WorldWideScience

Sample records for cholinergic anti-inflammatory pathway

  1. Neuro-immune interactions via the cholinergic anti-inflammatory pathway

    Science.gov (United States)

    Gallowitsch-Puerta, Margot; Pavlov, Valentin A.

    2010-01-01

    The overproduction of TNF and other cytokines can cause the pathophysiology of numerous diseases. Controlling cytokine synthesis and release is critical for preventing unrestrained inflammation and maintaining health. Recent studies identified an efferent vagus nerve-based mechanism termed “the cholinergic anti-inflammatory pathway” that controls cytokine production and inflammation. Here we review current advances related to the role of this pathway in neuro-immune interactions that prevent excessive inflammation. Experimental evidence indicates that vagus nerve cholinergic anti-inflammatory signaling requires alpha7 nicotinic acetylcholine receptors expressed on non-neuronal cytokine producing cells. Alpha7 nicotinic acetylcholine receptor agonists inhibit cytokine release and protect animals in a variety of experimental lethal inflammatory models. Knowledge related to the cholinergic anti-inflammatory pathway can be exploited in therapeutic approaches directed towards counteracting abnormal chronic and hyper-activated inflammatory responses. PMID:17289087

  2. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model

    NARCIS (Netherlands)

    Koopman, F. A.; Vosters, J. L.; Roescher, N.; Broekstra, N.; Tak, P. P.; Vervoordeldonk, M. J.

    2015-01-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's

  3. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Yaakov A Levine

    Full Text Available The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model.Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed.Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02, a 57% reduction in ankle diameter (area under curve; p = 0.02 and 46% reduction overall histological arthritis score (p = 0.01 with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02, accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01.The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.

  4. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway

    Science.gov (United States)

    Pavlov, Valentin A.; Parrish, William R.; Rosas-Ballina, Mauricio; Ochani, Mahendar; Puerta, Margot; Ochani, Kanta; Chavan, Sangeeta; Al-Abed, Yousef; Tracey, Kevin J.

    2015-01-01

    The excessive release of cytokines by the immune system contributes importantly to the pathogenesis of inflammatory diseases. Recent advances in understanding the biology of cytokine toxicity led to the discovery of the “cholinergic anti-inflammatory pathway,” defined as neural signals transmitted via the vagus nerve that inhibit cytokine release through a mechanism that requires the alpha7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). Vagus nerve regulation of peripheral functions is controlled by brain nuclei and neural networks, but despite considerable importance, little is known about the molecular basis for central regulation of the vagus nerve-based cholinergic anti-inflammatory pathway. Here we report that brain acetylcholinesterase activity controls systemic and organ specific TNF production during endotoxemia. Peripheral administration of the acetylcholinesterase inhibitor galantamine significantly reduced serum TNF levels through vagus nerve signaling, and protected against lethality during murine endotoxemia. Administration of a centrally-acting muscarinic receptor antagonist abolished the suppression of TNF by galantamine, indicating that suppressing acetylcholinesterase activity, coupled with central muscarinic receptors, controls peripheral cytokine responses. Administration of galantamine to α7nAChR knockout mice failed to suppress TNF levels, indicating that the α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of galantamine. These findings show that inhibition of brain acetylcholinesterase suppresses systemic inflammation through a central muscarinic receptor-mediated and vagal- and α7nAChR-dependent mechanism. Our data also indicate that a clinically used centrally-acting acetylcholinesterase inhibitor can be utilized to suppress abnormal inflammation to therapeutic advantage. PMID:18639629

  5. [Effects and mechanisms of the inflammatory reaction related to NASH and induced by activation of the cholinergic anti-inflammatory pathway].

    Science.gov (United States)

    Zhou, Zhou; Chen, Xiaomei; Li, Fuqiang; Tang, Cuilan

    2015-01-01

    To investigate the effects and mechanisms of the inflammatory reaction related to nonalcoholic steatohepatitis (NASH) and induced by activation of the cholinergic anti-inflammatory pathway. A mouse model of NASH was established by feeding a high-fat and high-sugar diet.Activation of the cholinergic anti-inflammatory pathway was achieved by nicotine administration to the NASH modeled mice and normal controls. Liver biopsies were taken and the concentrations of cytokines were measured. Isolated liver primary Kupffer cells and RAw264.7 cells were cultured, pre-treated or not with lipopolysaccharide (LPS) and exposed to nicotine, after which the supernatant concentrations of IL-6 and TNFa were determined by ELISA. The protein expression levels of phosphorylated (p)-NF-kB and I k B were detected in primary cultured Kupffer cells by western blotting. The mouse model of NASH was successfully established, as evidenced by findings from liver biopsy and serum liver function tests. The degree of liver inflammation in the NASH mice decreased after nicotine administration, and the level of serum TNFa also significantly decreased. The levels of serum TNFa were 21.95+/-0.8 pg/mL in nicotine-treated mice and 38.07+/-1.7 pg/mL in the non-nicotine-treated NASH mice (P less than 0.05). The nicotine treatment also significantly reduced the concentration of TNFa in the culture supernatants of Kupffer cells after LPS stimulation; moreover, the supernatant level of TNFa decreased significantly after the nicotine treatment (Pless than 0.05). LPS stimulation of the RAw264.7 cells led to an increased level ofp-NF-kB and a reduced level ofI-kB, suggesting that the NF-kB pathway had been activated; different doses of nicotine pre-treatment led to down-regulation of the p-NF-kB level and up-regulation of the I-kB level, both in dose-dependent manners. Activating the cholinergic anti-inflammatory pathway inhibits the NASH-related inflammatory reaction, and the mechanism for this inhibition

  6. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Kidney ischemia/reperfusion injury (I/R is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR. Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.

  7. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model.

    Science.gov (United States)

    Koopman, F A; Vosters, J L; Roescher, N; Broekstra, N; Tak, P P; Vervoordeldonk, M J

    2015-10-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's syndrome and type 1 diabetes. The alpha-7 nicotinic acetylcholine receptor (α7nAChR) was stimulated with AR-R17779 or nicotine in NOD mice. In a second study, unilateral cervical vagotomy was performed. α7nAChR expression, focus scores, and salivary flow were evaluated in salivary glands (SG) and insulitis score in the pancreas. Cytokines were measured in serum and SG. α7nAChR was expressed on myoepithelial cells in SG. Monocyte chemotactic protein-1 levels were reduced in SG after AR-R17779 treatment and tumor necrosis factor production was increased in the SG of the vagotomy group compared to controls. Focus score and salivary flow were unaffected. NOD mice developed diabetes more rapidly after vagotomy, but at completion of the study there were no statistically significant differences in number of mice that developed diabetes or in insulitis scores. Intervention of the CAP in NOD mice leads to minimal changes in inflammatory cytokines, but did not affect overall inflammation and function of SG or development of diabetes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. [Cholinergic anti-inflammatory pathway of some non-pharmacological therapies of complementary medicine: possible implications for treatment of rheumatic and autoimmune diseases].

    Science.gov (United States)

    Gamus, Dorit

    2011-08-01

    Rheumatologic and autoimmune diseases are among foremost diseases for which patients seek complementary and integrative medicine options. Therefore, physicians should be informed on the advances in research of these therapies, in order to be able to discuss possible indications and contraindications for these treatment modalities with their patients. This review summarizes several therapeutic modalities of complementary medicine that may be involved in the cholinergic anti-inflammatory pathway. The analysis of systematic reviews of acupuncture for rheumatic conditions has concluded that the evidence is sufficiently sound to warrant positive recommendations of this therapy for osteoarthritis, low back pain and lateral elbow pain. There is relatively strong evidence to support the use of hypnosis in pain treatment, such as in cases of fibromyalgia. A recent controlled study that evaLuated tai-chi in fibromyalgia has reported reductions in pain, improvements in mood, quality of Life, self efficacy and exercise capacity. There is also cumulative evidence that acupuncture, hypnosis and tai-chi may decrease the high frequency of heart rate variability, suggesting enhancement of vagus nerve activity. Hence, it has been hypothesized that these modalities might impact the cholinergic anti-inflammatory pathway to modulate inflammation. Further clinical and basic research to confirm this hypothesis should be performed in order to validate integration of these therapies in comprehensive treatment for some inflammatory and autoimmune diseases.

  9. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: the brain-gut connection begins in utero

    Directory of Open Access Journals (Sweden)

    Luca eGarzoni

    2013-08-01

    Full Text Available Necrotizing enterocolitis (NEC is an acute neonatal inflammatory disease that affects the intestine and may result in necrosis, systemic sepsis and multisystem organ failure. NEC affects 5-10% of all infants with birth weight ≤ 1500 g or gestational age less than 30 weeks. Chorioamnionitis (CA is the main manifestation of pathological inflammation in the fetus and is strongly associated with NEC. CA affects 20% of full-term pregnancies and up to 60% of preterm pregnancies and, notably, is often an occult finding. Intrauterine exposure to inflammatory stimuli may switch innate immunity cells such as macrophages to a reactive phenotype (‘priming’. Confronted with renewed inflammatory stimuli during labour or postnatally, such sensitized cells can sustain a chronic or exaggerated production of proinflammatory cytokines associated with NEC (two-hit hypothesis. Via the cholinergic anti-inflammatory pathway, a neurally mediated innate anti-inflammatory mechanism, higher levels of vagal activity are associated with lower systemic levels of proinflammatory cytokines. This effect is mediated by the α7 subunit nicotinic acetylcholine receptor (α7nAChR on macrophages. The gut is the most extensive organ innervated by the vagus nerve; it is also the primary site of innate immunity in the newborn. Here we review the mechanisms of possible neuroimmunological brain-gut interactions involved in the induction and control of antenatal intestinal inflammatory response and priming. We propose a neuroimmunological framework to 1 study the long-term effects of perinatal intestinal response to infection and 2 to uncover new targets for preventive and therapeutic intervention.

  10. Activation of the cholinergic anti-inflammatory pathway by nicotine ameliorates lipopolysaccharide-induced preeclampsia-like symptoms in pregnant rats.

    Science.gov (United States)

    Liu, Yuanyuan; Yang, Jinying; Bao, Junjie; Li, Xiaolan; Ye, Aihua; Zhang, Guozheng; Liu, Huishu

    2017-01-01

    Preeclampsia (PE) exerts a more intense systemic inflammatory response than normal pregnancy. Recently, the role of the cholinergic anti-inflammatory pathway (CAP) in regulating inflammation has been extensively studied. The aim of this study was to investigate the effect of nicotine, a selective cholinergic agonist, on lipopolysaccharide (LPS)-induced preeclampsia-like symptoms in pregnant rats and to determine the molecular mechanism underlying it. Rats were administered LPS (1.0 μg/kg) via tail vein injection on gestational day 14 to induce preeclampsia-like symptoms. Nicotine (1.0 mg/kg/d) and α-bungarotoxin (1.0 μg/kg/d) were injected subcutaneously into the rats from gestational day 14-19. Clinical symptoms were recorded. Serum and placentas were collected to determine cytokine levels using Luminex. The mRNA and protein expression levels of α7 nicotinic acetylcholine receptor (α7nAChR) were determined using Real time-PCR and Western blot analysis. Immunohistochemistry was performed to determine the level of activation of nuclear factor-κB (NF-κB) in placentas. Nicotine significantly ameliorated LPS-induced preeclampsia-like symptoms in pregnant rats (P preeclampsia (P preeclampsia rats. Our findings suggest that the activation of α7nAChR by nicotine attenuates preeclampsia-like symptoms, and this protective effect is likely the result of the inhibition of inflammation via the NF-κB p65 pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Anti-inflammatory, anti-cholinergic and cytotoxic effects of Sida rhombifolia.

    Science.gov (United States)

    Mah, Siau Hui; Teh, Soek Sin; Ee, Gwendoline Cheng Lian

    2017-12-01

    Sida (Malvaceae) has been used as a traditional remedy for the treatment of diarrhoea, malarial, gastrointestinal dysentery, fevers, asthma and inflammation. This study evaluates the anti-inflammatory, cytotoxic and anti-cholinergic activities of Sida rhombifolia Linn. whole plant for the first time. S. rhombifolia whole plant was extracted by n-hexane, ethyl acetate and methanol using Soxhlet apparatus. The plant extracts were evaluated for their antioxidant (DPPH, FIC and FRAP), anti-inflammatory (NO and protein denaturation inhibitions), cytotoxic (MTT) and anti-cholinesterase (AChE) properties in a range of concentrations to obtain IC 50 values. GC-MS analysis was carried out on the n-hexane extract. The ethyl acetate extract exhibited the most significant antioxidant activities by scavenging DPPH radicals and ferrous ions with EC 50 of 380.5 and 263.4 μg/mL, respectively. In contrast, the n-hexane extract showed the strongest anti-inflammatory activity with IC 50 of 52.16 and 146.03 μg/mL for NO and protein denaturation inhibition assays, respectively. The same extract also revealed the strongest effects in anti-cholinesterase and cytotoxic tests at the concentration of 100 μg/mL, AChE enzyme inhibition was 58.55% and human cancer cells, SNU-1 and Hep G2 inhibition was 68.52% and 47.82%, respectively. The phytochemicals present in the n-hexane extract are palmitic acid, linoleic acid and γ-sitosterol. The present study revealed that the n-hexane extract possessed relatively high pharmacological activities in anti-inflammation, cytotoxicity and anti-cholinesterase assays. Thus, further work on the detail mechanism of the bioactive phytochemicals which contribute to the biological properties are strongly recommended.

  12. Cholinergic anti-inflammatory pathway inhibits neointimal hyperplasia by suppressing inflammation and oxidative stress

    Directory of Open Access Journals (Sweden)

    Dong-Jie Li

    2018-05-01

    Full Text Available Neointimal hyperplasia as a consequence of vascular injury is aggravated by inflammatory reaction and oxidative stress. The α7 nicotinic acetylcholine receptor (α7nAChR is a orchestrator of cholinergic anti-inflammatory pathway (CAP, which refers to a physiological neuro-immune mechanism that restricts inflammation. Here, we investigated the potential role of CAP in neointimal hyperplasia using α7nAChR knockout (KO mice. Male α7nAChR-KO mice and their wild-type control mice (WT were subjected to wire injury in left common carotid artery. At 4 weeks post injury, the injured aortae were isolated for examination. The neointimal hyperplasia after wire injury was significantly aggravated in α7nAChR-KO mice compared with WT mice. The α7nAChR-KO mice had increased collagen contents and vascular smooth muscle cells (VSMCs amount. Moreover, the inflammation was significantly enhanced in the neointima of α7nAChR-KO mice relative to WT mice, evidenced by the increased expression of tumor necrosis factor-α/interleukin-1β, and macrophage infiltration. Meanwhile, the chemokines chemokine (C-C motif ligand 2 and chemokine (CXC motif ligand 2 expression was also augmented in the neointima of α7nAChR-KO mice compared with WT mice. Additionally, the depletion of superoxide dismutase (SOD and reduced glutathione (GSH, and the upregulation of 3-nitrotyrosine, malondialdehyde and myeloperoxidase were more pronounced in neointima of α7nAChR-KO mice compared with WT mice. Accordingly, the protein expression of NADPH oxidase 1 (Nox1, Nox2 and Nox4, was also higher in neointima of α7nAChR-KO mice compared with WT mice. Finally, pharmacologically activation of CAP with a selective α7nAChR agonist PNU-282987, significantly reduced neointima formation, arterial inflammation and oxidative stress after vascular injury in C57BL/6 mice. In conclusion, our results demonstrate that α7nAChR-mediated CAP is a neuro-physiological mechanism that inhibits neointima

  13. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Young, Sherri C. [Department of Chemistry, Muhlenberg College, Allentown, PA (United States); Sinko, Patrick J. [Department of Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Casillas, Robert P. [MRIGlobal, Kansas City, MO (United States); Laskin, Jeffrey D. [Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  14. Effect of dexmedetomidine on rats with convulsive status epilepticus and association with activation of cholinergic anti-inflammatory pathway.

    Science.gov (United States)

    Xu, Kai-Liang; Liu, Xin-Qiu; Yao, Yu-Long; Ye, Ming-Rong; Han, Yao-Guo; Zhang, Tao; Chen, Gang; Lei, Ming

    2018-01-01

    Convulsive status epilepticus (CSE) is a neurological disease with contraction and extension of limbs, leading to damage of hippocampus and cognition. This study aimed to explore the effects of dexmedetomidine (DEX) on the cognitive function and neuroinflammation in CSE rats. All rats were divided into control group, CSE group and DEX group. Morris water maze test was used to measure cognitive function. Acute hippocampal slices were made to detect long-term potentiation (LTP). Immunohistochemistry was used to determine the expression of α7-nicotinic acetylcholine receptor (α7-nAChR) and interleukin-1β (IL-1β). Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of IL-1β, tumor necrosis factor-α (TNF-α), S-100β and brain-derived neurotrophic factor (BDNF). Our results showed that DEX improved the memory damage caused by CSE. DEX reduced seizure severity and increased the amplitudes and sustainable time of LTP, and also inhibited the hippocampal expression of α7-nAChR and IL-1β in CSE rats. DEX treatment decreased serum IL-1β, TNF-α and S-100β levels and increased BDNF levels. The effects of DEX on seizure severity and LTP could be simulated by nicotine or attenuated by concurrent α-bungarotoxin (α-BGT) treatment. In conclusions, DEX significantly improved spatial cognitive dysfunction, reduced seizure severity and increased LTP in CSE rats. Improvements by DEX were closely related to enhancement of cholinergic anti-inflammatory pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Sara V. Maurer

    2017-11-01

    Full Text Available Degeneration of central cholinergic neurons impairs memory, and enhancement of cholinergic synapses improves cognitive processes. Cholinergic signaling is also anti-inflammatory, and neuroinflammation is increasingly linked to adverse memory, especially in Alzheimer’s disease. Much of the evidence surrounding cholinergic impacts on the neuroimmune system focuses on the α7 nicotinic acetylcholine (ACh receptor, as stimulation of this receptor prevents many of the effects of immune activation. Microglia and astrocytes both express this receptor, so it is possible that some cholinergic effects may be via these non-neuronal cells. Though the presence of microglia is required for memory, overactivated microglia due to an immune challenge overproduce inflammatory cytokines, which is adverse for memory. Blocking these exaggerated effects, specifically by decreasing the release of tumor necrosis factor α (TNF-α, interleukin 1β (IL-1β, and interleukin 6 (IL-6, has been shown to prevent inflammation-induced memory impairment. While there is considerable evidence that cholinergic signaling improves memory, fewer studies have linked the “cholinergic anti-inflammatory pathway” to memory processes. This review will summarize the current understanding of the cholinergic anti-inflammatory pathway as it relates to memory and will argue that one mechanism by which the cholinergic system modulates hippocampal memory processes is its influence on neuroimmune function via the α7 nicotinic ACh receptor.

  16. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Kirchgessner Annette

    2011-08-01

    Full Text Available Abstract Cigarette smoke is a major risk factor for a number of diseases including lung cancer and respiratory infections. Paradoxically, it also contains nicotine, an anti-inflammatory alkaloid. There is increasing evidence that smokers have a lower incidence of some inflammatory diseases, including ulcerative colitis, and the protective effect involves the activation of a cholinergic anti-inflammatory pathway that requires the α7 nicotinic acetylcholine receptor (α7nAChR on immune cells. Obesity is characterized by chronic low-grade inflammation, which contributes to insulin resistance. Nicotine significantly improves glucose homeostasis and insulin sensitivity in genetically obese and diet-induced obese mice, which is associated with suppressed adipose tissue inflammation. Inflammation that results in disruption of the epithelial barrier is a hallmark of inflammatory bowel disease, and nicotine is protective in ulcerative colitis. This article summarizes current evidence for the anti-inflammatory effects of nicotine in obesity and ulcerative colitis. Selective agonists for the α7nAChR could represent a promising pharmacological strategy for the treatment of inflammation in obesity and ulcerative colitis. Nevertheless, we should keep in mind that the anti-inflammatory effects of nicotine could be mediated via the expression of several nAChRs on a particular target cell.

  17. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  18. Demodex canis regulates cholinergic system mediated immunosuppressive pathways in canine demodicosis.

    Science.gov (United States)

    Kumari, P; Nigam, R; Singh, A; Nakade, U P; Sharma, A; Garg, S K; Singh, S K

    2017-09-01

    Demodex canis infestation in dogs remains one of the main challenges in veterinary dermatology. The exact pathogenesis of canine demodicosis is unknown but an aberration in immune status is considered very significant. No studies have underpinned the nexus between induction of demodicosis and neural immunosuppressive pathways so far. We have evaluated the involvement of cholinergic pathways in association with cytokines regulation as an insight into the immuno-pathogenesis of canine demodicosis in the present study. Remarkable elevations in circulatory immunosuppressive cytokine interleukin-10 and cholinesterase activity were observed in dogs with demodicosis. Simultaneously, remarkable reduction in circulatory pro-inflammatory cytokine tumour necrosis factor-alpha level was observed in dogs with demodicosis. Findings of the present study evidently suggest that Demodex mites might be affecting the cholinergic pathways to induce immunosuppression in their host and then proliferate incessantly in skin microenvironment to cause demodicosis.

  19. Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model.

    Directory of Open Access Journals (Sweden)

    Takeshi Yamamoto

    Full Text Available The prevalence of food allergy (FA has increased in developed countries over the past few decades. However, no effective drug therapies are currently available. Therefore, we investigated cholinergic anti-inflammatory pathway as a regulatory system to ameliorate disrupted mucosal immune homeostasis in the gut based on the pathophysiological elucidation of mucosal mast cells (MMCs in a murine FA model. BALB/c mice sensitized with ovalbumin received repeated oral ovalbumin for the development of FA. FA mice developed severe allergic diarrhea and exhibited enhanced type 2 helper T (Th2 cell immune responses in both systemic immunity and mucosal immunity, along with MMCs hyperplasia in the colon. MMCs were localized primarily in the strategic position of the mucosal epithelium. Furthermore, the allergic symptoms did not develop in p85α disrupted phosphoinositide-3 kinase-deficient mice that lacked mast cells in the gut. Vagal stimulation by 2-deoxy-D-glucose and drug treatment with nicotinic ACh receptor (nAChR agonists (nicotine and α7 nAChR agonist GTS-21 alleviated the allergic symptoms in the FA mice. Nicotine treatment suppressed MMCs hyperplasia, enhanced MPO and upregulated mRNA expression of Th1 and Th2 cytokines in the FA mice colon. MMCs, which are negatively regulated by α7 nAChRs, were often located in close proximity to cholinergic CGRP-immunoreactive nerve fibers in the FA mice colon. The present results reveal that the cholinergic neuroimmune interaction via α7 nAChRs on MMCs is largely involved in maintaining intestinal immune homeostasis and can be a target for a new therapy against mucosal immune diseases with homeostatic disturbances such as FA.

  20. Anti-Inflammatory Effect of Myristicin on RAW 264.7 Macrophages Stimulated with Polyinosinic-Polycytidylic Acid

    Directory of Open Access Journals (Sweden)

    Wansu Park

    2011-08-01

    Full Text Available Myristicin (1-allyl-5-methoxy-3,4-methylenedioxybenzene is an active aromatic compound found in nutmeg (the seed of Myristica fragrans, carrot, basil, cinnamon, and parsley. Myristicin has been known to have anti-cholinergic, antibacterial, and hepatoprotective effects, however, the effects of myristicin on virus-stimulated macrophages are not fully reported. In this study, the anti-inflammatory effect of myristicin on double-stranded RNA (dsRNA-stimulated macrophages was examined. Myristicin did not reduce the cell viability of RAW 264.7 mouse macrophages at concentrations of up to 50 µM. Myristicin significantly inhibited the production of calcium, nitric oxide (NO, interleukin (IL-6, IL-10, interferon inducible protein-10, monocyte chemotactic protein (MCP-1, MCP-3, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein (MIP-1α, MIP-1β, and leukemia inhibitory factor in dsRNA [polyinosinic-polycytidylic acid]-induced RAW 264.7 cells (P < 0.05. In conclusion, myristicin has anti-inflammatory properties related with its inhibition of NO, cytokines, chemokines, and growth factors in dsRNA-stimulated macrophages via the calcium pathway.

  1. Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue.

    Science.gov (United States)

    Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S

    2018-01-01

    Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.

  2. Anti-Inflammatory Effects of Benfotiamine are Mediated Through the Regulation of Arachidonic Acid Pathway in Macrophages

    Science.gov (United States)

    Shoeb, Mohammad; Ramana, Kota V

    2011-01-01

    Benfotiamine, a lipid-soluble analogue of vitamin B1, is a potent anti-oxidant that is used as a food supplement for the treatment of diabetic complications. Our recent study indicates a novel role of benfotiamine in the prevention of bacterial endotoxin, lipopolysaccharide (LPS)-induced cytotoxicity and inflammatory response in murine macrophages. Nevertheless, it remains unclear how benfotiamine mediates anti-inflammatory effects. In this study, we investigated the anti-inflammatory role of benfotiamine in regulating the arachidonic acid (AA) pathway generated inflammatory lipid mediators in RAW 264.7 macrophages. Benfotiamine prevented the LPS-induced activation of cPLA2 and release of AA metabolites such as leukotrienes (LTB4), prostaglandin E2 (PGE2), thromboxanes 2 (TXB2) and prostacyclin (PGI2) in macrophages. Further, LPS-induced expressions of AA metabolizing enzymes such as COX-2, LOX-5, TXB synthase and PGI2 synthase were significantly blocked by benfotiamine. Furthermore, benfotiamine prevented the LPS-induced phosphorylation of ERK1/2 and expression of transcription factors NF-kB, and Egr-1. Benfotiamine also prevented the LPS-induced oxidative stress and protein-HNE adducts formation. Most importantly, as compared to specific COX-2 and LOX-5 inhibitors, benfotiamine significantly prevented the LPS-induced macrophage death and monocytes adhesion to endothelial cells. Thus, our studies indicate that the dual regulation of COX and LOX pathways in AA metabolism could be a novel mechanism by which benfotiamine exhibits its potential anti-inflammatory response. PMID:22067901

  3. Cholinergic drugs as therapeutic tools in inflammatory diseases: participation of neuronal and non-neuronal cholinergic systems.

    Science.gov (United States)

    Sales, María Elena

    2013-01-01

    Acetylcholine (ACh) is synthesized by choline acetyltransferase (ChAT) from acetylcoenzime A and choline. This reaction occurs not only in pre-ganglionic fibers of the autonomic nervous system and post-ganglionic parasympathetic nervous fibers but also in non neuronal cells. This knowledge led to expand the role of ACh as a neurotransmitter and to consider it as a "cytotransmitter" and also to evaluate the existence of a non-neuronal cholinergic system comprising ACh, ChAT, acetylcholinesterase, and the nicotinic and muscarinic ACh receptors, outside the nervous system. This review analyzes the participation of cholinergic system in inflammation and discusses the role of different muscarinic and nicotinic drugs that are being used to treat skin inflammatory disorders, asthma, and chronic obstructive pulmonary disease as well as, intestinal inflammation and systemic inflammatory diseases, among others, to assess the potential application of these compounds as therapeutic tools.

  4. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages.

    Directory of Open Access Journals (Sweden)

    Wan-Kyu Ko

    Full Text Available The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA in lipopolysaccharide (LPS-stimulated RAW 264.7 macrophages.We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO. Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR and enzyme-linked immunosorbent assay (ELISA. The phosphorylations of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38 in mitogen-activated protein kinase (MAPK signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα signaling pathways were evaluated by western blot assays.UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α, interleukin 1-α (IL-1α, interleukin 1-β (IL-1β, and interleukin 6 (IL-6 in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10 in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA.UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug.

  5. Inhibition of inflammatory mediators contributes to the anti-inflammatory activity of KYKZL-1 via MAPK and NF-κB pathway

    International Nuclear Information System (INIS)

    Xu, Guang-Lin; Du, Yi-Fang; Cheng, Jing; Huan, Lin; Chen, Shi-Cui; Wei, Shao-Hua; Gong, Zhu-Nan; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Ao, Gui-Zhen

    2013-01-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the anti-inflammatory activity test focusing on its modulation of inflammatory mediators as well as intracellular MAPK and NF-κB signaling pathways. In acute ear edema model, pretreatment with KYKZL-1 (p.o.) dose-dependently inhibited the xylene-induced ear edema in mice with a higher inhibition than diclofenac. In a three-day TPA-induced inflammation, KYKZL-1 also showed significant anti-inflammatory activity with inhibition ranging between 20% and 64%. In gastric lesion test, KYKZL-1 elicited markedly fewer stomach lesions with a low index of ulcer as compared to diclofenac in rats. In further studies, KYKZL-1 was found to significantly inhibit the production of NO, PGE 2 , LTB 4 in LPS challenged RAW264.7, which is parallel to its attenuation of the expression of iNOS, COX-2, 5-LOX mRNAs or proteins and inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. Taken together, our data indicate that KYKZL-1 comprises dual inhibition of COX and 5-LOX and exerts an obvious anti-inflammatory activity with an enhanced gastric safety profile via simultaneous inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 inhibits NO, PGE 2 and LTB 4 and iNOS, COX-2 and 5-LOX mRNAs and MAPKs. • KYKZL-1 inhibits phosphorylation of MAPKs. • KYKZL-1 inactivates NF-κB pathway

  6. Inhibition of inflammatory mediators contributes to the anti-inflammatory activity of KYKZL-1 via MAPK and NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guang-Lin [Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing (China); Department of Pharmacology, University of Michigan, Ann Arbor (United States); Du, Yi-Fang; Cheng, Jing; Huan, Lin [Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing (China); Chen, Shi-Cui [Jinhu Food and Drug Administration, Jiangsu (China); Wei, Shao-Hua [College of Chemistry and Materials Science, Nanjing Normal University, Nanjing (China); Gong, Zhu-Nan, E-mail: biopharmacology@126.com [Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing (China); Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting [Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing (China); Ao, Gui-Zhen [Department of Medicinal Chemistry, School of Pharmacy, Soochow University, Jiangsu (China)

    2013-10-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the anti-inflammatory activity test focusing on its modulation of inflammatory mediators as well as intracellular MAPK and NF-κB signaling pathways. In acute ear edema model, pretreatment with KYKZL-1 (p.o.) dose-dependently inhibited the xylene-induced ear edema in mice with a higher inhibition than diclofenac. In a three-day TPA-induced inflammation, KYKZL-1 also showed significant anti-inflammatory activity with inhibition ranging between 20% and 64%. In gastric lesion test, KYKZL-1 elicited markedly fewer stomach lesions with a low index of ulcer as compared to diclofenac in rats. In further studies, KYKZL-1 was found to significantly inhibit the production of NO, PGE{sub 2}, LTB{sub 4} in LPS challenged RAW264.7, which is parallel to its attenuation of the expression of iNOS, COX-2, 5-LOX mRNAs or proteins and inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. Taken together, our data indicate that KYKZL-1 comprises dual inhibition of COX and 5-LOX and exerts an obvious anti-inflammatory activity with an enhanced gastric safety profile via simultaneous inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 inhibits NO, PGE{sub 2} and LTB{sub 4} and iNOS, COX-2 and 5-LOX mRNAs and MAPKs. • KYKZL-1 inhibits phosphorylation of MAPKs. • KYKZL-1 inactivates NF-κB pathway.

  7. Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages.

    Science.gov (United States)

    Shoeb, Mohammad; Ramana, Kota V

    2012-01-01

    Benfotiamine, a lipid-soluble analogue of vitamin B1, is a potent antioxidant that is used as a food supplement for the treatment of diabetic complications. Our recent study (U.C. Yadav et al., Free Radic. Biol. Med. 48:1423-1434, 2010) indicates a novel role for benfotiamine in the prevention of bacterial endotoxin, lipopolysaccharide (LPS)-induced cytotoxicity and inflammatory response in murine macrophages. Nevertheless, it remains unclear how benfotiamine mediates anti-inflammatory effects. In this study, we investigated the anti-inflammatory role of benfotiamine in regulating arachidonic acid (AA) pathway-generated inflammatory lipid mediators in RAW264.7 macrophages. Benfotiamine prevented the LPS-induced activation of cPLA2 and release of AA metabolites such as leukotrienes, prostaglandin E2, thromboxane 2 (TXB2), and prostacyclin (PGI2) in macrophages. Further, LPS-induced expression of AA-metabolizing enzymes such as COX-2, LOX-5, TXB synthase, and PGI2 synthase was significantly blocked by benfotiamine. Furthermore, benfotiamine prevented the LPS-induced phosphorylation of ERK1/2 and expression of transcription factors NF-κB and Egr-1. Benfotiamine also prevented the LPS-induced oxidative stress and protein-HNE adduct formation. Most importantly, compared to specific COX-2 and LOX-5 inhibitors, benfotiamine significantly prevented LPS-induced macrophage death and monocyte adhesion to endothelial cells. Thus, our studies indicate that the dual regulation of the COX and LOX pathways in AA metabolism could be a novel mechanism by which benfotiamine exhibits its potential anti-inflammatory response. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Inflammatory pathways of importance for management of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Pedersen, Jannie; Coskun, Mehmet; Soendergaard, Christoffer

    2014-01-01

    Inflammatory bowel disease (IBD) is a group of chronic disorders of the gastrointestinal tract comprising Crohn's disease (CD) and ulcerative colitis (UC). Their etiologies are unknown, but they are characterised by an imbalanced production of pro-inflammatory mediators, e.g., tumor necrosis factor......-inflammatory cytokines, antibodies targeting integrins, and small anti-adhesion molecules that block adhesion between leukocytes and the intestinal vascular endothelium, reducing their infiltration into the inflamed mucosa. In this review we have elucidated the major signaling pathways of clinical importance for IBD...

  9. The anti-inflammatory effect of Andrographis paniculata (Burm. f.) Nees on pelvic inflammatory disease in rats through down-regulation of the NF-κB pathway.

    Science.gov (United States)

    Zou, Wei; Xiao, Zuoqi; Wen, Xiaoke; Luo, Jieying; Chen, Shuqiong; Cheng, Zeneng; Xiang, Daxiong; Hu, Jian; He, Jingyu

    2016-11-25

    Andrographis paniculata (Burm. f.) Nees (APN), a principal constituent of a famous traditional Chinese medicine Fukeqianjin tablet which is used for the treatment of pelvic inflammatory disease (PID), has been reported to have anti-inflammatory effect in vitro. However, whether it has pharmacological effect on PID in vivo is unclear. Therefore, the aim of this study is to test the anti-inflammatory effect of APN and illuminate a potential mechanism. Thirty-six female specific pathogen-free SD rats were randomly divided into control group, PID group, APN1 group, APN2 group, APN3 group and prednisone group. Pathogen-induced PID rats were constructed. The APN1, APN2 and APN3 group rats were orally administrated with APN extract at different levels. The prednisone group rats were administrated with prednisone. Eight days after the first infection, the histological examination of upper genital tract was carried out, and enzyme-linked immunosorbent assay (ELISA) was carried out using homogenate of the uterus and fallopian tube. Furthermore, immunohistochemical evaluations of NF-κB p65 and IκB-α in uterus was conducted. APN obviously suppressed the infiltrations of neutrophils and lymphocytes, and it could significantly reduce the excessive production of cytokines and chemokines including IL-1β, IL-6, CXCL-1, MCP-1 and RANTES in a dose-dependent manner. Furthermore, APN could block the pathogen-induced activation of NF-κB pathway. APN showed potent anti-inflammatory effect on pathogen-induced PID in rats, with a potential mechanism of inhibiting the NF-κB signal pathway.

  10. Diabetes alters activation and repression of pro- and anti- inflammatory signalling pathways in the vasculature

    Directory of Open Access Journals (Sweden)

    Elyse eDi Marco

    2013-06-01

    Full Text Available A central mechanism driving vascular disease in diabetes is immune cell-mediated inflammation. In diabetes, enhanced oxidation and glycation of macromolecules, such as lipoproteins, insults the endothelium and activates both innate and adaptive arms of the immune system by generating new antigens for presentation to adaptive immune cells. Chronic inflammation of the endothelium in diabetes leads to continuous infiltration and accumulation of leukocytes at sites of endothelial cell injury. We will describe the central role of the macrophage as a source of signalling molecules and damaging by-products which activate infiltrating lymphocytes in the tissue and contribute to the pro-oxidant and pro-inflammatory micro-environment. An important aspect to be considered is the diabetes- associated defects in the immune system, such as fewer or dysfunctional athero-protective leukocyte subsets in the diabetic lesion compared to non-diabetic lesions. This review will discuss the key pro-inflammatory signalling pathways responsible for leukocyte recruitment and activation in the injured vessel, with particular focus on pro- and anti-inflammatory pathways aberrantly activated or repressed in diabetes. We aim to describe the interaction between advanced glycation end products (AGEs and their principle receptor RAGE, Angiotensin II (Ang II and the Ang II type 1 receptor (AT1R, in addition to reactive oxygen species (ROS production by NADPH oxidase (Nox enzymes that are relevant to vascular and immune cell function in the context of diabetic vasculopathy. Furthermore, we will touch on recent advances in epigenetic medicine that have revealed high glucose-mediated changes in the transcription of genes with known pro-inflammatory downstream targets. Finally, novel anti-atherosclerosis strategies that target the vascular immune interface will be explored; such as vaccination against modified LDL and pharmacological inhibition of ROS producing enzymes.

  11. DMPD: Molecular mechanisms of the anti-inflammatory functions of interferons. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086388 Molecular mechanisms of the anti-inflammatory functions of interferons. Ko....csml) Show Molecular mechanisms of the anti-inflammatory functions of interferons. PubmedID 18086388 Title ...Molecular mechanisms of the anti-inflammatory functions of interferons. Authors K

  12. Muscarinic receptors as targets for anti-inflammatory therapy.

    Science.gov (United States)

    Sales, María Elena

    2010-11-01

    ACh, the main neurotransmitter in the neuronal cholinergic system, is synthesized by pre-ganglionic fibers of the sympathetic and parasympathetic autonomic nervous system and by post-ganglionic parasympathetic fibers. There is increasing experimental evidence that ACh is widely expressed in prokaryotic and eukaryotic non-neuronal cells. The neuronal and non-neuronal cholinergic systems comprise ACh, choline acetyltransferase and cholinesterase, enzymes that synthesize and catabolize ACh, and the nicotinic and muscarinic ACh receptors (nAChRs and mAChRs, respectively), which are the targets for ACh action. This review analyzes the participation of the cholinergic system, particularly through mAChRs, in inflammation, and discusses the role of the different mAChR antagonists that have been used to treat skin inflammatory disorders, asthma and COPD, as well as intestinal inflammation and systemic inflammatory diseases, to assess the potential application of these compounds as therapeutic tools.

  13. Anti-Inflammatory Effects of Cajaninstilbene Acid and Its Derivatives.

    Science.gov (United States)

    Huang, Mei-Yan; Lin, Jing; Lu, Kuo; Xu, Hong-Gui; Geng, Zhi-Zhong; Sun, Ping-Hua; Chen, Wei-Min

    2016-04-13

    Cajaninstilbene acid (CSA) is one of the active components isolated from pigeon pea leaves. In this study, anti-inflammatory effects of CSA and its synthesized derivatives were fully valued with regard to their activities on the production of nitric oxide (NO) and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in vitro cell model, as well as their impacts on the migration of neutrophils and macrophages in fluorescent protein labeled zebrafish larvae model by live image analysis. Furthermore, the anti-inflammatory mechanism of this type of compounds was clarified by western-blot and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that CSA, as well as its synthesized derivatives 5c, 5e and 5h, exhibited strong inhibition activity on the release of NO and inflammatory factor TNF-α and IL-6 in lipopolysaccharides (LPS)-stimulated murine macrophages. CSA and 5c greatly inhibited the migration of neutrophils and macrophages in injury zebrafish larvae. CSA and 5c treatment greatly inhibited the phosphorylation of proteins involved in nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Moreover, we found that peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662 could reverse partly the roles of CSA and 5c, and CSA and 5c treatment greatly resist the decrease of PPARγ mRNA and protein induced by LPS stimulation. Our results identified the promising anti-inflammatory effects of CSA and its derivatives, which may serve as valuable anti-inflammatory lead compound. Additionally, the mechanism studies demonstrated that the anti-inflammatory activity of CSA and its derivative is associated with the inhibition of NF-κB and MAPK pathways, relying partly on resisting the LPS-induced decrease of PPARγ through improving its expression.

