

    2016-02-01

    Thirteen-week and 2-year drinking water studies conducted by the National Toxicology Program (NTP) reported that hexavalent chromium (Cr(VI)) induced diffuse epithelial hyperplasia in the duodenum of B6C3F1 mice but not F344 rats. In the 2-year study, Cr(VI) exposure was additionally associated with duodenal adenomas and carcinomas in mice only. Subsequent 13-week Cr(VI) studies conducted by another group demonstrated non-neoplastic duodenal lesions in B6C3F1 mice similar to those of the NTP study as well as mild duodenal hyperplasia in F344 rats. Because intestinal lesions in mice are the basis for proposed safety standards for Cr(VI), and the histopathology data are relevant to the mode of action, consistency (an important Hill criterion for causality) was assessed across the aforementioned studies. Two veterinary pathologists applied uniform diagnostic criteria to the duodenal lesions in rats and mice from the 4 repeated-dose studies. Comparable non-neoplastic intestinal lesions were evident in mice and rats from all 4 studies; however, the incidence and severity of intestinal lesions were greater in mice than rats. These findings demonstrate consistency across studies and species and highlight the importance of standardized nomenclature for intestinal pathology. The differences in the severity of non-neoplastic lesions also likely contribute to the differential tumor response.

  6. Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zhao

    Full Text Available The objective of this study is to determine the role of perilipin 1 (Plin1 in whole body or bone marrow-derived cells on atherogenesis.Accumulated evidence have indicated the role of Plin1 in atherosclerosis, however, these findings are controversial. In this study, we showed that Plin1 was assembled and colocalized with CD68 in macrophages in atherosclerotic plaques of ApoE-/- mice. We further found 39% reduction of plaque size in the aortic roots of Plin1 and ApoE double knockout (Plin1-/-ApoE-/- females compared with ApoE-/- female littermates. In order to verify whether this reduction was macrophage-specific, the bone marrow cells from wild-type or Plin1 deficient mice (Plin1-/- were transplanted into LDL receptor deficient mice (LDLR-/-. Mice receiving Plin1-/- bone marrow cells showed also 49% reduction in aortic atherosclerotic lesions compared with LDLR-/- mice received wild-type bone marrow cells. In vitro experiments showed that Plin1-/- macrophages had decreased protein expression of CD36 translocase and an enhanced cholesterol ester hydrolysis upon aggregated-LDL loading, with unaltered expression of many other regulators of cholesterol metabolism, such as cellular lipases, and Plin2 and 3. Given the fundamental role of Plin1 in protecting LD lipids from lipase hydrolysis, it is reasonably speculated that the assembly of Plin1 in microphages might function to reduce lipolysis and hence increase lipid retention in ApoE-/- plaques, but this pro-atherosclerotic property would be abrogated on inactivation of Plin1.Plin1 deficiency in bone marrow-derived cells may be responsible for reduced atherosclerotic lesions in the mice.

  7. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG increase REM sleep in hypocretin knockout mice.

    Directory of Open Access Journals (Sweden)

    Satvinder Kaur

    Full Text Available Ten years ago the sleep disorder narcolepsy was linked to the neuropeptide hypocretin (HCRT, also known as orexin. This disorder is characterized by excessive day time sleepiness, inappropriate triggering of rapid-eye movement (REM sleep and cataplexy, which is a sudden loss of muscle tone during waking. It is still not known how HCRT regulates REM sleep or muscle tone since HCRT neurons are localized only in the lateral hypothalamus while REM sleep and muscle atonia are generated from the brainstem. To identify a potential neuronal circuit, the neurotoxin hypocretin-2-saporin (HCRT2-SAP was used to lesion neurons in the ventral lateral periaquaductal gray (vlPAG. The first experiment utilized hypocretin knock-out (HCRT-ko mice with the expectation that deletion of both HCRT and its target neurons would exacerbate narcoleptic symptoms. Indeed, HCRT-ko mice (n = 8 given the neurotoxin HCRT2-SAP (16.5 ng/23nl/sec each side in the vlPAG had levels of REM sleep and sleep fragmentation that were considerably higher compared to HCRT-ko given saline (+39%; n = 7 or wildtype mice (+177%; n = 9. However, cataplexy attacks did not increase, nor were levels of wake or non-REM sleep changed. Experiment 2 determined the effects in mice where HCRT was present but the downstream target neurons in the vlPAG were deleted by the neurotoxin. This experiment utilized an FVB-transgenic strain of mice where eGFP identifies GABA neurons. We verified this and also determined that eGFP neurons were immunopositive for the HCRT-2 receptor. vlPAG lesions in these mice increased REM sleep (+79% versus saline controls and it was significantly correlated (r = 0.89 with loss of eGFP neurons. These results identify the vlPAG as one site that loses its inhibitory control over REM sleep, but does not cause cataplexy, as a result of hypocretin deficiency.

  8. Efficient drug delivery to atherosclerotic lesions and the antiatherosclerotic effect by dexamethasone incorporated into liposomes in atherogenic mice.

    Science.gov (United States)

    Chono, Sumio; Tauchi, Yoshihiko; Deguchi, Yoshiharu; Morimoto, Kazuhiro

    2005-05-01

    In order to confirm the efficacy of dexamethasone (DXM) incorporated into liposomes (DXM-liposomes) on atherosclerosis, drug delivery to atherosclerotic lesions and the antiatherosclerotic effect by DXM-liposomes were investigated in atherogenic mice. DXM-liposomes were prepared with egg yolk phosphatidylcholine, cholesterol and dicetylphosphate in a lipid molar ratio of 7/2/1 by the hydration method and then adjusted to three different particle sizes to clarify the influence of particle size on the drug delivery to atherosclerotic lesions and the effect on atherosclerosis. The particle sizes of DXM-liposomes were 519 nm (L500), 202 nm (L200) and 68.6 nm (L70), respectively. In both size, DXM concentration and DXM/lipid molar ratio in DXM-liposomes suspension were 1 mg DXM/ml and 0.134 mol DXM/mol total lipids, respectively. Atherogenic mice used as an experimental model develop an atherosclerotic lesion in the aorta and they were prepared by feeding an atherogenic diet for 14 weeks. The aortic pharmacokinetics of DXM-liposomes was examined by intravenous administration to atherogenic mice. The aortic uptake clearance of DXM in atherogenic mice treated with L200 was 2.6--3.2 fold greater than that in animals treated with L500, L70 or free DXM (f-DXM). Furthermore, the effects of DXM-liposomes on atherosclerosis were examined by intravenous administration to atherogenic mice once a week from 8 to 14 weeks. The antiatherosclerotic effects of DXM-liposomes were evaluated by determination of the aortic cholesterol ester (CE) level. The aortic CE level in atherogenic mice treated with L200 (55 microg DXM/kg) was significantly lower than that in animals treated with PBS. The antiatherosclerotic effect of L200 (55 microg DXM/kg) was significantly more potent than that of f-DXM (550 microg DXM/kg). These findings suggest that efficient delivery of DXM to the atherosclerotic lesions by L200 induces an excellent antiatherosclerotic effect at a lower dose. Therefore, L200 may

  9. Glial response in the rat models of functionally distinct cholinergic neuronal denervations.

    Science.gov (United States)

    Bataveljic, Danijela; Petrovic, Jelena; Lazic, Katarina; Saponjic, Jasna; Andjus, Pavle

    2015-02-01

    Alzheimer's disease (AD) involves selective loss of basal forebrain cholinergic neurons, particularly in the nucleus basalis (NB). Similarly, Parkinson's disease (PD) might involve the selective loss of pedunculopontine tegmental nucleus (PPT) cholinergic neurons. Therefore, lesions of these functionally distinct cholinergic centers in rats might serve as models of AD and PD cholinergic neuropathologies. Our previous articles described dissimilar sleep/wake-state disorders in rat models of AD and PD cholinergic neuropathologies. This study further examines astroglial and microglial responses as underlying pathologies in these distinct sleep disorders. Unilateral lesions of the NB or the PPT were induced with rats under ketamine/diazepam anesthesia (50 mg/kg i.p.) by using stereotaxically guided microinfusion of the excitotoxin ibotenic acid (IBO). Twenty-one days after the lesion, loss of cholinergic neurons was quantified by nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry, and the astroglial and microglial responses were quantified by glia fibrillary acidic protein/OX42 immunohistochemistry. This study demonstrates, for the first time, the anatomofunctionally related astroglial response following unilateral excitotoxic PPT cholinergic neuronal lesion. Whereas IBO NB and PPT lesions similarly enhanced local astroglial and microglial responses, astrogliosis in the PPT was followed by a remote astrogliosis within the ipslilateral NB. Conversely, there was no microglial response within the NB after PPT lesions. Our results reveal the rostrorostral PPT-NB astrogliosis after denervation of cholinergic neurons in the PPT. This hierarchically and anatomofunctionally guided PPT-NB astrogliosis emerged following cholinergic neuronal loss greater than 17% throughout the overall rostrocaudal PPT dimension.

  10. Luminal epithelium in endometrial fragments affects their vascularization, growth and morphological development into endometriosis-like lesions in mice

    Directory of Open Access Journals (Sweden)

    Dilu Feng

    2014-02-01

    Full Text Available In endometriosis research, endometriosis-like lesions are usually induced in rodents by transplantation of isolated endometrial tissue fragments to ectopic sites. In the present study, we investigated whether this approach is affected by the cellular composition of the grafts. For this purpose, endometrial tissue fragments covered with luminal epithelium (LE+ and without luminal epithelium (LE− were transplanted from transgenic green-fluorescent-protein-positive (GFP+ donor mice into the dorsal skinfold chamber of GFP− wild-type recipient animals to analyze their vascularization, growth and morphology by means of repetitive intravital fluorescence microscopy, histology and immunohistochemistry during a 14-day observation period. LE− fragments developed into typical endometriosis-like lesions with cyst-like dilated endometrial glands and a well-vascularized endometrial stroma. In contrast, LE+ fragments exhibited a polypoid morphology and a significantly reduced blood perfusion after engraftment, because the luminal epithelium prevented the vascular interconnection with the microvasculature of the surrounding host tissue. This was associated with a markedly decreased growth rate of LE+ lesions compared with LE− lesions. In addition, we found that many GFP+ microvessels grew outside the LE− lesions and developed interconnections to the host microvasculature, indicating that inosculation is an important mechanism in the vascularization process of endometriosis-like lesions. Our findings demonstrate that the luminal epithelium crucially affects the vascularization, growth and morphology of endometriosis-like lesions. Therefore, it is of major importance to standardize the cellular composition of endometrial grafts in order to increase the validity and reliability of pre-clinical rodent studies in endometriosis research.

  11. Luminal epithelium in endometrial fragments affects their vascularization, growth and morphological development into endometriosis-like lesions in mice.

    Science.gov (United States)

    Feng, Dilu; Menger, Michael D; Wang, Hongbo; Laschke, Matthias W

    2014-02-01

    In endometriosis research, endometriosis-like lesions are usually induced in rodents by transplantation of isolated endometrial tissue fragments to ectopic sites. In the present study, we investigated whether this approach is affected by the cellular composition of the grafts. For this purpose, endometrial tissue fragments covered with luminal epithelium (LE(+)) and without luminal epithelium (LE(-)) were transplanted from transgenic green-fluorescent-protein-positive (GFP(+)) donor mice into the dorsal skinfold chamber of GFP(-) wild-type recipient animals to analyze their vascularization, growth and morphology by means of repetitive intravital fluorescence microscopy, histology and immunohistochemistry during a 14-day observation period. LE(-) fragments developed into typical endometriosis-like lesions with cyst-like dilated endometrial glands and a well-vascularized endometrial stroma. In contrast, LE(+) fragments exhibited a polypoid morphology and a significantly reduced blood perfusion after engraftment, because the luminal epithelium prevented the vascular interconnection with the microvasculature of the surrounding host tissue. This was associated with a markedly decreased growth rate of LE(+) lesions compared with LE(-) lesions. In addition, we found that many GFP(+) microvessels grew outside the LE(-) lesions and developed interconnections to the host microvasculature, indicating that inosculation is an important mechanism in the vascularization process of endometriosis-like lesions. Our findings demonstrate that the luminal epithelium crucially affects the vascularization, growth and morphology of endometriosis-like lesions. Therefore, it is of major importance to standardize the cellular composition of endometrial grafts in order to increase the validity and reliability of pre-clinical rodent studies in endometriosis research.

  12. Brainstem cholinergic modulation of muscle tone in infant rats.

    Science.gov (United States)

    Gall, Andrew J; Poremba, Amy; Blumberg, Mark S

    2007-06-01

    In week-old rats, lesions of the dorsolateral pontine tegmentum (DLPT) and nucleus pontis oralis (PnO) have opposing effects on nuchal muscle tone. Specifically, pups with DLPT lesions exhibit prolonged bouts of nuchal muscle atonia (indicative of sleep) and pups with PnO lesions exhibit prolonged bouts of high nuchal muscle tone (indicative of wakefulness). Here we test the hypothesis that nuchal muscle tone is modulated, at least in part, by cholinergically mediated interactions between these two regions. First, in unanesthetized pups, we found that chemical infusion of the cholinergic agonist carbachol (22 mm, 0.1 microL) within the DLPT produced high muscle tone. Next, chemical lesions of the PnO were used to produce a chronic state of high nuchal muscle tone, at which time the cholinergic antagonist scopolamine (10 mm, 0.1 microL) was infused into the DLPT. Scopolamine effectively decreased nuchal muscle tone, thus suggesting that lesions of the PnO increase muscle tone via cholinergic activation of the DLPT. Using 2-deoxyglucose autoradiography, metabolic activation throughout the DLPT was observed after PnO lesions. Finally, consistent with the hypothesis that PnO inactivation produces high muscle tone, infusion of the sodium channel blocker lidocaine (2%) into the PnO of unanesthetized pups produced rapid increases in muscle tone. We conclude that, even early in infancy, the DLPT is critically involved in the regulation of muscle tone and behavioral state, and that its activity is modulated by a cholinergic mechanism that is directly or indirectly controlled by the PnO.

  13. Genetic Ablation of Soluble TNF Does Not Affect Lesion Size and Functional Recovery after Moderate Spinal Cord Injury in Mice

    Directory of Open Access Journals (Sweden)

    Ditte Gry Ellman

    2016-01-01

    Full Text Available Traumatic spinal cord injury (SCI is followed by an instant increase in expression of the microglial-derived proinflammatory cytokine tumor necrosis factor (TNF within the lesioned cord. TNF exists both as membrane-anchored TNF (mTNF and as cleaved soluble TNF (solTNF. We previously demonstrated that epidural administration of a dominant-negative inhibitor of solTNF, XPro1595, to the contused spinal cord resulted in changes in Iba1 protein expression in microglia/macrophages, decreased lesion volume, and improved locomotor function. Here, we extend our studies using mice expressing mTNF, but no solTNF (mTNFΔ/Δ, to study the effect of genetic ablation of solTNF on SCI. We demonstrate that TNF levels were significantly decreased within the lesioned spinal cord 3 days after SCI in mTNFΔ/Δ mice compared to littermates. This decrease did, however, not translate into significant changes in other pro- and anti-inflammatory cytokines (IL-10, IL-1β, IL-6, IL-5, IL-2, CXCL1, CCL2, or CCL5, despite a tendency towards increased IL-10 and decreased IL-1β, TNFR1, and TNFR2 levels in mTNFΔ/Δ mice. In addition, microglial and leukocyte infiltration, activation state (Iba1, CD11b, CD11c, CD45, and MHCII, lesion size, and functional outcome after moderate SCI were comparable between genotypes. Collectively, our data demonstrate that genetic ablation of solTNF does not significantly modulate postlesion outcome after SCI.

  14. Angelicae Dahuricae Radix Inhibits Dust Mite Extract-Induced Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice

    Directory of Open Access Journals (Sweden)

    Hoyoung Lee

    2012-01-01

    Full Text Available We examined whether Angelicae Dahuricae Radix (AR suppresses the development of atopic dermatitis (AD-like skin lesions induced by Dermatophagoides farinae in NC/Nga mice. To investigate the effect of AR, we measured the AD severity score, measured plasma levels of IgE and histamine, and performed histological analysis in NC/Nga mice. We also confirmed the anti-inflammatory effects of AR by measuring TARC/CCL17 production from LPS-treated RAW 264.7 cells and mRNA levels of TARC and MDC/CCL22 in TNF-α/IFN-γ-treated HaCaT cells. 10 mg/day of AR extract was applied for 4 weeks to NC/Nga mice. Both the AR extract and 0.1% tacrolimus suppressed the development of AD-like skin lesions and reduced dermatitis scores of the back and ear skin. AR extracts caused an inhibition of histological changes induced by repeated application of D. farinae and a reduction of IgE and histamine levels in plasma (P<0.05. Furthermore, NO production in LPS-treated RAW 264.7 cells was diminished in a dose-dependent manner, and hTARC production and TARC and MDC mRNA levels in TNF-α/IFN-γ-treated HaCaT cells were diminished by AR. The inhibitory effect of AR on NO, TARC and MDC production may be associated with the suppression of AD-like skin lesions in D. farinae-induced NC/Nga mice.

  15. Effects of age and parity on mammary gland lesions and progenitor cells in the FVB/N-RC mice.

    Science.gov (United States)

    Raafat, Ahmed; Strizzi, Luigi; Lashin, Karim; Ginsburg, Erika; McCurdy, David; Salomon, David; Smith, Gilbert H; Medina, Daniel; Callahan, Robert

    2012-01-01

    The FVB/N mouse strain is extensively used in the development of animal models for breast cancer research. Recently it has been reported that the aging FVB/N mice develop spontaneous mammary lesions and tumors accompanied with abnormalities in the pituitary glands. These observations have a great impact on the mouse models of human breast cancer. We have developed a population of inbred FVB/N mice (designated FVB/N-RC) that have been genetically isolated for 20 years. To study the effects of age and parity on abnormalities of the mammary glands of FVB/N-RC mice, twenty-five nulliparous and multiparous (3-4 pregnancies) females were euthanized at 16-22 months of age. Examination of the mammary glands did not reveal macroscopic evidence of mammary gland tumors in either aged-nulliparous or multiparous FVB/N-RC mice (0/25). However, histological analysis of the mammary glands showed rare focal nodules of squamous changes in 2 of the aged multiparous mice. Mammary gland hyperplasia was detected in 8% and 71% of the aged-nulliparous and aged-multiparous mice, respectively. Epithelial contents and serum levels of triiodothyronine were significantly higher in the experimental groups than the 14-wk-old control mice. Immuno-histochemical staining of the pituitary gland pars distalis showed no difference in prolactin staining between the control and the aged mice. Tissue transplant and dilution studies showed no effect of age and/or parity on the ability of putative progenitor cells present among the injected mammary cells to repopulate a cleared fat pad and develop a full mammary gland outgrowth. This FVB/N-RC mouse substrain is suitable to develop mouse models for breast cancer.

  16. Effects of age and parity on mammary gland lesions and progenitor cells in the FVB/N-RC mice.

    Directory of Open Access Journals (Sweden)

    Ahmed Raafat

    Full Text Available The FVB/N mouse strain is extensively used in the development of animal models for breast cancer research. Recently it has been reported that the aging FVB/N mice develop spontaneous mammary lesions and tumors accompanied with abnormalities in the pituitary glands. These observations have a great impact on the mouse models of human breast cancer. We have developed a population of inbred FVB/N mice (designated FVB/N-RC that have been genetically isolated for 20 years. To study the effects of age and parity on abnormalities of the mammary glands of FVB/N-RC mice, twenty-five nulliparous and multiparous (3-4 pregnancies females were euthanized at 16-22 months of age. Examination of the mammary glands did not reveal macroscopic evidence of mammary gland tumors in either aged-nulliparous or multiparous FVB/N-RC mice (0/25. However, histological analysis of the mammary glands showed rare focal nodules of squamous changes in 2 of the aged multiparous mice. Mammary gland hyperplasia was detected in 8% and 71% of the aged-nulliparous and aged-multiparous mice, respectively. Epithelial contents and serum levels of triiodothyronine were significantly higher in the experimental groups than the 14-wk-old control mice. Immuno-histochemical staining of the pituitary gland pars distalis showed no difference in prolactin staining between the control and the aged mice. Tissue transplant and dilution studies showed no effect of age and/or parity on the ability of putative progenitor cells present among the injected mammary cells to repopulate a cleared fat pad and develop a full mammary gland outgrowth. This FVB/N-RC mouse substrain is suitable to develop mouse models for breast cancer.

  17. Nematode cholinergic pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  18. Murine adenovirus infection of SCID mice induces hepatic lesions that resemble human Reye syndrome.

    OpenAIRE

    Pirofski, L.; Horwitz, M S; Scharff, M. D.; Factor, S. M.

    1991-01-01

    Murine adenovirus type 1 (MAV-1) infection of CB-17 SCID mice (which are homozygous for the severe combined immunodeficiency mutation) induces hepatic histopathologic and ultrastructural features that are strikingly similar to human Reye syndrome. Gross pathologic examination of MAV-1-infected mice revealed only pale yellow liver tissue. Histopathologic studies of tissue from MAV-1-infected mice revealed diffuse hepatic injury manifested by microvesicular fatty degenerative changes of hepatoc...

  19. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  20. Topical effectiveness of different concentrations of nanosilver solution on Leishmania major lesions in Balb/c mice

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Nilforoushzadeh , Leila Shirani-Bidabadi , Azadeh Zolfaghari-Baghbaderani , Reza Jafari , Motahar Heidari-Beni , Amir Hossein Siadat & Mehdi Ghahraman-Tabrizi

    2012-12-01

    Full Text Available Background & objectives: Cutaneous leishmaniasis is an infection caused by protozoan genus Leishmania. Althoughglucantime is commonly used for the treatment of leishmaniasis, it has some side effects including increased liverenzymes and electrocardiogram changes. In addition, the drug is expensive, the injection is painful, and researchshows that resistance of parasite to glucantime is growing in different parts of the world. Therefore, scientists arepaying more attention to develop new drugs such as nanosilver solution. The present study is an attempt toevaluate the in vivo topical effects of different concentrations of nanosilver solution in the treatment of leishmaniasislesions.Methods: In all, 90 female Balb/c mice aged 6–8 wk were infected with 2×106 viable stationary-phase promastigotesin the base of tail. Different concentrations (60, 80, 120, 130 and 2000 ppm nanosilver solution were used in thepresent study to test the efficacy in the treatment of lesions. Clinical control of the infection trends was conductedweekly for 5 wk by measuring lesion diameter with standard Kulis-Vernieh. Data were analyzed by paired t-test,analysis of variance (ANOVA, and Tukey test.Results: Mean lesion diameter pre- and post-treatment did not significantly differ between different treatmentgroups (p >0.05. Likewise, a significant difference in splenic parasite load was also not observed between differenttreatment groups.Interpretation & conclusion: Based on our results, different concentrations of nanosilver are ineffective in reducingmean sizes of lesions.

  1. Deficiency of CCAAT/enhancer binding protein-epsilon reduces atherosclerotic lesions in LDLR-/- mice.

    Directory of Open Access Journals (Sweden)

    Ryoko Okamoto

    Full Text Available The CCAAT/enhancer binding proteins (C/EBPs are transcription factors involved in hematopoietic cell development and induction of several inflammatory mediators. C/EBPε is expressed only in myeloid cells including monocytes/macrophages. Atherosclerosis is an inflammatory disorder of the vascular wall and circulating immune cells such as monocytes/macrophages. Mice deficient in the low density lipoprotein (LDL receptor (Ldlr-/- fed on a high cholesterol diet (HCD show elevated blood cholesterol levels and are widely used as models to study human atherosclerosis. In this study, we generated Ldlr and Cebpe double-knockout (llee mice and compared their atherogenic phenotypes to Ldlr single deficient (llEE mice after HCD. Macrophages from llee mice have reduced lipid uptake by foam cells and impaired phagokinetic motility in vitro compared to macrophages from llEE mice. Also, compared to llEE mice, llee mice have alterations of lipid metabolism, and reduced atheroma and obesity, particularly the males. Peritoneal macrophages of llee male mice have reduced mRNA expression of FABP4, a fatty acid binding protein implicated in atherosclerosis. Overall, our study suggests that the myeloid specific factor C/EBPε is involved in systemic lipid metabolism and that silencing of C/EBPε could decrease the development of atherosclerosis.

  2. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.

    2015-01-01

    Plasminogen-deficient (FVB/NPan-plg(tm1Jld), plg(tm1Jld)) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plg(tm1Jld) mice for features that might contribute to the development...

  3. Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats.

    Science.gov (United States)

    De Rosa, E; Hasselmo, M E; Baxter, M G

    2001-04-01

    E. De Rosa and M. E. Hasselmo (2000) demonstrated that 0.25 mg/kg scopolamine (SCOP) selectively increased proactive interference (PI) from stored odor memories during learning. In the present study, rats with bilateral cholinergic lesions limited to the horizontal limb of the diagonal band of Broca, made with 192 IgG-saporin, were not impaired in acquiring the same olfactory discrimination task relative to control rats. Rats with bilateral 192 IgG-saporin lesions to all basal forebrain cholinergic nuclei (BF) also showed no impairment in acquisition of this task. However, the BF-saporin rats were hypersensitive to oxotremorine-induced hypothermia and demonstrated an increased sensitivity to PI following a low dose of SCOP (0.125 mg/kg) relative to control rats. The results suggest that weaker cholinergic modulation after cholinergic BF lesions makes the system more sensitive to PI during blockade of the remaining cholinergic elements.

  4. Exacerbation of Soft Tissue Lesions in Lead Exposed Virus Infected Mice

    Institute of Scientific and Technical Information of China (English)

    PRATIBHA GUPTA; M. M. HUSAIN; RAVI SHANKER; R. K. S. DOGRA; P. K. SETH; R. K. MAHESHWARI

    2003-01-01

    Objective To investigate the effect of Lead (Pb) acetate exposure on Semliki forest virus (SFV)pathogenesis in mice. Methods Different doses (62.5, 125, 250 and 500 mg/Kg body weight) of Pb dissolved in normal saline were given to mice by oral intubation in a sub-acute (28 days) and sub-chronic (90 days) regimen followed by SFV infection. Morbidity, mortality, clinical symptoms,mean survival time (MST), changes in body and organ weight, accumulation of lead in soft tissues,virus titre in brain and histopathological alterations were compared between lead exposed and infected groups. Results Early appearance of virus symptoms, increased mortality, decreased MST, enhanced SFV titre and greater tissue damage were observed in lead exposed-SFV-infected mice. Conclusion Pre-exposure to lead increases the susceptibility of mice towards SFV infection. Further studies are suggested in view of the persistence of lead in the environment and the possibility of infection bymicrobial pathogens.

  5. Enzyme replacement therapy in newborn mucopolysaccharidosis IVA mice: early treatment rescues bone lesions?

    Science.gov (United States)

    Tomatsu, Shunji; Montaño, Adriana M; Oikawa, Hirotaka; Dung, Vu Chi; Hashimoto, Amiko; Oguma, Toshihiro; Gutiérrez, Monica L; Takahashi, Tatsuo; Shimada, Tsutomu; Orii, Tadao; Sly, William S

    2015-02-01

    We treated mucopolysaccharidosis IVA (MPS IVA) mice to assess the effects of long-term enzyme replacement therapy (ERT) initiated at birth, since adult mice treated by ERT showed little improvement in bone pathology [1]. To conduct ERT in newborn mice, we used recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in a CHO cell line. First, to observe the tissue distribution pattern, a dose of 250units/g body weight was administered intravenously in MPS IVA mice at day 2 or 3. The infused enzyme was primarily recovered in the liver and spleen, with detectable activity in the bone and brain. Second, newborn ERT was conducted after a tissue distribution study. The first injection of newborn ERT was performed intravenously, the second to fourth weekly injections were intraperitoneal, and the remaining injections from 5th to 14th weeks were intravenous into the tail vein. MPS IVA mice treated with GALNS showed clearance of lysosomal storage in the liver and spleen, and sinus lining cells in bone marrow. The column structure of the growth plate was organized better than that in adult mice treated with ERT; however, hyaline and fibrous cartilage cells in the femur, spine, ligaments, discs, synovium, and periosteum still had storage materials to some extent. Heart valves were refractory to the treatment. Levels of serum keratan sulfate were kept normal in newborn ERT mice. In conclusion, the enzyme, which enters the cartilage before the cartilage cell layer becomes mature, prevents disorganization of column structure. Early treatment from birth leads to partial remission of bone pathology in MPS IVA mice.

  6. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.

    2015-01-01

    Plasminogen-deficient (FVB/NPan-plg(tm1Jld), plg(tm1Jld)) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plg(tm1Jld) mice for features that might contribute to the development of r...... the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition....

  7. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice

    Directory of Open Access Journals (Sweden)

    Liao Dezhong J

    2008-01-01

    Full Text Available Abstract Background Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Results Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT and liver metastatic lesions (LM compared to normal pancreas (NP. In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1 and Serine proteinase inhibitor A1 (Serpina1, and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. Conclusion We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  8. Development of pituitary lesions in ND4 Swiss Webster mice when estimating the sensory irritancy of airborne chemicals using ASTM method E981-84.

    Science.gov (United States)

    Werley, M S; Burleigh-Flayer, H D; Fowler, E H; Rybka, M L; Ader, A W

    1996-08-01

    This study determined the origin of pituitary lesions found in male ND4 Swiss Webster mice following a single head-only exposure to inhaled test materials using ASTM E981-84, standard test method for estimating sensory irritancy of airborne chemicals. Necropsy and histopathology data were evaluated due to the occurrence of unexpected pituitary lesions in sham control and exposure groups. Groups of four mice were restrained in body plethysmographs and exposed for 30 min to increasing dust concentrations of one of three test chemicals to assess the ability to cause sensory irritation. Sham control and test material-exposed mice were sacrificed after a single exposure and subjected to a complete necropsy and microscopic evaluation of the pituitary gland. Control mice remained in the animal room and were not restrained in the plethysmograph. Gross observation at necropsy showed pituitary lesions in one of seven unrestrained control mice (revised to zero of seven after microscopic examination). Seven of seven sham control mice had pituitary lesions, suggesting that the lesions were not related to test material exposure. Each test material-exposed group also had pituitary lesions with high incidence (52/60 for all groups combined), which was not exposure concentration-dependent. Microscopic evaluation of the pituitary glands revealed that darkening of the gland was due to hemorrhage and confirmed that the lesions developed with 100% incidence (19/19) in plethysmograph-housed animals. The rubber neck seal used to restrict animal movement in the plethysmograph appears to have caused an increase in pressure in the blood vessels in the pituitary gland; vessels then ruptured and hemorrhaged. This finding should not adversely affect sensory irritation responses evaluated with this method.

  9. Use of topical liposomes containing meglumine antimoniate (Glucantime) for the treatment of L. major lesion in BALB/c mice.

    Science.gov (United States)

    Kalat, S A Moosavian; Khamesipour, A; Bavarsad, N; Fallah, M; Khashayarmanesh, Z; Feizi, E; Neghabi, K; Abbasi, A; Jaafari, M R

    2014-08-01

    Treatment of cutaneous leishmaniasis (CL) is a dream for the patients, health care authorities and scientists. The aim of this study was to develop a topical liposomal meglumine antimoniate (MA, Glucantime™) (Lip-MA) formulation and evaluate the therapeutic effects of the preparation on lesion induced by Leishmania major in BALB/c mice. Liposomes containing 22.5% MA (6.4% Sb(+5)) with and without oleic acid (LMA-OA and LMA) were formulated using fusion method plus homogenization and characterized for the size and encapsulation efficiency. The penetration of MA from the LMA-OA and LMA formulations through and into the skin was checked in vitro using Franz diffusion cells fitted with mouse skin at 37°C for 8h. The in vitro permeation data showed that almost 1.5% of formulations applied in the mouse skin were penetrated and the amount retained in the skin was about 65%. The 50% effective dose of LMA and LMA-OA against amastigotes of L. major was 46.36 and 41.01 μg/ml, respectively. LMA or LMA-OA was used topically twice a day for 4 weeks to treat the lesion induced by L. major in susceptible BALB/c mice. The results showed a significantly (Pliposomes or phosphate-buffered saline (PBS). The spleen parasite burden was significantly (Pliposomes or PBS at the end of the treatment period. However, when the treatment was stopped, the lesion size progressed and spleen parasite burden increased in LMA and LMA-OA groups, but still was significantly less than the control groups (Pliposomes containing MA might be an appropriate choice for clinical trials for the treatment of CL.

  10. Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction

    Science.gov (United States)

    Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia

    2014-01-01

    Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197

  11. Cholinergic signaling exerts protective effects in models of sympathetic hyperactivity-induced cardiac dysfunction.

    Directory of Open Access Journals (Sweden)

    Mariana Gavioli

    Full Text Available Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO, and ii the α2A/α2C-adrenergic receptor knockout (KO mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease.

  12. Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR-/- mice

    NARCIS (Netherlands)

    van Leeuwen, Marcella; Gijbels, Marion J. J.; Duijvestijn, Adriaan; Smook, Marjan; van de Gaar, Marie Jose; Heeringa, Peter; de Winther, Menno P. J.; Tervaert, Jan Willem Cohen

    2008-01-01

    Objective-Atherosclerosis is a chronic inflammatory disease in which the immune system plays an important role. Neutrophils have not been thoroughly studied in the context of atherogenesis. Here, we investigated neutrophils in the development of murine atherosclerotic lesions. Methods and Results-LD

  13. Basal forebrain neurons suppress amygdala kindling via cortical but not hippocampal cholinergic projections in rats.

    Science.gov (United States)

    Ferencz, I; Leanza, G; Nanobashvili, A; Kokaia, M; Lindvall, O

    2000-06-01

    Intraventricular administration of the immunotoxin 192 IgG-saporin in rats has been shown to cause a selective loss of cholinergic afferents to the hippocampus and cortical areas, and to facilitate seizure development in hippocampal kindling. Here we demonstrate that this lesion also accelerates seizure progression when kindling is induced by electrical stimulations in the amygdala. However, whereas intraventricular 192 IgG-saporin facilitated the development of the initial stages of hippocampal kindling, the same lesion promoted the late stages of amygdala kindling. To explore the role of various parts of the basal forebrain cholinergic system in amygdala kindling, selective lesions of the cholinergic projections to either hippocampus or cortex were produced by intraparenchymal injections of 192 IgG-saporin into medial septum/vertical limb of the diagonal band or nucleus basalis, respectively. Cholinergic denervation of the cortical regions caused acceleration of amygdala kindling closely resembling that observed after the more widespread lesion induced by intraventricular 192 IgG-saporin. In contrast, removal of the cholinergic input to the hippocampus had no effect on the development of amygdala kindling. These data indicate that basal forebrain cholinergic neurons suppress kindling elicited from amygdala, and that this dampening effect is mediated via cortical but not hippocampal projections.

  14. Topical efficacy of dimercapto-chelating agents against lewisite-induced skin lesions in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, Stéphane, E-mail: stephane.mouret@irba.fr [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France); Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Nguon, Nina; Cléry-Barraud, Cécile [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France); Dorandeu, Frédéric [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France); Ecole du Val-de-Grâce, 1 place Alphonse Laveran, Paris (France); Boudry, Isabelle [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France)

    2013-10-15

    Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated in this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1 h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned. - Highlights: • Topically applied dimercapto-chelating agents reduce lewisite-induced skin damage. • One topical application of BAL or DMSA is sufficient to reverse lewisite effects. • Topical BAL is more effective than DMSA to counteract lewisite-induced skin damage.

  15. Topical efficacy of dimercapto-chelating agents against lewisite-induced skin lesions in SKH-1 hairless mice.

    Science.gov (United States)

    Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Nguon, Nina; Cléry-Barraud, Cécile; Dorandeu, Frédéric; Boudry, Isabelle

    2013-10-15

    Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated in this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned.

  16. Interleukin-37 suppresses the osteogenic responses of human aortic valve interstitial cells in vitro and alleviates valve lesions in mice

    Science.gov (United States)

    Zeng, Qingchun; Song, Rui; Fullerton, David A.; Ao, Lihua; Zhai, Yufeng; Li, Suzhao; Ballak, Dov B.; Cleveland, Joseph C.; Reece, T. Brett; McKinsey, Timothy A.; Xu, Dingli; Dinarello, Charles A.; Meng, Xianzhong

    2017-01-01

    Calcific aortic valve disease is a chronic inflammatory process, and aortic valve interstitial cells (AVICs) from diseased aortic valves express greater levels of osteogenic factors in response to proinflammatory stimulation. Here, we report that lower cellular levels of IL-37 in AVICs of diseased human aortic valves likely account for augmented expression of bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP) following stimulation of Toll-like receptor (TLR) 2 or 4. Treatment of diseased AVICs with recombinant human IL-37 suppresses the levels of BMP-2 and ALP as well as calcium deposit formation. In mice, aortic valve thickening is observed when exposed to a TLR4 agonist or a high fat diet for a prolonged period; however, mice expressing human IL-37 exhibit significantly lower BMP-2 levels and less aortic valve thickening when subjected to the same regimens. A high fat diet in mice results in oxidized low-density lipoprotein (oxLDL) deposition in aortic valve leaflets. Moreover, the osteogenic responses in human AVICs induced by oxLDL are suppressed by recombinant IL-37. Mechanistically, reduced osteogenic responses to oxLDL in human AVICs are associated with the ability of IL-37 to inhibit NF-κB and ERK1/2. These findings suggest that augmented expression of osteogenic factors in AVICs of diseased aortic valves from humans is at least partly due to a relative IL-37 deficiency. Because recombinant IL-37 suppresses the osteogenic responses in human AVICs and alleviates aortic valve lesions in mice exposed to high fat diet or a proinflammatory stimulus, IL-37 has therapeutic potential for progressive calcific aortic valve disease. PMID:28137840

  17. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    Science.gov (United States)

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  18. [Cholinergic system of the heart].

    Science.gov (United States)

    Kučera, Matej; Hrabovská, Anna

    2015-12-01

    The cholinergic system of the heart can be either of neuronal or non-neuronal origin. The neuronal cholinergic system in the heart is represented by preganglionic parasympathetic pathways, intracardiac parasympathetic ganglia and postganglionic parasympathetic neurons projecting to the atria, SA node and AV node. The non-neuronal cholinergic system consists of cardiomyocytes that have complete equipment for synthesis and secretion of acetylcholine. Current knowledge suggests that the non-neuronal cholinergic system in the heart affects the regulation of the heart during sympathetic activation. The non-neuronal cholinergic system of the heart plays also a role in the energy metabolism of cardimyocites. Acetylcholine of both neuronal and non-neuronal origin acts in the heart through muscarinic and nicotinic receptors. The effect of acetylcholine in the heart is terminated by cholinesterases acetylcholinesterase and butyrylcholinesterase. Recently, papers suggest that the increased cholinergic tone in the heart by cholinesterase inhibitors has a positive effect on some cardiovascular disorders such as heart failure. For this reason, the cholinesterase inhibitors might be used in the treatment of certain cardiovascular disorders in the future.

  19. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits.

    Science.gov (United States)

    Ramanathan, Dhakshin S; Conner, James M; Anilkumar, Arjun A; Tuszynski, Mark H

    2015-03-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia.

  20. Bee Venom Phospholipase A2 Ameliorates House Dust Mite Extract Induced Atopic Dermatitis Like Skin Lesions in Mice

    Directory of Open Access Journals (Sweden)

    Kyung-Hwa Jung

    2017-02-01

    Full Text Available Atopic dermatitis (AD is a biphasic inflammatory skin disease that is provoked by epidermal barrier defects, immune dysregulation, and increased skin infections. Previously, we have demonstrated that bvPLA2 evoked immune tolerance by inducing regulatory T cells (Treg, and thus alleviated Th2 dominant allergic asthma in mice. Here, we would like to determine whether treatment with bvPLA2 exacerbates the AD-like allergic inflammations induced by house dust mite extract (DFE in a murine model. Epidermal thickness, immune cell infiltration, serum immunoglobulin, and cytokines were measured. Ear swelling, skin lesions, and the levels of total serum IgE and Th1/Th2 cytokines were elevated in DFE/DNCB-induced AD mice. Topical application of bvPLA2 elicited significant suppression of the increased AD symptoms, including ear thickness, serum IgE concentration, inflammatory cytokines, and histological changes. Furthermore, bvPLA2 treatment inhibited mast cell infiltration into the ear. On the other hand, Treg cell depletion abolished the anti-atopic effects of bvPLA2, suggesting that the effects of bvPLA2 depend on the existence of Tregs. Taken together, the results revealed that topical exposure to bvPLA2 aggravated atopic skin inflammation, suggesting that bvPLA2 might be a candidate for the treatment of AD.

  1. Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice

    Directory of Open Access Journals (Sweden)

    Zhao Yarui

    2011-01-01

    Full Text Available Abstract Background Sphingomyelin synthase 2 (SMS2 contributes to de novo sphingomyelin (SM biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis. Methods The Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR and protein level examination (SMS activity assay. Result We generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2 or GFP cDNA (AdV-GFP. On day six after intravenous infusion of 2 × 1011 particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p Conclusions Our results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.

  2. Hyperglycemia Induced by Glucokinase Deficiency Accelerates Atherosclerosis Development and Impairs Lesion Regression in Combined Heterozygous Glucokinase and the Apolipoprotein E-Knockout Mice

    Science.gov (United States)

    Adingupu, Damilola D.; Andréasson, Anne-Christine; Ahnmark, Andrea

    2016-01-01

    Aim. Models combining diabetes and atherosclerosis are important in evaluating the cardiovascular (CV) effects and safety of antidiabetes drugs in the development of treatments targeting CV complications. Our aim was to evaluate if crossing the heterozygous glucokinase knockout mouse (GK+/−) and hyperlipidemic mouse deficient in apolipoprotein E (ApoE−/−) will generate a disease model exhibiting a diabetic and macrovascular phenotype. Methods. The effects of defective glucokinase on the glucose metabolism and on the progression and regression of atherosclerosis on high-fat diets were studied in both genders of GK+/−ApoE−/− and ApoE−/− mice. Coronary vascular function of the female GK+/−ApoE−/− and ApoE−/− mice was also investigated. Results. GK+/−ApoE−/− mice show a stable hyperglycemia which was increased on Western diet. In oral glucose tolerance test, GK+/−ApoE−/− mice showed significant glucose intolerance and impaired glucose-stimulated insulin secretion. Plasma lipids were comparable with ApoE−/− mice; nevertheless the GK+/−ApoE−/− mice showed slightly increased atherosclerosis development. Conclusions. The GK+/−ApoE−/− mice showed a stable and reproducible hyperglycemia, accelerated atherosclerotic lesion progression, and no lesion regression after lipid lowering. This novel model provides a promising tool for drug discovery, enabling the evaluation of compound effects against both diabetic and cardiovascular endpoints simultaneously in one animal model.

  3. Morphine dependence and withdrawal induced changes in cholinergic signaling

    Science.gov (United States)

    Neugebauer, Nichole M.; Einstein, Emily B.; Lopez, Maria B.; McClure-Begley, Tristan D.; Mineur, Yann S.; Picciotto, Marina R.

    2013-01-01

    Cholinergic signaling is thought to be involved in morphine dependence and withdrawal, but the specific mechanisms involved remain unclear. The current study aimed to identify alterations in the cholinergic system that may contribute to the development of morphine dependence and withdrawal. Acetylcholinesterase (AChE) activity and [3H]-epibatidine binding were evaluated in order to determine if morphine dependence and withdrawal induces alterations in cholinergic signaling or expression of high affinity nicotinic acetylcholine receptors (nAChRs) in the midbrain (MB), medial habenula (MHb) and interpeduncular nucleus (IPN). The effect of cholinergic signaling through nAChRs on morphine-withdrawal induced jumping behavior was then determined. Lastly, the contribution of β4-containing nAChRs receptors in the MHb to morphine-withdrawal induced jumping behavior and neuronal activity as indicated by c-fos expression was assessed. Chronic morphine administration decreased AChE activity in MB and MHb, an effect that was no longer present following precipitated withdrawal. Morphine dependent mice showed increased nicotinic acetylcholine receptor (nAChR) levels in MB. Further, nicotine (0.4 mg/kg) and lobeline (3 mg/kg) decreased jumping behavior while mecamylamine (1 mg/kg) had no effect. Knock-down of β4 subunit-containing nAChRs in the MHb attenuated c-fos activation, but did not decrease morphine withdrawal-induced jumping. Thus, morphine withdrawal induces cholinergic signaling in the MHb, but this does not appear to be responsible for the effects of cholinergic drugs on somatic signs of opiate withdrawal, as measured by jumping behavior. PMID:23651795

  4. Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Scott M. Irwin

    2015-06-01

    Full Text Available Cost-effective animal models that accurately reflect the pathological progression of pulmonary tuberculosis are needed to screen and evaluate novel tuberculosis drugs and drug regimens. Pulmonary disease in humans is characterized by a number of heterogeneous lesion types that reflect differences in cellular composition and organization, extent of encapsulation, and degree of caseous necrosis. C3HeB/FeJ mice have been increasingly used to model tuberculosis infection because they produce hypoxic, well-defined granulomas exhibiting caseous necrosis following aerosol infection with Mycobacterium tuberculosis. A comprehensive histopathological analysis revealed that C3HeB/FeJ mice develop three morphologically distinct lesion types in the lung that differ with respect to cellular composition, degree of immunopathology and control of bacterial replication. Mice displaying predominantly the fulminant necrotizing alveolitis lesion type had significantly higher pulmonary bacterial loads and displayed rapid and severe immunopathology characterized by increased mortality, highlighting the pathological role of an uncontrolled granulocytic response in the lung. Using a highly sensitive novel fluorescent acid-fast stain, we were able to visualize the spatial distribution and location of bacteria within each lesion type. Animal models that better reflect the heterogeneity of lesion types found in humans will permit more realistic modeling of drug penetration into solid caseous necrotic lesions and drug efficacy testing against metabolically distinct bacterial subpopulations. A more thorough understanding of the pathological progression of disease in C3HeB/FeJ mice could facilitate modulation of the immune response to produce the desired pathology, increasing the utility of this animal model.

  5. Pharmacokinetic analysis of the uptake of liposomes by macrophages and foam cells in vitro and their distribution to atherosclerotic lesions in mice.

    Science.gov (United States)

    Chono, Sumio; Tauchi, Yoshihiko; Morimoto, Kazuhiro

    2006-02-01

    In order to evaluate the efficacy of liposomes as a drug carrier for atherosclerotic therapy, a pharmacokinetic analysis of the uptake of liposomes by macrophages and foam cells in vitro and their distribution to atherosclerotic lesions in mice was carried out. In brief, liposomes of three particle sizes (500, 200 and 70 nm) were prepared, and the uptake of liposomes by these cells in vitro and the aortic distribution following intravenous administration to atherogenic mice were examined. The internalization rate constant calculated by measuring uptake and binding was size-dependent in both types of cells in vitro. The aortic clearance (CL(a)) was size-independent in atherogenic mice and the CL(a) of 200 nm particles was the highest. Surprisingly, the aortic distribution in vivo did not correspond with the internalization to macrophages and foam cells in vitro. These results suggest that there is an optimal size for the distribution of liposomes to atherosclerotic lesions.

  6. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. (Neuropsychiatric Research Institute, Fargo, ND (USA))

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  7. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  8. Hippocampal cholinergic interneurons visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    OpenAIRE

    Feng eYi; Elizabeth eCatudio-Garrett; Robert eGabriel; Marta eWilhelm; Ferenc eErdelyi; Gabor eSzabo; Karl eDeisseroth; Josh eLawrence

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-posit...

  9. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    OpenAIRE

    Yi, Feng; Catudio-Garrett, Elizabeth; Gábriel, Robert; Wilhelm, Marta; Erdelyi, Ferenc; Szabo, Gabor; Deisseroth, Karl; Lawrence, Josh

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-posit...

  10. Sexual experience does not compensate for the disruptive effects of zinc sulfate--lesioning of the main olfactory epithelium on sexual behavior in male mice.

    Science.gov (United States)

    Keller, Matthieu; Douhard, Quentin; Baum, Michael J; Bakker, Julie

    2006-10-01

    Recent studies point to an important role for the main olfactory epithelium (MOE) in regulating sexual behavior in male mice. We asked whether sexual experience could compensate for the disruptive effects of lesioning the MOE on sexual behavior in male mice. Male mice, which were either sexually naive or experienced, received an intranasal irrigation of either a zinc sulfate solution to destroy the MOE or saline. Sexual behavior in mating tests with an estrous female was completely abolished in zinc sulfate-treated male mice regardless of whether subjects were sexually experienced or not before the treatment. Furthermore, zinc sulfate treatment clearly disrupted olfactory investigation of both volatile and nonvolatile odors. Destruction of the MOE by zinc sulfate treatment was confirmed by a significant reduction in the expression of Fos protein in the main olfactory bulb following exposure to estrous female urine. By contrast, vomeronasal function did not seem to be affected by zinc sulfate treatment: nasal application of estrous female urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of zinc sulfate- and saline-treated males. Likewise, the expression of soybean agglutinin, which stains the axons of vomeronasal organ neurons projecting to the glomerular layer of the AOB, was similar in zinc sulfate- and saline-treated male mice. These results show that the main olfactory system is essential for the expression of sexual behavior in male mice and that sexual experience does not overcome the disruptive effects of MOE lesioning on this behavior.