  14. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis

    NARCIS (Netherlands)

    Levine, Yaakov A.; Koopman, Frieda A.; Faltys, Michael; Caravaca, April; Bendele, Alison; Zitnik, Ralph; Vervoordeldonk, Margriet J.; Tak, Paul Peter

    2014-01-01

    The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis

  15. Whole-body vibration improves the anti-inflammatory status in elderly subjects through toll-like receptor 2 and 4 signaling pathways.

    Science.gov (United States)

    Rodriguez-Miguelez, Paula; Fernandez-Gonzalo, Rodrigo; Collado, Pilar S; Almar, Mar; Martinez-Florez, Susana; de Paz, José A; González-Gallego, Javier; Cuevas, María J

    2015-09-01

    Regular physical exercise has anti-inflammatory effects in elderly subjects. Yet, the inflammatory responses after whole body vibration (WBV) training, a popular exercise paradigm for the elderly, remain to be elucidated. This study assessed the effects of WBV training on the inflammatory response associated with toll-like receptors (TLRs) signaling pathways. Twenty-eight subjects were randomized to a training group (TG) or a control group (CG). TG followed an 8-week WBV training program. Blood samples were obtained before and after the training period in both groups. Peripheral blood mononuclear cells were isolated, and mRNA and protein levels of makers involved in the TLR2/TLR4 myeloid differentiation primary response gen 88 (MyD88) and TIR domain-containing adaptor inducing interferon (TRIF)-dependent pathways were analyzed. Plasma TNFα and C-reactive protein levels were also assessed. The WBV program reduced protein expression of TLR2, TLR4, MyD88, p65, TRIF and heat shock protein (HSP) 60, while HSP70 content increased. IL-10 mRNA level and protein concentration were upregulated, and TNFα protein content decreased, after WBV training. Plasma concentration of C-reactive protein and TNFα decreased in the TG. The current data suggest WBV may improve the anti-inflammatory status of elderly subjects through an attenuation of MyD88- and TRIF-dependent TLRs signaling pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Cypermethrin Poisoning and Anti-cholinergic Medication- A Case Report

    Directory of Open Access Journals (Sweden)

    Dr Sudip Parajuli

    2006-07-01

    Full Text Available A 30 years old male was brought to emergency department of Manipal Teaching Hospital, Pokhara, Nepal with alleged history of consumption of pyrethroid compound ‘cypermethrin’. It was found to be newer insecticide poisoning reported in Nepal. We reported this case to show effectiveness of anti-cholinergic like hyosciane and chlorpheniramine maleate in the treatment of cypermethrin poisoning.

  17. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization.

    Science.gov (United States)

    Mukwaya, Anthony; Lennikov, Anton; Xeroudaki, Maria; Mirabelli, Pierfrancesco; Lachota, Mieszko; Jensen, Lasse; Peebo, Beatrice; Lagali, Neil

    2018-05-01

    Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.

  18. Determining the Molecular Pathways Underlying the Protective Effect of Non-Steroidal Anti-Inflammatory Drugs for Alzheimer's Disease: A Bioinformatics Approach

    Directory of Open Access Journals (Sweden)

    Alejo J Nevado-Holgado

    Full Text Available Alzheimer's disease (AD represents a substantial unmet need, due to increasing prevalence in an ageing society and the absence of a disease modifying therapy. Epidemiological evidence shows a protective effect of non steroidal anti inflammatory (NSAID drugs, and genome wide association studies (GWAS show consistent linkage to inflammatory pathways; both observations suggesting anti-inflammatory compounds might be effective in AD therapy although clinical trials to date have not been positive.In this study, we use pathway enrichment and fuzzy logic to identify pathways (KEGG database simultaneously affected in both AD and by NSAIDs (Sulindac, Piroxicam, Paracetamol, Naproxen, Nabumetone, Ketoprofen, Diclofenac and Aspirin. Gene expression signatures were derived for disease from both blood (n = 344 and post-mortem brain (n = 690, and for drugs from immortalised human cell lines exposed to drugs of interest as part of the Connectivity Map platform. Using this novel approach to combine datasets we find striking overlap between AD gene expression in blood and NSAID induced changes in KEGG pathways of Ribosome and Oxidative Phosphorylation. No overlap was found in non NSAID comparison drugs. In brain we find little such overlap, although Oxidative Phosphorylation approaches our pre-specified significance level.These findings suggest that NSAIDs might have a mode of action beyond inflammation and moreover that their therapeutic effects might be mediated in particular by alteration of Oxidative Phosphorylation and possibly the Ribosome pathway. Mining of such datasets might prove increasingly productive as they increase in size and richness. Keywords: Alzheimer's disease, NSAID, Inflammation, Fuzzy logic, Ribosome

  19. Scandoside Exerts Anti-Inflammatory Effect Via Suppressing NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Jingyu He

    2018-02-01

    Full Text Available The iridoids of Hedyotis diffusa Willd play an important role in the anti-inflammatory process, but the specific iridoid with anti-inflammatory effect and its mechanism has not be thoroughly studied. An iridoid compound named scandoside (SCA was isolated from H. diffusa and its anti-inflammatory effect was investigated in lipopolysaccharide (LPS-induced RAW 264.7 macrophages. Its anti-inflammatory mechanism was confirmed by in intro experiments and molecular docking analyses. As results, SCA significantly decreased the productions of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 and inhibited the levels of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, TNF-α and IL-6 messenger RNA (mRNA expression in LPS-induced RAW 264.7 macrophages. SCA treatment suppressed the phosphorylation of inhibitor of nuclear transcription factor kappa-B alpaha (IκB-α, p38, extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK. The docking data suggested that SCA had great binding abilities to COX-2, iNOS and IκB. Taken together, the results indicated that the anti-inflammatory effect of SCA is due to inhibition of pro-inflammatory cytokines and mediators via suppressing the nuclear transcription factor kappa-B (NF-κB and mitogen-activated protein kinase (MAPK signaling pathways, which provided useful information for its application and development.

  20. Involvement of cholinergic and adenosinergic systems on the branchial immune response of experimentally infected silver catfish with Streptococcus agalactiae.

    Science.gov (United States)

    Baldissera, M D; Souza, C F; Doleski, P H; Moreira, K L S; da Veiga, M L; da Rocha, M I U M; Santos, R C V; Baldisserotto, B

    2018-01-01

    It has been recognized that the cholinergic and adenosinergic systems have an essential role in immune and inflammatory responses during bacterial fish pathogens, such as the enzymes acetylcholinesterase (AChE) and adenosine deaminase (ADA), which are responsible for catalysis of the anti-inflammatory molecules acetylcholine (ACh) and adenosine (Ado) respectively. Thus, the aim of this study was to investigate the involvement of the cholinergic and adenosinergic systems on the immune response and inflammatory process in gills of experimentally infected Rhamdia quelen with Streptococcus agalactiae. Acetylcholinesterase activity decreased, while ACh levels increased in gills of infected animals compared to uninfected animals. On the other hand, a significant increase in ADA activity with a concomitant decrease in Ado levels was observed in infected animals compared to uninfected animals. Based on this evidence, we concluded that infection by S. agalactiae in silver catfish alters the cholinergic and adenosinergic systems, suggesting the involvement of AChE and ADA activities on immune and inflammatory responses, regulating the ACh and Ado levels. In summary, the downregulation of AChE activity exerts an anti-inflammatory profile in an attempt to reduce or prevent the tissue damage, while the upregulation of ADA activity exerts a pro-inflammatory profile, contributing to disease pathophysiology. © 2017 John Wiley & Sons Ltd.

  1. DMPD: Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18336664 Mechanisms for the anti-inflammatory effects of adiponectin in macrophages...(.html) (.csml) Show Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. PubmedID 18...336664 Title Mechanisms for the anti-inflammatory effects of adiponectin in macro

  2. Evaluation of anti-inflammatory effect of statins in chronic periodontitis

    OpenAIRE

    Snophia Suresh; Satya Narayana; P Jayakumar; Uma Sudhakar; V Pramod

    2013-01-01

    Objectives: Statins are the group of lipid-lowering drugs commonly used to control cardiovascular and cerebrovascular diseases. Statins have potential anti-inflammatory effect by blocking the intermediate metabolites of the mevalonate pathway. The objective of this study was to evaluate the anti-inflammatory effect of statin medication in chronic periodontitis patients. Materials and Methods: Thirty patients of age group between 40 and 60 years were selected from the outpatient pool of De...

  3. Neostigmine interactions with non steroidal anti-inflammatory drugs.

    Science.gov (United States)

    Miranda, Hugo F; Sierralta, Fernando; Pinardi, Gianni

    2002-04-01

    1. The common mechanism of action of non-steroidal anti-inflammatory drugs (NSAIDs) is the inhibition of the enzyme cyclo-oxygenase (COX), however, this inhibition is not enough to completely account for the efficacy of these agents in several models of acute pain. 2. It has been demonstrated that cholinergic agents can induce antinociception, but the nature of the interaction between these agents and NSAIDs drugs has not been studied. The present work evaluates, by isobolographic analysis, the interactions between the cholinergic indirect agonist neostigmine (NEO) and NSAIDs drugs, using a chemical algesiometric test. 3. Intraperitoneal (i.p.) or intrathecal (i.t.) administration of NEO and of the different NSAIDs produced dose-dependent antinociception in the acetic acid writhing test of the mouse. 4. The i.p. or i.t. co-administration of fixed ratios of ED(50) fractions of NSAIDs and NEO, resulted to be synergistic or supra-additive for the combinations ketoprofen (KETO) and NEO, paracetamol (PARA) and NEO) and diclofenac (DICLO) and NEO administered i.p. However, the same combinations administered i.t. were only additive. In addition, the combinations meloxicam (MELO) and NEO and piroxicam (PIRO) and NEO, administered either i.p. or i.t., were additive. 5. The results suggest that the co-administration of NEO with some NSAIDs (e.g. KETO, PARA or DICLO) resulted in a synergistic interaction, which may provide evidence of supraspinal antinociception modulation by the increased acetylcholine concentration in the synaptic cleft of cholinergic interneurons. The interaction obtained between neostigmine and the NSAIDs could carry important clinical implications.

  4. Anti-Inflammatory Effect of Piper attenuatum Methanol Extract in LPS-Stimulated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    You Jin Kim

    2017-01-01

    Full Text Available Piper attenuatum is used as a traditional medicinal plant in India. One of the substances in P. attenuatum has been suggested to have anti-inflammatory effects. However, there is insufficient research about the anti-inflammatory mechanisms of action of P. attenuatum. The effects of P. attenuatum methanol extract (Pa-ME on the production of inflammatory mediators nitric oxide (NO and prostaglandin E2 (PGE2, the expression of proinflammatory genes, the translocation level of transcription factors, and intracellular signaling activities were investigated using macrophages. Pa-ME suppressed the production of NO and PGE2 in lipopolysaccharide- (LPS-, pam3CSK4-, and poly(I:C-stimulated RAW264.7 cells without displaying cytotoxicity. The mRNA expression levels of inducible NO synthase (iNOS and cyclooxygenase 2 (COX-2 were decreased by Pa-ME. P-ME reduced the translocation of p50/NF-κB and AP-1 (c-Jun and c-Fos, as well as the activity of their upstream enzymes Src, Syk, and TAK1. Immunoprecipitation analysis showed failure of binding between their substrates, phospho- (p- p85 and p-MKK3/6. p-p85 and p-MKK3/6, which were induced by overexpression of Src, Syk, and TAK1, were also reduced by Pa-ME. Therefore, these results suggest that Pa-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway and TAK1 in the AP-1 signaling pathway.

  5. A Novel Anti-Inflammatory Role for Ginkgolide B in Asthma via Inhibition of the ERK/MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiao Chu

    2011-09-01

    Full Text Available Ginkgolide B is an anti-inflammatory extract of Ginkgo biloba and has been used therapeutically. It is a known inhibitor of platelet activating factor (PAF, which is important in the pathogenesis of asthma. Here, a non-infectious mouse model of asthma is used to evaluate the anti-inflammatory capacity of ginkgolide B (GKB and characterize the interaction of GKB with the mitogen activated protein kinase (MAPK pathway. BALB/c mice that were sensitized and challenged to ovalbumin (OVA were treated with GKB (40 mg/kg one hour before they were challenged with OVA. Our study demonstrated that GKB may effectively inhibit the increase of T-helper 2 cytokines, such as interleukin (IL-5 and IL-13 in bronchoalveolar lavage fluid (BALF. Furthermore, the eosinophil count in BALF significantly decreased after treatment of GKB when compared with the OVA-challenged group. Histological studies demonstrated that GKB substantially inhibited OVA-induced eosinophilia in lung tissue and mucus hyper-secretion by goblet cells in the airway. These results suggest that ginkgolide B may be useful for the treatment of asthma and its efficacy is related to suppression of extracellular regulating kinase/MAPK pathway.

  6. Anti-inflammatory activity of traditional Chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Min-Hsiung Pan

    2011-10-01

    Full Text Available Accumulating epidemiological and clinical evidence shows that inflammation is an important risk factor for various human diseases. Thus, suppressing chronic inflammation has the potential to delay, prevent, and control various chronic diseases, including cerebrovascular, cardiovascular, joint, skin, pulmonary, blood, lymph, liver, pancreatic, and intestinal diseases. Various natural products from traditional Chinese medicine (TCM have been shown to safely suppress proinflammatory pathways and control inflammation-associated disease. In vivo and/or in vitro studies have demonstrated that anti-inflammatory effects of TCM occur by inhibition of the expression of master transcription factors (for example, nuclear factor-κB (NF-κB, pro-inflammatory cytokines (for example, tumor necrosis factor-α (TNF-α, chemokines (for example, chemokine (C-C motif ligand (CCL-24, intercellular adhesion molecule expression and pro-inflammatory mediators (for example, inducible nitric oxide synthase (iNOS and cyclooxygenase 2 (COX2. However, a handful of review articles have focused on the anti-inflammatory activities of TCM and explore their possible mechanisms of action. In this review, we summarize recent research attempting to identify the anti-inflammatory constituents of TCM and their molecular targets that may create new opportunities for innovation in modern pharmacology.

  7. The cholinergic pathway alleviates acute oxygen and glucose deprivation induced renal tubular cell injury by reducing the secretion of inflammatory medium of macrophages

    Directory of Open Access Journals (Sweden)

    Ming WU

    2017-10-01

    Full Text Available Objective To investigate the effects of cholinergic pathway on acute renal tubular cell injury induced by acute oxygen and glucose deprivation. Methods Rat kidney macrophages were isolated and cultured for constructing macrophages and renal epithelial cells co-cultivating model of oxygen-glucose deprivation (OGD, and the model cells were divided into three groups: OGD alone group, acetylcholine (ACh 100μmol/L+OGD group and ACh + galantamine (Gal 10μmol/L+OGD group. The cells underwent OGD treatment for 1 hour, and normally cultured for 24 hours. The expressions of TNF alpha, IL-1 beta, and IL-10 in supernatant fluid were detected by ELISA, the renal tubular cell viability was determined by MTT assay, the expression of acetylcholine esterase (AChE mRNA and protein were determined by RT-qPCR and Western blotting. The activity of AChE was determined by colorimetric method. Results The expressions of TNF alpha (pg/ml in OGD, Ach+OGD group, Ach+Gal+OGD groups were 140.2±44.81, 119.46±4.42 and 103.31±1.62 respectively (P0.05; The values of renal tubular cell proliferation were 55.02%±6.28%, 66.65%±6.47%, and 79.75%±4.22% respectively (P0.05; those of AchE protein were 0.66±0.07, 0.74±0.04 and 0.67±0.06 respectively (P>0.05; The activity of AChE (kU/L was 0.51±0.02, 0.35±0.05 and 0.32±0.04 respectively (P=0.001, 0.001 and 0.368. Conclusions ACh and Gal could inhibit the secretion of inflammatory mediators and cholinesterase activity and can reduce the acute hypoxic renal tubular cell injury. The modulation of the cholinergic pathway in macrophages may be the important treatment method for acute renal injury in the future. DOI: 10.11855/j.issn.0577-7402.2017.08.01

  8. DMPD: Endogenous anti-inflammatory substances, inter-alpha-inhibitor and bikunin. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17132099 Endogenous anti-inflammatory substances, inter-alpha-inhibitor and bikunin.... Kobayashi H. Biol Chem. 2006 Dec;387(12):1545-9. (.png) (.svg) (.html) (.csml) Show Endogenous anti-inflam...matory substances, inter-alpha-inhibitor and bikunin. PubmedID 17132099 Title Endogenous anti-inflammatory s

  9. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation

    Science.gov (United States)

    Rosas-Ballina, Mauricio; Ferrer, Sergio Valdés; Dancho, Meghan; Ochani, Mahendar; Katz, David; Cheng, Kai Fan; Olofsson, Peder S.; Chavan, Sangeeta S.; Al-Abed, Yousef; Tracey, Kevin J.; Pavlov, Valentin A.

    2014-01-01

    Inflammatory conditions characterized by excessive immune cell activation and cytokine release, are associated with bidirectional immune system-brain communication, underlying sickness behavior and other physiological responses. The vagus nerve has an important role in this communication by conveying sensory information to the brain, and brain-derived immunoregulatory signals that suppress peripheral cytokine levels and inflammation. Brain muscarinic acetylcholine receptor (mAChR)-mediated cholinergic signaling has been implicated in this regulation. However, the possibility of controlling inflammation by peripheral administration of centrally-acting mAChR agonists is unexplored. To provide insight we used the centrally-acting M1 mAChR agonist xanomeline, previously developed in the context of Alzheimer’s disease and schizophrenia. Intraperitoneal administration of xanomeline significantly suppressed serum and splenic TNF levels, alleviated sickness behavior, and increased survival during lethal murine endotoxemia. The anti-inflammatory effects of xanomeline were brain mAChR-mediated and required intact vagus nerve and splenic nerve signaling. The anti-inflammatory efficacy of xanomeline was retained for at least 20h, associated with alterations in splenic lymphocyte, and dendritic cell proportions, and decreased splenocyte responsiveness to endotoxin. These results highlight an important role of the M1 mAChR in a neural circuitry to spleen in which brain cholinergic activation lowers peripheral pro-inflammatory cytokines to levels favoring survival. The therapeutic efficacy of xanomeline was also manifested by significantly improved survival in preclinical settings of severe sepsis. These findings are of interest for strategizing novel therapeutic approaches in inflammatory diseases. PMID:25063706

  10. Anti-Inflammatory Activity of Sanghuangporus sanghuang Mycelium

    Directory of Open Access Journals (Sweden)

    Wang-Ching Lin

    2017-02-01

    Full Text Available Acute lung injury (ALI is characterized by inflammation of the lung tissue and oxidative injury caused by excessive accumulation of reactive oxygen species. Studies have suggested that anti-inflammatory or antioxidant agents could be used for the treatment of ALI with a good outcome. Therefore, our study aimed to test whether the mycelium extract of Sanghuangporus sanghuang (SS-1, believed to exhibit antioxidant and anti-inflammatory properties, could be used against the excessive inflammatory response associated with lipopolysaccharides (LPS-induced ALI in mice and to investigate its possible mechanism of action. The experimental results showed that the administration of SS-1 could inhibit LPS-induced inflammation. SS-1 could reduce the number of inflammatory cells, inhibit myeloperoxidase (MPO activity, regulate the TLR4/PI3K/Akt/mTOR pathway and the signal transduction of NF-κB and MAPK pathways in the lung tissue, and inhibit high mobility group box-1 protein 1 (HNGB1 activity in BALF. In addition, SS-1 could affect the synthesis of antioxidant enzymes Heme oxygenase 1 (HO-1 and Thioredoxin-1 (Trx-1 in the lung tissue and regulate signal transduction in the KRAB-associated protein-1 (KAP1/nuclear factor erythroid-2-related factor Nrf2/Kelch Like ECH associated Protein 1 (Keap1 pathway. Histological results showed that administration of SS-1 prior to induction could inhibit the large-scale LPS-induced neutrophil infiltration of the lung tissue. Therefore, based on all experimental results, we propose that SS-1 exhibits a protective effect against LPS-induced ALI in mice. The mycelium of S. sanghuang can potentially be used for the treatment or prevention of inflammation-related diseases.

  11. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity.

    Science.gov (United States)

    Aswad, Miran; Rayan, Mahmoud; Abu-Lafi, Saleh; Falah, Mizied; Raiyn, Jamal; Abdallah, Ziyad; Rayan, Anwar

    2018-01-01

    The aim was to index natural products for less expensive preventive or curative anti-inflammatory therapeutic drugs. A set of 441 anti-inflammatory drugs representing the active domain and 2892 natural products representing the inactive domain was used to construct a predictive model for bioactivity-indexing purposes. The model for indexing the natural products for potential anti-inflammatory activity was constructed using the iterative stochastic elimination algorithm (ISE). ISE is capable of differentiating between active and inactive anti-inflammatory molecules. By applying the prediction model to a mix set of (active/inactive) substances, we managed to capture 38% of the anti-inflammatory drugs in the top 1% of the screened set of chemicals, yielding enrichment factor of 38. Ten natural products that scored highly as potential anti-inflammatory drug candidates are disclosed. Searching the PubMed revealed that only three molecules (Moupinamide, Capsaicin, and Hypaphorine) out of the ten were tested and reported as anti-inflammatory. The other seven phytochemicals await evaluation for their anti-inflammatory activity in wet lab. The proposed anti-inflammatory model can be utilized for the virtual screening of large chemical databases and for indexing natural products for potential anti-inflammatory activity.

  12. Inflammatory Mechanisms Associated with Skeletal Muscle Sequelae after Stroke: Role of Physical Exercise

    Science.gov (United States)

    Coelho Junior, Hélio José; Gambassi, Bruno Bavaresco; Diniz, Tiego Aparecido; Fernandes, Isabela Maia da Cruz; Caperuto, Érico Chagas; Uchida, Marco Carlos; Lira, Fabio Santos

    2016-01-01

    Inflammatory markers are increased systematically and locally (e.g., skeletal muscle) in stroke patients. Besides being associated with cardiovascular risk factors, proinflammatory cytokines seem to play a key role in muscle atrophy by regulating the pathways involved in this condition. As such, they may cause severe decrease in muscle strength and power, as well as impairment in cardiorespiratory fitness. On the other hand, physical exercise (PE) has been widely suggested as a powerful tool for treating stroke patients, since PE is able to regenerate, even if partially, physical and cognitive functions. However, the mechanisms underlying the beneficial effects of physical exercise in poststroke patients remain poorly understood. Thus, in this study we analyze the candidate mechanisms associated with muscle atrophy in stroke patients, as well as the modulatory effect of inflammation in this condition. Later, we suggest the two strongest anti-inflammatory candidate mechanisms, myokines and the cholinergic anti-inflammatory pathway, which may be activated by physical exercise and may contribute to a decrease in proinflammatory markers of poststroke patients. PMID:27647951

  13. Non-Steroidal Anti-Inflammatory Drugs, Variation in Inflammatory Genes, and Aggressive Prostate Cancer

    Directory of Open Access Journals (Sweden)

    John S. Witte

    2010-10-01

    Full Text Available Increasing evidence suggests that prostatic inflammation plays a key role in the development of prostate cancer. It remains controversial whether non-steroidal anti-inflammatory drugs (NSAIDs reduce the risk of prostate cancer. Here, we investigate how a previously reported inverse association between NSAID use and the risk of aggressive prostate cancer is modulated by variants in several inflammatory genes. We found that NSAIDs may have differential effects on prostate cancer development, depending on one’s genetic makeup. Further study of these inflammatory pathways may clarify the mechanisms through which NSAIDs impact prostate cancer risk.

  14. Anti-inflammatory effects of exercise

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund

    2017-01-01

    and IL-10 is provoked by exercise and exerts direct anti-inflammatory effects by an inhibition of TNF-α and by stimulating IL-1ra, thereby limiting IL-1β signalling. Moreover, muscle-derived IL-6 appears to have direct anti-inflammatory effects and serves as a mechanism to improve glucose tolerance....... In addition, indirect anti-inflammatory effects of long-term exercise are mediated via improvements in body composition. CONCLUSION: Physical activity represents a natural, strong anti-inflammatory strategy with minor side effects and should be integrated in the management of patients with cardiometabolic...

  15. Anti-Inflammatory Effects of Benfotiamine are Mediated Through the Regulation of Arachidonic Acid Pathway in Macrophages

    OpenAIRE

    Shoeb, Mohammad; Ramana, Kota V

    2011-01-01

    Benfotiamine, a lipid-soluble analogue of vitamin B1, is a potent anti-oxidant that is used as a food supplement for the treatment of diabetic complications. Our recent study indicates a novel role of benfotiamine in the prevention of bacterial endotoxin, lipopolysaccharide (LPS)-induced cytotoxicity and inflammatory response in murine macrophages. Nevertheless, it remains unclear how benfotiamine mediates anti-inflammatory effects. In this study, we investigated the anti-inflammatory role of...

  16. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages.

    Directory of Open Access Journals (Sweden)

    Do-Wan Shim

    Full Text Available Antimicrobial peptides (AMPs, also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.

  17. Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent.

    LENUS (Irish Health Repository)

    Bergin, David A

    2012-04-01

    Alpha-1 antitrypsin (AAT) has long been thought of as an important anti-protease in the lung where it is known to decrease the destructive effects of major proteases such as neutrophil elastase. In recent years, the perception of this protein in this simple one dimensional capacity as an anti-protease has evolved and it is now recognised that AAT has significant anti-inflammatory properties affecting a wide range of inflammatory cells, leading to its potential therapeutic use in a number of important diseases. This present review aims to discuss the described anti-inflammatory actions of AAT in modulating key immune cell functions, delineate known signalling pathways and specifically to identify the models of disease in which AAT has been shown to be effective as a therapy.

  18. DMPD: Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17981503 Anti-inflammatory actions of PPAR ligands: new insights on cellular andmol...) (.html) (.csml) Show Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mech...anisms. PubmedID 17981503 Title Anti-inflammatory actions of PPAR ligands: new insight

  19. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway.

    Science.gov (United States)

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway.

  20. Modeling of non-steroidal anti-inflammatory drug effect within signaling pathways and miRNA-regulation pathways.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available To date, it is widely recognized that Non-Steroidal Anti-Inflammatory Drugs (NSAIDs can exert considerable anti-tumor effects regarding many types of cancers. The prolonged use of NSAIDs is highly associated with diverse side effects. Therefore, tailoring down the NSAID application onto individual patients has become a necessary and relevant step towards personalized medicine. This study conducts the systemsbiological approach to construct a molecular model (NSAID model containing a cyclooxygenase (COX-pathway and its related signaling pathways. Four cancer hallmarks are integrated into the model to reflect different developmental aspects of tumorigenesis. In addition, a Flux-Comparative-Analysis (FCA based on Petri net is developed to transfer the dynamic properties (including drug responsiveness of individual cellular system into the model. The gene expression profiles of different tumor-types with available drug-response information are applied to validate the predictive ability of the NSAID model. Moreover, two therapeutic developmental strategies, synthetic lethality and microRNA (miRNA biomarker discovery, are investigated based on the COX-pathway. In conclusion, the result of this study demonstrates that the NSAID model involving gene expression, gene regulation, signal transduction, protein interaction and other cellular processes, is able to predict the individual cellular responses for different therapeutic interventions (such as NS-398 and COX-2 specific siRNA inhibition. This strongly indicates that this type of model is able to reflect the physiological, developmental and pathological processes of an individual. The approach of miRNA biomarker discovery is demonstrated for identifying miRNAs with oncogenic and tumor suppressive functions for individual cell lines of breast-, colon- and lung-tumor. The achieved results are in line with different independent studies that investigated miRNA biomarker related to diagnostics of cancer

  1. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities

    Directory of Open Access Journals (Sweden)

    Puiyan Lam

    2016-03-01

    Full Text Available The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.

  2. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    Science.gov (United States)

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  3. Src Is a Prime Target Inhibited by Celtis choseniana Methanol Extract in Its Anti-Inflammatory Action

    Directory of Open Access Journals (Sweden)

    Han Gyung Kim

    2018-01-01

    Full Text Available Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS, pam3CSK4 (Pam3, or poly(I:C. In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS, cyclooxygenase (COX-2, and tumor necrosis factor-alpha (TNF-α in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C without cytotoxicity. High-performance liquid chromatography (HPLC analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of

  4. Libidibia ferrea mature seeds promote antinociceptive effect by peripheral and central pathway: possible involvement of opioid and cholinergic receptors.

    Science.gov (United States)

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies.

  5. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    Directory of Open Access Journals (Sweden)

    Luis Armando Sawada

    2014-01-01

    Full Text Available Libidibia ferrea (LF is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF, partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg, naloxone (5 mg/kg in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies.

  6. Cholinergic Hypofunction in Presbycusis-Related Tinnitus With Cognitive Function Impairment: Emerging Hypotheses.

    Science.gov (United States)

    Ruan, Qingwei; Yu, Zhuowei; Zhang, Weibin; Ruan, Jian; Liu, Chunhui; Zhang, Ruxin

    2018-01-01

    Presbycusis (age-related hearing loss) is a potential risk factor for tinnitus and cognitive deterioration, which result in poor life quality. Presbycusis-related tinnitus with cognitive impairment is a common phenotype in the elderly population. In these individuals, the central auditory system shows similar pathophysiological alterations as those observed in Alzheimer's disease (AD), including cholinergic hypofunction, epileptiform-like network synchronization, chronic inflammation, and reduced GABAergic inhibition and neural plasticity. Observations from experimental rodent models indicate that recovery of cholinergic function can improve memory and other cognitive functions via acetylcholine-mediated GABAergic inhibition enhancement, nicotinic acetylcholine receptor (nAChR)-mediated anti-inflammation, glial activation inhibition and neurovascular protection. The loss of cholinergic innervation of various brain structures may provide a common link between tinnitus seen in presbycusis-related tinnitus and age-related cognitive impairment. We hypothesize a key component of the condition is the withdrawal of cholinergic input to a subtype of GABAergic inhibitory interneuron, neuropeptide Y (NPY) neurogliaform cells. Cholinergic denervation might not only cause the degeneration of NPY neurogliaform cells, but may also result in decreased AChR activation in GABAergic inhibitory interneurons. This, in turn, would lead to reduced GABA release and inhibitory regulation of neural networks. Reduced nAChR-mediated anti-inflammation due to the loss of nicotinic innervation might lead to the transformation of glial cells and release of inflammatory mediators, lowering the buffering of extracellular potassium and glutamate metabolism. Further research will provide evidence for the recovery of cholinergic function with the use of cholinergic input enhancement alone or in combination with other rehabilitative interventions to reestablish inhibitory regulation mechanisms of

  7. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Villar-Lorenzo, Andrea, E-mail: avillar@iib.uam.es [Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid (Spain); Ardiles, Alejandro E., E-mail: ale_csic@gmail.com [Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife (Spain); Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1110939 (Chile); Arroba, Ana I., E-mail: aarroba@iib.uam.es [Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid (Spain); Hernández-Jiménez, Enrique, E-mail: enheji@gmail.com [Tumor Immunology Laboratory (IdiPAZ), 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERres), ISCIII, 28029 Madrid (Spain); and others

    2016-12-15

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.

  8. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    International Nuclear Information System (INIS)

    Villar-Lorenzo, Andrea; Ardiles, Alejandro E.; Arroba, Ana I.; Hernández-Jiménez, Enrique

    2016-01-01

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.

  9. Chaoborus and gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals.

    Directory of Open Access Journals (Sweden)

    Linda C Weiss

    Full Text Available Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the invertebrate phantom midge larvae Chaoborus (Diptera D. pulex develops defensive morphological defenses (neckteeth. Cues originating from predatory fish result in life history changes in which resources are allocated from somatic growth to reproduction. While there are hints that responses against Chaoborus cues are transmitted involving cholinergic neuronal pathways, nothing is known about the neurophysiology underlying the transmission of fish related cues. We investigated the neurophysiological basis underlying the activation of inducible defenses in D. pulex using induction assays with the invertebrate predator Chaoborus and the three-spined stickleback Gasterosteus aculeatus. Predator-specific cues were combined with neuro-effective substances that stimulated or inhibited the cholinergic and gabaergic nervous system. We show that cholinergic-dependent pathways are involved in the perception and transmission of Chaoborus cues, while GABA was not involved. Thus, the cholinergic nervous system independently mediates the development of morphological defenses in response to Chaoborus cues. In contrast, only the inhibitory effect of GABA significantly influence fish-induced life history changes, while the application of cholinergic stimulants had no effect in combination with fish related cues. Our results show that cholinergic stimulation mediates signal transmission of Chaoborus cues leading to morphological defenses. Fish cues, which are responsible for predator-specific life history adaptations involve gabaergic control. Our study shows that both pathways are independent and thus potentially

  10. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata

    Directory of Open Access Journals (Sweden)

    Ting Shen

    2013-01-01

    Full Text Available Andrographolide (AG is an abundant component of plants of the genus Andrographis and has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO and prostaglandin E2 (PGE2, as well as the mRNA abundance of inducible NO synthase (iNOS, tumor necrosis factor-alpha (TNF-α, cyclooxygenase (COX-2, and interferon-beta (IFN-β in a dose-dependent manner in both lipopolysaccharide- (LPS- activated RAW264.7 cells and peritoneal macrophages. AG also substantially ameliorated the symptoms of LPS-induced hepatitis and EtOH/HCl-induced gastritis in mice. Based on the results of luciferase reporter gene assays, kinase assays, and measurement of nuclear levels of transcription factors, the anti-inflammatory effects of AG were found to be clearly mediated by inhibition of both (1 extracellular signal-regulated kinase (ERK/activator protein (AP-1 and (2 IκB kinase ε (IKKε/interferon regulatory factor (IRF-3 pathways. In conclusion, we detected a novel molecular signaling pathway by which AG can suppress inflammatory responses. Thus, AG is a promising anti-inflammatory drug with two pharmacological targets.

  11. Anti-inflammatory and anti-oxidant activities of Secamone afzelii ...

    African Journals Online (AJOL)

    . This study re-ports the anti-inflammatory and antioxidant properties of S. afzelii. The anti-inflammatory activity was determined by the carrageenan-induced paw oedema method in 7 day old chicks and antioxi-dant property by the 2 ...

  12. Dynamics of cholinergic function

    International Nuclear Information System (INIS)

    Hanin, I.

    1986-01-01

    This book presents information on the following topics; cholinergic pathways - anatomy of the central nervous system; aging, DSAT and other clinical conditions; cholinergic pre- and post-synaptic receptors; acetylcholine release; cholinesterases, anticholinesterases and reactivators; acetylcholine synthesis, metabolism and precursors; second messenger messenger mechanisms; interaction of acetylcholine with other neurotransmitter systems; cholinergic mechanisms in physiological function, including cardiovascular events; and neurotoxic agents and false transmitters

  13. Anti-Inflammatory and Gastroprotective Roles of Rabdosia inflexa through Downregulation of Pro-Inflammatory Cytokines and MAPK/NF-κB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Md Rashedunnabi Akanda

    2018-02-01

    Full Text Available Globally, gastric ulcer is a vital health hazard for a human. Rabdosia inflexa (RI has been used in traditional medicine for inflammatory diseases. The present study aimed to investigate the protective effect and related molecular mechanism of RI using lipopolysaccharide (LPS-induced inflammation in RAW 246.7 cells and HCl/EtOH-induced gastric ulcer in mice. We applied 3-(4,5-dimethyl-thiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, nitric oxide (NO, reactive oxygen species (ROS, histopathology, malondialdehyde (MDA, quantitative real-time polymerase chain reaction (qPCR, immunohistochemistry (IHC, and Western blot analyses to evaluate the protective role of RI. Study revealed that RI effectively attenuated LPS-promoted NO and ROS production in RAW 246.7 cells. In addition, RI mitigated gastric oxidative stress by inhibiting lipid peroxidation, elevating NO, and decreasing gastric inflammation. RI significantly halted elevated gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, inducible nitric oxide synthetase (iNOS, and cyclooxygenase-2 (COX-2 in gastric tissue. Likewise, RI markedly attenuated the mitogen-activated protein kinases (MAPKs phosphorylation, COX-2 expression, phosphorylation and degradation of inhibitor kappa B (IκBα and activation of nuclear factor kappa B (NF-κB. Thus, experimental findings suggested that the anti-inflammatory and gastroprotective activities of RI might contribute to regulating pro-inflammatory cytokines and MAPK/NF-κB signaling pathways.

  14. Inflammatory pathways of importance for management of inflammatory bowel disease.

    Science.gov (United States)

    Pedersen, Jannie; Coskun, Mehmet; Soendergaard, Christoffer; Salem, Mohammad; Nielsen, Ole Haagen

    2014-01-07

    Inflammatory bowel disease (IBD) is a group of chronic disorders of the gastrointestinal tract comprising Crohn's disease (CD) and ulcerative colitis (UC). Their etiologies are unknown, but they are characterised by an imbalanced production of pro-inflammatory mediators, e.g., tumor necrosis factor (TNF)-α, as well as increased recruitment of leukocytes to the site of inflammation. Advantages in understanding the role of the inflammatory pathways in IBD and an inadequate response to conventional therapy in a large portion of patients, has over the last two decades lead to new therapies which includes the TNF inhibitors (TNFi), designed to target and neutralise the effect of TNF-α. TNFi have shown to be efficient in treating moderate to severe CD and UC. However, convenient alternative therapeutics targeting other immune pathways are needed for patients with IBD refractory to conventional therapy including TNFi. Indeed, several therapeutics are currently under development, and have shown success in clinical trials. These include antibodies targeting and neutralising interleukin-12/23, small pharmacologic Janus kinase inhibitors designed to block intracellular signaling of several pro-inflammatory cytokines, antibodies targeting integrins, and small anti-adhesion molecules that block adhesion between leukocytes and the intestinal vascular endothelium, reducing their infiltration into the inflamed mucosa. In this review we have elucidated the major signaling pathways of clinical importance for IBD therapy and highlighted the new promising therapies available. As stated in this paper several new treatment options are under development for the treatment of CD and UC, however, no drug fits all patients. Hence, optimisations of treatment regimens are warranted for the benefit of the patients either through biomarker establishment or other rationales to maximise the effect of the broad range of mode-of-actions of the present and future drugs in IBD.

  15. Cholinergic Hypofunction in Presbycusis-Related Tinnitus With Cognitive Function Impairment: Emerging Hypotheses

    Directory of Open Access Journals (Sweden)

    Qingwei Ruan

    2018-04-01

    Full Text Available Presbycusis (age-related hearing loss is a potential risk factor for tinnitus and cognitive deterioration, which result in poor life quality. Presbycusis-related tinnitus with cognitive impairment is a common phenotype in the elderly population. In these individuals, the central auditory system shows similar pathophysiological alterations as those observed in Alzheimer’s disease (AD, including cholinergic hypofunction, epileptiform-like network synchronization, chronic inflammation, and reduced GABAergic inhibition and neural plasticity. Observations from experimental rodent models indicate that recovery of cholinergic function can improve memory and other cognitive functions via acetylcholine-mediated GABAergic inhibition enhancement, nicotinic acetylcholine receptor (nAChR-mediated anti-inflammation, glial activation inhibition and neurovascular protection. The loss of cholinergic innervation of various brain structures may provide a common link between tinnitus seen in presbycusis-related tinnitus and age-related cognitive impairment. We hypothesize a key component of the condition is the withdrawal of cholinergic input to a subtype of GABAergic inhibitory interneuron, neuropeptide Y (NPY neurogliaform cells. Cholinergic denervation might not only cause the degeneration of NPY neurogliaform cells, but may also result in decreased AChR activation in GABAergic inhibitory interneurons. This, in turn, would lead to reduced GABA release and inhibitory regulation of neural networks. Reduced nAChR-mediated anti-inflammation due to the loss of nicotinic innervation might lead to the transformation of glial cells and release of inflammatory mediators, lowering the buffering of extracellular potassium and glutamate metabolism. Further research will provide evidence for the recovery of cholinergic function with the use of cholinergic input enhancement alone or in combination with other rehabilitative interventions to reestablish inhibitory regulation

  16. Evaluation of anti-inflammatory effect of statins in chronic periodontitis.

    Science.gov (United States)

    Suresh, Snophia; Narayana, Satya; Jayakumar, P; Sudhakar, Uma; Pramod, V

    2013-01-01

    Statins are the group of lipid-lowering drugs commonly used to control cardiovascular and cerebrovascular diseases. Statins have potential anti-inflammatory effect by blocking the intermediate metabolites of the mevalonate pathway. The objective of this study was to evaluate the anti-inflammatory effect of statin medication in chronic periodontitis patients. Thirty patients of age group between 40 and 60 years were selected from the outpatient pool of Department of Periodontics, Thaimoogambigai Dental College and Hospital, Chennai. Thirty patients selected were grouped into two groups, Group-I consists of patients with generalized chronic periodontitis and on statin medication and Group-II consists of patients with generalized chronic periodontitis. Clinical parameters were recorded and gingival crevicular fluid (GCF) samples were analyzed for interleukin (IL)-1β using commercially available enzyme-linked immunosorbent assay. The mean GCF IL-1β levels in generalized chronic periodontitis patients who are on statin medication (Group-I) were lower than the generalized chronic periodontitis patients without statin medication (Group-II). Reduction of GCF IL-1β levels in statin users indicate that statins have anti-inflammatory effect on periodontal disease.

  17. Anti-inflammatory effects of insulin.

    Science.gov (United States)

    Dandona, Paresh; Chaudhuri, Ajay; Mohanty, Priya; Ghanim, Husam

    2007-07-01

    This review deals with the recent observations on the pro-inflammatory effects of glucose and the anti-inflammatory actions of insulin. Apart from being novel, they are central to our understanding of why hyperglycemia is a prognosticator of bad clinical outcomes including patients with acute coronary syndromes, stroke and in patients in the intensive care unit. The pro-inflammatory effect of glucose as well as that of other macronutrients including fast food meals provides the basis of chronic oxidative stress and inflammation in the obese and their propensity to atherosclerotic disease. The anti-inflammatory action of insulin provides a neutralizing effect to balance macronutrient induced inflammation on the one hand and the possibility of using insulin as an anti-inflammatory drug on the other. The actions of macronutrients and insulin described above explain why insulin resistant states like obesity and type 2 diabetes are associated with oxidative stress, inflammation and atherosclerosis. They also suggest that insulin may be antiatherogenic.

  18. Anti-Inflammatory Iridoids of Botanical Origin

    Science.gov (United States)

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  19. Ursolic Acid and Oleanolic Acid: Pentacyclic Terpenoids with Promising Anti-Inflammatory Activities.

    Science.gov (United States)

    Kashyap, Dharambir; Sharma, Ajay; Tuli, Hardeep S; Punia, Sandeep; Sharma, Anil K

    2016-01-01

    Plant derived products are not only served as dietary components but also used to treat and prevent the inflammatory associated diseases like cancer. Among the natural products pentacyclic terpenoids including ursolic acid and oleanolic acid are considered as the promising anti-inflammatory therapeutic agents. The current review extensively discusses the anti-inflammatory therapeutic potential of these pentacyclic moieties along with their proposed mechanisms of action. Furthermore, the relevant patents have also been listed to present the health benefits of these promising therapeutic agents to pin down the inflammatory diseases. Expert opinion: Pentacyclic terpenoids are known to negatively down-regulate a variety of extracellular and intracellular molecular targets associated with disease progression. The major anti-inflammatory effects of these molecules have been found to be mediated via inactivation of NFkB, STAT3/6, Akt/mTOR pathways. A number of patents on UA & OA based moieties have been reported between 2010 and 2016. Still there have been only a few compounds which meet the need of sufficient hydro solubility and bioavailability along with higher anti-inflammatory activities. Thus, it is essential to develop novel derivatives of terpenpoids which may not only overcome the solubility issues but also may improve their therapeutic effects. In addition, scientific community may utilize nanotechnology based drug delivery systems so as to increase the bio-availability, selectivity and dosages related problems.

  20. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  1. [Anti-inflammatory, analgesic and anti-pyretic activities of a non-steroidal anti-inflammatory drug, etofenamate, in experimental animals].

    Science.gov (United States)

    Nakamura, H; Motoyoshi, S; Imazu, C; Ishii, K; Yokoyama, Y; Seto, Y; Kadokawa, T; Shimizu, M

    1982-08-01

    Anti-inflammatory, analgesic, and anti-pyretic activities of orally administered etofenamate, the diethylene glycol ester of flufenamic acid, were investigated in experimental animals. Against acetic acid-induced vascular permeability in mice and ultra-violet light-induced erythema in guinea pigs, etofenamate produced a dose related inhibition at doses of 40--320 mg/kg and 5--20 mg/kg, respectively. In rats, felt-pellet-induced granuloma formation and adjuvant-induced arthritis were significantly inhibited by repeated administration of etofenamate at doses of 20 mg/kg/day for 5 days and 40 mg/kg/day for 21 days, respectively. Etofenamate showed an inhibitory activity on the squeak response caused by flexing and extending the silver nitrate-induced arthritic joint in rats; and it produced a dose related anti-writhing activity at doses of 50--300 mg/kg and 10--80 mg/kg in mice and rats, respectively, in the acetic acid-induced writhing test. Etofenamate showed a significant anti-pyretic activity at doses of 0.2 mg/kg or more. These potencies of etofenamate were 0.5 to 1.6 times those of flufenamic acid. In particular, the anti-erythema, anti-arthritis, and anti-pyretic activities of etofenamate were approximately equivalent to or superior to those of flufenamic acid. From these results, it was suggested that etofenamate given orally, like other non-steroidal anti-inflammatory drugs, showed anti-inflammatory, analgesic, and anti-pyretic activities in experimental animals.

  2. A strong anti-inflammatory signature revealed by liver transcription profiling of Tmprss6-/- mice.

    Directory of Open Access Journals (Sweden)

    Michela Riba

    Full Text Available Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe(-/- mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe(-/- deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.

  3. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38.

    Science.gov (United States)

    Yi, Young-Su; Kim, Mi-Yeon; Cho, Jae Youl

    2017-05-01

    Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.

  4. Anti-inflammatory activity of Odina wodier Roxb, an Indian folk remedy, through inhibition of toll-like receptor 4 signaling pathway.

    Science.gov (United States)

    Ojha, Durbadal; Mukherjee, Hemanta; Mondal, Supriya; Jena, Aditya; Dwivedi, Ved Prakash; Mondal, Keshab C; Malhotra, Bharti; Samanta, Amalesh; Chattopadhyay, Debprasad

    2014-01-01

    Inflammation is part of self-limiting non-specific immune response, which occurs during bodily injury. In some disorders the inflammatory process becomes continuous, leading to the development of chronic inflammatory diseases including cardiovascular diseases, diabetes, cancer etc. Several Indian tribes used the bark of Odina wodier (OWB) for treating inflammatory disorders. Thus, we have evaluated the immunotherapeutic potential of OWB methanol extract and its major constituent chlorogenic acid (CA), using three popular in vivo antiinflammatory models: Carrageenan- and Dextran-induced paw edema, Cotton pellet granuloma, and Acetic acid-induced vascular permeability. To elucidate the possible anti-inflammatory mechanism of action we determine the level of major inflammatory mediators (NO, iNOS, COX-2-dependent prostaglandin E2 or PGE2), and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12). Further, we determine the toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 (MyD88), c-Jun N-terminal kinases (JNK), nuclear factor kappa-B cells (NF-κB), and NF-kB inhibitor alpha (IK-Bα) by protein and mRNA expression, and Western blot analysis in drug treated LPS-induced murine macrophage model. Moreover, we determined the acute and sub-acute toxicity of OWB extract in BALB/c mice. Our study demonstrated a significant anti-inflammatory activity of OWB extract and CA along with the inhibition of TNF-α, IL-1β, IL-6 and IL-12 expressions. Further, the expression of TLR4, NF-κBp65, MyD88, iNOS and COX-2 molecules were reduced in drug-treated groups, but not in the LPS-stimulated untreated or control groups, Thus, our results collectively indicated that the OWB extract and CA can efficiently inhibit inflammation through the down regulation of TLR4/MyD88/NF-kB signaling pathway.

  5. Anti-inflammatory activity of Odina wodier Roxb, an Indian folk remedy, through inhibition of toll-like receptor 4 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Durbadal Ojha

    Full Text Available Inflammation is part of self-limiting non-specific immune response, which occurs during bodily injury. In some disorders the inflammatory process becomes continuous, leading to the development of chronic inflammatory diseases including cardiovascular diseases, diabetes, cancer etc. Several Indian tribes used the bark of Odina wodier (OWB for treating inflammatory disorders. Thus, we have evaluated the immunotherapeutic potential of OWB methanol extract and its major constituent chlorogenic acid (CA, using three popular in vivo antiinflammatory models: Carrageenan- and Dextran-induced paw edema, Cotton pellet granuloma, and Acetic acid-induced vascular permeability. To elucidate the possible anti-inflammatory mechanism of action we determine the level of major inflammatory mediators (NO, iNOS, COX-2-dependent prostaglandin E2 or PGE2, and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12. Further, we determine the toll-like receptor 4 (TLR4, Myeloid differentiation primary response gene 88 (MyD88, c-Jun N-terminal kinases (JNK, nuclear factor kappa-B cells (NF-κB, and NF-kB inhibitor alpha (IK-Bα by protein and mRNA expression, and Western blot analysis in drug treated LPS-induced murine macrophage model. Moreover, we determined the acute and sub-acute toxicity of OWB extract in BALB/c mice. Our study demonstrated a significant anti-inflammatory activity of OWB extract and CA along with the inhibition of TNF-α, IL-1β, IL-6 and IL-12 expressions. Further, the expression of TLR4, NF-κBp65, MyD88, iNOS and COX-2 molecules were reduced in drug-treated groups, but not in the LPS-stimulated untreated or control groups, Thus, our results collectively indicated that the OWB extract and CA can efficiently inhibit inflammation through the down regulation of TLR4/MyD88/NF-kB signaling pathway.

  6. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action.

    Science.gov (United States)

    Tan, W S Daniel; Liao, Wupeng; Zhou, Shuo; Wong, W S Fred

    2017-09-01

    Andrographis paniculata has long been part of the traditional herbal medicine system in Asia and in Scandinavia. Andrographolide was isolated as a major bioactive constituent of A. paniculata in 1951, and since 1984, andrographolide and its analogs have been scrutinized with modern drug discovery approach for anti-inflammatory properties. With this accumulated wealth of pre-clinical data, it is imperative to review and consolidate different sources of information, to decipher the major anti-inflammatory mechanisms of action in inflammatory diseases, and to provide direction for future studies. Andrographolide and its analogs have been shown to provide anti-inflammatory benefits in a variety of inflammatory disease models. Among the diverse signaling pathways investigated, inhibition of NF-κB activity is the prevailing anti-inflammatory mechanism elicited by andrographolide. There is also increasing evidence supporting endogenous antioxidant defense enhancement by andrographolide through Nrf2 activation. However, the exact pathway leading to NF-κB and Nrf2 activation by andrographolide has yet to be elucidated. Validation and consensus on the major mechanistic actions of andrographolide in different inflammatory conditions are required before translating current findings into clinical settings. There are a few clinical trials conducted using andrographolide in fixed combination formulation which have shown anti-inflammatory benefits and good safety profile. A concerted effort is definitely needed to identify potent andrographolide lead compounds with improved pharmacokinetics and toxicological properties. Taken together, andrographolide and its analogs have great potential to be the next new class of anti-inflammatory agents, and more andrographolide molecules are likely moving towards clinical study stage in the near future. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity.

    Science.gov (United States)

    Rahmani, Arshad H; Aly, Salah M; Ali, Habeeb; Babiker, Ali Y; Srikar, Sauda; Khan, Amjad A

    2014-01-01

    The current mode of treatment of various diseases based on synthetic drugs is expensive, alters genetic and metabolic pathways and also shows adverse side effects. Thus, safe and effective approach is needed to prevent the diseases development and progression. In this vista, Natural products are good remedy in the treatment/management of diseases and they are affordable and effective without any adverse effects. Dates are main fruit in the Arabian Peninsula and are considered to be one of the most significant commercial crops and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that constituents of dates act as potent antioxidant, anti-tumour as well as anti-inflammatory, provide a suitable alternative therapy in various diseases cure. In this review, dates fruits has medicinal value are summarized in terms of therapeutic implications in the diseases control through anti-oxidant, anti-inflammatory, anti-tumour and ant-diabetic effect.

  8. Non-steroidal Anti-inflammatory Drugs Ranking by Nondeterministic Assessments of Probabilistic Type

    Directory of Open Access Journals (Sweden)

    Madalina luiza MOLDOVEANU

    2012-09-01

    Full Text Available With a number of common therapeutic prescriptions, common mechanisms, common pharmacological effects - analgesic, antipyretic and anti-inflammatory (acetaminophen excepted, common side effects (SE (platelet dysfunction, gastritis and peptic ulcers, renal insufficiency in susceptible patients, water and sodium retention, edemas, nephropathies, and only a few different characteristics – different chemical structures, pharmacokinetics and different therapeutic possibility, different selectivities according to cyclooxygenase pathway 1 and 2, non-steroidal anti-inflammatory drugs (NSAIDs similarities are more apparent than differences. Being known that in a correct treatment benefits would exceed risks, the question “Which anti-inflammatory drug presents the lowest risks for a patient?” is just natural. By the Global Risk Method (GRM and the Maximum Risk Method (MRM we have determined the ranking of fourteen NSAIDs considering the risks presented by each particular NSAID. Nimesulide, Etoricoxib and Celecoxib safety level came superior to the other NSAIDs, whereas Etodolac and Indomethacin present an increased side effects risk.

  9. Anti-Inflammatory and Immunomodulatory Mechanism of Tanshinone IIA for Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Zhuo Chen

    2014-01-01

    Full Text Available Tanshinone IIA (Tan II A is widely used in the treatment of cardiovascular diseases as an active component of Salvia miltiorrhiza Bunge. It has been demonstrated to have pleiotropic effects for atherosclerosis. From the anti-inflammatory and immunomodulatory mechanism perspective, this paper reviewed major progresses of Tan IIA in antiatherosclerosis research, including immune cells, antigens, cytokines, and cell signaling pathways.

  10. Bovine lactoferricin is anti-inflammatory and anti-catabolic in human articular cartilage and synovium.

    Science.gov (United States)

    Yan, Dongyao; Chen, Di; Shen, Jie; Xiao, Guozhi; van Wijnen, Andre J; Im, Hee-Jeong

    2013-02-01

    Bovine lactoferricin (LfcinB) is a multi-functional peptide derived from proteolytic cleavage of bovine lactoferrin. LfcinB was found to antagonize the biological effects mediated by angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) in endothelial cells. However, the effect of LfcinB on human articular cartilage remained unknown. Here, our findings demonstrate that LfcinB restored the proteoglycan loss promoted by catabolic factors (interleukin-1β) IL-1β and FGF-2 in vitro and ex vivo. Mechanistically, LfcinB attenuated the effects of IL-1β and FGF-2 on the expression of cartilage-degrading enzymes (MMP-1, MMP-3, and MMP-13), destructive cytokines (IL-1β and IL-6), and inflammatory mediators (iNOS and TLR2). LfcinB induced protective cytokine expression (IL-4 and IL-10), and downregulated aggrecanase basal expression. LfcinB specifically activated ERK MAPK and Akt signaling pathways, which may account for its anti-inflammatory activity. We also revealed that LfcinB exerted similar protective effects on human synovial fibroblasts challenged by IL-1β, with minimal cytotoxicity. Collectively, our results suggest that LfcinB possesses potent anti-catabolic and anti-inflammatory bioactivities in human articular tissues, and may be utilized for the prevention and/or treatment of OA in the future. Copyright © 2012 Wiley Periodicals, Inc.

  11. Anti-inflammatory actions of acupuncture

    Directory of Open Access Journals (Sweden)

    Freek J. Zijlstra

    2003-01-01

    Full Text Available Acupuncture has a beneficial effect when treating many diseases and painful conditions, and therefore is thought to be useful as a complementary therapy or to replace generally accepted pharmacological intervention. The attributive effect of acupuncture has been investigated in inflammatory diseases, including asthma, rhinitis, inflammatory bowel disease, rheumatoid arthritis, epicondylitis, complex regional pain syndrome type 1 and vasculitis. Large randomised trials demonstrating the immediate and sustained effect of acupuncture are missing. Mechanisms underlying the ascribed immunosuppressive actions of acupuncture are reviewed in this communication. The acupuncture-controlled release of neuropeptides from nerve endings and subsequent vasodilative and anti-inflammatory effects through calcitonine gene-related peptide is hypothesised. The complex interactions with substance P, the analgesic contribution of β-endorphin and the balance between cell-specific pro-inflammatory and anti-inflammatory cytokines tumour necrosis factor-α and interleukin-10 are discussed.

  12. Rationale for anti-inflammatory therapy in dry eye syndrome.

    Science.gov (United States)

    de Paiva, C S; Pflugfelder, S C

    2008-01-01

    Dry eye is a multifactorial condition that results in a dysfunctional lacrimal functional unit. Evidence suggests that inflammation is involved in the pathogenesis of the disease. Changes in tear composition including increased cytokines, chemokines, metalloproteinases and the number of T cells in the conjunctiva are found in dry eye patients and in animal models. This inflammation is responsible in part for the irritation symptoms, ocular surface epithelial disease, and altered corneal epithelial barrier function in dry eye. There are several anti-inflammatory therapies for dry eye that target one or more of the inflammatory mediators/pathways that have been identified and are discussed in detail.

  13. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS)-Stimulated Human THP-1 Macrophages.

    Science.gov (United States)

    Robertson, Ruairi C; Guihéneuf, Freddy; Bahar, Bojlul; Schmid, Matthias; Stengel, Dagmar B; Fitzgerald, Gerald F; Ross, R Paul; Stanton, Catherine

    2015-08-20

    Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus) and one microalga (Pavlova lutheri) were assessed in lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Extracts contained 34%-42% total fatty acids as n-3 PUFA and 5%-7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL)-6 (p lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases.

  14. Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid.

    Science.gov (United States)

    Park, Jae Gwang; Kim, Seung Cheol; Kim, Yun Hwan; Yang, Woo Seok; Kim, Yong; Hong, Sungyoul; Kim, Kyung-Hee; Yoo, Byong Chul; Kim, Shi Hyung; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs.

  15. Anti-inflammatory and neuropharmacological activities of ...

    African Journals Online (AJOL)

    The crude methanolic extracts of leaves of Caesalpinia pulcherrima were evaluated for its anti-inflammatory and neuropharmacological activities. When given orally to rats at dose of 200 and 400 mg/kg, the extract showed a significant (P<0.001) anti-inflammatory activity against carrageenin induced paw edema in rats ...

  16. An anti-inflammatory principle from cactus.

    Science.gov (United States)

    Park, E H; Kahng, J H; Lee, S H; Shin, K H

    2001-03-01

    In previous studies, the ethanol extract of cactus (Opuntia ficus-indica) showed potent anti-inflammatory action. In the present study, following fractionation of the methanol extract of cactus stems guided by adjuvant-induced chronic inflammation model in mice, an active anti-inflammatory principle has been isolated and identified as beta-sitosterol.

  17. Anti-Inflammatory Effect of Melittin on Porphyromonas Gingivalis LPS-Stimulated Human Keratinocytes.

    Science.gov (United States)

    Kim, Woon-Hae; An, Hyun-Jin; Kim, Jung-Yeon; Gwon, Mi-Gyeong; Gu, Hyemin; Jeon, Minji; Kim, Min-Kyung; Han, Sang-Mi; Park, Kwan-Kyu

    2018-02-05

    Periodontitis is a chronic inflammatory disease that contributes to the destruction of the gingiva. Porphyromonas gingivalis ( P. gingivalis ) can cause periodontitis via its pathogenic lipopolysaccharides (LPS). Melittin, a major component of bee venom, is known to have anti-inflammatory and antibacterial effects. However, the role of melittin in the inflammatory response has not been elucidated in periodontitis-like human keratinocytes. Therefore, we investigated the anti-inflammatory effects of melittin on a P. gingivalis LPS (PgLPS)-treated HaCaT human keratinocyte cell line. The cytotoxicity of melittin was measured using a human keratinocyte cell line, HaCaT, and a Cell Counting Kit-8. The effect of melittin on PgLPS-induced inflammation was determined with Western blot, real-time quantitative PCT, and immunofluorescence. PgLPS increased the expression of toll-like receptor (TLR) 4 and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and interferon-γ (IFN-γ). Moreover, PgLPS induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B/Akt. Melittin also inhibited the expression of proinflammatory cytokines by suppressing the activation of the NF-κB signaling pathway, ERK, and Akt. Melittin attenuates the PgLPS-induced inflammatory response and could therefore be applied in the treatment of periodontitis for anti-inflammatory effects.

  18. Bee Venom Inhibits Porphyromonas gingivalis Lipopolysaccharides-Induced Pro-Inflammatory Cytokines through Suppression of NF-κB and AP-1 Signaling Pathways.

    Science.gov (United States)

    Kim, Woon-Hae; An, Hyun-Jin; Kim, Jung-Yeon; Gwon, Mi-Gyeong; Gu, Hyemin; Park, Jae-Bok; Sung, Woo Jung; Kwon, Yong-Chul; Park, Kyung-Duck; Han, Sang Mi; Park, Kwan-Kyu

    2016-11-10

    Periodontitis is a chronic inflammatory disease that leads to destruction of tooth supporting tissues. Porphyromonas gingivalis ( P. gingivalis ), especially its lipopolysaccharides (LPS), is one of major pathogens that cause periodontitis. Bee venom (BV) has been widely used as a traditional medicine for various diseases. Previous studies have demonstrated the anti-inflammatory, anti-bacterial effects of BV. However, a direct role and cellular mechanism of BV on periodontitis-like human keratinocytes have not been explored. Therefore, we investigated the anti-inflammatory mechanism of BV against P. gingivalis LPS (PgLPS)-induced HaCaT human keratinocyte cell line. The anti-inflammatory effect of BV was demonstrated by various molecular biological methods. The results showed that PgLPS increased the expression of Toll-like receptor (TLR)-4 and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, and interferon (IFN)-γ. In addition, PgLPS induced activation of the signaling pathways of inflammatory cytokines-related transcription factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1). BV effectively inhibited those pro-inflammatory cytokines through suppression of NF-κB and AP-1 signaling pathways. These results suggest that administration of BV attenuates PgLPS-induced inflammatory responses. Furthermore, BV may be a useful treatment to anti-inflammatory therapy for periodontitis.

  19. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-01-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti-inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX-2, iNOS, pro-inflammatory cytokines [tumor necrosis factor-α and interleukin (IL)-1β] and anti-inflammatory cytokines (IL-6 and IL-10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX-2 expression and ROS production, as well as

  20. Anti-inflammatory effects of polyphenols in arthritis.

    Science.gov (United States)

    Oliviero, Francesca; Scanu, Anna; Zamudio-Cuevas, Yessica; Punzi, Leonardo; Spinella, Paolo

    2018-03-01

    Polyphenols have been extensively investigated with regard to their antioxidant, anti-inflammatory, and immunomodulant properties in many inflammatory chronic conditions. The aim of this review is to summarise how these compounds can modulate the inflammatory pathways which characterise the most prevalent arthropathies including osteoarthritis, rheumatoid arthritis and crystal-induced arthritis. Among polyphenols, epigallocatechin gallate, carnosol, hydroxytyrosol, curcumin, resveratrol, kaempferol and genistein have been the most widely investigated in arthritis. The most important results of the studies outlined in this article show how polyphenolic compounds are able to inhibit the expression and the release of a number of pro-inflammatory mediators and proteolytic enzymes, the activity of different transcriptional factors and the production of reactive oxygen species in vitro. Studies on animal models of rheumatoid arthritis, osteoarthritis and gout show interesting results in terms of reduced tissue damage, restored cartilage homeostasis, and decreased levels of uric acid, respectively. Despite the multiple protective effects of polyphenols, there are no dietary recommendations for patients affected by rheumatic diseases. Future studies, including intervention trials, should be conducted to determine the relevance of polyphenols consumption or supplementation in arthritis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats.

    Science.gov (United States)

    Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan

    2013-03-22

    Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.

  2. Studies on anti-inflammatory and analgesic properties of Lactobacillus rhamnosus in experimental animal models.

    Science.gov (United States)

    Amdekar, Sarika; Singh, Vinod

    2016-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used for the treatment of inflammatory diseases. However, constant use of NSAID may lead to some side effects like gastrointestinal ulcers, bleeding and renal disorders. This study evaluates analgesic and anti-inflammatory activities of Lactobacillus rhamnosus in female Wistar rats. Diclofenac sodium was used as a standard drug for comparison. L. rhamnosus, drugs and vehicle were administered orally. Acetic acid-induced writhing test and carrageenan-induced paw edema model were used for evaluation. Paw edema and number of writhes were measured subsequently. Pro-inflammatory (interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α and IL-17) and anti-inflammatory (IL-4 and IL-10) cytokines were estimated in serum after 24 h. Results showed that L. rhamnosus significantly decreased the paw thickness at t=24 h by 28.66 % while drug decreased by 19.33 %. Also, L. rhamnosus treatment and standard drug showed a protection of 66.66 % and 41.66 %, respectively. L. rhamnosus and diclofenac sodium treatment significantly down-regulated pro-inflammatory and up-regulated anti-inflammatory cytokines at prhamnosus was more pronounced in comparison to diclofenac sodium. The present study clearly suggests that L. rhamnosus suppressed carrageenan-induced paw edema after second phase and decreased the acetic acid-induced writhings. It ameliorated the inflammatory pathways by down-regulating pro-inflammatory cytokines. However, additional clinical investigations are needed to prove the efficacy of L. rhamnosus in treatment/management of inflammatory joint diseases.

  3. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    Science.gov (United States)

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  4. The investigation of anti-inflammatory activity of Yi Guanjian decoction by serum metabonomics approach.

    Science.gov (United States)

    Shui, Sufang; Cai, Xiaorong; Huang, Rongqing; Xiao, Bingkun; Yang, Jianyun

    2017-01-30

    Yi Guanjian (YGJ), one of the Chinese herbal medicines most commonly used in western countries, reported to possess significant anti-inflammatary effects that inhibit the process of inflammation. However, the mechanisms underlying its anti-inflammation effects remain largely unresolved. This study was aimed to investigate the anti-inflammatory activity of YGJ and to explore its potential anti-inflammatory mechanisms by serum metabonomics approach. An xylene-induced mouse right-ear-edema model was used as an inflammatory response in vivo model. Ear edema, prostaglandin E2 (PGE 2 ) and Tumor-Necrosis-Factor-alpha (TNF-α) were detected. Then, serum metabolic profiling was analyzed and pathway analysis performed on the biomarkers reversed after YGJ administration and further integration of metabolic networks. The results showed that YGJ alleviated ear edema and decreased serum PGE 2 and TNF-α levels. Fourteen biomarkers were screened, and the levels were all reversed to different degrees after YGJ administration. These biomarkers were mainly related to linoleic acid metabolism, taurine and hypotaurine metabolism, glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism and citrate cycle (TCA cycle). In metabolic networks, glycine and pyruvate were node molecules. This indicated that YGJ could significantly inhibit inflammatory response triggered by acute local stimulation and exerted anti-inflammatory activity mainly by regulating node molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Radical Scavenging Activity-Based and AP-1-Targeted Anti-Inflammatory Effects of Lutein in Macrophage-Like and Skin Keratinocytic Cells

    Directory of Open Access Journals (Sweden)

    Jueun Oh

    2013-01-01

    Full Text Available Lutein is a naturally occurring carotenoid with antioxidative, antitumorigenic, antiangiogenic, photoprotective, hepatoprotective, and neuroprotective properties. Although the anti-inflammatory effects of lutein have previously been described, the mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, in the present study, we aimed to investigate the regulatory activity of lutein in the inflammatory responses of skin-derived keratinocytes or macrophages and to elucidate the mechanism of its inhibitory action. Lutein significantly reduced several skin inflammatory responses, including increased expression of interleukin-(IL- 6 from LPS-treated macrophages, upregulation of cyclooxygenase-(COX- 2 from interferon-γ/tumor necrosis-factor-(TNF- α-treated HaCaT cells, and the enhancement of matrix-metallopeptidase-(MMP- 9 level in UV-irradiated keratinocytes. By evaluating the intracellular signaling pathway and the nuclear transcription factor levels, we determined that lutein inhibited the activation of redox-sensitive AP-1 pathway by suppressing the activation of p38 and c-Jun-N-terminal kinase (JNK. Evaluation of the radical and ROS scavenging activities further revealed that lutein was able to act as a strong anti-oxidant. Taken together, our findings strongly suggest that lutein-mediated AP-1 suppression and anti-inflammatory activity are the result of its strong antioxidative and p38/JNK inhibitory activities. These findings can be applied for the preparation of anti-inflammatory and cosmetic remedies for inflammatory diseases of the skin.

  6. Brazilian medicinal plants with corroborated anti-inflammatory activities: a review.

    Science.gov (United States)

    Ribeiro, Victor Pena; Arruda, Caroline; Abd El-Salam, Mohamed; Bastos, Jairo Kenupp

    2018-12-01

    Inflammatory disorders are common in modern life, and medicinal plants provide an interesting source for new compounds bearing anti-inflammatory properties. In this regard, Brazilian medicinal plants are considered to be a promising supply of such compounds due to their great biodiversity. To undertake a review on Brazilian medicinal plants with corroborated anti-inflammatory activities by selecting data from the literature reporting the efficacy of plants used in folk medicine as anti-inflammatory, including the mechanisms of action of their extracts and isolated compounds. A search in the literature was undertaken by using the following Web tools: Web of Science, SciFinder, Pub-Med and Science Direct. The terms 'anti-inflammatory' and 'Brazilian medicinal plants' were used as keywords in search engine. Tropicos and Reflora websites were used to verify the origin of the plants, and only the native plants of Brazil were included in this review. The publications reporting the use of well-accepted scientific protocols to corroborate the anti-inflammatory activities of Brazilian medicinal plants with anti-inflammatory potential were considered. We selected 70 Brazilian medicinal plants with anti-inflammatory activity. The plants were grouped according to their anti-inflammatory mechanisms of action. The main mechanisms involved inflammatory mediators, such as interleukins (ILs), nuclear factor kappa B (NF-κB), prostaglandin E2 (PGE2), cyclooxygenase (COX) and reactive oxygen species (ROS). The collected data on Brazilian medicinal plants, in the form of crude extract and/or isolated compounds, showed significant anti-inflammatory activities involving different mechanisms of action, indicating Brazilian plants as an important source of anti-inflammatory compounds.

  7. Anti-inflammatory, anti-nociceptive and antipyretic potential of ...

    African Journals Online (AJOL)

    Materials and Methods: Extracts of Terminalia citrina fruits were evaluated at doses of 200mg/kg, 400mg/kg and 600mg/kg in albino mice for preventive effect in inflammatory edema, peripheral pain sensation and pyrexia. Carrageenan induced paw edema method was utilized to evaluate anti-inflammatory activity.

  8. Analgesic, anti-inflammatory and anti-platelet activities of Buddleja crispa.

    Science.gov (United States)

    Bukhari, Ishfaq A; Gilani, Anwar H; Meo, Sultan Ayoub; Saeed, Anjum

    2016-02-25

    Buddleja crispa Benth (Buddlejaceae) is a dense shrub; several species of genus Buddleja have been used in the management of various health conditions including pain and inflammation. The present study was aimed to investigate the analgesic, anti-inflammatory and anti-platelet properties of B. crispa. Male rats (220-270 gm,) and mice (25-30 gm) were randomly divided into different groups (n = 6). Various doses of plant extract of B. crispa, its fractions and pure compounds isolated from the plant were administered intraperitoneally (i.p). The analgesic, anti-inflammatory and anti-platelet activities were assessed using acetic acid and formalin-induced nociception in mice, carrageenan-induced rat paw edema and arachidonic acid-induced platelets aggregation tests. The intraperitoneal administration of the methanolic extract (50 and 100 mg/kg), hexane fraction (10 and 25 mg/kg i.p) exhibited significant inhibition (P < 0.01) of the acetic acid-induced writhing in mice and attenuated formalin-induced reaction time of animals in second phase of the test. Pure compounds BdI-2, BdI-H3 and BH-3 isolated from B. crispa produced significant (P < 0.01) analgesic activity in acetic acid-induced and formalin tests. The crude extract of B. crispa (50-200 mg/kg i.p.) and its hexane fraction inhibited carrageenan-induced rat paw edema with maximum inhibition of 65 and 71% respectively (P < 0.01). The analgesic and anti-inflammatory effect of the plant extract and isolated pure compounds were comparable to diclofenac sodium. B. crispa plant extract (0.5-2.5 mg/mL) produced significant anti-platelet effect (P < 0.01) with maximum inhibition of 78% at 2.5 mg/ml. The findings from our present study suggest that B. crispa possesses analgesic, anti-inflammatory and anti-platelet properties. B. crispa could serve a potential novel source of compounds effective in pain and inflammatory conditions.

  9. Association between an anti-inflammatory and anti-oxidant dietary pattern and diabetes in British adults: results from the national diet and nutrition survey rolling programme years 1-4.

    Science.gov (United States)

    McGeoghegan, L; Muirhead, C R; Almoosawi, S

    2015-08-01

    This study investigated the cross-sectional association between an anti-inflammatory and anti-oxidant dietary pattern and diabetes in the national diet and nutrition survey (NDNS) rolling programme years 1-4. A total of 1531 survey members provided dietary data. Reduced Rank Regression (RRR) was used to derive an anti-inflammatory and anti-oxidant dietary pattern. Serum C-reactive protein (CRP) and plasma carotenoids were selected as response variables and markers of inflammation and antioxidant status, respectively. Overall, 52 survey members had diabetes. The derived anti-inflammatory and anti-oxidant dietary pattern was inversely related to CRP and positively to carotenoids. It was associated with lower odds of diabetes (multivariate adjusted OR for highest compared with lowest quintile: 0.17; 95%CI: 0.04-0.73; p for linear trend = 0.013). In conclusion, an anti-inflammatory and anti-oxidant dietary pattern is inversely related to diabetes. Further research is required to understand the overall framework within which foods and nutrients interact to affect metabolic pathways related to diabetes risk.

  10. Anti-inflammatory effects of α-galactosylceramide analogs in activated microglia: involvement of the p38 MAPK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Yeon-Hui Jeong

    Full Text Available Microglial activation plays a pivotal role in the development and progression of neurodegenerative diseases. Thus, anti-inflammatory agents that control microglial activation can serve as potential therapeutic agents for neurodegenerative diseases. Here, we designed and synthesized α-galactosylceramide (α-GalCer analogs to exert anti-inflammatory effects in activated microglia. We performed biological evaluations of 25 α-GalCer analogs and observed an interesting preliminary structure-activity relationship in their inhibitory influence on NO release and TNF-α production in LPS-stimulated BV2 microglial cells. After identification of 4d and 4e as hit compounds, we further investigated the underlying mechanism of their anti-inflammatory effects using RT-PCR analysis. We confirmed that 4d and 4e regulate the expression of iNOS, COX-2, IL-1β, and IL-6 at the mRNA level and the expression of TNF-α at the post-transcriptional level. In addition, both 4d and 4e inhibited LPS-induced DNA binding activities of NF-κB and AP-1 and phosphorylation of p38 MAPK without affecting other MAP kinases. When we examined the anti-inflammatory effect of a p38 MAPK-specific inhibitor, SB203580, on microglial activation, we observed an identical inhibitory pattern as that of 4d and 4e, not only on NO and TNF-α production but also on the DNA binding activities of NF-κB and AP-1. Taken together, these results suggest that p38 MAPK plays an important role in the anti-inflammatory effects of 4d and 4e via the modulation of NF-κB and AP-1 activities.

  11. In Vitro Anti-Inflammatory Effects of Three Fatty Acids from Royal Jelly

    Directory of Open Access Journals (Sweden)

    Yi-Fan Chen

    2016-01-01

    Full Text Available Trans-10-hydroxy-2-decenoic acid (10-H2DA, 10-hydroxydecanoic acid (10-HDAA, and sebacic acid (SEA are the three major fatty acids in royal jelly (RJ. Previous studies have revealed several pharmacological activities of 10-H2DA and 10-HDAA, although the anti-inflammatory effects and underlying mechanisms by which SEA acts are poorly understood. In the present study, we evaluated and compared the in vitro anti-inflammatory effects of these RJ fatty acids in lipopolysaccharide-stimulated RAW 264.7 macrophages. The results showed that 10-H2DA, 10-HDAA, and SEA had potent, dose-dependent inhibitory effects on the release of the major inflammatory-mediators, nitric oxide, and interleukin-10, and only SEA decreased TNF-α production. Several key inflammatory genes have also been modulated by these RJ fatty acids, with 10-H2DA showing distinct modulating effects as compared to the other two FAs. Furthermore, we found that these three FAs regulated several proteins involved in MAPK and NF-κB signaling pathways. Taken together, these findings provide additional references for using RJ against inflammatory diseases.

  12. Anti-inflammatory management for tendon injuries - friends or foes?

    Directory of Open Access Journals (Sweden)

    Chan Kai-Ming

    2009-10-01

    Full Text Available Abstract Acute and chronic tendon injuries are very common among athletes and in sedentary population. Most physicians prescribe anti-inflammatory managements to relieve the worst symptoms of swelling and pain, including non-steroidal anti-inflammatory drugs, corticosteroids and physical therapies. However, experimental research shows that pro-inflammatory mediators such as prostaglandins may play important regulatory roles in tendon healing. Noticeably nearly all cases of chronic tendon injuries we treat as specialists have received non-steroidal anti-inflammatory drugs by their physician, suggesting that there might be a potential interaction in some of these cases turning a mild inflammatory tendon injury into chronic tendinopathy in predisposed individuals. We are aware of the fact that non-steroidal anti-inflammatory drugs and corticosteroids may well have a positive effect on the pain control in the clinical situation whilst negatively affect the structural healing. It follows that a comprehensive evaluation of anti-inflammatory management for tendon injuries is needed and any such data would have profound clinical and health economic importance.

  13. Bioassay guided isolation and identification of anti-inflammatory and ...

    African Journals Online (AJOL)

    The present study describes the anti-inflammatory, anti-microbial activity and lipophilic profile with acute toxicological studies of Urtica dioica. Successive extraction of the leaves with organic solvents of increasing polarity and their screening for anti-inflammatory and anti-microbial activity was assessed. Hexane extract ...

  14. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.

    Science.gov (United States)

    Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa

    2017-06-06

    The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.

  15. Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2017-10-01

    Full Text Available Background: Low-intensity ultrasound (LIUS was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders.Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS.Results: Our data revealed following interesting findings: (1 LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2 LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells, MSCs (mesenchymal stem cells, B1-B cells and Treg (regulatory T cells; (3 LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4 LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5 Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6 LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways.Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.

  16. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Ahad, Amjid [Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Ganai, Ajaz Ahmad [Department of Biotechnology, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Mujeeb, Mohd [Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Siddiqui, Waseem Ahmad, E-mail: was.sid121@gmail.com [Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India)

    2014-08-15

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.

  17. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    International Nuclear Information System (INIS)

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2014-01-01

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway

  18. Biological activities (anti-inflammatory and anti-oxidant) of fractions ...

    African Journals Online (AJOL)

    Biological activities (anti-inflammatory and anti-oxidant) of fractions and methanolic extract of Philonotis hastate (Duby Wijk & MargaDant). ... The fractions and methanolic extract exhibited moderate antioxidant potentials with various models. The flavonoid contents of the methanol extract and fractions ranged between 1.70 ...

  19. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  20. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin.

    Science.gov (United States)

    Sogo, Takayuki; Terahara, Norihiko; Hisanaga, Ayami; Kumamoto, Takuma; Yamashiro, Takaaki; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2015-01-01

    Delphinidin 3-sambubioside (Dp3-Sam), a Hibiscus anthocyanin, was isolated from the dried calices of Hibiscus sabdariffa L, which has been used for folk beverages and herbal medicine although the molecular mechanisms are poorly defined. Based on the properties of Dp3-Sam and the information of inflammatory processes, we investigated the anti-inflammatory activity and molecular mechanisms in both cell and animal models in the present study. In the cell model, Dp3-Sam and Delphinidin (Dp) reduced the levels of inflammatory mediators including iNOS, NO, IL-6, MCP-1, and TNF-α induced by LPS. Cellular signaling analysis revealed that Dp3-Sam and Dp downregulated NF-κB pathway and MEK1/2-ERK1/2 signaling. In animal model, Dp3-Sam and Dp reduced the production of IL-6, MCP-1 and TNF-α and attenuated mouse paw edema induced by LPS. Our in vitro and in vivo data demonstrated that Hibiscus Dp3-Sam possessed potential anti-inflammatory properties. © 2015 International Union of Biochemistry and Molecular Biology.