  11. Inhibitory Effect of Valencene on the Development of Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice

    Directory of Open Access Journals (Sweden)

    In Jun Yang

    2016-01-01

    Full Text Available Valencene (VAL isolated from Cyperus rotundus possesses various biological effects such as antiallergic and antimelanogenesis activity. We investigated the effect of VAL on atopic dermatitis (AD skin lesions and their molecular mechanisms. We topically applied VAL to 1-chloro-2,4-dinitrobenzene (DNCB sensitized NC/Nga mice. Modified scoring atopic dermatitis index, scratching behavior, and histological/immunohistochemical staining were used to monitor disease severity. RT-PCR, western blotting, and enzyme-linked immunosorbent assay were used to determine the level of IgE, proinflammatory cytokines/chemokines production, and skin barrier proteins expression. Topical application of VAL significantly reduced AD-like symptoms and recovered decreased expression of filaggrin in DNCB-sensitized NC/Nga mice. The levels of serum IgE, IL-1β, IL-6, and IL-13 in skin/splenic tissue were reduced. In vitro studies using TNF-α and IFN-γ treated HaCaT cells revealed that VAL inhibited the exaggerated expression of Th2 chemokines including TARC/CCL17, MDC/CCL22, and proinflammatory chemokines such as CXCL8, GM-CSF, and I-CAM through blockade of the NF-κB pathway. In addition, expression of the skin barrier protein, involucrin, was also increased by VAL treatment. VAL inhibited the production and expression of proinflammatory cytokines IL-1β and IL-6 in LPS-stimulated RAW 264.7 cells. These results suggest that VAL may serve as a potential therapeutic option for AD.

  12. Protonated nanostructured aluminosilicate (NSAS reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    Directory of Open Access Journals (Sweden)

    Constantinides Panayiotis P

    2009-07-01

    Full Text Available Abstract The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w, untreated control and 2% (w/w stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w and stigmastanol at 2% (w/w treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w NSAS and 2% (w/w stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model.

  13. Transplantation of cholinergic neural stem cells in a mouse model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-hua; XU Ru-xiang; Seigo Nagao

    2005-01-01

    @@ It is believed that the degeneration of cholinergic cells in the nucleus basalis of Meynert (NBM) and the loss of cortical cholinergic innervation cause dementia of Alzheimer's disease (AD).1 Currently available therapeutic interventions are mainly aimed at alleviating the cholinergic deficits. Unfortunately, these strategies do not prevent the disease, but instead offer limited symptomatic improvement.2 A recent study demonstrated that transplantation of in vitro expanded neural stem cells (NSCs) in an animal model of Parkinson's disease (PD) resulted in functional recovery of the animals to some extent,2 suggesting that such neural precursors might offer a useful future therapy for AD. In this study, we tried to find whether mouse embryonic stem (ES) cell derived cholinergic NSCs grafted in the prefrontal and parietal cortex have effects on the disruption of spatial memory following development of lesion in NBM.

  14. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.

    Science.gov (United States)

    Van Dort, Christa J; Zachs, Daniel P; Kenny, Jonathan D; Zheng, Shu; Goldblum, Rebecca R; Gelwan, Noah A; Ramos, Daniel M; Nolan, Michael A; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A; Brown, Emery N

    2015-01-13

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.

  15. Physical urticarias and cholinergic urticaria.

    Science.gov (United States)

    Abajian, Marina; Schoepke, Nicole; Altrichter, Sabine; Zuberbier, Torsten; Zuberbier, H C Torsten; Maurer, Marcus

    2014-02-01

    Physical urticarias are a unique subgroup of chronic urticaria in which urticarial responses can be reproducibly induced by different specific physical stimuli acting on the skin. These conditions include urticaria factitia/symptomatic dermographism, delayed pressure urticaria, cold contact urticaria, heat contact urticaria, solar urticaria, and vibratory urticaria/angioedema. Physical urticarias and cholinergic urticarias are diagnosed based on the patients' history and provocation tests including trigger threshold testing where possible. Treatment is mainly symptomatic. Many patients benefit from avoiding eliciting triggers, and desensitization to these triggers can be helpful in some physical urticarias and in cholinergic urticaria.

  16. Selective optogenetic stimulation of cholinergic axons in neocortex.

    Science.gov (United States)

    Kalmbach, Abigail; Hedrick, Tristan; Waters, Jack

    2012-04-01

    Acetylcholine profoundly affects neocortical function, being involved in arousal, attention, learning, memory, sensory and motor function, and plasticity. The majority of cholinergic afferents to neocortex are from neurons in nucleus basalis. Nucleus basalis also contains projecting neurons that release other transmitters, including GABA and possibly glutamate. Hence, electrical stimulation of nucleus basalis evokes the release of a mixture of neurotransmitters in neocortex, and this lack of selectivity has impeded research on cholinergic signaling in neocortex. We describe a method for the selective stimulation of cholinergic axons in neocortex. We used the Cre-lox system and a viral vector to express the light-activated protein channelrhodopsin-2 in cholinergic neurons in nucleus basalis and their axons in neocortex. Labeled neurons depolarized on illumination with blue light but were otherwise unchanged. In anesthetized mice, illumination of neocortex desynchronized the local field potential, indicating that light evoked release of ACh. This novel technique will enable many new studies of the cellular, network, and behavioral physiology of ACh in neocortex.

  17. Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice.

    Science.gov (United States)

    Liao, Dezhong Joshua; Wang, Yong; Wu, Jiusheng; Adsay, Nazmi Volkan; Grignon, David; Khanani, Fayyaz; Sarkar, Fazlul H

    2006-07-05

    In order to identify good animal models for investigating therapeutic and preventive strategies for pancreatic cancer, we analyzed pancreatic lesions from several transgenic models and made a series of novel findings. Female MT-tgf alpha mice of the MT100 line developed pancreatic proliferation, acinar-ductal metaplasia, multilocular cystic neoplasms, ductal adenocarcinomas and prominent fibrosis, while the lesions in males were less severe. MT-tgf alpha-ES transgenic lines of both sexes developed slowly progressing lesions that were similar to what was seen in MT100 males. In both MT100 and MT-tgf alpha-ES lines, TGF alpha transgene was expressed mainly in proliferating ductal cells. Ela-myc transgenic mice with a mixed C57BL/6, SJL and FVB genetic background developed pancreatic tumors at 2-7 months of age, and half of the tumors were ductal adenocarcinomas, similar to what was reported originally by Sandgren et al 1. However, in 20% of the mice, the tumors metastasized to the liver. MT100/Ela-myc and MT-tgf alpha-ES/Ela-myc double transgenic mice developed not only acinar carcinomas and mixed carcinomas as previously reported but also various ductal-originated lesions, including multilocular cystic neoplasms and ductal adenocarcinomas. The double transgenic tumors were more malignant and metastasized to the liver at a higher frequency (33%) compared with the Ela-myc tumors. Sequencing of the coding region of p16ink4, k-ras and Rb cDNA in small numbers of pancreatic tumors did not identify mutations. The short latency for tumor development, the variety of tumor morphology and the liver metastases seen in Ela-myc and MT-tgf alpha/Ela-myc mice make these animals good models for investigating new therapeutic and preventive strategies for pancreatic cancer.

  18. Overnight fasting regulates inhibitory tone to cholinergic neurons of the dorsomedial nucleus of the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Florian Groessl

    Full Text Available The dorsomedial nucleus of the hypothalamus (DMH contributes to the regulation of overall energy homeostasis by modulating energy intake as well as energy expenditure. Despite the importance of the DMH in the control of energy balance, DMH-specific genetic markers or neuronal subtypes are poorly defined. Here we demonstrate the presence of cholinergic neurons in the DMH using genetically modified mice that express enhanced green florescent protein (eGFP selectively in choline acetyltransferase (Chat-neurons. Overnight food deprivation increases the activity of DMH cholinergic neurons, as shown by induction of fos protein and a significant shift in the baseline resting membrane potential. DMH cholinergic neurons receive both glutamatergic and GABAergic synaptic input, but the activation of these neurons by an overnight fast is due entirely to decreased inhibitory tone. The decreased inhibition is associated with decreased frequency and amplitude of GABAergic synaptic currents in the cholinergic DMH neurons, while glutamatergic synaptic transmission is not altered. As neither the frequency nor amplitude of miniature GABAergic or glutamatergic postsynaptic currents is affected by overnight food deprivation, the fasting-induced decrease in inhibitory tone to cholinergic neurons is dependent on superthreshold activity of GABAergic inputs. This study reveals that cholinergic neurons in the DMH readily sense the availability of nutrients and respond to overnight fasting via decreased GABAergic inhibitory tone. As such, altered synaptic as well as neuronal activity of DMH cholinergic neurons may play a critical role in the regulation of overall energy homeostasis.

  19. Strain differences in arsenic-induced oxidative lesion via arsenic biomethylation between C57BL/6J and 129X1/SvJ mice

    Science.gov (United States)

    Wu, Ruirui; Wu, Xiafang; Wang, Huihui; Fang, Xin; Li, Yongfang; Gao, Lanyue; Sun, Guifan; Pi, Jingbo; Xu, Yuanyuan

    2017-01-01

    Arsenic is a common environmental and occupational toxicant with dramatic species differences in its susceptibility and metabolism. Mouse strain variability may provide a better understanding of the arsenic pathological profile but is largely unknown. Here we investigated oxidative lesion induced by acute arsenic exposure in the two frequently used mouse strains C57BL/6J and 129X1/SvJ in classical gene targeting technique. A dose of 5 mg/kg body weight arsenic led to a significant alteration of blood glutathione towards oxidized redox potential and increased hepatic malondialdehyde content in C57BL/6J mice, but not in 129X1/SvJ mice. Hepatic antioxidant enzymes were induced by arsenic in transcription in both strains and many were higher in C57BL/6J than 129X1/SvJ mice. Arsenic profiles in the liver, blood and urine and transcription of genes encoding enzymes involved in arsenic biomethylation all indicate a higher arsenic methylation capacity, which contributes to a faster hepatic arsenic excretion, in 129X1/SvJ mice than C57BL/6J mice. Taken together, C57BL/6J mice are more susceptible to oxidative hepatic injury compared with 129X1/SvJ mice after acute arsenic exposure, which is closely associated with arsenic methylation pattern of the two strains. PMID:28303940

  20. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    Science.gov (United States)

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  1. Metabolomic profiling of mice urine and serum associated with trans-trans 2, 4-decadienal induced lung lesions by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Lin, Pinpin; Lee, Hui-Ling; Cheng, Hao-I; Chen, Chao-Yu; Tsai, Ming-Hsien; Liu, Huei-Ju

    2014-07-01

    Metabolomics has become an important tool in clinical research and the diagnosis of human disease. Intratracheal instillation of trans-trans 2,4-decadienal (tt-DDE), a major component in cooking oil fumes, has been demonstrated to cause lung lesions in mice at 8 weeks after treatment. The objective of this study was to identify any changes in metabolite profiles associated with the development of tt-DDE-induced lung lesions. Using a metabolomics strategy involving a liquid chromatography-mass spectrometry-based approach in conjunction with principal component analysis and confirmation by liquid chromatography triple quadrupole tandem mass spectrometry, we have demonstrated that the amino acid profiles of the urine and serum of tt-DDE-treated mice are changed. Ten amino acids were significantly reduced in serum of tt-DDE-treated mice at 8 weeks after treatment. Our results suggest that amino acid profiles may be useful as an early indicator of the presence of tt-DDE-induced lung lesions.

  2. Improvements in Memory after Medial Septum Stimulation Are Associated with Changes in Hippocampal Cholinergic Activity and Neurogenesis

    Directory of Open Access Journals (Sweden)

    Da Un Jeong

    2014-01-01

    Full Text Available Deep brain stimulation (DBS has been found to have therapeutic effects in patients with dementia, but DBS mechanisms remain elusive. To provide evidence for the effectiveness of DBS as a treatment for dementia, we performed DBS in a rat model of dementia with intracerebroventricular administration of 192 IgG-saporins. We utilized four groups of rats, group 1, unlesioned control; group 2, cholinergic lesion; group 3, cholinergic lesion plus medial septum (MS electrode implantation (sham stimulation; group 4, cholinergic lesions plus MS electrode implantation and stimulation. During the probe test in the water maze, performance of the lesion group decreased for measures of time spent and the number of swim crossings over the previous platform location. Interestingly, the stimulation group showed an equivalent performance to the normal group on all measures. And these are partially reversed by the electrode implantation. Acetylcholinesterase activity in the hippocampus was decreased in lesion and implantation groups, whereas activity in the stimulation group was not different from the normal group. Hippocampal neurogenesis was increased in the stimulation group. Our results revealed that DBS of MS restores spatial memory after damage to cholinergic neurons. This effect is associated with an increase in hippocampal cholinergic activity and neurogenesis.

  3. Application of concentrated deep sea water inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice

    Directory of Open Access Journals (Sweden)

    Bak Jong-Phil

    2012-07-01

    Full Text Available Abstract Background Mineral water from deep-sea bedrock, formed over thousands of years, is rich in minerals such as Ca, Mg, Na, K, Fe and others. Our present study was to investigate the preventive effects of natural deep-sea water on developing atopic dermatitis (AD. Methods We elicited AD by application of DNCB (2,4-dinitro-chlorobezene in Nc/Nga mouse dorsal skin. Deep Sea water (DSW was filtered and concentrated by a nanofiltration process and reverse osmosis. We applied concentrated DSW (CDSW to lesions five times per week for six weeks, followed by evaluation. 1% pimecrolimus ointment was used as positive control. The severity of skin lesions was assessed macroscopically and histologically. Levels of inflammatory mediators and cytokines in the serum were detected by Enzyme-linked immunosorbent assay (ELISA and the levels of CD4+ and CD8+ spleen lymphocytes were determined by flow cytometry analysis. Results DNCB-treated mice showed atopic dermatitis-like skin lesions. Treatment of mice with CDSW reduced the severity of symptoms in the skin lesions, including edema, erythema, dryness, itching, and transepidermal water loss (TEWL. Histological analyses demonstrated that epidermal thickness and infiltration of inflammatory cells were decreased after CDSW treatment. Given these interesting observations, we further evaluated the effect of CDSW on immune responses in this AD model. Treatment AD mice with CDSW inhibited up-regulation of IgE, histamine, and pro-inflammatory cytokines in the serum. Also, the CD4+/CD8+ ratio in spleen lymphocyte was down-regulated after treatment with CDSW. Finally, cytokines, especially IL-4 and IL-10 which are important for Th2 cell development, were reduced. Conclusions Our data suggests that topical application of CDSW could be useful in preventing the development of atopic dermatitis.

  4. A cholinergic hypothesis of the unconscious in affective disorders.

    Directory of Open Access Journals (Sweden)

    Costa eVakalopoulos

    2013-11-01

    Full Text Available The interactions between distinct pharmacological systems are proposed as a key dynamic in the formation of unconscious memories underlying rumination and mood disorder, but also reflect the plastic capacity of neural networks that can aid recovery. An inverse and reciprocal relationship is postulated between cholinergic and monoaminergic receptor subtypes. M1-type muscarinic receptor transduction facilitates encoding of unconscious, prepotent behavioural repertoires at the core of affective disorders and ADHD. Behavioural adaptation to new contingencies is mediated by the classic prototype receptor: 5-HT1A (Gi/o and its modulation of m1-plasticity. Reversal of learning is dependent on increased phasic activation of midbrain monoaminergic nuclei and is a function of hippocampal theta. Acquired hippocampal dysfunction due to abnormal activation of the hypothalamic-pituitary-adrenal (HPA axis predicts deficits in hippocampal-dependent memory and executive function and further impairments to cognitive inhibition. Encoding of explicit memories is mediated by Gq/11 and Gs signalling of monoamines only. A role is proposed for the phasic activation of the basal forebrain cholinergic nucleus by cortical projections from the complex consisting of the insula and claustrum. Although controversial. recent studies suggest a common ontogenetic origin of the two structures and a functional coupling. Lesions of the region result in loss of motivational behaviour and familiarity based judgements. A major hypothesis of the paper is that these lost faculties result indirectly, from reduced cholinergic tone.

  5. The conduction system of the heart in mice chronically infected with Trypanosoma cruzi: histopathological lesions and electrocardiographic correlations

    Directory of Open Access Journals (Sweden)

    Sonia G. Andrade

    1987-03-01

    Full Text Available Chronic focal and diffuse myiocarditis with interstitial fibrosis developed in Swiss outbred mice and in the inbred AKR and A/J strains of mice which were chronically infected with several Trypanosoma cruzi strains belonging to three biological types (Type I, II and III. High incidence of electrocardiographic changes with predominance of intraventricular conduction disturbances, 1st. and 2nd. degree AV block, arrhythmias, comparable with those found in human Chagas' disease, were also present. Morphological study of the conduction tissue of the heart revealed inflammatory and fibrotic changes. The presence of inflammation in the inter-atrial septum almost always coincided with the inflammatory involvement of the ventricular conduction system. Focal inflammation was associated with vacuolization and focal necrosis of the specific fibers. Most of the lesions were seen affecting the His bundel (76.3% of the cases, the right bundle branch (73.3%, AV node (43.9% and left bundle branch (37.5%. Correlation between morphological changes in the conduction tissue and electrocardiographic alteration occured in 53.0 to 62.5% of the cases, according to the experimental groups.Em camundongos suiços não isogênicos e em camundongos isogênicos das linhagens AKR e A/J, cronicamente infectados com cepas do Trypanosoma cruzi representativas de três tipos biológicos (Tipos I, II e III foi observada uma miocardite crônica difusa e focal com graus variáveis de fibrose intersticial. Observou-se alta incidência de alterações eletrocardiográficas com predominância de distúrbios da condução intraventricular, bloqueios A-V de 1º e 2º graus e arritmias, comparáveis às encontradas na doença de Chagas humana. O estudo histopatológico do sistema de condução do coração mostrou alterações inflamatórias e fibróticas. A presença de inflamação no septo inter-atrial em geral coincidiu com o envolvimento do sistema de condução pelo processo inflamat

  6. Protective effect of brown Brazilian propolis against acute vaginal lesions caused by herpes simplex virus type 2 in mice: involvement of antioxidant and anti-inflammatory mechanisms.

    Science.gov (United States)

    Sartori, Gláubia; Pesarico, Ana Paula; Pinton, Simone; Dobrachinski, Fernando; Roman, Silvane Souza; Pauletto, Fernanda; Rodrigues, Luiz Carlos; Prigol, Marina

    2012-01-01

    Propolis has been highlighted for its antioxidant, anti-inflammatory and antiviral properties. The purpose of this study was to investigate if brown Brazilian hydroalcoholic propolis extract (HPE) protects against vaginal lesions caused by herpes simplex virus type 2 (HSV-2) in female BALB/c mice. The treatment was divided in 5 days of pre-treatment with HPE [50 mg · kg(-1), once a day, intragastric (i.g.)], HSV-2 infection [10 µl of a solution 1 × 10(2) plaque-forming unit (PFU · ml(-1) HSV-2), intravaginal inoculation at day 6] and post-treatment with HPE (50 mg · kg(-1)) for 5 days more. At day 11, the animals were killed, and the in vivo analysis (score of lesions) and ex vivo analysis [haematological and histological evaluation; superoxide dismutase (SOD), catalase (CAT) and myeloperoxidase (MPO) activities; reactive species (RS), tyrosine nitration levels, non-protein thiols (NPSH) and ascorbic acid (AA) levels] were carried out. HPE treatment reduced extravaginal lesions and the histological damage caused by HSV-2 infection in vaginal tissues of animals. HPE was able to decrease RS, tyrosine nitration, AA levels and MPO activity. Also, it protected against the inhibition of CAT activity in vaginal tissues of mice. HPE promoted protective effect on HSV-2 infected animals by acting on inflammatory and oxidative processes, and this effect probably is caused by its antioxidant and anti-inflammatory properties.

  7. Estimation of the environmental effect of natural volatile organic compounds from Chamaecyparis obtusa and their effect on atopic dermatitis-like skin lesions in mice.

    Science.gov (United States)

    Yang, Hyun; Ahn, Changhwan; Choi, In-Gyu; Choi, Won-Sil; Park, Mi-Jin; Lee, Sung-Suk; Choi, Don-Ha; Jeung, Eui-Bae

    2015-07-01

    Aromatherapy has been suggested as an alternative therapeutic method for the treatment of atopic dermatitis (AD), eczema and other skin diseases. In the current study, the anti-atopic properties of the volatile organic compounds of Chamaecyparis obtusa (VOCCo) were examined to determine whether they are amenable for use as a pharmaceutical candidate. The alterations in histological features, serum IgE levels and mast cell infiltration following exposure to VOCCo were determined in a 2,4-dinitrochlorobenzene (DNCB)-induced AD-like mouse model. The results of these experiments demonstrated that VOCCo inhibited the development of AD-like skin lesions by reducing the serum IgE level and mast cell infiltration into the dermal and subcutaneous layers. This was supported by screening of immune cytokine mRNAs, including interleukin (IL)-1β and IL-6 from the skin of DNCB-treated mice. The expression of IL-1β and IL-6 in the skin lesions of mice was dose-dependently inhibited by treatment with VOCCo. Furthermore, treatment with VOCCo resulted in the recovery of histopathological features in AD-like skin lesions. These results suggest that VOCCo may have therapeutic and preventive effects for the development of AD.

  8. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  9. Effects of electrical lesions of the medial preoptic area and the ventral pallidum on mate-dependent paternal behavior in mice.

    Science.gov (United States)

    Akther, Shirin; Fakhrul, Azam A K M; Higashida, Haruhiro

    2014-06-06

    In laboratory animals, less is known about the neural circuits that mediate paternal behavior than those that influence maternal behavior. In mice, we recently reported that when sires are separated with their mate dams from their pups, ultrasound and pheromonal signals from the dams can evoke and initiate maternal-like retrieval behavior in the sires upon reunion with the offspring; this is termed mate-dependent paternal care. We used electrolytic brain lesion (EBL) methods to identify the potential roles of the medial preoptic area (mPOA) and ventral pallidum (VP) regions in regulating paternal care, areas known to be critical for the expression of maternal behavior. Electrolytic lesions of the mPOA or VP disrupted mate-dependent paternal care; latencies to initiate pup retrieval, grooming and crouching were longer in the EBL-treated sires relative to the sham-operated mice. The number of grooming episodes and duration of crouching were also lower in sires with the EBL in both areas. These results indicate that the mPOA and VP regions are essential for mate-dependent paternal care in mice.

  10. 6-Hydroxydopamine and radiofrequency lesions of the lateral entorhinal cortex facilitate an operant appetitive conditioning task in mice.

    Science.gov (United States)

    Gauthier, M; Soumireu-Mourat, B

    1981-07-02

    The entorhinal cortex seems heterogeneous as dopaminergic terminals are present only in the anterior part of the lateral entorhinal cortex. In order to clarify the interaction of this cortex with the hippocampus in memory processes, the effects of either 6-hydroxydopamine or radiofrequency bilateral lesions were compared. Both lesions enhance the retention of a Skinner task with continuous reinforcement schedule. Involvement of dopamine in memory processes is discussed.

  11. Deficiency of CCAAT/Enhancer Binding Protein-Epsilon Reduces Atherosclerotic Lesions in LDLR−/− Mice

    Science.gov (United States)

    Okamoto, Ryoko; Gery, Sigal; Gombart, Adrian F.; Wang, Xuping; Castellani, Lawrence W.; Akagi, Tadayuki; Chen, Shuang; Arditi, Moshe; Ho, Quoc; Lusis, Aldons J.; Li, Quanlin; Koeffler, H. Phillip

    2014-01-01

    The CCAAT/enhancer binding proteins (C/EBPs) are transcription factors involved in hematopoietic cell development and induction of several inflammatory mediators. C/EBPε is expressed only in myeloid cells including monocytes/macrophages. Atherosclerosis is an inflammatory disorder of the vascular wall and circulating immune cells such as monocytes/macrophages. Mice deficient in the low density lipoprotein (LDL) receptor (Ldlr−/−) fed on a high cholesterol diet (HCD) show elevated blood cholesterol levels and are widely used as models to study human atherosclerosis. In this study, we generated Ldlr and Cebpe double-knockout (llee) mice and compared their atherogenic phenotypes to Ldlr single deficient (llEE) mice after HCD. Macrophages from llee mice have reduced lipid uptake by foam cells and impaired phagokinetic motility in vitro compared to macrophages from llEE mice. Also, compared to llEE mice, llee mice have alterations of lipid metabolism, and reduced atheroma and obesity, particularly the males. Peritoneal macrophages of llee male mice have reduced mRNA expression of FABP4, a fatty acid binding protein implicated in atherosclerosis. Overall, our study suggests that the myeloid specific factor C/EBPε is involved in systemic lipid metabolism and that silencing of C/EBPε could decrease the development of atherosclerosis. PMID:24489659

  12. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer's Disease-Like Models.

    Science.gov (United States)

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-05-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD.

  13. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis.

    Science.gov (United States)

    Ji, H; Rabbi, M F; Labis, B; Pavlov, V A; Tracey, K J; Ghia, J E

    2014-03-01

    The cholinergic anti-inflammatory pathway is an efferent vagus nerve-based mechanism that regulates immune responses and cytokine production through α7 nicotinic acetylcholine receptor (α7nAChR) signaling. Decreased efferent vagus nerve activity is observed in inflammatory bowel disease. We determined whether central activation of this pathway alters inflammation in mice with colitis and the mediating role of a vagus nerve-to-spleen circuit and α7nAChR signaling. Two experimental models of colitis were used in C57BL/6 mice. Central cholinergic activation induced by the acetylcholinesterase inhibitor galantamine or a muscarinic acetylcholine receptor agonist treatments resulted in reduced mucosal inflammation associated with decreased major histocompatibility complex II level and pro-inflammatory cytokine secretion by splenic CD11c⁺ cells mediated by α7nAChR signaling. The cholinergic anti-inflammatory efficacy was abolished in mice with vagotomy, splenic neurectomy, or splenectomy. In conclusion, central cholinergic activation of a vagus nerve-to-spleen circuit controls intestinal inflammation and this regulation can be explored to develop novel therapeutic strategies.

  14. Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure.

    Science.gov (United States)

    Lara, Aline; Damasceno, Denis D; Pires, Rita; Gros, Robert; Gomes, Enéas R; Gavioli, Mariana; Lima, Ricardo F; Guimarães, Diogo; Lima, Patricia; Bueno, Carlos Roberto; Vasconcelos, Anilton; Roman-Campos, Danilo; Menezes, Cristiane A S; Sirvente, Raquel A; Salemi, Vera M; Mady, Charles; Caron, Marc G; Ferreira, Anderson J; Brum, Patricia C; Resende, Rodrigo R; Cruz, Jader S; Gomez, Marcus Vinicius; Prado, Vania F; de Almeida, Alvair P; Prado, Marco A M; Guatimosim, Silvia

    2010-04-01

    Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.

  15. Inhibitory effects of Juglans mandshurica leaf on allergic dermatitis-like skin lesions-induced by 2,4-dinitrochlorobenzene in mice.

    Science.gov (United States)

    Park, Gunhyuk; Oh, Myung Sook

    2014-03-01

    Allergic dermatitis among common skin diseases is a chronic and recurrent inflammatory skin disorder caused by genetic, environmental, allergens as well as microbial factors. Allergic dermatitis patients clinically present skin erythematous plaques, eruption, elevated serum immunoglobulin E (IgE) and T helper cell type 2 (Th2) cytokine levels. The leaf of walnut tree Juglans mandshurica Maxim (JM) is consumed food and traditional phytomedicine in Asia, China, Siberia and Korea. JM has been reported to have various pharmacological activities, such as anti-tumor, anti-oxidative, and anti-bacterial effects. However, no study of the inhibitory effects of JM on allergic dermatitis has been reported. Here, we demonstrated the effect of JM against 2,4-dinitrochlorobenzene-induced allergic dermatitis-like skin lesions. 0.5% JM or 1% dexamethasone (positive control) applied to the dorsal skin inhibited development of allergic dermatitis-like skin lesions and scratching behavior. Moreover, the Th2-mediated inflammatory cytokines IgE, tumor necrosis factor-α, interleukin (IL)-1, and IL-13, were significantly reduced by JM treatment. Thus JM can inhibit development of allergic dermatitis-like skin lesions in mice by regulating immune mediators, and may be an effective alternative therapy for allergic dermatitis.

  16. Kinetics of appearance of intestinal lesions in mice mono-associated with a lethal or non-lethal strain of Clostridium difficile.

    Science.gov (United States)

    Castex, F; Jouvert, S; Bastide, M; Corthier, G

    1994-02-01

    The kinetics of the appearance of intestinal lesions induced by orogastric inoculation of gnotobiotic mice with a lethal strain of Clostridium difficile (VPI) that produced toxins A and B in vivo and in vitro was studied and compared with the lesions induced by non-lethal C. difficile strain 786 that produced toxins A and B in vitro but only toxin B in measurable amounts in vivo. Different portions of the intestine were removed 12, 20, 26 and 30 h after inoculation and studied by scanning electronmicroscopy. The remaining portions were homogenised for enumeration of C. difficile and quantification of toxin A by enzyme immunoassay and toxin B by cytotoxicity. The results showed that, following inoculation: (i) measurable amounts of both toxins were necessary to produce lesions; (ii) with strain VPI, the caecum and the colon were rapidly impaired and completely destroyed after 1 day, whereas the small intestine was damaged to a lesser extent; (iii) C. difficile strain 786 did not cause mucosal damage but induced mucus-like or serum-like secretion and morphological changes in the caecal enterocytes only.

  17. Protective Effect of Vitamin D3 and Gp63 Conjugated with Tetanus Toxoid on Outcome of Cutaneous Leishmaniasis Lesions in Balb/C Mice

    Directory of Open Access Journals (Sweden)

    S Soudi

    2006-01-01

    Full Text Available Introduction: GP63 is a major surface protease of Leishmania promastigotes that plays an important role in its virulance. As GP63 on its own can not develop an effective protection against leishmaniasis, the goal of this study was to evaluate the protective effect of GP63 conjugated with tetanus toxoid (TT and Vitamin D3 in susceptible BALB/c mice against cutaneous leishmaniasis. Methods: This study was a basic-applied experimental study performed in Tarbiat Modarres University from September 2002 to April 2005. Cloned virulant Leishmania (L. major [MRHO / IR / 75 / ER] strain was cultured and 5109 cells were harvested. GP63 Molecule was purified and conjugated with TT and conjugated molecule was used for immunization of 8 groups of female BALB/c mice. Results: Results showed that the group of mice receiving conjugated molecule with Vitamin D3 had significant differences from other groups regarding lesion progression (P0.05. The culture of spleen cells showed that the disease did not become systemic in this group. Conclusion: Conjugation of GP63 with TT strengthens cell immunity and its use along with vitamin D3 provokes macrophages activity. This basis can be used for production of an appropriate preparation for protection against Leishmaniasis.

  18. Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit

    OpenAIRE

    2005-01-01

    Cognitive deficits in neuropsychiatric disorders, such as Alzheimer's disease (AD), have been closely related to cholinergic deficits. We have compared different markers of cholinergic function to assess the best biomarker of cognitive deficits associated to cholinergic hypoactivity. In post-mortem frontal cortex from AD patients, acetylcholine (ACh) levels, cholinacetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were all reduced compared to controls. Both ChAT and AChE activi...

  19. 绞股蓝皂甙对阿尔茨海默病小鼠海马胆碱能系统功能的影响%Effects of gypenosides on the hippocampal cholinergic system in D-galactose induced Alzheimer's disease in mice

    Institute of Scientific and Technical Information of China (English)

    周卫华; 谭莉明; 米长忠; 钟飞

    2012-01-01

    目的 探讨绞股蓝皂甙对D-半乳糖(D-gal)所致阿尔茨海默病(AD)模型小鼠海马胆碱能系统功能的影响.方法 昆明小鼠颈背部皮下注射10% D-gal,连续6 w造模.同时,各组分别灌胃生理盐水(正常对照组、模型组)、绞股蓝(高、低剂量组).给药结束后进行水迷宫训练,24h后进行学习记忆功能测试和海马胆碱乙酰基转移酶(ChAT)与乙酰胆碱酯酶(AchE)活性测定以及Western印迹检测ChAT表达.结果 与正常对照组相比,D-gal模型组小鼠学习记忆能力,模型组ChAT活性和ChaT表达明显下降(P <0.05,P<0.01);模型组AchE活性明显升高(P<0.01).给予绞股蓝皂甙可明显改善AD模型小鼠的学习记忆功能(P<0.05,P<0.01),增强海马ChAT活性(P<0.01)和降低AchE活性(P<0.01),上调ChAT的表达(P<0.01).结论 绞股蓝皂甙可明显提高模型小鼠的学习记忆能力,改善海马胆碱能系统功能.%Objective To investigate the effects of gypenosides on the hippocampal cholinergic system in D-galactose induced Alzheimer's disease (AD) in mice. Methods The mice were given subcutaneous injection of 10% D-galactose for 6 weeks (125 ml · kg · d-1 ). Normal saline, gypenosides respectively were given by intragastric administration in different study groups. The mice were trained to find the platform in the water maze on the 43th day. After 24 hours, learning and memory ability was tested, choline acetyltransferase (chAT) activity, acetylcholinesterase (AchE) activity, the expression of ChAT in hippocampus was observed by Western blotting after treatment. Results Compared with the normal control group, the learning and memory dysfunction, the decreases of ChAT activity and expression of ChAT were found in model group, AchE activity was increased in model group (P < 0. 05, P < 0. 01). The gypenosides could markedly attenuate cognitive dysfunction, elevate ChAT and expression of ChAT, decrease AchE activity in the hippocampi of mice

  20. The Role of Muscarinic and Nicotinic Cholinergic Neurotransmission in Aversive Conditioning: Comparing Pavlovian Fear Conditioning and Inhibitory Avoidance

    Science.gov (United States)

    Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S.

    2004-01-01

    Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…

  1. Genetic ablation of soluble TNF does not affect lesion size and functional recovery after moderate spinal cord injury in mice

    DEFF Research Database (Denmark)

    Ellman, Ditte Gry; Degn, Matilda; Lund, Minna C.

    2016-01-01

    in other pro- and anti-inflammatory cytokines (IL-10, IL-1β, IL-6, IL-5, IL-2, CXCL1, CCL2, or CCL5), despite a tendency towards increased IL-10 and decreased IL-1β, TNFR1, and TNFR2 levels in mTNF(Δ/Δ) mice. In addition, microglial and leukocyte infiltration, activation state (Iba1, CD11b, CD11c, CD45...

  2. Dichotomous Distribution of Putative Cholinergic Interneurons in Mouse Accessory Olfactory Bulb

    Science.gov (United States)

    Marking, Sarah; Krosnowski, Kurt; Ogura, Tatsuya; Lin, Weihong

    2017-01-01

    Sensory information processing in the olfactory bulb (OB) relies on diverse populations of bulbar interneurons. In rodents, the accessory OB (AOB) is divided into two bulbar regions, the anterior (aAOB) and posterior (pAOB), which differ substantially in their circuitry connections and associated behaviors. We previously identified and characterized a large number of morphologically diverse cholinergic interneurons in the main OB (MOB) using transgenic mice to visualize the cell bodies of choline acetyltransferase (ChAT-expressing neurons and immunolabeling (Krosnowski et al., 2012)). However, whether there are cholinergic neurons in the AOB is controversial and there is no detailed characterization of such neurons. Using the same line of ChAT(bacterial artificial chromosome, BAC)-enhanced green fluorescent protein (eGFP) transgenic mice, we investigated cholinergic neurons in the AOB. We found significant differences in the number and location of GFP-expressing (GFP+), putative cholinergic interneurons between the aAOB and pAOB. The highest numbers of GFP+ interneurons were found in the aAOB glomerular layer (aGL) and pAOB mitral/tufted cell layer (pMCL). We also noted a high density of GFP+ interneurons encircling the border region of the pMCL. Interestingly, a small subset of glomeruli in the middle of the GL receives strong MCL GFP+ nerve processes. These local putative cholinergic-innervated glomeruli are situated just outside the aGL, setting the boundary between the pGL and aGL. Many but not all GFP+ neurons in the AOB were weakly labeled with antibodies against ChAT and vesicular acetylcholine transporter (VAChT). We further determined if these GFP+ interneurons differ from other previously characterized interneuron populations in the AOB and found that AOB GFP+ interneurons express neither GABAergic nor dopaminergic markers and most also do not express the glutamatergic marker. Similar to the cholinergic interneurons of the MOB, some AOB GFP+ interneurons

  3. Effect of Tongluo Xingnao Effervescent Tablets on Cerebral Cholinergic Function of Mice Dementia Model Induced by Scopolamine%通络醒脑泡腾片对拟痴呆小鼠中枢胆碱能神经功能的影响

    Institute of Scientific and Technical Information of China (English)

    张荫杰; 巨少华; 胡勇; 任香怡; 徐世军

    2014-01-01

    目的:考察通络醒脑泡腾片对东莨菪碱致拟痴呆小鼠学习记忆及中枢胆碱能神经功能的影响。方法制备东莨菪碱致拟痴呆小鼠模型,采用避暗法和Morris水迷宫考察通络醒脑泡腾片对小鼠模型学习记忆功能的影响;采用ELISA法检测小鼠脑海马组织乙酰胆碱(Ach)和胆碱乙酰转移酶(ChAT)含量,采用比色法测定AchE含量,考察通络醒脑泡腾片对小鼠模型中枢胆碱能神经功能的影响。结果避暗测定结果显示通络醒脑泡腾片可以显著延长小鼠的逃避潜伏期,并显著减少错误次数,与模型组比较差异有显著性意义(P<0.05); Morris水迷宫检测结果显示通络醒脑泡腾片能够显著缩短小鼠定向航行测试的逃避潜伏期和空间探索测试的第三象限停留时间,显著延长有效区停留时间,增加经过平台次数,与模型组比较差异有统计学意义(P<0.05);小鼠脑组织中枢胆碱能神经功能测定结果显示,模型组Ach含量显著降低, ChAT酶活性显著降低, AchE活性显著增高,与空白对照组比较差异有统计学意义(P<0.05);与模型组比较,通络醒脑泡腾片高、中、低剂量组Ach活性差异以及中剂量组ChAT活性显著增高,差异有统计学意义(P<0.05),而通络醒脑泡腾片AchE活性有一定的降低趋势,但差异无统计学意义(P>0.05)。结论通络醒脑泡腾片对东莨菪碱所致小鼠拟痴呆模型学习记忆功能具有良好的改善作用,可能与提高模型小鼠中枢胆碱能神经功能、促进乙酰胆碱的合成有关。%Objective To explore the effects of Tongluo Xingnao effervescent tablets on learning and memory and cerebral cholinergic function of dementia mice induced by intraperitoneal injection of scopolamine. Methods Mice model of dementia was established by intraperitoneal injection of scopolamine. The Morris water maze and passive

  4. Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brains of normal, aneuploid, and lesioned mice

    Energy Technology Data Exchange (ETDEWEB)

    Bendotti, C.; Forloni, G.L.; Morgan, R.A.; O' Hara, B.F.; Oster-Granite, M.L.; Reeves, R.H.; Gearhart, J.D.; Coyle, J.T. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1988-05-01

    Amyloid precursor protein mRNA was localized in frozen sections from normal and experimentally lesioned adult mouse brain and from normal and aneuploid fetal mouse brain by in situ hybridization with a {sup 35}S-labeled mouse cDNA probe. The highest levels of hybridization in adult brain were associated with neurons, primarily in telencephalic structures. The dense labeling associated with hippocampal pyramidal cells was reduced significantly when the cells were eliminated by injection of the neurotoxin ibotenic acid but was not affected when electrolytic lesions were placed in the medial septum. Since the gene encoding amyloid precursor protein has been localized to mouse chromosome 16, the authors also examined the expression of this gene in the brains of mouse embryos with trisomy 16 and trisomy 19 at 15 days of gestation. RNA gel blot analysis and in situ hybridization showed a marked increase in amyloid precursor protein mRNA in the trisomy 16 mouse head and brain when compared with euploid littermates or with trisomy 19 mice.

  5. Liver X receptor agonist T0901317 reduces atherosclerotic lesions in apoE-/- mice by up-regulating NPC1 expression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, we studied the effect of liver X receptor (LXR) agonist T0901317 on Niemann-Pick C1 protein (NPC1) expression in apoE-/- mice. Male apoE-/- mice were randomized into 4 groups, baseline group (n=10), control group (n=14), treatment group (n=14) and prevention group (n=14). All of the mice were fed with a high-fat/high-cholesterol (HFHC) diet containing 15% fat and 0.25% cholesterol. The baseline group treated with vehicle was sacrificed after 8 weeks of the diet. The control group and the prevention group were treated with either vehicle or T0901317 daily by oral gavage for 14 weeks. The treatment group was treated with vehicle for 8 weeks, and then was treated with the agonist T0901317 for additional 6 weeks. Gene and protein expression was analyzed by real-time quantitative PCR, immunohistochemistry and Western blotting, respectively. Plasma lipid concentrations were measured by commercially enzymatic methods. We used RNA interference technology to silence NPC1 gene expression in THP-1 macrophage-derived foam cells and then detected the effect of LXR agonist T0901317 on cholesterol efflux. Plasma triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C) and apoA-I concentrations were markedly increased in T0901317-treated groups. T0901317 treatment reduced the aortic atherosclerotic lesion area by 64.2% in the prevention group and 58.3% in the treatment group. LXR agonist treatment increased NPC1 mRNA expression and protein levels in the small intestine, liver and aorta of apoE-/- mice. Compared with the normal cells, cholesterol efflux of siRNA THP-1 macrophage-derived foam cells was significantly decreased, whereas cholesterol efflux of LXR agonist T0901317-treated THP-1 macrophage-derived foam cells was significantly increased. Our results suggest that LXR agonist T0901317 inhibits atherosclerosis development in apoE-/- mice, which is related to up-regulating NPC1 expression.

  6. Effect of tannins from Quercus suber and Quercus coccifera leaves on ethanol-induced gastric lesions in mice.

    Science.gov (United States)

    Khennouf, Seddik; Benabdallah, Hassiba; Gharzouli, Kamel; Amira, Smain; Ito, Hideyuki; Kim, Tae-Hoon; Yoshida, Takashi; Gharzouli, Akila

    2003-02-26

    The gastroprotective effects of 70% acetone extracts of Quercus suber and Quercus coccifera leaves and of tannins (pedunculagin, castalagin, phillyraeoidin A, and acutissimin B) purified from these extracts were examined in the mouse using the ethanol-induced gastric ulcer model. Both extracts (25, 50, and 100 mg/kg), given orally, prevented the formation of ethanol-induced lesions in the stomach. The percent protection varied between 68 and 91%. Purified tannins (50 mg/kg) were also effective in protecting the stomach against ethanol, and the percent protection varied from 66 to 83%. Castalagin was the most potent. Both extracts and all of the tannins tested (10, 25, and 50 microg/mL) strongly inhibited (55-65%) the lipid peroxidation of rabbit brain homogenate. These results suggest that the gastroprotective effects of extracts of Q. suber and Q. coccifera leaves and the purified tannins in this experimental model are related to their anti-lipoperoxidant properties.

  7. Atopic Dermatitis-Like Skin Lesions Reduced by Topical Application and Intraperitoneal Injection of Hirsutenone in NC/Nga Mice

    Directory of Open Access Journals (Sweden)

    Mi Sook Jeong

    2010-01-01

    Full Text Available Atopic dermatitis (AD is a common inflammatory skin disease. The increasing prevalence and severity of AD have prompted the developments of safer, more effective drugs. Although topical corticosteroids have been used as first line therapy for AD, their potential side effects limit their clinical applications. To investigate the effect of hirsutenone (HIR, a diarylheptanoid compound, on AD-like skin lesions and other factors related to immune response is the aim of this paper Th2-related cytokines (IL-4, IL-5, IL-13, eosinophil, IgE inflammatory factors (COX-2, iNOS levels were reduced in blood, lymphocytes, and tissue after HIR treatment. These results suggest that HIR might be an effective treatment for AD.

  8. Preventive effects of branched-chain amino acid supplementation on the spontaneous development of hepatic preneoplastic lesions in C57BL/KsJ-db/db obese mice.

    Science.gov (United States)

    Terakura, Daishi; Shimizu, Masahito; Iwasa, Junpei; Baba, Atsushi; Kochi, Takahiro; Ohno, Tomohiko; Kubota, Masaya; Shirakami, Yohei; Shiraki, Makoto; Takai, Koji; Tsurumi, Hisashi; Tanaka, Takuji; Moriwaki, Hisataka

    2012-12-01

    Obesity and its associated disorders, such as non-alcoholic steatohepatitis, increase the risk of hepatocellular carcinoma. Branched-chain amino acids (BCAA), which improve protein malnutrition in patients with liver cirrhosis, reduce the risk of hepatocellular carcinoma in these patients with obesity. In the present study, the effects of BCAA supplementation on the spontaneous development of hepatic premalignant lesions, foci of cellular alteration, in db/db obese mice were examined. Male db/db mice were given a basal diet containing 3.0% of either BCAA or casein, a nitrogen-content-matched control of BCAA, for 36 weeks. On killing the mice, supplementation with BCAA significantly inhibited the development of foci of cellular alteration when compared with casein supplementation by inhibiting cell proliferation, but inducing apoptosis. BCAA supplementation increased the expression levels of peroxisome proliferator-activated receptor-γ, p21(CIP1) and p27(KIP1) messenger RNA and decreased the levels of c-fos and cyclin D1 mRNA in the liver. BCAA supplementation also reduced both the amount of hepatic triglyceride accumulation and the expression of interleukin (IL)-6, IL-1β, IL-18 and tumor necrosis factor-α mRNA in the liver. Increased macrophage infiltration was inhibited and the expression of IL-6, TNF-α, and monocyte chemoattractant protein-1 mRNA in the white adipose tissue were each decreased by BCAA supplementation. BCAA supplementation also reduced adipocyte size while increasing the expression of peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ and adiponectin mRNA in the white adipose tissue compared with casein supplementation. These findings indicate that BCAA supplementation inhibits the early phase of obesity-related liver tumorigenesis by attenuating chronic inflammation in both the liver and white adipose tissue. BCAA supplementation may be useful in the chemoprevention of liver tumorigenesis in obese

  9. Neural Stem Cell Transplant-Induced Effect on Neurogenesis and Cognition in Alzheimer Tg2576 Mice Is Inhibited by Concomitant Treatment with Amyloid-Lowering or Cholinergic α7 Nicotinic Receptor Drugs.

    Science.gov (United States)

    Lilja, Anna M; Malmsten, Linn; Röjdner, Jennie; Voytenko, Larysa; Verkhratsky, Alexei; Ögren, Sven Ove; Nordberg, Agneta; Marutle, Amelia

    2015-01-01

    Stimulating regeneration in the brain has the potential to rescue neuronal networks and counteract progressive pathological changes in Alzheimer's disease (AD). This study investigated whether drugs with different mechanisms of action could enhance neurogenesis and improve cognition in mice receiving human neural stem cell (hNSC) transplants. Six- to nine-month-old AD Tg2576 mice were treated for five weeks with the amyloid-modulatory and neurotrophic drug (+)-phenserine or with the partial α7 nicotinic receptor (nAChR) agonist JN403, combined with bilateral intrahippocampal hNSC transplantation. We observed improved spatial memory in hNSC-transplanted non-drug-treated Tg2576 mice but not in those receiving drugs, and this was accompanied by an increased number of Doublecortin- (DCX-) positive cells in the dentate gyrus, a surrogate marker for newly generated neurons. Treatment with (+)-phenserine did however improve graft survival in the hippocampus. An accumulation of α7 nAChR-expressing astrocytes was observed around the injection site, suggesting their involvement in repair and scarring processes. Interestingly, JN403 treatment decreased the number of α7 nAChR-expressing astrocytes, correlating with a reduction in the number of DCX-positive cells in the dentate gyrus. We conclude that transplanting hNSCs enhances endogenous neurogenesis and prevents further cognitive deterioration in Tg2576 mice, while simultaneous treatments with (+)-phenserine or JN403 result in countertherapeutic effects.