  1. Physio-pharmacological Investigations About the Anti-inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide.

    Science.gov (United States)

    de Almeida, Antonia Amanda Cardoso; Silva, Renan Oliveira; Nicolau, Lucas Antonio Duarte; de Brito, Tarcísio Vieira; de Sousa, Damião Pergentino; Barbosa, André Luiz Dos Reis; de Freitas, Rivelilson Mendes; Lopes, Luciano da Silva; Medeiros, Jand-Venes Rolim; Ferreira, Paulo Michel Pinheiro

    2017-04-01

    D-limonene epoxidation generates (+)-limonene epoxide, an understudied compound in the pharmacologically point of view. Herein, we investigated the anti-inflammatory and antinociceptive potentialities of (+)-limonene epoxide and suggested a mechanism of action. The anti-inflammatory potential was analyzed using agents to induce paw edema, permeability, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines and cell migration of peritoneal cells were also assessed. Antinociceptive effects were evaluated by writhing test induced by acetic acid, formalin, and hot plate assays and contribution of opioid pathways. Pretreated animals with (+)-limonene epoxide showed reduced carrageenan-induced paw edema in all doses (25, 50, and 75 mg/kg) (P Limonene epoxide diminished abdominal contortions induced by acetic acid (78.9%) and paw licking times in both 1 (41.8%) and 2 (51.5%) phases and a pretreatment with naloxone (3 mg/kg) reverted the antinociceptive action in morphine- and (+)-limonene epoxide-treated groups (P limonene epoxide inhibited release/activity of inflammatory mediators, vascular permeability, migration of neutrophils and displayed systemic and peripheral analgesic-dependent effects of the opioid system.

  2. The motilin receptor agonist erythromycin stimulates hunger and food intake through a cholinergic pathway.

    Science.gov (United States)

    Deloose, Eveline; Vos, Rita; Janssen, Pieter; Van den Bergh, Omer; Van Oudenhove, Lukas; Depoortere, Inge; Tack, Jan

    2016-03-01

    Motilin-induced phase III contractions have been identified as a hunger signal. These phase III contractions occur as part of the migrating motor complex (MMC), a contractility pattern of the gastrointestinal tract during fasting. The mechanism involved in this association between subjective hunger feelings and gastrointestinal motility during the MMC is largely unknown, however, as is its ability to stimulate food intake. We sought to 1) investigate the occurrence of hunger peaks and their relation to phase III contractions, 2) evaluate whether this relation was cholinergically driven, and 3) assess the ability of the motilin receptor agonist erythromycin to induce food intake. An algorithm was developed to detect hunger peaks. The association with phase III contractions was studied in 14 healthy volunteers [50% men; mean ± SEM age: 25 ± 2 y; mean ± SEM body mass index (BMI; in kg/m(2)): 23 ± 1]. The impact of pharmacologically induced phase III contractions on the occurrence of hunger peaks and the involvement of a cholinergic pathway were assessed in 14 healthy volunteers (43% men; age: 29 ± 3 y; BMI: 23 ± 1). Last, the effect of erythromycin administration on food intake was examined in 15 healthy volunteers (40% men; age: 28 ± 3 y; BMI: 22 ± 1). The occurrence of hunger peaks and their significant association with phase III contractions was confirmed (P hunger peaks (P hunger feelings through a cholinergic pathway. Moreover, erythromycin stimulated food intake, suggesting a physiologic role of motilin as an orexigenic signal from the gastrointestinal tract. This trial was registered at www.clinicaltrials.gov as NCT02633579. © 2016 American Society for Nutrition.

  3. Different activities of Schinus areira L.: anti-inflammatory or pro-inflammatory effect.

    Science.gov (United States)

    Davicino, R; Mattar, A; Casali, Y; Anesini, C; Micalizzi, B

    2010-12-01

    The anti-inflammatory drugs possess many serious side effects at doses commonly prescribed. It is really important to discover novel regulators of inflammation from natural sources with minimal adverse effects. Schinus areira L. is a plant native from South America and is used in folk medicine as an anti-inflammatory herb. For this study, the activity of aqueous extracts on inflammation and the effect on superoxide anion production in mice macrophages were assayed. Aqueous extracts were prepared by soaking herbs in cold water (cold extract), boiling water (infusion), and simmering water (decoction). Cold extract possess an anti-inflammatory activity. Decoction and infusion showed pro-inflammatory activity. Cold extract increased the production of superoxide anion. It has been proposed to use diverse methods to obtain extracts of S. areira L. with different effects. Cold extract, decoction, and infusion could be utilized as extracts or as pharmacological preparations for topical application.

  4. Advancements in anti-inflammatory therapy for dry eye syndrome.

    Science.gov (United States)

    McCabe, Erin; Narayanan, Srihari

    2009-10-01

    The goal of this literature review is to discuss recent discoveries in the pathophysiology of dry eye and the subsequent evolution of diagnostic and management techniques. The mechanisms of various anti-inflammatory treatments are reviewed, and the efficacy of common pharmacologic agents is assessed. Anti-inflammatory therapy is evaluated in terms of its primary indications, target population, and utility within a clinical setting. The Medline PubMed database and the World Wide Web were searched for current information regarding dry eye prevalence, pathogenesis, diagnosis, and management. After an analysis of the literature, major concepts were integrated to generate an updated portrayal of the status of dry eye syndrome. Inflammation appears to play a key role in perpetuating and sustaining dry eye. Discoveries of inflammatory markers found within the corneal and conjunctival epithelium of dry eye patients have triggered recent advancements in therapy. Pharmacologic anti-inflammatory therapy for dry eye includes 2 major categories: corticosteroids and immunomodulatory agents. Fatty acid and androgen supplementation and oral antibiotics have also shown promise in dry eye therapy because of their anti-inflammatory effects. Anti-inflammatory pharmacologic agents have shown great success in patients with moderate to severe dry eye when compared with alternative treatment modalities. A deeper understanding of the link between inflammation and dry eye validates the utilization of anti-inflammatory therapy in everyday optometric practice.

  5. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    Science.gov (United States)

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  6. Bovine lactoferricin, an antimicrobial peptide, is anti-inflammatory and anti-catabolic in human articular cartilage and synovium

    Science.gov (United States)

    Yan, Dongyao; Chen, Di; Shen, Jie; Xiao, Guozhi; van Wijnen, Andre J; Im, Hee-Jeong

    2012-01-01

    Bovine lactoferricin (LfcinB) is a multi-functional peptide derived from proteolytic cleavage of bovine lactoferrin. LfcinB was found to antagonize the biological effects mediated by angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) in endothelial cells. However, the effect of LfcinB on human articular cartilage remained unknown. Here, our findings demonstrate that LfcinB restored the proteoglycan loss promoted by catabolic factors (interleukin-1 β) IL-1β and FGF-2 in vitro and ex vivo. Mechanistically, LfcinB attenuated the effects of IL-1β and FGF-2 on the expression of cartilage-degrading enzymes (MMP-1, MMP-3, and MMP-13), destructive cytokines (IL-1β and IL-6), and inflammatory mediators (iNOS and TLR2). LfcinB induced protective cytokine expression (IL-4 and IL-10), and downregulated aggrecanase basal expression. LfcinB specifically activated ERK MAPK and Akt signaling pathways, which may account for its anti-inflammatory activity. We also revealed that LfcinB exerted similar protective effects on human synovial fibroblasts challenged by IL-1β, with minimal cytotoxicity. Collectively, our results suggest that LfcinB possesses potent anti-catabolic and anti-inflammatory bioactivities in human articular tissues, and may be utilized for the prevention and/or treatment of OA in the future. PMID:22740381

  7. Anti-inflammatory and antinociceptive activities of azadirachtin in mice.

    Science.gov (United States)

    Soares, Darly G; Godin, Adriana M; Menezes, Raquel R; Nogueira, Rafaela D; Brito, Ana Mercy S; Melo, Ivo S F; Coura, Giovanna Maria E; Souza, Danielle G; Amaral, Flávio A; Paulino, Tony P; Coelho, Márcio M; Machado, Renes R

    2014-06-01

    Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we investigated the effects induced by azadirachtin in experimental models of pain and inflammation in mice. Carrageenan-induced paw edema and fibrovascular tissue growth induced by subcutaneous cotton pellet implantation were used to investigate the anti-inflammatory activity of azadirachtin in mice. Zymosan-induced writhing and hot plate tests were employed to evaluate the antinociceptive activity. To explore putative mechanisms of action, the level of tumor necrosis factor-α in inflammatory tissue was measured and the effect induced by opioidergic and serotonergic antagonists was evaluated. Previous per os (p. o.) administration of azadirachtin (120 mg/kg) significantly reduced the acute paw edema induced by carrageenan. However, the concomitant increase of the paw concentration of tumor necrosis factor-α induced by this inflammatory stimulus was not reduced by azadirachtin. In addition to inhibiting the acute paw edema induced by carrageenan, azadirachtin (6, 60, and 120 mg/kg) inhibited the proliferative phase of the inflammatory response, as demonstrated by the reduced formation of fibrovascular tissue growth. Azadirachtin (120 mg/kg) also inhibited the nociceptive response in models of nociceptive (hot plate) and inflammatory (writhing induced by zymosan) pain. The activity of azadirachtin (120 mg/kg) in the model of nociceptive pain was attenuated by a nonselective opioid antagonist, naltrexone (10 mg/kg, i. p.), but not by a nonselective serotonergic antagonist, cyproheptadine. In conclusion, this study demonstrates the activity of azadirachtin in experimental models of nociceptive and inflammatory pain, and also in models of acute and chronic inflammation

  8. Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    Directory of Open Access Journals (Sweden)

    Dhirender Kaushik

    2012-01-01

    Full Text Available The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100 mg/kg, 300 mg/kg, and 500 mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models.

  9. Medicinal herbs as possible sources of anti-inflammatory products

    Directory of Open Access Journals (Sweden)

    Andreia Corciovă

    2017-12-01

    Full Text Available Plants constitute an inexhaustible source of bioactive compounds that can be valuable for research in the chemistry field of anti-inflammatory compounds. This review describes several plants from international and national flora that have been shown to have anti-inflammatory activity in various clinical trials. The paper includes: general aspects regarding the vegetal source, compounds responsible for anti-inflammatory activity, mechanism of action and clinical trials carried out with extracts or products containing standardized extracts.

  10. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent

    Directory of Open Access Journals (Sweden)

    Matthew C. Fadus

    2017-07-01

    Full Text Available Curcumin is a natural anti-inflammatory agent that has been used for treating medical conditions for many years. Several experimental and pharmacologic trials have demonstrated its efficacy in the role as an anti-inflammatory agent. Curcumin has been shown to be effective in treating chronic conditions like rheumatoid arthritis, inflammatory bowel disease, Alzheimer's and common malignancies like colon, stomach, lung, breast, and skin cancers. As treatments in medicine become more and more complex, the answer may be something simpler. This is a review article written with the objective to systematically analyze the wealth of information regarding the medical use of curcumin, the “curry spice”, and to understand the existent gaps which have prevented its widespread application in the medical community.

  11. Anti-nociceptive and anti-inflammatory properties of the ethanolic ...

    African Journals Online (AJOL)

    Anti-nociceptive and anti-inflammatory properties of the ethanolic extract of Lagenaria breviflora whole fruit in rat and mice. ... Its effect was comparable especially at 200mg/kg body weight to those of diclofenac, indomethacin and ibuprofen. It could be suggested from the findings of this experiment that the extract may be ...

  12. Anti-Inflammatory Strategies in Intrahepatic Islet Transplantation: A Comparative Study in Preclinical Models.

    Science.gov (United States)

    Citro, Antonio; Cantarelli, Elisa; Pellegrini, Silvia; Dugnani, Erica; Piemonti, Lorenzo

    2018-02-01

    The identification of pathway(s) playing a pivotal role in peritransplant detrimental inflammatory events represents the crucial step toward a better management and outcome of pancreatic islet transplanted patients. Recently, we selected the CXCR1/2 inhibition as a relevant strategy in enhancing pancreatic islet survival after transplantation. Here, the most clinically used anti-inflammatory compounds (IL1-receptor antagonist, steroids, and TNF-α inhibitor) alone or in combination with a CXCR1/2 inhibitor were evaluated in their ability to improve engraftment or delay graft rejection. To rule out bias related to transplantation site, we used well-established preclinical syngeneic (250 C57BL/6 equivalent islets in C57BL/6) and allogeneic (400 Balb/c equivalent islets in C57BL6) intrahepatic islet transplantation platforms. In mice, we confirmed that targeting the CXCR1/2 pathway is crucial in preserving islet function and improving engraftment. In the allogeneic setting, CXCR1/2 inhibitor alone could reduce the overall recruitment of transplant-induced leukocytes and significantly prolong the time to graft rejection both as a single agent and in combination with immunosuppression. No other anti-inflammatory compounds tested (IL1-receptor antagonist, steroids, and TNF-α inhibitor) alone or in combination with CXCR1/2 inhibitor improve islet engraftment and significantly delay graft rejection in the presence of MMF + FK-506 immunosuppressive treatment. These findings indicate that only the CXCR1/2-mediated axis plays a crucial role in controlling the islet damage and should be a target for intervention to improve the efficiency of islet transplantation.

  13. Assessment of anti-inflammatory potential of Sesbania bispinosa ...

    African Journals Online (AJOL)

    Aim and objectives: Leaf extracts and fractions of S. bispinosa were evaluated for anti-inflammatory activity in mice using acute and chronic anti-inflammatory models with aspirin as a reference drug. Materials and methods: Methanol, chloroform and hexane were used to prepare leaf extracts by soxhlet extraction method, ...

  14. Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dermal fibroblasts.

    Science.gov (United States)

    Han, Xuesheng; Parker, Tory L

    2017-06-01

    Lemongrass ( Cymbopogon flexuosus ) essential oil (LEO), which has citral as its main component, has exhibited anti-inflammatory effect in both animal and human cells. In this study, we evaluated the anti-inflammatory activity of a commercially available LEO in pre-inflamed human dermal fibroblasts. We first studied the impact of LEO on 17 protein biomarkers that are critically associated with inflammation and tissue remodeling. LEO significantly inhibited production of the inflammatory biomarkers vascular cell adhesion molecule 1 (VCAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell alpha chemoattractant (I-TAC), and monokine induced by gamma interferon (MIG); decreased levels of the tissue remodeling biomarkers collagen-I and III, epidermal growth factor receptor (EGFR), and plasminogen activator inhibitor (PAI-1); and inhibited the immunomodulatory biomarker macrophage colony-stimulating factor (M-CSF). Furthermore, we studied the impact of LEO on genome-wide gene expression profiles. LEO significantly modulated global gene expression and robustly impacted signaling pathways, many of which are critical for inflammation and tissue remodeling processes. This study provides the first evidence of the anti-inflammatory activity of LEO in human skin cells and indicates that it is a good therapeutic candidate for treating inflammatory conditions of the skin.

  15. Evaluation of the Anti-Inflammatory Activity of Raisins (Vitis vinifera L. in Human Gastric Epithelial Cells: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Chiara Di Lorenzo

    2016-07-01

    Full Text Available Raisins (Vitis vinifera L. are dried grapes largely consumed as important source of nutrients and polyphenols. Several studies report health benefits of raisins, including anti-inflammatory and antioxidant properties, whereas the anti-inflammatory activity at gastric level of the hydro-alcoholic extracts, which are mostly used for food supplements preparation, was not reported until now. The aim of this study was to compare the anti-inflammatory activity of five raisin extracts focusing on Interleukin (IL-8 and Nuclear Factor (NF-κB pathway. Raisin extracts were characterized by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD analysis and screened for their ability to inhibit Tumor necrosis factor (TNFα-induced IL-8 release and promoter activity in human gastric epithelial cells. Turkish variety significantly inhibited TNFα-induced IL-8 release, and the effect was due to the impairment of the corresponding promoter activity. Macroscopic evaluation showed the presence of seeds, absent in the other varieties; thus, hydro-alcoholic extracts from fruits and seeds were individually tested on IL-8 and NF-κB pathway. Seed extract inhibited IL-8 and NF-κB pathway, showing higher potency with respect to the fruit. Although the main effect was due to the presence of seeds, the fruit showed significant activity as well. Our data suggest that consumption of selected varieties of raisins could confer a beneficial effect against gastric inflammatory diseases.

  16. Skeletal muscle secretome in Duchenne muscular dystrophy: a pivotal anti-inflammatory role of adiponectin.

    Science.gov (United States)

    Lecompte, S; Abou-Samra, M; Boursereau, R; Noel, L; Brichard, S M

    2017-07-01

    Persistent inflammation exacerbates the progression of Duchenne muscular dystrophy (DMD). The hormone, adiponectin (ApN), which is decreased in the metabolic syndrome, exhibits anti-inflammatory properties on skeletal muscle and alleviates the dystrophic phenotype of mdx mice. Here, we investigate whether ApN retains its anti-inflammatory action in myotubes obtained from DMD patients. We unravel the underlying mechanisms by studying the secretome and the early events of ApN. Primary cultures of myotubes from DMD and control patients were treated or not by ApN after an inflammatory challenge. Myokines secreted in medium were identified by cytokine antibody-arrays and ELISAs. The early events of ApN signaling were assessed by abrogating selected genes. ApN retained its anti-inflammatory properties in both dystrophic and control myotubes. Profiling of secretory products revealed that ApN downregulated the secretion of two pro-inflammatory factors (TNFα and IL-17A), one soluble receptor (sTNFRII), and one chemokine (CCL28) in DMD myotubes, while upregulating IL-6 that exerts some anti-inflammatory effects. These changes were explained by pretranslational mechanisms. Earlier events of the ApN cascade involved AdipoR1, the main receptor for muscle, and the AMPK-SIRT1-PGC-1α axis leading, besides alteration of the myokine profile, to the upregulation of utrophin A (a dystrophin analog). ApN retains its beneficial properties in dystrophic muscles by activating the AdipoR1-AMPK-SIRT1-PGC-1α pathway, thereby inducing a shift in the secretion of downstream myokines toward a less inflammatory profile while upregulating utrophin. ApN, the early events of the cascade and downstream myokines may be therapeutic targets for the management of DMD.

  17. Anti-inflammatory and Analgesic Activities of Amorphophallus bulbifer

    African Journals Online (AJOL)

    Purpose: To investigate the anti-inflammatory and analgesic activities of the Amorphophallus Bulbifer in Wistar rats and mice. Methods: The anti-inflammatory activity of the hydroalcohol extract of A. bulbifer whole plant at dose levels of 100 and 200 mg/kg p.o. in rats was determined with a plethysmograph paw volume ...

  18. Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer's disease

    NARCIS (Netherlands)

    Hoozemans, Jeroen J. M.; Veerhuis, Robert; Rozemuller, Annemieke J. M.; Eikelenboom, Piet

    2003-01-01

    Epidemiological studies indicate that anti-inflammatory drugs, especially the non-steroidal anti-inflammatory drugs (NSAIDs), decrease the risk of developing Alzheimer's disease (AD). Their beneficial effects may be due to interference in the chronic inflammatory reaction, that takes place in AD.

  19. In vivo immune signatures of healthy human pregnancy: Inherently inflammatory or anti-inflammatory?

    Directory of Open Access Journals (Sweden)

    Caroline Graham

    Full Text Available Changes in maternal innate immunity during healthy human pregnancy are not well understood. Whether basal immune status in vivo is largely unaffected by pregnancy, is constitutively biased towards an inflammatory phenotype (transiently enhancing host defense or exhibits anti-inflammatory bias (reducing potential responsiveness to the fetus is unclear. Here, in a longitudinal study of healthy women who gave birth to healthy infants following uncomplicated pregnancies within the Canadian Healthy Infant Longitudinal Development (CHILD cohort, we test the hypothesis that a progressively altered bias in resting innate immune status develops. Women were examined during pregnancy and again, one and/or three years postpartum. Most pro-inflammatory cytokine expression, including CCL2, CXCL10, IL-18 and TNFα, was reduced in vivo during pregnancy (20-57%, p<0.0001. Anti-inflammatory biomarkers (sTNF-RI, sTNF-RII, and IL-1Ra were elevated by ~50-100% (p<0.0001. Systemic IL-10 levels were unaltered during vs. post-pregnancy. Kinetic studies demonstrate that while decreased pro-inflammatory biomarker expression (CCL2, CXCL10, IL-18, and TNFα was constant, anti-inflammatory expression increased progressively with increasing gestational age (p<0.0001. We conclude that healthy resting maternal immune status is characterized by an increasingly pronounced bias towards a systemic anti-inflammatory innate phenotype during the last two trimesters of pregnancy. This is resolved by one year postpartum in the absence of repeat pregnancy. The findings provide enhanced understanding of immunological changes that occur in vivo during healthy human pregnancy.

  20. Therapeutic Applicability of Anti-Inflammatory and Proresolving Polyunsaturated Fatty Acid-Derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Gerard L. Bannenberg

    2010-01-01

    Full Text Available The enzymatic oxygenation of polyunsaturated fatty acids by lipoxygenases and cyclo-oxygenases is a resourceful mode of formation of specific autacoids that regulate the extent and pace of the inflammatory response. Arachidonate-derived eicosanoids, such as lipoxin A4, prostaglandin (PGD2, PGF2α, PGE2, and PGD2-derived cyclopentenones exert specific roles in counter-regulating inflammation and turning on resolution. Recently recognized classes of autacoids derived from long-chain ω-3 polyunsaturated fatty acids, the E- and D-series resolvins, protectin D1, and maresin 1, act as specialized mediators to dampen inflammation actively, afford tissue protection, stimulate host defense, and activate resolution. It is held that counter-regulatory lipid mediators and the specific molecular pathways activated by such endogenous agonists may be suitable for pharmacological use in the treatment of inflammatory disease. The anti-inflammatory drug aspirin is a striking example of a drug that is able to act in such a manner, namely through triggering the formation of 15-epi-lipoxin A4 and aspirin-triggered resolvins. Different aspects of the therapeutic applicability of lipid mediators have been addressed here, and indicate that the development of innovative pharmacotherapy based on anti-inflammatory and proresolution lipid mediators presents novel prospects for the treatment of inflammatory disease.

  1. The vagal innervation of the gut and immune homeostasis.

    Science.gov (United States)

    Matteoli, Gianluca; Boeckxstaens, Guy E

    2013-08-01

    The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. Recently, in animal models of sepsis, the vagus nerve (VN) has been proposed to play a crucial role in the regulation of the immune response, also referred to as the cholinergic anti-inflammatory pathway. The VN, through release of acetylcholine, dampens immune cell activation by interacting with α-7 nicotinic acetylcholine receptors. Recent evidence suggests that the vagal innervation of the gastrointestinal tract also plays a major role controlling intestinal immune activation. Indeed, VN electrical stimulation potently reduces intestinal inflammation restoring intestinal homeostasis, whereas vagotomy has the reverse effect. In this review, we will discuss the current understanding concerning the mechanisms and effects involved in the cholinergic anti-inflammatory pathway in the gastrointestinal tract. Deeper investigation on this counter-regulatory neuroimmune mechanism will provide new insights in the cross-talk between the nervous and immune system leading to the identification of new therapeutic targets to treat intestinal immune disease.

  2. Anti-inflammatory effect of longan seed extract in carrageenan stimulated Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Ching-Hsiao Lee

    2016-08-01

    Full Text Available Objective(s: Longan seeds have been used as a folk medicine in China. Longan seed extract (LSE is known for antioxidative, antiproliferative, hypoglycemic, and hypouremic effects. However, its anti-inflammatory effect has not been shown. Materials and Methods: In this study, Sprague-Dawley (SD rats were given LSE orally (vehicle, 10, and 30 mg/kg for 3 days to its test anti-inflammatory effect by injecting λ-carrageenan (CARR in the right hind paw or lipopolysaccharide (LPS, IP. For the positive control, animals were given aspirin (20 mg/kg orally and treated likewise. Serum or tissue samples from treated rats were collected after 3 hr of stimulation. Regarding the in vitro study, BV2 microglial cells were stimulated with LPS in the presence of LSE or normal saline for 10 min or 24 hr for Western blot and ELISA assay, respectively. Results: LSE reduced CARR-induced edema in the experimental animals. LSE also reduced LPS/CARR-induced nitric oxide (NO, interleukin-1β (IL1β, IL6, and COX2 productions. These inflammatory factors were also reduced dose dependently by LSE in LPS-stimulated BV2 cells. Furthermore, Western blot analysis revealed that LSE inhibited LPS activated c-Jun NH2-terminal protein kinase (JNK, extracellular signal-regulated kinases (ERKs, and p38 MAP kinases signaling pathways, caspase-3, inducible NO synthase, and COX2 expressions. Conclusion: LSE pretreatment suppressed CARR- and LPS-induced inflammations and these effects might be through the inhibition of MAP kinases signaling pathways and inflammatory factors.

  3. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Solip [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Nguyen, Van Thu [College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702 (Korea, Republic of); Tae, Nara; Lee, Suhyun [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Ryoo, Sungwoo [Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Min, Byung-Sun [College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702 (Korea, Republic of); Lee, Jeong-Hyung, E-mail: jhlee36@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of)

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  4. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    International Nuclear Information System (INIS)

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-01-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE 2 , butyl lucidenateD 2 (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these triterpenes

  5. Morin protects gastric mucosa from nonsteroidal anti-inflammatory drug, indomethacin induced inflammatory damage and apoptosis by modulating NF-κB pathway.

    Science.gov (United States)

    Sinha, Krishnendu; Sadhukhan, Pritam; Saha, Sukanya; Pal, Pabitra Bikash; Sil, Parames C

    2015-04-01

    Deregulation in prostaglandin (PG) biosynthesis, severe oxidative stress, inflammation and apoptosis contribute to the pathogenesis of nonsteroidal anti-inflammatory drug (NSAID)-induced gastropathy. Unfortunately, most of the prescribed anti-ulcer drugs generate various side effects. In this scenario, we could consider morin as a safe herbal potential agent against IND-gastropathy and rationalize its action systematically. Rats were pretreated with morin for 30 min followed by IND (48 mgkg(-1)) administration for 4 h. The anti-ulcerogenic nature of morin was assessed by morphological and histological analysis. Its effects on the inflammatory (MPO, cytokines, adhesion molecules), ulcer-healing (COXs, PGE(2)), and signaling parameters (NF-κB and apoptotic signaling) were assessed by biochemical, RP-HPLC, immunoblots, IHC, RT-PCR, and ELISA at the time points of their maximal changes due to IND administration. IND induced NF-κB and apoptotic signaling in rat's gastric mucosa. These increased proinflammatory responses, but reduced the antioxidant enzymes and other protective factors. Morin reversed all the adverse effects to prevent IND-induced gastric ulceration in a PGE2 independent manner. Also, it did not affect the absorption and/or primary pharmacological activity of IND. The gastroprotective action of morin is primarily attributed to its potent antioxidant nature that also helps in controlling several IND-induced inflammatory responses. For the first time, the study reveals a mechanistic basis of morin mediated protective action against IND-induced gastropathy. As morin is a naturally abundant safe antioxidant, future detailed pharmacokinetic and pharmacodynamic studies are expected to establish it as a gastroprotective agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Anti-Inflammatory Activity of Babassu Oil and Development of a Microemulsion System for Topical Delivery

    Science.gov (United States)

    Reis, Mysrayn Y. F. A.; dos Santos, Simone M.; Silva, Danielle R.; Navarro, Daniela M. A. Ferraz; Santos, Geanne K. N.; Hallwass, Fernando; Bianchi, Otávio; Silva, Alexandre G.; Melo, Janaína V.; Machado, Giovanna; Saraiva, Karina L. A.

    2017-01-01

    Babassu oil extraction is the main income source in nut breakers communities in northeast of Brazil. Among these communities, babassu oil is used for cooking but also medically to treat skin wounds and inflammation, and vulvovaginitis. This study aimed to evaluate the anti-inflammatory activity of babassu oil and develop a microemulsion system with babassu oil for topical delivery. Topical anti-inflammatory activity was evaluated in mice ear edema using PMA, arachidonic acid, ethyl phenylpropiolate, phenol, and capsaicin as phlogistic agents. A microemulsion system was successfully developed using a Span® 80/Kolliphor® EL ratio of 6 : 4 as the surfactant system (S), propylene glycol and water (3 : 1) as the aqueous phase (A), and babassu oil as the oil phase (O), and analyzed through conductivity, SAXS, DSC, TEM, and rheological assays. Babassu oil and lauric acid showed anti-inflammatory activity in mice ear edema, through inhibition of eicosanoid pathway and bioactive amines. The developed formulation (39% A, 12.2% O, and 48.8% S) was classified as a bicontinuous to o/w transition microemulsion that showed a Newtonian profile. The topical anti-inflammatory activity of microemulsified babassu oil was markedly increased. A new delivery system of babassu microemulsion droplet clusters was designed to enhance the therapeutic efficacy of vegetable oil. PMID:29430254

  7. Anti-Inflammatory Activity of Babassu Oil and Development of a Microemulsion System for Topical Delivery

    Directory of Open Access Journals (Sweden)

    Mysrayn Y. F. A. Reis

    2017-01-01

    Full Text Available Babassu oil extraction is the main income source in nut breakers communities in northeast of Brazil. Among these communities, babassu oil is used for cooking but also medically to treat skin wounds and inflammation, and vulvovaginitis. This study aimed to evaluate the anti-inflammatory activity of babassu oil and develop a microemulsion system with babassu oil for topical delivery. Topical anti-inflammatory activity was evaluated in mice ear edema using PMA, arachidonic acid, ethyl phenylpropiolate, phenol, and capsaicin as phlogistic agents. A microemulsion system was successfully developed using a Span® 80/Kolliphor® EL ratio of 6 : 4 as the surfactant system (S, propylene glycol and water (3 : 1 as the aqueous phase (A, and babassu oil as the oil phase (O, and analyzed through conductivity, SAXS, DSC, TEM, and rheological assays. Babassu oil and lauric acid showed anti-inflammatory activity in mice ear edema, through inhibition of eicosanoid pathway and bioactive amines. The developed formulation (39% A, 12.2% O, and 48.8% S was classified as a bicontinuous to o/w transition microemulsion that showed a Newtonian profile. The topical anti-inflammatory activity of microemulsified babassu oil was markedly increased. A new delivery system of babassu microemulsion droplet clusters was designed to enhance the therapeutic efficacy of vegetable oil.

  8. Anti-inflammatory and anti-granuloma activity of Berberis aristata DC. in experimental models of inflammation

    Science.gov (United States)

    Kumar, Rohit; Gupta, Yogendra Kumar; Singh, Surender

    2016-01-01

    Objective: Berberis aristata (Berberidaceae) is an important medicinal plant used in traditional system of medicine for the treatment of rheumatoid arthritis and other inflammatory disorders. The aim of the present study is to scientifically validate the traditional use of BA in the treatment of inflammatory disorders. Materials and Methods: Anti-inflammatory and anti-granuloma activity of BA hydroalcoholic extract (BAHE) were evaluated in experimental models, viz., carrageenan-induced paw edema, cotton pellet-induced granuloma formation, and complete Freund's adjuvant-induced stimulation of peritoneal macrophages in rats. Expression of inflammatory mediators, viz., tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, TNF-R1, and cyclooxygenase-2 (COX-2) was carried out in serum and peritoneal macrophages to derive the plausible mechanism of BAHE in activated peritoneal macrophages. Results: Pretreatment with BAHE produced a dose-dependent reduction (P < 0.01) in carrageenan-induced paw edema and cotton pellet-induced granuloma model. BAHE treatment produced significant (P < 0.01) reduction in serum inflammatory cytokine levels as compared to control. Protein expression of pro-inflammatory markers, IL-1β, IL-6, TNF-R1, and COX-2, was found to be reduced in stimulated macrophages whereas anti-inflammatory cytokine, IL-10, was upregulated in peritoneal macrophages. Conclusion: The result of the present study thus demonstrates the anti-inflammatory and anti-granuloma activity of BAHE which may be attributed to its inhibitory activity on macrophage-derived cytokine and mediators. PMID:27114638

  9. Macrolide Hybrid Compounds: Drug Discovery Opportunities in Anti- Infective and Anti-inflammatory Area.

    Science.gov (United States)

    Paljetak, Hana Cipcic; Tomaskovic, Linda; Matijasic, Mario; Bukvic, Mirjana; Fajdetic, Andrea; Verbanac, Donatella; Peric, Mihaela

    2017-01-01

    Macrolides, polyketide natural products, and their 15-membered semi-synthetic derivatives are composed of substituted macrocyclic lactone ring and used primarily as potent antibiotics. Recently their usefulness was extended to antimalarial and anti-inflammatory area. Hybrid macrolides presented in this article are the next generation semi-synthetic compounds that combine pharmacophores from antibacterial, antimalarial and anti-inflammatory area with 14- and 15-membered azalide scaffolds. Antibacterial azalide hybrids with sulphonamides showed improved activity against resistant streptococci while quinolone conjugates demonstrated full coverage of respiratory pathogens including macrolide resistant strains and their efficacy was confirmed in mouse pneumonia model. Antimalarial macrolide hybrids, mainly involving (chloro)quinoline pharmacophores, showed outstanding activity against chloroquine resistant strains, favourable pharmacokinetics, promising in vivo efficacy as well as encouraging developmental potential. Anti-inflammatory hybrids were obtained by combining macrolides with corticosteroid and non-steroidal anti-inflammatory drugs. They were found active in in vivo animal models of locally induced inflammation, asthma, inflammatory bowel disease and rheumatoid arthritis and demonstrated improved safety over parent steroid drugs. Overall, macrolide hybrids possess significant potential to be developed as potent novel medicines in therapeutic areas of utmost pharmaceutical interest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The Anti-Inflammatory Activity of Toonaciliatin K against Adjuvant Arthritis

    Directory of Open Access Journals (Sweden)

    HaiXing Gou

    2017-01-01

    Full Text Available Toonaciliatin K is a natural limonoid purified from the Toona ciliata Roem. var. ciliata (Meliaceae. This study is to reveal the inflammatory suppression effect of toonaciliatin K and further the intrinsic mechanism. Firstly, anti-inflammatory effect of toonaciliatin K was evaluated in lipopolysaccharide- (LPS- induced RAW264.7 cells. RT-PCR results indicated that the mRNA expressions of TNF-α, IL-6, and IL-1β were downregulated by toonaciliatin K. The toonaciliatin K inhibited TNF-α, IL-6, and IL-1β levels stimulated by LPS. Furthermore, LPS elicited the excess iNOS and COX-2 mRNA and protein production and toonaciliatin K attenuated the excess production. Western blot assay demonstrated that MAPK and NF-κB signaling pathways play critical roles in the toonaciliatin K’s anti-inflammatory activity. Secondly, toonaciliatin K inhibited carrageenan-induced paw edema in rats. Thirdly, toonaciliatin K alleviated the paw swelling and improved arthritis clinical scores in the adjuvant arthritis rats. Toonaciliatin K decreased the proinflammatory cytokines levels and Mankin scores in adjuvant arthritis rats. The HE staining, safranin O-fast green, and toluidine blue staining results demonstrated that toonaciliatin K alleviated the histological changes of paw, for example, pannus formation, focal loss of cartilage, bone erosion, and presence of extra-articular inflammation. Hence, toonaciliatin K is a promising agent for treatment of arthritis.

  11. Antioxidant and anti-inflammatory properties of 1,2,4-oxadiazole analogs of resveratrol.

    Science.gov (United States)

    Gobec, Martina; Tomašič, Tihomir; Markovič, Tijana; Mlinarič-Raščan, Irena; Dolenc, Marija Sollner; Jakopin, Žiga

    2015-10-05

    The chemopreventive properties of resveratrol are ascribed mostly to its antioxidant activity, in particular its scavenging ability for reactive oxygen species (ROS), and to the inhibition of NF-κB pathway which has also been suggested as an important underlying mechanism of its reported properties. In present study, a small library of nine 1,2,4-oxadiazole-based structural analogs of resveratrol were assayed for their antioxidant and anti-inflammatory activities. Several compounds showed significant inhibitory activities against NF-κB and/or ROS production. Compound 2, incorporating two para-hydroxyphenyl moieties connected by the 1,2,4-oxadiazole ring, was the most active, its potency in inhibiting activation of NF-κB and ROS scavenging abilities surpassing that of resveratrol. Additionally, we elucidated the mechanisms underlying the NF-κB inhibitory activity of compound 2. Finally, in contrast to resveratrol, compound 2 significantly reduced the LPS-induced release of pro-inflammatory cytokines, indicating its prominent anti-inflammatory potential. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Anti-inflammatory and analgesic activity of r.a.p . ( Radix Angelicae ...

    African Journals Online (AJOL)

    The objective of this paper was to study the anti-inflammatory and analgesic effects of Radix Angelicae Pubescentis (R.A.P) ethanol extracts. Three classic anti-inflammatory models and two analgesic models were used in this research. In anti-inflammatory tests, all the extracts have a certain inhibition on the acute ...

  13. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb.

    Science.gov (United States)

    Suresh, V; Sruthi, V; Padmaja, B; Asha, V V

    2011-04-12

    To determine anti-inflammatory and anti-cancer activities of Cuscuta reflexa in cell lines (in vitro). Anti-inflammatory activity of the water extract was analysed in vitro using lipopolysaccharide (LPS) induced inflammatory reactions in murine macrophage cell line RAW264.7. The expression of COX-2 and TNF-α genes involved in inflammation was analysed by SQ RT-PCR. EMSA was conducted to analyse the influence of the extract on NF-κB signalling. Anti-cancer activity was analysed on Hep3B cells by MTT assay, DAPI staining, annexin V staining and SQ-RT PCR analysis of BAX, Bcl-2, p53 and survivin. The extract down regulated LPS induced over expression of TNF-α and COX-2 in RAW264.7 cells; blocked NF-κB binding to its motifs and induced apoptosis in Hep3B cells as evidenced from MTT, DAPI staining and annexin V staining assays. The extract up regulated pro-apoptotic factors BAX and p53, and down regulated anti-apoptotic factors Bcl-2 and survivin. The study showed that Cuscuta reflexa inhibits LPS induced inflammatory responses in RAW264.7 cells through interplay of TNF-α, COX-2 and NF-κB signalling. It induced apoptosis in Hep3B cells through the up regulation of p53, BAX and down regulation of Bcl-2 and survivin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment

    DEFF Research Database (Denmark)

    Kohler, Ole; Krogh, Jesper; Mors, Ole

    2016-01-01

    Accumulating evidence supports an association between depression and inflammatory processes, a connection that seems to be bidirectional. Clinical trials have indicated antidepressant treatment effects for anti-inflammatory agents, both as add-on treatment and as monotherapy. In particular......, nonsteroidal anti-inflammatory drugs (NSAIDs) and cytokine-inhibitors have shown antidepressant treatment effects compared to placebo, but also statins, poly-unsaturated fatty acids, pioglitazone, minocycline, modafinil, and corticosteroids may yield antidepressant treatment effects. However, the complexity...... of the inflammatory cascade, limited clinical evidence, and the risk for side effects stress cautiousness before clinical application. Thus, despite proof-of-concept studies of anti-inflammatory treatment effects in depression, important challenges remain to be investigated. Within this paper, we review...

  15. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid

    International Nuclear Information System (INIS)

    Huang, Bor-Ren; Tsai, Cheng-Fang; Lin, Hsiao-Yun; Tseng, Wen-Pei; Huang, Shiang-Suo; Wu, Chi-Rei; Lin, Chingju; Yeh, Wei-Lan; Lu, Dah-Yuu

    2013-01-01

    We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE 2 production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK, and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser 536 , and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses

  16. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bor-Ren [Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan (China); Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Tsai, Cheng-Fang [Department of Biotechnology, Asia University, Taichung, Taiwan (China); Lin, Hsiao-Yun [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China); Tseng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua County, Taiwan (China); Huang, Shiang-Suo [Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taiwan (China); Wu, Chi-Rei [Graduate Institute of Chinese Pharmaceutical Sciences, College of Pharmacy, China Medical University, Taiwan (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan (China); Yeh, Wei-Lan [Cancer Research Center, Department of Medical Research, Changhua Christian Hospital, Changhua, Taiwan (China); Lu, Dah-Yuu, E-mail: dahyuu@mail.cmu.edu.tw [Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan (China)

    2013-05-15

    We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE{sub 2} production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK, and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser{sup 536}, and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses.