  10. Neural Stem Cell Transplant-Induced Effect on Neurogenesis and Cognition in Alzheimer Tg2576 Mice Is Inhibited by Concomitant Treatment with Amyloid-Lowering or Cholinergic α7 Nicotinic Receptor Drugs

    Directory of Open Access Journals (Sweden)

    Anna M. Lilja

    2015-01-01

    Full Text Available Stimulating regeneration in the brain has the potential to rescue neuronal networks and counteract progressive pathological changes in Alzheimer’s disease (AD. This study investigated whether drugs with different mechanisms of action could enhance neurogenesis and improve cognition in mice receiving human neural stem cell (hNSC transplants. Six- to nine-month-old AD Tg2576 mice were treated for five weeks with the amyloid-modulatory and neurotrophic drug (+-phenserine or with the partial α7 nicotinic receptor (nAChR agonist JN403, combined with bilateral intrahippocampal hNSC transplantation. We observed improved spatial memory in hNSC-transplanted non-drug-treated Tg2576 mice but not in those receiving drugs, and this was accompanied by an increased number of Doublecortin- (DCX- positive cells in the dentate gyrus, a surrogate marker for newly generated neurons. Treatment with (+-phenserine did however improve graft survival in the hippocampus. An accumulation of α7 nAChR-expressing astrocytes was observed around the injection site, suggesting their involvement in repair and scarring processes. Interestingly, JN403 treatment decreased the number of α7 nAChR-expressing astrocytes, correlating with a reduction in the number of DCX-positive cells in the dentate gyrus. We conclude that transplanting hNSCs enhances endogenous neurogenesis and prevents further cognitive deterioration in Tg2576 mice, while simultaneous treatments with (+-phenserine or JN403 result in countertherapeutic effects.

  11. Effects of Selenium-Enriched Probiotics on Lipid Metabolism, Antioxidative Status, Histopathological Lesions, and Related Gene Expression in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Nido, Sonia Agostinho; Shituleni, Shituleni Andreas; Mengistu, Berhe Mekonnen; Liu, Yunhuan; Khan, Alam Zeb; Gan, Fang; Kumbhar, Shahnawaz; Huang, Kehe

    2016-06-01

    A total of 80 female albino mice were randomly allotted into five groups (n = 16) as follows: (A) normal control, (B) high-fat diet (HFD),; (C) HFD + probiotics (P), (D) HFD + sodium selenite (SS), and (E) HFD + selenium-enriched probiotics (SP). The selenium content of diets in groups A, B, C, D, and E was 0.05, 0.05, 0.05, 0.3, and 0.3 μg/g, respectively. The amount of probiotics contained in groups C and E was similar (Lactobacillus acidophilus 0.25 × 10(11)/mL and Saccharomyces cerevisiae 0.25 × 10(9)/mL colony-forming units (CFU)). The high-fat diet was composed of 15 % lard, 1 % cholesterol, 0.3 % cholic acid, and 83.7 % basal diet. At the end of the 4-week experiment, blood and liver samples were collected for the measurements of lipid metabolism, antioxidative status, histopathological lesions, and related gene expressions. The result shows that HFD significantly increased the body weights and liver damages compared to control, while P, SS, or SP supplementation attenuated the body weights and liver damages in mice. P, SS, or SP supplementation also significantly reversed the changes of alanine aminotransferase (AST), aspartate aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), total protein (TP), high-density lipoprotein (HDL), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalasa (CAT), and malondialdehyde (MDA) levels induced by HFD. Generally, adding P, SS, or SP up-regulated mRNA expression of carnitine palmitoyltransferase-I (CPT1), carnitine palmitoyltransferase II (CPT2), acetyl-CoA acetyltransferase II (ACAT2), acyl-coenzyme A oxidase (ACOX2), and peroxisome proliferator-activated receptor alpha (PPARα) and down-regulated mRNA expression of fatty acid synthase (FAS), lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol regulatory element-binding protein-1 (SREBP1) involved in lipid metabolism. Among the group

  12. 替米沙坦对东莨菪碱模型小鼠学习记忆及脑内胆碱能神经的影响%Effects of telmisartan on learning-memory and brain cholinergic nerve in scopolamine-induced model of mice

    Institute of Scientific and Technical Information of China (English)

    李冰; 王浩; 洪浩

    2013-01-01

    OBJECTIVE To investigate the effects of telmisartan on learning-memory and brain cholinergic nerve in scopolamine-induced model of mice. METHODS Mice were randomly divided into 5 groups: normal control, scopolamine model, Aricept group (positive control) , high and low doses of telmisartan group (0. 70,0. 35 mg·kg-1·d-1 ). Telmisartan was orally administered after intraperitoneal injection with scopolamine (1.0 mg·kg-1·d-1). Learning-memory function was evaluated by Morris water maze test and Y maze test respectively. Changes in cholinergic system reactivity were also examined by measuring the acetylcholine (ACh) and acetylcholinesterase (AChE) in the hippocampus and cortex. RESULTS Compared with model group, treatment with telmisartan (0. 70,0. 35 mg·kg-1·d-1) significantly decreased the escape latency in invisible platform test, increased the time spent in the platform quadrant in the spatial probe test and the number of crossing times in the Morris water maze test, and increased the times of correct responses in the Y maze test. Telmisartan also significantly decreased AChE activity and increased ACh level in the hippocampus and cortex. CONCLUSION Telmisartan may improve learning-memory impairment induced by scopolamine through elevation of brain ACh levels resulting from inhibition of AChE activity in mice.%目的:探究替米沙坦对东莨菪碱模型小鼠学习记忆及脑内胆碱能神经的影响.方法:将小鼠按体质量随机分为5组:正常对照组(Sal+ Veh)、东莨菪碱模型组(Sco+ Veh)、多奈哌齐组(Sco+ Ari)、替米沙坦高剂量组(Sco+ Tel 0.70 mg·kg-1)及低剂量组(Sco+ Tel 0.35 mg·kg-1),灌胃给药,除正常对照组腹腔注射生理盐水外,其他各组注射东莨菪碱.采用Morris水迷宫和Y迷宫试验评价学习记忆能力,并测定脑内乙酰胆碱(ACh)、乙酰胆碱酯酶(AChE)水平.结果:替米沙坦(0.70,0.35 mg·kg-1·d-1)能显著缩短东莨菪碱模型鼠在隐藏平台试验的潜伏期,增加

  13. Primary administration of Lactobacillus johnsonii NCC533 in weaning period suppresses the elevation of proinflammatory cytokines and CD86 gene expressions in skin lesions in NC/Nga mice.

    Science.gov (United States)

    Inoue, Ryo; Otsuka, Mai; Nishio, Ayako; Ushida, Kazunari

    2007-06-01

    The administration of probiotic lactic acid bacteria (LAB) has been studied for its potential to prevent atopic dermatitis (AD). The objective of this study was to assess the inhibitory mechanism of a skin lesion by LAB using an experimental model that we previously demonstrated in NC/Nga mice. Lactobacillus johnsonii NCC533 (La1) was administered orally to the La1 group from 20 to 22 days after birth, while phosphate-buffered saline was given to the control group. After the induction of skin lesions in 6-week-old mice, the expression of genes supposedly involved in AD was evaluated. Gene expression of the proinflammatory cytokines [interleukin-8 (IL-8), IL-12 and IL-23] was significantly enhanced in the lesional skin of the control group by the induction of the lesion, whereas gene expression of those in the La1 group was not elevated. Interestingly, expression of the costimulatory molecule CD86 showed a pattern similar to the expression of the cytokines in the lesional skin. Moreover, the La1 group showed a significantly lower gene expression of CD86 in Peyer's patches and mesenteric lymph nodes than the control group. The suppression of proinflammatory cytokines and CD86 by primary administration of La1 may significantly contribute to the inhibitory effect on the skin lesion.

  14. Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide.

    Science.gov (United States)

    Frazier, Kendall S; Sobry, Cécile; Derr, Victoria; Adams, Mike J; Besten, Cathaline Den; De Kimpe, Sjef; Francis, Ian; Gales, Tracy L; Haworth, Richard; Maguire, Shaun R; Mirabile, Rosanna C; Mullins, David; Palate, Bernard; Doorten, Yolanda Ponstein-Simarro; Ridings, James E; Scicchitano, Marshall S; Silvano, Jérémy; Woodfine, Jennie

    2014-07-01

    Chronic administration of drisapersen, a 2'-OMe phosphorothioate antisense oligonucleotide (AON) to mice and monkeys resulted in renal tubular accumulation, with secondary tubular degeneration. Glomerulopathy occurred in both species with species-specific characteristics. Glomerular lesions in mice were characterized by progressive hyaline matrix accumulation, accompanied by the presence of renal amyloid and with subsequent papillary necrosis. Early changes involved glomerular endothelial hypertrophy and degeneration, but the chronic glomerular amyloid and hyaline alterations in mice appeared to be species specific. An immune-mediated mechanism for the glomerular lesions in mice was supported by early inflammatory changes including increased expression of inflammatory cytokines and other immunomodulatory genes within the renal cortex, increased stimulation of CD68 protein, and systemic elevation of monocyte chemotactic protein 1. In contrast, kidneys from monkeys given drisapersen chronically showed less severe glomerular changes characterized by increased mesangial and inflammatory cells, endothelial cell hypertrophy, and subepithelial and membranous electron-dense deposits, with ultrastructural and immunohistochemical characteristics of complement and complement-related fragments. Lesions in monkeys resembled typical features of C3 glomerulopathy, a condition described in man and experimental animals to be linked to dysregulation of the alternative complement pathway. Thus, inflammatory/immune mechanisms appear critical to glomerular injury with species-specific sensitivities for mouse and monkey. The lower observed proinflammatory activity in humans as compared to mice and monkeys may reflect a lower risk of glomerular injury in patients receiving AON therapy.

  15. Hippocampal cholinergic interneurons visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    Directory of Open Access Journals (Sweden)

    Feng eYi

    2015-03-01

    Full Text Available Release of acetylcholine (ACh in the hippocampus (HC occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlapping with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-Rosa and ChAT-tauGFP mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.

  16. Hippocampal "cholinergic interneurons" visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation.

    Science.gov (United States)

    Yi, Feng; Catudio-Garrett, Elizabeth; Gábriel, Robert; Wilhelm, Marta; Erdelyi, Ferenc; Szabo, Gabor; Deisseroth, Karl; Lawrence, Josh

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlap with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM) exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP) of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-tauGFP and ChAT-Rosa mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.

  17. Cholinergic regulation of the vasopressin neuroendocrine system

    Energy Technology Data Exchange (ETDEWEB)

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The median eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.

  18. Fluoxetine ameliorates atopic dermatitis-like skin lesions in BALB/c mice through reducing psychological stress and inflammatory response

    Directory of Open Access Journals (Sweden)

    Yanxi Li

    2016-09-01

    Full Text Available Atopic dermatitis (AD is a common chronic inflammatory skin disorder, and patients with AD suffer from severe psychological stress, which markedly increases the prevalence rate of depression and anxiety disorders in later life. Fluoxetine, a selective serotonin reuptake inhibitor, has recently been reported to exert anti-inflammatory and immunosuppressive effects. However, it is unclear whether fluoxetine is effective in the treatment of AD through reducing psychological stress and inflammatory reaction. Here, we reported that a BALB/c mouse model of AD was induced by application of 2,4‑dinitrochlorobenzene (DNCB onto hairless dorsal skin. Chronic fluoxetine treatment (10 mg/kg per day, i.p. significantly attenuated AD-like symptoms, as reflected by a dramatic decrease in scratching bouts, as well as a decrease in anxiety- and depressive-like behaviors. Furthermore, these behavioral changes were accompanied by a significant decrease in epidermal thickness, the number of mast cells in skin tissue, mRNA levels of interleukin-4 (IL-4 and IL-13 in the spleen, as well as serum immunoglobulin E (IgE in the DNCB-treated mice by treatment with fluoxetine. Taken together, these results indicate that fluoxetine may suppress psychological stress and inflammatory response during AD development, and subsequently ameliorate AD symptoms, suggesting that fluoxetine may be a potential therapeutic agent against AD in clinic.

  19. Therapeutic Effects of Fermented Flax Seed Oil on NC/Nga Mice with Atopic Dermatitis-Like Skin Lesions

    Science.gov (United States)

    Yang, Joonhyoung; Min, Sangyeon

    2017-01-01

    Background. Atopic Dermatitis (AD) is one of the most common chronic inflammatory skin diseases. Objective. This experiment aimed to study the effects of Fermented Flax Seed Oil (FFSO) on symptoms such as redness, eczema, and pruritus induced by AD. Materials and Methods. AD-induced NC/Nga mice were used to observe the immunological and therapeutic effects of FFSO on skin in vivo. Raw 264.7 cells were used to investigate the effects of FFSO in cells. Fc receptor expression and concentration of beta-hexosaminidase were measured. Nitric oxide assay, Western blotting, real-time PCR, image analysis, and statistical analysis were performed in vitro. Results. In the immunohistochemical results, p-ERK 1/2 expression decreased, fibrogenesis strongly increased, and distribution reduction is observed. Distribution of IL-4-positive cells in the corium near the basal portion of the epithelium in the AT group was reduced. FFSO treatment reduced the number of cells showing NF-κB p65 and iNOS expression. The level of LXR in the AT group was higher than that in the AE group, and elevation of PKC expression was significantly reduced by FFSO treatment. Conclusion. FFSO could alleviate symptoms of AD such as epithelial damage, redness, swelling, and pruritus.

  20. Rabbit Forebrain cholinergic system : Morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus

    NARCIS (Netherlands)

    Varga, C; Hartig, W; Grosche, J; Luiten, PGM; Seeger, J; Brauer, K; Harkany, T; Härtig, Wolfgang; Keijser, Jan N.

    2003-01-01

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output p

  1. Effect of icariin on learning and memory abilities and activity of cholinergic system of senescence-accelerated mice SAMP10%淫羊藿苷对快速老化小鼠SAMP10学习记忆能力以及胆碱能系统活性的影响

    Institute of Scientific and Technical Information of China (English)

    高琳娜; 唐千淇; 贺晓丽; 毕明刚

    2012-01-01

    Objective: To investigate the effect of icariin(ICA) on learning and memory abilities and cholinergic system in se-nescence-accelerated mice SAMP10. Method: The 8-month-old senescence-accelerated mice were randomly divided into the model SAMP10 group and the positive Donepezil group (1 mg · kg-1 ) and ICA groups (50, 100, 200 mg · kg-1 ) , with 12 mice in each group. Another 12 8-month-old mice SAMR1 were selected as the normal control group. After 30 days of oral administration, Morris water maze, SMG-2 water maze and experimental platform were used to test the effects of ICA on learning and memory abilities of SAMP10 groups. By colorimetric determination of AChE activity in the cortex, enzyme-linked immunosorbent assay detection of ACh, ChAT, MCBC of the cerebral cortex, the effect of ICA on the cholinergic system of SAMP10 was observed. Result: ICA could improve the abilities of space exploration and positioning navigation of SAMP10, shorten the latency in SMG-2 water maze, enhance their jumping ability in response to the passive test, and increase levels of ACh, ChAT, MCBC in the cerebral cortex of SAMP10. But its active effect on AChE in SAMP10 cortex was not obvious. Conclusion: Different doses of icariin can improve learning and memory abilities of SAMP10 to varying degrees, which may be related to its effect on the cholinergic system.%目的:探讨淫羊藿苷(ICA)对快速老化小鼠SAMP10的学习记忆能力以及胆碱能系统的影响.方法:采取8月龄快速老化小鼠SAMP10为实验对象,随机分为模型SAMP10组,阳性药多奈哌齐组(1 mg· kg-1),ICA低、中、高剂量(50,100,200 mg·kg-1)组,每组12只,以12只同月龄抗快速老化小鼠SAMR1为正常对照.灌胃给药30 d,通过Morris水迷宫、SMG-2迷宫、小鼠跳台仪检测ICA对SAMP10学习记忆能力的影响,通过比色法测定皮层中乙酰胆碱酯酶(AChE)的活力,采用酶联免疫吸附测定法检测乙酰胆碱(ACh)、乙酰胆碱转移酶(ChAT)以及M-

  2. The cholinergic system, circadian rhythmicity, and time memory

    NARCIS (Netherlands)

    Hut, R. A.; Van der Zee, E. A.

    2011-01-01

    This review provides an overview of the interaction between the mammalian cholinergic system and circadian system, and its possible role in time memory. Several studies made clear that circadian (daily) fluctuations in acetylcholine (ACh) release, cholinergic enzyme activity and cholinergic receptor

  3. A Luciferase-Expressing Leishmania braziliensis Line That Leads to Sustained Skin Lesions in BALB/c Mice and Allows Monitoring of Miltefosine Treatment Outcome.

    Directory of Open Access Journals (Sweden)

    Adriano C Coelho

    2016-05-01

    Full Text Available Leishmania braziliensis is the most prevalent species isolated from patients displaying cutaneous and muco-cutaneous leishmaniasis in South America. However, there are difficulties for studying L. braziliensis pathogenesis or response to chemotherapy in vivo due to the natural resistance of most mouse strains to infection with these parasites. The aim of this work was to develop an experimental set up that could be used to assess drug efficacy against L. braziliensis. The model was tested using miltefosine.A L. braziliensis line, originally isolated from a cutaneous leishmaniasis patient, was passaged repeatedly in laboratory rodents and further genetically manipulated to express luciferase. Once collected from a culture of parasites freshly transformed from amastigotes, 106 wild type or luciferase-expressing stationary phase promastigotes were inoculated subcutaneously in young BALB/c mice or golden hamsters. In both groups, sustained cutaneous lesions developed at the site of inoculation, no spontaneous self- healing being observed 4 months post-inoculation, if left untreated. Compared to the wild type line features, no difference was noted for the luciferase-transgenic line. Infected animals were treated with 5 or 15 mg/kg/day miltefosine orally for 15 days. At the end of treatment, lesions had regressed and parasites were not detected. However, relapses were observed in animals treated with both doses of miltefosine.Here we described experimental settings for a late-healing model of cutaneous leishmaniasis upon inoculation of a luciferase-expressing L. braziliensis line that can be applied to drug development projects. These settings allowed the monitoring of the transient efficacy of a short-term miltefosine administration.

  4. Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons

    Science.gov (United States)

    Görlich, Andreas; Antolin-Fontes, Beatriz; Ables, Jessica L.; Frahm, Silke; Ślimak, Marta A.; Dougherty, Joseph D.; Ibañez-Tallon, Inés

    2013-01-01

    The discovery of genetic variants in the cholinergic receptor nicotinic CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula–interpeduncular axis as a critical relay circuit in the control of nicotine dependence. Although clear roles for α3, β4, and α5 receptors in nicotine aversion and withdrawal have been established, the cellular and molecular mechanisms that participate in signaling nicotine use and contribute to relapse have not been identified. Here, using translating ribosome affinity purification (TRAP) profiling, electrophysiology, and behavior, we demonstrate that cholinergic neurons, but not peptidergic neurons, of the medial habenula (MHb) display spontaneous tonic firing of 2–10 Hz generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels and that infusion of the HCN pacemaker antagonist ZD7288 in the habenula precipitates somatic and affective signs of withdrawal. Further, we show that a strong, α3β4-dependent increase in firing frequency is observed in these pacemaker neurons upon acute exposure to nicotine. No change in the basal or nicotine-induced firing was observed in cholinergic MHb neurons from mice chronically treated with nicotine. We observe, however, that, during withdrawal, reexposure to nicotine doubles the frequency of pacemaking activity in these neurons. These findings demonstrate that the pacemaking mechanism of cholinergic MHb neurons controls withdrawal, suggesting that the heightened nicotine sensitivity of these neurons during withdrawal may contribute to smoking relapse. PMID:24082085

  5. Postnatal lead exposure and the cholinergic system: effects on cholinergically mediated behaviors and cholinergic development and plasticity in the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, D.P.

    1982-01-01

    A review of previous evidence suggested the possibility of a functional association between the behavioral effect of early lead (Pb) exposure, hippocampal damage and cholinergic deficiency. To further assess this possibility, Long-Evans hooded rat pups were exposed to Pb for the first 25 postnatal days via the maternal milk. Beginning at 65 days of age, animals were tested on behavioral tasks sensitive to both Pb exposure and cholinergic deficiency. Exposure to both levels of Pb impaired passive avoidance acquisition and produced lower rates of spontaneous alternation. The anticholinergic scopolamine (0.4 mg/kg) impaired passive avoidance acquisition, lowered the rate of spontaneous alternation and decreased open field activity scores in control animals. At 30 days of age, the brains of High Pb and control animals were processed for acetylcholinesterase (AChE) histochemistry. Morphometric evaluation of the molecular layer of the hippocampal dentate gyrus indicated no effects of Pb on the development of the cholinergic innervation of this brain region. The results provide strong evidence for the involvement of deficient cholinergic functioning in the behavioral changes observed following postnatal Pb exposure. Further, these findings indicate that a decrease in neuroanatomical plasticity may be a critical brain mechanism underlying the learning deficits observed following exposure to Pb.

  6. Hydrogel-gauze dressing for moderate-to-severe atopic dermatitis: development and efficacy study on atopic dermatitis-like skin lesions in NC/Nga mice.

    Science.gov (United States)

    Ng, Shiow-Fern; Lew, Pit-Chin; Sin, Yong-Boey

    2014-11-01

    Topical emollients are known to provide symptomatic relief for atopic dermatitis. In hospitals, wet-wrap therapy has been shown to benefit children with moderate-to-severe atopic dermatitis (AD), but the application of wet-wraps is tedious and time-consuming. Topical emollients have low residence time and often dry out easily. The aim of this work was to develop a hydrogel-gauze dressing that is not only easy to apply but also rehydrates and traps moisture to provide longer relief for AD patients. In this study, a prototype hydrogel-gauze dressing was developed with varying ratios of sodium carboxymethylcellulose (NaCMC) and propylene glycol. The hydrogel-gauze dressings were assessed based on the moisture vapor transmission rate, moisture absorption, mechanical properties and storage stability over three months. Then, the efficacy of the hydrogel-gauze dressing was compared to topical emollients using transgenic NC/Nga mice with AD-like lesions. The NaCMC hydrogel-gauze dressings significantly lowered transepidermal water loss, and the animals displayed a faster recovery, which indicates that hydrogel-gauze dressings can trap moisture more effectively and accelerate AD healing. Hence, we propose that hydrogel-gauze dressings can potentially become an alternative to wet-wrap therapy due to the ease of application and the higher efficacy compared to topical products.

  7. The Hot-Water Extract of Smilacis Chinae Rhizome Suppresses 2,4-Dinitrochlorobenzene and House Dust Mite-Induced Atopic Dermatitis-Like Skin Lesions in Mice.

    Science.gov (United States)

    Ki, Nam Yong; Park, Eun-Ji; Sung, In sung; Ju, Seul A; Kim, Kyoung Un; Kim, Mi Rae; Song, Do Yeon; Lee, Min-Ju; Kim, Hak-Soo; Kang, Boo-Hyon; Chung, Hun-Jong; Choi, Eun-Ju; Yoon, Ki-Hun; Lee, Min Won; Yun, Seongho; Min, Bokkee; Kwon, Suk Hyung; Shin, Hwa-Sup

    2016-04-01

    Smilacis Chinae Rhizome (SCR) has been used as an oriental folk medicine for various biological activities. However, its effect on atopic dermatitis (AD) remains undetermined to date. We assessed the effect of orally administered hot-water extract of SCR on AD-like skin lesions in mice and its underlying mechanisms. AD-like murine model was prepared by repeated alternate application of house dust mite (Dermatophagoides farinae) extract (DFE) and 2,4-dinitrochlorobenzene (DNCB) for 4 weeks, topically to the ears. Daily oral administration of SCR for 3 and 4 weeks significantly reduced inflammatory ear thickening, with the effect being enhanced at the earlier start and longer period of administration. This effect was accompanied by a significant decrease in both Th2 and Th1 serum antibodies (total IgE, DFE-specific IgE, and IgG2a). Histological analysis showed that SCR markedly decreased the epidermal/dermal ear thickening and the dermal infiltration of inflammatory cells. Furthermore, SCR suppressed DFE/DNCB-induced expression of IL-4, IL-13, IL-17, IL-18, TSLP, and IFN-γ genes in the ear tissue. Taken together, our observations demonstrate that chronic oral administration of SCR exerts beneficial effect in mouse AD model, suggesting that SCR has the therapeutic potential as an orally active treatment of AD by modulating both Th1 and Th2 responses.

  8. AF64A诱导的大鼠大缝际核胆碱能神经损伤改变吗啡的镇痛作用%Effect of morphine-induced antinociception is altered by AF64A-induced lesions on cholinergic neurons in rat nucleus raphe magnus

    Institute of Scientific and Technical Information of China (English)

    Kenji ABE; Kota ISHIDA; Masatoshi KATO; Toshiro SHIGENAGA; Kyoji TAGUCHI; Tadashi MIYATAKE

    2002-01-01

    AIM: To examine the role of cholinergic neurons in the nucleus raphe magnus (NRM) in noxious heat stimulationand in the effects of morphine-induced antinociception by rats. METHODS: After the cholinergic neuron selectivetoxin, AF64A, was microinjected into the NRM, we examined changes in the antinociceptive threshold and effectsof morphine (5 mg/kg, ip) using the hot-plate (HP) and tail-flick (TF) tests. RESULTS: Systemic administration ofmorphine inhibited HP and TF responses in control rats. Microinjection of AF64A (2 nmol/site) into the NRMsignificantly decreased the threshold of HP response after 14 d, whereas the TF response was not affected. Mor-phine-induced antinociception was significantly attenuated in rats administered AF64A. Extracellular acetylcholinewas attenuated after 14 d to below detectable levels in rats given AF64A. Naloxone (1 μg/site) microinjected intocontrol rat NRM also antagonized the antinociceptive effect of systemic morphine. CONCLUSION: These find-ings suggest that cbolinergic neuron activation in the NRM modulates the antinociceptive effect of morphine simul-taneously with the opiate system.

  9. Acetylcholinesterase loosens the brain's cholinergic anti-inflammatory response and promotes epileptogenesis

    Directory of Open Access Journals (Sweden)

    Yehudit eGnatek

    2012-05-01

    Full Text Available Recent studies show a key role of brain inflammation in epilepsy. However, the mechanisms controlling brain immune response are only partly understood. In the periphery, acetylcholine (ACh release by the vagus nerve restrains inflammation by inhibiting the activation of leukocytes. Recent reports suggested a similar anti-inflammatory effect for ACh in the brain. Since brain cholinergic dysfunction are documented in epileptic animals, we explored changes in brain cholinergic gene expression and associated immune response during pilocarpine-induced epileptogenesis. Levels of acetylcholinesterase (AChE and inflammatory markers were measured using real-time RT-PCR, in-situ hybridization and immunostaining in wild type (WT and transgenic mice over-expressing the "synaptic" splice variant AChE-S (TgS. One month following pilocarpine, mice were video-monitored for spontaneous seizures. To test directly the effect of ACh on the brain's innate immune response, cytokines expression levels were measured in acute brain slices treated with cholinergic agents. We report a robust upregulation of AChE as early as 48 hrs following pilocarpine-induced status epilepticus (SE. AChE was expressed in hippocampal neurons, microglia and endothelial cells but rarely in astrocytes. TgS mice overexpressing AChE showed constitutive increased microglial activation, elevated levels of pro-inflammatory cytokines 48 hrs after SE and accelerated epileptogenesis compared to their WT counterparts. Finally we show a direct, muscarine-receptor dependant, nicotine-receptor independent anti-inflammatory effect of ACh in brain slices maintained ex vivo. Our work demonstrates for the first time, that ACh directly suppresses brain innate immune response and that AChE up-regulation after SE is associated with enhanced immune response, facilitating the epileptogenic process. Our results highlight the cholinergic system as a potential new target for the prevention of seizures and epilepsy.

  10. Rabbit forebrain cholinergic system: morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus.

    Science.gov (United States)

    Varga, Csaba; Härtig, Wolfgang; Grosche, Jens; Keijser, Jan; Luiten, Paul G M; Seeger, Johannes; Brauer, Kurt; Harkany, Tibor

    2003-06-09

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output pathways are still awaited. Therefore, we performed quantitative choline acetyltransferase (ChAT) immunocytochemistry to localize major cholinergic nuclei and to determine the number of respective cholinergic neurons in the rabbit forebrain. The density of ChAT-immunoreactive terminals in layer V of distinct neocortical territories and in hippocampal subfields was also measured. Another cholinergic marker, the low-affinity neurotrophin receptor (p75(NTR)), was also employed to identify subsets of cholinergic neurons. Double-immunofluorescence labeling of ChAT and p75(NTR), calbindin D-28k (CB), parvalbumin, calretinin, neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase, or substance P was used to elucidate the neuroanatomical borders of cholinergic nuclei and to analyze the neurochemical complexity of cholinergic cell populations. Cholinergic projection neurons with heterogeneous densities were found in the medial septum, vertical and horizontal diagonal bands of Broca, ventral pallidum, and magnocellular nucleus basalis (MBN)/substantia innominata (SI) complex; cholinergic interneurons were observed in the caudate nucleus, putamen, accumbens nucleus, and olfactory tubercule, whereas the globus pallidus was devoid of cholinergic nerve cells. Cholinergic interneurons were frequently present in the hippocampus and to a lesser extent in cerebral cortex. Cholinergic projection neurons, except those localized in SI, abundantly expressed p75(NTR), and a subset of cholinergic neurons in posterior MBN was immunoreactive for CB and nNOS. A strict laminar distribution pattern of cholinergic terminals was recorded both in the cerebral cortex and in CA1-CA3 and dentate gyrus

  11. Evidence for dopamine D-2 receptors on cholinergic interneurons in the rat caudate-putamen

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, V.L.; Dawson, T.M.; Filloux, F.M.; Wamsley, J.K.

    1988-01-01

    The aziridinium ion of ethylcholine (AF64A) is a neurotoxin that has demonstrated selectivity for cholinergic neurons. Unilateral stereotaxic injection of AF64A into the caudate-putamen of rats, resulted in a decrease in dopamine D-2 receptors as evidenced by a decrease in (/sup 3/H)-sulpiride binding. Dopamine D-1 receptors, labeled with (/sup 3/H)-SCH 23390, were unchanged. The efficacy of the lesion was demonstrated by the reduction of Na/sup +/-dependent high affinity choline uptake sites labeled with (/sup 3/H)-hemicholinium-3. These data indicate that a population of D-2 receptors are postsynaptic on cholinergic interneurons within the striatum of rat brain.

  12. Cholinergic imaging in dementia spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios [Institute of Psychiatry, Psychology and Neuroscience, King' s College London, Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, London (United Kingdom)

    2016-07-15

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [{sup 11}C]MP4A and [{sup 11}C]PMP PET for acetylcholinesterase (AChE), [{sup 123}I]5IA SPECT for the α{sub 4}β{sub 2} nicotinic acetylcholine receptor and [{sup 123}I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. (orig.)

  13. ROLE OF CHOLINERGIC SYSTEM ON THE CONSTRUCTION OF MEMORY AND ITS INTERACTION WITH DOPAMINERGIC SYSTEM

    Directory of Open Access Journals (Sweden)

    F. Z. Zangeneh

    2006-07-01

    Full Text Available The central cholinergic system has been associated with cognitive function and memory and acetylcholine plays an important role during the early stages of memory consolidation. In this study, after training mice were tested with one way active avoidance procedure and retention were tested at 4, 8, 12, 16 and 24 hours of training and compared with non-shocked mice, in which it took 24 hours, a suitable time for retention test. Low dose administration of arecoline and physostigmine pre-training, immediate post-training and before retrieval showed that muscarinic agonist arecoline can potentiated memory in post trained and retrieval phases and reversible cholinesterase inhibitor physostigmine potentiated memory only in retrieval phase. Scopolamine disrupted acetylcholine potentiation only in retrieval phase. In the second part of this study, the effect of dopaminergic system was investigated. Low dose of apomorphine and D2 agonist bromocriptine potentiated memory when administered immediately post-training, and D2 antagonist sulpiride impaired memory. When the cholinergic system was blocked by scopolamine immediately post-training, apomorphine and bromocriptine potentiated memory and sulpiride impaired it. In conclusion, these results suggest that, cholinergic system in retrieval phase is very critical and there was no interaction between the two systems in the post-training phase.

  14. Cholinergic Mechanisms in Spinal Locomotion - Potential Target for Rehabilitation Approaches

    Directory of Open Access Journals (Sweden)

    L M Jordan

    2014-11-01

    Full Text Available Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a hyper-cholinergic state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in supressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed

  15. Penicillin kills Chlamydia following the fusion of bacteria with lysosomes and prevents genital inflammatory lesions in C. muridarum-infected mice.

    Science.gov (United States)

    Dumoux, Maud; Le Gall, Sylvain M; Habbeddine, Mohamed; Delarbre, Christiane; Hayward, Richard D; Kanellopoulos-Langevin, Colette; Verbeke, Philippe

    2013-01-01

    The obligate intracellular bacterium Chlamydia exists as two distinct forms. Elementary bodies (EBs) are infectious and extra-cellular, whereas reticulate bodies (RBs) replicate within a specialized intracellular compartment termed an 'inclusion'. Alternative persistent intra-cellular forms can be induced in culture by diverse stimuli such as IFNγ or adenosine/EHNA. They do not grow or divide but revive upon withdrawal of the stimulus and are implicated in several widespread human diseases through ill-defined in vivo mechanisms. β-Lactam antibiotics have also been claimed to induce persistence in vitro. The present report shows that upon penicillin G (pG) treatment, inclusions grow as fast as those in infected control cells. After removal of pG, Chlamydia do not revert to RBs. These effects are independent of host cell type, serovar, biovar and species of Chlamydia. Time-course experiments demonstrated that only RBs were susceptible to pG. pG-treated bacteria lost their control over host cell apoptotic pathways and no longer expressed pre-16S rRNA, in contrast to persistent bacteria induced with adenosine/EHNA. Confocal and live-video microscopy showed that bacteria within the inclusion fused with lysosomal compartments in pG-treated cells. That leads to recruitment of cathepsin D as early as 3 h post pG treatment, an event preceding bacterial death by several hours. These data demonstrate that pG treatment of cultured cells infected with Chlamydia results in the degradation of the bacteria. In addition we show that pG is significantly more efficient than doxycycline at preventing genital inflammatory lesions in C. muridarum-C57Bl/6 infected mice. These in vivo results support the physiological relevance of our findings and their potential therapeutic applications.

  16. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons.

    Science.gov (United States)

    Unal, Cagri T; Pare, Denis; Zaborszky, Laszlo

    2015-01-14

    In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.

  17. Fundamental study on nuclear medicine imaging of cholinergic innervation in the brain; Changes of neurotransmitter and receptor in animal model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Kinuya, Keiko; Sumiya, Hisashi; Hisada, Kinichi (Kanazawa Univ. (Japan). School of Medicine); Tsuji, Shiro; Terada, Hitoshi; Shiba, Kazuhiro; Mori, Hirofumi

    1990-10-01

    A fundamental study was performed on the nuclear medicine imaging of cholinergic innervation in the brain. In a cholinergic denervation model prepared by producing an unilateral basal forebrain lesion in the rat, which is reported to be one of animal models of Alzheimer' disease, quantitative determination of acetylcholine in parietal cortices revealed statistically significant 31% decrease on an average in the ipsilateral side relative to the contralateral side to the lesion. In vitro receptor autoradiography showed no significant differences in total, M{sub 1}, and M{sub 2} muscarinic acetylcholine receptors between the ipsilateral and contralateral cortices to the lesion. Simultaneous mapping of presynaptic cholinergic innervation using {sup 3}H-2-(4-phenylpiperidino) cyclohexanol (AH5183) demonstrated significant 14% decrease of AH5183 binding on an average in the ipsilateral relative to the contralateral fronto-parieto-temporal cortices to the lesion. These results suggest that AH5183 is a promising ligand for mapping cholinergic innervation in nuclear medicine imaging. (author).

  18. Central cholinergic regulation of respiration: nicotinic receptors

    Institute of Scientific and Technical Information of China (English)

    Xuesi M SHAO; Jack L FELDMAN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of a4* nAChRs in the preBotzinger Complex (preBotC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBotC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic a4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS.

  19. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Kidney ischemia/reperfusion injury (I/R is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR. Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.

  20. Protection of early phase hepatic ischemia-reperfusion injury by cholinergic agonists

    Directory of Open Access Journals (Sweden)

    Roth Robert

    2006-02-01

    Full Text Available Abstract Background Cytokine production is critical in ischemia/reperfusion (IR injury. Acetylcholine binds to macrophages and inhibits cytokine synthesis, through the cholinergic anti-inflammatory pathway. This study examined the role of the cholinergic pathway in cytokine production and hepatic IR- injury. Methods Adult male mice underwent 90-min of partial liver ischemia followed by reperfusion. The AChR agonists (1,1-dimethyl-4-phenyl-L-pioperazinium-iodide [DMPP], and nicotine or saline-vehicle were administered i.p. before ischemia. Plasma cytokine tumor necrosis factor (TNF-α, macrophage inflammatory protein-2, and Interleukin-6 were measured. Liver injury was assessed by plasma alanine transaminase (ALT and liver histopathology. Results A reperfusion time-dependent hepatocellular injury occurred as was indicated by increased plasma-ALT and histopathology. The injury was associated with marked elevation of plasma cytokines/chemokines. Pre-ischemic treatment of mice with DMPP or nicotine significantly decreased plasma-ALT and cytokines after 3 h of reperfusion. After 6 h of reperfusion, the protective effect of DMPP decreased and reached a negligible level by 24 h of reperfusion, despite significantly low levels of plasma cytokines. Histopathology showed markedly diminished hepatocellular injury in DMPP- and nicotine-pretreated mice during the early-phase of hepatic-IR, which reached a level comparable to saline-treated mice at late-phase of IR. Conclusion Pharmacological modulation of the cholinergic pathway provides a means to modulate cytokine production and to delay IR-induced heaptocellular injury.

  1. Rabbit Forebrain cholinergic system: Morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus

    OpenAIRE

    C. Varga; Hartig, W.; Grosche, J.; Luiten, PGM; Seeger, J.; K. Brauer; Harkany, T.; Härtig, Wolfgang; Keijser, Jan N.

    2003-01-01

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output pathways are still awaited. Therefore, we performed quantitative choline acetyltransferase (ChAT) immunocytochemistry to localize major cholinergic nuclei and to determine the number of respective c...

  2. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome.

    Science.gov (United States)

    Xu, Meiyu; Kobets, Andrew; Du, Jung-Chieh; Lennington, Jessica; Li, Lina; Banasr, Mounira; Duman, Ronald S; Vaccarino, Flora M; DiLeone, Ralph J; Pittenger, Christopher

    2015-01-20

    Gilles de la Tourette syndrome (TS) is characterized by tics, which are transiently worsened by stress, acute administration of dopaminergic drugs, and by subtle deficits in motor coordination and sensorimotor gating. It represents the most severe end of a spectrum of tic disorders that, in aggregate, affect ∼ 5% of the population. Available treatments are frequently inadequate, and the pathophysiology is poorly understood. Postmortem studies have revealed a reduction in specific striatal interneurons, including the large cholinergic interneurons, in severe disease. We tested the hypothesis that this deficit is sufficient to produce aspects of the phenomenology of TS, using a strategy for targeted, specific cell ablation in mice. We achieved ∼ 50% ablation of the cholinergic interneurons of the striatum, recapitulating the deficit observed in patients postmortem, without any effect on GABAergic markers or on parvalbumin-expressing fast-spiking interneurons. Interneuron ablation in the dorsolateral striatum (DLS), corresponding roughly to the human putamen, led to tic-like stereotypies after either acute stress or d-amphetamine challenge; ablation in the dorsomedial striatum, in contrast, did not. DLS interneuron ablation also led to a deficit in coordination on the rotorod, but not to any abnormalities in prepulse inhibition, a measure of sensorimotor gating. These results support the causal sufficiency of cholinergic interneuron deficits in the DLS to produce some, but not all, of the characteristic symptoms of TS.

  3. Effects of Tiantai Ⅰ on the activity of central cholinergic system in mice with spontaneous Alzheimer disease%天泰1号对自发老年性痴呆模型中枢胆碱能系统活性的影响

    Institute of Scientific and Technical Information of China (English)

    吴正治; 李明; 李耀芳; 贾秀琴; 张永锋

    2006-01-01

    BACKGROUND: Tiantai I consists of gastrodia, Chinese angelica root, areca seed. It has been considered as the roles of invigorating the liver, nourishing marrow, heightening the intelligence and causing resuscitation. OBJECTIVE: To observe the effects of Tiantai Ⅰ on the abilities of learn ing and memory and the activity of central cholinergic system in mice with spontaneous Alzheimer disease. DESIGN: A randomized control observation. SETTING: Shenzhen Institute of Integrated Chinese and Western Medicine. MATERIALS: Male Kunming mice of 13 months old were raised to 21 months old, of which 52 with spontaneous Alzheimer disease were screened. They were randomly divided into blank control group, western drug control group, Tiantai Ⅰ 6.80 and 20.41 g/kg groups, 13 mice in each group. Another 13 aged mice with normal learning and memory abilities were selected as the normal control group at the same time. METHODS: Mice in the western drug control group were treated with 0.6 mg/Kg Hydergine, those in the Tiantai Ⅰ 6.80 and 20.41 g/kg groups were given intragastric administration of Tiantai Ⅰ of 6.80 and 20.41 g/kg, respectively, and those in the normal control group and blank control group were given double distilled water of the same volume. The learning and memory results were examined by the step-down test. Freezing sections of brain tissue were prepared, acetylcholinesterase (AChE) fiber was showed according to the Hedreen method, and choline acetyltransferase (ChAT) was detected with Burt and Silver methods, the automatic image analysis system for biomedical application was applied in the quantitative analysis of AChE fiber and ChAT activity. MAIN OUTCOME MEASURES: ① Effect of Tiantai Ⅰ on the abilities of learning and memory in mice with Alzheimer disease; ② AChE fiber area density in temporal cortex and hippocampal CA1 region; ③ ChAT ac tivity in Meynert nuclei of basal forebrain. RESULTS: ① Tiantai Ⅰ in ameliorating the abilities of learning

  4. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability.

    Science.gov (United States)

    He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T; Morgan, Dave; Burns, Jeffery M; Swerdlow, Russell H; Suo, William Z

    2016-05-19

    Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer's disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration.

  5. Cholinergic interneurons control local circuit activity and cocaine conditioning.

    Science.gov (United States)

    Witten, Ilana B; Lin, Shih-Chun; Brodsky, Matthew; Prakash, Rohit; Diester, Ilka; Anikeeva, Polina; Gradinaru, Viviana; Ramakrishnan, Charu; Deisseroth, Karl

    2010-12-17

    Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.

  6. The basal forebrain cholinergic system in aging and dementia : Rescuing cholinergic neurons from neurotoxic amyloid-beta 42 with memantine

    NARCIS (Netherlands)

    Nyakas, Csaba; Granic, Ivica; Halmy, Laszlo G.; Banerjee, Pradeep; Luiten, Paul G. M.

    2011-01-01

    The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of choli

  7. [Modulation of the cholinergic system during inflammation].

    Science.gov (United States)

    Nezhinskaia, G I; Vladykin, A L; Sapronov, N S

    2008-01-01

    This review describes the effects of realization of the central and peripheral "cholinergic antiinflammatory pathway" in a model of endotoxic and anaphylactic shock. Under endotoxic shock conditions, a pharmacological correction by means of the central m-cholinomimetic action (electrical stimulation of the distal ends of nervus vagus after bilateral cervical vagotomy, surgical implantation of the stimulant devise, activation of efferent vagal neurons by means of muscarinic agonist) is directed toward the elimination of LPS-induced hypotension. During the anaphylaxis, peripheral effects of the cholinergic system induced by blocking m-AChR on the target cells (neuronal and non-neuronal lung cells) and acetylcholinesterase inhibition are related to suppression of the bronchoconstrictor response. The role of immune system in the pathogenesis of endotoxic shock is associated with the production of proinflammatory cytokines by macrophages, increase in IgM concentration, and complement activation, while the role in the pathogenesis of anaphylactic shock is associated with IgE, IgG1 augmentation. Effects of B cell stimulation may be important in hypoxia and in the prophylaxis of stress ulcers and other diseases. Plasma proteins can influence the effects of the muscarinic antagonist methacine: IgG enhance its action while albumin and CRP abolish it.

  8. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Powis, Rachael A; Gillingwater, Thomas H

    2016-03-01

    Spinal muscular atrophy (SMA) is a neuromuscular disease characterised primarily by loss of lower motor neurons from the ventral grey horn of the spinal cord and proximal muscle atrophy. Recent experiments utilising mouse models of SMA have demonstrated that not all motor neurons are equally susceptible to the disease, revealing that other populations of neurons can also be affected. Here, we have extended investigations of selective vulnerability of neuronal populations in the spinal cord of SMA mice to include comparative assessments of alpha motor neuron (α-MN) and gamma motor neuron (γ-MN) pools, as well as other populations of cholinergic neurons. Immunohistochemical analyses of late-symptomatic SMA mouse spinal cord revealed that numbers of α-MNs were significantly reduced at all levels of the spinal cord compared with controls, whereas numbers of γ-MNs remained stable. Likewise, the average size of α-MN cell somata was decreased in SMA mice with no change occurring in γ-MNs. Evaluation of other pools of spinal cord cholinergic neurons revealed that pre-ganglionic sympathetic neurons, central canal cluster interneurons, partition interneurons and preganglionic autonomic dorsal commissural nucleus neuron numbers all remained unaffected in SMA mice. Taken together, these findings indicate that α-MNs are uniquely vulnerable among cholinergic neuron populations in the SMA mouse spinal cord, with γ-MNs and other cholinergic neuronal populations being largely spared.

  9. Lesiones laborales

    OpenAIRE

    2015-01-01

    Las lesiones laborales se producen por un esfuerzo repetitivo, cuando un exceso de presión se ejerce sobre una parte del cuerpo provocando lesiones óseas, articulares, musculares y daños en los tejidos. Los accidentes laborales también pueden producir una lesión en el organismo y esto sumado a diversos factores es un problema para la reinserción laboral de los trabajadores de la energía eléctrica. Objetivo: Establecer cuáles son las lesiones más frecuentes que afectan a los ...

  10. Cholinergic systems mediate action from movement to higher consciousness.

    Science.gov (United States)

    Woolf, Nancy J; Butcher, Larry L

    2011-08-10

    There is a fundamental link between cholinergic neurotransmitter function and overt and covert actions. Major cholinergic systems include peripheral motor neurons organizing skeletal muscle movements into overt behaviors and cholinergic neurons in the basal forebrain and mesopontine regions that mediate covert actions realized as states of consciousness, arousal, selective attention, perception, and memory. Cholinergic interneurons in the striatum appear to integrate conscious and unconscious actions. Neural network models involving cholinergic neurons, as well as neurons using other neurotransmitters, emphasize connective circuitry as being responsible for both motor programs and neural correlates of higher consciousness. This, however, is only a partial description. At a more fundamental level lie intracellular mechanisms involving the cytoskeleton, which are common to both muscle contraction and neuroplastic responses in targets of central cholinergic cells attendant with higher cognition. Acetylcholine, acting through nicotinic receptors, triggers interactions between cytoskeletal proteins in skeletal muscle cells, as has been long known. There is also evidence that acetylcholine released at central sites acts through muscarinic and nicotinic receptors to initiate responses in actin and microtubule proteins. These effects and their implications for cholinergic involvement in higher cognition are explored in this review.

  11. A novel aromatic mutagen, 5-amino-6-hydroxy-8H-benzo[6,7]azepino[5,4,3-de]quinolin-7-one (ABAQ, induces colonic preneoplastic lesions in mice

    Directory of Open Access Journals (Sweden)

    Takahiro Kochi

    2014-01-01

    Full Text Available The benzoazepinoqunolinone derivative, 5-amino-6-hydroxy-8H-benzo[6,7]azepino[5,4,3-de]quinolin-7-one (ABAQ, which is produced in a mixture of glucose and tryptophan incubated at 37 °C under physiological conditions in the presence or absence of hydroxyl radicals caused by the Fenton reaction, is a novel aromatic mutagen. In the current study, we determined the tumor-initiating potency of ABAQ using an inflammation-relate, two-stage mouse colon carcinogenesis model. Male Crj: CD-1 (ICR mice were treated with the single intragastric administration (100 or 200 mg/kg body weight of ABAQ followed by subsequent 1-week oral exposure to 2% dextran sodium sulfate (DSS in drinking water. The ABAQ treatment alone resulted in high-grade dysplasia, which is a precursor to colorectal cancer, in the colon. Following the administration of DSS after ABAQ treatment, the incidence and frequency of high-grade dysplastic lesions increased; the values were highest in the mice treated with 200 mg/kg body weight of ABAQ followed by DSS. The lesions expressing β-catenin in their nuclei and cytoplasm exhibited high proliferation activity without the expression of programmed cell death 4. These findings indicate that ABAQ has a tumor-initiating activity in the mouse colon, with or without inflammation, although the potential pro-inflammatory effect of high doses of ABAC should be investigated.

  12. Local cholinergic and non-cholinergic neural pathways to the rat supraoptic nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Meeker, M.L.