  17. Anti-inflammatory activity in selected Antarctic benthic organisms

    Directory of Open Access Journals (Sweden)

    Juan eMoles

    2014-07-01

    Full Text Available Antarctic benthos was prospected in search for anti-inflammatory activity in polar benthic invertebrates, in two different geographical areas: deep-bottoms of the Eastern Weddell Sea and shallow-waters of the South Shetland Islands. A total of 36 benthic algae and invertebrate species were selected to perform solubility tests in order to test them for anti-inflammatory activity. From these, ethanol extracts of ten species from five different phyla resulted suitable to be studied in cell macrophage cultures (RAW 264.7. Cytotoxicity (MTT method and production of inflammatory mediators (prostaglandin E2, leukotriene B4, interleukin-1 were determined at three extract concentrations (50, 125, 250 g/mL. Bioassays resulted in four different species showing anti-inflammatory activity corresponding to three sponges: Mycale (Oxymycale acerata, Isodictya erinacea, and I. toxophila; and one hemichordate: Cephalodiscus sp. These results show that Antarctic sessile invertebrates may have great value as a source of lead compounds with potential pharmaceutical applications.

  18. Non-Steroidal Anti Inflammatory Drugs Usage In Orthopaedics And ...

    African Journals Online (AJOL)

    Background: Non steroidal anti-inflammatory drugs NSAIDs) are a group of heterogeneous compounds with nti inflammatory, analgesic and often times anti pyretic roperties. They are weak organic acids and are the most commonly used drugs in Orthopaedic/Trauma practice. hey provide mild to moderate pain relief.

  19. The Anti-Inflammatory Effects of Acupuncture and Their Relevance to Allergic Rhinitis: A Narrative Review and Proposed Model

    Directory of Open Access Journals (Sweden)

    John L. McDonald

    2013-01-01

    Full Text Available Classical literature indicates that acupuncture has been used for millennia to treat numerous inflammatory conditions, including allergic rhinitis. Recent research has examined some of the mechanisms underpinning acupuncture's anti-inflammatory effects which include mediation by sympathetic and parasympathetic pathways. The hypothalamus-pituitary-adrenal (HPA axis has been reported to mediate the antioedema effects of acupuncture, but not antihyperalgesic actions during inflammation. Other reported anti-inflammatory effects of acupuncture include an antihistamine action and downregulation of proinflammatory cytokines (such as TNF-α, IL-1β, IL-6, and IL-10, proinflammatory neuropeptides (such as SP, CGRP, and VIP, and neurotrophins (such as NGF and BDNF which can enhance and prolong inflammatory response. Acupuncture has been reported to suppress the expression of COX-1, COX-2, and iNOS during experimentally induced inflammation. Downregulation of the expression and sensitivity of the transient receptor potential vallinoid 1 (TRPV1 after acupuncture has been reported. In summary, acupuncture may exert anti-inflammatory effects through a complex neuro-endocrino-immunological network of actions. Many of these generic anti-inflammatory effects of acupuncture are of direct relevance to allergic rhinitis; however, more research is needed to elucidate specifically how immune mechanisms might be modulated by acupuncture in allergic rhinitis, and to this end a proposed model is offered to guide further research.

  20. Evaluation of anti-inflammatory, analgesic, and antipyretic effects of ...

    African Journals Online (AJOL)

    This study investigated the possible anti-inflammatory, analgesic, and antipyretic effects of ethanolic extract of Pedalium murex Linn. fruits in selected experimental animal models. Anti-inflammatory activity of Pedalium murex Linn., with doses of 200 mg/kg and 400 mg/kg, p.o., was evaluated by Lambda-carrageenan ...

  1. Analgesic and anti-inflammatory effects of Cyphostemma vogelii (Hook

    African Journals Online (AJOL)

    Rita

    2013-04-24

    Apr 24, 2013 ... Key words: Analgesic, anti-inflammatory, mice, Cyphostemma vogelii, nociception. ... steroidal anti- inflammatory drugs (NSAIDs) are considered the drugs of ..... 44-55. Hughes H, Lang M (1983). Control of pain in dogs and cats In: Kitchell. R, Erickson H (eds.) Animal pain. Baltimore Waverly press. pp. 207-.

  2. Anti-Inflammatory Effect of Methylpenicinoline from a Marine Isolate of Penicillium sp. (SF-5995: Inhibition of NF-κB and MAPK Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages and BV2 Microglia

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Kim

    2014-11-01

    Full Text Available In the course of a search for anti-inflammatory metabolites from marine-derived fungi, methylpenicinoline (1 was isolated from a marine isolate of Penicillin sp. Compound 1 inhibited lipopolysaccharide (LPS-stimulated nitric oxide (NO production by suppressing the expression of inducible NO synthase (iNOS in RAW264.7 macrophages and BV2 microglia. It also attenuated prostaglandin E2 (PGE2 production by suppressing cyclooxygenase-2 (COX-2 expression in a concentration-dependent manner (from 10 μM to 80 μM without affecting cell viability. In addition, compound 1 reduced the production of the pro-inflammatory cytokine interleukin-1β (IL-1β. In a further study designed to elucidate the mechanism of its anti-inflammatory effects, compound 1 was shown to block nuclear factor-kappa B (NF-κB activation in LPS-induced RAW264.7 macrophages and BV2 microglia by inhibiting the phosphorylation of inhibitor kappa B-α (IκB-α, thereby suppressing the nuclear translocation of NF-κB dimers, namely p50 and p65, that are known to be crucial molecules associated with iNOS and COX-2 expression. In addition, compound 1 inhibited the activation of mitogen-activated protein kinase (MAPK pathways. Taken together, the results suggest that compound 1 might be a valuable therapeutic agent for the treatment of anti-inflammatory and anti-neuroinflammatory diseases.

  3. Aspirin and its related non-steroidal anti-inflammatory drugs

    African Journals Online (AJOL)

    Aspirin and its related non-steroidal anti-inflammatory drugs. Aspirin or acetylsalicylic acid has been utilised by physicians for hundreds of years as an analgesic, anti-inflammatory and antipyretic (1). Derived from plant sources, such as the willow tree, it has the ability to induce apoptosis in cancer cells and stimulate.

  4. Evaluation Of Analgesic And Anti-Inflammatory Activity Of Diospyros ...

    African Journals Online (AJOL)

    Evaluation Of Analgesic And Anti-Inflammatory Activity Of Diospyros Cordifolia Extract. S Das, PK Haldar, G Pramanik, SP Panda, S Bera. Abstract. In this study we evaluated the analgesic and anti- inflammatory activities of the methanol extract of stem bark of Diospyros cordifolia (MEDC) Roxb. The analgesic effects of the ...

  5. Antioxidant and anti-inflammatory activities of Arbutus unedo aqueous extract

    Directory of Open Access Journals (Sweden)

    Idir Moualek

    2016-11-01

    Conclusions: A. unedo showed in vitro anti-inflammatory activity by inhibiting the heat induced albumin denaturation and red blood cells membrane stabilization. Our results show that aqueous leaf extract of A. unedo has good antioxidant activity and interesting anti-inflammatory properties. A. unedo aqueous extract can be used to prevent oxidative and inflammatory processes.

  6. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway.

    Science.gov (United States)

    Zhao, Feng; Wang, Lu; Liu, Ke

    2009-04-21

    Arctigenin, a bioactive constituent from dried seeds of Arctium lappa L. (Compositae) which has been widely used as a Traditional Chinese Medicine for dispelling wind and heat included in Chinese Pharmacophere, was found to exhibit anti-inflammatory activities but its molecular mechanism remains unknown yet. To investigate the anti-inflammatory mechanism of arctigenin. Cultured macrophage RAW 264.7 cells and THP-1 cells were used for the experiments. Griess assay was used to evaluate the inhibitory effect of arctigenin on the overproduction of nitric oxide (NO). ELISA was used to determine the level of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6). The inhibitory effect on the enzymatic activity of cyclooxygenase-2 (COX-2) was tested by colorimetric method. Western blot was used to detect the expression of inducible nitric oxide synthase (iNOS) and COX-2. Arctigenin suppressed lipopolysaccharide (LPS)-stimulated NO production and pro-inflammatory cytokines secretion, including TNF-alpha and IL-6 in a dose-dependent manner. Arctigenin also strongly inhibited the expression of iNOS and iNOS enzymatic activity, whereas the expression of COX-2 and COX-2 enzymatic activity were not affected by arctigenin. These results indicated that potent inhibition on NO, TNF-alpha and IL-6, but not COX-2 expression and COX-2 activity, might constitute the anti-inflammatory mechanism of arctigenin. Arctigenin suppressed the overproduction of NO through down-regulation of iNOS expression and iNOS enzymatic activity in LPS-stimulated macrophage.

  7. [Effect of anti-inflammatory therapy on the treatment of dry eye syndrome].

    Science.gov (United States)

    Mrukwa-Kominek, Ewa; Rogowska-Godela, Anna; Gierek-Ciaciura, Stanisława

    2007-01-01

    Dry eye syndrome is a common chronic disease; agents and strategies for its effective management are still lacking. The syndrome tends to be accompanied by ocular surface inflammation; therefore, the use of anti-inflammatory agents might prove beneficial. The authors present up-to-date guidelines, strategies, and efficacy of dry eye syndrome management, including anti-inflammatory treatment. As no diagnostic tests are now available to assess ocular surface inflammation severity, the right timing to launch an anti-inflammatory agent is difficult to determine. Patients with mild intermittent bouts of symptoms which can be alleviated with ophthalmic lubricants do not typically require anti-inflammatory therapy. The latter should be considered in those who do not respond to lubricating drops, obtain poor results on clinical tests, and show symptoms of ocular surface irritation (eg. conjunctivae redness). Anti-inflammatory treatment of dry eye syndrome may include short-term corticosteroids, cyclosporine A emulsion, oral tetracycline therapy, oral omega-3 fatty acid supplements, and autologous serum eye drops. Anti-inflammatory treatment should be safe and effective; potential benefits should be evaluated for each individual patient. The authors have reviewed the advantages of anti-inflammatory treatment in dry eye syndrome, presented in literature.

  8. Anti-oxidant and anti-inflammatory effects of rice bran and green tea ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-inflammatory and anti-oxidant properties of an enzyme bath of Oryza sativa (rice bran) and Camellia sinensis O. Kuntz (green tea) fermented with Bacillus subtilis (OCB). Methods: The anti-oxidant effects of OCB were assessed by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay and flow ...

  9. Evaluation of analgesic and anti-inflammatory effects of ethanol ...

    African Journals Online (AJOL)

    This study was undertaken to investigate the leaf part of the plant for analgesic and anti-inflammatory. The ethanol extract of Ficus iteophylla leaves (100, 200, and 400mgkg-1, i.p) was evaluated for analgesic and anti-inflammatory activities. The analgesic effect was studied using acetic acid-induced abdominal constriction ...

  10. Inhibition of the transcription factor c-Jun by the MAPK family, and not the NF-κB pathway, suggests that peanut extract has anti-inflammatory properties.

    Science.gov (United States)

    Catalán, Úrsula; Fernández-Castillejo, Sara; Anglès, Neus; Morelló, Jose Ramón; Yebras, Martí; Solà, Rosa

    2012-10-01

    Tumor necrosis factor-α (TNF-α) is involved in inflammatory responses in atherosclerosis. We propose an in vitro cellular assay to evaluate the anti-inflammatory mechanisms of potential modifiers such as food extracts. In the current model we assessed an anti-inflammatory effect of polyphenol-rich peanut extract in lipopolysaccharide (LPS)-induced THP-1 monocytes. THP-1 monocytes were incubated with peanut extract (5, 25, 50 and 100 μg/mL) consisting of 39% flavonols, 37% flavanols and 24% phenolic acid (or BAY 11-7082 (5 μM) as experiment control) for 1 h and then stimulated with LPS (500 ng/mL) for 4 h. Cytotoxicity was measured as lactate dehydrogenase (LDH) activity release. NF-κB and MAPK family were determined by TransAm kit while TNF-α mRNA levels and its mRNA stability by RT-PCR. Intra- and extracellular TNF-α protein was measured by ELISA, and TNF-α converting enzyme (TACE) activity by a fluorimetric assay. Peanut extract inhibited the maximal LPS-induced extracellular TNF-α protein secretion by 18%, 29% and 47% at 25, 50 and 100 μg/mL, respectively (P<0.05). LPS stimulation revealed that 85% of TNF-α was released extracellularly while 15% remained intracellular. Peanut extract did not modify NF-κB but, instead, reduced c-Jun transcription factor activity (P<0.05), decreased TNF-α mRNA (albeit non-significantly) and had no effect on mRNA stability and TACE activity. Polyphenol-rich peanut extract reduces extracellular TNF-α protein by inhibiting c-Jun transcription factor from MAPK family, suggesting an anti-inflammatory effect. The proposed THP-1 monocyte model could be used to assess food extract impact (site and size effects) on the inflammation pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Penicillospirone from a marine isolate of Penicillium sp. (SF-5292) with anti-inflammatory activity.

    Science.gov (United States)

    Lee, Seungjun; Kim, Dong-Cheol; Park, Jin-Soo; Son, Jae-Young; Hak Sohn, Jae; Liu, Ling; Che, Yongsheng; Oh, Hyuncheol

    2017-08-01

    Chemical investigation of the EtOAc extract of a marine-derived fungal isolate Penicillium sp. SF-5292 yielded a new polyketide-type metabolite, penicillospirone (1). The structure of 1 was determined by analysis of spectroscopic data such as 1D and 2D NMR spectra and MS data, and the final structure including absolute configuration was unambiguously established by single-crystal X-ray diffraction analysis. In the evaluation of its anti-inflammatory effects, 1 inhibited the overproduction of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and BV2 microglia, and these inhibitory effects were correlated with the suppressive effect of 1 against overexpressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, 1 also inhibited the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-12. Overall, the anti-inflammatory effect of 1 was suggested to be mediated through the negative regulation of NF-κB pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Neoglycoconjugate Containing the Human Milk Sugar LNFPIII Drives Anti-Inflammatory Activation of Antigen Presenting Cells in a CD14 Dependent Pathway.

    Directory of Open Access Journals (Sweden)

    Smanla Tundup

    Full Text Available The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewisx trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NFκB activation in a TLR4 dependent mechanism. However, the connection between LNFPIII-NGC activation of APCs, TLR4 signaling and subsequent MAP kinase signaling leading to anti-inflammatory activation of APCs remains unknown. In this study we determined that the innate receptor CD14 was essential for LNFPIII-NGC induction of both ERK and NFkB activation in APCs. Induction of ERK activation by LNFPIII-NGC was completely dependent on CD14/TLR4-Ras-Raf1/TPL2-MEK axis in bone marrow derived dendritic cells (BMDCs. In addition, LNFPIII-NGC preferentially induced the production of Th2 "favoring" chemokines CCL22 and matrix metalloprotease protein-9 in a CD14 dependent manner in BMDCs. In contrast, LNFPIII-NGC induces significantly lower levels of Th1 "favoring" chemokines, MIP1α, MIP1β and MIP-2 compared to levels in LPS stimulated cells. Interestingly, NGC of the identical human milk sugar LNnT, minus the alpha 1-3 linked fucose, failed to activate APCs via TLR4/MD2/CD14 receptor complex, suggesting that the alpha 1-3 linked fucose in LNFPIII and not on LNnT, is required for this process. Using specific chemical inhibitors of the MAPK pathway, we found that LNFPIII-NGC induction of CCL22, MMP9 and IL-10 production was dependent on ERK activation. Over all, this study suggests that LNFPIII-NGC utilizes CD14/TLR4-MAPK (ERK axis in modulating APC activation to produce anti-inflammatory chemokines and cytokines in a manner distinct from that seen for the pro-inflammatory PAMP LPS. These pathways may explain the in vivo

  13. Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria.

    Directory of Open Access Journals (Sweden)

    Alexander Pretsch

    Full Text Available Acne vulgaris is the most common skin disease, causing significant psychosocial problems such as anxiety and depression similar to a chronic illness for those afflicted. Currently, obtainable agents for acne treatment have limited use. Thus, development of novel agents to treat this disease is a high medical need. The anaerobic bacterium Propionibacterium acnes has been implicated in the inflammatory phase of acne vulgaris by activating pro-inflammatory mediators such as the interleukin-8 (IL-8 via the NF-κB and MAPK pathways. Talaromyces wortmannii is an endophytic fungus, which is known to produce high bioactive natural compounds. We hypothesize that compound C but also the crude extract from T. wortmannii may possess both antibacterial activity especially against P. acnes and also anti-inflammatory properties by inhibiting TNF-α-induced ICAM-1 expression and P. acnes-induced IL-8 release. Treatment of keratinocytes (HaCaT with P. acnes significantly increased NF-κB and activator protein-1 (AP-1 activation, as well as IL-8 release. Compound C inhibited P. acnes-mediated activation of NF-κB and AP-1 by inhibiting IκB degradation and the phosphorylation of ERK and JNK MAP kinases, and IL-8 release in a dose-dependent manner. Based on these results, compound C has effective antimicrobial activity against P. acnes and anti-inflammatory activity, and we suggest that this substance or the crude extract are alternative treatments for antibiotic/anti-inflammatory therapy for acne vulgaris.

  14. Antimicrobial and Anti-Inflammatory Activities of Endophytic Fungi Talaromyces wortmannii Extracts against Acne-Inducing Bacteria

    Science.gov (United States)

    Schwendinger, Katja; Kreiseder, Birgit; Wiederstein, Martina; Pretsch, Dagmar; Genov, Miroslav; Hollaus, Ralph; Zinssmeister, Daniela; Debbab, Abdesamad; Hundsberger, Harald; Eger, Andreas; Proksch, Peter; Wiesner, Christoph

    2014-01-01

    Acne vulgaris is the most common skin disease, causing significant psychosocial problems such as anxiety and depression similar to a chronic illness for those afflicted. Currently, obtainable agents for acne treatment have limited use. Thus, development of novel agents to treat this disease is a high medical need. The anaerobic bacterium Propionibacterium acnes has been implicated in the inflammatory phase of acne vulgaris by activating pro-inflammatory mediators such as the interleukin-8 (IL-8) via the NF-κB and MAPK pathways. Talaromyces wortmannii is an endophytic fungus, which is known to produce high bioactive natural compounds. We hypothesize that compound C but also the crude extract from T. wortmannii may possess both antibacterial activity especially against P. acnes and also anti-inflammatory properties by inhibiting TNF-α-induced ICAM-1 expression and P. acnes-induced IL-8 release. Treatment of keratinocytes (HaCaT) with P. acnes significantly increased NF-κB and activator protein-1 (AP-1) activation, as well as IL-8 release. Compound C inhibited P. acnes-mediated activation of NF-κB and AP-1 by inhibiting IκB degradation and the phosphorylation of ERK and JNK MAP kinases, and IL-8 release in a dose-dependent manner. Based on these results, compound C has effective antimicrobial activity against P. acnes and anti-inflammatory activity, and we suggest that this substance or the crude extract are alternative treatments for antibiotic/anti-inflammatory therapy for acne vulgaris. PMID:24887557

  15. Anti-inflammatory and Antihistaminic Study of a Unani Eye Drop Formulation

    Directory of Open Access Journals (Sweden)

    Latif Abdul

    2010-03-01

    Full Text Available The Unani eye drop is an ophthalmic formulation prepared for its beneficial effects in the inflammatory and allergic conditions of the eyes. In the present study, the Unani eye drop formulation was prepared and investigated for its anti-inflammatory and antihistaminic activity, using in vivo and in vitro experimental models respectively. The Unani eye drop formulation exhibited significant anti-inflammatory activity in turpentine liniment-induced ocular inflammation in rabbits. The preparation also showed antihistaminic activity in isolated guinea-pig ileum. The anti-inflammatory and antihistaminic activity of eye drop may be due to presence of active ingredients in the formulation. Although there are many drugs in Unani repository which are mentioned in classical books or used in Unani clinical practice effectively in treatment of eye diseases by various Unani physicians. Inspite of the availability of vast literature, there is a dearth of commercial Unani ocular preparations. So, keeping this in mind, the eye drop formulation was prepared and its anti-inflammatory and antihistaminic activity was carried out in animal models. Thus, in view of the importance of alternative anti-inflammatory and anti- allergic drugs, it becomes imperative to bring these indigenous drugs to the front foot and evaluate their activities.

  16. Anti-inflammatory and antipyretic effects of Sonchus oleraceus in rats.

    Science.gov (United States)

    Vilela, Fabiana C; Bitencourt, Andressa D; Cabral, Layla D M; Franqui, Lidiane S; Soncini, Roseli; Giusti-Paiva, Alexandre

    2010-02-17

    Sonchus oleraceus L. has been used to relieve headaches, general pain, hepatitis, infections, inflammation and rheumatism in Brazilian folk medicine. Nevertheless, scientific information regarding this species is scarce; there are no reports related to its possible anti-inflammatory effects. This study was aimed at evaluating the scientific basis for the traditional use of Sonchus oleraceus using in vivo inflammatory models. Carrageenan-induced paw edema, peritonitis and febrile response induced by lipopolysaccharide tests, as well as fibrovascular tissue growth induced by s.c. cotton pellet implantation were used to investigate the anti-inflammatory activity of Sonchus oleraceus hydroethanolic extract (SoHE) in rats. The SoHE at test doses of 100-300 mg/kg p.o. clearly demonstrated anti-inflammatory effects by reduced paw edema induced by carragenan, inhibited leukocyte recruitment into the peritoneal cavity and reduced LPS-induced febrile response, and in the model of chronic inflammation using the cotton pellet-induced fibrovascular tissue growth in rats, the SoHE significantly inhibited the formation of granulomatous tissue. The extract administered at 300 mg/kg p.o. had a stronger anti-inflammatory effect than indomethacin (10mg/kg) or dexamethasone (1mg/kg). The hydroethanolic extract of Sonchus oleraceus markedly demonstrated anti-inflammatory action in rats, which supports previous claims of its traditional use. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Anti-oxidant and anti-inflammatory activity of leaf extracts and fractions of Mangifera indica.

    Science.gov (United States)

    Mohan, C G; Deepak, M; Viswanatha, G L; Savinay, G; Hanumantharaju, V; Rajendra, C E; Halemani, Praveen D

    2013-04-13

    To evaluate the anti-oxidant and anti-inflammatory activity of leaf extracts and fractions of Mangifera indica in in vitro conditions. In vitro DPPH radical scavenging activity and lipoxygenase (LOX) inhibition assays were used to evaluate the anti-oxidant and anti-inflammatory activities respectively. Methanolic extract (MEMI), successive water extract (SWMI) and ethyl acetate fraction (EMEMI), n-butanol fraction (BMEMI) and water soluble fraction (WMEMI) of methanolic extract were evaluated along with respective reference standards. In in vitro DPPH radical scavenging activity, the MEMI, EMEMI and BMEMI have offered significant antioxidant activity with IC(50) values of 13.37, 3.55 and 14.19 μg/mL respectively. Gallic acid, a reference standard showed significant antioxidant activity with IC(50) value of 1.88 and found to be more potent compared to all the extracts and fractions. In in vitro LOX inhibition assay, the MEMI, EMEMI and BMEMI have showed significant inhibition of LOX enzyme activity with IC(50) values of 96.71, 63.21 and 107.44 μg/mL respectively. While, reference drug Indomethacin also offered significant inhibition against LOX enzyme activity with IC(50) of 57.75. Furthermore, MEMI was found to more potent than SWMI and among the fractions EMEMI was found to possess more potent antioxidant and anti-inflammatory activity. These findings suggest that the MEMI and EMEMI possess potent anti-oxidant and anti-inflammatory activities in in vitro conditions. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Anti-inflammatory activities of essential oil isolated from the calyx of Hibiscus sabdariffa L.

    Science.gov (United States)

    Shen, Chun-Yan; Zhang, Tian-Tian; Zhang, Wen-Li; Jiang, Jian-Guo

    2016-10-12

    Hibiscus sabdariffa Linn., belonging to the family of Malvaceae, is considered to be a plant with health care applications in China. The main purpose of this study was to analyze the composition of its essential oil and assess its potential therapeutic effect on anti-inflammatory activity. A water steam distillation method was used to extract the essential oil from H. Sabdariffa. The essential oil components were determined by gas chromatography/mass spectrometry (GC-MS) analysis and a total of 18 volatile constituents were identified, the majority of which were fatty acids and ester compounds. Biological activity showed that the essential oil extracted from H. Sabdariffa exhibited excellent anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. The nitric oxide (NO) inhibition rate reached 67.46% when the concentration of the essential oil was 200 μg mL -1 . Further analysis showed that the anti-inflammatory activity of the essential oil extracted from H. Sabdariffa might be exerted through inhibiting the activation of NF-κB and MAPK (JNK and ERK1/2) signaling pathways to decrease NO and pro-inflammatory cytokine (IL-1, IL-6, TNF-α, COX-2, and iNOS) production. Thus, the essential oil extracted from H. Sabdariffa is a good source of a natural product with a beneficial effect against inflammation, and it may be applied as a food supplement and/or functional ingredient.

  19. Anti-inflammatory and Antihistaminic Study of a Unani Eye Drop Formulation.

    Science.gov (United States)

    Abdul, Latif; Abdul, Razique; Sukul, R R; Nazish, Siddiqui

    2010-01-01

    The Unani eye drop is an ophthalmic formulation prepared for its beneficial effects in the inflammatory and allergic conditions of the eyes. In the present study, the Unani eye drop formulation was prepared and investigated for its anti-inflammatory and antihistaminic activity, using in vivo and in vitro experimental models respectively. The Unani eye drop formulation exhibited significant anti-inflammatory activity in turpentine liniment-induced ocular inflammation in rabbits. The preparation also showed antihistaminic activity in isolated guinea-pig ileum. The anti-inflammatory and antihistaminic activity of eye drop may be due to presence of active ingredients in the formulation. Although there are many drugs in Unani repository which are mentioned in classical books or used in Unani clinical practice effectively in treatment of eye diseases by various Unani physicians. Inspite of the availability of vast literature, there is a dearth of commercial Unani ocular preparations. So, keeping this in mind, the eye drop formulation was prepared and its anti-inflammatory and antihistaminic activity was carried out in animal models. Thus, in view of the importance of alternative anti-inflammatory and antiallergic drugs, it becomes imperative to bring these indigenous drugs to the front foot and evaluate their activities.

  20. Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity

    Science.gov (United States)

    2012-01-01

    Background As proinflammatory cytokines seem to play a role in discogenic back pain, substances exhibiting anti-inflammatory effects on intervertebral disc cells may be used as minimal-invasive therapeutics for intradiscal/epidural injection. The purpose of this study was to investigate the anti-inflammatory and anti-catabolic potential of curcuma, which has been used in the Indian Ayurvedic medicine to treat multiple ailments for a long time. Methods Human disc cells were treated with IL-1β to induce an inflammatory/catabolic cascade. Different extracts of curcuma as well as curcumin (= a component selected based on results with curcuma extracts and HPLC/MS analysis) were tested for their ability to reduce mRNA expression of proinflammatory cytokines and matrix degrading enzymes after 6 hours (real-time RT-PCR), followed by analysis of typical inflammatory signaling mechanisms such as NF-κB (Western Blot, Transcription Factor Assay), MAP kinases (Western Blot) and Toll-like receptors (real-time RT-PCR). Quantitative data was statistically analyzed using a Mann Whitney U test with a significance level of p curcuma DMSO extract significantly reduced levels of IL-6, MMP1, MMP3 and MMP13. The DMSO-soluble component curcumin, whose occurrence within the DMSO extract was verified by HPLC/MS, reduced levels of IL-1β, IL-6, IL-8, MMP1, MMP3 and MMP13 and both caused an up-regulation of TNF-α. Pathway analysis indicated that curcumin did not show involvement of NF-κB, but down-regulated TLR2 expression and inhibited the MAP kinase JNK while activating p38 and ERK. Conclusions Based on its anti-inflammatory and anti-catabolic effects, intradiscal injection of curcumin may be an attractive treatment alternative. However, whether the anti-inflammatory properties in vitro lead to analgesia in vivo will need to be confirmed in an appropriate animal model. PMID:22909087

  1. Effect of Cocoa Polyphenolic Extract on Macrophage Polarization from Proinflammatory M1 to Anti-Inflammatory M2 State

    Directory of Open Access Journals (Sweden)

    Laura Dugo

    2017-01-01

    Full Text Available Polyphenols-rich cocoa has many beneficial effects on human health, such as anti-inflammatory effects. Macrophages function as control switches of the immune system, maintaining the balance between pro- and anti-inflammatory activities. We investigated the hypothesis that cocoa polyphenol extract may affect macrophage proinflammatory phenotype M1 by favoring an alternative M2 anti-inflammatory state on macrophages deriving from THP-1 cells. Chemical composition, total phenolic content, and antioxidant capacity of cocoa polyphenols extracted from roasted cocoa beans were determined. THP-1 cells were activated with both lipopolysaccharides and interferon-γ for M1 or with IL-4 for M2 switch, and specific cytokines were quantified. Cellular metabolism, through mitochondrial oxygen consumption, and ATP levels were evaluated. Here, we will show that cocoa polyphenolic extract attenuated in vitro inflammation decreasing M1 macrophage response as demonstrated by a significantly lowered secretion of proinflammatory cytokines. Moreover, treatment of M1 macrophages with cocoa polyphenols influences macrophage metabolism by promoting oxidative pathways, thus leading to a significant increase in O2 consumption by mitochondrial complexes as well as a higher production of ATP through oxidative phosphorylation. In conclusion, cocoa polyphenolic extract suppresses inflammation mediated by M1 phenotype and influences macrophage metabolism by promoting oxidative pathways and M2 polarization of active macrophages.

  2. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.

    Science.gov (United States)

    Intahphuak, S; Khonsung, P; Panthong, A

    2010-02-01

    This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO.

  3. Anti-Inflammatory Prostanoids: Focus on the Interactions between Electrophile Signaling and Resolution of Inflammation

    Directory of Open Access Journals (Sweden)

    Beatriz Díez-Dacal

    2010-01-01

    Full Text Available Prostanoids are products of cyclooxygenase biosynthetic pathways and constitute a family of lipidic mediators of widely diverse structures and biological actions. Besides their known proinflammatory role, numerous works have revealed the anti-inflammatory effects of various prostanoids and established their role in the resolution of inflammation. Among these, prostaglandins with cyclopentenone structure (cyPG are electrophilic lipids that may act through various mechanisms, including the activation of nuclear and membrane receptors and, importantly, direct addition to protein cysteine residues and modification of protein function. Due to their ability to influence cysteine modification–mediated signaling, cyPG may play a critical role in the interplay between redox and inflammatory signaling pathways. Moreover, cellular redox status modulates cyPG addition to proteins; thus, a reciprocal regulation exists between these two factors. After initial controversy, it is becoming clear that endogenous cyPG are generated at concentrations sufficient to promote inflammatory resolution. As for other prostanoids, cyPG effects are highly dependent on context factors and they may exert pro- or anti-inflammatory actions in a cell type–dependent manner, or even biphasic or dual actions in a given cell type or tissue. In light of the growing number of cyPG protein targets identified, cyPG resemble other pleiotropic mediators acting through protein modification. However, their complex structure results in an inter- and intramolecular selectivity of the residues being modified, thus opening the way for structure-activity and drug discovery studies. Detailed characterization of cyPG interactions with cellular proteins will help us to understand their mechanism of action fully and establish their therapeutic potential in inflammation.

  4. Dual anti-inflammatory and anti-parasitic action of topical ivermectin 1% in papulopustular rosacea.

    Science.gov (United States)

    Schaller, M; Gonser, L; Belge, K; Braunsdorf, C; Nordin, R; Scheu, A; Borelli, C

    2017-11-01

    Recently, therapy of rosacea with inflammatory lesions (papulopustular) has improved substantially with the approval of topical ivermectin 1% cream. It is assumed to have a dual mode of action with anti-inflammatory capacities and anti-parasitic effects against Demodex, which however has not yet been demonstrated in vivo. To find scientific rationale for the dual anti-inflammatory and anti-parasitic mode of action of topical ivermectin 1% cream in patients with rosacea. A monocentric pilot study was performed including 20 caucasion patients with moderate to severe rosacea, as assessed by investigator global assessment (IGA score ≥3) and a Demodex density ≥15/cm 2 . Patients were treated with topical ivermectin 1% cream once daily (Soolantra ® ) for ≥12 weeks. The density of Demodex mites was assessed with skin surface biopsies. Expression of inflammatory and immune markers was evaluated with RT-PCR and by immunofluorescence staining. The mean density of mites was significantly decreased at week 6 and week 12 (P < 0.001). The gene expression levels of IL-8, LL-37, HBD3, TLR4 and TNF-α were downregulated at both time points. Reductions in gene expression were significant for LL-37, HBD3 and TNF-α at both follow-up time points and at week 12 for TLR4 (all P < 0.05). Reduced LL-37 expression (P < 0.05) and IL-8 expression were confirmed on the protein level by immunofluorescence staining. All patients improved clinically, and 16 of 20 patients reached therapeutic success defined as IGA score ≤1. Topical ivermectin 1% cream acts by a dual, anti-inflammatory and anti-parasitic mode of action against rosacea by killing Demodex spp. in vivo, in addition to significantly improving clinical signs and symptoms in the skin. © 2017 European Academy of Dermatology and Venereology.

  5. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities

    Directory of Open Access Journals (Sweden)

    Surached Thitimuta

    2017-03-01

    Full Text Available The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE (Camellia sinensis L.. The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl4-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE’s principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl4-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl4 intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  6. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities.

    Science.gov (United States)

    Thitimuta, Surached; Pithayanukul, Pimolpan; Nithitanakool, Saruth; Bavovada, Rapepol; Leanpolchareanchai, Jiraporn; Saparpakorn, Patchreenart

    2017-03-04

    The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE) ( Camellia sinensis L.). The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl₄-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA) oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE's principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl₄-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl₄ intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  7. Anti-Inflammatory Activity of N-(3-Florophenylethylcaffeamide in Mice

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2013-07-01

    Full Text Available In this study, we evaluated the anti-inflammatory activity of one synthetic product, N-(3-Florophenylethylcaffeamide (abbrev. FECA, by using animal model of λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of FECA was determined by measuring the levels of cyclooxygenase-2 (COX-2, nitric oxide (NO, tumor necrosis factor (TNF-α, interleukin-1β (IL-1β, and malondialdehyde (MDA in the edema paw tissue, and the activities of superoxide dismutase (SOD, glutathione peroxidase (GPx, and glutathione reductase (GRd in the liver. The results showed that FECA reduced the paw edema at three, four and five hours after λ-carrageenan administration. The levels of COX-2, NO, TNF-α, and MDA in the λ-carrageenan-induced edema paws were reduced and the activities of SOD, GPx, and GRd in liver tissues were raised by FECA. These results suggested that FECA possessed anti-inflammatory activities and the anti-inflammatory mechanisms might be related to the decrease of the levels of COX-2, NO, and TNF-α in inflamed tissues and the increase in the MDA level by increasing the activities of SOD, GPx, and GRd.

  8. Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis

    Science.gov (United States)

    Chmiel, James F.; Konstan, Michael W.; Elborn, J. Stuart

    2013-01-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from 38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  9. The Phytochemical Constituents, Analgesic and Anti-inflammatory ...

    African Journals Online (AJOL)

    The analgesic and anti-inflammatory effects of the methanolic extract of the leaves of Jatropha curcas were investigated in mice and rats respectively. The phytochemical screening of the extract was also carried out. The analgesic effect was determined by acetic acid – induced writhing test in mice. While the anti- ...

  10. Antioxidant, anti-inflammatory and anti-septic potential of phenolic acids and flavonoid fractions isolated from Lolium multiflorum.

    Science.gov (United States)

    Choi, Ki-Choon; Son, Young-Ok; Hwang, Jung-Min; Kim, Beom-Tae; Chae, Minseon; Lee, Jeong-Chae

    2017-12-01

    Interest has recently renewed in using Lolium multiflorum Lam. (Poaceae) (called Italian ryegrass; IRG) silage as an antioxidant and anti-inflammatory diet. This study investigated the antioxidant, anti-inflammatory and anti-septic potential of IRG silage and identified the primary components in IRG active fractions. Total 16 fractions were separated from the chloroform-soluble extract of IRG aerial part using Sephadex LH-20 column before HPLC analysis. Antioxidant and anti-inflammatory activities of the fractions at doses of 0-100 μg/mL were investigated using various cell-free and cell-mediated assay systems. To explore anti-septic effect of IRG fractions, female ICR and BALB/c mice orally received 40 mg/kg of phenolic acid and flavonoid-rich active fractions F 7 and F 8 every other day for 10 days, respectively, followed by LPS challenge. The active fractions showed greater antioxidant and anti-inflammatory potential compared with other fractions. IC 50 values of F 7 and F 8 to reduce LPS-stimulated NO and TNF-α production were around 15 and 30 μg/mL, respectively. Comparison of retention times with authentic compounds through HPLC analysis revealed the presence of caffeic acid, ferulic acid, myricetin and kaempferol in the fractions as primary components. These fractions inhibited LPS-stimulated MAPK and NF-κB activation. Supplementation with F 7 or F 8 improved the survival rates of mice to 70 and 60%, respectively, in LPS-injected mice and reduced near completely serum TNF-α and IL-6 levels. This study highlights antioxidant, anti-inflammatory and anti-septic activities of IRG active fractions, eventually suggesting their usefulness in preventing oxidative damage and inflammatory disorders.

  11. In silico and in vivo anti-inflammatory studies of curcuminoids ...

    African Journals Online (AJOL)

    Purpose: To determine the anti-inflammatory activity of curcuminoids in comparison with that of eugenol in silico, and to determine the anti-inflammatory activity of wound dressings made from zinc oxide powder and liquid turmeric extract with a high curcuminoid content. Methods: In silico studies were conducted, using ...

  12. Potent Anti-Inflammatory Activity of Pyrenocine A Isolated from the Marine-Derived Fungus Penicillium paxilli Ma(G)K

    Science.gov (United States)

    Toledo, Thaís Regina; Dejani, Naiara N.; Monnazzi, Luis Gustavo Silva; Kossuga, Miriam H.; Berlinck, Roberto G. S.; Sette, Lara D.; Medeiros, Alexandra I.

    2014-01-01

    Very little is known about the immunomodulatory potential of secondary metabolites isolated from marine microorganisms. In the present study, we characterized pyrenocine A, which is produced by the marine-derived fungus Penicillium paxilli Ma(G)K and possesses anti-inflammatory activity. Pyrenocine A was able to suppress, both pretreatment and posttreatment, the LPS-induced activation of macrophages via the inhibition of nitrite production and the synthesis of inflammatory cytokines and PGE2. Pyrenocine A also exhibited anti-inflammatory effects on the expression of receptors directly related to cell migration (Mac-1) as well as costimulatory molecules involved in lymphocyte activation (B7.1). Nitrite production was inhibited by pyrenocine A in macrophages stimulated with CpG but not Poly I:C, suggesting that pyrenocine A acts through the MyD88-dependent intracellular signaling pathway. Moreover, pyrenocine A is also able to inhibit the expression of genes related to NFκB-mediated signal transduction on macrophages stimulated by LPS. Our results indicate that pyrenocine A has promissory anti-inflammatory properties and additional experiments are necessary to confirm this finding in vivo model. PMID:24574582

  13. Development of anti-inflammatory drugs - the research and development process.

    Science.gov (United States)

    Knowles, Richard Graham

    2014-01-01

    The research and development process for novel drugs to treat inflammatory diseases is described, and several current issues and debates relevant to this are raised: the decline in productivity, attrition, challenges and trends in developing anti-inflammatory drugs, the poor clinical predictivity of experimental models of inflammatory diseases, heterogeneity within inflammatory diseases, 'improving on the Beatles' in treating inflammation, and the relationships between big pharma and biotechs. The pharmaceutical research and development community is responding to these challenges in multiple ways which it is hoped will lead to the discovery and development of a new generation of anti-inflammatory medicines. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  14. Analgesic, anti-inflammatory and anti-pyretic activities of aqueous ethanolic extract of Tamarix aphylla L. (Saltcedar) in mice.