    1986-01-01

    An estimated two thirds of the input to the supraoptic nucleus of the rat hypothalamus (SON) including a functionally significant cholinergic innervation, arise from local sources of unknown origin. The sources of these inputs were identified utilizing Golgi-Cox, retrograde tracing, choline acetyltransferase immunocytochemistry and anterograde tracing methodologies. Multipolar Golgi impregnated neurons located dorsal and lateral to the SON extend spiney processes into the nucleus. Injections of the retrograde tracers, wheat germ agglutinin or wheat germ agglutinin-horseradish peroxidase, into the SON labeled cells bilaterally in the arcuate nucleus, and ipsilaterally in the lateral hypothalamus, anterior hypothalamus, nucleus of the diagonal band, subfornical organ, medial preoptic area, lateral preoptic area and in the region dorsolateral to the nucleus. Immunocytochemistry for choline acetyltransferase revealed cells within the ventro-caudal portion of cholinergic cell group, Ch4, which cluster dorsolateral to the SON, and extend axon- and dendrite-like processes into the SON. Cells double-labeled by choline acetyltransferase immunocytochemistry and retrograde tracer injections into the SON are localized within the same cholinergic cell group dorsolateral to the SON. Injections of the anterograde tracer, Phaseolus vulgaris-leucoagglutinin, deposited dorsolateral to the SON results in labeled pre-and post-synaptic processes within the SON. The identification and characterization of endogenous immunoglobulin within the SON and other neurons innervating areas lacking a blood-brain barrier established a novel and potentially important system for direct communication of the supraoptic cells with blood-borne constitutents.

  13. Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum.

    Science.gov (United States)

    Higley, Michael J; Gittis, Aryn H; Oldenburg, Ian A; Balthasar, Nina; Seal, Rebecca P; Edwards, Robert H; Lowell, Bradford B; Kreitzer, Anatol C; Sabatini, Bernardo L

    2011-04-22

    The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear. To examine this possibility, we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic transmission, suggesting a new role for these cells in regulating striatal activity.

  14. Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum.

    Directory of Open Access Journals (Sweden)

    Michael J Higley

    Full Text Available The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs express the Type-3 vesicular glutamate transporter (VGluT3, although whether they form functional glutamatergic synapses is unclear. To examine this possibility, we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic transmission, suggesting a new role for these cells in regulating striatal activity.

  15. GABAergic actions on cholinergic laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Kohlmeier, K A; Kristiansen, Uffe

    2010-01-01

    (IRK) mediated this effect. Further, outward currents were never additive with those induced by application of carbachol, suggesting that they were mediated by activation of GABA(B) receptors linked to the same G(IRK) activated in these cells by muscarinic receptor stimulation. Activation of GABA(B) receptors....... Therefore, we studied the actions of GABA agonists and antagonists on cholinergic LDT cells by performing patch clamp recordings in mouse brain slices. Under conditions where detection of Cl(-) -mediated events was optimized, GABA induced gabazine (GZ)-sensitive inward currents in the majority of LDT...... neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for d-subunit containing GABA(A) receptors, induced inward currents, suggesting...

  16. Cultivated ginseng inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice and TNF-α/IFN-γ-induced TARC activation in HaCaT cells.

    Science.gov (United States)

    Choi, Jae Ho; Jin, Sun Woo; Park, Bong Hwan; Kim, Hyung Gyun; Khanal, Tilak; Han, Hwa Jeong; Hwang, Yong Pil; Choi, Jun Min; Chung, Young Chul; Hwang, Sang Kyu; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-06-01

    Ginseng contains many bioactive constituents, including various ginsenosides that are believed to have anti-allergic, anti-oxidant, and immunostimulatory activities; however, its effects on atopic dermatitis (AD) remain unclear. In the current study, we hypothesized that cultivated ginseng (CG) would inhibit 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in NC/Nga mice by regulating the T helper (Th)1/Th2 balance. Also, CG inhibits TNF-α/IFN-γ-induced thymus- and activation-regulated chemokine (TARC) expression through nuclear factor-kappa B (NF-κB)-dependent signaling in HaCaT cells. CG ameliorated DNCB-induced dermatitis severity, serum levels of IgE and TARC, and mRNA expression of TARC, TNF-α, IFN-γ, IL-4, IL-5, and IL-13 in mice. Histopathological examination showed reduced thickness of the epidermis/dermis and dermal infiltration of inflammatory cells in the ears. Furthermore, CG suppressed the TNF-α/IFN-γ-induced mRNA expression of TARC in HaCaT cells. CG inhibited TNF-α/IFN-γ-induced NF-κB activation. These results suggest that CG inhibited the development of the AD-like skin symptoms by modulating Th1 and Th2 responses in the skin lesions in mice and TARC expression by suppressing TNF-α/IFN-γ-induced NF-κB activation in keratinocytes, and so may be a useful tool in the therapy of AD-like skin symptoms.

  17. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids.

    Science.gov (United States)

    Fernández-Fernández, Laura; Esteban, Gerard; Giralt, Mercedes; Valente, Tony; Bolea, Irene; Solé, Montse; Sun, Ping; Benítez, Susana; Morelló, José Ramón; Reguant, Jordi; Ramírez, Bartolomé; Hidalgo, Juan; Unzeta, Mercedes

    2015-04-01

    The possible modulatory effect of the functional LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids, on the catecholaminergic and cholinergic neurotransmission, affecting cognition decline during aging has been studied. 129S1/SvlmJ mice were fed for 10, 20, 30 and 40 days with either LMN or control diets. The enzymes involved in catecholaminergic and cholinergic metabolism were determined by both immunohistological and western blot analyses. Noradrenalin, dopamine and other metabolites were quantified by HPLC analysis. Theobromine, present in cocoa, the main LMN diet component, was analysed in parallel using SH-SY5Y and PC12 cell lines. An enhanced modulatory effect on both cholinergic and catecholaminergic transmissions was observed on 20 day fed mice. Similar effect was observed with theobromine, besides its antioxidant capacity inducing SOD-1 and GPx expression. The enhancing effect of the LMN diet and theobromine on the levels of acetylcholine-related enzymes, dopamine and specially noradrenalin confirms the beneficial role of this diet on the "cognitive reserve" and hence a possible reducing effect on cognitive decline underlying aging and Alzheimer's disease.

  18. Contribution of nitric oxide synthase isoforms to cholinergic vasodilation in murine retinal arterioles.

    Science.gov (United States)

    Gericke, Adrian; Goloborodko, Evgeny; Sniatecki, Jan J; Steege, Andreas; Wojnowski, Leszek; Pfeiffer, Norbert

    2013-04-01

    Nitric oxide synthases (NOSs) are critically involved in regulation of ocular perfusion. However, the contribution of the individual NOS isoforms to vascular responses is unknown in the retina. Because some previous findings suggested an involvement of inducible nitric oxide synthase (iNOS) in the regulation of retinal vascular tone, a major goal of the present study was to examine the hypothesis that iNOS is involved in mediating cholinergic vasodilation responses of murine retinal arterioles. Another subject of this study was to test the contribution of the other two NOS isoforms, neuronal (nNOS) and endothelial NOS (eNOS), to cholinergic retinal arteriole responses. Expression of individual NOS isoforms was determined in murine retinal arterioles using real-time PCR. All three NOS isoforms were expressed in retinal arterioles. However, eNOS mRNA was found to be most, and iNOS mRNA least abundant. To examine the functional relevance of iNOS for mediating vascular responses, retinal vascular preparations from gene-targeted iNOS-deficient mice (iNOS-/-) and wild-type mice were studied in vitro. Changes in luminal vessel diameter in response to the thromboxane mimetic 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619), the endothelium-dependent vasodilator acetylcholine, and the nitric oxide donor nitroprusside were measured by video microscopy. To determine the contribution of individual NOS isoforms to cholinergic vasodilation responses, retinas from iNOS-/- and wild-type mice were incubated with Nω-nitro-l-arginine methyl ester (l-NAME), a non-isoform-selective inhibitor of NOS, 7-nitroindazole, a selective nNOS blocker and aminoguanidine, a selective iNOS inhibitor. U-46619 evoked concentration-dependent vasoconstriction that was similar in retinal arterioles from iNOS-/- and wild-type mice. In retinal arterioles preconstricted with U-46619, acetylcholine and nitroprusside produced dose-dependent dilation that did not differ between iNOS-/- and

  19. Conditional ablation of myeloid TNF increases lesion volume after experimental stroke in mice, possibly via altered ERK1/2 signaling

    DEFF Research Database (Denmark)

    Clausen, Bettina Hjelm; Degn, Matilda; Sivasaravanaparan, Mithula

    2016-01-01

    Microglia are activated following cerebral ischemia and increase their production of the neuro- and immunomodulatory cytokine tumor necrosis factor (TNF). To address the function of TNF from this cellular source in focal cerebral ischemia we used TNF conditional knock out mice (LysMcreTNF......(fl/fl)) in which the TNF gene was deleted in cells of the myeloid lineage, including microglia. The deletion reduced secreted TNF levels in lipopolysaccharide-stimulated cultured primary microglia by ~93%. Furthermore, phosphorylated-ERK/ERK ratios were significantly decreased in naïve LysMcreTNF(fl/fl) mice...... demonstrating altered ERK signal transduction. Micro-PET using (18)[F]-fluorodeoxyglucose immediately after focal cerebral ischemia showed increased glucose uptake in LysMcreTNF(fl/fl) mice, representing significant metabolic changes, that translated into increased infarct volumes at 24 hours and 5 days...

  20. Effect of 12-O-tetradecanoylphorbol-13-acetate-induced psoriasis-like skin lesions on systemic inflammation and atherosclerosis in hypercholesterolaemic apolipoprotein E deficient mice

    DEFF Research Database (Denmark)

    Madsen, Marie; Hansen, Peter Riis; Nielsen, Lars Bo;

    2016-01-01

    to develop an animal model with combined atherosclerosis and psoriasis-like skin inflammation. METHODS: Topical 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to the ears twice per week for 8 weeks in atherosclerosis-prone apolipoprotein E deficient (ApoE(-/-)) mice. RESULTS: TPA led to localized......, respectively. However, atherosclerotic plaque area and composition, and mRNA levels of several inflammatory genes in the aortic wall were not significantly affected by TPA-induced skin inflammation. CONCLUSIONS: TPA-induced psoriasis-like skin inflammation in atherosclerosis-prone ApoE(-/-) mice evoked...

  1. Suppression of glucocorticoid secretion enhances cholinergic transmission in rat hippocampus.

    Science.gov (United States)

    Mizoguchi, Kazushige; Shoji, Hirotaka; Ikeda, Ryuji; Tanaka, Yayoi; Maruyama, Wakako; Tabira, Takeshi

    2008-08-15

    We previously demonstrated that suppression of glucocorticoid secretion by adrenalectomy (ADX) impaired prefrontal cortex-sensitive working memory, but not reference memory. Since the cholinergic system in the hippocampus is also involved in these memories, we examined the effects of glucocorticoid suppression on cholinergic transmission in the rat hippocampus. A microdialysis study revealed that ADX did not affect the basal acetylcholine release, but enhanced the KCl-evoked response. This enhanced response was reversed by the corticosterone replacement treatment. The extracellular choline concentrations increased under both basal and KCl-stimulated conditions in the ADX rats, and these increases were also reversed by the corticosterone replacement. These results indicate that suppression of glucocorticoid secretion enhances cholinergic transmission in the hippocampus in response to stimuli. It is possible that this enhanced cholinergic transmission may not contribute to the ADX-induced working memory impairment, but it may be involved in maintenance of reference memory.

  2. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias

    Science.gov (United States)

    Jungen, Christiane; Scherschel, Katharina; Eickholt, Christian; Kuklik, Pawel; Klatt, Niklas; Bork, Nadja; Salzbrunn, Tim; Alken, Fares; Angendohr, Stephan; Klene, Christiane; Mester, Janos; Klöcker, Nikolaj; Veldkamp, Marieke W.; Schumacher, Udo; Willems, Stephan; Nikolaev, Viacheslav O.; Meyer, Christian

    2017-01-01

    The parasympathetic nervous system plays an important role in the pathophysiology of atrial fibrillation. Catheter ablation, a minimally invasive procedure deactivating abnormal firing cardiac tissue, is increasingly becoming the therapy of choice for atrial fibrillation. This is inevitably associated with the obliteration of cardiac cholinergic neurons. However, the impact on ventricular electrophysiology is unclear. Here we show that cardiac cholinergic neurons modulate ventricular electrophysiology. Mechanical disruption or pharmacological blockade of parasympathetic innervation shortens ventricular refractory periods, increases the incidence of ventricular arrhythmia and decreases ventricular cAMP levels in murine hearts. Immunohistochemistry confirmed ventricular cholinergic innervation, revealing parasympathetic fibres running from the atria to the ventricles parallel to sympathetic fibres. In humans, catheter ablation of atrial fibrillation, which is accompanied by accidental parasympathetic and concomitant sympathetic denervation, raises the burden of premature ventricular complexes. In summary, our results demonstrate an influence of cardiac cholinergic neurons on the regulation of ventricular function and arrhythmogenesis. PMID:28128201

  3. Cholinergic drugs as diagnostic and therapeutic tools in affective disorders.

    Science.gov (United States)

    Berger, M; Riemann, D; Krieg, C

    1991-01-01

    The hypothesis of a significant involvement of the cholinergic system in the pathogenesis of affective disorders still lacks strong experimental support. This is mainly because of missing specific peripheral markers of the central nervous activity of the cholinergic system and the lack of specific cholinergic agonists and antagonists without severe peripheral side effects. As the direct cholinergic agonist RS 86 seems to be more suitable because of its minor side effects, long half-life and oral applicability, it was tested for its antimanic property and its effect on the hypothalamo-pituitary adrenal system and the rapid eye movement (REM) sleep-generating system. RS 86 exhibited antimanic and REM sleep-inducing properties, but failed to stimulate the cortisol system.

  4. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    Science.gov (United States)

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  5. Cholinergic depletion and basal forebrain volume in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Jolien Schaeverbeke

    2017-01-01

    In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion.

  6. Personalized genetics of the cholinergic blockade of neuroinflammation.

    Science.gov (United States)

    Simchovitz, Alon; Heneka, Michael T; Soreq, Hermona

    2017-03-21

    Acetylcholine signaling is essential for cognitive functioning and blocks inflammation. To maintain homeostasis, cholinergic signaling is subjected to multi-leveled and bidirectional regulation by both proteins and non-coding microRNAs ('CholinomiRs'). CholinomiRs coordinate the cognitive and inflammatory aspects of cholinergic signaling by targeting major cholinergic transcripts including the acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE). Notably, AChE inhibitors are the only currently approved line of treatment for Alzheimer's disease patients. Since cholinergic signaling blocks neuroinflammation which is inherent to Alzheimer's disease, genomic changes modifying AChE's properties and its susceptibility to inhibitors and/or to CholinomiRs regulation may affect the levels and properties of inflammasome components such as NLRP3. This calls for genomic-based medicine approaches based on genotyping of both coding and non-coding single nucleotide polymorphisms (SNPs) in the genes involved in cholinergic signaling. An example is a SNP in a recognition element for the primate-specific microRNA-608 within the 3' untranslated region of the AChE transcript. Carriers of the minor allele of that SNP present massively elevated brain AChE levels, increased trait anxiety and inflammation, accompanied by perturbed CholinomiR-608 regulatory networks and elevated prefrontal activity under exposure to stressful insults. Several additional SNPs in the AChE and other cholinergic genes await further studies, and might likewise involve different CholinomiRs and pathways including those modulating the initiation and progression of neurodegenerative diseases. CholinomiRs regulation of the cholinergic system thus merits in-depth interrogation and is likely to lead to personalized medicine approaches for achieving better homeostasis in health and disease. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.

  7. Development of Cryptosporidium parvum-Induced Gastrointestinal Neoplasia in Severe Combined Immunodeficiency (SCID) Mice: Severity of Lesions Is Correlated with Infection Intensity

    Science.gov (United States)

    Certad, Gabriela; Creusy, Colette; Ngouanesavanh, Tramy; Guyot, Karine; Gantois, Nausicaa; Mouray, Anthony; Chassat, Thierry; Flament, Nicolas; Fleurisse, Laurence; Pinon, Anthony; Delhaes, Laurence; Dei-Cas, Eduardo

    2010-01-01

    We reported previously that Cryptosporidium parvum was able to induce intestinal tumors in severe combined immunodeficiency (SCID) mice treated with corticoids. To further characterize this Cryptosporidium-induced cell transformation, SCID mice treated with dexamethasone were challenged with C. parvum oocysts, and euthanatized sequentially after infection for histologic examination. Ki-67 was used as a marker of cellular proliferation. Our previous results were confirmed, and it was also found that mice receiving higher inocula (106–107) experienced more severe neoplastic development. Additionally, neoplastic changes were observed not only in the caecum but also in the stomach and duodenum of some animals. Interestingly, SCID mice (6/6) inoculated with 105–107 oocysts showed high grade intraepithelial neoplasia or adenomas with high grade dysplasia in the caecum after Day 46 post-infection (PI). Immunohistochemistry for Ki-67 staining indicated the neoplastic process associated to cryptosporidiosis, and evidenced the first immunohistochemical alterations at early stages of the process, even at 3 weeks PI. PMID:20134002

  8. Cholinergic Abnormalities, Endosomal Alterations and Up-Regulation of Nerve Growth Factor Signaling in Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Cabeza Carolina

    2012-03-01

    Full Text Available Abstract Background Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF after axotomy and ii PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF. Results NPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT, whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-γ signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A. Conclusions Our results suggest that the NPC cellular phenotype causes neuronal

  9. Pink lesions.

    Science.gov (United States)

    Giacomel, Jason; Zalaudek, Iris

    2013-10-01

    Dermoscopy (dermatoscopy or surface microscopy) is an ancillary dermatologic tool that in experienced hands can improve the accuracy of diagnosis of a variety of benign and malignant pigmented skin tumors. The early and more accurate diagnosis of nonpigmented, or pink, tumors can also be assisted by dermoscopy. This review focuses on the dermoscopic diagnosis of pink lesions, with emphasis on blood vessel morphology and pattern. A 3-step algorithm is presented, which facilitates the timely and more accurate diagnosis of pink tumors and subsequently guides the management for such lesions.

  10. Amyloid-β depresses excitatory cholinergic synaptic transmission in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Liqun Fang; Jingjing Duan; Dongzhi Ran; Zihao Fan; Ying Yan; Naya Huang; Huaiyu Gu; Yulan Zhu

    2012-01-01

    Objective Decline,disruption,or alterations of nicotinic cholinergic mechanisms contribute to cognitive dysfunctions like Alzheimer's disease (AD).Although amyloid-β (Aβ) aggregation is a pathological hallmark of AD,the mechanisms by which Aβ peptides modulate cholinergic synaptic transmission and memory loss remain obscure.This study was aimed to investigate the potential synaptic modulation by Aβ of the cholinergic synapses between olfactory receptor neurons and projection neurons (PNs) in the olfactory lobe of the fruit fly.Methods Cholinergic spontaneous and miniature excitatory postsynaptic current (mEPSC) were recorded with whole-cell patch clamp from PNs in Drosophila AD models expressing Aβ40,Aβ42,or Aβ42Arc peptides in neural tissue.Results In fly pupae (2 days before eclosion),overexpression of Aβ42 or Aβ42Arc,but not Aβ40,led to a significant decrease of mEPSC frequency,while overexpression of Aβ40,Aβ42,or Aβ42Arc had no significant effect on mEPSC amplitude.In contrast,Pavlovian olfactory associative learning and lifespan assays showed that both short-term memory and lifespan were decreased in the Drosophila models expressing Aβ40,Aβ42,or Aβ42Arc.Conclusion Both electrophysiological and behavioral results showed an effect of Aβ peptide on cholinergic synaptic transmission and suggest a possible mechanism by which Aβ peptides cause cholinergic neuron degeneration and the consequent memory loss.

  11. Administration of MPTP to the common marmoset does not alter cortical cholinergic function

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, J.; Petersen, M.; Waters, C.M.; Rose, S.P.; Hunt, S.; Briggs, R.; Jenner, P.; Marsden, C.D.

    1986-01-01

    The administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to common marmosets induced persistent motor deficits and decreased concentrations of dopamine, homovanillic acid, and 3,4-dihydroxy-phenylacetic acid (DOPAC) and (TH)dopamine uptake in the caudate-putamen. There was an 80% reduction in tyrosine hydroxylase immunoreactive cells in substantia nigra. At 10 days following the start of MPTP administration, the activity of choline acetyltransferase in the thalamus and frontal cortex was unchanged compared with control animals. Similarly, specific (TH)QNB binding was unaltered. At 4-6 weeks following the start of MPTP treatment, choline acetyltransferase activity and (TH)QNB binding in the frontal cortex and thalamus remained unaffected. There was no evidence for cell loss in the nucleus basalis of Meynert or alteration in the intensity of staining for acetylcholinesterase. MPTP treatment of the common marmoset produces a nigrostriatal lesion. In contrast, MPTP did not alter cortical cholinergic function and was not neurotoxic to the cholinergic cells in the nucleus basalis of Meynert.

  12. Antiulcer Activity after Oral Administration of the Wormwood Ethanol Extract on Lesions due to Leishmania major Parasites in BALB/C Mice

    Directory of Open Access Journals (Sweden)

    Kourosh Azizi, Fatemeh Shahidi-Hakak Mohammad Djaefar Moemenbellah-Fard,\tQasem Asgari,\tSoliman Mohammadi-Samani

    2016-04-01

    Full Text Available Herbal extracts were used to investigate the in vivo efficacy of Artemisia absinthium on the treatment of cutaneous leishmaniasis in susceptible mice. A total of 40 BALB/c mice were subjected to assays. In each, 3-5×103 amastigotes of standard Leishmania major strain were inoculated subcutaneously into the tail base of mice. Groups of mice were assigned as: I-negative control, II-positive control, III-Glucantime®, IV-ointment twice a day, V-ointment with oral medicine, VI-oral medicine on parasite injection, VII-oral medicine once ulcer develops, and VIII-ointment-based crème on ulcer. The gold standard of clinical infection control was based on ulcer size measurement using a Vernier scale weekly during 4 weeks Post-Ulcer Development (PUD. The mean ulcer sizes in different groups were compared using the post hoc Dunnett's 3 statistical analyses. There was a significant difference between the two groups of ointment with medicine (V and medicine on parasite inoculation (VI (P ≤ 0.027. Antiulcer activity and healing was noted after oral treatment with aqueous extract on parasite injection. There was a significant difference between data from positive control group and local ointment with oral medicine (P ≤ 0.045 indicating that ointment use facilitated ulcer growth. There was also a significant difference between data from Glucantime® use and ointment with medicine group (P ≤ 0.039 which showed the deteriorating effect of oil-based ointment use. The oral administration of extract had an effect similar to Glucantime® use and led to the repair of ulcer. A. absinthium extract as oral feeder appeared to cause modulation of host responses, ulcer size reduction and tissue repair.

  13. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning.

    Science.gov (United States)

    Brown, Matthew T C; Tan, Kelly R; O'Connor, Eoin C; Nikonenko, Irina; Muller, Dominique; Lüscher, Christian

    2012-12-20

    The ventral tegmental area (VTA) and nucleus accumbens (NAc) are essential for learning about environmental stimuli associated with motivationally relevant outcomes. The task of signalling such events, both rewarding and aversive, from the VTA to the NAc has largely been ascribed to dopamine neurons. The VTA also contains GABA (γ-aminobutyric acid)-releasing neurons, which provide local inhibition and also project to the NAc. However, the cellular targets and functional importance of this long-range inhibitory projection have not been ascertained. Here we show that GABA-releasing neurons of the VTA that project to the NAc (VTA GABA projection neurons) inhibit accumbal cholinergic interneurons (CINs) to enhance stimulus-outcome learning. Combining optogenetics with structural imaging and electrophysiology, we found that VTA GABA projection neurons selectively target NAc CINs, forming multiple symmetrical synaptic contacts that generated inhibitory postsynaptic currents. This is remarkable considering that CINs represent a very small population of all accumbal neurons, and provide the primary source of cholinergic tone in the NAc. Brief activation of this projection was sufficient to halt the spontaneous activity of NAc CINs, resembling the pause recorded in animals learning stimulus-outcome associations. Indeed, we found that forcing CINs to pause in behaving mice enhanced discrimination of a motivationally important stimulus that had been associated with an aversive outcome. Our results demonstrate that VTA GABA projection neurons, through their selective targeting of accumbal CINs, provide a novel route through which the VTA communicates saliency to the NAc. VTA GABA projection neurons thus emerge as orchestrators of dopaminergic and cholinergic modulation in the NAc.

  14. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8- oxoguanine accumulates in the mitochondrial DNA of OGG1- defective mice

    DEFF Research Database (Denmark)

    Souza-Pinto, N.C.; Eide, L.; Hogue, B.A.

    2001-01-01

    encodes for the mitochondrial 8-oxodG glycosylase because these extracts have no incision activity toward an oligonucleotide containing a single 8-oxodG DNA base lesion, Consistent with an important role for the OGG1 protein in the removal of 8-oxodC from the mitochondrial genome, we found that mtDNA......Mitochondria are not only the major site for generation of reactive oxygen species, but also one of the main targets of oxidative damage. One of the major products of DNA oxidation, 8-oxodeoxyguanosine (8-oxodC), accumulates in mitochondrial DNA (mtDNA) at levels three times higher than in nuclear...... DNA, The main pathway for the repair of 8-oxodG is the base excision repair pathway initiated by oxoguanine DNA glycosylase (OGG1), We previously demonstrated that mammalian mitochondria from mice efficiently remove 8-oxodG from their genomes and isolated a protein from rat liver mitochondria with 8...

  15. Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sciamanna

    Full Text Available BACKGROUND: DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. METHODS AND RESULTS: We characterized the alterations in D2 dopamine receptor (D2R signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT. An abnormal excitatory response to the D2R agonist quinpirole was recorded at postnatal day 14, consisting of a membrane depolarization coupled to an increase in spiking frequency, and persisted unchanged at 3 and 9 months in hMT mice, compared to mice expressing wild-type human torsinA and non-transgenic mice. This response was blocked by the D2R antagonist sulpiride and depended upon G-proteins, as it was prevented by intrapipette GDP-β-S. Patch-clamp recordings from dissociated interneurons revealed a significant increase in the Cav2.2-mediated current fraction at all ages examined. Consistently, chelation of intracellular calcium abolished the paradoxical response to quinpirole. Finally, no gross morphological changes were observed during development. CONCLUSIONS: These results suggest that an imbalanced striatal dopaminergic/cholinergic signaling occurs early in DYT1 dystonia and persists along development, representing a susceptibility factor for symptom generation.

  16. 小鼠急性乙醇性胃黏膜损伤模型的制备%Establishment of animal model of ethanol-induced acute gastric mucosal lesions in mice

    Institute of Scientific and Technical Information of China (English)

    叶惠惠; 刘河霞; 张咏梅; 吴克俭

    2011-01-01

    Objective To investigate the optimal ethanol concentration and capacity contributing to ethanol -induced acute gastric mucosal injury and to establish the stable model of ethanol - induced acute gastric mucosal injury in mice. Methods Eighty Kunming mice were randomly divided into control group, normal saline gavage group, 75% ethanol gavage group, and 99.5% ethanol gavage group, followed by sacrifice of animals at 1 h and 4 h for removal of their stomachs and observation of the gastric mucosal lesions. Results The gastric mucosal lesions were evident following gavage of ethanol at the time point of 1 h in mice and 99.5% ethanol at 0.2 ml/10 g gavage induced much sever damage. The gastric mucosal lesions at 1 h were attenuated as compared to 4 h following 99.5% ethanol at 0.2 ml/10 g gavage. There wasn't significant change of survival rates with the concentration and duration of ethanol gavage in mice. Conclusion Ethanol gavage can induce acute gastric mucosal injury in mice, with 99.5% ethanol at 0.2 ml/10 g as the optimal choice to establish the model of acute gastric mucosal injury.%目的 研究引起小鼠急性乙醇性胃黏膜损伤的最佳乙醇浓度与容量,以建立稳定的小鼠急性乙醇性胃黏膜损伤模型.方法 80只昆明小鼠随机分成正常对照组、生理盐水灌胃组、75%乙醇灌胃组、99.5%乙醇灌胃组,然后分别在1 h、4 h处死小鼠取胃,观察小鼠胃黏膜损伤情况.结果 乙醇灌胃1 h后,胃黏膜出现不同程度的损伤,其中99.5%乙醇0.2 ml/10 g对小鼠胃黏膜的损伤较重.99.5%乙醇0.2 ml/10 g灌胃4 h与1 h相比,胃黏膜损伤指数有所下降.随着乙醇浓度的增加与乙醇灌胃时间的延长小鼠的生存率并无显著变化.结论 乙醇灌胃可致小鼠急性胃黏膜损伤,且以99.5%乙醇0.2 ml/10 g灌胃用来制备小鼠急性乙醇性胃黏膜损伤模型最佳.

  17. Loss of microRNA-124 expression in neurons in the peri-lesion area in mice with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yu Zhao; Hui Zhang; Dan Zhang; Cai-yong Yu; Xiang-hui Zhao; Fang-fang Liu; Gan-lan Bian; Gong Ju; Jian Wang

    2015-01-01

    MicroRNA-124 (miR-124) is abundantly expressed in neurons in the mammalian central ner-vous system, and plays critical roles in the regulation of gene expression during embryonic neurogenesis and postnatal neural differentiation. However, the expression proifle of miR-124 after spinal cord injury and the underlying regulatory mechanisms are not well understood. In the present study, we examined the expression of miR-124 in mouse brain and spinal cord after spinal cord injury usingin situ hybridization. Furthermore, the expression of miR-124 was examined with quantitative RT-PCR at 1, 3 and 7 days after spinal cord injury. The miR-124 expression in neurons at the site of injury was evaluated by in situ hybridization combined with NeuN immunohistochemical staining. The miR-124 was mainly expressed in neurons through-out the brain and spinal cord. The expression of miR-124 in neurons significantly decreased within 7 days after spinal cord injury. Some of the neurons in the peri-lesion area were NeuN+/miR-124−. Moreover, the neurons distal to the peri-lesion site were NeuN+/miR-124+. These ifndings indicate that miR-124 expression in neurons is reduced after spinal cord injury, and may relfect the severity of spinal cord injury.

  18. Exploratory behavior and recognition memory in medial septal electrolytic, neuro- and immunotoxic lesioned rats.

    Science.gov (United States)

    Dashniani, M G; Burjanadze, M A; Naneishvili, T L; Chkhikvishvili, N C; Beselia, G V; Kruashvili, L B; Pochkhidze, N O; Chighladze, M R

    2015-01-01

    In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic - ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin - 192 IgG-saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituating to the environment in the repeated spatial environment, but rats with immuno- or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS-lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory - the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory; (iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open

  19. Striatal cholinergic interneuron regulation and circuit effects

    Directory of Open Access Journals (Sweden)

    Sean Austin Lim

    2014-10-01

    Full Text Available The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh. Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI, which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.

  20. Transcriptional profiles of cytokine/chemokine factors of immune cell-homing to the parasitic lesions: a comprehensive one-year course study in the liver of E. multilocularis-infected mice.

    Directory of Open Access Journals (Sweden)

    Junhua Wang

    Full Text Available Pathogenesis of chronically developing alveolar echinococcosis (AE is characterized by a continuous, granulomatous, periparasitic infiltration of immune cells surrounding the metacestode of Echinococcus multilocularis (E.multilocularis in the affected liver. A detailed cytokine and chemokine profile analysis of the periparasitic infiltrate in the liver has, however, not yet been carried out in a comprehensive way all along the whole course of infection in E. multilocularis intermediate hosts. We thus assessed the hepatic gene expression profiles of 18 selected cytokine and chemokine genes using qRT-PCR in the periparasitic immune reaction and the subsequent adjacent, not directly affected, liver tissue of mice from day 2 to day 360 post intra-hepatic injection of metacestode. DNA microarray analysis was also used to get a more complete picture of the transcriptional changes occurring in the liver surrounding the parasitic lesions. Profiles of mRNA expression levels in the hepatic parasitic lesions showed that a mixed Th1/Th2 immune response, characterized by the concomitant presence of IL-12α, IFN-γ and IL-4, was established very early in the development of E. multilocularis. Subsequently, the profile extended to a combined tolerogenic profile associating IL-5, IL-10 and TGF-β. IL-17 was permanently expressed in the liver, mostly in the periparasitic infiltrate; this was confirmed by the increased mRNA expression of both IL-17A and IL-17F from a very early stage, with a subsequent decrease of IL-17A after this first initial rise. All measured chemokines were significantly expressed at a given stage of infection; their expression paralleled that of the corresponding Th1, Th2 or Th17 cytokines. In addition to giving a comprehensive insight in the time course of cytokines and chemokines in E. multilocularis lesion, this study contributes to identify new targets for possible immune therapy to minimize E. multilocularis-related pathology and to

  1. Impact of the Consumption of Tea Polyphenols on Early Atherosclerotic Lesion Formation and Intestinal Bifidobacteria in High-Fat-Fed ApoE−/− Mice

    Science.gov (United States)

    Liao, Zhen-Lin; Zeng, Ben-Hua; Wang, Wei; Li, Gui-Hua; Wu, Fei; Wang, Li; Zhong, Qing-Ping; Wei, Hong; Fang, Xiang

    2016-01-01

    There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of some cardiovascular diseases, such as atherosclerosis (AS). However, limited information is available on how these polyphenols affect the gut microbiota and AS development. This study was designed to evaluate the modulation of dietary tea polyphenols (TPs) on intestinal Bifidobacteria (IB) and its correlation with AS development in apolipoprotein E-deficient (ApoE−/−) mice. Fifty C57BL/6 ApoE−/− mice were randomized into one of the five treatment groups (n = 10/group): control group fed normal diet (CK); a group fed a high-fat diet (HFD); and the other three groups fed the same HFD supplemented with TPs in drinking water for 16 weeks. The total cholesterol and low-density lipoprotein cholesterol (LDL-C) were decreased significantly (P < 0.05) after TP interference. In addition, the TP diet also decreased the plaque area/lumen area (PA/LA) ratios (P < 0.01) in the TP diet group. Interestingly, copies of IB in the gut of ApoE−/− mice were notably increased with TP interference. This increase was dose dependent (P < 0.01) and negatively correlated with the PA/LA ratio (P < 0.05). We conclude that TPs could promote the proliferation of the IB, which is partially responsible for the reduction of AS plaque induced by HFD. PMID:28066771

  2. Parasellar lesions

    Energy Technology Data Exchange (ETDEWEB)

    Ruscalleda, J. [Hospital Sant Pau, Radiology Department, Neuroradiology, Barcelona (Spain)

    2005-03-01

    The sellar and parasellar region is an anatomically complex area that represents a crucial crossroad of important adjacent structures, e.g. orbits, cavernous sinus and its content, polygon of Willis, hypothalamus through the pituitary stalk and dural reflections forming the diaphragm sellae and the walls of the cavernous sinuses. Although the cavernous sinus represents the most relevant parasellar structure, from the practical and clinical point of view all the structures that surround the sella turcica can be included in the parasellar region. CT and, mainly, MRI are the imaging modalities to study and characterise the normal anatomy and the majority of processes in this region. We present a practical short review of the most relevant CT and MRI characteristics, such as location, nature of contrast enhancement and presence of cystic components, together with clinical findings, which permit differentiation of the most frequent and less common lesions found in the parasellar region. Learning objectives: A short review of the anatomy and clinical symptoms related to the parasellar region. Radiological characterisation, mainly by MRI, of the many lesions that alter the structure and function of sellar and parasellar anatomy. Description of the MRI features that permit differentiation among less common lesions. (orig.)

  3. Catalpol Induces Neuroprotection and Prevents Memory Dysfunction through the Cholinergic System and BDNF

    Directory of Open Access Journals (Sweden)

    Dong Wan

    2013-01-01

    Full Text Available To investigate the role and mechanism of catalpol on neuroprotective effects and memory enhancing effects simultaneously, neuroprotective effects of catalpol were assessed by neurological deficits score, TTC staining, and cerebral blood flow detecting. Morris water maze was employed to investigate its effects on learning and memory and then clarify its possible mechanisms relating the central cholinergic system and BDNF. Edaravone and oxiracetam were used for positive control drugs based on its different action. Results showed that catalpol and edaravone significantly facilitated neurological function recovery, reduced infarction volume, and increased cerebral blood flow in stroke mice. Catalpol and oxiracetam decreased the escape latency significantly and increased the numbers of crossing platform obviously. The levels of ACh, ChAT, and BDNF in catalpol group were increased in a dose-dependent manner, and AChE declined with a U-shaped dose-response curve. Moreover, the levels of muscarinic AChR subtypes M1 and M2 in hippocampus were considerably raised by catalpol. These results demonstrated that catalpol may be useful for neuroprotection and memory enhancement, and the mechanism may be related to the central cholinergic system.

  4. Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice

    Science.gov (United States)

    Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.

    2011-02-01

    Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration.

  5. Bathing Effects of Various Seawaters on Allergic (Atopic Dermatitis-Like Skin Lesions Induced by 2,4-Dinitrochlorobenzene in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Choong Gon Kim

    2015-01-01

    Full Text Available We evaluated the preventive effects of four types of seawater collected in Republic of Korea on hairless mice with 2,4-dinitrochlorobenzene- (DNCB- induced allergic/atopic dermatitis (AD. The anti-inflammatory effects were evaluated by measuring tumor necrosis factor- (TNF- α and interleukins (ILs. Glutathione (GSH, malondialdehyde (MDA, superoxide anion, and inducible nitric oxide synthase (iNOS were measured to evaluate the antioxidant effects. Caspase-3 and poly (ADP-ribose polymerase (PARP were observed to measure the antiapoptotic effects; matrix metalloproteinase- (MMP- 9 levels were also evaluated. Mice with AD had markedly higher clinical skin severity scores and scratching behaviors; higher TNF-α and ILs (1β, 10, 4, 5, and 13 levels; higher MDA, superoxide anion, caspase-3, PARP, and MMP-9 levels; and greater iNOS activity. However, the severity of AD was significantly decreased by bathing in seawaters, but it did not influence the dermal collagen depositions and skin tissue antioxidant defense systems. These results suggest that bathing in all four seawaters has protective effects against DNCB-induced AD through their favorable systemic and local immunomodulatory effects, active cytoprotective antiapoptotic effects, inhibitory effects of MMP activity and anti-inflammatory and antioxidative effects.

  6. Endogenous cholinergic neurotransmission contributes to behavioral sensitization to morphine.

    Directory of Open Access Journals (Sweden)

    Dusica Bajic

    Full Text Available Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg, a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg.

  7. Cholinergic and adrenergic influence on the teleost heart in vivo.

    Science.gov (United States)

    Axelsson, M; Ehrenström, F; Nilsson, S

    1987-01-01

    The tonical cholinergic and adrenergic influence on the heart rate was investigated in vivo in seven species of marine teleosts (pollack, Pollachius pollachius; cuckoo wrasse, Labrus mixtus; ballan wrasse, Labrus berggylta; five-bearded rockling, Ciliata mustela; tadpole fish, Raniceps raninus; eel-pout, Zoarces viviparus and short-spined sea scorpion, Myoxocephalus scor pius) during rest and, in two of the species (P. pollachius and L. mixtus), also during moderate swimming exercise in a Blazka-type swim tunnel. Ventral aortic blood pressure and heart rate were recorded via a catheter implanted in an afferent branchial artery, and the influence of the cholinergic and adrenergic tonus on the heart rate was assessed by injection of atropine and sotalol respectively. During rest the adrenergic tonus was higher than the cholinergic tonus in all species except L. berggylta, where the reverse was true. In P. pollachius and L. mixtus, exercise appeared to produce a lowering of the cholinergic tonus on the heart and, possibly, a slight increase of the adrenergic tonus. The nature of the adrenergic tonus (humoral or neural) is not clear, but the low plasma concentrations of catecholamines both during rest and exercise could be interpreted in favour of a mainly neural adrenergic tonus on the teleost heart. These experiments are compatible with the view that both a cholinergic inhibitory tonus and an adrenergic excitatory tonus are general features in the control of the teleost heart in vivo, both at rest and during moderate swimming exercise.

  8. Tachyzoites of Toxoplasma gondii irradiated with 255 Gy induces decrease of cysts and cerebral lesions in mice challenged with cysts of ME-49; Taquizoitos de Toxoplasma gondii irradiados com 255 Gy induzem diminuicao de cistos e lesoes cerebrais em camundongos desafiados com cistos da cepa ME-49

    Energy Technology Data Exchange (ETDEWEB)

    Hiramoto, Roberto Mitsuyoshi; Galisteo Juniorm Andres Jimenez; Nascimento, Nanci do; Andrade Junior, Heitor Franco de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mail: rmhiramoto@bol.com.br; hfandrad@usp.br

    2002-07-01

    Toxoplasmosis can cause ocular lesions in normal individuals and several diseases in foetus, HIV infection and transplants. Toxoplasma gondii has a complex life cycle, involving cats, as the definitive host, and warm blood species, as intermediated hosts. The infection occurs by ingestion of food and water contaminated with infected cat faeces, contaminated milk and cheese or raw and undercook meat of the intermediated hosts. To date, there is no commercial vaccine of use in humans. In this work, tachyzoites of T. gondii RH strain were irradiated with 255 Gy and inoculated in C57Bl/6j mice (3 doses, biweekly), after mice were challenged with 1, 5, 10, 20 and 25 cysts of ME-49 by oral gavage. The lesions and cysts in the brain were analyzed in all mice, after 4-week post infection. The mortality was 20% in control mice (ME-49 cysts only) and not one in immunized mice. The number of cysts was high in the control group, but low in immunized 255 Gy mice (n<100). Immunized mice showed less cerebral pathology and necrosis foci. Ionizing radiation is an important tool in the study toxoplasmosis and vaccine development. (author)

  9. Effect of 12-O-tetradecanoylphorbol-13-acetate-induced psoriasis-like skin lesions on systemic inflammation and atherosclerosis in hypercholesterolaemic apolipoprotein E deficient mice

    DEFF Research Database (Denmark)

    Madsen, Marie; Hansen, Peter Riis; Nielsen, Lars Bo;

    2016-01-01

    skin inflammation with increased epidermal thickness, infiltration of inflammatory-like cells and augmented tissue interleukin-17F levels. Systemic effects of the topical application of TPA were demonstrated by increased plasma concentration of serum amyloid A and splenic immune modulation...... systemic immune-inflammatory effects, but did not affect atherogenesis. The results may question the role of psoriasis-induced inflammation in the pathogenesis of atherosclerosis in psoriasis patients....... to develop an animal model with combined atherosclerosis and psoriasis-like skin inflammation. METHODS: Topical 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to the ears twice per week for 8 weeks in atherosclerosis-prone apolipoprotein E deficient (ApoE(-/-)) mice. RESULTS: TPA led to localized...

  10. Green tea (Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice.

    Science.gov (United States)

    Luo, Ke-Wang; Ko, Chun-Hay; Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Li, Kai-Kai; Lee, Michelle; Li, Gang; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San

    2014-04-01

    Green tea (Camellia sinensis, CS), a kind of Chinese tea commonly consumed as a healthy beverage, has been demonstrated to have various biological activities, including antioxidation, antiobesity and anticancer. Our study aims to investigate the antitumor, antimetastasis and antiosteolytic effects of CS aqueous extract both in vitro and in vivo using metastasis-specific mouse mammary carcinoma 4T1 cells. Our results showed that treatment of 4T1 cells with CS aqueous extract resulted in significant inhibition of 4T1 cell proliferation. CS extract induced 4T1 apoptosis in a dose-dependent manner as assessed by annexin-V and propidium iodide staining and caspase-3 activity. Western blot analysis showed that CS increased the expression of Bax-to-Bcl-2 ratio and activated caspase-8 and caspase-3 to induce apoptosis. CS also inhibited 4T1 cell migration and invasion at 0.06-0.125 mg/ml. In addition, CS extract (0.6 g/kg, orally fed daily for 4 weeks) was effective in decreasing the tumor weight by 34.8% in female BALB/c mice against water treatment control (100%). Apart from the antitumor effect, CS extract significantly decreased lung and liver metastasis in BALB/c mice bearing 4T1 tumors by 54.5% and 72.6%, respectively. Furthermore, micro-computed tomography and in vitro osteoclast staining analysis suggested that CS extract was effective in bone protection against breast cancer-induced bone destruction. In conclusion, the present study demonstrated that the CS aqueous extract, which closely mimics green tea beverage, has potent antitumor and antimetastasis effects in breast cancer and could protect the bone from breast cancer-induced bone destruction.

  11. The Parameters of Transcutaneous Electrical Nerve Stimulation Are Critical to Its Regenerative Effects When Applied Just after a Sciatic Crush Lesion in Mice

    Science.gov (United States)

    Martins Lima, Êmyle; Teixeira Goes, Bruno; Zugaib Cavalcanti, João; Vannier-Santos, Marcos André; Martinez, Ana Maria Blanco; Baptista, Abrahão Fontes

    2014-01-01

    We investigated the effect of two frequencies of transcutaneous electrical nerve stimulation (TENS) applied immediately after lesion on peripheral nerve regeneration after a mouse sciatic crush injury. The animals were anesthetized and subjected to crushing of the right sciatic nerve and then separated into three groups: nontreated, Low-TENS (4 Hz), and High-TENS (100 Hz). The animals of Low- and High-TENS groups were stimulated for 2 h immediately after the surgical procedure, while the nontreated group was only positioned for the same period. After five weeks the animals were euthanized, and the nerves dissected bilaterally for histological and histomorphometric analysis. Histological assessment by light and electron microscopy showed that High-TENS and nontreated nerves had a similar profile, with extensive signs of degeneration. Conversely, Low-TENS led to increased regeneration, displaying histological aspects similar to control nerves. High-TENS also led to decreased density of fibers in the range of 6–12 μm diameter and decreased fiber diameter and myelin area in the range of 0–2 μm diameter. These findings suggest that High-TENS applied just after a peripheral nerve crush may be deleterious for regeneration, whereas Low-TENS may increase nerve regeneration capacity. PMID:25147807

  12. The Parameters of Transcutaneous Electrical Nerve Stimulation Are Critical to Its Regenerative Effects When Applied Just after a Sciatic Crush Lesion in Mice

    Directory of Open Access Journals (Sweden)

    Diana Cavalcante Miranda de Assis

    2014-01-01

    Full Text Available We investigated the effect of two frequencies of transcutaneous electrical nerve stimulation (TENS applied immediately after lesion on peripheral nerve regeneration after a mouse sciatic crush injury. The animals were anesthetized and subjected to crushing of the right sciatic nerve and then separated into three groups: nontreated, Low-TENS (4 Hz, and High-TENS (100 Hz. The animals of Low- and High-TENS groups were stimulated for 2 h immediately after the surgical procedure, while the nontreated group was only positioned for the same period. After five weeks the animals were euthanized, and the nerves dissected bilaterally for histological and histomorphometric analysis. Histological assessment by light and electron microscopy showed that High-TENS and nontreated nerves had a similar profile, with extensive signs of degeneration. Conversely, Low-TENS led to increased regeneration, displaying histological aspects similar to control nerves. High-TENS also led to decreased density of fibers in the range of 6–12 μm diameter and decreased fiber diameter and myelin area in the range of 0–2 μm diameter. These findings suggest that High-TENS applied just after a peripheral nerve crush may be deleterious for regeneration, whereas Low-TENS may increase nerve regeneration capacity.

  13. Spinal cholinergic involvement after treatment with aspirin and paracetamol in rats

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Kommalage, Mahinda; Höglund, A Urban

    2004-01-01

    Aspirin and paracetamol have been shown to suppress non-inflammatory pain conditions like thermal, visceral and mechanical pain in mice and rats. The non-inflammatory antinociception appears to be mediated by central receptor mechanisms, such as the cholinergic system. In this study, we tested...... the hypothesis that the non-inflammatory antinociception of aspirin and paracetamol could be mediated by an increase of intraspinal acetylcholine release. Microdialysis probes were placed intraspinally in anesthetized rats for acetylcholine sampling. Subcutaneously administered aspirin 100 and 300 mg....../kg increased, while paracetamol 300 mg/kg decreased intraspinal acetylcholine release. Intraspinal drug administration did not affect acetylcholine release. Our results suggest that an increased intraspinal acetylcholine release could be involved in part of the non-inflammatory pain suppression by aspirin...

  14. Interaction of nerve agent antidotes with cholinergic systems.

    Science.gov (United States)

    Soukup, O; Tobin, G; Kumar, U K; Binder, J; Proska, J; Jun, D; Fusek, J; Kuca, K

    2010-01-01

    The poisoning with organophosphorus compounds represents a life threatening danger especially in the time of terroristic menace. No universal antidote has been developed yet and other therapeutic approaches not related to reactivation of acetylcholinesterase are being investigated. This review describes the main features of the cholinergic system, cholinergic receptors, cholinesterases and their inhibitors. It also focuses on the organophosphorus nerve agents, their properties, effects and a large part describes various possibilities in treatments, mainly traditional oxime therapies based on reactivation of AChE. Furthermore, non-cholinesterase coupled antidotal effects of the oximes are thoroughly discussed. These antidotal effects principally include oxime interactions with muscarinic and nicotinic receptors.

  15. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention

    Science.gov (United States)

    Villano, Ines; Messina, Antonietta; Valenzano, Anna; Moscatelli, Fiorenzo; Esposito, Teresa; Monda, Vincenzo; Esposito, Maria; Precenzano, Francesco; Carotenuto, Marco; Viggiano, Andrea; Chieffi, Sergio; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    The basal forebrain (BF) cholinergic system has an important role in attentive functions. The cholinergic system can be activated by different inputs, and in particular, by orexin neurons, whose cell bodies are located within the postero-lateral hypothalamus. Recently the orexin-producing neurons have been proved to promote arousal and attention through their projections to the BF. The aim of this review article is to summarize the evidence showing that the orexin system contributes to attentional processing by an increase in cortical acetylcholine release and in cortical neurons activity. PMID:28197081

  16. Convergent effects on cell signaling mechanisms mediate the actions of different neurobehavioral teratogens: alterations in cholinergic regulation of protein kinase C in chick and avian models.

    Science.gov (United States)

    Yanai, Joseph; Beer, Avital; Huleihel, Rabab; Izrael, Michal; Katz, Sofia; Levi, Yaarit; Rozenboim, Israel; Yaniv, Shiri P; Slotkin, Theodore A

    2004-10-01

    Although the actions of heroin on central nervous system (CNS) development are mediated through opioid receptors, the net effects converge on dysfunction of cholinergic systems. We explored the mechanisms underlying neurobehavioral deficits in mouse and avian (chick, Cayuga duck) models. In mice, prenatal heroin exposure (10 mg/kg on gestation days 9-18) elicited deficits in behaviors related to hippocampal cholinergic innervation, characterized by concomitant pre- and postsynaptic hyperactivity, but ending in a reduction of basal levels of protein kinase C (PKC) isoforms betaII and gamma and their desensitization to cholinergic receptor-induced activation. PKCalpha, which is not involved in the behaviors studied, was unaffected. Because mammalian models possess inherent confounding factors from maternal effects, we conducted parallel studies using avian embryos, evaluating hyperstriatal nucleus (intermedial part of the hyperstriatum ventrale, IMHV)-related, filial imprinting behavior. Heroin injection to the eggs (20 mg/kg) on incubation days 0 and 5 diminished the post-hatch imprinting ability and reduced PKCg and bII content in the IMHV membrane fraction. Two otherwise unrelated agents that converge on cholinergic systems, chlorpyrifos and nicotine, elicited the same spectrum of effects on PKC isoforms and imprinting but had more robust actions. Pharmacological characterization also excluded direct effects of opioid receptors on the expression of imprinting; instead, it indicated participation of serotonergic innervation. The avian models can provide rapid screening of neuroteratogens, exploration of common mechanisms of behavioral disruption, and the potential design of therapies to reverse neurobehavioral deficits.

  17. Pallial origin of basal forebrain cholinergic neurons in the nucleus basalis of Meynert and horizontal limb of the diagonal band nucleus.

    Science.gov (United States)

    Pombero, Ana; Bueno, Carlos; Saglietti, Laura; Rodenas, Monica; Guimera, Jordi; Bulfone, Alexandro; Martinez, Salvador

    2011-10-01

    The majority of the cortical cholinergic innervation implicated in attention and memory originates in the nucleus basalis of Meynert and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system give rise to neuropsychiatric disorders as well as to the cognitive alterations described in Parkinson and Alzheimer's diseases. Despite the functional importance of these basal forebrain cholinergic neurons very little is known about their origin and development. Previous studies suggest that they originate in the medial ganglionic eminence of the telencephalic subpallium; however, our results identified Tbr1-expressing, reelin-positive neurons migrating from the ventral pallium to the subpallium that differentiate into cholinergic neurons in the basal forebrain nuclei projecting to the cortex. Experiments with Tbr1 knockout mice, which lack ventropallial structures, confirmed the pallial origin of cholinergic neurons in Meynert and horizontal diagonal band nuclei. Also, we demonstrate that Fgf8 signaling in the telencephalic midline attracts these neurons from the pallium to follow a tangential migratory route towards the basal forebrain.

  18. CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice.

    Science.gov (United States)

    Sennlaub, Florian; Auvynet, Constance; Calippe, Bertrand; Lavalette, Sophie; Poupel, Lucie; Hu, Shulong J; Dominguez, Elisa; Camelo, Serge; Levy, Olivier; Guyon, Elodie; Saederup, Noah; Charo, Israel F; Rooijen, Nico Van; Nandrot, Emeline; Bourges, Jean-Louis; Behar-Cohen, Francine; Sahel, José-Alain; Guillonneau, Xavier; Raoul, William; Combadiere, Christophe

    2013-11-01

    Atrophic age-related macular degeneration (AMD) is associated with the subretinal accumulation of mononuclear phagocytes (MPs). Their role in promoting or inhibiting retinal degeneration is unknown. We here show that atrophic AMD is associated with increased intraocular CCL2 levels and subretinal CCR2(+) inflammatory monocyte infiltration in patients. Using age- and light-induced subretinal inflammation and photoreceptor degeneration in Cx3cr1 knockout mice, we show that subretinal Cx3cr1 deficient MPs overexpress CCL2 and that both the genetic deletion of CCL2 or CCR2 and the pharmacological inhibition of CCR2 prevent inflammatory monocyte recruitment, MP accumulation and photoreceptor degeneration in vivo. Our study shows that contrary to CCR2 and CCL2, CX3CR1 is constitutively expressed in the retina where it represses the expression of CCL2 and the recruitment of neurotoxic inflammatory CCR2(+) monocytes. CCL2/CCR2 inhibition might represent a powerful tool for controlling inflammation and neurodegeneration in AMD.

  19. CCR2+ monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice

    Science.gov (United States)

    Sennlaub, Florian; Auvynet, Constance; Calippe, Bertrand; Lavalette, Sophie; Poupel, Lucie; Hu, Shulong J; Dominguez, Elisa; Camelo, Serge; Levy, Olivier; Guyon, Elodie; Saederup, Noah; Charo, Israel F; Van Rooijen, Nico; Nandrot, Emeline; Bourges, Jean-Louis; Behar-Cohen, Francine; Sahel, José-Alain; Guillonneau, Xavier; Raoul, William; Combadiere, Christophe

    2013-01-01

    Atrophic age-related macular degeneration (AMD) is associated with the subretinal accumulation of mononuclear phagocytes (MPs). Their role in promoting or inhibiting retinal degeneration is unknown. We here show that atrophic AMD is associated with increased intraocular CCL2 levels and subretinal CCR2+ inflammatory monocyte infiltration in patients. Using age- and light-induced subretinal inflammation and photoreceptor degeneration in Cx3cr1 knockout mice, we show that subretinal Cx3cr1 deficient MPs overexpress CCL2 and that both the genetic deletion of CCL2 or CCR2 and the pharmacological inhibition of CCR2 prevent inflammatory monocyte recruitment, MP accumulation and photoreceptor degeneration in vivo. Our study shows that contrary to CCR2 and CCL2, CX3CR1 is constitutively expressed in the retina where it represses the expression of CCL2 and the recruitment of neurotoxic inflammatory CCR2+ monocytes. CCL2/CCR2 inhibition might represent a powerful tool for controlling inflammation and neurodegeneration in AMD. PMID:24142887

  20. PRO-CHOLINERGIC, HYPO-CHOLESTEROLEMIC AND MEMORY IMPROVING EFFECTS OF CLOVE

    Directory of Open Access Journals (Sweden)

    Parle Milind

    2011-04-01

    Full Text Available Clove is found to possess useful medicinal properties, such as anti-microbial, anti-inflammatory, anti-diabetic and anti-oxidant. The present study was undertaken to investigate the effects of Syzygium aromaticum (Clove on cognitive functions in mice. Clove powder was administered orally along with diet in three doses (400, 800, 1600mg/kg for seven successive days. 250 Swiss young mice divided in 50 groups and 100 aged mice divided in 20 groups were employed in the present study. The learning and memory parameters were assessed using elevated plus maze, passive avoidance apparatus and Hebb-Williams maze. Clove showed significant improvement in the memory of young and aged animals as reflected by decreased TL as well as TRC and increased SDL values. It also reversed the amnesia caused by ethanol (1.0 g/kg, i.p. and diazepam (1mg/kg, i.p.. Furthermore, Clove reduced significantly the brain cholinesterase activity in young mice by 50.5 % and aged mice by 21.25 % at the dose of 800 mg/kg. Clove also showed remarkable reduction to the extent of 33% and 66.32 % in the total cholesterol levels of young and aged mice at the dose of 800 mg/kg. Diminished cholinergic transmission and high cholesterol levels appear to be responsible for the development of dementia in Alzheimer patients. Since Clove powder enhanced Ach levels and lowered cholesterol levels in the present study; it appears to be a promising candidate for improving memory. Thus it would be worthwhile to explore the potential of this spice (Clove clinically in the management of Alzheimer’s disease.

  1. Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model.

    Directory of Open Access Journals (Sweden)

    Takeshi Yamamoto

    Full Text Available The prevalence of food allergy (FA has increased in developed countries over the past few decades. However, no effective drug therapies are currently available. Therefore, we investigated cholinergic anti-inflammatory pathway as a regulatory system to ameliorate disrupted mucosal immune homeostasis in the gut based on the pathophysiological elucidation of mucosal mast cells (MMCs in a murine FA model. BALB/c mice sensitized with ovalbumin received repeated oral ovalbumin for the development of FA. FA mice developed severe allergic diarrhea and exhibited enhanced type 2 helper T (Th2 cell immune responses in both systemic immunity and mucosal immunity, along with MMCs hyperplasia in the colon. MMCs were localized primarily in the strategic position of the mucosal epithelium. Furthermore, the allergic symptoms did not develop in p85α disrupted phosphoinositide-3 kinase-deficient mice that lacked mast cells in the gut. Vagal stimulation by 2-deoxy-D-glucose and drug treatment with nicotinic ACh receptor (nAChR agonists (nicotine and α7 nAChR agonist GTS-21 alleviated the allergic symptoms in the FA mice. Nicotine treatment suppressed MMCs hyperplasia, enhanced MPO and upregulated mRNA expression of Th1 and Th2 cytokines in the FA mice colon. MMCs, which are negatively regulated by α7 nAChRs, were often located in close proximity to cholinergic CGRP-immunoreactive nerve fibers in the FA mice colon. The present results reveal that the cholinergic neuroimmune interaction via α7 nAChRs on MMCs is largely involved in maintaining intestinal immune homeostasis and can be a target for a new therapy against mucosal immune diseases with homeostatic disturbances such as FA.

  2. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited.

    Science.gov (United States)

    van Enkhuizen, Jordy; Janowsky, David S; Olivier, Berend; Minassian, Arpi; Perry, William; Young, Jared W; Geyer, Mark A

    2015-04-15

    Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research.

  3. The cholinergic system, sigma-1 receptors and cognition

    NARCIS (Netherlands)

    van Waarde, Aren; Ramakrishnan, Nisha K.; Rybczynska, Anna A.; Elsinga, Philip H.; Ishiwata, Kiichi; Nijholt, Ingrid M.; Luiten, Paul G. M.; Dierckx, Rudi A.

    2011-01-01

    This article provides an overview of present knowledge regarding the relationship between the cholinergic system and sigma-1 receptors, and discusses potential applications of sigma-1 receptor agonists in the treatment of memory deficits and cognitive disorders. Sigma-1 receptors, initially consider

  4. Cypermethrin Poisoning and Anti-cholinergic Medication- A Case Report

    Directory of Open Access Journals (Sweden)

    Dr Sudip Parajuli

    2006-07-01

    Full Text Available A 30 years old male was brought to emergency department of Manipal Teaching Hospital, Pokhara, Nepal with alleged history of consumption of pyrethroid compound ‘cypermethrin’. It was found to be newer insecticide poisoning reported in Nepal. We reported this case to show effectiveness of anti-cholinergic like hyosciane and chlorpheniramine maleate in the treatment of cypermethrin poisoning.

  5. Reduced cholinergic olfactory centrifugal inputs in patients with neurodegenerative disorders and MPTP-treated monkeys.

    Science.gov (United States)

    Mundiñano, Iñaki-Carril; Hernandez, Maria; Dicaudo, Carla; Ordoñez, Cristina; Marcilla, Irene; Tuñon, Maria-Teresa; Luquin, Maria-Rosario

    2013-09-01

    Olfactory impairment is a common feature of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Olfactory bulb (OB) pathology in these diseases shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. Since cholinergic denervation might be a common underlying pathophysiological feature, the objective of this study was to determine cholinergic innervation of the OB in 27 patients with histological diagnosis of PD (n = 5), AD (n = 14), DLB (n = 8) and 8 healthy control subjects. Cholinergic centrifugal inputs to the OB were clearly reduced in all patients, the most significant decrease being in the DLB group. We also studied cholinergic innervation of the OB in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys (n = 7) and 7 intact animals. In MPTP-monkeys, we found that cholinergic innervation of the OB was reduced compared to control animals (n = 7). Interestingly, in MPTP-monkeys, we also detected a loss of cholinergic neurons and decreased dopaminergic innervation in the horizontal limb of the diagonal band, which is the origin of the centrifugal cholinergic input to the OB. All these data suggest that cholinergic damage in the OB might contribute, at least in part, to the olfactory dysfunction usually exhibited by these patients. Moreover, decreased cholinergic input to the OB found in MPTP-monkeys suggests that dopamine depletion in itself might reduce the cholinergic tone of basal forebrain cholinergic neurons.

  6. Contribution of the Cholinergic System to Verbal Memory Performance in Mild Cognitive Impairment.

    Science.gov (United States)

    Peter, Jessica; Lahr, Jacob; Minkova, Lora; Lauer, Eliza; Grothe, Michel J; Teipel, Stefan; Köstering, Lena; Kaller, Christoph P; Heimbach, Bernhard; Hüll, Michael; Normann, Claus; Nissen, Christoph; Reis, Janine; Klöppel, Stefan

    2016-06-18

    Acetylcholine is critically involved in modulating learning and memory function, which both decline in neurodegeneration. It remains unclear to what extent structural and functional changes in the cholinergic system contribute to episodic memory dysfunction in mild cognitive impairment (MCI), in addition to hippocampal degeneration. A better understanding is critical, given that the cholinergic system is the main target of current symptomatic treatment in mild to moderate Alzheimer's disease. We simultaneously assessed the structural and functional integrity of the cholinergic system in 20 patients with MCI and 20 matched healthy controls and examined their effect on verbal episodic memory via multivariate regression analyses. Mediating effects of either cholinergic function or hippocampal volume on the relationship between cholinergic structure and episodic memory were computed. In MCI, a less intact structure and function of the cholinergic system was found. A smaller cholinergic structure was significantly correlated with a functionally more active cholinergic system in patients, but not in controls. This association was not modulated by age or disease severity, arguing against compensational processes. Further analyses indicated that neither functional nor structural changes in the cholinergic system influence verbal episodic memory at the MCI stage. In fact, those associations were fully mediated by hippocampal volume. Although the cholinergic system is structurally and functionally altered in MCI, episodic memory dysfunction results primarily from hippocampal neurodegeneration, which may explain the inefficiency of cholinergic treatment at this disease stage.

  7. The cholinergic agonist carbachol increases the frequency of spontaneous GABAergic synaptic currents in dorsal raphe serotonergic neurons in the mouse.

    Science.gov (United States)

    Yang, C; Brown, R E

    2014-01-31

    Dorsal raphe nucleus (DRN) serotonin (5-HT) neurons play an important role in feeding, mood control and stress responses. One important feature of their activity across the sleep-wake cycle is their reduced firing during rapid-eye-movement (REM) sleep which stands in stark contrast to the wake/REM-on discharge pattern of brainstem cholinergic neurons. A prominent model of REM sleep control posits a reciprocal interaction between these cell groups. 5-HT inhibits cholinergic neurons, and activation of nicotinic receptors can excite DRN 5-HT neurons but the cholinergic effect on inhibitory inputs is incompletely understood. Here, in vitro, in DRN brain slices prepared from GAD67-GFP knock-in mice, a brief (3 min) bath application of carbachol (50 μM) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in GFP-negative, putative 5-HT neurons but did not affect miniature (tetrodotoxin-insensitive) IPSCs. Carbachol had no direct postsynaptic effect. Thus, carbachol likely increases the activity of local GABAergic neurons which synapse on 5-HT neurons. Removal of dorsal regions of the slice including the ventrolateral periaqueductal gray (vlPAG) region where GABAergic neurons projecting to the DRN have been identified, abolished the effect of carbachol on sIPSCs whereas the removal of ventral regions containing the oral region of the pontine reticular nucleus (PnO) did not. In addition, carbachol directly excited GFP-positive, GABAergic vlPAG neurons. Antagonism of both muscarinic and nicotinic receptors completely abolished the effects of carbachol. We suggest cholinergic neurons inhibit DRN 5-HT neurons when acetylcholine levels are lower i.e. during quiet wakefulness and the beginning of REM sleep periods, in part via excitation of muscarinic and nicotinic receptors located on local vlPAG and DRN GABAergic neurons. Higher firing rates or burst firing of cholinergic neurons associated with attentive wakefulness or phasic REM sleep periods

  8. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons.

  9. Medial-to-lateral gradient of neostriatal NGF receptors: relationship to cholinergic neurons and NGF-like immunoreactivity.

    Science.gov (United States)

    Altar, C A; Dugich-Djordjevic, M; Armanini, M; Bakhit, C

    1991-03-01

    High-affinity binding sites for recombinant human NGF (rhNGF) were studied in the caudate-putamen of the adult rat and rabbit. Displaceable 125I-rhNGF binding sites were densely distributed throughout the caudate-putamen and were 2-3-fold more prevalant in the ventrolateral and lateral than in the medial caudate-putamen. The amount of nondisplaceable binding did not vary throughout the caudate-putamen. The medial-to-lateral receptor gradient was correlated (r = +0.99) with a 2-3-fold medial-to-lateral increase in ChAT activity. In contrast, NGF-like immunoreactivity (NGF-LI) was prevalent but uniformly distributed in the caudate-putamen. Lesions of intrinsic cholinergic neurons by quinolinic acid produced extensive gliosis in the medial, central, and lateral caudate-putamen, yet 125I-rhNGF binding was decreased in each of these regions. The activity of ChAT and 125I-rhNGF binding throughout the caudate-putamen were each decreased by 40% following quinolinic acid. Binding was not changed after 70-77% dopamine nerve terminal depletions induced by 6-hydroxydopamine, demonstrating a nonglial, nondopaminergic locus for striatal NGF binding sites. The cholinergiclike topography of NGF binding sites throughout the intact caudate-putamen, the parallel decreases of cholinergic neurons and NGF binding sites following intrinsic neuronal loss, and the uniform neostriatal gradient of NGF-LI are consistent with the trophic role of endogenous NGF for cholinergic interneurons of the caudate-putamen.

  10. Effects of medial amygdala lesions on social behaviors in mice%杏仁体内侧核损伤对小鼠社会行为的影响

    Institute of Scientific and Technical Information of China (English)

    王宇; 李蕾; 何志义

    2013-01-01

    目的 探讨实验条件下杏仁体亚区一杏仁体内侧核损伤对小鼠社会行为的影响.方法 应用微量注射兴奋性毒素N-甲基-D-天冬氨酸(NMDA)方法损伤成年雄性小鼠双侧杏仁体内侧核,并选择杏仁体内侧核损伤组中损伤确切并局限性较好的20只小鼠及对照组20只小鼠(等量注射生理盐水)的行为学实验(包括社会接触实验、社会识别实验、社会互动实验)结果进行数据统计,比较2组小鼠社会接触水平、社会识别能力及对同种个体性别识别能力的差异. 结果 在社会接触实验中,相比对照组,24h区间内杏仁体内侧核损伤组2只小鼠的接触百分比明显降低,活动程度明显增高.在社会识别实验中,相比对照组,仁体内侧核损伤组小鼠探究陌生小鼠的倾向指数(探究陌生小鼠的累计时间与探究熟悉小鼠和陌生小鼠累计时间总和的百分比)明显降低,约等于50%.在社会互动实验中,仁体内侧核损伤组小鼠表现出对同为雄性的入侵小鼠的登爬行为(对同性小鼠的性行为),而对照组完全未出现这样的行为. 结论 杏仁体内侧核与小鼠社会行为中的社会接触水平、社会识别能力及对同种个体性别识别能力有着十分密切的关系,其损伤导致小鼠这些方面能力的降低.杏仁体内侧核神经元结构和功能的异常很可能是自闭症、精神分裂症及阿尔茨海默病等患者出现社会行为方面缺陷的原因之一.%Objective To examine the effect of medial amygdala lesions under experiment conditions on social behaviors in mice.Methods Neurons in the bilateral medial amygdale of adult male mice were destroyed by injections of excitotoxic N-methyl-D-aspartate (NMDA) solution; 20 of them were chosen as experimental group and other 20 mice,only injected normal saline were chosen,as control group; behavioral tests,including experimental social contact,social recognition experiments and social

  11. Cholinergic signals in mouse barrel cortex during active whisker sensing.

    Science.gov (United States)

    Eggermann, Emmanuel; Kremer, Yves; Crochet, Sylvain; Petersen, Carl C H

    2014-12-11

    Internal brain states affect sensory perception, cognition, and learning. Many neocortical areas exhibit changes in the pattern and synchrony of neuronal activity during quiet versus active behaviors. Active behaviors are typically associated with desynchronized cortical dynamics. Increased thalamic firing contributes importantly to desynchronize mouse barrel cortex during active whisker sensing. However, a whisking-related cortical state change persists after thalamic inactivation, which is mediated at least in part by acetylcholine, as we show here by using whole-cell recordings, local pharmacology, axonal calcium imaging, and optogenetic stimulation. During whisking, we find prominent cholinergic signals in the barrel cortex, which suppress spontaneous cortical activity. The desynchronized state of barrel cortex during whisking is therefore driven by at least two distinct signals with opposing functions: increased thalamic activity driving glutamatergic excitation of the cortex and increased cholinergic input suppressing spontaneous cortical activity.

  12. Cholinergic Signals in Mouse Barrel Cortex during Active Whisker Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuel Eggermann

    2014-12-01

    Full Text Available Internal brain states affect sensory perception, cognition, and learning. Many neocortical areas exhibit changes in the pattern and synchrony of neuronal activity during quiet versus active behaviors. Active behaviors are typically associated with desynchronized cortical dynamics. Increased thalamic firing contributes importantly to desynchronize mouse barrel cortex during active whisker sensing. However, a whisking-related cortical state change persists after thalamic inactivation, which is mediated at least in part by acetylcholine, as we show here by using whole-cell recordings, local pharmacology, axonal calcium imaging, and optogenetic stimulation. During whisking, we find prominent cholinergic signals in the barrel cortex, which suppress spontaneous cortical activity. The desynchronized state of barrel cortex during whisking is therefore driven by at least two distinct signals with opposing functions: increased thalamic activity driving glutamatergic excitation of the cortex and increased cholinergic input suppressing spontaneous cortical activity.

  13. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation.

    Science.gov (United States)

    Sasaki, Kazunori; El Omri, Abdelfatteh; Kondo, Shinji; Han, Junkyu; Isoda, Hiroko

    2013-02-01

    Rosmarinus officinalis (R. officinalis), a culinary aromatic and medicinal plant, is very rich in polyphenols and flavonoids with high antioxidant properties. This plant was reported to exert multiple benefits for neuronal system and alleviate mood disorder. In our previous study, we demonstrated that R. officinalis and its active compounds, luteolin (Lut), carnosic acid (CA), and rosmarinic acid (RA), exhibited neurotrophic effects and improved cholinergic functions in PC12 cells in correlation with mitogen-activated protein kinase (MAPK), ERK1/2 signaling pathway. The current study was conducted to evaluate and understand the anti-depressant effect of R. officinalis using tail suspension test (TST) in ICR mice and PC12 cells as in vitro neuronal model. Proteomics analysis of PC12 cells treated with R. officinalis polyphenols (ROP) Lut, CA, and RA revealed a significant upregulation of tyrosine hydroxylase (TH) and pyruvate carboxylase (PC) two major genes involved in dopaminergic, serotonergic and GABAergic pathway regulations. Moreover, ROP were demonstrated to protect neuronal cells against corticosterone-induced toxicity. These results were concordant with decreasing immobility time in TST and regulation of several neurotransmitters (dopamine, norepinephrine, serotonin and acetylcholine) and gene expression in mice brain like TH, PC and MAPK phosphatase (MKP-1). To the best of our knowledge this is the first evidence to contribute to the understanding of molecular mechanism behind the anti-depressant effect of R. officinalis and its major active compounds.

  14. Cholinergic Interneurons Amplify Corticostriatal Synaptic Responses in the Q175 Model of Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Asami Tanimura

    2016-12-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder characterized by deficits in movement control that are widely viewed as stemming from pathophysiological changes in the striatum. Giant, aspiny cholinergic interneurons (ChIs are key elements in the striatal circuitry controlling movement, but whether their physiological properties are intact in the HD brain is unclear. To address this issue, the synaptic properties of ChIs were examined using optogenetic approaches in the Q175 mouse model of HD. In ex vivo brain slices, synaptic facilitation at thalamostriatal synapses onto ChIs was reduced in Q175 mice. The alteration in thalamostriatal transmission was paralleled by an increased response to optogenetic stimulation of cortical axons, enabling these inputs to more readily induce burst-pause patterns of activity in ChIs. This adaptation was dependent upon amplification of cortically evoked responses by a post-synaptic upregulation of voltage-dependent Na+ channels. This upregulation also led to an increased ability of somatic spikes to invade ChI dendrites. However, there was not an alteration in the basal pacemaking rate of ChIs, possibly due to increased availability of Kv4 channels. Thus, there is a functional ‘re-wiring’ of the striatal networks in Q175 mice, which results in greater cortical control of phasic ChI activity, which is widely thought to shape the impact of salient stimuli on striatal action selection.

  15. Modulation of the Cholinergic Mechanisms in the Bronchial Smooth Muscle.

    Science.gov (United States)

    1984-06-01

    Ginsborg and Hirst, 1q72; Sawynok and Jhamandas, 1976), although theopylline has not shown to be a specific adenosine receptor antagonist in all the tissues... theopylline and other cyclic nucletide phosphodiesterase inhibitors. Acta Pharmacol. Toxicol. 45, 336-344. Fredholm, B.B. and P. Hedqvist, 1980...51 mM) evoked release of [3H]-Ach from cholinergic nerves in the bronchial smooth muscle. The effect of theopylline (I mM) on the response to

  16. Dopaminergic and Cholinergic Modulation of Striatal Tyrosine Hydroxylase Interneurons

    OpenAIRE

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S.; Tepper, James M.; Koós, Tibor

    2015-01-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2013). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulatio...

  17. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits.

    Science.gov (United States)

    Dautan, Daniel; Souza, Albert S; Huerta-Ocampo, Icnelia; Valencia, Miguel; Assous, Maxime; Witten, Ilana B; Deisseroth, Karl; Tepper, James M; Bolam, J Paul; Gerdjikov, Todor V; Mena-Segovia, Juan

    2016-08-01

    Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.

  18. Modulatory compartments in cortex and local regulation of cholinergic tone.

    Science.gov (United States)

    Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A

    2016-09-01

    Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states.

  19. Animal model of vascular dementia and its cholinergic mechanism

    Institute of Scientific and Technical Information of China (English)

    FAN Wen-hui; LI Lu-si; LIU Zhi-rong; ZHU Hong-yan; CHEN Kang-ning

    2001-01-01

    Objective: To establish a model of vascular dementia (VD) in aging rats and study primarily the cholinergic mechanism of hypomnesia. Methods: Chronic hypoperfusion of cerebral blood flow (CBF) in the forebrain was performed in aging rats with permanent bilateral common carotid arteries occlusion (PBCCAO). Then the rats were tested with a computerized shuttle-training case. The changes of cerebrovascular system were observed with digital subtraction angiography (DSA). The brain tissues were studied with immunohistochemical method with cholinergic acetyltransferase (ChAT) as a marker. Results: The cognitive function of rats was obviously reduced in 2 months after chronic cerebral hypoperfusion and became worse 2 months later, showing a more marked decrease of ChAT positive neurons and fibers in CA1 of the hippocampus as compared with the rats of the control, which had a significant positive correlation with memory ability. Conclusion: This rat model is successfully established to imitate human VD induced with chronic cerebral hypoperfusion. The mechanism of the hypomnesia of VD might be the impairment of cholinergic neurons in frontal cortex and hippocampus.

  20. Increased acetylcholine esterase activity produced by the administration of an aqueous extract of the seed kernel of Thevetia peruviana and its role on acute and subchronic intoxication in mice

    Directory of Open Access Journals (Sweden)

    Rubén Marroquín-Segura

    2014-01-01

    Full Text Available Background: The real mechanism for Thevetia peruviana poisoning remains unclear. Cholinergic activity is important for cardiac function regulation, however, the effect of T. peruviana on cholinergic activity is not well-known. Objective: To study the effect of the acute administration of an aqueous extract of the seed kernel of T. peruviana on the acetylcholine esterase (AChE activity in CD1 mice as well its implications in the sub-chronic toxicity of the extract. Materials and Methods: A dose of 100 mg/kg of the extract was administered to CD1 mice and after 7 days, serum was obtained for ceruloplasmin (CP quantitation and liver function tests. Another group of mice received a 50 mg/kg dose of the extract 3 times within 1 h time interval and AChE activity was determined for those animals. Heart tissue histological preparation was obtained from a group of mice that received a daily 50 mg/kg dose of the extract by a 30-days period. Results: CP levels for the treated group were higher than those for the control group (Student′s t-test, P ≤ 0.001. AChE activity in the treated group was significantly higher than the control group (Tukey test, control vs. T. peruviana, P ≤ 0.001. Heart tissue histological preparations showed leukocyte infiltrates and necrotic areas, consistent with infarcts. Conclusion: The increased levels of AChE and the hearth tissue infiltrative lesions induced by the aqueous seed kernel extract of T. peruviana explains in part the poisoning caused by this plant, which can be related to an inflammatory process.

  1. Excitotoxic median raphe lesions aggravate working memory storage performance deficits caused by scopolamine infusion into the dentate gyrus of the hippocampus in the inhibitory avoidance task in rats

    Directory of Open Access Journals (Sweden)

    Babar E.

    2002-01-01

    Full Text Available The interactions between the median raphe nucleus (MRN serotonergic system and the septohippocampal muscarinic cholinergic system in the modulation of immediate working memory storage performance were investigated. Rats with sham or ibotenic acid lesions of the MRN were bilaterally implanted with cannulae in the dentate gyrus of the hippocampus and tested in a light/dark step-through inhibitory avoidance task in which response latency to enter the dark compartment immediately after the shock served as a measure of immediate working memory storage. MRN lesion per se did not alter response latency. Post-training intrahippocampal scopolamine infusion (2 and 4 µg/side produced a more marked reduction in response latencies in the lesioned animals compared to the sham-lesioned rats. Results suggest that the immediate working memory storage performance is modulated by synergistic interactions between serotonergic projections of the MRN and the muscarinic cholinergic system of the hippocampus.

  2. Effect of the methanol leaves extract of Clinacanthus nutans on the activity of acetylcholinesterase in male mice

    Directory of Open Access Journals (Sweden)

    Lau KW

    2014-01-01

    Conclusion: In conclusion, 14 d oral administration of C. nutans was able to modulate cholinergic neurotransmission by activating AChE activity in mice kidney, liver and heart. Compounds that responsible for the induction of AChE activity in mice liver, heart and kidney and its mechanism needs to be elucidated.

  3. Novel aspects of cholinergic regulation of colonic ion transport

    Science.gov (United States)

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  4. Reducing cholinergic constriction: the major reversible mechanism in COPD

    Directory of Open Access Journals (Sweden)

    V. Brusasco

    2006-12-01

    Full Text Available The airway narrowing in chronic obstructive pulmonary disease (COPD has often been misunderstood as being irreversible. However, a large proportion of patients with COPD do respond to bronchodilator agents with significant changes in lung function. Unlike in asthma, abnormalities in airway smooth muscle structure or function are not believed to play a key role in COPD airway narrowing. Although there are only limited data suggesting that cholinergic tone may be increased in COPD, the well-documented efficacy of antimuscarinic agents in increasing airway calibre suggests that cholinergic tone represents the major reversible component of airflow obstruction in these patients. Airway wall thickening and loss of airway-to-parenchyma interdependence are nonreversible components of airflow obstruction in COPD that may amplify the effect of changes in airway smooth muscle tone. Thus, keeping airway smooth muscle tone to a minimum might offer patients long-lasting airway patency and protection against breathlessness, which is the major complaint of patients with COPD. Receptor antagonism by anticholinergic agents can achieve effective relaxation of airway smooth muscle in COPD. According to a classical view of cholinergic receptor function and distribution, the ideal anticholinergic bronchodilator would be one that blocks both M1 and M3 receptors, which mediate airway smooth muscle contraction, but not the M2 receptor, stimulation of which reduces acetylcholine release from vagus nerve endings and prevents the airway smooth muscle from contracting by excessive increments. Agents with such pharmacodynamic selectivity are not available, but effective and prolonged inhibition of airway smooth muscle tone has been obtained with tiotropium, which binds to all three major muscarinic receptor subtypes, but for much longer to M3 than to M2 receptors. Recent data show that long-term treatment with tiotropium for 1 yr helps sustain 24-h airway patency. This

  5. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2015-06-01

    Conclusion: DMH cholinergic neurons directly send efferent signals to sympathetic premotor neurons in the Rpa. Elevated cholinergic input to this area reduces BAT activity through activation of M2 mAChRs on serotonergic neurons. Therefore, the direct DMHACh–Rpa5-HT pathway may mediate physiological heat-defense responses to elevated environmental temperature.

  6. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    NARCIS (Netherlands)

    Luiten, PGM; deJong, GI; VanderZee, EA; vanDijken, H; Dijken, H. van

    1996-01-01

    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a genera

  7. Central cholinergic control of vasopressin release in conscious rats

    Energy Technology Data Exchange (ETDEWEB)

    Iitake, K.; Share, L.; Ouchi, Y.; Crofton, J.T.; Brooks, D.P.

    1986-08-01

    Intracerebroventricular (icv) administration of carbachol into conscious rats evoked a substantial increase in vasopressin secretion and blood pressure in a dose-dependent manner. These effects were blocked by pretreatment with the muscarinic blocker, atropine (10 g icv), but not by the nicotinic blocker, hexamethonium (10 g icv). Hexamethonium did, however, block the increase in blood pressure, the decrease in heart rate, and they very small elevation in the plasma vasopressin concentration induced by nicotine (10 g icv). These results indicate that stimulation of either central nicotinic or muscarinic receptors can affect the cardiovascular system and suggest that the cholinergic stimulation of vasopressin secretion may involve primarily muscarinic receptors in the conscious rat.

  8. Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats

    Institute of Scientific and Technical Information of China (English)

    Helena F Wrzos; Tarun Tandon; Ann Ouyang

    2004-01-01

    AIM: To investigate the pathway (s) mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent, bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction.METHODS: Circular smooth muscle strips from the antrum of Sprague-Dawley rats were mounted in muscle baths in Krebs buffer. Isometric tension was recorded. Cumulative concentration-response curves were obtained for (+)-cisdioxolane (cD), a nonspecific muscarinic agonist, at 10-8-10-4 mol/L, in the presence of tetrodotoxin (TTX, 10-7 mol/L).Results were normalized to cross sectional area. A repeat concentration-response curve was obtained after incubation of the muscle for 90 min with antagonists for M1 (pirenzepine),M2 (methoctramine) and M3 (darifenacin) muscarinic receptor subtypes. The sensitivity to PTX was tested by the ip injection of 100 mg/kg of PTX 5 d before the experiment. The antral circular smooth muscles were removed from PTX-treated and non-treated rats as strips and dispersed smooth muscle cells to identify whether PTX-linked pathway mediated the contractility to bethanechol.RESULTS: A dose-dependent contractile response observed with bethanechol, was not affected by TTX. The pretreatment of rats with pertussis toxin decreased the contraction induced by bethanechol. Lack of calcium as Well as the presence of the L-type calcium channel blocker, nifedipine, also inhibited the cholinergic contraction, with a reduction in response from 2.5±0.4 g/mm2 to 1.2±0.4 g/mm2 (P<0.05). The doseresponse curves were shifted to the right by muscarinic antagonists in the following order of affinity: darifenacin(M3)>methocramine (M2)>pirenzepine (M1).CONCLUSION: The muscarinic receptors-dependent contraction of rat antral circular smooth muscles was linked to the signal transduction pathway(s) involving pertussis-toxin sensitive GTP-binding proteins and to extracellular calcium via L-type voltage gated calcium channels. The presence of the

  9. Cholinergic deficiency involved in vascular dementia:possible mechanism and strategy of treatment

    Institute of Scientific and Technical Information of China (English)

    Juan WANG; Hai-yan ZHANG; Xi-can TANG

    2009-01-01

    Vascular dementia (VaD) is a progressive neurodegenerative disease with a high prevalence.Several studies have recently reported that VaD patients present cholinergic deficits in the brain and cerebrospinal fluid (CSF) that may be closely related to the pathophysiology of cognitive impairment.Moreover,cholinergic therapies have shown promising effects on cognitive improvement in VaD patients.The precise mechanisms of these cholinergic agents are currently not fully understood;however,accumulating evidence indicates that these drugs may act through the cholinergic anti-inflammatory pathway,in which the efferent vagus nerve signals suppress pro-inflammatory cytokine release and inhibit inflammation,although regulation of oxidative stress and energy metabolism,alleviation of apoptosis may also be involved.In this paper,we provide a brief overview of the cholinergic treatment strategy for VaD and its relevant mechanisms of anti-inflammation.

  10. A cellular and regulatory map of the cholinergic nervous system of C. elegans.

    Science.gov (United States)

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-12-25

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly.

  11. Unique psoriatic lesion versus multiple lesions

    Directory of Open Access Journals (Sweden)

    Anca Chiriac

    2014-10-01

    Full Text Available Aim: To evaluate the number of lesions of psoriasis and to find risk factors for multiple lesions. Material and Methods: 1,236 patients (male 54.13%, female 45.87% with psoriasis were seen over a period of 8 years in an Outpatient Clinic. Patients filled out questionnaires containing age at onset, number of lesions and location at the beginning of the disease, gender, type and localization of psoriasis at the time of clinical examination, psoriasis family history, previous treatment, comorbidities, and social status. Results: The number of psoriasis lesions correlates with: onset age of psoriasis (F=8.902, p=0.0029; age at the moment of clinical examination (F=8.902, p=0.0029; residence in rural area (χ2=8.589, p=0.00338, 95%CI; alcohol intake (χ2=16.47, p=0.00005, 95%CI; smoking (χ2=8.408, p=0.00373, 95%CI; occupation: workers/pupils/students (χ2=14.11, p=0.0069, 95%CI. Conclusions: There is a correlation between number of psoriatic lesions and some factors. Multiple lesions were observed in older patients, smokers and drinkers, coming from rural area and social active (workers and pupils/students. No correlation was statistically proved between number of lesions and gender, comorbidities and family history of psoriasis.

  12. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Directory of Open Access Journals (Sweden)

    Maya Kaufman

    Full Text Available Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity, followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  13. The Gatekeepers in the Mouse Ophthalmic Artery: Endothelium-Dependent Mechanisms of Cholinergic Vasodilation.

    Science.gov (United States)

    Manicam, Caroline; Staubitz, Julia; Brochhausen, Christoph; Grus, Franz H; Pfeiffer, Norbert; Gericke, Adrian

    2016-02-02

    Cholinergic regulation of arterial luminal diameter involves intricate network of intercellular communication between the endothelial and smooth muscle cells that is highly dependent on the molecular mediators released by the endothelium. Albeit the well-recognized contribution of nitric oxide (NO) towards vasodilation, the identity of compensatory mechanisms that maintain vasomotor tone when NO synthesis is deranged remain largely unknown in the ophthalmic artery. This is the first study to identify the vasodilatory signalling mechanisms of the ophthalmic artery employing wild type mice. Acetylcholine (ACh)-induced vasodilation was only partially attenuated when NO synthesis was inhibited. Intriguingly, the combined blocking of cytochrome P450 oxygenase (CYP450) and lipoxygenase (LOX), as well as CYP450 and gap junctions, abolished vasodilation; demonstrating that the key compensatory mechanisms comprise arachidonic acid metabolites which, work in concert with gap junctions for downstream signal transmission. Furthermore, the voltage-gated potassium ion channel, Kv1.6, was functionally relevant in mediating vasodilation. Its localization was found exclusively in the smooth muscle. In conclusion, ACh-induced vasodilation of mouse ophthalmic artery is mediated in part by NO and predominantly via arachidonic acid metabolites, with active involvement of gap junctions. Particularly, the Kv1.6 channel represents an attractive therapeutic target in ophthalmopathologies when NO synthesis is compromised.

  14. Establishment of Simultaneous Liver and Kidney Lesion Model Induced by Concanavalin A in Mice%刀豆蛋白A诱导小鼠实验性肝肾共损伤模型的建立

    Institute of Scientific and Technical Information of China (English)

    崔佳丽; 山丽梅; 张萍; 王伽伯; 李宝才; 肖小河

    2012-01-01

    Objective: To screen and establish the experimental animal model of simultaneous liver and kidney lesion in mice, and to provide experimental animal models for screening drugs which used to cure kidney and liver damage. Method: We investigated the damage effect of concanavalin A (Con A) , D-galactosamine (D-Gal) and carbon tetrachloride ( CC14 ) in the mouse liver and kidney, and we established the effective modeling method by determing the biochemical indicators and the histopathological changes related to the liver and kidney function. To further inspect if the model is able to effectively evaluate the efficacy of drugs for kidney and liver damage, we study the protective effect of Dahuang Gancao decoction on liver and kidney damage using the established model. Result: 1 g ·kg-1 D-Gal, CC14 (60 mg ·kg-1) could induce liver injury in mice, but there is no evident about the renal injury; 20 mg ·kg-1 Con A could induce liver and kidney damage simultaneously, and we determine the best dose of Con A to built simultaneous liver and kidner damage model as 15 mg ·kg-1after further optimization. The biochemical index and histological examination of kidney and liver damage mice were significantly improved after giving the prescription Dahuang Gancao decoction. Conclusion: We initially established the experimental model of simultaneous liver and kidney damage by injecting Con A 15 mg ·kg-1 through tail vein, and proved to be successful by verification of Dahuang Gancao docoction.%目的:筛选并初步建立能够诱导小鼠肝肾同时损伤的实验动物模型,为评价肝肾损伤治疗药物提供实验动物模型.方法:考察尾静脉注射刀豆蛋白A(Con A) 10,15,20,40 mg· kg-1,造模时间12 h;ig给药D-半乳糖胺(D-Gal)1 g·kg-1及腹腔注射0.3%四氯化碳(CCl4,20 mL·kg-1) 60 mg·kg-1,造模时间24 h;药物对模型小鼠肝脏、肾脏的损伤作用,通过检测肝肾功能相关的生化指标,肝脏及肾脏病理组织学改变,确定

  15. Laser Acupuncture at HT7 Acupoint Improves Cognitive Deficit, Neuronal Loss, Oxidative Stress, and Functions of Cholinergic and Dopaminergic Systems in Animal Model of Parkinson's Disease.

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Sutalangka, Chatchada

    2014-01-01

    To date, the therapeutic strategy against cognitive impairment in Parkinson's disease (PD) is still not in satisfaction level and requires novel effective intervention. Based the oxidative stress reduction and cognitive enhancement induced by laser acupuncture at HT7, the beneficial effect of laser acupuncture at HT7 against cognitive impairment in PD has been focused. In this study, we aimed to determine the effect of laser acupuncture at HT7 on memory impairment, oxidative stress status, and the functions of both cholinergic and dopaminergic systems in hippocampus of animal model of PD. Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantianigra by 6-OHDA and were treated with laser acupuncture continuously at a period of 14 days. The results showed that laser acupuncture at HT7 enhanced memory and neuron density in CA3 and dentate gyrus. The decreased AChE, MAO-B, and MDA together with increased GSH-Px in hippocampus of a 6-OHDA lesion rats were also observed. In conclusion, laser acupuncture at HT7 can improve neuron degeneration and memory impairment in animal model of PD partly via the decreased oxidative stress and the improved cholinergic and dopaminergic functions. More researches concerning effect of treatment duration are still required.

  16. A ganglionic stimulant, 1,1-dimethyl-4-phenylpiperazinium, caused both cholinergic and adrenergic responses in the isolated mouse atrium.

    Science.gov (United States)

    Ochi, Kenta; Teraoka, Hiroki; Unno, Toshihiro; Komori, Sei-Ichi; Yamada, Masahisa; Kitazawa, Takio

    2013-03-15

    An isolated atrial preparation of the mouse is useful for analyzing the actions of drugs on the myocardium, autonomic neurons and endocardial endothelium. The aim of the present study was to examine the functions of intrinsic neurons of the atrium using a ganglionic stimulant, 1,1-dimethyl-4-phenylpiperazinium (DMPP). DMPP (1-100 μM) caused a negative chronotropic action followed by a positive chronotropic action in spontaneously beating right atria and also caused biphasic inotropic actions consisting of initial inhibition followed by potentiation of electrical field stimulation (EFS)-induced contraction in the left atria. Inotropic actions in the left atria induced by DMPP were characterized using some autonomic drugs and M2 and/or M3 muscarinic receptor knockout (M2R-KO, M3R-KO and M2M3R-KO) mice. Atropine and hexamethonium decreased the initial negative inotropic actions of DMPP. In the atria from pertussis toxin-treated, M2R-KO and M2/M3R-KO mice, the negative inotropic actions were abolished. On the other hand, the following positive inotropic actions were decreased by hexamethonium, atropine and atenolol. In the atria from reserpine-treated mice, positive inotropic actions were also decreased. The positive inotropic action induced by DMPP was almost the same in M2R-KO mice but was reduced in both M3R-KO mice and M2/M3R-KO mice. In conclusion, DMPP caused biphasic inotropic/chronotropic actions in the mouse atrium through activation of intrinsic cholinergic and adrenergic neurons. M2 and M3 muscarinic receptors and β1-adrenoceptor are thought to be involved in these actions.

  17. Hippocampal P3-like auditory event-related potentials are disrupted in a rat model of cholinergic degeneration in Alzheimer's disease: reversal by donepezil treatment.

    Science.gov (United States)

    Laursen, Bettina; Mørk, Arne; Kristiansen, Uffe; Bastlund, Jesper Frank

    2014-01-01

    P300 (P3) event-related potentials (ERPs) have been suggested to be an endogenous marker of cognitive function and auditory oddball paradigms are frequently used to evaluate P3 ERPs in clinical settings. Deficits in P3 amplitude and latency reflect some of the neurological dysfunctions related to several psychiatric and neurological diseases, e.g., Alzheimer's disease (AD). However, only a very limited number of rodent studies have addressed the back-translational validity of the P3-like ERPs as suitable markers of cognition. Thus, the potential of rodent P3-like ERPs to predict pro-cognitive effects in humans remains to be fully validated. The current study characterizes P3-like ERPs in the 192-IgG-SAP (SAP) rat model of the cholinergic degeneration associated with AD. Following training in a combined auditory oddball and lever-press setup, rats were subjected to bilateral intracerebroventricular infusion of 1.25 μg SAP or PBS (sham lesion) and recording electrodes were implanted in hippocampal CA1. Relative to sham-lesioned rats, SAP-lesioned rats had significantly reduced amplitude of P3-like ERPs. P3 amplitude was significantly increased in SAP-treated rats following pre-treatment with 1 mg/kg donepezil. Infusion of SAP reduced the hippocampal choline acetyltransferase activity by 75%. Behaviorally defined cognitive performance was comparable between treatment groups. The present study suggests that AD-like deficits in P3-like ERPs may be mimicked by the basal forebrain cholinergic degeneration induced by SAP. SAP-lesioned rats may constitute a suitable model to test the efficacy of pro-cognitive substances in an applied experimental setup.

  18. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    Kristi A Kohlmeier

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  19. Huperzine A protects sepsis associated encephalopathy by promoting the deficient cholinergic nervous function.

    Science.gov (United States)

    Zhu, Sen-Zhi; Huang, Wei-Ping; Huang, Lin-Qiang; Han, Yong-Li; Han, Qian-Peng; Zhu, Gao-Feng; Wen, Miao-Yun; Deng, Yi-Yu; Zeng, Hong-Ke

    2016-09-19

    Neuroinflammatory deregulation in the brain plays a crucial role in the pathogenesis of sepsis associated encephalopathy (SAE). Given the mounting evidence of anti-inflammatory and neuroprotective effects of the cholinergic nervous system, it is surprising that there is little information about its changes in the brain during sepsis. To elucidate the role of the cholinergic nervous system in SAE, hippocampal choline acetyltransferase, muscarinic acetylcholine receptor-1, acetylcholinesterase and acetylcholine were evaluated in LPS-induced sepsis rats. Expression of pro-inflammatory cytokines, neuronal apoptosis, and animal cognitive performance were also assessed. Furthermore, therapeutic effects of the acetylcholinesterase inhibitor Huperzine A (HupA) on the hippocampal cholinergic nervous function and neuroinflammation were evaluated. A deficiency of the cholinergic nervous function was revealed in SAE, accompanied with over-expressed pro-inflammatory cytokines, increase in neuronal apoptosis and brain cognitive impairment. HupA remarkably promoted the deficient cholinergic nervous function and attenuated the abnormal neuroinflammation in SAE, paralleled with the recovery of brain function. We suggest that the deficiency of the cholinergic nervous function and the abnormal neuroinflammation are synergistically implicated in the pathogenesis of SAE. Thus, HupA is a potential therapeutic candidate for SAE, as it improves the deficient cholinergic nervous function and exerts anti-inflammatory action.