    Science.gov (United States)

    Qadir, Muhammad Imran; Abbas, Khizar; Hamayun, Rahma; Ali, Muhammad

    2014-11-01

    The objective of the study was to investigate the analgesic, anti-inflammatory and anti-pyretic activity of aqueous ethanolic extracts of Tamarix aphylla. The powdered plant was extracted by the method of cold maceration using aqueous ethanol (70:30) as solvents. Analgesic activity was assessed by Eddy's hot plate method, formalin-induced paw licking and acetic acid-induced writhing in mice. Anti-inflammatory activity was evaluated by carageenan-induced mice paw edema. The anti-pyretic activity was determined by yeast-induced pyrexia in mice. The aqueous ethanolic extract of Tamarix aphylla showed 42% inhibition (pTamarix aphylla exhibit analgesic and antipyretic activity but lacks anti-inflammatory activity.

  15. Anti-inflammatory and Antihistaminic Study of a Unani Eye Drop Formulation

    Directory of Open Access Journals (Sweden)

    Latif Abdul

    2010-01-01

    Full Text Available The Unani eye drop is an ophthalmic formulation prepared for its beneficial effects in the inflammatory and allergic conditions of the eyes. In the present study, the Unani eye drop formulation was prepared and investigated for its anti-inflammatory and antihistaminic activity, using in vivo and in vitro experimental models respectively. The Unani eye drop formulation exhibited significant anti-inflammatory activity in turpentine liniment-induced ocular inflammation in rabbits. The preparation also showed antihistaminic activity in isolated guinea-pig ileum. The anti-inflammatory and antihistaminic activity of eye drop may be due to presence of active ingredients in the formulation. Although there are many drugs in Unani repository which are mentioned in classical books or used in Unani clinical practice effectively in treatment of eye diseases by various Unani physicians. Inspite of the availability of vast literature, there is a dearth of commercial Unani ocular preparations. So, keeping this in mind, the eye drop formulation was prepared and its anti-inflammatory and antihistaminic activity was carried out in animal models. Thus, in view of the importance of alternative anti-inflammatory and antiallergic drugs, it becomes imperative to bring these indigenous drugs to the front foot and evaluate their activities.

  16. GC-MS analysis, evaluation of phytochemicals, anti-oxidant, thrombolytic and anti-inflammatory activities of Exacum bicolor

    Directory of Open Access Journals (Sweden)

    Appaji Mahesh Ashwini

    2015-12-01

    Full Text Available The aim of the present study was to investigate the GC-MS analysis, phytochemical screening, anti-oxidant, thrombolytic and anti-inflammatory activities of methanol extract of leaves of Exacum bicolor. FTIR analysis confirmed the presence of alcohol, phenols, alkanes, aromatic compounds, aldehyde and ethers. GC-MS analysis revealed the presence of eight phyto-constituents. The total phenol, flavonoid and alkaloid contents were 18.0 ± 0.2 mg/GAE/g, 13.1 ± 0.4 mg QE/g and 108.0 ± 1.2 mg AE/g respectively. The DPPH assay exhibited potent anti-oxidant abilities with IC50 8.8 µg/mL. Significant thrombolytic activity was demonstrated by clot lysis method (45.1 ± 0.8%. The methanol extract showed significant membrane stabilization on human red blood cell with IC50 value of 37.4 µg/mL. There was a significant correlation (R2>0.98 with total phenolic content versus anti-oxidant and anti-inflammatory activity. The above results confirmed that E. bicolor could be a promising anti-oxidant, thrombolytic and anti-inflammatory agent.

  17. Anti-Inflammatory Effects and Mechanisms of Fatsia polycarpa Hayata and Its Constituents

    Directory of Open Access Journals (Sweden)

    Hsueh-Ling Cheng

    2013-01-01

    Full Text Available Fatsia polycarpa, a plant endemic to Taiwan, is an herbal medicine known for treating several inflammation-related diseases, but its biological function needs scientific support. Thus, the anti-inflammatory effects and mechanisms of the methanolic crude extract (MCE of F. polycarpa and its feature constituents, that is, brassicasterol (a phytosterol, triterpenoids 3α-hydroxyolean-11,13(18-dien-28-oic acid (HODA, 3α-hydroxyolean-11-en-28,13β-olide (HOEO, fatsicarpain D, and fatsicarpain F, were investigated. MCE and HOEO, but not brassicasterol, dose-dependently inhibited lipopolysaccharide- (LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophage line, whereas HODA, fatsicarpain D and fatsicarpain F were toxic to RAW cells. Additionally, MCE and HOEO suppressed LPS-induced production of nitric oxide, prostaglandin E2, and interleukin-1β and interfered with LPS-promoted activation of the inhibitor kappa B kinase (IKK/nuclear factor-κB (NF-κB pathway, and that of the mitogen-activated protein kinases (MAPKs extracellular signal regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38. In animal tests, MCE and HOEO effectively ameliorated 12-O-tetradecanoylphorobol-13 acetate- (TPA-induced ear edema of mice. Thus, MCE of F. polycarpa exhibited an obvious anti-inflammatory activity in vivo and in vitro that likely involved the inhibition of the IKK/NF-κB pathway and the MAPKs, which may be attributed by triterpenoids such as HOEO.

  18. Evaluation of Analgesic and Anti-inflammatory Activities of the Root ...

    African Journals Online (AJOL)

    Evaluation of Analgesic and Anti-inflammatory Activities of the Root Extracts of Indigofera spicata F. in Mice. ... The results clearly demonstrate the analgesic and anti-inflammatory effects of the aqueous and 80% methanolic root extracts of the plant, providing evidence in part for the folkloric use of the plant. Keywords: ...

  19. Curcuma longa extract exerts a myorelaxant effect on the ileum and colon in a mouse experimental colitis model, independent of the anti-inflammatory effect.

    Science.gov (United States)

    Aldini, Rita; Budriesi, Roberta; Roda, Giulia; Micucci, Matteo; Ioan, Pierfranco; D'Errico-Grigioni, Antonia; Sartini, Alessandro; Guidetti, Elena; Marocchi, Margherita; Cevenini, Monica; Rosini, Francesca; Montagnani, Marco; Chiarini, Alberto; Mazzella, Giuseppe

    2012-01-01

    Curcuma has long been used as an anti-inflammatory agent in inflammatory bowel disease. Since gastrointestinal motility is impaired in inflammatory states, the aim of this work was to evaluate if Curcuma Longa had any effect on intestinal motility. The biological activity of Curcuma extract was evaluated against Carbachol induced contraction in isolated mice intestine. Acute and chronic colitis were induced in Balb/c mice by Dextran Sulphate Sodium administration (5% and 2.5% respectively) and either Curcuma extract (200 mg/kg/day) or placebo was thereafter administered for 7 and 21 days respectively. Spontaneous contractions and the response to Carbachol and Atropine of ileum and colon were studied after colitis induction and Curcuma administration. Curcuma extract reduced the spontaneous contractions in the ileum and colon; the maximal response to Carbachol was inhibited in a non-competitive and reversible manner. Similar results were obtained in ileum and colon from Curcuma fed mice. DSS administration decreased the motility, mainly in the colon and Curcuma almost restored both the spontaneous contractions and the response to Carbachol after 14 days assumption, compared to standard diet, but a prolonged assumption of Curcuma decreased the spontaneous and Carbachol-induced contractions. Curcuma extract has a direct and indirect myorelaxant effect on mouse ileum and colon, independent of the anti-inflammatory effect. The indirect effect is reversible and non-competitive with the cholinergic agent. These results suggest the use of curcuma extract as a spasmolytic agent.

  20. Anti-inflammatory Effects of Curcumin in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Yangyang Yu

    2018-04-01

    Full Text Available Lipoteichoic acid (LTA induces neuroinflammatory molecules, contributing to the pathogenesis of neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Although previous data supports an immune-modulating effect of curcumin, the underlying signaling pathways are largely unidentified. Here, we investigated curcumin’s anti-neuroinflammatory properties in LTA-stimulated BV-2 microglial cells. Inflammatory cytokine tumor necrosis factor-α [TNF-α, prostaglandin E2 (PGE2, and Nitric Oxide (NO] secretion in LTA-induced microglial cells were inhibited by curcumin. Curcumin also inhibited LTA-induced inducible NO synthases (iNOS and cyclooxygenase-2 (COX-2 expression. Subsequently, our mechanistic studies revealed that curcumin inhibited LTA-induced phosphorylation of mitogen-activated protein kinase (MAPK including ERK, p38, Akt and translocation of NF-κB. Furthermore, curcumin induced hemeoxygenase (HO-1HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf-2 expression in microglial cells. Inhibition of HO-1 reversed the inhibition effect of HO-1 on inflammatory mediators release in LTA-stimulated microglial cells. Taken together, our results suggest that curcumin could be a potential therapeutic agent for the treatment of neurodegenerative disorders via suppressing neuroinflammatory responses.

  1. Tropical fruit camu-camu (Myrciaria dubia) has anti-oxidative and anti-inflammatory properties.

    Science.gov (United States)

    Inoue, Teruo; Komoda, Hiroshi; Uchida, Toshihiko; Node, Koichi

    2008-10-01

    Oxidative stress as well as inflammation plays a pivotal role in the pathogenesis of atherosclerosis. Although, various anti-oxidative dietary supplements have been evaluated for their ability to prevent atherosclerosis, no effective ones have been determined at present. "Camu-camu" (Myrciaria dubia) is an Amazonian fruit that offers high vitamin C content. However, its anti-oxidative property has not been evaluated in vivo in humans. To assess the anti-oxidative and anti-inflammatory properties of camu-camu in humans, 20 male smoking volunteers, considered to have an accelerated oxidative stress state, were recruited and randomly assigned to take daily 70 ml of 100% camu-camu juice, corresponding to 1050 mg of vitamin C (camu-camu group; n=10) or 1050 mg of vitamin C tablets (vitamin C group; n=10) for 7 days. After 7 days, oxidative stress markers such as the levels of urinary 8-hydroxy-deoxyguanosine (P<0.05) and total reactive oxygen species (P<0.01) and inflammatory markers such as serum levels of high sensitivity C reactive protein (P<0.05), interleukin (IL)-6 (P<0.05), and IL-8 (P<0.01) decreased significantly in the camu-camu group, while there was no change in the vitamin C group. Our results suggest that camu-camu juice may have powerful anti-oxidative and anti-inflammatory properties, compared to vitamin C tablets containing equivalent vitamin C content. These effects may be due to the existence of unknown anti-oxidant substances besides vitamin C or unknown substances modulating in vivo vitamin C kinetics in camu-camu.

  2. Pathogen- and host-directed anti-inflammatory activities of macrolide antibiotics.

    Science.gov (United States)

    Steel, Helen C; Theron, Annette J; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance.

  3. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok

    2017-11-29

    Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory effect on endothelial cells has not been established. We evaluated the anti-inflammatory activity of TO filtered methanol extracts in LPS-stimulated human umbilical vein endothelial cells (HUVECs) by monocyte adhesion and western blot assays. HUVECs were pretreated with 100 μg/ml TO for 1 h and then incubated with 1 μg/ml LPS for 24 h. The mRNA and protein expression levels of the targets (pro-inflammatory cytokines and adhesion molecules) were analyzed by real-time PCR and western blot assays. We also preformed HPLC analysis to identify the components of the TO methanol extract. The TO filtered methanol extracts dramatically inhibited LPS-induced endothelial cell-monocyte interactions by reducing vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pro-inflammatory cytokine expression. TO suppressed the LPS-induced nuclear translocation of NF-κB, whereas it did not affect MAPK activation. Our findings demonstrated that methanol extracts of TO could attenuate LPS-induced endothelial cell activation by inhibiting the NF-κB pathway. These results indicate the potential clinical benefits and applications of TO for the prevention of vascular inflammation and atherosclerosis.

  4. Repositioning of Memantine as a Potential Novel Therapeutic Agent against Meningitic E. coli-Induced Pathogenicities through Disease-Associated Alpha7 Cholinergic Pathway and RNA Sequencing-Based Transcriptome Analysis of Host Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Jing-Yi Yu

    bacterial infection through modulation of both inflammatory and anti-inflammatory pathways.

  5. XH-14, a novel danshen methoxybenzo[b]furan derivative, exhibits anti-inflammatory properties in lipopolysaccharide-treated RAW 264.7 cells

    Directory of Open Access Journals (Sweden)

    Park Geun-Mook

    2013-01-01

    Full Text Available Abstract Background XH-14 isolated from Salvia miltiorrhiza is a bioactive component and adenosine antagonist. In the present study, we evaluated anti-inflammatory properties of XH-14 in murine macrophages. Methods RAW 264.7 murine macrophage cell line was cultured with various concentrations of XH-14 in the absence or presence of lipopolysaccharide (LPS. LPS-induced release and mRNA expression of inflammatory mediators were examined by ELISA and real-time PCR. The modification of signal pathways involved in inflammatory reactions was determined by Western blotting analysis. Results XH-14 suppressed the generation of nitric oxide (NO and prostaglandin E2, and the expression of inducible NO synthase and cyclooxygenase-2 induced by LPS. Similarly, XH-14 inhibited the release of pro-inflammatory cytokines induced by LPS in RAW 264.7 cells. The underlying mechanism of XH-14 on anti-inflammatory action was correlated with down-regulation of mitogen-activated protein kinase and activator protein-1 activation. Conclusions XH-14 inhibits the production of several inflammatory mediators and so might be useful for the treatment of various inflammatory diseases.

  6. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review.

    Science.gov (United States)

    Zhu, Fengmei; Du, Bin; Xu, Baojun

    2018-05-24

    Inflammation is the first biological response of the immune system to infection, injury or irritation. Evidence suggests that the anti-inflammatory effect is mediated through the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ as well as noncytokine mediator, prostaglandin E 2 . Fruits, vegetables, and food legumes contain high levels of phytochemicals that show anti-inflammatory effect, but their mechanisms of actions have not been completely identified. The aim of this paper was to summarize the recent investigations and findings regarding in vitro and animal model studies on the anti-inflammatory effects of fruits, vegetables, and food legumes. Specific cytokines released for specific type of physiological event might shed some light on the specific use of each source of phytochemicals that can benefit to counter the inflammatory response. As natural modulators of proinflammatory gene expressions, phytochemical from fruits, vegetables, and food legumes could be incorporated into novel bioactive anti-inflammatory formulations of various nutraceuticals and pharmaceuticals. Finally, these phytochemicals are discussed as the natural promotion strategy for the improvement of human health status. The phenolics and triterpenoids in fruits and vegetables showed higher anti-inflammatory activity than other compounds. In food legumes, lectins and peptides had anti-inflammatory activity in most cases. However, there are lack of human study data on the anti-inflammatory activity of phytochemicals from fruits, vegetables, and food legumes.

  7. Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-14-2-0153 TITLE: Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents...09/14/2017 4. TITLE AND SUBTITLE “Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents” 5a...of a specific topical anti-inflammatory drug that will reduce and shorten the inflammatory state of the recipient wound bed and thus, skin graft

  8. Immuno-modulation and anti-inflammatory benefits of antibiotics: the example of tilmicosin.

    Science.gov (United States)

    Buret, André G

    2010-01-01

    Exaggerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokines and the alteration of neutrophil function. The effects are time- and dose-dependent, and the mechanisms responsible for these phenomena remain incompletely understood. Recent studies, mostly using the veterinary macrolide tilmicosin, may have shed new light on the mode of action of some macrolides and their anti-inflammatory properties. Indeed, research findings demonstrate that this compound, amongst others, induces neutrophil apoptosis, which in turn provides anti-inflammatory benefits. Studies using tilmicosin model systems in vitro and in vivo demonstrate that this antibiotic has potent immunomodulatory effects that may explain why at least parts of its clinical benefits are independent of anti-microbial effects. More research is needed, using this antibiotic and others that may have similar properties, to clarify the biological mechanisms responsible for antibiotic-induced neutrophil apoptosis, and how this, in turn, may provide enhanced clinical benefits. Such studies may help establish a rational basis for the development of novel, efficacious, anti-microbial compounds that generate anti-inflammatory properties in addition to their antibacterial effects.

  9. EVALUATION OF ANTI-INFLAMMATORY, ANTIBACTERIAL AND ...

    African Journals Online (AJOL)

    User

    Anti-inflammatory activity was determined using a LOX-inhibitor screening assay kit according to the ... and the Ferric ion reducing antioxidant power (FRAP). Antimicrobial activities ..... the best of our knowledge this is the first report on the.

  10. Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity.

    Science.gov (United States)

    Franco, Luis A; Ocampo, Yanet C; Gómez, Harold A; De la Puerta, Rocío; Espartero, José L; Ospina, Luis F

    2014-11-01

    Physalis peruviana is a native plant from the South American Andes and is widely used in traditional Colombian medicine of as an anti-inflammatory medicinal plant, specifically the leaves, calyces, and small stems in poultice form. Previous studies performed by our group on P. peruviana calyces showed potent anti-inflammatory activity in an enriched fraction obtained from an ether total extract. The objective of the present study was to obtain and elucidate the active compounds from this fraction and evaluate their anti-inflammatory activity in vivo and in vitro. The enriched fraction of P. peruviana was purified by several chromatographic methods to obtain an inseparable mixture of two new sucrose esters named peruviose A (1) and peruviose B (2). Structures of the new compounds were elucidated using spectroscopic methods and chemical transformations. The anti-inflammatory activity of the peruvioses mixture was evaluated using λ-carrageenan-induced paw edema in rats and lipopolysaccharide-activated peritoneal macrophages. Results showed that the peruvioses did not produce side effects on the liver and kidneys and significantly attenuated the inflammation induced by λ-carrageenan in a dosage-dependent manner, probably due to an inhibition of nitric oxide and prostaglandin E2, which was demonstrated in vitro. To our knowledge, this is the first report of the presence of sucrose esters in P. peruviana that showed a potent anti-inflammatory effect. These results suggest the potential of sucrose esters from the Physalis genus as a novel natural alternative to treat inflammatory diseases. Georg Thieme Verlag KG Stuttgart · New York.

  11. Anti-inflammatory and antioxidant properties of Eriobotrya japonica ...

    African Journals Online (AJOL)

    Abstract. Background: In the present work we determined phenolic and flavonoids content of Eriobotrya japonica leaves extracts and fractions and their antioxidant and anti-inflammatory properties. Objectives: To evaluate the inhibition of inflammatory PLA2 and antioxidant effects of extracts and fractions from Erio-.

  12. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    Science.gov (United States)

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment. Copyright © 2015. Published by Elsevier B.V.

  13. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds.

    Science.gov (United States)

    Ndiaye, Fatou; Vuong, Tri; Duarte, Jairo; Aluko, Rotimi E; Matar, Chantal

    2012-02-01

    Enzymatic protein hydrolysates of yellow pea seed have been shown to possess high anti-oxidant and anti-bacterial activities. The aim of this work was to confirm the anti-oxidant, anti-inflammatory and immunomodulating activities of an enzymatic protein hydrolysate of yellow field pea seeds. The anti-oxidant and anti-inflammatory properties of peptides from yellow field pea proteins (Pisum sativum L.) were investigated in LPS/IFN-γ-activated RAW 264.7 NO⁻ macrophages. The immunomodulating potential of pea protein hydrolysate (PPH) was then studied in a murine model. Pea protein hydrolysate, after a 12 h pre-treatment, showed significant inhibition of NO production by activated macrophages up to 20%. Moreover, PPH significantly inhibited their secretion of pro-inflammatory cytokines, TNF-α- and IL-6, up to 35 and 80%, respectively. Oral administration of PPH in mice enhanced the phagocytic activity of their peritoneal macrophages and stimulated the gut mucosa immune response. The number of IgA+ cells was elevated in the small intestine lamina propria, accompanied by an increase in the number of IL-4+, IL-10+ and IFN-γ+ cells. This was correlated to up-regulation of IL-6 secretion by small intestine epithelial cells (IEC), probably responsible for B-cell terminal differentiation to IgA-secreting cells. Moreover, PPH might have increased IL-6 production in IECs via the stimulation of toll-like receptors (TLRs) family, especially TLR2 and TLR4 since either anti-TLR2 or anti-TLR4 was able to completely abolish PPH-induced IL-6 secretion. Enzymatic protein degradation confers anti-oxidant, anti-inflammatory and immunomodulating potentials to pea proteins, and the resulted peptides could be used as an alternative therapy for the prevention of inflammatory-related diseases.

  14. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity.

    Science.gov (United States)

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Gavalas, Antonios; Rekka, Eleni A

    2016-02-01

    Novel amides of non steroidal anti-inflammatory drugs (NSAIDs), α-lipoic acid and indole-3-acetic acid with thiomorpholine were synthesised by a simple method and at high yields (60-92%). All the NSAID derivatives highly decreased lipidemic indices in the plasma of Triton treated hyperlipidemic rats. The most potent compound was the indomethacin derivative, which decreased total cholesterol, triglycerides and LDL cholesterol by 73%, 80% and 83%, respectively. They reduced acute inflammation equally or more than most parent acids. Hence, it could be concluded that amides of common NSAIDs with thiomorpholine acquire considerable hypolipidemic potency, while they preserve or augment their anti-inflammatory activity, thus addressing significant risk factors for atherogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Anti-plasmodial and anti-inflammatory activities of cyclotide-rich ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... orthodox anti-malarial treatments, and in search of relief, people living in ... the world today are still derived from natural sources.5. An important role in ..... each assay plate. Effect of CRF on LPS-evoked tumor necrosis factor ..... to contribute to the inflammatory cascade by increasing vascular permeability.

  16. Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Chin-Yi Cheng

    2016-01-01

    Full Text Available Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs, including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation.

  17. Screening of Bauhinia purpurea Linn. for analgesic and anti-inflammatory activities

    Science.gov (United States)

    Shreedhara, C.S.; Vaidya, V.P.; Vagdevi, H.M.; Latha, K.P.; Muralikrishna, K.S.; Krupanidhi, A.M.

    2009-01-01

    Objectives: Ethanol extract of the stem of Bauhinia purpurea Linn. was subjected to analgesic and anti-inflammatory activities in animal models. Materials and Methods: Albino Wistar rats and mice were the experimental animals respectively. Different CNS depressant paradigms like analgesic activity (determined by Eddy's hot plate method and acetic acid writhing method) and anti-inflammatory activity determined by carrageenan induced paw edema using plethysmometer in albino rats) were carried out, following the intra-peritoneal administration of ethanol extract of Bauhinia purpurea Linn. (BP) at the dose level of 50 mg/kg and 100 mg/kg. Results: The analgesic and anti-inflammatory activities of ethanol extracts of BP were significant (P Bauhinia purpurea has shown significant analgesic and anti-inflammatory activities at the dose of 100 mg/kg and was comparable with corresponding standard drugs. The activity was attributed to the presence of phytoconstituents in the tested extract. PMID:20336222

  18. Immuno-modulation and anti-inflammatory benefits of antibiotics: The example of tilmicosin

    Science.gov (United States)

    Buret, André G.

    2010-01-01

    Exagerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokines and the alteration of neutrophil function. The effects are time- and dose-dependent, and the mechanisms responsible for these phenomena remain incompletely understood. Recent studies, mostly using the veterinary macrolide tilmicosin, may have shed new light on the mode of action of some macrolides and their anti-inflammatory properties. Indeed, research findings demonstrate that this compound, amongst others, induces neutrophil apoptosis, which in turn provides anti-inflammatory benefits. Studies using tilmicosin model systems in vitro and in vivo demonstrate that this antibiotic has potent immunomodulatory effects that may explain why at least parts of its clinical benefits are independent of anti-microbial effects. More research is needed, using this antibiotic and others that may have similar properties, to clarify the biological mechanisms responsible for antibiotic-induced neutrophil apoptosis, and how this, in turn, may provide enhanced clinical benefits. Such studies may help establish a rational basis for the development of novel, efficacious, anti-microbial compounds that generate anti-inflammatory properties in addition to their antibacterial effects. PMID:20357951

  19. The serpin saga; development of a new class of virus derived anti-inflammatory protein immunotherapeutics.

    Science.gov (United States)

    Lucas, Alexandra; Liu, Liying; Dai, Erbin; Bot, Ilze; Viswanathan, Kasinath; Munuswamy-Ramunujam, Ganesh; Davids, Jennifer A; Bartee, Mee Y; Richardson, Jakob; Christov, Alexander; Wang, Hao; Macaulay, Colin; Poznansky, Mark; Zhong, Robert; Miller, Leslie; Biessen, Erik; Richardson, Mary; Sullivan, Collin; Moyer, Richard; Hatton, Mark; Lomas, David A; McFadden, Grant

    2009-01-01

    Serine proteinase inhibitors, also called serpins, are an ancient grouping of proteins found in primitive organisms from bacteria, protozoa and horseshoe crabs and thus likely present at the time of the dinosaurs, up to all mammals living today. The innate or inflammatory immune system is also an ancient metazoan regulatory system, providing the first line of defense against infection or injury. The innate inflammatory defense response evolved long before acquired, antibody dependent immunity. Viruses have developed highly effective stratagems that undermine and block a wide variety of host inflammatory and immune responses. Some of the most potent of these immune modifying strategies utilize serpins that have also been developed over millions of years, including the hijacking by some viruses for defense against host immune attacks. Serpins represent up to 2-10 percent of circulating plasma proteins, regulating actions as wide ranging as thrombosis, inflammation, blood pressure control and even hormone transport. Targeting serpin-regulated immune or inflammatory pathways makes evolutionary sense for viral defense and many of these virus-derived inhibitory proteins have proven to be highly effective, working at very low concentrations--even down to the femptomolar to picomolar range. We are studying these viral anti-inflammatory proteins as a new class of immunomodulatory therapeutic agents derived from their native viral source. One such viral serpin, Serp-1 is now in clinical trial (conducted by VIRON Therapeutics, Inc.) for acute unstable coronary syndromes (unstable angina and small heart attacks), representing a 'first in class' therapeutic study. Several other viral serpins are also currently under investigation as anti-inflammatory or anti-immune therapeutics. This chapter describes these original studies and the ongoing analysis of viral serpins as a new class of virus-derived immunotherapeutic.

  20. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    Science.gov (United States)

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  1. Design, Synthesis, Antinociceptive and Anti-Inflammatory Activities of Novel Piroxicam Analogues

    Directory of Open Access Journals (Sweden)

    Eliezer J. Barreiro

    2012-11-01

    Full Text Available In this paper we report the design, synthesis, antinociceptive and anti-inflammatory activities of a series of benzothiazine N-acylhydrazones 14a–h, planned by structural modification of piroxicam (1, a non steroidal anti-inflammatory drug. Among the synthesized analogues, compounds 14f (LASSBio-1637 and 14g (LASSBio-1639 were identified as novel antinociceptive and anti-inflammatory prototypes, active by oral administration, acting by a mechanism of action that seems to be different from that of piroxicam, since they were inactive as an inhibitor of cyclooxygenase (COX-1 and COX-2 at concentrations of 10 mM.

  2. Design, synthesis, antinociceptive and anti-inflammatory activities of novel piroxicam analogues.

    Science.gov (United States)

    de Miranda, Amanda Silva; Bispo Júnior, Walfrido; da Silva, Yolanda Karla Cupertino; Alexandre-Moreira, Magna Suzana; Castro, Rosane de Paula; Sabino, José Ricardo; Lião, Luciano Morais; Lima, Lídia Moreira; Barreiro, Eliezer J

    2012-11-28

    In this paper we report the design, synthesis, antinociceptive and anti-inflammatory activities of a series of benzothiazine N-acylhydrazones 14a–h, planned by structural modification of piroxicam (1), a non steroidal anti-inflammatory drug. Among the synthesized analogues, compounds 14f (LASSBio-1637) and 14g (LASSBio-1639) were identified as novel antinociceptive and anti-inflammatory prototypes, active by oral administration, acting by a mechanism of action that seems to be different from that of piroxicam, since they were inactive as an inhibitor of cyclooxygenase (COX-1 and COX-2) at concentrations of 10 mM.

  3. Kalanchosine dimalate, an anti-inflammatory salt from Kalanchoe brasiliensis.

    Science.gov (United States)

    Costa, Sônia Soares; de Souza, Maria de Lourdes Mendes; Ibrahim, Tereza; de Melo, Giany Oliveira; de Almeida, Ana Paula; Guette, Catherine; Férézou, Jean-Pierre; Koatz, Vera Lucia G

    2006-05-01

    This report describes the isolation and characterization of kalanchosine dimalate (KMC), an anti-inflammatory salt from the fresh juice of the aerial parts of Kalanchoe brasiliensis. KMC comprises the new metabolite kalanchosine (1) and malic acid (2) in a 1:2 stoichiometric ratio. Kalanchosine (1), 3,6-diamino-4,5-dihydroxyoctanedioic acid, is the first naturally occurring dimeric bis(gamma-hydroxy-beta-amino acid) and is at least partially responsible for the anti-inflammatory properties of K. brasiliensis.

  4. Anti-inflammatory effects of Zea mays L. husk extracts.

    Science.gov (United States)

    Roh, Kyung-Baeg; Kim, Hyoyoung; Shin, Seungwoo; Kim, Young-Soo; Lee, Jung-A; Kim, Mi Ok; Jung, Eunsun; Lee, Jongsung; Park, Deokhoon

    2016-08-19

    Zea mays L. (Z. mays) has been used for human consumption in the various forms of meal, cooking oil, thickener in sauces and puddings, sweetener in processed food and beverage products, bio-disel. However, especially, in case of husk extract of Z. mays, little is known about its anti-inflammatory effects. Therefore, in this study, the anti-inflammatory effects of Z. mays husk extract (ZMHE) and its mechanisms of action were investigated. The husks of Z. Mays were harvested in kangwondo, Korea. To assess the anti-inflammatory activities of ZMHE, we examined effects of ZMHE on nitric oxide (NO) production, and release of soluble intercellular adhesion molecule-1 (sICAM-1) and eotaxin-1. The expression level of inducible nitric oxide synthase (iNOS) gene was also determined by Western blot and luciferase reporter assays. To determine its mechanisms of action, a luciferase reporter assay for nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) was introduced. ZMHE inhibited lipopolysaccharide (LPS)-induced production of NO in RAW264.7 cells. In addition, expression of iNOS gene was reduced, as confirmed by Western blot and luciferase reporter assays. Effects of ZMHE on the AP-1 and NF-kB promoters were examined to elucidate the mechanism of its anti-inflammatory activity. Activation of AP-1 and NF-kB promoters induced by LPS was significantly reduced by ZMHE treatment. In addition, LPS-induced production of sICAM-1 and IL-4-induced production of eotaxin-1 were all reduced by ZMHE. Our results indicate that ZMHE has anti-inflammatory effects by downregulating the expression of iNOS gene and its downregulation is mediated by inhibiting NF-kB and AP-1 signaling.

  5. Cholinergic PET imaging in infections and inflammation using "1"1C-donepezil and "1"8F-FEOBV

    International Nuclear Information System (INIS)

    Joergensen, Nis Pedersen; Hoegsberg Schleimann, Mariane; Alstrup, Aage K.O.; Knudsen, Karoline; Jakobsen, Steen; Bender, Dirk; Gormsen, Lars C.; Borghammer, Per; Mortensen, Frank V.; Madsen, Line Bille; Breining, Peter; Petersen, Mikkel Steen; Dagnaes-Hansen, Frederik

    2017-01-01

    Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated. We performed positron emission tomography (PET) using the glucose analogue 18F-FDG, and 11C-donepezil and 18F-FEOBV, markers of acetylcholinesterase and the vesicular acetylcholine transporter, respectively. Mice were inoculated subcutaneously with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer. In mice, the FDG uptake in abscesses peaked at 24 h and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120-144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C-donepezil uptake was seen. The time course of cholinergic tracer accumulation in murine abscesses was considerably different from 18F-FDG, demonstrating in the 11C-donepezil and 18F-FEOBV image distinct aspects of immune modulation. Preliminary data in humans strongly suggest that 11C-donepezil can exhibit more intense accumulation than 18F-FDG at sites of chronic inflammation. Cholinergic PET imaging may therefore have potential applications for basic research into cholinergic

  6. Cholinergic PET imaging in infections and inflammation using {sup 11}C-donepezil and {sup 18}F-FEOBV

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Nis Pedersen; Hoegsberg Schleimann, Mariane [Aarhus University Hospital, Department of Infectious Diseases, Aarhus (Denmark); Alstrup, Aage K.O.; Knudsen, Karoline; Jakobsen, Steen; Bender, Dirk; Gormsen, Lars C.; Borghammer, Per [Aarhus University Hospital, Department of Nuclear Medicine and PET Centre, Aarhus C (Denmark); Mortensen, Frank V. [Aarhus University Hospital, Department of Gastroenterology, Aarhus (Denmark); Madsen, Line Bille [Aarhus University Hospital, Department of Histopathology, Aarhus (Denmark); Breining, Peter [Aarhus University Hospital, Department of Endocrinology and Metabolism, Aarhus (Denmark); Petersen, Mikkel Steen [Aarhus University Hospital, Department of Clinical Immunology, Aarhus (Denmark); Dagnaes-Hansen, Frederik [Aarhus University, Department of Biomedicine, Aarhus (Denmark)

    2017-03-15

    Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated. We performed positron emission tomography (PET) using the glucose analogue 18F-FDG, and 11C-donepezil and 18F-FEOBV, markers of acetylcholinesterase and the vesicular acetylcholine transporter, respectively. Mice were inoculated subcutaneously with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer. In mice, the FDG uptake in abscesses peaked at 24 h and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120-144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C-donepezil uptake was seen. The time course of cholinergic tracer accumulation in murine abscesses was considerably different from 18F-FDG, demonstrating in the 11C-donepezil and 18F-FEOBV image distinct aspects of immune modulation. Preliminary data in humans strongly suggest that 11C-donepezil can exhibit more intense accumulation than 18F-FDG at sites of chronic inflammation. Cholinergic PET imaging may therefore have potential applications for basic research into cholinergic

  7. Assessment of Anti-inflammatory Activity of Taxus Baccata Linn. Bark Extract.

    Science.gov (United States)

    Dutta, Satyajit; Mariappan, G; Sarkar, Dipankar; Sarkar, Piyali

    2010-01-01

    Taxus baccata (L) known as Sthauneyaka in Sanskrit(1) has wide range of biological activities including analgesic, anti-malarial, anti-rheumatic, sedative, anti-spasmodic, aphrodisiac and anti-asthmatic. In the present study, the dried and powdered bark of Taxus baccata (L) was extracted with 95% ethanol and ether at room temperature and screened for their anti--inflammatory activity by Carrageenan-induced paw edema method in rat. 95% ethanol extract exhibits potent anti-inflammatory activity at 200mg/kg four hours after administration in comparison with ether extract, as well reference standard, Aspirin. The observed pharmacological activities provide a scientific basis for the folklore use of the plant in treating acute inflammation.

  8. Assessment of topical non-steroidal anti-inflammatory drugs in animal models.

    Science.gov (United States)

    Hiramatsu, Y; Akita, S; Salamin, P A; Maier, R

    1990-10-01

    Four commercial gel preparations of topical anti-inflammatory agents have been assessed in six animal models commonly used to determine the biological activity of non-steroidal anti-inflammatory agents for systemic administration. Only UV-induced erythema of the skin, adjuvant induced arthritis and the measurement of vascular permeability proved suitable for differentiation of the potency of the four topical agents. Carrageenin-induced paw oedema, the cotton pellet test and the assessment of the pain threshold according to Randall and Selitto were of little value. The effects of the gel preparation of diclofenac (CAS 15307-86-5) diethylammonium (Voltaren Emulgel) were comparable to two preparations containing 1% and 5% active ingredient, respectively. Gel 4 showed low overall activity. The experiments demonstrated that some of the models used for the assessment of anti-inflammatory agent for systemic administration proved suitable for the testing of topical preparations and that percutaneous absorption was insufficient to elicit anti-inflammatory effect in the animals at sites remote from the site of application.

  9. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms.

    Science.gov (United States)

    Geng, Yan; Zhu, Shuiling; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Medicinal mushrooms have been essential components of traditional Chinese herbal medicines for thousands of years, and they protect against diverse health-related conditions. The components responsible for their anti-inflammatory activity have yet to be fully studied. This study investigates the anti-inflammatory activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia in submerged culture from 5 commercially available medicinal mushrooms, namely Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. MTT colorimetric assay was applied to measure the cytotoxic effects of different extracts. Their anti-inflammatory activities were evaluated via inhibition against production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in murine macrophage-like cell line RAW264.7 cells. Of the 20 extracts, n-hexane, chloroform, ethyl acetate, and methanol extracts from C. sinensis, C. mortierella, and G. lucidum; chloroform extracts from H. erinaceus and A. mellea; and ethyl acetate extracts from A. mellea at nontoxic concentrations (effective inhibitor, with the lowest half maximal inhibitory concentration (64.09 ± 6.29 μg/mL) of the LPS-induced NO production. These results indicate that extracts from medicinal mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases.

  10. Non-steroidal anti-inflammatory drug use and the risk of Parkinson's disease

    DEFF Research Database (Denmark)

    Manthripragada, Angelika D; Schernhammer, Eva S; Qiu, Jiaheng

    2011-01-01

    Experimental evidence supports a preventative role for non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease (PD).......Experimental evidence supports a preventative role for non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease (PD)....

  11. ANTI-INFLAMMATORY EFFECT OF Myrtus nivellei Batt & Trab ...

    African Journals Online (AJOL)

    2015-01-15

    Jan 15, 2015 ... reduce significantly the paw edema with a comparable effect to that observed with Diclofenac. (positive control). This is the first report to demonstrate a significant anti-inflammatory activity of the methanolic extract prepared from Myrtus nivellei. Keywords: Anti-inflammatoy activity; Myrtus nivellei Batt & Trab; ...

  12. Procyanidin B2 ameliorates carrageenan-induced chronic nonbacterial prostatitis in rats via anti-inflammatory and activation of the Nrf2 pathway.

    Science.gov (United States)

    Wang, Wei; Chen, Renzong; Wang, Jiye

    2017-11-04

    Prostatitis is one of the most prevalent problems in andriatry and urinary surgery. In the present study, we evaluated the effect of procyanidin B2 (PB) on carrageenan-induced chronic nonbacterial prostatitis in rats. Results showed that PB significantly decreased the prostatic index and enhanced the body weight inhibited by carrageenan. Biochemical results revealed that PB significantly lowered the prostatic specific antigen (PSA) and alleviated oxidative stress in serum. The levels of TNF-α, IL-6, and IL-10 in prostatic homogenate were also significantly decreased after PB treatment. We also found evidence that PB treatment reversed the suppression of Nrf2 nuclear translocation, and increased the expressions of NQO1 and HO-1 in the prostate glands. In conclusion, treatment with PB attenuates carrageenan-induced chronic nonbacterial prostatitis via anti-inflammatory and activation of the Nrf2 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Anti-nociceptive effects of Tanshinone IIA (TIIA) in a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain.

    Science.gov (United States)

    Sun, Shukai; Yin, Yue; Yin, Xin; Cao, Fale; Luo, Daoshu; Zhang, Ting; Li, Yunqing; Ni, Longxing

    2012-09-01

    Inflammatory pain is an important clinical symptom. The levels of extracellular signal-regulated kinases (ERKs) and the levels of cytokines such as interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) play important roles in inflammatory pain. Tanshinone IIA (TIIA) is an important component of Danshen, a traditional Chinese medicine that has been commonly used to treat cardiovascular disease. In this study, we investigated the potential anti-inflammatory nociceptive effects of TIIA on complete Freund's adjuvant (CFA)-induced inflammation and inflammatory pain in rats. The effects of TIIA on CFA-induced thermal and mechanical hypersensitivity were investigated using behavioral tests. The levels of ERKs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transient receptor potential vanilloid 1 (TRPV1) in the fifth segment of the lumbar spinal cord (L5) ganglia were detected by Western blot, and the levels of mRNA and protein production of IL1-β, IL-6 and TNF-α were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immuno sorbent assay (ELISA). In this study, we found that TIIA attenuates the development of CFA-induced mechanical and thermal hypersensitivity. In addition, p-ERK and NF-κB expression levels were inhibited by TIIA, and the levels of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced. Finally, we found that the expression level of TRPV1 was significantly decreased after TIIA injection. This study demonstrated that TIIA has significant anti-nociceptive effects in a rat model of CFA-induced inflammatory pain. TIIA can inhibit the activation of ERK signaling pathways and the expression of pro-inflammatory cytokines. These results suggest that TIIA may be a potential anti-inflammatory and anti-nociceptive drug. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Semisynthesis, an Anti-Inflammatory Effect of Derivatives of 1β-Hydroxy Alantolactone from Inula britannica

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2017-10-01

    Full Text Available 1β-hydroxy alantolactone, a sesquiterpene lactone mainly isolated from Inula genus plants, exhibits potent anti-inflammatory and anticancer activities. In this work, 1β-hydroxy alantolactone was isolated and five derivatives were prepared through different reactions at the C1-OH and C13-methylene motifs. The structure–activity relationships (SAR of anti-inflammatory effects against NO production in RAW264.7 cells showed that the α-methylene-γ-butyrolactone motif was essential for NO production suppression and that retaining the C1-OH group can remarkably improve this effect. The NF-κB signaling pathway plays a pivotal role in the regulation of NO expression. Moreover, the levels of p65 and p50 phosphorylation were investigated and active compound 1 inhibited phosphorylation of p65 and p50 in TNF-α-induced NF-κB signaling. Further molecular docking suggested that 1 may target the p65 of NF-κB.