  20. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    Science.gov (United States)

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex.

  1. Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey

    Directory of Open Access Journals (Sweden)

    Teresa eLiberia

    2015-03-01

    Full Text Available The olfactory bulb of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca. At present, the synaptic connectivity of the cholinergic axons on the circuits of the olfactory bulb has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey (Macaca fascicularis. Our aim is to investigate whether the cholinergic innervation of the bulbar circuits is phylogenetically conserved between macrosmatic and microsmatic mammals. Our results demonstrate that the cholinergic axons form synaptic contacts on interneurons. In the glomerular layer, their main targets are the periglomerular cells, which receive axo-somatic and axo-dendritic synapses. In the inframitral region, their main targets are the granule cells, which receive synaptic contacts on their dendritic shafts and spines. Although the cholinergic boutons were frequently found in close vicinity of the dendrites of principal cells, we have not found synaptic contacts on them. From a comparative perspective, our data indicate that the synaptic connectivity of the cholinergic circuits is highly preserved in the olfactory bulb of macrosmatic and microsmatic mammals.

  2. INTRAHIPPOCAMPAL ADMINISTRATION OF IBOTENIC ACID INDUCED CHOLINERGIC DYSFUNCTION via NR2A/NR2B EXPRESSION: IMPLICATIONS OF RESVERATROL AGAINST ALZHEIMER DISEASE PATHOPHYSIOLOGY

    Directory of Open Access Journals (Sweden)

    Chennakesavan eKarthick

    2016-04-01

    Full Text Available Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression towards Alzheimer’s disease (AD pathology. Resveratrol (RSV, a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5µg/µl lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20mg/kg body weight, i.p significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the

  3. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology.

    Science.gov (United States)

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  4. The involvement of cholinergic neurons in the spreading of tau pathology

    Directory of Open Access Journals (Sweden)

    Diana eSimon

    2013-06-01

    Full Text Available Long time ago, it was described the selective loss of cholinergic neurons during the development of Alzheimer disease. Recently, it has been suggested that tau protein may play a role in that loss of cholinergic neurons through a mechanism involving the interaction of extracellular tau with M1/M3 muscarinic receptors present in the cholinergic neurons. This interaction between tau and muscarinic receptors may be a way, although not the only one, to explain the spreading of tau pathology occurring in Alzheimer disease.

  5. Tolerance of nestin+ cholinergic neurons in the basal forebrain against colchicine-induced cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    Jing Yu; Kaihua Guo; Dongpei Li; Jinhai Duan; Juntao Zou; Junhua Yang; Zhibin Yao

    2011-01-01

    In the present study we injected colchicine into the lateral ventricle of Sprague-Dawley rats to investigate the effects of colchicine on the number of different-type neurons in the basal forebrain and to search for neurons resistant to injury. After colchicine injection, the number of nestin+ cholinergic neurons was decreased at 1 day, but increased at 3 days and peaked at 14-28 days. The quantity of nestin- cholinergic neurons, parvalbumin-positive neurons and choline acetyl transferase-positive neurons decreased gradually. Our results indicate that nestin+ cholinergic neurons possess better tolerance to colchicine-induced neurotoxicity.

  6. Aquaporin-4 deficiency attenuates acute lesions but aggravates delayed lesions and microgliosis after cryoinjury to mouse brain

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhen Shi; Chun-Zhen Zhao; Bing Zhao; Xiao-Liang Zheng; San-Hua Fang; Yun-Bi Lu; Wei-Ping Zhang; Zhong Chen; Er-Qing Wei

    2012-01-01

    Objective To determine whether aquaporin-4 (AQP4) regulates acute lesions,delayed lesions,and the associated microglial activation after cryoinjury to the brain.Methods Brain cryoinjury was applied to AQP4 knockout (KO)and wild-type mice.At 24 h and on days 7 and 14 after cryoinjury,lesion volume,neuronal loss,and densities of microglia and astrocytes were determined,and their changes were compared between AQP4 KO and wild-type mice.Results Lesion volume and neuronal loss in AQP4 KO mice were milder at 24 h following cryoinjury,but worsened on days 7 and 14,compared to those in wild-type mice.Besides,microglial density increased more,and astrocyte proliferation and glial scar formation were attenuated on days 7 and 14 in AQP4 KO mice.Conclusion AQP4 deficiency ameliorates acute lesions,but worsens delayed lesions,perhaps due to the microgliosis in the late phase.

  7. Lesion activity assessment

    DEFF Research Database (Denmark)

    Ekstrand, K R; Zero, D T; Martignon, S;

    2009-01-01

    . The literature suggests that there is a fair agreement between visual/tactile external scripts of caries and the severity/depth of the lesion. The reproducibility of the different systems is, in general, substantial. No single clinical predictor is able to reliably assess activity. However, a combination......This chapter focusses on the probability of a caries lesion detected during a clinical examination being active (progressing) or arrested. Visual and tactile methods to assess primary coronal lesions and primary root lesions are considered. The evidence level is rated as low (R...... in response to cariogenic plaque as well as lesion arrest. Based on this understanding, different clinical scoring systems have been developed to assess the severity/depth and activity of lesions. A recent system has been devised by the International Caries Detection and Assessment System Committee...

  8. Cholinergic urethral brush cells are widespread throughout placental mammals.

    Science.gov (United States)

    Deckmann, Klaus; Krasteva-Christ, Gabriela; Rafiq, Amir; Herden, Christine; Wichmann, Judy; Knauf, Sascha; Nassenstein, Christina; Grevelding, Christoph G; Dorresteijn, Adriaan; Chubanov, Vladimir; Gudermann, Thomas; Bschleipfer, Thomas; Kummer, Wolfgang

    2015-11-01

    We previously identified a population of cholinergic epithelial cells in murine, human and rat urethrae that exhibits a structural marker of brush cells (villin) and expresses components of the canonical taste transduction signaling cascade (α-gustducin, phospholipase Cβ2 (PLCβ2), transient receptor potential cation channel melanostatin 5 (TRPM5)). These cells serve as sentinels, monitoring the chemical composition of the luminal content for potentially hazardous compounds such as bacteria, and initiate protective reflexes counteracting further ingression. In order to elucidate cross-species conservation of the urethral chemosensory pathway we investigated the occurrence and molecular make-up of urethral brush cells in placental mammals. We screened 11 additional species, at least one in each of the five mammalian taxonomic units primates, carnivora, perissodactyla, artiodactyla and rodentia, for immunohistochemical labeling of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), villin, and taste cascade components (α-gustducin, PLCβ2, TRPM5). Corresponding to findings in previously investigated species, urethral epithelial cells with brush cell shape were immunolabeled in all 11 mammals. In 8 species, immunoreactivities against all marker proteins and ChAT were observed, and double-labeling immunofluorescence confirmed the cholinergic nature of villin-positive and chemosensory (TRPM5-positive) cells. In cat and horse, these cells were not labeled by the ChAT antiserum used in this study, and unspecific reactions of the secondary antiserum precluded conclusions about ChAT-expression in the bovine epithelium. These data indicate that urethral brush cells are widespread throughout the mammalian kingdom and evolved not later than about 64.5millionyears ago.

  9. Cholinergic and non-cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei to the medial geniculate body in guinea pigs

    Directory of Open Access Journals (Sweden)

    Susan D Motts

    2010-10-01

    Full Text Available The midbrain tegmentum is the source of cholinergic innervation of the thalamus and has been associated with arousal and control of the sleep/wake cycle. In general, the innervation arises bilaterally from the pedunculopontine tegmental nucleus (PPT and the laterodorsal tegmental nucleus (LDT. While this pattern has been observed for many thalamic nuclei, a projection from the LDT to the medial geniculate body (MG has been questioned in some species. We combined retrograde tracing with immunohistochemistry for choline acetyltransferase (ChAT to identify cholinergic projections from the brainstem to the MG in guinea pigs. Double-labeled cells (retrograde and immunoreactive for ChAT were found in both the PPT (74% and the LDT (26%. In both nuclei, double-labeled cells were more numerous on the ipsilateral side. About half of the retrogradely labeled cells were immunonegative, suggesting they are non-cholinergic. The distribution of these immunonegative cells was similar to that of the immunopositive ones: more were in the PPT than the LDT and more were on the ipsilateral than the contralateral side. The results indicate that both the PPT and the LDT project to the MG, and suggest that both cholinergic and non-cholinergic cells contribute substantially to these projections.

  10. Ghost cell lesions

    Directory of Open Access Journals (Sweden)

    E Rajesh

    2015-01-01

    Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.

  11. Dissociable effects of AMPA-induced lesions of the vertical limb diagonal band of Broca on performance of the 5-choice serial reaction time task and on acquisition of a conditional visual discrimination.

    Science.gov (United States)

    Muir, J L; Bussey, T J; Everitt, B J; Robbins, T W

    1996-12-01

    The aim of the present study was to investigate the role of the cholinergic innervation of the cingulate cortex in visual attentional function and acquisition of a visual conditional discrimination task. Following AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) lesions of the vertical limb diagonal band of Broca (VDB) which provides the main cholinergic projection to cingulate cortex, animals were not significantly impaired on the 5-choice serial reaction time task. This task, which provides a continuous performance test of visual attention, has previously been shown to be sensitive to AMPA lesions of the nucleus basalis magnocellularis (nbM). In contrast to the results obtained for visual attentional function, lesions of the VDB did significantly affect the acquisition of a visual conditional discrimination. While showing a significant facilitation in the early learning stage of acquiring this task animals with lesions of the VDB were significantly impaired during the late stages of learning this task. This late learning deficit was not the result of the animals being unable to learn the task due to the presence of the lesion throughout task acquisition as the results of a second experiment revealed that when animals were pre-trained to 70% accuracy on the task and then lesioned, the impairment in late learning was still apparent. In light of the results presented in the accompanying paper (Bussey et al., Behav. Brain Res., 1996), these results suggest that the early learning effects may be due to cholinergic denervation of the anterior cingulate cortex while the late learning effects may be due to denervation of the posterior cingulate cortex. Taken together with previous work indicating a role for the nbM cholinergic system in visual attentional function, these results suggest a role for the cholinergic innervation of the cingulate cortex in conditional learning but not for continuous attentional performance.

  12. Outcome of Patients with Cholinergic Insecticide Poisoning Treated with Gastric Lavage: A Prospective Observational Cohort Study

    Directory of Open Access Journals (Sweden)

    Mekkattukunnel Andrews

    2014-12-01

    Conclusion: Number or timing of GL does not show any association with mortality while multiple GL had protective effect against development of late RF and IMS. Hence, GL might be beneficial in cholinergic insecticide poisoning.

  13. Cholinergic axon length reduced by 300 meters in the brain of an Alzheimer mouse model

    DEFF Research Database (Denmark)

    Nikolajsen, Gitte; Jensen, Morten Skovgaard; West, Mark J.

    2011-01-01

    Modern stereological techniques have been used to show that the total length of the cholinergic fibers in the cerebral cortex of the APPswe/PS1deltaE9 mouse is reduced by almost 300 meters at 18 months of age and has a nonlinear relationship to the amount of transgenetically-induced amyloidosis. ....... These data provide rigorous quantitative morphological evidence that Alzheimer's-like amyloidosis affects the axons of the cholinergic enervation of the cerebral cortex....

  14. Cholinergic Depletion in Alzheimer’s Disease Shown by [18F]FEOBV Autoradiography

    Directory of Open Access Journals (Sweden)

    Maxime J. Parent

    2013-01-01

    Full Text Available Rationale. Alzheimer’s Disease (AD is a neurodegenerative condition characterized in part by deficits in cholinergic basalocortical and septohippocampal pathways. [18F]Fluoroethoxybenzovesamicol ([18F]FEOBV, a Positron Emission Tomography ligand for the vesicular acetylcholine transporter (VAChT, is a potential molecular agent to investigate brain diseases associated with presynaptic cholinergic losses. Purpose. To demonstrate this potential, we carried out an [18F]FEOBV autoradiography study to compare postmortem brain tissues from AD patients to those of age-matched controls. Methods. [18F]FEOBV autoradiography binding, defined as the ratio between regional grey and white matter, was estimated in the hippocampus (13 controls, 8 AD and prefrontal cortex (13 controls, 11 AD. Results. [18F]FEOBV binding was decreased by 33% in prefrontal cortex, 25% in CA3, and 20% in CA1. No changes were detected in the dentate gyrus of the hippocampus, possibly because of sprouting or upregulation toward the resilient glutamatergic neurons of the dentate gyrus. Conclusion. This is the first demonstration of [18F]FEOBV focal binding changes in cholinergic projections to the cortex and hippocampus in AD. Such cholinergic synaptic (and more specifically VAChT alterations, in line with the selective basalocortical and septohippocampal cholinergic losses documented in AD, indicate that [18F]FEOBV is indeed a promising ligand to explore cholinergic abnormalities in vivo.

  15. Evaluating the evidence surrounding pontine cholinergic involvement in REM sleep generation

    Directory of Open Access Journals (Sweden)

    Kevin P Grace

    2015-09-01

    Full Text Available Rapid eye movement (REM sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of rapid eye movement (REM sleep generation posited that induction of the state required activation of the ‘pontine REM sleep generator’ by cholinergic inputs. Here we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii loss-of-function studies show that endogenous cholinergic input to the PFT is not required for REM sleep generation, and (iv Cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  16. Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex.

    Science.gov (United States)

    Kamke, Marc R; Brown, Mel; Irvine, Dexter R F

    2005-08-01

    Numerous studies have implicated the cholinergic basal forebrain (cBF) in the modulation of auditory cortical responses. This study aimed to accurately define the sources of cBF input to primary auditory cortex (AI) and to assess the efficacy of a cholinergic immunotoxin in cat. Three anaesthetized cats received multiple injections of horseradish-peroxidase conjugated wheatgerm-agglutin into physiologically identified AI. Following one to two days survival, tetramethylbenzidine histochemistry revealed the greatest number of retrogradely labeled cells in ipsilateral putamen, globus pallidus and internal capsule, and smaller numbers in more medial nuclei of the basal forebrain (BF). Concurrent choline acetyltransferase immunohistochemistry showed that almost 80% of the retrogradely labeled cells in BF were cholinergic, with the vast majority of these cells arising from the more lateral BF nuclei identified above. In the second part of the study, unilateral intraparenchymal injections of the cholinergic immunotoxin ME20.4-SAP were made into the putamen/globus pallidus nuclei of six cats. Immuno- and histochemistry revealed a massive reduction in the number of cholinergic cells in and around the targeted area, and a corresponding reduction in the density of cholinergic fibers in auditory cortex. These results are discussed in terms of their implications for investigations of the role of the cBF in cortical plasticity.

  17. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    Science.gov (United States)

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  18. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    Science.gov (United States)

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location.

  19. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    Directory of Open Access Journals (Sweden)

    Luis Armando Sawada

    2014-01-01

    Full Text Available Libidibia ferrea (LF is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF, partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg, naloxone (5 mg/kg in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies.

  20. Cholinergic Enhancement of Cell Proliferation in the Postnatal Neurogenic Niche of the Mammalian Spinal Cord.

    Science.gov (United States)

    Corns, Laura F; Atkinson, Lucy; Daniel, Jill; Edwards, Ian J; New, Lauryn; Deuchars, Jim; Deuchars, Susan A

    2015-09-01

    The region surrounding the central canal (CC) of the spinal cord is a highly plastic area, defined as a postnatal neurogenic niche. Within this region are ependymal cells that can proliferate and differentiate to form new astrocytes and oligodendrocytes following injury and cerebrospinal fluid contacting cells (CSFcCs). The specific environmental conditions, including the modulation by neurotransmitters that influence these cells and their ability to proliferate, are unknown. Here, we show that acetylcholine promotes the proliferation of ependymal cells in mice under both in vitro and in vivo conditions. Using whole cell patch clamp in acute spinal cord slices, acetylcholine directly depolarized ependymal cells and CSFcCs. Antagonism by specific nicotinic acetylcholine receptor (nAChR) antagonists or potentiation by the α7 containing nAChR (α7*nAChR) modulator PNU 120596 revealed that both α7*nAChRs and non-α7*nAChRs mediated the cholinergic responses. Using the nucleoside analogue EdU (5-ethynyl-2'-deoxyuridine) as a marker of cell proliferation, application of α7*nAChR modulators in spinal cord cultures or in vivo induced proliferation in the CC region, producing Sox-2 expressing ependymal cells. Proliferation also increased in the white and grey matter. PNU 120596 administration also increased the proportion of cells coexpressing oligodendrocyte markers. Thus, variation in the availability of acetylcholine can modulate the rate of proliferation of cells in the ependymal cell layer and white and grey matter through α7*nAChRs. This study highlights the need for further investigation into how neurotransmitters regulate the response of the spinal cord to injury or during aging.

  1. Intraosseous osteolytic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Adler, C.P.; Wenz, W.

    1981-10-01

    Any pathological damage occurring in a bone will produce either an osteolytic or osteosclerotic lesion which can be seen in the macroscopic specimen as well as in the roentgenogram. Various bone lesions may lead to local destructions of the bone. An osteoma or osteoplastic osteosarcoma produces an osteosclerotic lesion showing a dense mass in the roentgenogram; a chondroblastoma or an osteoclastoma, on the other hand, induces an osteolytic focal lesion. This paper presents examples of different osteolytic lesions of the humerus. An osteolytic lesion seen in the roentgenogram may be either produced by an underlying non-ossifying fibroma of the bone, by fibrous dysplasia, osteomyelitis or Ewing's sarcoma. Differential diagnostic considerations based on the radiological picture include eosinophilic bone granuloma, juvenile or aneurysmal bone cyst, multiple myeloma or bone metastases. Serious differential diagnostic problems may be involved in case of osteolytic lesions occurring in the humerus. Cases of this type involving complications have been reported and include the presence of an teleangiectatic osteosarcoma as well as that of a hemangiosarcoma of the bone.

  2. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation.

    Science.gov (United States)

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2015-03-11

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune-brain communication, including the impact of peripheral inflammation on brain region-specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region-specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches.

  3. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  4. Photocolorimetric Biosensor for Detection of Cholinergic Organophosphorus Compounds

    Directory of Open Access Journals (Sweden)

    Kamila Vymazalová

    2012-11-01

    Full Text Available To detect nerve agents in practice, the analytical methods such as gas, liquid and thin-layer chromatography, mass spectrometry or capillary electrophoresis are usually used. Apart from these analytical methods, we developed an analytical device (tape photocolorimetric biosensor based on the modified Ellman's cholinesterase biochemical reaction for multidetection of cholinergic organophosphorus compounds. Enzyme butyrylcholinesterase was used as a biorecognizing component and its activity was evaluated by red, blue, green (RGB sensor. This method eliminates errors in the evaluation and provides automatic data collection with their subsequent evaluation. The unique method of dosing allows appropriate dispensing of reagents in microlitres volumes and the whole system is simple to operate. Suitability of the constructed biosensors was evaluated using the six organophosphates (Tabun, sarin, Soman, cyclosin, VX and R33 compound. Biosensor showed the ability to measure substances at concentrations ranging between ~ 1×10-8 mg/l - 1×10-6 mg/l in the air, according to their inhibition effect.Defence Science Journal, 2012, 62(6, pp.399-403, DOI:http://dx.doi.org/10.14429/dsj.62.2589

  5. Cholinergic modulation of cognitive processing: insights drawn from computational models

    Directory of Open Access Journals (Sweden)

    Ehren L Newman

    2012-06-01

    Full Text Available Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm play a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers.

  6. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Science.gov (United States)

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R.; Luo, Xingguang

    2016-01-01

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD. PMID:27827986

  7. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    Science.gov (United States)

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  8. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Eric W Fish

    Full Text Available Fragile X syndrome (FXS is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y mice with intracranial self-stimulation (ICSS and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynylpyridine (MPEP, was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.

  9. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors

    Directory of Open Access Journals (Sweden)

    Antonio eLuchicchi

    2014-10-01

    Full Text Available Acetylcholine (ACh signaling underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. Alterations in ACh signaling are involved in the pathophysiology of multiple neuropsychiatric disorders. In the central nervous system, ACh transmission is mainly guaranteed by dense innervation of select cortical and subcortical regions from disperse groups of cholinergic neurons within the basal forebrain (e.g. diagonal band, medial septal, nucleus basalis and the pontine-mesencephalic nuclei, respectively. Despite the fundamental role of cholinergic signaling in the CNS and the long standing knowledge of the organization of cholinergic circuitry, remarkably little is known about precisely how ACh release modulates cortical and subcortical neural activity and the behaviors these circuits subserve. Growing interest in cholinergic signaling in the CNS focuses on the mechanism(s of action by which endogenously released ACh regulates cognitive functions, acting as a neuromodulator and /or as a direct transmitter via nicotinic and muscarinic receptors. The development of optogenetic techniques has provided a valuable toolbox with which we can address these questions, as it allows the selective manipulation of the excitability of cholinergic inputs to the diverse array of cholinergic target fields within cortical and subcortical domains. Here, we review recent papers that use the light-sensitive opsins in the cholinergic system to elucidate the role of ACh in circuits related to attention and emotionally salient behaviors. In particular, we highlight recent optogenetic studies which have tried to disentangle the precise role of ACh in the modulation of cortical-, hippocampal- and striatal-dependent functions.

  10. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.

    Science.gov (United States)

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.

  11. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Virág T Takács

    Full Text Available Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum. In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties

  12. Managing Carious Lesions

    DEFF Research Database (Denmark)

    Schwendicke, F; Frencken, J E; Bjørndal, L

    2016-01-01

    The International Caries Consensus Collaboration undertook a consensus process and here presents clinical recommendations for carious tissue removal and managing cavitated carious lesions, including restoration, based on texture of demineralized dentine. Dentists should manage the disease dental...

  13. Andersson Lesion in Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Manimegalai N, KrishnanKutty K, Panchapakesa Rajendran C, Rukmangatharajan S, Rajeswari S

    2004-04-01

    Full Text Available Andersson lesions are destructive foci that appear at the discovertebral junction in ankylosingspondylitis. We report three cases of ankylosing spondylitis with such lesions. These lesions simulatean infection and in our country, mimic spinal tuberculosis.

  14. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway.

    Science.gov (United States)

    Xiang, Hui; Hu, Bo; Li, Zhifeng; Li, Jianguo

    2014-10-01

    %, Pdexmedetomidine significantly attenuated the cytokine response after lipopolysaccharide (LPS) induced endotoxemia (TNF-alpha, IL-1beta, IL-6, Pdexmedetomidine failed to suppress cytokine response in α-bungarotoxin group and vagotomy group (TNF-alpha, IL-1beta, IL-6, P>0.05, respectively). Furthermore, preemptive administration of dexmedetomidine significantly increased the discharge frequency of cervical vagus nerves in comparison with sterile saline treatment (Pdexmedetomidine increases the activity of cervical vagus nerve and have the ability to successfully improve survival in experimental endotoxemia by inhibiting the inflammatory cytokines release. However, administration of dexmedetomidine to vagotomy or α7 nAChR antagonist pretreatment mice failed to suppress TNF levels, indicating that the vagus nerve and α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of dexmedetomidine. These findings show that central alpha-2 agonist dexmedetomidine suppresses systemic inflammation through vagal- and α7nAChR-dependent mechanism.

  15. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  16. Internal cholinergic regulation of learning and recall in a model of olfactory processing

    Directory of Open Access Journals (Sweden)

    Licurgo Benemann Almeida

    2016-11-01

    Full Text Available In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC and horizontal limb of the diagonal band of Broca (HDB to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors – reducing plasticity in the PC, but increase their firing in response to novel odor – increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.

  17. Caffeine elicits c-Fos expression in horizontal diagonal band cholinergic neurons.

    Science.gov (United States)

    Reznikov, Leah R; Pasumarthi, Ravi K; Fadel, Jim R

    2009-12-09

    Caffeine is a widely self-administered psychostimulant with purported neuroprotective and procognitive effects in rodent models of aging. The cholinergic basal forebrain is important for arousal and attention and is implicated in age-related cognitive decline. Accordingly, we determined the effects of caffeine on cholinergic neuron activation in the rat basal forebrain. Young adult (age 2 months) male rats were treated with caffeine (0, 10, or 50 mg/kg) and killed 2 h later. Caffeine significantly increased c-Fos expression in cholinergic neurons of the horizontal limb of the diagonal band of Broca but not other basal forebrain regions such as the medial septum or substantia innominata. The horizontal limb of the diagonal band of Broca provides cholinergic innervation to the olfactory bulb, suggesting that deficits in this structure may contribute to diminished olfactory function observed in Alzheimer's disease patients. These results suggest that part of the cognitive-enhancing effects of caffeine may be mediated through activation of this part of the cholinergic basal forebrain.

  18. Chronic Cerebral Ischaemia Forms New Cholinergic Mechanisms of Learning and Memory

    Directory of Open Access Journals (Sweden)

    E. I. Zakharova

    2010-01-01

    Full Text Available The purpose of this research was a comparative analysis of cholinergic synaptic organization following learning and memory in normal and chronic cerebral ischaemic rats in the Morris water maze model. Choline acetyltransferase and protein content were determined in subpopulations of presynapses of “light” and “heavy” synaptosomal fractions of the cortex and the hippocampus, and the cholinergic projective and intrinsic systems of the brain structures were taken into consideration. We found a strong involvement of cholinergic systems, both projective and intrinsic, in all forms of cognition. Each form of cognition had an individual cholinergic molecular profile and the cholinergic synaptic compositions in the ischaemic rat brains differed significantly from normal ones. Our data demonstrated that under ischaemic conditions, instead of damaged connections new key synaptic relationships, which were stable against pathological influences and able to restore damaged cognitive functions, arose. The plasticity of neurochemical links in the individual organization of certain types of cognition gave a new input into brain pathology and can be used in the future for alternative corrections of vascular and other degenerative dementias.

  19. The cholinergic REM induction test with RS 86 after scopolamine pretreatment in healthy subjects.

    Science.gov (United States)

    Riemann, D; Hohagen, F; Fleckenstein, P; Schredl, M; Berger, M

    1991-09-01

    A shortened latency of rapid eye movement (REM) sleep is one of the most stable biological abnormalities described in depressive patients. According to the reciprocal interaction model of non-REM and REM sleep regulation, REM sleep disinhibition at the beginning of the night in depression is a consequence of heightened central nervous system cholinergic transmitter activity in relation to aminergic transmitter activity. A recent study has indicated that muscarinic supersensitivity, rather than quantitatively enhanced cholinergic activity, may be the primary cause of REM sleep abnormalities in depression. The present study tested this hypothesis by treating healthy volunteers for 3 days with a cholinergic antagonist (scopolamine) in the morning, in an effort to induce muscarinic receptor supersensitivity. On the last day of scopolamine administration, RS 86, an orally active cholinergic agonist, was administered before bedtime to test whether this procedure would induce sleep onset REM periods. Whereas scopolamine treatment tended to advance REM sleep and to heighten REM density in healthy controls in comparison to NaCl administration, the additional cholinergic stimulation did not provoke further REM sleep disinhibition. This result underlines the need to take a hypofunction of aminergic transmitter systems into account in attempts to explain the pronounced advance of REM sleep typically seen in depressives.

  20. Hormonal and cholinergic influences on pancreatic lysosomal and digestive enzymes in rats.

    Science.gov (United States)

    Evander, A; Ihse, I; Lundquist, I

    1983-01-01

    Hormonal and cholinergic influences on lysosomal and digestive enzyme activities in pancreatic tissue were studied in normal adult rats. Hormonal stimulation by the cholecystokinin analogue, caerulein, induced a marked enhancement of the activities of cathepsin D and N-acetyl-beta-D-glucosaminidase in pancreatic tissue, whereas the activities of amylase and lipase tended to decrease. Acid phosphatase activity was not affected. Further, caerulein was found to induce a significant increase of cathepsin D output in bile-pancreatic juice. This output largely parallelled that of amylase. Cholinergic stimulation by the muscarinic agonist carbachol, at a dose level giving the same output of amylase as caerulein, did not affect pancreatic activities of cathepsin D and N-acetyl-beta-D-glucosaminidase. Further, cholinergic stimulation induced an increase of amylase activity and a slight decrease of acid phosphatase activity in pancreatic tissue. Lipase activity was not affected. No apparent effect on cathepsin D output in bile-pancreatic juice was encountered after cholinergic stimulation. The activities of neither the digestive nor the lysosomal enzymes were influenced by the administration of secretin. The results suggest a possible lysosomal involvement in caerulein-induced secretion and/or inactivation of pancreatic digestive enzymes, whereas cholinergic stimulation seems to act through different mechanisms.

  1. Hippocampal N-methyl-d-aspartate and kainate binding in response to entorhinal cortex aspiration or 192 IgG-saporin lesions of the basal forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, M. [Curriculum in Neurobiology, University of North Carolina Chapel Hill, NC (United States); Gill, T.M. [Department of Psychology, University of North Carolina at Chapel Hill Chapel Hill, NC (United States); Shivers, A. [Department of Biology, University of North Carolina Chapel Hill, NC (United States); Nicolle, M.M. [Curriculum in Neurobiology, University of North Carolina Chapel Hill, NC (United States)

    1997-02-03

    Lesion models in the rat were used to examine the effects of removing innervation of the hippocampal formation on glutamate receptor binding in that system. Bilateral aspiration of the entorhinal cortex was used to remove the cortical innervation of the hippocampal formation and the dentate gyrus. The subcortical input to the hippocampus from cholinergic neurons of the basal forebrain was lesioned by microinjection of the immunotoxin 192 IgG-saporin into the medial septum and vertical limb of diagonal band. After a 30-day postlesion survival, the effects of these lesions on N-methyl-d-aspartate-displaceable [{sup 3}H]glutamate and [{sup 3}H]kainate binding in the hippocampus were quantified using in vitro autoradiography. The bilateral entorhinal lesion induced a sprouting response in the dentate gyrus, measured by an increase in the width of [{sup 3}H]kainate binding. It also induced an increase in the density of [{sup 3}H]kainate binding in CA3 stratum lucidum and an increase in N-methyl-d-aspartate binding throughout the hippocampus proper and the dentate gyrus. The selective lesion of cholinergic septal input did not have any effect on hippocampal [{sup 3}H]kainate binding and induced only a moderate decrease in N-methyl-d-aspartate binding that was not statistically reliable.The entorhinal and cholinergic lesions were used as in vivo models of the degeneration of hippocampal input that occurs in normal aging and Alzheimer's disease. The results from the present lesion study suggest that some, but not all, of the effects on hippocampal [{sup 3}H]kainate and N-methyl-d-aspartate binding induced by the lesions are consistent with the status of binding to these receptors in aging and Alzheimer's disease. Consistent with the effects of aging and Alzheimer's disease is an altered topography of [{sup 3}H]kainate binding after entorhinal cortex lesion and a modest decline in N-methyl-d-aspartate binding after lesions of the cholinergic septal input to

  2. Postnatal Development of Hippocampal and Neocortical Cholinergic and Serotonergic Innervation in Rat : Effects of Nitrite-Induced Prenatal Hypoxia and Nimodipine Treatment

    NARCIS (Netherlands)

    Nyakas, C.; Buwalda, B.; Kramers, R.J.K.; Traber, J.; Luiten, P.G.M.

    1994-01-01

    Postnatal development of ingrowing cholinergic and serotonergic fiber patterns were studied in the rat hippocampus and parietal cortex employing a histochemical procedure for acetylcholinesterase as a cholinergic fiber marker, and immunocytochemistry of serotonin for serotonergic fiber staining. The

  3. Reduction of choline acetyltransferase activities in APP770 transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular b -amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer's disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of b -amyloid can induce changes in the brain cholinergic system of the transgenic mice.

  4. Meniscal Ramp Lesions

    Science.gov (United States)

    Chahla, Jorge; Dean, Chase S.; Moatshe, Gilbert; Mitchell, Justin J.; Cram, Tyler R.; Yacuzzi, Carlos; LaPrade, Robert F.

    2016-01-01

    Meniscal ramp lesions are more frequently associated with anterior cruciate ligament (ACL) injuries than previously recognized. Some authors suggest that this entity results from disruption of the meniscotibial ligaments of the posterior horn of the medial meniscus, whereas others support the idea that it is created by a tear of the peripheral attachment of the posterior horn of the medial meniscus. Magnetic resonance imaging (MRI) scans have been reported to have a low sensitivity, and consequently, ramp lesions often go undiagnosed. Therefore, to rule out a ramp lesion, an arthroscopic evaluation with probing of the posterior horn of the medial meniscus should be performed. Several treatment options have been reported, including nonsurgical management, inside-out meniscal repair, or all-inside meniscal repair. In cases of isolated ramp lesions, a standard meniscal repair rehabilitation protocol should be followed. However, when a concomitant ACL reconstruction (ACLR) is performed, the rehabilitation should follow the designated ACLR postoperative protocol. The purpose of this article was to review the current literature regarding meniscal ramp lesions and summarize the pertinent anatomy, biomechanics, diagnostic strategies, recommended treatment options, and postoperative protocol. PMID:27504467

  5. Cholinergic neuromuscular junctions in Brachionus calyciflorus and Lecane quadridentata (Rotifera:Monogononta)

    Institute of Scientific and Technical Information of China (English)

    Ignacio Alejandro Prez-Legaspi; Alma Lilin Guerrero-Barrera; Ivn Jos Galvn-Mendoza; Jos Luis Quintanar; Roberto Rico-Martnez

    2014-01-01

    Objective:To identify the presence of joint muscular and cholinergic systems in two freshwater rotifer species, Brachionus calyciflorus and Lecane quadridentata. Methods: The muscle actin fibers were stained with phalloidin-linked fluorescent dye, and acetylcholine was detected with Amplex Red Acetylcholine/Acetylcholinesterase Assay Kit, and then confocal scanning laser microscopy was used. Results:The musculature of Brachionus calyciflorus showed a pattern similar to other species of the same genus, while that of Lecane quadridentata was different from other rotifer genera described previously. The cholinergic system was determined by co-localization of both muscles and acetylcholine labels in the whole rotifer, suggesting the presence of neuromuscular junctions. Conclusions: The distribution pattern of muscular and acetylcholine systems showed considerable differences between the two species that might be related to different adaptations to particular ecological niches. The confirmation of a cholinergic system in rotifers contributes to the development of potential neuro-pharmacological and toxicological studies using rotifers as model organism.

  6. A model of cholinergic modulation in olfactory bulb and piriform cortex.

    Science.gov (United States)

    de Almeida, Licurgo; Idiart, Marco; Linster, Christiane

    2013-03-01

    In this work we investigate in a computational model how cholinergic inputs to the olfactory bulb (OB) and piriform cortex (PC) modulate odor representations. We use experimental data derived from different physiological studies of ACh modulation of the bulbar and cortical circuitry and the interaction between these two areas. The results presented here indicate that cholinergic modulation in the OB significantly increases contrast and synchronization in mitral cell output. Each of these effects is derived from distinct neuronal interactions, with different groups of interneurons playing different roles. Both bulbar modulation effects contribute to more stable learned representations in PC, with pyramidal networks trained with cholinergic-modulated inputs from the bulb exhibiting more robust learning than those trained with unmodulated bulbar inputs. This increased robustness is evidenced as better recovery of memories from corrupted patterns and lower-concentration inputs as well as increased memory capacity.

  7. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  8. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  9. Lesiones deportivas Sports injuries

    OpenAIRE

    2007-01-01

    El estrés generado por la práctica deportiva ha originado una mayor probabilidad de que los atletas presenten lesiones agudas y crónicas. En el ámbito mundial existen diferentes investigaciones acerca de la incidencia de lesiones deportivas. La comparación de sus resultados es difícil por las diferencias en las características de la población y en la forma de reportar los datos, que varía ampliamente entre los estudios (proporciones o tasas de incidencia o tasas por cada 100 ó 1.000 participa...

  10. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    Science.gov (United States)

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST.

  11. Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina.

    Science.gov (United States)

    Whitney, Irene E; Keeley, Patrick W; St John, Ace J; Kautzman, Amanda G; Kay, Jeremy N; Reese, Benjamin E

    2014-07-23

    The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer.

  12. Muscarinic signaling influences the patterning and phenotype of cholinergic amacrine cells in the developing chick retina

    Directory of Open Access Journals (Sweden)

    Fischer Andy J

    2008-02-01

    Full Text Available Abstract Background Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT. Results We found that as ChAT-immunoreactive cells differentiate they expressed the homeodomain transcription factors Pax6 and Islet1, and the cell-cycle inhibitor p27kip1. As differentiation proceeds, type-II cholinergic cells, displaced to the ganglion cell layer, transiently expressed high levels of cellular retinoic acid binding protein (CRABP and neurofilament, while type-I cells in the inner nuclear layer did not. Although there is a 1:1 ratio of type-I to type-II cells in vivo, in dissociated cell cultures the type-I cells (ChAT-positive and CRABP-negative out-numbered the type-II cells (ChAT and CRABP-positive cells by 2:1. The relative abundance of type-I to type-II cells was not influenced by Sonic Hedgehog (Shh, but was affected by compounds that act at muscarinic acetylcholine receptors. In addition, the abundance and mosaic patterning of type-II cholinergic amacrine cells is disrupted by interfering with muscarinic signaling. Conclusion We conclude that: (1 during development type-I and type-II cholinergic amacrine cells are not homotypic, (2 the phenotypic differences between these subtypes of cells is controlled by the local microenvironment, and (3 appropriate levels of muscarinic signaling between the cholinergic amacrine cells are required for proper mosaic patterning.

  13. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS.

  14. Dissociation of attention in learning and action: Effects of lesions of the amygdala central nucleus, medial prefrontal cortex, and posterior parietal cortex

    Science.gov (United States)

    Maddux, Jean-Marie; Kerfoot, Erin C.; Chatterjee, Souvik; Holland, Peter C.

    2010-01-01

    Many associative learning theories assert that the predictive accuracy of events affects the allocation of attention to them. More reliable predictors of future events are usually more likely to control action based on past learning, but less reliable predictors are often more likely to capture attention when new information is acquired. Previous studies showed that a circuit that includes the amygdala central nucleus (CEA) and the cholinergic substantia innominata/nucleus basalis magnocellularis (SI/nBM) is important for both sustained attention guiding action in a five-choice serial reaction time (5CSRT) task, and for enhanced new learning about less predictive cues in a serial conditioning task. In this study, we found that lesions of the cholinergic afferents of the medial prefrontal cortex interfered with 5CSRT performance but not with surprise-induced enhancement of learning, whereas lesions of cholinergic afferents of posterior parietal cortex impaired the latter effects but did not affect 5CSRT performance. CEA lesions impaired performance in both tasks. These results are consistent with the view that CEA affects these distinct aspects of attention by influencing the activity of separate, specialized cortical regions, via its modulation of SI/nBM. PMID:17324051

  15. Developmental and neurochemical features of cholinergic neurons in the murine cerebral cortex

    Directory of Open Access Journals (Sweden)

    Becchetti Andrea

    2009-03-01

    Full Text Available Abstract Background The existence and role of intrinsic cholinergic cells in the cerebral cortex is controversial, because of their variable localization and morphology in different mammalian species. We have applied choline acetyltransferase (ChAT immunocytochemistry to study the distribution of cholinergic neurons in the murine cerebral cortex, in the adult and during postnatal development. For more precise neurochemical identification of these neurons, the possible colocalization of ChAT with different markers of cortical neuronal populations has been analyzed by confocal microscopy. This method was also used to verify the relationship between cholinergic cells and cortical microvessels. Results ChAT positive cells appeared at the end of the first postnatal week. Their density dramatically increased at the beginning of the second postnatal week, during which it remained higher than in perinatal and adult stages. In the adult neocortex, cholinergic neurons were particularly expressed in the somatosensory area, although their density was also significant in visual and auditory areas. ChAT positive cells tended to be scarce in other regions. They were mainly localized in the supragranular layers and displayed a fusiform/bipolar morphology. The colocalization of ChAT with pyramidal neuron markers was negligible. On the other hand, more than half of the cholinergic neurons contained calretinin, but none of them expressed parvalbumin or calbindin. However, only a fraction of the ChAT positive cells during development and very few in adulthood turned out to be GABAergic, as judged from expression of GABA and its biosynthetic enzymes GAD67/65. Consistently, ChAT showed no localization with interneurons expressing green fluorescent protein under control of the GAD67 promoter in the adult neocortex. Finally, the cortical cholinergic cells often showed close association with the microvessel walls, as identified with the gliovascular marker aquaporin 4

  16. Noninvasive theranostic imaging of HSV1-sr39TK-NTR/GCV-CB1954 dual-prodrug therapy in metastatic lung lesions of MDA-MB-231 triple negative breast cancer in mice.

    Science.gov (United States)

    Sekar, Thillai V; Foygel, Kira; Ilovich, Ohad; Paulmurugan, Ramasamy

    2014-01-01

    Metastatic breast cancer is an obdurate cancer type that is not amenable to chemotherapy regimens currently used in clinic. There is a desperate need for alternative therapies to treat this resistant cancer type. Gene-Directed Enzyme Prodrug Therapy (GDEPT) is a superior gene therapy method when compared to chemotherapy and radiotherapy procedures, proven to be effective against many types of cancer in pre-clinical evaluations and clinical trials. Gene therapy that utilizes a single enzyme/prodrug combination targeting a single cellular mechanism needs significant overexpression of delivered therapeutic gene in order to achieve therapy response. Hence, to overcome this obstacle we recently developed a dual therapeutic reporter gene fusion that uses two different prodrugs, targeting two distinct cellular mechanisms in order to achieve effective therapy with a limited expression of delivered transgenes. In addition, imaging therapeutic reporter genes offers additional information that indirectly correlates gene delivery, expression, and functional effectiveness as a theranostic approach. In the present study, we evaluate the therapeutic potential of HSV1-sr39TK-NTR fusion dual suicide gene therapy system that we recently developed, in MDA-MB-231 triple negative breast cancer lung-metastatic lesions in a mouse model. We compared the therapeutic potential of HSV1-sr39TK-NTR fusion with respective dual prodrugs GCV-CB1954 with HSV1-sr39TK/GCV and NTR/CB1954 single enzyme prodrug system in this highly resistant metastatic lesion of the lungs. In vitro optimization of dose and duration of exposure to GCV and CB1954 was performed in MDA-MB-231 cells. Drug combinations of 1 μg/ml GCV and 10 μM CB1954 for 3 days was found to be optimal regimen for induction of significant cell death, as assessed by FACS analysis. In vivo therapeutic evaluation in animal models showed a complete ablation of lung metastatic nodules of MDA-MB-231 triple negative breast cancer cells following

  17. Cholinergic Stimulation Prevents the Development of Autoimmune Diabetes: Evidence for the Modulation of Th17 Effector Cells via an IFNγ-Dependent Mechanism

    Science.gov (United States)

    George, Junu A.; Bashir, Ghada; Qureshi, Mohammed M.; Mohamed, Yassir A.; Azzi, Jamil; al-Ramadi, Basel K.; Fernández-Cabezudo, Maria J.

    2016-01-01

    Type I diabetes (T1D) results from T cell-mediated damage of pancreatic β-cells and loss of insulin production. The cholinergic anti-inflammatory pathway represents a physiological link connecting the central nervous and immune systems via vagus nerve, and functions to control the release of proinflammatory cytokines. Using the multiple low-dose streptozotocin (MLD-STZ) model to induce experimental autoimmune diabetes, we investigated the potential of regulating the development of hyperglycemia through administration of paraoxon, a highly specific acetylcholinesterase inhibitor (AChEI). We demonstrate that pretreatment with paraoxon prevented hyperglycemia in STZ-treated C57BL/6 mice. This correlated with a reduction in T cell infiltration into pancreatic islets and preservation of the structure and functionality of β-cells. Gene expression analysis of pancreatic tissue revealed that increased peripheral cholinergic activity prevented STZ-mediated loss of insulin production, this being associated with a reduction in IL-1β, IL-6, and IL-17 proinflammatory cytokines. Intracellular cytokine analysis in splenic T cells demonstrated that inhibition of AChE led to a shift in STZ-induced immune response from a predominantly disease-causing IL-17-expressing Th17 cells to IFNγ-positive Th1 cells. Consistent with this conclusion, inhibition of AChE failed to prevent STZ-induced hyperglycemia in IFNγ-deficient mice. Our results provide mechanistic evidence for the prevention of murine T1D by inhibition of AChE and suggest a promising strategy for modulating disease severity. PMID:27790217

  18. Genital lesions following bestiality

    Directory of Open Access Journals (Sweden)

    Mittal A

    2000-01-01

    Full Text Available A 48-year-old man presented with painful genital lesions with history of bestiality and abnor-mal sexual behaviour. Examination revealed multiple irregular tender ulcers and erosions, with phimosis and left sided tender inguinal adenopathy. VDRL, TPHA, HIV-ELISA were negative. He was treated with ciprofloxacin 500mg b.d. along with saline compresses with complete resolution.

  19. Immunopathology of skin lesions

    Directory of Open Access Journals (Sweden)

    Khan Nazoora

    2001-09-01

    Full Text Available A study was conducted on 130 patients suffering from skin lesions which included psoriasis, lichen planus, DLE, pemphigus, vitiligo and alopecia areata. Forty age-and-sex-matched healthy individuals served as control. Serum IgG, IgM, and circulating immune complexes (CIC were estimated. Significant increase in serum IgG (1937.2 ± 1030.43 mg% and IgM (232.12 ± 136.98 mg% was observed in all the skin lesions when compared with controls except in lichen planus where they were significantly lowered, values being 580.61± 77.35 mg% and 66.88 ± 6.59mg% respectively. CIC levels were significantly raised (P<0.00 1 in various skin lesions (40.49±23.29 when compared with controls (17.68± 3.21, but no significance was observed in lichen planus( 17.72 ± 4.28. Serum IgG, IgM and CIC were statistically significantly altered depending on the extent of the lesion and lowered significantly to almost normal values following treatment, thereby confirming the role of immunity in the pathogenesis of these skin disorders.

  20. Traumatic plexus lesion.

    NARCIS (Netherlands)

    Dongen, R.T.M. van; Cohen, S.P.; Kleef, M. van; Mekhail, N.; Huygen, F.

    2011-01-01

    Pain, motor, and sensory deficits characterize patients with a traumatic lesion of the brachial plexus. Frequently, more severe injuries co-exist that require immediate surgical attention. Early rehabilitation and physical therapy are the cornerstones of treatment. Pharmacological management can be

  1. White matter lesion progression

    DEFF Research Database (Denmark)

    Hofer, Edith; Cavalieri, Margherita; Bis, Joshua C;

    2015-01-01

    BACKGROUND AND PURPOSE: White matter lesion (WML) progression on magnetic resonance imaging is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants...

  2. Morel-Lavallee lesion

    Institute of Scientific and Technical Information of China (English)

    Li Hui; Zhang Fangjie; Lei Guanghua

    2014-01-01

    Objective To review current knowledge of the Morel-Lavallee lesion (MLL) to help clinicians become familiar with this entity.Familiarization may decrease missed diagnoses and misdiagnoses.It could also help steer the clinician to the proper treatment choice.Data sources A search was performed via PubMed and EMBASE from 1966 to July 2013 using the following keywords:Morel-Lavallee lesion,closed degloving injury,concealed degloving injury,Morel-Lavallee effusion,Morel-Lavallee hematoma,posttraumatic pseudocyst,posttraumatic soft tissue cyst.Study selection Chinese and English language literatures relevant to the subject were collected.Their references were also reviewed.Results Morel-Lavallee lesion is a relatively rare condition involving a closed degloving injury.It is characterized by a filled cystic cavity created by separation of the subcutaneous tissue from the underlying fascia.Apart from the classic location over the region of the greater trochanter,MLLs have been described in other parts of the body.The natural history of MLL has not yet been established.The lesion may decrease in volume,remain stable,enlarge progressively or show a recurrent pattern.Diagnosis of MLL was often missed or delayed.Ultrasonography,computed tomography,and magnetic resonance imaging have great value in the diagnosis of MLL.Treatment of MLL has included compression,local aspiration,open debridement,and sclerodesis.No standard treatment has been established.Conclusions A diagnosis of MLL should be suspected when a soft,fluctuant area of skin or chronic recurrent fluid collection is found in a region exposed to a previous shear injury.Clinicians and radiologists should be aware of both the acute and chronic appearances to make the correct diagnosis.Treatment decisions should base on association with fractures,the condition of the lesion,symptom and desire of the patient.

  3. [Managing focal incidental renal lesions].

    Science.gov (United States)

    Nicolau, C; Paño, B; Sebastià, C

    2016-01-01

    Incidental renal lesions are relatively common in daily radiological practice. It is important to know the different diagnostic possibilities for incidentally detected lesions, depending on whether they are cystic or solid. The management of cystic lesions is guided by the Bosniak classification. In solid lesions, the goal is to differentiate between renal cancer and benign tumors such as fat-poor angiomyolipoma and oncocytoma. Radiologists need to know the recommendations for the management of these lesions and the usefulness of the different imaging techniques and interventional procedures in function of the characteristics of the incidental lesion and the patient's life expectancy.

  4. Cognitive impairment as a central cholinergic deficit in patients with Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Antonia Kaltsatou

    2015-06-01

    Conclusions: VCmax and ACmax are governed mainly by the action of the Parasympathetic Nervous System, through acetylcholine. The results of this study demonstrate that the CNS may be affected in MG and support the hypothesis that MG has central cholinergic effects manifested by cognitive dysfunction.

  5. Modulation of cholinergic airway reactivity and nitric oxide production by endogenous arginase activity

    NARCIS (Netherlands)

    Meurs, Herman; Hamer, M.A M; Pethe, S; Vadon-Le Goff, S; Boucher, J.-L; Zaagsma, Hans

    2000-01-01

    1 Cholinergic airway constriction is functionally antagonized by agonist-induced constitutive nitric oxide synthase (cNOS)-derived nitric oxide (NO). Since cNOS and arginase, which hydrolyzes L-arginine to L-ornithine and urea, use L-arginine as a common substrate, competition between both enzymes f

  6. Cholinergic excitation in mouse primary vs. associative cortex: region-specific magnitude and receptor balance.

    Science.gov (United States)

    Tian, Michael K; Bailey, Craig D C; Lambe, Evelyn K

    2014-08-01

    Cholinergic stimulation of the cerebral cortex is essential for tasks requiring attention; however, there is still some debate over which cortical regions are required for such tasks. There is extensive cholinergic innervation of both primary and associative cortices, and transient release of acetylcholine (ACh) is detected in deep layers of the relevant primary and/or associative cortex, depending on the nature of the attention task. Here, we investigated the electrophysiological effects of ACh in layer VI, the deepest layer, of the primary somatosensory cortex, the primary motor cortex, and the associative medial prefrontal cortex. Layer VI pyramidal neurons are a major source of top-down modulation of attention, and we found that the strength and homogeneity of their direct cholinergic excitation was region-specific. On average, neurons in the primary cortical regions showed weaker responses to ACh, mediated by a balance of contributions from both nicotinic and muscarinic ACh receptors. Conversely, neurons in the associative medial prefrontal cortex showed significantly stronger excitation by ACh, mediated predominantly by nicotinic receptors. The greatest diversity of responses to ACh was found in the primary somatosensory cortex, with only a subset of neurons showing nicotinic excitation. In a mouse model with attention deficits only under demanding conditions, cholinergic excitation was preserved in primary cortical regions but not in the associative medial prefrontal cortex. These findings demonstrate that the effect of ACh is not uniform throughout the cortex, and suggest that its ability to enhance attention performance may involve different cellular mechanisms across cortical regions.

  7. Effects of Chemical Agents on the Cholinergic Neurotransmitter System: Mechanisms of Adaptation.

    Science.gov (United States)

    1984-06-20

    changes in cholinergic neurochemistry (31). The former was observed in such symptoms as salivation, lacrimation and tremor and in measures of hypothermia...to the belladonna drugs occurs in man to a limited extent, e.g., patients with Parkinsonism may eventually receive daily doses of atropine or

  8. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain.

    Science.gov (United States)

    Mahady, Laura J; Perez, Sylvia E; Emerich, Dwaine F; Wahlberg, Lars U; Mufson, Elliott J

    2017-02-15

    Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75(NTR) . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75(NTR) -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.

  9. GABAERGIC MODULATION OF STRIATAL CHOLINERGIC INTERNEURONS - AN IN-VIVO MICRODIALYSIS STUDY

    NARCIS (Netherlands)

    DEBOER, P; WESTERINK, BHC

    1994-01-01

    Striatal cholinergic interneurons have been shown to receive input from striatal gamma-aminobutyric acid (GABA)-containing cell elements. GABA is known to act on two different types of receptors, the GABA(A) and the GABA(B) receptor. Using in vivo microdialysis, we have studied the effect of intrast

  10. A Computational Model of How Cholinergic Interneurons Protect Striatal-Dependent Learning

    Science.gov (United States)

    Ashby, F. Gregory; Crossley, Matthew J.

    2011-01-01

    An essential component of skill acquisition is learning the environmental conditions in which that skill is relevant. This article proposes and tests a neurobiologically detailed theory of how such learning is mediated. The theory assumes that a key component of this learning is provided by the cholinergic interneurons in the striatum known as…

  11. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome.

    Science.gov (United States)

    Kataoka, Yuko; Kalanithi, Paul S A; Grantz, Heidi; Schwartz, Michael L; Saper, Clifford; Leckman, James F; Vaccarino, Flora M

    2010-02-01

    Corticobasal ganglia neuronal ensembles bring automatic motor skills into voluntary control and integrate them into ongoing motor behavior. A 5% decrease in caudate (Cd) nucleus volume is the most consistent structural finding in the brain of patients with Tourette syndrome (TS), but the cellular abnormalities that underlie this decrease in volume are unclear. In this study the density of different types of interneurons and medium spiny neurons (MSNs) in the striatum was assessed in the postmortem brains of 5 TS subjects as compared with normal controls (NC) by unbiased stereological analyses. TS patients demonstrated a 50%-60% decrease of both parvalbumin (PV)+ and choline acetyltransferase (ChAT)+ cholinergic interneurons in the Cd and the putamen (Pt). Cholinergic interneurons were decreased in TS patients in the associative and sensorimotor regions but not in the limbic regions of the striatum, such that the normal gradient in density of cholinergic cells (highest in associative regions, intermediate in sensorimotor and lowest in limbic regions) was abolished. No significant difference was present in the densities of medium-sized calretinin (CR)+ interneurons, MSNs, and total neurons. The selective deficit of PV+ and cholinergic striatal interneurons in TS subjects may result in an impaired cortico/thalamic control of striatal neuron firing in TS.

  12. Red Dermographism in Autism Spectrum Disorders: A Clinical Sign of Cholinergic Dysfunction?

    Science.gov (United States)

    Lemonnier, E.; Grandgeorge, M.; Jacobzone-Leveque, C.; Bessaguet, C.; Peudenier, S.; Misery, L.

    2013-01-01

    The authors hypothesised that red dermographism--a skin reaction involving the cholinergic system--is more frequent in children with autism spectrum disorders (ASDs) than in children exhibiting typical development. We used a dermatological examination to study red dermographism in this transverse study, which compared forty six children with ASDs…

  13. Cholinergic involvement in vascular and glucoregulatory actions of insulin in rats.

    Science.gov (United States)

    Lévesque, Martin; Santuré, Marta; Pitre, Maryse; Nadeau, André; Bachelard, Hélène

    2006-02-01

    This study was designed to test the glucose metabolic and vasodilator actions of insulin in rats and its relation to cholinergic system-dependent mechanisms. The first group of rats had pulsed Doppler flow probes and intravascular catheters implanted to determine blood pressure, heart rate, and regional blood flows. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp technique carried out in the absence or presence of atropine. The second group of rats was used to determine the cholinergic contribution to in vivo insulin-mediated glucose utilization in individual muscles. Glucose uptake was examined by using [(3)H]2-deoxy-D-glucose. Muscarinic cholinergic blockade was found to significantly (P = 0.002) reduce insulin sensitivity and to completely abrogate the renal (P = 0.008) and hindquarter (P = 0.02) vasodilator responses to euglycemic infusion of insulin. A significant reduction in insulin-stimulated in vivo glucose uptake was also noted in soleus (P = 0.006), quadriceps (P = 0.03), gastrocnemius (P = 0.02), and extensor digitorum longus (EDL) (P = 0.001) muscles, when insulin was infused at a rate of 4 mU . kg(-1) . min(-1), whereas at the rate of 16 mU . kg(-1) . min(-1), a significant reduction in glucose uptake was only observed in EDL (P = 0.03) and quadriceps (P = 0.01) muscles. Together, these results demonstrate a potential role for cholinergic involvement with physiological insulin actions in glucose clearance and blood flow regulation in rats.

  14. Cholinergic basis of memory improving effect of Ocimum tenuiflorum linn

    Directory of Open Access Journals (Sweden)

    Joshi H

    2006-01-01

    Full Text Available Dementia is one of the age-related mental problems and a characteristic symptom of Alzheimer′s disease. Nootropic agents are used in situations where there is organic disorder in learning abilities. The present work was undertaken to assess the potential of Ocimum tenuiflorum Linn. as a nootropic and anticholinesterase agent in mice. Ethanol extract of dried whole plant of O. tenuiflorum Linn. ameliorated the amnesic effect of scopolamine (0.4 mg/kg and aging-induced memory deficits in mice. Passive avoidance paradigm served as the exteroceptive behavioural model. O. tenuiflorum extract increased step-down latency and acetyl cholinesterase inhibition significantly. Hence, O. tenuiflorum can be employed in the treatment of cognitive disorders such as dementia and Alzheimer′s disease.

  15. Hyperglycemia impairs atherosclerosis regression in mice.

    Science.gov (United States)

    Gaudreault, Nathalie; Kumar, Nikit; Olivas, Victor R; Eberlé, Delphine; Stephens, Kyle; Raffai, Robert L

    2013-12-01

    Diabetic patients are known to be more susceptible to atherosclerosis and its associated cardiovascular complications. However, the effects of hyperglycemia on atherosclerosis regression remain unclear. We hypothesized that hyperglycemia impairs atherosclerosis regression by modulating the biological function of lesional macrophages. HypoE (Apoe(h/h)Mx1-Cre) mice express low levels of apolipoprotein E (apoE) and develop atherosclerosis when fed a high-fat diet. Atherosclerosis regression occurs in these mice upon plasma lipid lowering induced by a change in diet and the restoration of apoE expression. We examined the morphological characteristics of regressed lesions and assessed the biological function of lesional macrophages isolated with laser-capture microdissection in euglycemic and hyperglycemic HypoE mice. Hyperglycemia induced by streptozotocin treatment impaired lesion size reduction (36% versus 14%) and lipid loss (38% versus 26%) after the reversal of hyperlipidemia. However, decreases in lesional macrophage content and remodeling in both groups of mice were similar. Gene expression analysis revealed that hyperglycemia impaired cholesterol transport by modulating ATP-binding cassette A1, ATP-binding cassette G1, scavenger receptor class B family member (CD36), scavenger receptor class B1, and wound healing pathways in lesional macrophages during atherosclerosis regression. Hyperglycemia impairs both reduction in size and loss of lipids from atherosclerotic lesions upon plasma lipid lowering without significantly affecting the remodeling of the vascular wall.

  16. Lesiones en el deporte

    Directory of Open Access Journals (Sweden)

    Rubio Gimeno, Silvio

    2000-02-01

    Full Text Available Not available

    El incremento de la actividad física y del deporte, en las sociedades llamadas desarrolladas, ha traído consigo beneficios claros para la salud, reflejados en diferentes indicadores de salud. Simultáneamente, el deporte de competición obliga a una dedicación diaria a intensidad de entrenamiento, con objeto de obtener los elevados requerimientos físicos que exige la competición. Todo ello ha traído consigo la aparición de numerosas lesiones, fundamentalmente del sistema músculo- esquelético.
    Se exponen en este trabajo consideraciones históricas, la epidemiología de la lesión deportiva y se describen, concisamente, algunas de las lesiones más habituales y significativas que afectan a músculos, tendones y sistema esquelético.

  17. Meniscal Ramp Lesions

    OpenAIRE

    2016-01-01

    Meniscal ramp lesions are more frequently associated with anterior cruciate ligament (ACL) injuries than previously recognized. Some authors suggest that this entity results from disruption of the meniscotibial ligaments of the posterior horn of the medial meniscus, whereas others support the idea that it is created by a tear of the peripheral attachment of the posterior horn of the medial meniscus. Magnetic resonance imaging (MRI) scans have been reported to have a low sensitivity, ...

  18. Expression and localization of pChAT as a novel method to study cholinergic innervation of rat adrenal gland.

    Science.gov (United States)

    Elnasharty, Mohamed A; Sayed-Ahmed, Ahmed

    2014-10-01

    Cholinergic innervation of the rat adrenal gland has been analyzed previously using cholinergic markers including acetylcholinesterase (AChE), choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). In the present study, we demonstrate putative cholinergic neurons in the rat adrenal gland using an antibody to pChAT, which is the product of a splice variant of ChAT mRNA that is preferentially localized in peripheral cholinergic nerves. Most of the ganglionic neurons as well as small single sporadic neurons in the adrenal gland were stained intensely for pChAT. The density of pChAT-immunoreactive (IR) fibers was distinct in the adrenal cortex and medulla. AChE-, cChAT- and VAChT-immunoreactivities were also observed in some cells and fibers of the adrenal medulla, while the cortex had few positive nerve fibers. These results indicate that ganglionic neurons of the adrenal medulla and nerve fibers heterogeneously express cholinergic markers, especially pChAT. Furthermore, the innervation of the adrenal gland, cortex and medulla, by some cholinergic fibers provides additional morphological evidence for a significant role of cholinergic mechanisms in adrenal gland functions.

  19. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    Science.gov (United States)

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity.

  20. Measurement of functional cholinergic innervation in rat heart with a novel vesamicol receptor ligand

    Energy Technology Data Exchange (ETDEWEB)

    Coffeen, Paul R.; Efange, S.M.N.; Haidet, George C.; McKnite, Scott; Langason, Rosemary B.; Khare, A.B.; Pennington, Jennifer; Lurie, Keith G

    1996-10-01

    Regional differences in cholinergic activity in the cardiac conduction system have been difficult to study. We tested the utility of (+)-m-[{sup 125}I]iodobenzyl)trozamicol(+)-[{sup 125}I]MIBT), a novel radioligand that binds to the vesamicol receptor located on the synaptic vesicle in presynaptic cholinergic neurons, as a functional marker of cholinergic activity in the conduction system. The (+)-[{sup 125}I]MIBT was injected intravenously into four rats. Three hours later, the rats were killed and their hearts were frozen. Quantitative autoradiography was performed on 20-micron-thick sections that were subsequently stained for acetylcholinesterase to identify specific conduction-system elements. Marked similarities existed between (+)-[{sup 125}I]MIBT uptake and acetylcholinesterase-positive regions. Optical densitometric analysis of regional (+)-[{sup 125}I]MIBT uptake revealed significantly greater (+)-[{sup 125}I]MIBT binding (nCi/mg) in the atrioventricular node (AVN) and His bundle regions compared with other conduction and contractile elements (AVN: 3.43 {+-} 0.37; His bundle: 2.16 {+-} 0.30; right bundle branch: 0.95 {+-} 0.13; right atrium: 0.68 {+-} 0.05; right ventricle: 0.57 {+-} 0.03; and left ventricle: 0.57 {+-} 0.03; p < 0.05 comparing conduction elements with ventricular muscle). This study demonstrates that (+)-[{sup 125}I]MIBT binds avidly to cholinergic nerve tissue innervating specific conduction-system elements. Thus, (+)-[{sup 125}I]MIBT may be a useful functional marker in studies on cholinergic innervation in the cardiac conduction system.

  1. Atypical idiopathic inflammatory demyelinating lesions

    DEFF Research Database (Denmark)

    Wallner-Blazek, Mirja; Rovira, Alex; Fillipp, Massimo;

    2013-01-01

    Atypical lesions of a presumably idiopathic inflammatory demyelinating origin present quite variably and may pose diagnostic problems. The subsequent clinical course is also uncertain. We, therefore, wanted to clarify if atypical idiopathic inflammatory demyelinating lesions (AIIDLs) can be class...

  2. Acute periodontal lesions.

    Science.gov (United States)

    Herrera, David; Alonso, Bettina; de Arriba, Lorenzo; Santa Cruz, Isabel; Serrano, Cristina; Sanz, Mariano

    2014-06-01

    This review provides updates on acute conditions affecting the periodontal tissues, including abscesses in the periodontium, necrotizing periodontal diseases and other acute conditions that cause gingival lesions with acute presentation, such as infectious processes not associated with oral bacterial biofilms, mucocutaneous disorders and traumatic and allergic lesions. A periodontal abscess is clinically important because it is a relatively frequent dental emergency, it can compromise the periodontal prognosis of the affected tooth and bacteria within the abscess can spread and cause infections in other body sites. Different types of abscesses have been identified, mainly classified by their etiology, and there are clear differences between those affecting a pre-existing periodontal pocket and those affecting healthy sites. Therapy for this acute condition consists of drainage and tissue debridement, while an evaluation of the need for systemic antimicrobial therapy will be made for each case, based on local and systemic factors. The definitive treatment of the pre-existing condition should be accomplished after the acute phase is controlled. Necrotizing periodontal diseases present three typical clinical features: papilla necrosis, gingival bleeding and pain. Although the prevalence of these diseases is not high, their importance is clear because they represent the most severe conditions associated with the dental biofilm, with very rapid tissue destruction. In addition to bacteria, the etiology of necrotizing periodontal disease includes numerous factors that alter the host response and predispose to these diseases, namely HIV infection, malnutrition, stress or tobacco smoking. The treatment consists of superficial debridement, careful mechanical oral hygiene, rinsing with chlorhexidine and daily re-evaluation. Systemic antimicrobials may be used adjunctively in severe cases or in nonresponding conditions, being the first option metronidazole. Once the acute

  3. Glycyrrhizin Ameliorates Imiquimod-Induced Psoriasis-like Skin Lesions in BALB/c Mice and Inhibits TNF-a-Induced ICAM-1 Expression via NF-κB/MAPK in HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2015-02-01

    Full Text Available Background/Aim: Glycyrrhizin (GL is an important derivative of certain herbal medicines used in Asian countries. Currently, GL is used to treat hepatitis and allergic disease worldwide because of its anti-viral and anti-allergy effects. In addition to these prominent functions, GL likely regulates cellular functions such as tumor cell growth and cellular immunity. However, how GL affects the keratinocyte inflammation response remains poorly understood. The current paper investigates the effect of GL on psoriasis and explores the mechanisms involved. Methods: We used an in vitro cell model of tumor necrosis factor (TNF-a-induced keratinocyte inflammation and the topical application of imiquimod (IMQ using an animal model (mouse skin of IMQ-induced psoriasis-like inflammation (IPI to investigate the effect of GL on skin inflammation. Cell viability was analyzed using the Cell Counting Kit-8 (CCK8. Carboxyfluorescein succinimidyl ester (CFSE labeling was used to trace monocyte adherence to keratinocytes. A Western blot analysis was used to detect the expression of intercellular adhesion molecule 1 (ICAM-1 and the activation of the nuclear factor (NF-κB/mitogen-activated protein kinase (MAPK signaling pathway. A modified version of the Psoriasis Area Severity Index (PASI was used to monitor disease severity. Hematoxylin and eosin (H&E staining was used to observe pathological changes. An immunohistochemistry (IHC analysis was used to detect ICAM-1 expression in mouse skin. Results: GL treatment significantly reduced the levels of ICAM-1 in TNF-a-stimulated HaCaT cells, inhibited subsequent monocyte adhesion to keratinocytes, and suppressed the nuclear translation and phosphorylation of p65 following the degradation of inhibitor κB (IκB. GL treatment blocked the phosphorylation of extracellular signal-regulated kinase (ERK/p38 MAPK. GL effectively delayed the onset of IPI in mice and ameliorated ongoing IPI, thereby reducing ICAM-1 expression in

  4. A disappearing neonatal skin lesion.

    LENUS (Irish Health Repository)

    Hawkes, Colin Patrick

    2012-01-31

    A preterm baby girl was noted at birth to have a firm, raised, non-tender skin lesion located over her right hip. She developed three similar smaller lesions on her ear, buttock and right knee. All lesions had resolved by 2 months of age.

  5. Activation of Muscarinic Acetylcholine Receptor Subtype 4 is Essential for Cholinergic Stimulation of Gastric Acid Secretion - Relation To D Cell/Somatostatin -

    Directory of Open Access Journals (Sweden)

    Koji Takeuchi

    2016-08-01

    Full Text Available AbstractBackground/Aim: Muscarinic acetylcholine receptors exist in five subtypes (M1~M5, and they are widely expressed in various tissues to mediate diverse autonomic functions, including gastric secretion. In the present study, we demonstrated, using M1~M5 KO mice, the importance of M4 receptors in carbachol (CCh stimulation of acid secretion and investigated how the secretion is modulated by the activation of M4 receptors. Methods: C57BL/6J mice of wild-type (WT and M1-M5 KO were used. Under urethane anesthesia, acid secretion was measured in the stomach equipped with an acute fistula. CCh (30 µg/kg was given s.c. to stimulate acid secretion. Atropine or octreotide (a somatostatin analogue was given s.c. 20 min before the administration of CCh. CYN154806 (a somatostatin SST2 receptor antagonist was given i.p. 20 min before the administration of octreotide or CCh. Results: CCh caused an increase of acid secretion in WT mice, and the effect was totally inhibited by prior administration of atropine. The effect of CCh was similarly observed in the animals lacking M1, M2 or M5 receptors but significantly decreased in M3 or M4 KO mice. CYN154806, the SST2 receptor antagonist, dose-dependently and significantly reversed the decreased acid response to CCh in M4 but not M3 KO mice. Octreotide, the somatostatin analogue, inhibited the secretion of acid under CCh-stimulated conditions in WT mice. The immunohistochemical study showed the localization of M4 receptors on D cells in the stomach. Serum somatostatin levels in M4 KO mice were higher than WT mice under basal conditions, while those in WT mice were significantly decreased in response to CCh. Conclusions: These results suggest that under cholinergic stimulation the acid secretion is directly mediated by M3 receptors and indirectly modified by M4 receptors. It is assumed that the activation of M4 receptors inhibits the release of somatostatin from D cells and minimizes the acid inhibitory effect

  6. Lesiones deportivas Sports injuries

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Gallego Ching

    2007-04-01

    Full Text Available El estrés generado por la práctica deportiva ha originado una mayor probabilidad de que los atletas presenten lesiones agudas y crónicas. En el ámbito mundial existen diferentes investigaciones acerca de la incidencia de lesiones deportivas. La comparación de sus resultados es difícil por las diferencias en las características de la población y en la forma de reportar los datos, que varía ampliamente entre los estudios (proporciones o tasas de incidencia o tasas por cada 100 ó 1.000 participantes o tasas por horas de juego o por número de partidos jugados. Las tasas varían entre 1,7 y 53 lesiones por 1.000 horas de práctica deportiva, entre 0,8 y 90,9 por 1.000 horas de entrenamiento, entre 3,1 y 54,8 por 1.000 horas de competición y de 6,1 a 10,9 por 100 juegos. La gran variación entre las tasas de incidencia se explica por las diferencias existentes entre los deportes, los países, el nivel competitivo, las edades y la metodología empleada en los estudios. Se ha definido la lesión deportiva como la que ocurre cuando los atletas están expuestos a la práctica del deporte y se produce alteración o daño de un tejido, afectando el funcionamiento de la estructura. Los deportes de contacto generan mayor riesgo de presentar lesiones; se destacan al respecto los siguientes: fútbol, rugby, baloncesto, balonmano, artes marciales y jockey. Las lesiones ocurren con mayor probabilidad en las competencias que en el entrenamiento. Stress generated by sports practice has increased the probability that athletes suffer from acute and chronic injuries. Worldwide, there have been many different investigations concerning the incidence of sport injuries. The different ways in which results have been presented makes it difficult to compare among them. Rates of sports injuries vary between 1.7 and 53 per 1.000 hours of sports practice; 0.8 and 90.9 per 1.000 hours of training; 3.1 and 54.8 per 1.000 hours of competition, and 6.1 and 10.9 per 100

  7. Atrichia with Papular Lesions

    OpenAIRE

    Bansal, Manish; Manchanda, Kajal; Lamba, Sachin; Pandey, SS

    2011-01-01

    Atrichia with papular lesions (APL) is a rare autosomal recessive form of irreversible alopecia with onset at few months of age with papular keratin cysts over the body. It is associated with mutation in the Zinc finger domain of the human hairless gene on chromosome region 8p12. An eleven-year-old male presented with extensive alopecia starting at six months of age refractory to the treatment along with keratotic papules on the face and trunk. Biopsy from a papule showed mid-dermal keratin c...

  8. Lesiones en corredores amateurs

    OpenAIRE

    Natale, Vanesa

    2011-01-01

    Se realizó un estudio tomando como muestra a 100 corredores amateurs de la ciudad de Mar del Plata, en la cual el objetivo general fue determinar cuáles son las patologías más frecuentes en corredores. Correr no es solo un deporte en si mismo sino que tiene elementos de otras actividades deportivas, es decir, que las lesiones de los corredores también son comunes en otros tipos de deportes. El número de deportistas aumenta diariamente y al mismo tiempo aumentan el número de per...

  9. Lesiones en el deporte

    OpenAIRE

    2000-01-01

    Not available

    El incremento de la actividad física y del deporte, en las sociedades llamadas desarrolladas, ha traído consigo beneficios claros para la salud, reflejados en diferentes indicadores de salud. Simultáneamente, el deporte de competición obliga a una dedicación diaria a intensidad de entrenamiento, con objeto de obtener los elevados requerimientos físicos que exige la competición. Todo ello ha traído consigo la aparición de numerosas lesiones, fundamentalmen...

  10. Klatskin-Like Lesions

    Directory of Open Access Journals (Sweden)

    M. P. Senthil Kumar

    2012-01-01

    Full Text Available Hilar cholangiocarcinoma, also known as Klatskin tumour, is the commonest type of cholangiocarcinoma. It poses unique problems in the diagnosis and management because of its anatomical location. Curative surgery in the form of major hepatic resection entails significant morbidity. About 5–15% of specimens resected for presumed Klatskin tumour prove not to be cholangiocarcinomas. There are a number of inflammatory, infective, vascular, and other pathologies, which have overlapping clinical and radiological features with a Klatskin tumour, leading to misinterpretation. This paper aims to summarise the features of such Klatskin-like lesions that have been reported in surgical literature.

  11. Klatskin-like lesions.

    Science.gov (United States)

    Senthil Kumar, M P; Marudanayagam, R

    2012-01-01

    Hilar cholangiocarcinoma, also known as Klatskin tumour, is the commonest type of cholangiocarcinoma. It poses unique problems in the diagnosis and management because of its anatomical location. Curative surgery in the form of major hepatic resection entails significant morbidity. About 5-15% of specimens resected for presumed Klatskin tumour prove not to be cholangiocarcinomas. There are a number of inflammatory, infective, vascular, and other pathologies, which have overlapping clinical and radiological features with a Klatskin tumour, leading to misinterpretation. This paper aims to summarise the features of such Klatskin-like lesions that have been reported in surgical literature.

  12. Cystic Lesions of the Mediastinum.

    Science.gov (United States)

    Vargas, Daniel; Suby-Long, Thomas; Restrepo, Carlos S

    2016-06-01

    Cystic lesions are commonly seen in the mediastinum, and they may arise from virtually any organ. The vast majority of these lesions are benign and result in no symptoms. When large, cysts may produce symptoms related to compression of adjacent structures. The most common mediastinal cysts are pericardial and foregut duplication cysts. Both computed tomography and magnetic resonance are routinely used to evaluate these lesions. Although computed tomography offers superior spatial resolution, magnetic resonance is useful in differentiating cysts that contain proteinaceous material from solid lesions. Occasionally, cysts arise from solid lesions, such as thymoma or teratoma. Although cysts are alike in appearance, location helps narrowing the differential diagnoses.

  13. The subcellular distribution of [3H]-CGS 21680 binding sites in the rat striatum: copurification with cholinergic nerve terminals.

    Science.gov (United States)

    James, S; Richardson, P J

    1993-08-01

    The subcellular distribution of the adenosine A2a receptor in rat striatum has been investigated using specific binding of the A2a-selective ligand [3H]-CGS 21680. After subcellular fractionation, the distribution of [3H]-CGS 21680 binding was similar to that of the cholinergic nerve terminal marker acetylcholinesterase rather than the more general membrane marker 5'-nucleotidase, with 42% of binding associated with the synaptosomal sub-fraction and 19% with a light membrane fraction. Binding of [3H]-CGS 21680 was also found to co-purify with the cholinergic nerve terminal marker choline acetyltransferase during immunoaffinity purification of striatal cholinergic nerve terminals. These results demonstrate that some adenosine A2a receptors are present on cholinergic nerve terminals in rat striatum.

  14. S100b Counteracts Neurodegeneration of Rat Cholinergic Neurons in Brain Slices after Oxygen-Glucose Deprivation

    Directory of Open Access Journals (Sweden)

    Daniela Serbinek

    2010-01-01

    Full Text Available Alzheimer's disease is a severe chronic neurodegenerative disorder characterized by beta-amyloid plaques, tau pathology, cerebrovascular damage, inflammation, reactive gliosis, and cell death of cholinergic neurons. The aim of the present study is to test whether the glia-derived molecule S100b can counteract neurodegeneration of cholinergic neurons after oxygen-glucose deprivation (OGD in organotypic brain slices of basal nucleus of Meynert. Our data showed that 3 days of OGD induced a marked decrease of cholinergic neurons (60% of control, which could be counteracted by 50 μg/mL recombinant S100b. The effect was dose and time dependent. Application of nerve growth factor or fibroblast growth factor-2 was less protective. C-fos-like immunoreactivity was enhanced 3 hours after OGD indicating metabolic stress. We conclude that S100b is a potent neuroprotective factor for cholinergic neurons during ischemic events.

  15. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    Science.gov (United States)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  16. Antidepressant-like properties of sildenafil in a genetic rat model of depression: Role of cholinergic cGMP-interactions

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Brink, Christiaan; Brand, Linda

    2008-01-01

    a strategy for the treatment of depression, using a PDE5 inhibitor in the presence of cholinergic inhibition. Sildenafil-induced augmentation of imipramine, an antidepressant with inherent anticholinergic properties, concurs with this suggestion, and highlights the potential clinical value...

  17. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction.

    Science.gov (United States)

    Christensen, Mark H; Ishibashi, Masaru; Nielsen, Michael L; Leonard, Christopher S; Kohlmeier, Kristi A

    2014-10-01

    The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7-P15), nicotine induced larger intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15-P34). Nicotine increased neuronal firing of cholinergic cells to a greater degree in younger animals, possibly linked to development associated differences found in nicotinic effects on action potential shape and afterhyperpolarization. We conclude that in addition to age-associated alterations of several properties expected to affect resting cell excitability, parameters affecting cell excitability are altered by nicotine differentially across ontogeny. Taken together, our data suggest that nicotine induces a larger excitatory response in cholinergic LDT neurons from the youngest animals, which could result in a greater excitatory output from these cells to target regions involved in development of addiction. Such output would be expected to be promotive of addiction; therefore, ontogenetic differences in nicotine-mediated increases in the excitability of the LDT could contribute to the differential susceptibility to nicotine addiction seen across age.

  18. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

    DEFF Research Database (Denmark)

    Christensen, Mark Holm; Ishibashi, Masaru; Nielsen, Michael Linnemann;

    2014-01-01

    in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7–P15), nicotine induced larger...... intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15–P34). Nicotine increased neuronal firing of cholinergic cells...

  19. Inositol 1,4,5-Triphosphate Drives Glutamatergic and Cholinergic Inhibition Selectively in Spiny Projection Neurons in the Striatum

    OpenAIRE

    Clements, Michael A; Swapna, Immani; Morikawa, Hitoshi

    2013-01-01

    The striatum is critically involved in the selection of appropriate actions in a constantly changing environment. The spiking activity of striatal spiny projection neurons (SPNs), driven by extrinsic glutamatergic inputs, is shaped by local GABAergic and cholinergic networks. For example, it is well established that different types of GABAergic interneurons, activated by extrinsic glutamatergic and local cholinergic inputs, mediate powerful feedforward inhibition of SPN activity. In this stud...

  20. Ameliorating Effects of Ethanol Extract of Fructus mume on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Min-Soo Kim

    2015-01-01

    Full Text Available We previously reported that Fructus mume (F. mume extract shows protective effects on memory impairments and anti-inflammatory effects induced by chronic cerebral hypoperfusion. Neurodegeneration of basal cholinergic neurons is also observed in the brain with chronic cerebral hypoperfusion. Therefore, the present study was conducted to examine whether F. mume extracts enhance cognitive function via the action of cholinergic neuron using a scopolamine-induced animal model of memory impairments. F. mume (50, 100, or 200 mg/kg was administered to C57BL/6 mice for 14 days (days 1–14 and memory impairment was induced by scopolamine (1 mg/kg, a muscarinic receptor antagonist for 7 days (days 8–14. Spatial memory was assessed using Morris water maze and hippocampal level of acetylcholinesterase (AChE and choline acetyltransferase (ChAT was examined by ELISA and immunoblotting. Mice that received scopolamine alone showed impairments in acquisition and retention in Morris water maze task and increased activity of AChE in the hippocampus. Mice that received F. mume and scopolamine showed no scopolamine-induced memory impairment and increased activity of AChE. In addition, treatments of F. mume increased ChAT expression in the hippocampus. These results indicated that F. mume might enhance cognitive function via action of cholinergic neurons.

  1. Functional and laminar dissociations between muscarinic and nicotinic cholinergic neuromodulation in the tree shrew primary visual cortex.

    Science.gov (United States)

    Bhattacharyya, Anwesha; Bießmann, Felix; Veit, Julia; Kretz, Robert; Rainer, Gregor

    2012-04-01

    Acetylcholine is an important neuromodulator involved in cognitive function. The impact of cholinergic neuromodulation on computations within the cortical microcircuit is not well understood. Here we investigate the effects of layer-specific cholinergic drug application in the tree shrew primary visual cortex during visual stimulation with drifting grating stimuli of varying contrast and orientation. We describe differences between muscarinic and nicotinic cholinergic effects in terms of both the layer of cortex and the attribute of visual representation. Nicotinic receptor activation enhanced the contrast response in the granular input layer of the cortex, while tending to reduce neural selectivity for orientation across all cortical layers. Muscarinic activation modestly enhanced the contrast response across cortical layers, and tended to improve orientation tuning. This resulted in highest orientation selectivity in the supra- and infragranular layers, where orientation selectivity was already greatest in the absence of pharmacological stimulation. Our results indicate that laminar position plays a crucial part in functional consequences of cholinergic stimulation, consistent with the differential distribution of cholinergic receptors. Nicotinic receptors function to enhance sensory representations arriving in the cortex, whereas muscarinic receptors act to boost the cortical computation of orientation tuning. Our findings suggest close homology between cholinergic mechanisms in tree shrew and primate visual cortices.

  2. White Matter Damage in the Cholinergic System Contributes to Cognitive Impairment in Subcortical Vascular Cognitive Impairment, No Dementia

    Science.gov (United States)

    Liu, Qing; Zhu, Zude; Teipel, Stefan J.; Yang, Jianwei; Xing, Yi; Tang, Yi; Jia, Jianping

    2017-01-01

    Cholinergic deficiency has been implicated in the pathogenesis of vascular cognitive impairment (VCI), but the extent of involvement and underlying mechanism remain unclear. In this study, targeting the early stage of VCI, we determined regional atrophy within the basal forebrain and deficiency in cholinergic pathways in 25 patients with vascular cognitive impairment no dementia (VCIND) compared to 24 healthy elderly subjects. By applying stereotaxic cytoarchitectonic maps of the nucleus basalis of Meynert (NbM), no significant atrophy was identified in VCIND. Using probabilistic tractography analysis, our study tracked the two major white matter tracks which map to cholinergic pathways. We identified significantly lower fractional anisotropy (FA) in VCIND. Mediation analysis demonstrated that FA in the tracked pathways could fully account for the executive dysfunction, and partly mediate the memory and global cognition impairment. Our study suggests that the fibers mapped to the cholinergic pathways, but not the NbM, are significantly impaired in VCIND. MRI-based in vivo tracking of cholinergic pathways together with NbM measurement may become a valuable in vivo marker for evaluating the cholinergic system in cognitive disorders. PMID:28289381

  3. A kinetic model for the frequency dependence of cholinergic modulation at hippocampal GABAergic synapses.

    Science.gov (United States)

    Stone, Emily; Haario, Heikki; Lawrence, J Josh

    2014-12-01

    In this paper we use a simple model of presynaptic neuromodulation of GABA signaling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Markov Chain Monte Carlo (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation.

  4. The role of efferent cholinergic transmission for the insulinotropic and glucagonostatic effects of GLP-1

    DEFF Research Database (Denmark)

    Plamboeck, Astrid; Veedfald, Simon; Deacon, Carolyn F

    2015-01-01

    The importance of vagal efferent signaling for the insulinotropic and glucagonostatic effects of glucagon-like peptide-1 (GLP-1) was investigated in a randomized single-blinded study. Healthy male participants (n = 10) received atropine to block vagal cholinergic transmission or saline infusions...... on separate occasions. At t = 15 min, plasma glucose was clamped at 6 mmol/l. GLP-1 was infused at a low dose (0.3 pmol·kg(-1)·min(-1)) from t = 45-95 min and at a higher dose (1 pmol·kg(-1)·min(-1)) from t = 95-145 min. Atropine blocked muscarinic, cholinergic transmission, as evidenced by an increase...... in heart rate [peak: 70 ± 2 (saline) vs. 90 ± 2 (atropine) beats/min, P atropine) pmol/l × min, P

  5. A cholinergic receptor gene (CHRM2) affects event-related oscillations.

    Science.gov (United States)

    Jones, Kevin A; Porjesz, Bernice; Almasy, Laura; Bierut, Laura; Dick, Danielle; Goate, Alison; Hinrichs, Anthony; Rice, John P; Wang, Jen C; Bauer, Lance O; Crowe, Raymond; Foroud, Tatiana; Hesselbrock, Victor; Kuperman, Samuel; Nurnberger, John; O'Connor, Sean J; Rohrbaugh, John; Schuckit, Marc A; Tischfield, Jay; Edenberg, Howard J; Begleiter, Henri

    2006-09-01

    We report genetic linkage and association findings which implicate the gene encoding the muscarinic acetylcholine receptor M2 (CHRM2) in the modulation of a scalp-recorded electrophysiological phenotype. The P3 (P300) response was evoked using a three-stimulus visual oddball paradigm and a phenotype that relates to the energy in the theta band (4-5 Hz) was analyzed. Studies have shown that similar electrophysiological measures represent cognitive correlates of attention, working memory, and response selection; a role has been suggested for the ascending cholinergic pathway in the same functions. The results of our genetic association tests, combined with knowledge regarding the presence of presynaptic cholinergic M2 autoreceptors in the basal forebrain, indicate that the cognitive processes required by the experiment may in part be mediated by inhibitory neural networks. These findings underscore the utility of electrophysiology and neurogenetics in the understanding of cognitive function and the study of brain-related disorders.

  6. Induction of cholinergic differentiation by 5-azacytidine in NG108-15 neuronal cells.

    Science.gov (United States)

    Aizawa, Shu; Sensui, Naoto; Yamamuro, Yutaka

    2009-01-28

    The DNA-demethylating agent 5-azacytidine (5-azaC) causes extensive genomic demethylation of 5-methyl-cytosine residues and reduces DNA methyltransferase activity in cells. This study evaluated the effect of 5-azaC on neuronal differentiation in proliferating NG108-15 neuronal cells, which exhibit cholinergic traits. The expression of choline acetyltransferase, an enzyme responsible for acetylcholine synthesis, was increased at both the mRNA and protein level, and neurite outgrowth was markedly induced with an increase of neurofilament-heavy chain protein, in the 5-azaC-treated cells. These findings show that global DNA demethylation markedly induces the expression of the neurotransmitter phenotype and morphological differentiation in NG108-15 neuronal cells as a model for cholinergic neuron.

  7. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans

    DEFF Research Database (Denmark)

    Vianna, Lauro C; Fadel, Paul J; Secher, Niels H

    2015-01-01

    A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response...... of the muscle is relatively small compared with the onset of leg cycling, where a marked increase in muscle blood flow rapidly occurs as a consequence of multiple redundant mechanisms. We recorded blood pressure (BP; brachial artery), stroke volume (pulse contour analysis), cardiac output, and systemic vascular...... resistance (SVR) in young healthy males, while performing either 20 s of isometric handgrip contraction at 40% maximum voluntary contraction (protocol 1; n = 9) or 20 s of low-intensity leg cycling exercise (protocol 2; n = 8, 42 ± 8 W). Exercise trials were conducted under control (no drug) conditions...

  8. Synthesis and evaluation of radiolabeled piperazine derivatives of vesamicol as SPECT agents for cholinergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bando, Kazunori E-mail: bkazunori@drl.co.jp; Taguchi, Kazumi; Ginoza, Yasushi; Naganuma, Tomoyoshi; Tanaka, Yoshitomo; Koike, Katsuo; Takatoku, Keizo

    2001-04-01

    To diagnose and investigate neurodegenerative diseases affecting cholinergic neuron density, piperazine derivatives of vesamicol were synthesized and evaluated. Previously, we reported that trans-5-iodo-2-hydroxy-3-[4-phenylpiperazinyl] tetralin (DRC140, 1) possessed high selectivity for vesicular acetylcholine transporter (VAChT). In present study of the effect of alkyl substituents, we observed that the introduction of a methyl group into the ortho or meta positions of the phenyl group of 1 increased affinity for VAChT. trans-5-Iodo-2-hydroxy-3-[4-[2-methylphenyl] piperazinyl]tetralin (2) displayed high affinity and specificity for VAChT. The regional distributions of radioactivity in the rat brain correlated well with known patterns of central cholinergic innervation. [{sup 123}I]2 is a potentially useful compound for SPECT imaging.

  9. HISTOMORPHOLOGICAL SPECTRUM OF BREAST LESIONS

    Directory of Open Access Journals (Sweden)

    Kiran H. S

    2016-07-01

    Full Text Available BACKGROUND Cancer of the breast is the second most common cause of cancer in women. Benign or malignant lesions presenting as mass in the breast causes anxiety to the patients and the family members. AIMS AND OBJECTIVES OF THE STUDY 1. To classify different types of lesions of breast, both benign and malignant. 2. Histomorphological study of various types of benign and malignant breast lesions. 3. To study spectrum of lesions associated with benign and malignant breast diseases. SETTING AND DESIGN All the breast biopsies, lumpectomies, and mastectomy specimens presenting to Department of Pathology of our institution between June 2012 to June 2014. MATERIALS AND METHODS A sample size of 100 cases are included in this study. Clinical details are taken from records. The specimens of breast sent to the Department of Pathology are processed by routine histopathological techniques. Histopathological features are studied on haematoxylin and eosin-stained sections. STATISTICAL ANALYSIS Statistically, the test of proportion is used to obtain the frequency of all lesions. Chi-square test, which is used to find the association between the spectrum of lesions showed a p value of 0.0438 and hence the study was considered significant. RESULTS In our study, out of 100 cases, malignant breast lesions constituted the majority of the lesions comprising of 49 cases (49%, followed by benign lesions comprising 46 cases (46% and the inflammatory lesions comprising 5 cases (5%. Among benign lesions, fibrocystic disease was the predominant lesion comprising of 39 cases (41%, followed by fibroadenoma comprising 26 cases (28%, which is followed by 13 cases (14% of fibrocystic disease with columnar cell change and 8 cases (9% of sclerosing adenosis. Among malignant lesions, invasive ductal carcinoma (NST type was the most common lesion comprising 31 cases (61% followed by 11 cases (21% of invasive lobular carcinoma. Invasive papillary carcinoma and medullary carcinoma

  10. T2 weighted MRI for assessing renal lesions in transgenic mouse models of tuberous sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Kalogerou, Maria; Zhang, Yadan; Yang, Jian; Garrahan, Nigel [Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN (United Kingdom); Paisey, Stephen; Tokarczuk, Paweł; Stewart, Andrew [School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3AX (United Kingdom); Gallacher, John [Department of Primary Care and Public Health, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4YS (United Kingdom); Sampson, Julian R. [Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN (United Kingdom); Shen, Ming Hong, E-mail: shenmh@cf.ac.uk [Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN (United Kingdom)

    2012-09-15

    Objective: Transgenic mouse models of tuberous sclerosis (TSC) develop renal cysts, cystadenomas, solid adenomas and carcinomas. Identification and characterisation of these lesions in vivo may help in TSC pre-clinical trials. This study was to evaluate T2 weighted MRI for assessment of renal lesions in two Tsc mouse models. Materials and Methods: Tsc1{sup +/−}, Tsc2{sup +/−} and wild type mice were subjected to a first MRI scan at 12 months of age and a second scan 2 months later. One Tsc2{sup +/−} mouse was treated with rapamycin for two months after the initial scan. Immediately following the second scan, mice were sacrificed and MRI images were compared to renal histological findings. Results: MRI identified all types of Tsc-associated renal lesions in both Tsc1{sup +/−} and Tsc2{sup +/−} mice. The smallest detectable lesions were <0.1 mm{sup 3}. Eighty three percent of all renal lesions detected in the first scan were re-identified in the second scan. By MRI, these lesions demonstrated significant growth in the 9 untreated Tsc1{sup +/−} and Tsc2{sup +/−} mice but shrinkage in the rapamycin treated Tsc2{sup +/−} mouse. Between the two scans, MRI also revealed significant increase in both the total number and volume of lesions in untreated mice and decrease in the rapamycin treated mouse, respectively. In comparison to histological analysis MRI detected most cysts and cystadenomas (66%) but only a minority of solid tumours (29%). Conclusion: These results suggest that T2 weighted MRI may be a useful tool for assessing some renal lesions in pre-clinical studies using Tsc mouse models. However, improved sensitivity for T2 weighted MRI is required, particularly for solid renal lesions.

  11. Modulation of Cholinergic Pathways and Inflammatory Mediators in Blast-Induced Traumatic Brain Injury

    Science.gov (United States)

    2013-01-01

    Neuroinflammation including cross-talk between central and peripheral immune systems is considered to be a primary event after blast exposure...cholinergic anti-inflammatory pathway has been proposed as a link in neuroimmunomodulation, especially during stress con- ditions [8–11]. Neuroinflammation is...BINT) elicits early complement activation and tumor necrosis factor alpha (TNFalpha) release in a rat brain, J. Neurol. Sci. 318 (2012) 146–154. [8

  12. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pranay [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Yadav, Rajesh S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003 (India); Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Dwivedi, Hari N. [Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015 (India); Pant, Aditiya B. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Khanna, Vinay K., E-mail: vkkhanna1@gmail.com [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India)

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  13. A bio-behavioural investigation into the role of the cholinergic system in stress / Ilse Groenewald

    OpenAIRE

    Groenewald, Ilse

    2006-01-01

    Posttraumatic stress disorder (PTSD) is an anxiety disorder that may follow exposure to severe emotional trauma and presents with various symptoms of anxiety, hyperarousal and cognitive anomalies. Interestingly, only 10-30% of an exposed population will go on to develop full-blown PTSD. Cholinergic neurotransmission is implicated in anxiety as well as other typical manifestations of PTSD, particularly cognitive changes. The frontal cortex and hippocampus regulate and in turn ar...

  14. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Yaakov A Levine

    Full Text Available INTRODUCTION: The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model. METHODS: Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed. RESULTS: Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02, a 57% reduction in ankle diameter (area under curve; p = 0.02 and 46% reduction overall histological arthritis score (p = 0.01 with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02, accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01. CONCLUSIONS: The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.

  15. Novel GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons

    OpenAIRE

    English, Daniel F.; Ibanez-Sandoval, Osvaldo; Stark, Eran; Tecuapetla, Fatuel; Buzsaki, Gyorgy; Deisseroth, Karl; Tepper, James M.; Koos, Tibor

    2011-01-01

    Neostriatal cholinergic interneurons are believed to play an important role in reinforcement mediated learning and response selection by signaling the occurrence and motivational value of behaviorally relevant stimuli through precisely timed multiphasic population responses. An important problem is to understand how these signals regulate the functioning of the neostriatum. Here we describe the synaptic organization of a novel circuit that involves direct nicotinic excitation of GABAergic int...

  16. Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons.

    Science.gov (United States)

    Wilson, Charles J; Goldberg, Joshua A

    2006-01-01

    Striatal cholinergic interneurons recorded in slices exhibit three different firing patterns: rhythmic single spiking, irregular bursting, and rhythmic bursting. The rhythmic single-spiking pattern is governed mainly by a prominent brief afterhyperpolarization (mAHP) that follows single spikes. The mAHP arises from an apamin-sensitive calcium-dependent potassium current. A slower AHP (sAHP), also present in these neurons, becomes prominent during rhythmic bursting or driven firing. Although not apamin sensitive, the sAHP is caused by a calcium-dependent potassium conductance. It is not present after blockade of calcium current with cadmium or after calcium is removed from the media or when intracellular calcium is buffered with bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. It reverses at the potassium equilibrium potential. It can be generated by subthreshold depolarizations and persists after blockade of sodium currents by tetrodotoxin. It is slow, being maximal approximately 1 s after depolarization onset, and takes several seconds to decay. It requires >300-ms depolarizations to become maximally activated. Its voltage sensitivity is sigmoidal, with a half activation voltage of -40 mV. We conclude the sAHP is a high-affinity apamin-insensitive calcium-dependent potassium conductance, triggered by calcium currents partly activated at subthreshold levels. In combination with those calcium currents, it accounts for the slow oscillations seen in a subset of cholinergic interneurons exhibiting rhythmic bursting. In all cholinergic interneurons, it contributes to the slowdown or pause in firing that follows driven activity or prolonged subthreshold depolarizations and is therefore a candidate mechanism for the pause response observed in cholinergic neurons in vivo.