  15. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.

    Science.gov (United States)

    Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud

    2015-04-01

    Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.

  16. The anti-inflammatory and analgesic properties of prosopis chilenses in rats.

    Science.gov (United States)

    Abodola, M A; Lutfi, M F; Bakhiet, A O; Mohamed, A H

    2015-07-01

    Prosopis chilensis is used locally in Sudan for inflammatory conditions of joints; however, literature lacks scientific evidence for anti-inflammatory effect of this plant. To evaluate anti-inflammatory and analgesic effects of prosopis chilenses. Edema inhibition percent (EI %) and hot plate method were used to evaluate anti-inflammatory and analgesic effects of Prosopis chilenses in Wistar albino rats. Anti-inflammatory and analgesic effects of Prosopis chilenses were compared to indomethacin and acetylsalicylic acid respectively. Ethanolic extract of prosopis chilensis at a dose of 200 and 100mg/kg body weight achieved peak EI% (EI% = 96.1%) and (EI% = 94.4%) three and four hours after oral dosing respectively. The maximum EI% for indomethacin was 97.0% and was recorded after 4 hours following oral administration of the drug at a dose of 5 mg/kg body weight. Prosopis chilensis extracts at doses of 100 and 200 mg/kg body weight significantly increased the rats' response time to hot plate compared to acetylsalicylic acid at a dose rate of 100mg/kg body weight (Pprosopis chilenses. Relevance of these effects to prosopis chilenses phy-to-constituents was discussed.

  17. Anti-inflammatory activity of Ambrosia artemisiaefolia and Rhoeo spathacea.

    Science.gov (United States)

    Pérez G, R M

    1996-09-01

    Alcoholic extracts of the leaves of Ambrosia artemisiaefolia and Rhoeo spathacea have been investigated for anti-inflammatory activity using various experimental models of inflammation (croton oil ear oedema, carrageenan-induced edema, cotton pellet granuloma and formaldehyde induced arthritis) and the results compared with phenylbutazone and bethamethasone, standard anti-inflammatory drugs. These extracts at doses of 50, 100 and 150mg/kg of A. artemisiaefolia and R. spathacea, showed significant inhibition of acute oedema in rats and mice induced by the phlogistic agents, carrageenan and croton oil, in a dose-dependant manner. The ethanol extracts reduced cotton pellet granuloma and caused a statistically significant inhibitory effect on edema in the chronic model of formaldehyde arthritis in rats. Since Ambrosia artemisiaefolia and Rhoeo spathacea were found to be effective in both acute and chronic phases of inflammation they can be considered as general anti-inflammatory agents. Copyright © 1996 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.

  18. Anti-inflammatory Activity of Epimedium brevicornu Maxim Ethanol Extract.

    Science.gov (United States)

    Huang, Shan; Meng, Ning; Chang, Bingquan; Quan, Xianghua; Yuan, RuiYing; Li, Bin

    2018-04-05

    Epimedium brevicornu Maxim has been used as a traditional herbal drug in China. In this study, the anti-inflammatory effects of E. brevicornu Maxim ethanol extract (EBME) were investigated in RAW264.7 macrophages and mice challenged with lipopolysaccharide (LPS). Results showed that EBME attenuated inflammation by decreasing the production of several proinflammatory mediators, such as nitric oxide (NO), prostaglandin (PG) E 2 , inducible nitric oxide synthase, and cyclooxygenase-2, in LPS-stimulated RAW264.7 macrophages. EBME increased the expression of heme oxygenase-1 (HO-1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2. The inhibitory effects of EBME on LPS-stimulated NO and PGE 2 expression were partially reversed by HO-1 inhibitor. EBME also elicited an anti-inflammatory effect by inhibiting the production of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in LPS-induced peritonitis. Therefore, EBME exhibited anti-inflammatory effects in vitro and in vivo.

  19. Anti-inflammatory activity of Shirishavaleha: An Ayurvedic compound formulation.

    Science.gov (United States)

    Yadav, Shyamlal Singh; Galib; Ravishankar, B; Prajapati, P K; Ashok, B K; Varun, B

    2010-10-01

    The purpose of the present study was to evaluate the anti-inflammatory activity of Shirishavaleha prepared from two different parts of Shirisha (Albizia lebbeck Benth.), viz. the bark (Twak) and the heartwood (Sara). The activity was screened in the carrageenan-induced rat paw edema model in albino rats. The raw materials were collected and authenticated in the university and the trial formulations were prepared by following standard classical guidelines. Randomly selected animals were divided into four groups of six animals each. The test drugs were administered orally at a dose of 1.8 g/kg for 5 days. Phenylbutazone was used as the standard anti-inflammatory drug for comparison. Between the two different test samples studied, the formulation made from heartwood showed a weak anti-inflammatory activity in this model while that made from the bark produced a considerable suppression of edema after 6 h. It appears that the bark sample would be preferable for clinical use.

  20. Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii.

    Science.gov (United States)

    Pothoulakis, C

    2009-10-15

    Saccharomyces boulardii, a well-studied probiotic, can be effective in inflammatory gastrointestinal diseases with diverse pathophysiology, such as inflammatory bowel disease (IBD), and bacterially mediated or enterotoxin-mediated diarrhoea and inflammation. To discuss the mechanisms of action involved in the intestinal anti-inflammatory action of S. boulardii. Review of the literature related to the anti-inflammatory effects of this probiotic. Several mechanisms of action have been identified directed against the host and pathogenic microorganisms. S. boulardii and S. boulardii secreted-protein(s) inhibit production of proinflammatory cytokines by interfering with the global mediator of inflammation nuclear factor kappaB, and modulating the activity of the mitogen-activated protein kinases ERK1/2 and p38. S. boulardii activates expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) that protects from gut inflammation and IBD. S. boulardii also suppresses 'bacteria overgrowth' and host cell adherence, releases a protease that cleaves C. difficile toxin A and its intestinal receptor and stimulates antibody production against toxin A. Recent results indicate that S. boulardii may interfere with IBD pathogenesis by trapping T cells in mesenteric lymph nodes. The multiple anti-inflammatory mechanisms exerted by S. boulardii provide molecular explanations supporting its effectiveness in intestinal inflammatory states.

  1. Review article: Anti-inflammatory mechanisms of action of Saccharomyces boulardii

    Science.gov (United States)

    Pothoulakis, C.

    2009-01-01

    SUMMARY Background Saccharomyces boulardii (S. boulardii), a well-studied probiotic, can be effective in inflammatory gastrointestinal diseases with diverse pathophysiology, such as Inflammatory Bowel Disease (IBD), and bacterially – or enterotoxin-mediated diarrhea and inflammation. Aim Discuss the mechanisms of action involved in the intestinal anti-inflammatory action of S. boulardii Methods Review of the literature related to the anti-inflammatory effects of this probiotic. Results Several mechanisms of action have been identified directed against the host and pathogenic microorganisms. S. boulardii and S. boulardii secreted protein(s) inhibit production of proinflammatory cytokines by interfering with the global mediator of inflammation nuclear factor κB, and modulating the activity of the mitogen-activated protein kinases ERK1/2 and p38. S. boulardii activates expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) that protects from gut inflammation and IBD. S. boulardii also suppresses “bacteria overgrowth” and host cell adherence, releases a protease that cleaves C. difficile toxin A and its intestinal receptor, and stimulates antibody production against toxin A. Recent results indicate that S. boulardii may interfere with IBD pathogenesis by trapping T cells in mesenteric lymph nodes. Conclusions The multiple anti-inflammatory mechanisms exerted by S. boulardii provide molecular explanations supporting its effectiveness in intestinal inflammatory states. PMID:19706150

  2. The anti-inflammatory activity of dillapiole and some semisynthetic analogues.

    Science.gov (United States)

    Parise-Filho, Roberto; Pastrello, Michelli; Pereira Camerlingo, Carla Emygdio; Silva, Gisele Juni; Agostinho, Leonardo Aguiar; de Souza, Thaís; Motter Magri, Fátima Maria; Ribeiro, Roberto Rodrigues; Brandt, Carlos Alberto; Polli, Michelle Carneiro

    2011-11-01

    Piper aduncum L. (Piperaceae) produces an essential oil (dillapiole) with great exploitative potential and it has proven effects against traditional cultures of phytopathogens, such as fungi, bacteria and mollusks, as well as analgesic action with low levels of toxicity. This study investigated the in vivo anti-inflammatory activity of dillapiole. Furthermore, in order to elucidate its structure-anti-inflammatory activity relationship (SAR), semisynthetic analogues were proposed by using the molecular simplification strategy. Dillapiole and safrole were isolated and purified using column chromatography. The semisynthetic analogues were obtained by using simple organic reactions, such as catalytic reduction and isomerization. All the analogues were purified by column chromatography and characterized by (1)H and (13)C NMR. The anti-inflammatory activities of dillapiole and its analogues were studied in carrageenan-induced rat paw edema model. Dillapiole and di-hydrodillapiole significantly (p<0.05) inhibited rat paw edema. All the other substances tested, including safrole, were less powerful inhibitors with activities inferior to that of indomethacin. These findings showed that dillapiole and di-hydrodillapiole have moderate anti-phlogistic properties, indicating that they can be used as prototypes for newer anti-inflammatory compounds. Structure-activity relationship studies revealed that the benzodioxole ring is important for biological activity as well as the alkyl groups in the side chain and the methoxy groups in the aromatic ring.

  3. Anti-inflammatory activity of animal oils from the Peruvian Amazon.

    Science.gov (United States)

    Schmeda-Hirschmann, Guillermo; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Vargas-Arana, Gabriel; Lima, Beatriz; Feresin, Gabriela E

    2014-10-28

    Animal oils and fats from the fishes Electrophorus electricus and Potamotrygon motoro, the reptiles Boa constrictor, Chelonoidis denticulata (Geochelone denticulata) and Melanosuchus niger and the riverine dolphin Inia geoffrensis are used as anti-inflammatory agents in the Peruvian Amazon. The aim of the study was to assess the topic anti-inflammatory effect of the oils/fats as well as to evaluate its antimicrobial activity and fatty acid composition. The oils/fats were purchased from a traditional store at the Iquitos market of Belen, Peru. The topic anti-inflammatory effect was evaluated by the mice ear edema induced by arachidonic acid (AA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) at the dose of 3mg oil/ear. Indomethacine and nimesulide were used as reference anti-inflammatory drugs. The application resembles the traditional topical use of the oils. The antimicrobial effect of the oils/fats was assessed by the microdilution test against reference strains of Escherichia coli, Staphylococcus aureus and Salmonella enteritidis. The fatty acid composition of the oils/fats (as methyl esters) was determined by GC and GC-MS analysis after saponification. All oils/fats showed topic anti-inflammatory activity, with better effect in the TPA-induced mice ear edema assay. The most active drugs were Potamotrygon motoro, Melanosuchus niger and Geochelone denticulata. In the AA-induced assay, the best activity was found for Potamotrygon motoro and Electrophorus electricus oil. The oil of Electrophorus electricus also showed a weak antimicrobial effect with MIC values of 250 µg/mL against Escherichia coli ATCC 25922 and Salmonella enteritidis-MI. The main fatty acids in the oils were oleic, palmitic and linoleic acids. Topical application of all the oils/fats investigated showed anti-inflammatory activity in the mice ear edema assay. The effect can be related with the identity and composition of the fatty acids in the samples. This study gives support to the traditional

  4. Analgesic and anti-inflammatory properties of the fruits of Vernonia anthelmintica (L Willd.

    Directory of Open Access Journals (Sweden)

    Alok Pandey

    2014-09-01

    Full Text Available Objective: To evaluation of analgesic and anti-inflammatory properties of the fruits of Vernonia anthelmintica (L Willd. (V. anthelmintica. Method: Hot plate method in mice, acetic acid induced writhing response in mice, tail immersion test and carrageenan-induced paw edema in rats and cotton pellet induced granuloma in rats method were used for screening analgesic and anti-inflammatory properties of the fruit of V. anthelmintica (family: Asteraceae. Results: The result of the study showed that the ethanolic extract of V. anthelmintica (100 and 200 mg/kg body weight, p.o. fruits possed peripheral and central analgesic activity in animal model. The V. anthelmintica fruits extract showed in vivo anti-inflammatory activity on acute and chronic anti-inflammatory activity models in rats. Conclusions: On the basis of result it can be concluded that saponins, steroids, tannins and flavonoids are the major constituents that are present in the fruits of V. anthelmintica which may be responsible for its analgesic and anti-inflammatory activity.

  5. Synthesis, Characterization, and Anti-Inflammatory Activities of Methyl Salicylate Derivatives Bearing Piperazine Moiety.

    Science.gov (United States)

    Li, Jingfen; Yin, Yong; Wang, Lisheng; Liang, Pengyun; Li, Menghua; Liu, Xu; Wu, Lichuan; Yang, Hua

    2016-11-23

    In this study, a new series of 16 methyl salicylate derivatives bearing a piperazine moiety were synthesized and characterized. The in vivo anti-inflammatory activities of target compounds were investigated against xylol-induced ear edema and carrageenan-induced paw edema in mice. The results showed that all synthesized compounds exhibited potent anti-inflammatory activities. Especially, the anti-inflammatory activities of compounds M15 and M16 were higher than that of aspirin and even equal to that of indomethacin at the same dose. In addition, the in vitro cytotoxicity activities and anti-inflammatory activities of four target compounds were performed in RAW264.7 macrophages, and compound M16 was found to significantly inhibit the release of lipopolysaccharide (LPS)-induced interleukin (IL)-6 and tumor necrosis factor (TNF)-α in a dose-dependent manner. In addition, compound M16 was found to attenuate LPS induced cyclooxygenase (COX)-2 up-regulation. The current preliminary study may provide information for the development of new and safe anti-inflammatory agents.

  6. Evaluation of the anti-inflammatory activities of Quillaja saponaria Mol. saponin extract in mice

    Directory of Open Access Journals (Sweden)

    Sumana Sarkhel

    Full Text Available Objective: Quillaja saponaria bark contains a high percentage of triterpene saponins and has been used for centuries as antiinflammatory and analgesic agent in Chilean folk medicine.In the Present study the anti-inflammatory activities of the aqueous extract of commercially partially purified saponin from Quillaja saponaria Mol. in in vivo animal models. Methods & materials:: Aqueous extract of the plant material was prepared by cold maceration. The anti-inflammatory activity of a commercial Quillaja saponaria Mol. (QS saponin extract was investigated by carragenan induced mice paw edema model for acute inflammation (Winter, 1962 [16]. Results: The anti-inflammatory activity was evaluated by carragenan in paw edema model in swiss albino mice (18–20 g. The anti-inflammatory activity was found to be dose dependent in carragenan induced paw edema. QS was found to significantly (p < 0.05 reduce the carragenan induced mice paw edema (38.59%; 20 mg/kg bw as compared to carragenan control. The percentage inhibition of standard anti-inflammatory drug indomethacin was (55%; 10 mg/kg, bw. Conclusion: The results of the present study demonstrate that the aqueous extract of Quillaja saponaria saponins (QS possess significant anti-inflammatory activity. Keywords: Anti-inflammatory activity, Aqueous extract, Paw edema

  7. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium.

    Science.gov (United States)

    Hossen, Muhammad Jahangir; Kim, Mi-Yeon; Cho, Jae Youl

    2016-01-01

    Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.

  8. Tomato leaves methanol extract possesses anti- inflammatory ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... demonstrated, the anti-inflammatory effect of tomato leaves and its associated molecular mechanisms have not yet .... dissolved in 10% of culture-grade dimethylsulfoxide (DMSO; Sigma-. Aldrich .... In Vitro Cell. Dev. Biol.

  9. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities.

    Science.gov (United States)

    Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J

    1999-12-15

    Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.

  10. Pharmacological screening of plants recommended by folk medicine as anti-snake venom: I. Analgesic and anti-inflammatory activities

    Directory of Open Access Journals (Sweden)

    Bettina M. Ruppelt

    1991-01-01

    Full Text Available We have observed that several plants used popularly as anti-snake venom show anti-inflammatory activity. From the list prepared by Rizzini, Mors and Pereira some species have been selected and tested for analgesic activity (number of contortions and anti-inflammatory activity (Evans blue dye diffusion - 1% solution according to Whittle's technique (intraperitoneal administration of 0.1 N-acetic acid 0.1 ml/10 g in mice. Previous oral administration of a 10% infusion (dry plant or 20% (fresh plant corresponding to 1 or 2 g/Kg of Apuleia leiocarpa, Casearia sylvestris, Brunfelsia uniflora, Chiococca brachiata, Cynara scolymus, Dorstenia brasiliensis, Elephantopus scaber, Marsypianthes chamaedrys, Mikania glomerata and Trianosperma tayuya demonstrated analgesic and/or anti-inflammatory activities of varied intensity

  11. Extra virgin olive oil polyphenolic extracts downregulate inflammatory responses in LPS-activated murine peritoneal macrophages suppressing NFκB and MAPK signalling pathways.

    Science.gov (United States)

    Cárdeno, A; Sánchez-Hidalgo, M; Aparicio-Soto, M; Sánchez-Fidalgo, S; Alarcón-de-la-Lastra, C

    2014-06-01

    Extra virgin olive oil (EVOO) is obtained from the fruit of the olive tree Olea europaea L. Phenolic compounds present in EVOO have recognized anti-oxidant and anti-inflammatory properties. However, the activity of the total phenolic fraction extracted from EVOO and the action mechanisms involved are not well defined. The present study was designed to evaluate the potential anti-inflammatory mechanisms of the polyphenolic extract (PE) from EVOO on LPS-stimulated peritoneal murine macrophages. Nitric oxide (NO) production was analyzed by the Griess method and intracellular reactive oxygen species (ROS) by fluorescence analysis. Moreover, changes in the protein expression of the pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1), as well as the role of nuclear transcription factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signalling pathways, were analyzed by Western blot. PE from EVOO reduced LPS-induced oxidative stress and inflammatory responses through decreasing NO and ROS generation. In addition, PE induced a significant down-regulation of iNOS, COX-2 and mPGES-1 protein expressions, reduced MAPK phosphorylation and prevented the nuclear NFκB translocation. This study establishes that PE from EVOO possesses anti-inflammatory activities on LPS-stimulated murine macrophages.

  12. Anti-inflammatory and anti-oxidant properties of Curcuma longa (turmeric) versus Zingiber officinale (ginger) rhizomes in rat adjuvant-induced arthritis.

    Science.gov (United States)

    Ramadan, Gamal; Al-Kahtani, Mohammed Ali; El-Sayed, Wael Mohamed

    2011-08-01

    Turmeric (rich in curcuminoids) and ginger (rich in gingerols and shogaols) rhizomes have been widely used as dietary spices and to treat different diseases in Ayurveda/Chinese medicine since antiquity. Here, we compared the anti-inflammatory/anti-oxidant activity of these two plants in rat adjuvant-induced arthritis (AIA). Both plants (at dose 200 mg/kg body weight) significantly suppressed (but with different degrees) the incidence and severity of arthritis by increasing/decreasing the production of anti-inflammatory/pro-inflammatory cytokines, respectively, and activating the anti-oxidant defence system. The anti-arthritic activity of turmeric exceeded that of ginger and indomethacin (a non-steroidal anti-inflammatory drug), especially when the treatment started from the day of arthritis induction. The percentage of disease recovery was 4.6-8.3% and 10.2% more in turmeric compared with ginger and indomethacin (P turmeric over ginger and indomethacin, which may have beneficial effects against rheumatoid arthritis onset/progression as shown in AIA rat model.

  13. Involvement of dopaminergic and cholinergic pathways in the induction of yawning and genital grooming by the aqueous extract of Saccharum officinarum L. (sugarcane) in rats.

    Science.gov (United States)

    Gamberini, Maria T; Gamberini, Maria C; Nasello, Antonia G

    2015-01-01

    Yawning, associated with genital grooming, is a physiological response that may be used for elucidating the mechanism of action of drugs. Preliminary analysis showed that aqueous extract (AE) of Saccharum induced yawns in rats. So, we aimed to quantify these behavioral responses and investigate the pharmacological mechanisms involved in these actions. During 120 min, after AE administration, the yawns and the genital grooming were quantified at 10 min intervals. Since dopaminergic and cholinergic pathways are implied in these responses, AE were evaluated in the presence of haloperidol 0.5 mg/kg and atropine 2 mg/kg. AE 0.5 g/kg increased the yawns, effect that was blocked both by haloperidol and atropine. Genital grooming could only be stimulated by AE 0.5 g/kg when dopaminergic receptors were blocked by haloperidol. However, it was inhibited when atropine was previously administered. So, we demonstrated a central action of Saccharum and it was postulated that neural circuits with the participation of dopaminergic and cholinergic pathways are involved. The fact that AE is comprised of innumerous compounds could justify the extract's distinct responses. Also, we cannot disregard the presence of different neural circuits that count on the participation of dopaminergic and cholinergic pathways and could be activated by the same induction agent. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Recent advances in discovery and development of natural products as source for anti-Parkinson's disease lead compounds.

    Science.gov (United States)

    Zhang, Hongjia; Bai, Lan; He, Jun; Zhong, Lei; Duan, Xingmei; Ouyang, Liang; Zhu, Yuxuan; Wang, Ting; Zhang, Yiwen; Shi, Jianyou

    2017-12-01

    Parkinson's disease (PD) is a common chronic degenerative disease of the central nervous system. Although the cause remains unknown, several pathological processes and central factors such as oxidative stress, mitochondrial injury, inflammatory reactions, abnormal deposition of α-synuclein, and cell apoptosis have been reported. Currently, anti-PD drugs are classified into two major groups: drugs that affect dopaminergic neurons and anti-cholinergic drugs. Unfortunately, the existing conventional strategies against PD are with numerous side effects, and cannot fundamentally improve the degenerative process of dopaminergic neurons. Therefore, novel therapeutic approaches which have a novel structure, high efficiency, and fewer side effects are needed. For many years, natural products have provided an efficient resource for the discovery of potential therapeutic agents. Among them, many natural products possess anti-PD properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding protein misfolding and the regulatory effects of PD related pathways. Indeed, with the steady improvement in the technologies for the isolation and purification of natural products and the in-depth studies on the pathogenic mechanisms of PD, many monomer components of natural products that have anti-PD effects have been gradually discovered. In this article, we reviewed the research status of 37 natural products that have been discovered to have significant anti-PD effects as well as their mode of action. Overall, this review may guide the design of novel therapeutic drugs in PD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Anti-inflammatory effects of Scoparia dulcis L. and betulinic acid.

    Science.gov (United States)

    Tsai, Jen-Chieh; Peng, Wen-Huang; Chiu, Tai-Hui; Lai, Shang-Chih; Lee, Chao-Ying

    2011-01-01

    The aims of this study intended to investigate the anti-inflammatory activity of the 70% ethanol extract from Scoparia dulcis (SDE) and betulinic acid on λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of SDE and betulinic acid was examined by detecting the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and malondialdehyde (MDA) in the edema paw tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. The betulinic acid content in SDE was detected by high performance liquid chromatography (HPLC). In the anti-inflammatory model, the results showed that SDE (0.5 and 1.0 g/kg) and betulinic acid (20 and 40 mg/kg) reduced the paw edema at 3, 4 and 5 h after λ-carrageenan administration. Moreover, SDE and betulinic acid affected the levels of COX-2, NO, TNF-α and IL1-β in the λ-carrageenan-induced edema paws. The activities of SOD, GPx and GRd in the liver tissue were increased and the MDA levels in the edema paws were decreased. It is suggested that SDE and betulinic acid possessed anti-inflammatory activities and the anti-inflammatory mechanisms appear to be related to the reduction of the levels of COX-2, NO, TNF-α and IL1-β in inflamed tissues, as well as the inhibition of MDA level via increasing the activities of SOD, GPx and GRd. The analytical result showed that the content of betulinic acid in SDE was 6.25 mg/g extract.

  16. Anti-Inflammatory Effects of Angelica sinensis (Oliv. Diels Water Extract on RAW 264.7 Induced with Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Young-Jin Kim

    2018-05-01

    Full Text Available The dry root of Angelica sinensis (Oliv. Diels, also known as “female ginseng”, is a popular herbal drug amongst women, used to treat a variety of health issues and cardiovascular diseases. The aim of this study is to evaluate the detailed molecular mechanism for anti-inflammatory effects of Angelica sinensis root water extract (ASW. The anti-inflammatory effect of ASW on lipopolysaccharide (LPS-induced RAW 264.7 mouse macrophages was evaluated by the tetrazolium-based colorimetric assay (MTT, Griess reagent assay, multiplex cytokine assay, real time reverse transcription polymerase chain reaction (RT-PCR, and Fluo-4 calcium assay. ASW restored cell viability in RAW 264.7 at concentrations of up to 200 µg/mL. ASW showed notable anti-inflammatory effects. ASW exhibited IC50 = 954.3, 387.3, 191.7, 317.8, 1267.0, 347.0, 110.1, 573.6, 1171.0, 732.6, 980.8, 125.0, and 257.0 µg/mL for interleukin (IL-6, tumor necrosis factor (TNF-α, monocyte chemotactic activating factor (MCP-1, regulated on activation, normal T cell expressed and secreted (RANTES, granulocyte colony-stimulating factor (G-CSF, granulocyte macrophage colony-stimulating factor (GM-CSF, vascular endothelial growth factor (VEGF, lipopolysaccharide-induced CXC chemokine (LIX, macrophage inflammatory protein (MIP-1α, MIP-1β, MIP-2, IL-10, and intracellular calcium, respectively. Additionally, ASW inhibited the LPS-induced production of nitric oxide and the LPS-induced mRNA expression of CHOP (GADD153, Janus kinase 2 (JAK2, signal transducers and activators of transcription 1 (STAT1, first apoptosis signal receptor (FAS, and c-Fos, NOS2, and PTGS2 (COX2 in RAW 264.7 significantly (p < 0.05. Data suggest that ASW exerts an anti-inflammatory effect on LPS-induced RAW 264.7 via NO-bursting/calcium-mediated JAK-STAT pathway.

  17. Anti-inflammatory effects and anti-oxidant capacity of Myrathius arboreus (Cecropiaceae) in experimental models.

    Science.gov (United States)

    Oluwole, Oluwafemi Gabriel; Ologe, Olufunmilayo; Alabi, Akinyinka; Tunde Yusuf, Ganiyu; Umukoro, Solomon

    2017-11-27

    Inflammation is involved in various diseases; search for safe treatments is warranted. Anti-inflammatory effects of ethanol extract of Myrathius arboreus (EEMa) were studied in carrageenan-induced model, formaldehyde sub-acute-induced model, and in 48 h lipopolysaccharide-induced air pouch model of inflammation. EEMa membrane-stabilizing activities and anti-oxidant capacity were determined in vitro. In the carrageenan model EEMa (125, 250, or 500 mg/kg), indomethacin (5 mg/kg), or vehicle 3 mL/kg was administered orally in rats (n=5). After 1 h, 0.1 mL of 1% carrageenan was injected into the right hind paw of rats. Change in edema sizes was measured for 3 h with plethysmometer. One-tenth milliliter (0.1 mL) of 2.5% formaldehyde was injected into the rat paw on the first day and the third day to induce sub-acute inflammation; changes in the edema sizes were determined, and percentages of inhibitions were calculated. Anti-inflammatory effects of EEMa were further examined in lipopolysaccharide (LPS)-induced air-pouch based on leukocytes count, volume of exudates, levels of malondialdehyde, glutathione, superoxide dismutase, nitric oxides, and tumor necrosis factor released into the inflammatory fluids. EEMa-free radicals scavenging activities were studied in DPPH and reducing power tests. Membrane-stabilizing activities of EEMa were evaluated in the red blood cell lysis induced by thermal and hypotonic solution. EEMa (250, 500 mg/kg) produced significant (p<0.001; p<0.05) inhibition of inflammation when compared with vehicle. Also, EEMa (250, 500, or 1000 μg/mL) significantly stabilized membrane and produced free radical scavenging activities. M. arboreus possesses anti-inflammatory and the anti-oxidant properties that might benefit translational medicine.

  18. Analgesic and anti-inflammatory effects of honey: the involvement of autonomic receptors.

    Science.gov (United States)

    Owoyele, Bamidele Victor; Oladejo, Rasheed Olajiire; Ajomale, Kayode; Ahmed, Rasheedat Omotayo; Mustapha, Abdulrasheed

    2014-03-01

    The use of honey for therapeutic purposes is on the increase and many studies have shown that honey has the ability to influence biological systems including pain transmission. Therefore, this study was designed to investigate the analgesic and anti-inflammatory effects of honey and the effects of concurrent administration of autonomic nervous system blocking drugs. Studies on analgesic activities was carried out using hotplate and formalin-induced paw licking models while the anti-inflammatory activity was by the carrageenan paw oedema method. Animals were distributed into six groups consisting of five animals each. They were administered saline, honey (600 mg/kg), indomethacin (5 mg/kg), autonomic blockers (3 μg/kg of tamsulosin, 20 mg/kg (intraperitoneally) of propranolol, 2 ml/kg of atropine or 10 mg/kg (intra muscularly) of hexamethonium) or honey (200 and 600 mg/kg) with one of the blockers. The results showed that honey reduced pain perception especially inflammatory pain and the administration of tamsulosin and propranolol spared the effect of honey. Hexamethonium also spared the effects of honey at the early and late phases of the test while atropine only inhibited the early phase of the test. However, atropine and hexamethonium spared the anti-inflammatory effects of honey but tamsulosin abolished the effects while propranolol only abolished the anti-inflammatory effects at the peak of the inflammation. The results suggest the involvement of autonomic receptors in the anti-nociceptive and anti-inflammatory effects of honey although the level of involvement depends on the different types of the receptors.

  19. Assessment of the anti-angiogenic, anti-inflammatory and antinociceptive properties of ethyl vanillin.

    Science.gov (United States)

    Jung, Hyun-Joo; Song, Yun Seon; Kim, Kyunghoon; Lim, Chang-Jin; Park, Eun-Hee

    2010-02-01

    The present work aimed to assess novel pharmacological properties of ethyl vanillin (EVA) which is used as a flavoring agent for cakes, dessert, confectionary, etc. EVA exhibited an inhibitory activity in the chorioallantoic membrane angiogenesis. Anti-inflammatory activity of EVA was convinced using the two in vivo models, such as vascular permeability and air pouch models in mice. Antinociceptive activity of EVA was assessed using acetic acid-induced writhing model in mice. EVA suppressed production of nitric oxide and induction of inducible nitric oxide synthase in the lipopolysaccharide (LPS)-activated RAW264.7 macrophage cells. However, EVA could not suppress induction of cyclooxygenase-2 in the LPS-activated macrophages. EVA diminished reactive oxygen species level in the LPS-activated macrophages. EVA also suppressed enhanced matrix metalloproteinase-9 gelatinolytic activity in the LPSactivated RAW264.7 macrophage cells. EVA at the used concentrations couldn't diminish viability of the macrophage cells. Taken together, the anti-angiogenic, anti-inflammatory and anti-nociceptive properties of EVA are based on its suppressive effect on the production of nitric oxide possibly via decreasing the reactive oxygen species level.

  20. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    Science.gov (United States)

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.

  1. Evaluation of the analgesic and anti-inflammatory activity of fixed dose combination: Non-steroidal anti-inflammatory drugs in experimental animals

    Directory of Open Access Journals (Sweden)

    Amit Lahoti

    2014-01-01

    Conclusion: Combining paracetamol with ibuprofen enhances analgesic/anti-inflammatory activity over their individual component but potentiation of analgesic activity of diclofenac was not seen when paracetamol was added to it.

  2. Anti-inflammatory effects of linezolid on carrageenan-induced paw edema in rats.

    Science.gov (United States)

    Matsumoto, Kazuaki; Obara, Shigeaki; Kuroda, Yuko; Kizu, Junko

    2015-12-01

    The immunomodulatory activity of linezolid has recently been reported using in vitro experimental models. However, the anti-inflammatory activity of linezolid has not yet been demonstrated using in vivo experimental models. Therefore, the aim of the present study was to demonstrate the anti-inflammatory activity of linezolid and other anti-MRSA agents using the carrageenan-induced rat paw edema model. The pretreatment with 50 mg/kg linezolid significantly suppressed edema rates, compared with control (5% glucose), with edema rates at 0.5 and 3 h after the administration of carrageenan being 17.3 ± 3.5 and 30.8 ± 3.0%, respectively. On the other hand, edema rates were not suppressed by the pretreatments with 50 mg/kg vancomycin, teicoplanin, arbekacin, and daptomycin. Furthermore, we demonstrated that linezolid exhibited anti-inflammatory activity in a concentration-dependent manner. These effects were observed at linezolid concentrations that are achievable in human serum with conventional dosing. In conclusion, the results of the present study suggest that the anti-inflammatory activities of linezolid, in addition to its antimicrobial effects, have a protective effect against destructive inflammatory responses in areas of inflammation. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Anti-inflammatory and antiedematogenic activity of the Ocimum basilicum essential oil and its main compound estragole: In vivo mouse models.

    Science.gov (United States)

    Rodrigues, Lindaiane Bezerra; Oliveira Brito Pereira Bezerra Martins, Anita; Cesário, Francisco Rafael Alves Santana; Ferreira E Castro, Fyama; de Albuquerque, Thaís Rodrigues; Martins Fernandes, Maria Neyze; Fernandes da Silva, Bruno Anderson; Quintans Júnior, Lucindo José; da Costa, José Galberto Martins; Melo Coutinho, Henrique Douglas; Barbosa, Roseli; Alencar de Menezes, Irwin Rose

    2016-09-25

    The genus Ocimum are used in cooking, however, their essential oils are utilized in traditional medicine as aromatherapy. The present study was carried out to investigate the chemical composition and systemic anti-inflammatory activity of the Ocimum basilicum essential oil (EOOB) and its major component estragole, as well as its possible mechanisms of action. The Ocimum basilicum essential oil was obtained by hydrodistillation and analyzed by GC-MS. The anti-inflammatory action was verified using acute and chronic in vivo tests as paw edema, peritonitis, and vascular permeability and granulomatous inflammation model. The anti-inflammatory mechanism of action was analyzed by the participation of histamine and arachidonic acid pathways. The chemical profile analysis identified fourteen components present in the essential oil, within them: estragole (60.96%). The in vivo test results show that treatment with EOOB (100 and 50 mg/kg) and estragole (60 and 30 mg/kg) significantly reduced paw edema induced by carrageenan and dextran. The smallest doses of EOOB (50 mg/kg) and estragole (30 mg/kg) showed efficacy in the reduction of paw edema induced by histamine and arachidonic acid, vascular permeability inhibition and leukocyte emigration in the peritoneal fluid. Theses doses were capable of reducing the chronic inflammatory process. The results observed between the EOOB and estragole demonstrate efficacy in anti-inflammatory activity, however, the essential oil is more efficacious in the acute and chronic anti-inflammatory action. This study confirms the therapeutic potential of this plant and reinforces the validity of its use in popular medicine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Methanol extract of Xanthium strumarium L. possesses anti-inflammatory and anti-nociceptive activities.

    Science.gov (United States)

    Kim, In-Tae; Park, Young-Mi; Won, Jong-Heon; Jung, Hyun-Ju; Park, Hee-Juhn; Choi, Jong-Won; Lee, Kyung-Tae

    2005-01-01

    As an attempt to identify bioactive natural products with anti-inflammatory activity, we evaluated the effects of the methanol extract of the semen of Xanthium strumarium L. (MEXS) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-alpha) production in RAW 264.7 cells. Our data indicate that MEXS is a potent inhibitor of NO, PGE2 and TNF-alpha production. Consistent with these findings, the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2 and TNF-alpha mRNA were down-regulated in a concentration-dependent manner. Furthermore, MEXS inhibited nuclear factor kappa B (NF-kappaB) DNA binding activity and the translocation of NF-kappaB to the nucleus by blocking the degradation of inhibitor of kappa B-alpha (IkappaB-alpha). We further evaluated the anti-inflammatory and anti-nociceptive activities of MEXS in vivo. MEXS (100, 200 mg/kg/d, p.o.) reduced acute paw edema induced by carrageenin in rats, and showed analgesic activities in an acetic acid-induced abdominal constriction test and a hot plate test in mice. Thus, our study suggests that the inhibitions of iNOS, COX-2 expression, and TNF-alpha release by the methanol extract of the semen of Xanthium strumarium L. are achieved by blocking NF-kappaB activation, and that this is also responsible for its anti-inflammatory effects.

  5. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    Science.gov (United States)

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  6. Cholinergic stimulation prevents the development of autoimmune diabetes: Evidence for the modulation of Th17 effector cells via an IFNgamma-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Junu George

    2016-10-01

    Full Text Available Type I diabetes (T1D results from T cell-mediated damage of pancreatic β-cells and loss of insulin production. The cholinergic anti-inflammatory pathway represents a physiological link connecting the central nervous and immune systems via vagus nerve, and functions to control the release of proinflammatory cytokines. Using the multiple-low-dose streptozotocin (MLD-STZ model to induce experimental autoimmune diabetes, we investigated the potential of regulating the development of hyperglycemia through administration of paraoxon, a highly specific acetylcholinesterase inhibitor (AChEI. We demonstrate that pretreatment with paraoxon prevented hyperglycemia in STZ-treated C57BL/6 mice. This correlated with a reduction in T cell infiltration into pancreatic islets and preservation of the structure and functionality of β-cells. Gene expression analysis of pancreatic tissue revealed that increased peripheral cholinergic activity prevented STZ-mediated loss of insulin production, this being associated with a reduction in IL-1β, IL-6, and IL-17 proinflammatory cytokines. Intracellular cytokine analysis in splenic T cells demonstrated that inhibition of AChE led to a shift in STZ-induced immune response from a predominantly disease-causing IL-17-expressing Th17 cells to IFNγ-positive Th1 cells. Consistent with this conclusion, inhibition of AChE failed to prevent STZ-induced hyperglycemia in IFNγ-deficient mice. Our results provide mechanistic evidence for the prevention of murine T1D by inhibition of AChE and suggest a promising strategy for modulating disease severity.

  7. Rapid resolution of cellulitis in patients managed with combination antibiotic and anti-inflammatory therapy.

    Science.gov (United States)

    Dall, Lawrence; Peterson, Sandford; Simmons, Tom; Dall, Amy

    2005-03-01

    There is some evidence to suggest that host inflammatory response has some effect on the clinical manifestations of cellulitis. The objective of this pilot study was to investigate whether the addition of oral nonsteroidal anti-inflammatory (NSAI) therapy to antibiotic treatment hastens resolution of cellulitis-related inflammation. Patients presenting in the emergency department with signs and symptoms of class II cellulitis were assigned to receive treatment with either antibiotic therapy alone (intravenous, supplemented with oral cephalexin or an equivalent) for 10 days (n = 33) or antibiotic therapy for 10 days plus an oral anti-inflammatory (ibuprofen 400 mg every 6 hours) for 5 days (n = 31). Patients were discharged as soon as possible to complete their therapy on an outpatient basis. The addition of an oral anti-inflammatory agent significantly (P < .05) shortened the time to regression of inflammation and complete resolution of cellulitis. Twenty-four of 29 evaluable patients (82.8%) who received supplemental anti-inflammatory treatment showed regression of inflammation within 1 to 2 days compared with only 3 of 33 patients (9.1%) treated without an anti-inflammatory in the same time frame. All patients receiving adjunctive anti-inflammatory treatment experienced complete resolution of cellulitis in 4 to 5 days or less, while 24.2% (8/33) of patients treated with antibiotic alone required 6 to 7 days, and 6.1% (2/33) required 7 days or more (P < .05). This small preliminary study provides some promising data, suggesting that the supplemental use of anti-inflammatory therapy may hasten the time to regression of inflammation and complete resolution of cellulitis.