  17. Nonequilibrium Calcium Dynamics Regulate the Autonomous Firing Pattern of Rat Striatal Cholinergic Interneurons

    OpenAIRE

    Goldberg, Joshua A.; Teagarden, Mark A.; Foehring, Robert C.; Wilson, Charles J.

    2009-01-01

    Striatal cholinergic interneurons discharge rhythmically in two patterns associated with different afterhyperpolarization timescales, each dictated by a different calcium-dependent potassium current. Single spiking depends on a medium-duration afterhyperpolarization (mAHP) generated by rapid SK currents that are associated with N-type calcium channels. Periodic bursting is driven by a delayed and slowly decaying afterhyperpolarization (sAHP) current associated with L-type channels. Using calc...

  18. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    Science.gov (United States)

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  19. Effects of diazinon on the lymphocytic cholinergic system of Nile tilapia fish (Oreochromis niloticus).

    Science.gov (United States)

    Toledo-Ibarra, G A; Díaz-Resendiz, K J G; Pavón-Romero, L; Rojas-García, A E; Medina-Díaz, I M; Girón-Pérez, M I

    2016-08-01

    Fish rearing under intensive farming conditions can be easily disturbed by pesticides, substances that have immunotoxic properties and may predispose to infections. Organophosphorus pesticides (OPs) are widely used in agricultural activities; however, the mechanism of immunotoxicity of these substances is unclear. The aim of this study was to evaluate the effect of diazinon pesticides (OPs) on the cholinergic system of immune cells as a possible target of OP immunotoxicity. We evaluated ACh levels and cholinergic (nicotinic and muscarinic) receptor concentration. Additionally, AChE activity was evaluated in mononuclear cells of Nile tilapia (Oreochromis niloticus), a freshwater fish mostly cultivated in tropical regions around the world. The obtained results indicate that acute exposure to diazinon induces an increase in ACh concentration and a decrease in nAChR and mAChR concentrations and AChE activity in fish immune cells, This suggests that the non-neuronal lymphocytic cholinergic system may be the main target in the mechanism of OP immunotoxicity. This study contributes to the understanding of the mechanisms of immunotoxicity of pollutants and may help to take actions for animal health improvement.

  20. Effects of histamine and cholinergic systems on memory retention of passive avoidance learning in rats.

    Science.gov (United States)

    Eidi, Maryam; Zarrindast, Mohammad-Reza; Eidi, Akram; Oryan, Shahrbanoo; Parivar, Kazem

    2003-03-28

    In the present study, the effects of the histamine and cholinergic systems on memory retention in adult male rats were investigated. Post-training intracerebroventricular injections were carried out in all the experiments. Cholinoceptor agonist, acetylcholine (1-10 microg/rat) or nicotine (1-10 microg/rat), increased, while a cholinoceptor antagonist, scopolamine (5-20 microg/rat), decreased memory retention. The response to acetylcholine was attenuated by scopolamine. Administration of histamine (5-20 microg/rat) reduced, but the histamine H(1) receptor antagonist, pyrilamine (10-50 microg/rat), and the histamine H(2) receptor antagonist, cimetidine (1-50 microg/rat), increased memory retention in rats. The histamine receptor antagonists attenuated the response to histamine. Histamine reduced the acetylcholine- or nicotine-induced enhancement. The histamine receptor antagonists enhanced the nicotine- or acetylcholine-induced response. Histamine potentiated the inhibitory effect induced by scopolamine. It is concluded that histaminergic and cholinergic systems have opposing effects on memory retention. Also, the histaminergic system elicits an interaction with the cholinergic system in memory retention.

  1. Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans.

    Science.gov (United States)

    Rokem, Ariel; Silver, Michael A

    2010-10-12

    Learning through experience underlies the ability to adapt to novel tasks and unfamiliar environments. However, learning must be regulated so that relevant aspects of the environment are selectively encoded. Acetylcholine (ACh) has been suggested to regulate learning by enhancing the responses of sensory cortical neurons to behaviorally relevant stimuli. In this study, we increased synaptic levels of ACh in the brains of healthy human subjects with the cholinesterase inhibitor donepezil (trade name: Aricept) and measured the effects of this cholinergic enhancement on visual perceptual learning. Each subject completed two 5 day courses of training on a motion direction discrimination task, once while ingesting 5 mg of donepezil before every training session and once while placebo was administered. We found that cholinergic enhancement augmented perceptual learning for stimuli having the same direction of motion and visual field location used during training. In addition, perceptual learning with donepezil was more selective to the trained direction of motion and visual field location. These results, combined with previous studies demonstrating an increase in neuronal selectivity following cholinergic enhancement, suggest a possible mechanism by which ACh augments neural plasticity by directing activity to populations of neurons that encode behaviorally relevant stimulus features.

  2. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    Science.gov (United States)

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  3. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans.

    Science.gov (United States)

    Vianna, Lauro C; Fadel, Paul J; Secher, Niels H; Fisher, James P

    2015-04-01

    A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response of the muscle is relatively small compared with the onset of leg cycling, where a marked increase in muscle blood flow rapidly occurs as a consequence of multiple redundant mechanisms. We recorded blood pressure (BP; brachial artery), stroke volume (pulse contour analysis), cardiac output, and systemic vascular resistance (SVR) in young healthy males, while performing either 20 s of isometric handgrip contraction at 40% maximum voluntary contraction (protocol 1; n = 9) or 20 s of low-intensity leg cycling exercise (protocol 2; n = 8, 42 ± 8 W). Exercise trials were conducted under control (no drug) conditions and following cholinergic blockade (glycopyrrolate). Under control conditions, isometric handgrip elicited an initial increase in BP (+5 ± 2 mmHg at 3 s and +3 ± 1 mmHg at 10 s, P mechanism is important for the BP and SVR responses at the onset of isometric handgrip exercise in humans.

  4. THE ROLE OF VENTRAL MIDLINE THALAMUS IN CHOLINERGIC-BASED RECOVERY IN THE AMNESTIC RAT

    Science.gov (United States)

    Bobal, Michael G.; Savage, Lisa M.

    2014-01-01

    The thalamus is a critical node for several pathways involved in learning and memory. Damage to the thalamus by trauma, disease or malnourishment can impact the effectiveness of the prefrontal cortex (PFC) and hippocampus (HPC) and lead to a profound amnesia state. Using the pyrithiamine-induced thiamine deficiency (PTD) rat model of human Wernicke-Korsakoff syndrome, we tested the hypothesis that co-infusion of the acetylcholinesterase inhibitor physostigmine across the PFC and HPC would recover spatial alternation performance in PTD rats. When cholinergic tone was increased by dual injections across the PFC-HPC, spontaneous alternation performance in PTD rats was recovered. In addition, we tested a second hypothesis that two ventral midline thalamic nuclei, the rhomboid nucleus and nucleus reuniens (Rh-Re), form a critical node needed for the recovery of function observed when cholinergic tone was increased across the PFC and HPC. By using the GABAA agonist muscimol to temporarily deactivate the Rh-Re the recovery of alternation behavior obtained in the PTD model by cholinergic stimulation across the PFC-HPC was blocked. In control pair-fed (PF) rats, inactivation of the Rh-Re impaired spontaneous alternation. However, when inactivation of the Rh-Re co-occurred with physostigmine infusions across the PFC-HPC, PF rats had normal performance. These results further demonstrate that the Rh-Re is critical in facilitating interactions between the HPC and PFC, but other redundant pathways also exist. PMID:25446352

  5. Cholinergic neuromuscular junctions in Brachionus calyciflorus and Lecane quadridentata (Rotifera: Monogononta

    Directory of Open Access Journals (Sweden)

    Ignacio Alejandro Pérez-Legaspi

    2014-05-01

    Full Text Available Objective: To identify the presence of joint muscular and cholinergic systems in two freshwater rotifer species, Brachionus calyciflorus and Lecane quadridentata. Methods: The muscle actin fibers were stained with phalloidin-linked fluorescent dye, and acetylcholine was detected with Amplex Red Acetylcholine/Acetylcholinesterase Assay Kit, and then confocal scanning laser microscopy was used. Results: The musculature of Brachionus calyciflorus showed a pattern similar to other species of the same genus, while that of Lecane quadridentata was different from other rotifer genera described previously. The cholinergic system was determined by co-localization of both muscles and acetylcholine labels in the whole rotifer, suggesting the presence of neuromuscular junctions. Conclusions: The distribution pattern of muscular and acetylcholine systems showed considerable differences between the two species that might be related to different adaptations to particular ecological niches. The confirmation of a cholinergic system in rotifers contributes to the development of potential neuro-pharmacological and toxicological studies using rotifers as model organism.

  6. Developmental Neurotoxicity of Tobacco Smoke Directed Toward Cholinergic and Serotonergic Systems: More Than Just Nicotine.

    Science.gov (United States)

    Slotkin, Theodore A; Skavicus, Samantha; Card, Jennifer; Stadler, Ashley; Levin, Edward D; Seidler, Frederic J

    2015-09-01

    Tobacco smoke contains thousands of compounds in addition to nicotine, a known neuroteratogen. We evaluated the developmental neurotoxicity of tobacco smoke extract (TSE) administered to pregnant rats starting preconception and continued through the second postnatal week. We simulated nicotine concentrations encountered with second-hand smoke, an order of magnitude below those seen in active smokers, and compared TSE with an equivalent dose of nicotine alone, and to a 10-fold higher nicotine dose. We conducted longitudinal evaluations in multiple brain regions, starting in adolescence (postnatal day 30) and continued to full adulthood (day 150). TSE exposure impaired presynaptic cholinergic activity, exacerbated by a decrement in nicotinic cholinergic receptor concentrations. Although both nicotine doses produced presynaptic cholinergic deficits, these were partially compensated by hyperinnervation and receptor upregulation, effects that were absent with TSE. TSE also produced deficits in serotonin receptors in females that were not seen with nicotine. Regression analysis showed a profound sex difference in the degree to which nicotine could account for overall TSE effects: whereas the 2 nicotine doses accounted for 36%-46% of TSE effects in males, it accounted for only 7%-13% in females. Our results show that the adverse effects of TSE on neurodevelopment exceed those that can be attributed to just the nicotine present in the mixture, and further, that the sensitivity extends down to levels commensurate with second-hand smoke exposure. Because nicotine itself evoked deficits at low exposures, "harm reduction" nicotine products do not eliminate the potential for neurodevelopmental damage.

  7. MALIGNANCY IN LARGE COLORECTAL LESIONS

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Oliveira dos SANTOS

    2014-09-01

    Full Text Available Context The size of colorectal lesions, besides a risk factor for malignancy, is a predictor for deeper invasion Objectives To evaluate the malignancy of colorectal lesions ≥20 mm. Methods Between 2007 and 2011, 76 neoplasms ≥20 mm in 70 patients were analyzed Results The mean age of the patients was 67.4 years, and 41 were women. Mean lesion size was 24.7 mm ± 6.2 mm (range: 20 to 50 mm. Half of the neoplasms were polypoid and the other half were non-polypoid. Forty-two (55.3% lesions were located in the left colon, and 34 in the right colon. There was a high prevalence of III L (39.5% and IV (53.9% pit patterns. There were 72 adenomas and 4 adenocarcinomas. Malignancy was observed in 5.3% of the lesions. Thirty-three lesions presented advanced histology (adenomas with high-grade dysplasia or early adenocarcinoma, with no difference in morphology and site. Only one lesion (1.3% invaded the submucosa. Lesions larger than 30 mm had advanced histology (P = 0.001. The primary treatment was endoscopic resection, and invasive carcinoma was referred to surgery. Recurrence rate was 10.6%. Conclusions Large colorectal neoplasms showed a low rate of malignancy. Endoscopic treatment is an effective therapy for these lesions.

  8. Radio-induced brain lesions

    Directory of Open Access Journals (Sweden)

    Gorgan Mircea Radu

    2014-03-01

    Full Text Available Introduction : Radiotherapy, an important tool in multimodal oncologic treatment, can cause radio-induced brain lesion development after a long period of time following irradiation.

  9. INFLUENCE OF MICROBIOTA IN EXPERIMENTAL CUTANEOUS LEISHMANIASIS IN SWISS MICE

    Directory of Open Access Journals (Sweden)

    OLIVEIRA Marcia Rosa de

    1999-01-01

    Full Text Available Infection of Swiss/NIH mice with Leishmania major was compared with infection in isogenic resistant C57BL/6 and susceptible BALB/c mice. Swiss/NIH mice showed self-controlled lesions in the injected foot pad. The production of high levels of interferon-g (IFN-g and low levels of interleukin-4 (IL-4 by cells from these animals suggests that they mount a Th1-type immune response. The importance of the indigenous microbiota on the development of murine leishmaniasis was investigated by infecting germfree Swiss/NIH in the hind footpad with L. major and conventionalizing after 3 weeks of infection. Lesions from conventionalized Swiss/NIH mice were significantly larger than conventional mice. Histopathological analysis of lesions from conventionalized animals showed abscesses of variable shapes and sizes and high numbers of parasitized macrophages. In the lesions from conventional mice, besides the absence of abscess formation, parasites were rarely observed. On the other hand, cells from conventional and conventionalized mice produced similar Th1-type response characterized by high levels of IFN-g and low levels of IL-4. In this study, we demonstrated that Swiss/NIH mice are resistant to L. major infection and that the absence of the normal microbiota at the beginning of infection significantly influenced the lesion size and the inflammatory response at the site of infection.

  10. The role of muscarinic cholinergic signaling in cost-benefit decision making

    Science.gov (United States)

    Fobbs, Wambura

    Animals regularly face decisions that affect both their immediate success and long term survival. Such decisions typically involve some form of cost-benefit analysis and engage a number of high level cognitive processes, including learning, memory and motivational influences. While decision making has been a focus of study for over a century, it's only in the last 20 years that researchers have begun to identify functional neural circuits that subserve different forms of cost-benefit decision making. Even though the cholinergic system is both functionally and anatomically positioned to modulate cost-benefit decision circuits, the contribution of the cholinergic system to decision making has been little studied. In this thesis, I investigated the cognitive and neural contribution of muscarinic cholinergic signaling to cost-benefit decision making. I, first, re-examined the effects of systemic administration of 0.3 mg/kg atropine on delay and probability discounting tasks and found that blockade of muscarinic acetylcholine receptors by atropine induced suboptimal choices (impulsive and risky) in both tasks. Since the effect on delay discounting was restricted to the No Cue version of the delay discounting task, I concluded that muscarinic cholinergic signaling mediates both forms of cost-benefit decision making and is selectively engaged when decisions require valuation of reward options whose costs are not externally signified. Second, I assessed the impact of inactivating the nucleus basalis (NBM) on both forms decision making and the effect of injecting atropine locally into the orbitofrontal cortex (OFC), basolateral amygdala (BLA), or nucleus accumbens (NAc) core during the No Cue version of the delay discounting task. I discovered that although NBM inactivation failed to affect delay discounting, it induced risk aversion in the probability discounting task; and blockade of intra- NAc core, but not intra-OFC or intra-BLA, muscarinic cholinergic signaling lead to

  11. Allopregnanolone reinstates tyrosine hydroxylase immunoreactive neurons and motor performance in an MPTP-lesioned mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Samuel O Adeosun

    Full Text Available Restorative/protective therapies to restore dopamine neurons in the substantia nigra pars compacta (SNpc are greatly needed to effectively change the debilitating course of Parkinson's disease. In this study, we tested the therapeutic potential of a neurogenic neurosteroid, allopregnanolone, in the restoration of the components of the nigrostriatal pathway in MPTP-lesioned mice by measuring striatal dopamine levels, total and tyrosine hydroxylase immunoreactive neuron numbers and BrdU-positive cells in the SNpc. An acute treatment (once/week for two weeks with allopregnanolone restored the number of tyrosine hydroxylase-positive and total cell numbers in the SNpc of MPTP-lesioned mice, even though this did not increase striatal dopamine. It was also noted that MPTP treated mice to which allopregnanolone was administered had an increase in BrdU-positive cells in the SNpc. The effects of allopregnanolone in MPTP-lesioned mice were more apparent in mice that underwent behavioral tests. Interestingly, mice treated with allopregnanolone after MPTP lesion were able to perform at levels similar to that of non-lesioned control mice in a rotarod test. These data demonstrate that allopregnanolone promotes the restoration of tyrosine hydroxylase immunoreactive neurons and total cells in the nigrostriatal tract, improves the motor performance in MPTP-treated mice, and may serve as a therapeutic strategy for Parkinson's disease.

  12. The 6-OHDA mouse model of Parkinson's disease - Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions.

    Science.gov (United States)

    Bagga, V; Dunnett, S B; Fricker, R A

    2015-07-15

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway produce side-biased motor impairments that reflect the motor deficits seen in Parkinson's disease (PD). This toxin-induced model in the rat has been used widely, to evaluate possible therapeutic strategies, but has not been well established in mice. With the advancements in mouse stem cell research we believe the requirement for a mouse model is essential for the therapeutic potential of these and other mouse-derived cells to be efficiently assessed. This aim of this study focused on developing a mouse model of PD using the 129 P2/OLA Hsd mouse strain as this is widely used in the generation of mouse embryonic stem cells. Both unilateral 6-OHDA medial forebrain bundle (MFB) and striatal lesion protocols were compared, with mice analysed for appropriate drug-induced rotational bias. Results demonstrated that lesioned mice responded to d-amphetamine with peak rotation dose at 5mg/kg and 10mg/kg for MFB and striatal lesions respectively. Apomorphine stimulation produced no significant rotational responses, at any dose, in either the MFB or striatal 6-OHDA lesioned mice. Analysis of dopamine neuron loss revealed that the MFB lesion was unreliable with little correlation between dopamine neuron loss and rotational asymmetry. Striatal lesions however were more reliable, with a strong correlation between dopamine neuron loss and rotational asymmetry. Functional recovery of d-amphetamine-induced rotational bias was shown following transplantation of E13 mouse VM tissue into the lesioned striatum; confirming the validity of this mouse model.

  13. Transgenic overexpression of pregnancy-associated plasma protein-A in murine arterial smooth muscle accelerates atherosclerotic lesion development

    DEFF Research Database (Denmark)

    Conover, Cheryl A; Mason, Megan A; Bale, Laurie K

    2010-01-01

    of atherosclerotic lesions, we generated transgenic mice that express human PAPP-A in arterial smooth muscle. Four founder lines were characterized for transgenic human PAPP-A mRNA and protein expression, IGFBP-4 protease activity, and tissue specificity. In study I, apolipoprotein E knockout (ApoE KO) mice, a well...... from ApoE KO/Tg compared with ApoE KO mice (P smooth muscle of double ApoE KO/PAPP-A KO mice resulted in a 2.5-fold increase in lesion area (P = 0.002), without an effect...... on lesion number. PAPP-A transgene expression was associated with a significant increase in an IGF-responsive gene (P smooth muscle accelerates lesion progression in a mouse model...

  14. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice

    NARCIS (Netherlands)

    HogenEsch, H.; Gijbels, M.J.J.; Offerman, E.; Hooft, J. van; Bekkum, D.W. van; Zurcher, C.

    1993-01-01

    Chronic proliferative dermatitis is a new spontaneous mutation in C57BL/Ka mice. Breeding results suggest an autosomal recessive mode of inheritance. Mutant mice develop skin lesions at the age of 5 to 6 weeks. The lesions occur in the ventral and dorsal skin of the body, whereas ears, footpads, and

  15. "Hybrid" lesion of the maxilla

    Directory of Open Access Journals (Sweden)

    S Sankaranarayanan

    2011-01-01

    Full Text Available Juvenile ossifying fibroma is an uncommon benign but aggressive fibroosseous lesion that affects the craniofacial skeleton. Their distinct clinical and histopathological features warrant the lesion to be considered as a separate entity from other fibro-osseous group of lesions such as fibrous dysplasia and cemento ossifying fibroma. Concomitant development of secondary aneurysmal bone cyst may rarely occur, which makes the lesion more aggressive and difficult to treat. We report a case of a 6 year old girl who was diagnosed with aneurysmal bone cyst during her earlier presentation at a private hospital and was treated for the same. The lesion recurred within 6 months. The second incisional biopsy specimen revealed features of trabecular variant of juvenile ossifying fibroma along with areas of aneurysmal bone cyst.

  16. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    Science.gov (United States)

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  17. Pain in osteochondral lesions.

    Science.gov (United States)

    Wiewiorski, Martin; Pagenstert, Geert; Rasch, Helmut; Jacob, Augustinus Ludwig; Valderrabano, Victor

    2011-04-01

    Pain is the key symptom of patients suffering from osteochondral lesions (OCLs) of the ankle joint. Routine radiographic imaging methods for diagnosis and staging of OCL fail to visualize the pain-inducing focus within the joint. SPECT-CT (Single-photon emission computed tomography-computed tomography) is a new hybrid imaging technique allowing exact digital fusion of scintigraphic and computer tomographic images. This allows precise localization and size determination of an OCL within the joint. Using this novel imaging method, we conducted a study to evaluate the correlation between pathological uptake within an OCL and pain experienced by patients suffering from this condition; 15 patients were assessed in the orthopaedic ambulatory clinic for unilateral OCL of the ankle joint. Pain status was measured with the Visual Analogue Scale (VAS). A SPECT-CT was performed. All patients underwent CT-guided ankle injection with a local anesthetic and iodine contrast medium. The VAS score assessed immediately postinfiltration was compared with the preinterventional VAS score obtained in the outpatient clinic. Pain relief was defined as a reduction of the VAS score to ≤50% of the preinterventional score, if expected immediately after infiltration. Pain relief was found in all 15 patients. The results of our study show that there is a highly significant correlation between pain and pathological uptake seen on SPECT-CT, indicating that pathologically remodeled bone tissue is an important contributor to pain in OCL. Adequate addressing of involved bone tissue needs to be taken into consideration when choosing a surgical treatment method.

  18. Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis.

    Science.gov (United States)

    Björkegren, Johan L M; Hägg, Sara; Talukdar, Husain A; Foroughi Asl, Hassan; Jain, Rajeev K; Cedergren, Cecilia; Shang, Ming-Mei; Rossignoli, Aránzazu; Takolander, Rabbe; Melander, Olle; Hamsten, Anders; Michoel, Tom; Skogsberg, Josefin

    2014-02-01

    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-)Apob (100/100) Mttp (flox/flox)Mx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions.

  19. Plasma Cholesterol–Induced Lesion Networks Activated before Regression of Early, Mature, and Advanced Atherosclerosis

    Science.gov (United States)

    Björkegren, Johan L. M.; Hägg, Sara; Jain, Rajeev K.; Cedergren, Cecilia; Shang, Ming-Mei; Rossignoli, Aránzazu; Takolander, Rabbe; Melander, Olle; Hamsten, Anders; Michoel, Tom; Skogsberg, Josefin

    2014-01-01

    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr−/−Apob 100/100 Mttp flox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions. PMID:24586211

  20. Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Johan L M Björkegren

    2014-02-01

    Full Text Available Plasma cholesterol lowering (PCL slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80% and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-Apob (100/100 Mttp (flox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions.

  1. Histaminergic modulation of cholinergic release from the nucleus basalis magnocellularis into insular cortex during taste aversive memory formation.

    Directory of Open Access Journals (Sweden)

    Liliana Purón-Sierra

    Full Text Available The ability of acetylcholine (ACh to alter specific functional properties of the cortex endows the cholinergic system with an important modulatory role in memory formation. For example, an increase in ACh release occurs during novel stimulus processing, indicating that ACh activity is critical during early stages of memory processing. During novel taste presentation, there is an increase in ACh release in the insular cortex (IC, a major structure for taste memory recognition. There is extensive evidence implicating the cholinergic efferents of the nucleus basalis magnocellularis (NBM in cortical activity changes during learning processes, and new evidence suggests that the histaminergic system may interact with the cholinergic system in important ways. However, there is little information as to whether changes in cholinergic activity in the IC are modulated during taste memory formation. Therefore, in the present study, we evaluated the influence of two histamine receptor subtypes, H1 in the NBM and H3 in the IC, on ACh release in the IC during conditioned taste aversion (CTA. Injection of the H3 receptor agonist R-α-methylhistamine (RAMH into the IC or of the H1 receptor antagonist pyrilamine into the NBM during CTA training impaired subsequent CTA memory, and simultaneously resulted in a reduction of ACh release in the IC. This study demonstrated that basal and cortical cholinergic pathways are finely tuned by histaminergic activity during CTA, since dual actions of histamine receptor subtypes on ACh modulation release each have a significant impact during taste memory formation.

  2. Decrease of a Current Mediated by Kv1.3 Channels Causes Striatal Cholinergic Interneuron Hyperexcitability in Experimental Parkinsonism

    Directory of Open Access Journals (Sweden)

    Cecilia Tubert

    2016-09-01

    Full Text Available The mechanism underlying a hypercholinergic state in Parkinson’s disease (PD remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels.

  3. GABAA receptors are located in cholinergic terminals in the nucleus pontis oralis of the rat: implications for REM sleep control.

    Science.gov (United States)

    Liang, Chang-Lin; Marks, Gerald A

    2014-01-16

    The oral pontine reticular formation (PnO) of rat is one region identified in the brainstem as a rapid eye movement (REM) sleep induction zone. Microinjection of GABA(A) receptor antagonists into PnO induces a long lasting increase in REM sleep, which is similar to that produced by cholinergic agonists. We previously showed that this REM sleep-induction can be completely blocked by a muscarinic antagonist, indicating that the REM sleep-inducing effect of GABA(A) receptor antagonism is dependent upon the local cholinergic system. Consistent with these findings, it has been reported that GABA(A) receptor antagonists microdialyzed into PnO resulted in increased levels of acetylcholine. We hypothesize that GABA(A) receptors located on cholinergic boutons in the PnO are responsible for the REM sleep induction by GABA(A) receptor antagonists through blocking GABA inhibition of acetylcholine release. Cholinergic, varicose axon fibers were studied in the PnO by immunofluorescence and confocal, laser scanning microscopy. Immunoreactive cholinergic boutons were found to be colocalized with GABA(A) receptor subunit protein γ2. This finding implicates a specific subtype and location of GABA(A) receptors in PnO of rat in the control of REM sleep.

  4. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions.

    Science.gov (United States)

    Gonzales, Kalynda K; Smith, Yoland

    2015-09-01

    Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.

  5. Impact of Prostate Inflammation on Lesion Development in the POET3+Pten+/− Mouse Model of Prostate Carcinogenesis

    Science.gov (United States)

    Burcham, Grant N.; Cresswell, Gregory M.; Snyder, Paul W.; Chen, Long; Liu, Xiaoqi; Crist, Scott A.; Henry, Michael D.; Ratliff, Timothy L.

    2015-01-01

    Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten+/−) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten+/− mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b+Gr1+ cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten+/− model of cancer. PMID:25455686

  6. Site-specific dephosphorylation of tau of apolipoprotein E-deficient and control mice by M1 muscarinic agonist treatment.

    Science.gov (United States)

    Genis, I; Fisher, A; Michaelson, D M

    1999-01-01

    Apolipoprotein E (apoE)-deficient mice have memory deficits that are associated with synaptic loss of basal forebrain cholinergic projections and with hyperphosphorylation of distinct epitopes of the microtubule-associated protein tau. Furthermore, treatment of apoE-deficient mice with the M1 selective agonist 1-methylpiperidine-4-spiro-(2'-methylthiazoline) [AF150(S)] abolishes their memory deficits and results in recovery of their brain cholinergic markers. In the present study, we used a panel of anti-tau monoclonal antibodies to further map the tau epitopes that are hyperphosphorylated in apoE-deficient mice and examined the effects of prolonged treatment with AF150(S). This revealed that tau of apoE-deficient mice contains a distinct, hyperphosphorylated "hot spot" domain which is localized N-terminally to the microtubule binding domain of tau, and that AF150(S) has an epitope-specific tau dephosphorylating effect whose magnitude is affected by apoE deficiency. Accordingly, epitopes which reside in the hyperphosphorylated "hot spot" are dephosphorylated by AF150(S) in apoE-deficient mice but are almost unaffected in the controls, whereas epitopes which flank this tau domain are dephosphorylated by AF150(S) in both mice groups. In contrast, epitopes located at the N and C terminals of tau are unaffected by AF150(S) in both groups of mice. These findings suggest that apoE deficiency results in hyperphosphorylation of a distinct tau domain whose excess phosphorylation can be reduced by muscarinic treatment.

  7. An Improved Mouse Model of Atopic Dermatitis and Suppression of Skin Lesions by an Inhibitor of Tec Family Kinases

    Directory of Open Access Journals (Sweden)

    Yuko Kawakami

    2007-01-01

    Conclusions: We established a highly efficient, highly reproducible protocol to induce skin lesions in NC/Nga mice and successfully applied it to show the efficacy of terreic acid in treating skin lesions. This mouse model of atopic dermatitis will be useful to study the pathogenetic processes of atopic dermatitis and to evaluate the efficacy of drug candidates.

  8. Effects of magnolol on impairment of learning and memory abilities induced by scopolamine in mice.

    Science.gov (United States)

    Li, Yang-si; Hong, Ying-fen; He, Jiang; Lin, Jian-xun; Shan, Yi-long; Fu, Dong-ying; Chen, Zhi-peng; Ren, Xin-ran; Song, Zhi-hong; Tao, Liang

    2013-01-01

    Alzheimer's disease (AD), one of the most common forms of dementia, is primarily ascribed to the cholinergic deficits and neuronal dysfunction. Magnolol (Mag), a bioactivator extracted from Magnolia officinalis, has protective effects on cholinergic neurons, but the specific mechanism remains unknown. To further evaluate the therapeutic effects of Mag on the learning and memory impairment in a scopolamine (Scop)-induced mouse model, the passive avoidance and the Morris water maze tests, the measurement of the ratio of brain/hippocampus to body weight, activities of acetyl cholinesterase (AChE), superoxide dismutase (SOD), total nitric oxide synthase (total NOS) and the content of methane dicarboxylic aldehyde (MDA) in hippocampus homogenate as well as the immunefluorescence staining of the AChE positive nerve fibers were performed. Therapeutically treated with Mag, the impaired abilities of learning and memory of the Scop-induced mice were almost restored to the native levels. The restored AChE, total NOS and SOD activities and the MDA level were observed, with a relatively normal density of AChE positive nerve fibers in hippocampus CA3 molecular layer. The improving efficacy of Mag on learning and memory impairment induced by Scop is dose-dependent, indicating that Mag has potential neuroprotective effects against neuronal impairment and memory dysfunction induced by Scop in mice. The underlying mechanisms may be associated with the anti-oxidative effects of Mag and its protective effects on hippocampus cholinergic neurons.

  9. PHAEOHYPHOMYCOSIS: CUTANEOUS, SUBCUTANEOUS, NASOPHARYNGEAL LESIONS

    Directory of Open Access Journals (Sweden)

    M. Rasoolinejad

    1999-06-01

    Full Text Available Phaeohyphomycosis is an amalgam of clinical diseases caused by a wide variety of dematiaceous fungi. We are reporting on a 16 year-old patient from Amol with subcutaneous cervical nodes and nasopharyngeal lesions of phaeohypho"nmycosis that were confirmed by pathological examination, direct smear, and culture. After treatment with an oral triazole (Itraconazole for 4 months, all nodes and lesions disappeared and treatment was stopped A new lesion appeared on his chest wall 8 months, therapy with itraconazole was restarted and commuted for a long time.

  10. Factitious lesions of the hand

    Directory of Open Access Journals (Sweden)

    Ricardo Kaempf de Oliveira

    2013-08-01

    Full Text Available OBJECTIVE: The presence of a lesion with atypical presentation, obscure clinical history, which does not improve with classic treatments, shall raise the red flag of the medical team. In such cases, the hypothesis of a factitious lesion shall be considered. Many times the correct diagnosis on the initial assessment may avoid high-cost diagnostic tests, unnecessary treatments, and time consumption of the medical team. We present here two classic cases of factitious lesions that, similar to those described in the literature, is difficult to diagnose and difficult to treat.

  11. Lesiones debido a un rayo

    OpenAIRE

    Soraia Oliveira; Andriy Bal

    2012-01-01

    Lesiones debido a un rayo Mujer de 72 años, fue admitida en urgências con dolor abdominal y lipotimia después de ser golpeada por un rayo mientras abría una ventana. En la exploracion presentaba lesiones, localizadas en el tronco, dolorosas a la palpación. Las lesiones abdominales en forma de estrella eran muy sugestivas de imágenes de Lichtenberg (figura A), mientras en la región pélvica (figura B) y en la nalga derecha (figura C) eran más lineales y compatibles con quemaduras de pri...

  12. The cholinergic system is involved in regulation of the development of the hematopoietic system.

    Science.gov (United States)

    Serobyan, Naira; Jagannathan, Suchitra; Orlovskaya, Irina; Schraufstatter, Ingrid; Skok, Marina; Loring, Jeanne; Khaldoyanidi, Sophia

    2007-05-30

    Gene expression profiling demonstrated that components of the cholinergic system, including choline acetyltransferase, acetylcholinesterase and nicotinic acetylcholine receptors (nAChRs), are expressed in embryonic stem cells and differentiating embryoid bodies (EBs). Triggering of nAChRs expressed in EBs by nicotine resulted in activation of MAPK and shifts of spontaneous differentiation toward hemangioblast. In vivo, non-neural nAChRs are detected early during development in fetal sites of hematopoiesis. Similarly, in vivo exposure of the developing embryo to nicotine resulted in higher numbers of hematopoietic progenitors in fetal liver. However postpartum, the number of hematopoietic stem/progenitor cells (HSPC) was decreased, suggesting an impaired colonization of the fetal bone marrow with HSPCs. This correlated with increased number of circulating HSPC and decreased expression of CXCR4 that mediates migration of circulating cells into the bone marrow regulatory niche. In addition, protein microarrays demonstrated that nicotine changed the profile of cytokines produced in the niche. While the levels of IL1alpha, IL1beta, IL2, IL9 and IL10 were not changed, the production of hematopoiesis-supportive cytokines including G-CSF, GM-CSF, IL3, IL6 and IGFBP-3 was decreased. This correlated with the decreased repopulating ability of HSPC in vivo and diminished hematopoietic activity in bone marrow cultures treated with nicotine. Interestingly, nicotine stimulated the production of IL4 and IL5, implying a possible role of the cholinergic system in pathogenesis of allergic diseases. Our data provide evidence that the nicotine-induced imbalance of the cholinergic system during gestation interferes with normal development and provides the basis for negative health outcomes postpartum in active and passive smokers.

  13. Cholinergic-opioidergic interaction in the central amygdala induces antinociception in the guinea pig

    Directory of Open Access Journals (Sweden)

    Leite-Panissi C.R.A.

    2004-01-01

    Full Text Available Several studies have demonstrated the involvement of the central nucleus of the amygdala (CEA in the modulation of defensive behavior and in antinociceptive regulation. In a previous study, we demonstrated the existence of a cholinergic-opioidergic interaction in the CEA, modulating the defensive response of tonic immobility in guinea pigs. In the present study, we investigated a similar interaction in the CEA, but now involved in the regulation of the nociceptive response. Microinjection of carbachol (2.7 nmol and morphine (2.2 nmol into the CEA promoted antinociception up to 45 min after microinjection in guinea pigs as determined by a decrease in the vocalization index in the vocalization test. This test consists of the application of a peripheral noxious stimulus (electric shock into the subcutaneous region of the thigh that provokes the emission of a vocalization response by the animal. Furthermore, the present results demonstrated that the antinociceptive effect of carbachol (2.7 nmol; N = 10 was blocked by previous administration of atropine (0.7 nmol; N = 7 or naloxone (1.3 nmol; N = 7 into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol; N = 9 into the CEA was prevented by pretreatment with naloxone (1.3 nmol; N = 11. All sites of injection were confirmed by histology. These results indicate the involvement of the cholinergic and opioidergic systems of the CEA in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalins from interneurons of the CEA, resulting in antinociception.

  14. Intricate paths of cells and networks becoming "Cholinergic" in the embryonic chicken retina.

    Science.gov (United States)

    Thangaraj, Gopenath; Greif, Alexander; Bachmann, Gesine; Layer, Paul G

    2012-10-01

    Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) are the decisive enzymatic activities regulating the availability of acetylcholine (ACh) at a given synaptic or nonsynaptic locus. The only cholinergic cells of the mature inner retina are the so-called starburst amacrine cells (SACs). A type-I SAC, found at the outer border of the inner plexiform layer (IPL), forms a synaptic subband "a" within the IPL, while a type-II SAC located at the inner IPL border projects into subband "d." Applying immunohistochemistry for ChAT and AChE on sections of the chicken retina, we here have revealed intricate relationships of how retinal networks became dominated by AChE or by ChAT reactivities. AChE+ cells were first detectable in an embryonic day (E)4 retina, while ChAT appeared 1 day later in the very same cells; at this stage all are Brn3a+, a marker for ganglion cells (GCs). On either side of a faint AChE+ band, indicating the future IPL, pairs of ChAT+ /AChE- /Brn3a- cells appeared between E7/8. Type-I cells had increased ChAT and lost AChE; type-II cells presented less ChAT, but some AChE on their surfaces. Direct neighbors of SACs tended to express much AChE. Along with maturation, subband "a" presented more ChAT but less AChE; in subband "d" this pattern was reversed. In conclusion, the two retinal cholinergic networks segregate out from one cell pool, become locally opposed to each other, and become dominated by either synthesis or degradation of ACh. These "cholinergic developmental divergences" may also have significant physiologic consequences.

  15. Cholinergic neurons of the pelvic autonomic ganglia and uterus of the female rat: distribution of axons and presence of muscarinic receptors.

    Science.gov (United States)

    Papka, R E; Traurig, H H; Schemann, M; Collins, J; Copelin, T; Wilson, K

    1999-05-01

    Acetylcholine (ACh) stimulates contraction of the uterus and dilates the uterine arterial supply. Uterine cholinergic nerves arise from the paracervical ganglia and were, in the past, characterized based on acetylcholinesterase (AChE) histochemistry. However, the histochemical reaction for acetylcholinesterase provides only indirect evidence of acetylcholine location and is a nonspecific marker for cholinergic nerves. The present study: (1) reevaluated cholinergic neurons of the paracervical ganglia, (2) examined the cholinergic innervation of the uterus by using retrograde axonal tracing and antibodies against molecules specific to cholinergic neurons, choline acetyltransferase and the vesicular acetylcholine transporter, and (3) examined muscarinic receptors in the paracervical ganglia using autoradiography and a radiolabeled agonist. Most ganglionic neurons were choline acetyltransferase- and vesicular acetylcholine transporter-immunoreactive and were apposed by choline acetyltransferase/vesicular acetylcholine transporter-immunoreactive terminals. Retrograde tracing showed that some cholinergic neurons projected axons to the uterus. These nerves formed moderately dense plexuses in the myometrium, cervical smooth muscle and microarterial system of the uterine horns and cervix. Finally, the paracervical ganglia contain muscarinic receptors. These results clearly reveal the cholinergic innervation of the uterus and cervix, a source of these nerves, and demonstrate the muscarinic receptor content of the paracervical ganglia. Cholinergic nerves could play significant roles in the control of uterine myometrium and vasculature.

  16. Nonproliferative and Proliferative Lesions of the Rat and Mouse Skeletal Tissues (Bones, Joints, and Teeth)

    Science.gov (United States)

    Fossey, Stacey; Vahle, John; Long, Philip; Schelling, Scott; Ernst, Heinrich; Boyce, Rogely Waite; Jolette, Jacquelin; Bolon, Brad; Bendele, Alison; Rinke, Matthias; Healy, Laura; High, Wanda; Roth, Daniel Robert; Boyle, Michael; Leininger, Joel

    2016-01-01

    The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) Project (www.toxpath.org/inhand.asp) is an initiative of the Societies of Toxicological Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in the skeletal tissues and teeth of laboratory rats and mice, with color photomicrographs illustrating examples of many common lesions. The standardized nomenclature presented in this document is also available on the internet (http://www.goreni.org/). Sources of material were databases from government, academic and industrial laboratories throughout the world. PMID:27621538

  17. Axonal lesion-induced microglial proliferation and microglial cluster formation in the mouse

    DEFF Research Database (Denmark)

    Dissing-Olesen, L; Ladeby, R; Nielsen, Helle Hvilsted;

    2007-01-01

    Microglia are innate immune cells and form the first line of defense of the CNS. Proliferation is a key event in the activation of microglia in acute pathology, and has been extensively characterized in rats, but not in mice. In this study we investigated axonal-lesion-induced microglial...... proliferation and surface antigen expression in C57BL/6 mice. Transection of the entorhino-dentate perforant path projection results in an anterograde axonal and a dense terminal degeneration that induces a region-specific activation of microglia in the dentate gyrus. Time-course analysis showed activation...... and the proliferation marker bromodeoxyuridine, injected 1 h prior to perfusion, showed that lesion-reactive microglia accounted for the vast majority of proliferating cells. Microglia proliferated as soon as 24 h after lesion and 25% of all microglial cells were proliferating 3 days post-lesion. Immunofluorescence...

  18. Lesions of the avian pancreas.

    Science.gov (United States)

    Schmidt, Robert E; Reavill, Drury R

    2014-01-01

    Although not well described, occasional reports of avian exocrine and endocrine pancreatic disease are available. This article describes the lesions associated with common diseases of the avian pancreas reported in the literature and/or seen by the authors.

  19. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain.

    Science.gov (United States)

    Fusco, Francesca R; Zuccato, Chiara; Tartari, Marzia; Martorana, Alessandro; De March, Zena; Giampà, Carmela; Cattaneo, Elena; Bernardi, Giorgio

    2003-09-01

    Loss of huntingtin-mediated brain-derived neurotrophic factor (BDNF) gene transcription has been described in Huntington's disease (HD) [Zuccato et al. (2001) Science, 293, 493-498]. It has been shown that BDNF is synthesized in the pyramidal layer of cerebral cortex and released in the striatum [Altar et al. (1997) Nature, 389, 856-860; Conner et al. (1997) J. Neurosci., 17, 2295-2313]. Here we show the cellular localization of BDNF in huntingtin-containing neurons in normal rat brain; our double-label immunofluorescence study shows that huntingtin and BDNF are co-contained in approximately 99% of pyramidal neurons of motor cortex. In the striatum, huntingtin is expressed in 75% of neurons containing BDNF. In normal striatum we also show that BDNF is contained in cholinergic and in NOS-containing interneurons, which are relatively resistant to HD degeneration. Furthermore, we show a reduction in huntingtin and in BDNF immunoreactivity in cortical neurons after striatal excitotoxic lesion. Our data are confirmed by an ELISA study of BDNF and by a Western blot analysis of huntingtin in cortex of quinolic acid (QUIN)-lesioned hemispheres. In the lesioned striatum we describe that the striatal subpopulation of cholinergic neurons, surviving degeneration, contain BDNF. The finding that BDNF is contained in nearly all neurons that contain huntingtin in the normal cortex, along with the reduced expression of BDNF after QUIN injection of the striatum, shows that huntingtin may be required for BDNF production in cortex.

  20. Pediatric sellar and suprasellar lesions.

    Science.gov (United States)

    Schroeder, Jason W; Vezina, L Gilbert

    2011-03-01

    Masses arising in the sella turcica and the suprasellar region are common in children. The type and frequency of the various lesions encountered in childhood differ from the adult presentation. This article reviews the embryology of the pituitary gland and its normal appearance in childhood as well as the imaging and clinical findings of the common and some of the uncommon lesions arising in the sella turcica, the pituitary stalk, the suprasellar cistern and the lower third ventricle in the pediatric population.

  1. Premalignant Lesions in the Kidney

    Directory of Open Access Journals (Sweden)

    Ziva Kirkali

    2001-01-01

    Full Text Available Renal cell carcinoma (RCC is the most malignant urologic disease. Different lesions, such as dysplasia in the tubules adjacent to RCC, atypical hyperplasia in the cyst epithelium of von Hippel-Lindau syndrome, and adenoma have been described for a number of years as possible premalignant changes or precursor lesions of RCC. In two recent papers, kidneys adjacent to RCC or removed from other causes were analyzed, and dysplastic lesions were identified and defined in detail. Currently renal intraepithelial neoplasia (RIN is the proposed term for classification. The criteria for a lesion to be defined as premalignant are (1 morphological similarity; (2 spatial association; (3 development of microinvasive carcinoma; (4 higher frequency, severity, and extent then invasive carcinoma; (5 progression to invasive cancer; and (6 similar genetic alterations. RIN resembles the neoplastic cells of RCC. There is spatial association. Progression to invasive carcinoma is described in experimental cancer models, and in some human renal tumors. Similar molecular alterations are found in some putative premalignant changes. The treatment for RCC is radical or partial nephrectomy. Preneoplastic lesions may remain in the renal remnant in patients treated by partial nephrectomy and may be the source of local recurrences. RIN seems to be a biologic precursor of some RCCs and warrants further investigation. Interpretation and reporting of these lesions would reveal important resources for the biological nature and clinical significance. The management of RIN diagnosed in a renal biopsy and partial nephrectomy needs to be answered.

  2. Border preserving skin lesion segmentation

    Science.gov (United States)

    Kamali, Mostafa; Samei, Golnoosh

    2008-03-01

    Melanoma is a fatal cancer with a growing incident rate. However it could be cured if diagnosed in early stages. The first step in detecting melanoma is the separation of skin lesion from healthy skin. There are particular features associated with a malignant lesion whose successful detection relies upon accurately extracted borders. We propose a two step approach. First, we apply K-means clustering method (to 3D RGB space) that extracts relatively accurate borders. In the second step we perform an extra refining step for detecting the fading area around some lesions as accurately as possible. Our method has a number of novelties. Firstly as the clustering method is directly applied to the 3D color space, we do not overlook the dependencies between different color channels. In addition, it is capable of extracting fine lesion borders up to pixel level in spite of the difficulties associated with fading areas around the lesion. Performing clustering in different color spaces reveals that 3D RGB color space is preferred. The application of the proposed algorithm to an extensive data-base of skin lesions shows that its performance is superior to that of existing methods both in terms of accuracy and computational complexity.

  3. Simulation of spiculated breast lesions

    Science.gov (United States)

    Elangovan, Premkumar; Alrehily, Faisal; Pinto, R. Ferrari; Rashidnasab, Alaleh; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2016-03-01

    Virtual clinical trials are a promising new approach increasingly used for the evaluation and comparison of breast imaging modalities. A key component in such an assessment paradigm is the use of simulated pathology, in particular, simulation of lesions. Breast mass lesions can be generally classified into two categories based on their appearance; nonspiculated masses and spiculated masses. In our previous work, we have successfully simulated non-spiculated masses using a fractal growth process known as diffusion limited aggregation. In this new work, we have extended the DLA model to simulate spiculated lesions by using features extracted from patient DBT images containing spiculated lesions. The features extracted included spicule length, width, curvature and distribution. This information was used to simulate realistic looking spicules which were attached to the surface of a DLA mass to produce a spiculated mass. A batch of simulated spiculated masses was inserted into normal patient images and presented to an experienced radiologist for review. The study yielded promising results with the radiologist rating 60% of simulated lesions in 2D and 50% of simulated lesions in DBT as realistic.

  4. Unusual lesions of the mediastinum

    Directory of Open Access Journals (Sweden)

    Fatima Shamsuddin

    2015-01-01

    Full Text Available Objectives: To study unusual lesions in the mediastinum, which do not originate from the thymus, lymph nodes, neural tissues or germ cells, and tissues that normally engender pathologic lesions in the mediastinum. Materials and Methods: Of the 65 cases seen, 12 unusual lesion were encountered in a 5½ year period from 2006 to 2011. Results: Two cases of nodular colloid goiter and one each of the mediastinal cyst, undifferentiated carcinoma, and Langerhans cell histiocytosis (LCH affected the anterosuperior mediastinum. In the middle mediastinum, one case each of the mesothelioma, malignant gastrointestinal stromal tumor (GIST, squamous cell carcinoma (SCC, solitary fibrous tumor (SFT, and pleomorphic sarcoma (PS was seen. One case of meningeal melanocytoma (Mme and primary pleural liposarcoma (PL involved the posterior mediastinum. Persistent disease was seen in LCH after 2 years. Of all the cases with malignant lesions, only the patient with SCC was alive after 1 year. Conclusion: The cases of primary and SCC, LCH, melanocytoma, liposarcoma and PS, and GIST are unexpected and very rarely have paradigms in the mediastinum. Radiologic impression and knowledge of the compartment where these lesions arose from hardly assisted in arriving at a definitive opinion as the lesions were not typical of this location. A high index of suspicion and the immunohistochemical profile facilitated the final diagnosis.