  8. Anti-inflammatory and antinociceptive activities of Solenostemon monostachyus aerial part extract in mice

    Directory of Open Access Journals (Sweden)

    Jude Fiom Okokon

    2016-04-01

    Full Text Available Objective: Solenostemon monostachyus is used in traditional medicine for the treatment of various ailments such as ulcer, hypertension, pains and inflammatory diseases. Evaluation of anti-inflammatory and analgesic activities of S. monostachyus aerial parts was carried out to ascertain its uses in traditional medicine. Materials and Methods: The aerial parts of S. monostachyus was cold extracted by soaking the dried powdered material in ethanol. The aerial parts crude extract (75 –225 mg/kg of  S. monostachyus was investigated for analgesic and anti-inflammatory activities using various experimental models; acetic acid, formalin and thermal- induced pains models for analgesic study and carrageenin, egg albumin and xylene – induced edema models for anti-inflammatory investigation. Results: The extract caused a significant (pConclusion: The anti-inflammatory and analgesic effects of this plant may in part be mediated through the chemical constituents of the plant and the results of the analgesic action suggest central and peripheral mechanisms. The findings of this work confirm the ethno medical use of this plant to treat inflammatory conditions.

  9. Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom.

    Science.gov (United States)

    Nakib, Imene; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2016-10-01

    Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation.

  10. Phytochemical screening, antinociceptive and anti-inflammatory effects of the essential oil of Myrcia pubiflora in mice

    Directory of Open Access Journals (Sweden)

    Gilmara S. Andrade

    2011-11-01

    Full Text Available This report aimed to investigate the chemical composition and possible antinociceptive and anti-inflammatory effects of the essential oil from fresh leaves of Myrcia pubiflora DC., Myrtaceae (EOMP, through different experimental tests. The essential oil of M. pubiflora (EOMP was obtained by hydrodistillation, analyzed by GC-MS, and tested at doses of 25, 50, and 100 mg/kg (i.p. in three different tests of nociception (acetic acid-induced writhing test, formalin test, and hot plate test and one test of inflammation (leukocyte migration to the peritoneal cavity in order to evaluate the motor activity in mice treated with EOMP. The major component of EOMP was caryophyllene oxide (22.16%. This oil significantly reduced the number of writhes in an acetic acid test and the time spent licking the paw at the second phase of the formalin test. Furthermore, EOMP inhibited the carrageenan-induced leukocyte migration to the peritoneal cavity. However, administration of EOMP did not alter reaction time in the hot plate test, and did not affect the motor coordination test. These results indicate antinociceptive and anti-inflammatory properties of EOMP probably mediated via inhibition of inflammatory mediator synthesis or other peripheral pathway.

  11. Phytochemical screening, antinociceptive and anti-inflammatory effects of the essential oil of Myrcia pubiflora in mice

    Directory of Open Access Journals (Sweden)

    Gilmara S. Andrade

    2012-02-01

    Full Text Available This report aimed to investigate the chemical composition and possible antinociceptive and anti-inflammatory effects of the essential oil from fresh leaves of Myrcia pubiflora DC., Myrtaceae (EOMP, through different experimental tests. The essential oil of M. pubiflora (EOMP was obtained by hydrodistillation, analyzed by GC-MS, and tested at doses of 25, 50, and 100 mg/kg (i.p. in three different tests of nociception (acetic acid-induced writhing test, formalin test, and hot plate test and one test of inflammation (leukocyte migration to the peritoneal cavity in order to evaluate the motor activity in mice treated with EOMP. The major component of EOMP was caryophyllene oxide (22.16%. This oil significantly reduced the number of writhes in an acetic acid test and the time spent licking the paw at the second phase of the formalin test. Furthermore, EOMP inhibited the carrageenan-induced leukocyte migration to the peritoneal cavity. However, administration of EOMP did not alter reaction time in the hot plate test, and did not affect the motor coordination test. These results indicate antinociceptive and anti-inflammatory properties of EOMP probably mediated via inhibition of inflammatory mediator synthesis or other peripheral pathway.

  12. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survival cost in mice.

    Directory of Open Access Journals (Sweden)

    Virginia Belloni

    Full Text Available BACKGROUND: The central paradigm of ecological immunology postulates that selection acts on immunity as to minimize its cost/benefit ratio. Costs of immunity may arise because the energetic requirements of the immune response divert resources that are no longer available for other vital functions. In addition to these resource-based costs, mis-directed or over-reacting immune responses can be particularly harmful for the host. In spite of the potential importance of immunopathology, most studies dealing with the evolution of the immune response have neglected such non resource-based costs. To keep the immune response under control, hosts have evolved regulatory pathways that should be considered when studying the target of the selection pressures acting on immunity. Indeed, variation in regulation may strongly modulate the negative outcome of immune activation, with potentially important fitness consequences. METHODOLOGY/PRINCIPAL FINDINGS: Here, we experimentally assessed the survival costs of reduced immune regulation by inhibiting an anti-inflammatory cytokine (IL-10 with anti-IL-10 receptor antibodies (anti-IL-10R in mice that were either exposed to a mild inflammation or kept as control. The experiment was performed on young (3 months and old (15 months individuals, as to further assess the age-dependent cost of suppressing immune regulation. IL-10 inhibition induced high mortality in old mice exposed to the mild inflammatory insult, whereas no mortality was observed in young mice. However, young mice experienced a transitory lost in body mass when injected with the anti-IL-10R antibodies, showing that the treatment was to a lesser extent also costly for young individuals. CONCLUSIONS: These results suggest a major role of immune regulation that deserves attention when investigating the evolution of immunity, and indicate that the capacity to down-regulate the inflammatory response is crucial for late survival and longevity.

  13. Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae.

    Science.gov (United States)

    Backhouse, N; Rosales, L; Apablaza, C; Goïty, L; Erazo, S; Negrete, R; Theodoluz, C; Rodríguez, J; Delporte, C

    2008-03-05

    Buddleja globosa, known as "matico", is employed in Chile for wound healing. To validate the traditional use of the crude drug through in vivo and in vitro evaluation of the anti-inflammatory, analgesic and antioxidant properties of its extracts. Sequential hexane, dichloromethane, methanol and total methanol extracts were studied using bioguided fractionation. The following activities were investigated: analgesic (writhing test), oral and topic anti-inflammatory (paw- and ear-induced edema), free radical scavenging and antioxidant activities (1,1-diphenyl-2-picrylhydrazyl, DPPH, superoxide anion, lipid peroxidation and xanthine oxidase inhibition). Sodium naproxen, nimesulide, indomethacin were used as reference drugs for in vivo, quercetin and allopurinol for in vitro assays. A mixture of alpha- and beta-amyrins was isolated from the hexane extract that showed 41.2% of analgesic effect at 600 mg/kg, inhibited by 47.7 and 79.0% the arachidonic acid (AA) and 12-deoxyphorbol-13-decanoate (TPA)-induced inflammation at 3mg/20 microL/ear, respectively. A mixture of beta-sitosterol, stigmasterol, stigmastenol, stigmastanol and campesterol was isolated from the fraction CD4-N and beta-sitosterol-glycoside from the fraction CD5-N, reducing TPA-induced inflammation by 78.2 and 83.7% at 1mg/20 microL/ear, respectively. The fraction CD4-N at 300 mg/kg also showed analgesic activity (38.7%). The methanol extract at 600mg/kg per os showed anti-inflammatory effect (61.4%), topic anti-inflammatory (56.7% on TPA) and analgesic activity (38.5%). Verbascoside and luteolin-7-O-glucoside were the major components of the methanol extract; apigenin 7-O-glucoside was also detected. Inhibition of superoxide anion, lipoperoxidation, and DPPH bleaching effect was found in the methanol serial and global extracts. The present report demonstrate the analgesic and anti-inflammatory properties of Buddleja globosa and validate its use in Chilean traditional medicine.

  14. In vitro anti-proliferative and anti-inflammatory activity of leaf and fruit extracts from Vaccinium bracteatum Thunb.

    Science.gov (United States)

    Landa, Premysl; Skalova, Lenka; Bousova, Iva; Kutil, Zsofia; Langhansova, Lenka; Lou, Ji-Dong; Vanek, Tomas

    2014-01-01

    The aim of this study was to evaluate in vitro anti-proliferative (tested on MCF-7, MDA-MB-231, and MCF-10A cell lines) and anti-inflammatory (evaluated as inhibition of prostaglandin E2 synthesis catalyzed by cyclooxygenase-2) effect of various extracts from Vaccinium bracteatum leaves and fruits. The highest anti-proliferative effect possessed leaf dichloromethane extract with IC50 values ranging from 93 to 198 μg/mL. In the case of cyclooxygenase-2 inhibition, n-hexane, dichloromethane, and ethanol fruit extracts showed the best activity with IC50 values = 2.0, 5.4, and 12.7 μg/mL, respectively. These results indicate that V. bracteatum leaves and fruits could be useful source of anti-cancer and anti-inflammatory compounds.

  15. Antimelanogenesis and Anti-Inflammatory Activity of Selected Culinary-Medicinal Mushrooms.

    Science.gov (United States)

    Saad, Hazwani Mat; Sim, Kae Shin; Tan, Yee Shin

    2018-01-01

    Five culinary-medicinal mushrooms are commonly available in the Malaysian market: Agaricus bisporus (white and brown), Ganoderma lucidum, Hypsizygus marmoreus, Pleurotus floridanus, and P. pulmonarius. These species were selected for use in the current study, the aim of which was to investigate the antimelanogenesis and anti-inflammatory activity of these mushrooms in an attempt to evaluate their potential use in cosmeceuticals. Mushroom fruiting bodies were extracted with hot water, and the extracts were freeze-dried before testing. The antimelanogenesis activity of the extracts was determined by cell viability assay, measurement of intracellular melanin content, and cellular tyrosinase assay with B16F10 melanoma cells. The anti-inflammatory activity of the mushroom extracts was tested by measuring the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-10 excreted by RAW264.7 macrophages. Brown A. bisporus reduced intracellular melanin content to the largest extent-up to 57.05 ± 3.90%-without a cytotoxic effect on B16F10 melanoma cells. This extract also reduced cellular tyrosinase activity to 17.93 ± 2.65%, performing better than kojic acid, the positive control. In parallel, the extract from brown A. bisporus, at the highest concentration tested, has appreciable anti-inflammatory activity through reductions of NO and TNF-α levels. The other 5 extracts showed moderate antimelanogenesis and anti-inflammatory activities. In summary, our findings show that A. bisporus (brown) extract has the potential to be used as an ingredient in whitening skincare products and to sooth the inflammatory response on the skin.

  16. Osteoarthritis guidelines: a progressive role for topical nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Stanos SP

    2013-04-01

    Full Text Available Steven P Stanos Rehabilitation Institute of Chicago, Center for Pain Management, Chicago, IL, USA Abstract: Current treatment guidelines for the treatment of chronic pain associated with osteoarthritis reflect the collective clinical knowledge of international experts in weighing the benefits of pharmacologic therapy options while striving to minimize the negative effects associated with them. Consideration of disease progression, pattern of flares, level of functional impairment or disability, response to treatment, coexisting conditions such as cardiovascular disease or gastrointestinal disorders, and concomitant prescription medication use should be considered when creating a therapeutic plan for a patient with osteoarthritis. Although topical nonsteroidal anti-inflammatory drugs historically have not been prevalent in many of the guidelines for osteoarthritis treatment, recent evidence-based medicine and new guidelines now support their use as a viable option for the clinician seeking alternatives to typical oral formulations. This article provides a qualitative review of these treatment guidelines and the emerging role of topical nonsteroidal anti-inflammatory drugs as a therapy option for patients with localized symptoms of osteoarthritis who may be at risk for oral nonsteroidal anti-inflammatory drug-related serious adverse events. Keywords: osteoarthritis, nonsteroidal anti-inflammatory drugs, guidelines, topical analgesics, diclofenac

  17. Anti-inflammatory and anti-nociceptive activities of methanol extract from aerial part of Phlomis younghusbandii Mukerjee.

    Directory of Open Access Journals (Sweden)

    Qiu-Shi Wang

    Full Text Available This study was designed to investigate the anti-inflammatory and anti-nociceptive activity of the methanol extract from the aerial part of Phlomis younghusbandii (MEAP and to explore the possible related mechanisms. Anti-inflammatory effects of MEAP were evaluated by using the ear edema test induced by dimethylbenzene and vascular permeability test induced by acetic acid. Anti-nociceptive activities of MEAP were evaluated by the chemical nociception in models of acetic acid-induced writhing and formalin-induced hind paw licking, and by the thermal nociception in hot plate tests. Mechanisms of MEAP activities also were explored by evaluating expression levels of TNF-α, IL-6 and iNOS induced by LPS using real-time fluorogenic PCR and expression of COX-2 using Western blotting and an open-field test. The results indicated that the MEAP administered orally could significantly decrease ear edema induced by dimethylbenzene and increase vascular permeability induced by acetic acid. Additionally, the nociceptions induced by acetic acid and formalin were significantly inhibited. The anti-nociceptive effect could not be decreased by naloxone in the formalin test, and MEAP did not affect the normal autonomic activities of mice. Expression levels of pro-inflammatory cytokines (TNF-α, IL-6, iNOS induced by LPS were decreased obviously by treatment with MEAP. Furthermore, COX-2 expression in the spinal dorsal horns of the pain model mice induced by formalin was significantly down-regulated by MEAP. In conclusion, MEAP has significant anti-inflammatory and antinociceptive activities, and the mechanisms may be related to the down-regulated expression of TNF-α, IL-6, iNOS and COX-2.

  18. Assessment of anti-inflammatory and anti-arthritic properties of Acmella uliginosa (Sw. Cass. based on experiments in arthritic rat models and qualitative GC/MS analyses.

    Directory of Open Access Journals (Sweden)

    Subhashis Paul

    2016-09-01

    of AU and AV showed the best recovery potential in all the studied parameters, confirming the synergistic efficacy of the herbal formulation. GC/MS analyses revealed the presence of at least 5 anti-inflammatory compounds including 9-octadecenoic acid (Z-, phenylmethyl ester, astaxanthin, à-N-Normethadol, fenretinide that have reported anti-inflammatory/anti-arthritic properties. Conclusion: Our findings indicated that the crude flower homogenate of AU contains potential anti-inflammatory compounds which could be used as an anti-inflammatory/anti-arthritic medication. [J Complement Med Res 2016; 5(3.000: 257-262

  19. Anti-inflammatory evaluation and characterization of leaf extract of Ananas comosus.

    Science.gov (United States)

    Kargutkar, Samira; Brijesh, S

    2018-04-01

    Ananas comosus (L.) Merr (Pineapple) is a tropical plant with an edible fruit. In the present study, the potential anti-inflammatory activity of A. comosus leaf extract (ALE) was studied. ALE prepared using soxhlet apparatus was subjected to preliminary qualitative phytochemical analysis and quantitative estimations of flavonoids and tannins. The components present in ALE were identified using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Inhibitory effects of ALE on protein denaturation, and proteinase activity were assessed. Its effect on secretion of pro-inflammatory cytokines and inflammatory mediators by lipopolysaccharide-stimulated macrophages was also analyzed. Further, its anti-inflammatory activity in carrageenan-induced inflammatory rat model was examined. The preliminary qualitative phytochemical analysis revealed presence of flavonoids, phenols, tannins, carbohydrates, glycosides, and proteins in the extract. Total flavonoids and total tannins were 0.17 ± 0.006 mg equivalent of quercetin/g of ALE and 4.04 ± 0.56 mg equivalent of gallic acid/g of ALE. LC-MS analysis identified the presence of 4-hydroxy pelargonic acid, 3,4,5-trimethoxycinnamic and 4-methoxycinnamic acid, whereas GC-MS analysis identified the presence of campesterol and ethyl isoallocholate that have been previously reported for anti-inflammatory activity. ALE showed significant inhibition of protein denaturation and proteinase activity and also controlled secretion of tumour necrosis factor-α, interleukin-1β and prostaglandins, as well as the generation of reactive oxygen species by activated macrophages. ALE also significantly decreased carrageenan-induced acute paw edema. The study, therefore, identified the components present in ALE that may be responsible for its anti-inflammatory activity and thus demonstrated its potential use against acute inflammatory diseases.

  20. Anti-Inflammatory and Antiarthritic Activity of Anthraquinone Derivatives in Rodents

    Directory of Open Access Journals (Sweden)

    Ajay D. Kshirsagar

    2014-01-01

    Full Text Available Aloe emodin is isolated compound of aloe vera which is used traditionally as an anti-inflammatory agent. In vitro pharmacokinetic data suggest that glucuronosyl or sulfated forms of aloe emodin may provide some limitations in its absorption capacity. Aloe emodin was reported to have in vitro anti-inflammatory activity due to inhibition of inducible nitric oxide (iNO and prostaglandin E2, via its action on murine macrophages. However, present work evidenced that molecular docking of aloe emodin modulates the anti-inflammatory activity, as well as expression of COX-2 (cyclooxygenase-2 in rodent. The AEC (4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2 carboxylic acid was synthesized using aloe emodin as starting material. The study was planned for evaluation of possible anti-inflammatory and antiarthritic activity in carrageenan rat induced paw oedema and complete Freund’s adjuvant induced arthritis in rats. The AE (aloe emodin and AEC significantly P<0.001 reduced carrageenan induced paw edema at 50 and 75 mg/kg. Complete Freund’s adjuvant induced arthritis model showed significant P<0.001 decrease in injected and noninjected paw volume, arthritic score. AE and AEC showed significant effect on various biochemical, antioxidant, and hematological parameters. Diclofenac sodium 10 mg/kg showed significant P<0.001 inhibition in inflammation and arthritis.

  1. N(6)-(2-Hydroxyethyl)adenosine in the Medicinal Mushroom Cordyceps cicadae Attenuates Lipopolysaccharide-Stimulated Pro-inflammatory Responses by Suppressing TLR4-Mediated NF-κB Signaling Pathways.

    Science.gov (United States)

    Lu, Meng-Ying; Chen, Chin-Chu; Lee, Li-Ya; Lin, Ting-Wei; Kuo, Chia-Feng

    2015-10-23

    Natural products play an important role in promoting health with relation to the prevention of chronic inflammation. N(6)-(2-Hydroxyethyl)adenosine (HEA), a physiologically active compound in the medicinal mushroom Cordyceps cicadae, has been identified as a Ca(2+) antagonist and shown to control circulation and possess sedative activity in pharmacological tests. The fruiting body of C. cicadae has been widely applied in Chinese medicine. However, neither the anti-inflammatory activities of HEA nor the fruiting bodies of C. cicadae have been carefully examined. In this study, we first cultured the fruiting bodies of C. cicadae and then investigated the anti-inflammatory activities of water and methanol extracts of wild and artificially cultured C. cicadae fruiting bodies. Next, we determined the amount of three bioactive compounds, adenosine, cordycepin, and HEA, in the extracts and evaluated their synergistic anti-inflammatory effects. Moreover, the possible mechanism involved in anti-inflammatory action of HEA isolated from C. cicadae was investigated. The results indicate that cordycepin is more potent than adenosine and HEA in suppressing the lipopolysaccharide (LPS)-stimulated release of pro-inflammatory cytokines by RAW 264.7 macrophages; however, no synergistic effect was observed with these three compounds. HEA attenuated the LPS-induced pro-inflammatory responses by suppressing the toll-like receptor (TLR)4-mediated nuclear factor-κB (NF-κB) signaling pathway. This result will support the use of HEA as an anti-inflammatory agent and C. cicadae fruiting bodies as an anti-inflammatory mushroom.

  2. Interactions of TLR4 and PPARγ, Dependent on AMPK Signalling Pathway Contribute to Anti-Inflammatory Effects of Vaccariae Hypaphorine in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Haijian Sun

    2017-07-01

    Full Text Available Background /Aims: Accumulating evidence indicates that endothelial inflammation is one of the critical determinants in pathogenesis of atherosclerotic cardiovascular disease. Our previous studies had demonstrated that Vaccariae prevented high glucose or oxidative stress-triggered endothelial dysfunction in vitro. Very little is known about the potential effects of hypaphorine from Vaccariae seed on inflammatory response in endothelial cells. Methods: In the present study, we evaluated the anti-inflammatory effects of Vaccariae hypaphorine (VH on lipopolysaccharide (LPS-challenged endothelial EA.hy926 cells. The inflammatory cytokines including tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, monocyte chemoattractant protein 1 (MCP-1 and vascular cellular adhesion molecule-1 (VCAM-1 were measured by real-time PCR (RT-PCR. The expressions of adenosine monophosphate-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, toll-like receptor 4 (TLR4, peroxisome proliferator-activated receptor γ (PPARγ were detected by Western blotting or immunofluorescence. Results: We showed that LPS stimulated the expressions of TNF-α, IL-1β, MCP-1, VCAM-1 and TLR4, but attenuated the phosphorylation of AMPK and ACC as well as PPARγ protein levels, which were reversed by VH pretreatment. Moreover, we observed that LPS-upregulated TLR4 protein expressions were inhibited by PPARγ agonist pioglitazone, and the downregulated PPARγ expressions in response to LPS were partially restored by knockdown of TLR4. The negative regulation loop between TLR4 and PPARγ response to LPS was modulated by AMPK agonist AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine or A769662. Conclusions: Taken together, our results suggested that VH ameliorated LPS-induced inflammatory cytokines production in endothelial cells via inhibition of TLR4 and activation of PPARγ, dependent on AMPK signalling pathway.

  3. Synthesis, Analgesic, Anti-inflammatory and Antimicrobial Activities ...

    African Journals Online (AJOL)

    Purpose: Microbial infections often produce pain and inflammation. Chemotherapeutic, analgesic and anti-inflammatory drugs are prescribed simultaneously in normal practice. The compound possessing all three activities is not common.The purpose of the present study was to examine whether molecular modification ...

  4. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2015-06-01

    Conclusion: DMH cholinergic neurons directly send efferent signals to sympathetic premotor neurons in the Rpa. Elevated cholinergic input to this area reduces BAT activity through activation of M2 mAChRs on serotonergic neurons. Therefore, the direct DMHACh–Rpa5-HT pathway may mediate physiological heat-defense responses to elevated environmental temperature.

  5. The Haptoglobin-CD163-Heme Oxygenase-1 Pathway for Hemoglobin Scavenging

    Directory of Open Access Journals (Sweden)

    Jens Haugbølle Thomsen

    2013-01-01

    Full Text Available The haptoglobin- (Hp- CD163-heme oxygenase-1 (HO-1 pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO, biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6, but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.

  6. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease

    Directory of Open Access Journals (Sweden)

    Strieter Robert

    2002-01-01

    Full Text Available Abstract The lung responds to a variety of insults in a remarkably consistent fashion but with inconsistent outcomes that vary from complete resolution and return to normal to the destruction of normal architecture and progressive fibrosis. Increasing evidence indicates that diffuse lung disease results from an imbalance between the pro-inflammatory and anti-inflammatory mechanisms, with a persistent imbalance that favors pro-inflammatory mediators dictating the development of chronic diffuse lung disease. This review focuses on the mediators that influence this imbalance.

  7. The anti-inflammatory effects of venlafaxine in the rat model of carrageenan-induced paw edema

    Directory of Open Access Journals (Sweden)

    Valiollah Hajhashemi

    2015-07-01

    Full Text Available Objective(s:Recently anti-inflammatory effects of antidepressants have been demonstrated. Venlafaxine belongs to newer antidepressants with serotonin norepinephrine reuptake inhibition property. The pain alleviating properties of venlafaxine in different pain models such as neurogenic pain, diabetic neuropathy, and fibromyalgia have been demonstrated. Anti-inflammatory effects of venlafaxine and also its underlying mechanisms remain unclear. The present study was designed to evaluate the anti-inflammatory effects of venlafaxine and determine possible underlying mechanisms. Materials and Methods: We examined the anti-inflammatory effects of intraperitoneal (IP and intracerebroventricular (ICV administration of venlafaxine in the rat model of carrageenan-induced paw edema. Results: Our results showed that both IP (50 and 100 mg/kg and ICV (50 and 100 μg/rat injection of venlafaxine inhibited carrageenan-induced paw edema. Also IP and ICV administration of venlafaxine significantly decreased myeloperoxidase (MPO activity and interleukin (IL-1β and tumor necrosis factor (TNF-α production. Finally, we tried to reverse the anti-inflammatory effect of venlafaxine by yohimbine (5 mg/kg, IP, an alpha2-adrenergic antagonist. Our results showed that applied antagonist failed to change the anti-inflammatory effect of venlafaxine. Conclusion: These results demonstrated that venlafaxine has potent anti-inflammatory effect which is related to the peripheral and central effects of this drug. Also we have shown that anti-inflammatory effect of venlafaxine is mediated mostly through the inhibition of IL-1β and TNF-α production and decreases MPO activity in the site of inflammation.

  8. Anti-Inflammatory Effect of By-Products from Haliotis discus hannai in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Ho-Seok Rho

    2015-01-01

    Full Text Available Several reports promoted the potential of shellfish due to their ability to act as antioxidant, anti-inflammatory, and antimicrobial agents. Pacific abalone, Haliotis discus hannai viscera is, reported to possess bioactivities such as antioxidative stress and anti-inflammatory. In this study, anti-inflammatory potential of mucus-secreting glands from shell-shucking waste of H. discus hannai was evaluated using RAW 264.7 mouse macrophage cell model. Results indicated that presence of H. discus hannai mucosubstance by-products (AM significantly lowered the nitric oxide (NO production along the expressional suppression of inflammatory mediators such as cytokines TNF-α, IL-1β, and IL-6 and enzymes iNOS and COX-2. Also, AM was shown to increase expression of anti-inflammatory response mediator HO-1. Presence of AM also scavenged the free radicals in vitro. In conclusion, by-products of H. discus hannai are suggested to possess notable anti-inflammatory potential which promotes the possibility of utilization as functional food ingredient.

  9. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  10. Anti-inflammatory and anti-thrombotic intervention strategies using atorvastatin, clopidogrel and knock-down of CD40L do not modify radiation-induced atherosclerosis in ApoE null mice

    Energy Technology Data Exchange (ETDEWEB)

    Hoving, Saske [Division of Experimental Therapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Heeneman, Sylvia [Department of Pathology, Cardiovascular Research Institute Maastricht (Netherlands); Gijbels, Marion J.J. [Department of Pathology, Cardiovascular Research Institute Maastricht (Netherlands); Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (Netherlands); Poele, Johannes A.M. te [Division of Experimental Therapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Pol, Jeffrey F.C.; Gabriels, Karen [Department of Pathology, Cardiovascular Research Institute Maastricht (Netherlands); Russell, Nicola S [Division of Radiotherapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Daemen, Mat J.A.P. [Department of Pathology, Cardiovascular Research Institute Maastricht (Netherlands); Department of Pathology, AMC, Amsterdam (Netherlands); Stewart, Fiona A., E-mail: f.stewart@nki.nl [Division of Experimental Therapy, Netherlands Cancer Institute, Amsterdam (Netherlands)

    2011-10-15

    Background and purpose: We previously showed that irradiating the carotid arteries of ApoE{sup -/-} mice accelerated the development of macrophage-rich, inflammatory and thrombotic atherosclerotic lesions. In this study we investigated the potential of anti-inflammatory (atorvastatin, CD40L knockout) and anti-thrombotic (clopidogrel) intervention strategies to inhibit radiation-induced atherosclerosis. Material and methods: ApoE{sup -/-} mice were given 0 or 14 Gy to the neck and the carotid arteries were harvested at 4 or 28 weeks after irradiation. Atorvastatin (15 mg/kg/day) or clopidogrel (20 mg/kg/day) was given in the chow; control groups received regular chow. Clopidogrel inhibited platelet aggregation by 50%. CD40L{sup -/-}/ApoE{sup -/-} and ApoE{sup -/-} littermates were also given 0 or 14 Gy to the neck and the carotid arteries were harvested after 30 weeks. Results: Clopidogrel decreased MCP-1 expression in the carotid artery at 4 weeks after irradiation. Expression of VCAM-1, ICAM-1, thrombomodulin, tissue factor and eNOS was unchanged in atorvastatin and clopidogrel-treated mice. Neither drug inhibited either age-related or radiation-induced atherosclerosis. Furthermore, loss of the inflammatory mediator CD40L did not influence the development of age-related and radiation-induced atherosclerosis. Conclusions: The effects of radiation-induced atherosclerosis could not be circumvented by these specific anti-inflammatory and anti-coagulant therapies. This suggests that more effective drug combinations may be required to overcome the radiation stimulus, or that other underlying mechanistic pathways are involved compared to age-related atherosclerosis.

  11. Anti-inflammatory and anti-thrombotic intervention strategies using atorvastatin, clopidogrel and knock-down of CD40L do not modify radiation-induced atherosclerosis in ApoE null mice

    International Nuclear Information System (INIS)

    Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J.J.; Poele, Johannes A.M. te; Pol, Jeffrey F.C.; Gabriels, Karen; Russell, Nicola S.; Daemen, Mat J.A.P.; Stewart, Fiona A.

    2011-01-01

    Background and purpose: We previously showed that irradiating the carotid arteries of ApoE −/− mice accelerated the development of macrophage-rich, inflammatory and thrombotic atherosclerotic lesions. In this study we investigated the potential of anti-inflammatory (atorvastatin, CD40L knockout) and anti-thrombotic (clopidogrel) intervention strategies to inhibit radiation-induced atherosclerosis. Material and methods: ApoE −/− mice were given 0 or 14 Gy to the neck and the carotid arteries were harvested at 4 or 28 weeks after irradiation. Atorvastatin (15 mg/kg/day) or clopidogrel (20 mg/kg/day) was given in the chow; control groups received regular chow. Clopidogrel inhibited platelet aggregation by 50%. CD40L −/− /ApoE −/− and ApoE −/− littermates were also given 0 or 14 Gy to the neck and the carotid arteries were harvested after 30 weeks. Results: Clopidogrel decreased MCP-1 expression in the carotid artery at 4 weeks after irradiation. Expression of VCAM-1, ICAM-1, thrombomodulin, tissue factor and eNOS was unchanged in atorvastatin and clopidogrel-treated mice. Neither drug inhibited either age-related or radiation-induced atherosclerosis. Furthermore, loss of the inflammatory mediator CD40L did not influence the development of age-related and radiation-induced atherosclerosis. Conclusions: The effects of radiation-induced atherosclerosis could not be circumvented by these specific anti-inflammatory and anti-coagulant therapies. This suggests that more effective drug combinations may be required to overcome the radiation stimulus, or that other underlying mechanistic pathways are involved compared to age-related atherosclerosis.

  12. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites

    Science.gov (United States)

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I.

    2010-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) to lipoxin A4 (LXA4) and 15-epi-LXA4. However it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE2, TXB2 and leukotriene B4 (LTB4) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE2, but increased LTB4, LXA4 and 15-epi-LXA4 concentrations. Both doses attenuated the LPS effects on PGE2, and TXB2. The increments in LXA4 and 15-epi-LXA4 caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA4 and 15-epi-LXA4 and reduce pro-inflammatory PGE2 and TXB2 suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  13. Pro- and Anti-Inflammatory Cytokines Release in Mice Injected with Crotalus durissus terrificus Venom

    Directory of Open Access Journals (Sweden)

    A. Hernández Cruz

    2008-01-01

    Full Text Available The effects of Crotalus durissus terrificus venom (Cdt were analyzed with respect to the susceptibility and the inflammatory mediators in an experimental model of severe envenomation. BALB/c female mice injected intraperitoneally presented sensibility to Cdt, with changes in specific signs, blood biochemical and inflammatory mediators. The venom induced reduction of glucose and urea levels and an increment of creatinine levels in serum from mice. Significant differences were observed in the time-course of mediator levels in sera from mice injected with Cdt. The maximum levels of IL-6, NO, IL-5, TNF, IL-4 and IL-10 were observed 15 min, 30 min, 1, 2 and 4 hours post-injection, respectively. No difference was observed for levels of IFN-γ. Taken together, these data indicate that the envenomation by Cdt is regulated both pro- and anti-inflammatory cytokine responses at time-dependent manner. In serum from mice injected with Cdt at the two first hours revealed of pro-inflammatory dominance. However, with an increment of time an increase of anti-inflammatory cytokines was observed and the balance toward to anti-inflammatory dominance. In conclusion, the observation that Cdt affects the production of pro- and anti-inflammatory cytokines provides further evidence for the role played by Cdt in modulating pro/anti-inflammatory cytokine balance.

  14. Anti-inflammatory and anti-oxidative effects of herbal preparation EM 1201 in adjuvant arthritic rats

    Directory of Open Access Journals (Sweden)

    Laimis Akramas

    2015-01-01

    Conclusions: The present study suggests that EM 1201 has protective activity against arthritis and demonstrated its potential beneficiary effect analogical to diclofenac. Anti-inflammatory and anti-oxidative effect of EM 1201 in rats with AA support the need of further investigations by using it as supplementary agent alone or together with other anti-arthritic drugs in the treatment of rheumatoid arthritis.

  15. Antioxidant, Anti-Inflammatory, and Cytotoxic Activities of Garcinia nervosa (Clusiaceae

    Directory of Open Access Journals (Sweden)

    N. M. U. Seruji

    2013-01-01

    Full Text Available In our continuing interest on Sarawak Garcinia species, we carried out the evaluation of antioxidant, anti-inflammatory and cytotoxic activities on the methanolic extracts of Garcinia nervosa. The extracts were prepared from its air-dried grounded leaves and barks. The evaluation of antioxidant activities was done using the (2,2-diphenyl-1-picrylhydrazyl DPPH radical scavenging assay and the result showed high radical scavenging activities. Meanwhile, the anti-inflammatory evaluation was performed using the lipoxygenase assay, hyaluronidase assay, and xanthine oxidase assay which showed, both of these extracts exhibited high anti-inflammatory properties. The lipoxygenase assay showed a high inhibition of enzyme activity for the barks extracts and a moderate enzyme activity for the leaves extracts. However, there were low inhibitions for both extracts in the hyaluronidase assay and only the barks extracts exhibited moderate antigout properties in the xanthine oxidase assay. For the cytotoxic assay, the extracts exhibited positive responses against the three cancer cell lines, the HeLa cell lines, MCF-7 cell lines, and HT-29 cell lines. Thus, Garcinia nervosa contains high antioxidativeand anti-inflammation properties, which have great potential in the development of pharmaceutical and dermatological products.

  16. Structure-Activity Relationship Study on the Ethyl p-Methoxycinnamate as an Anti-Inflammatory Agent

    Directory of Open Access Journals (Sweden)

    Ismiarni Komala

    2018-02-01

    Full Text Available Ethyl p-methoxycinnamate (EPMC (1 has been isolated as a major compound from the rhizome of Kaempferia galanga together with the other compound ethyl cinnamate (2. As reported in the literature, EPMC (1 exhibited a significant in vitro and in vivo anti-inflammatory activity. In this research, we investigated the anti-inflammatory activity of compounds 1 and 2 by using anti-denaturation of heat bovine serum albumin (BSA method. In order to analyze active sites that are responsible for the anti-inflammatory activity, therefore, it is necessary to conduct structural modification of EPMC (1. The structural modification was performed through re-esterification reaction by using conventional and assistance of the unmodified microwave oven. Evaluation of the results of the bioassay indicated that the ester and methoxy functional groups of EPMC (1 play an important role for the anti-inflammatory activity.

  17. Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer's disease.

    Science.gov (United States)

    Orta-Salazar, E; Cuellar-Lemus, C A; Díaz-Cintra, S; Feria-Velasco, A I

    2014-10-01

    The cholinergic system includes neurons located in the basal forebrain and their long axons that reach the cerebral cortex and the hippocampus. This system modulates cognitive function. In Alzheimer's disease (AD) and ageing, cognitive impairment is associated with progressive damage to cholinergic fibres, which leads us to the cholinergic hypothesis for AD. The AD produces alterations in the expression and activity of acetyltransferase (ChAT) and acetyl cholinesterase (AChE), enzymes specifically related to cholinergic system function. Both proteins play a role in cholinergic transmission, which is altered in both the cerebral cortex and the hippocampus due to ageing and AD. Dementia disorders are associated with the severe destruction and disorganisation of the cholinergic projections extending to both structures. Specific markers, such as anti-ChAT and anti-AChE antibodies, have been used in light immunohistochemistry and electron microscopy assays to study this system in adult members of certain animal species. This paper reviews the main immunomorphological studies of the cerebral cortex and hippocampus in some animal species with particular emphasis on the cholinergic system and its relationship with the AD. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  18. anti-inflammatory and analgesic activities: chemical constituents of ...

    African Journals Online (AJOL)

    a

    *Corresponding author. E-mail: bedisag@yahoo.fr. ANTI-INFLAMMATORY AND ANALGESIC ACTIVITIES: CHEMICAL CONSTITUENTS OF ESSENTIAL OILS OF OCIMUM GRATISSIMUM,. EUCALYPTUS CITRIODORA AND CYMBOPOGON GIGANTEUS INHIBITED. LIPOXYGENASE L-1 AND CYCLOOXYGENASE OF ...

  19. Anti-inflammatory and antinociceptive activities of Rhipicephalus microplus saliva

    Directory of Open Access Journals (Sweden)

    D F Buccini

    2018-01-01

    Full Text Available Objective: To evaluate the antinociceptive and anti-inflammatory activities and the toxic effects of Rhipicephalus microplus saliva for elucidating the modulation mechanism between arthropod saliva and host. Methods: For saliva collection, engorged ticks were obtained from a controlled bovine infestation and collected by natural fall. The ticks were fixed and injected pilocarpine 0.2% for induction of salivation. Saliva was collected, lyophilized and stored at - 80 °C. Cytotoxic activity was assessed by the hemolysis method (25, 50, 100, 200 and 300 μ g/mL and MTT cell viability assay (2.5, 5, 10, 20 and 40 μ g/mL for 24, 48 and 72 h. Anti-inflammatory activity was evaluated using the method of neutrophil migration to the peritoneal cavity of mice at doses of 10, 15 and 20 mg/kg; antinociceptive activity was assessed using the acetic acid-induced writhing test, and formalin-induced paw-licking in mice at dose of 15 mg/kg. Results: Saliva did not cause erythrocytes hemolysis at any concentration tested, as well as did not decrease cell viability in the MTT assay. Saliva inhibited neutrophil migration by 87% and 73% at doses of 15 and 20 mg/kg, respectively. In the nociceptive tests, saliva presented analgesic activity of 69.96% in the abdominal writhing test, and of 84.41% in the formalin test. Conclusions: The study proves that Rhipicephalus microplus saliva has significant in vivo anti-inflammatory and antinociceptive activities. The data presented herein support the development of further studies to elucidate the active principles of Rhipicephalus microplus saliva and its mechanism of action and, in future, to develop novel anti-inflammatory and analgesic drugs.

  20. Selective retrograde labeling of cholinergic neurons with [3H]choline

    International Nuclear Information System (INIS)

    Bagnoli, P.; Beaudet, A.; Stella, M.; Cuenod, M.

    1981-01-01

    Evidence is presented which is consistent with a specific retrograde labeling of cholinergic neurons following [ 3 H]choline application in their zone of termination. [ 3 H]Choline injection in the rat hippocampus leads to perikaryal retrograde labeling in the ipsilateral medial septal nuclease and nucleus of the diagonal band, thus delineating an established cholinergic pathway, while only diffuse presumably anterograde labeling was observed in the lateral septum, the entorhinal cortex, and the opposite hippocampus. After [ 3 H]choline injection in the pigeon visual Wulst, only the ipsilateral thalamic relay, of all inputs, showed similar perikaryal retrograde labeling, an observation supporting the suggestion that at least some thalamo-Wulst neurons are cholinergic

  1. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders

    Science.gov (United States)

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith

    2012-01-01

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ≥ 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  2. Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: a brief review

    Directory of Open Access Journals (Sweden)

    Marcio A. R. Araujo

    2011-09-01

    Full Text Available Many biological properties have been attributed to various types of propolis, including anti-inflammatory, antimicrobial, antioxidant, antitumor, wound healing, and immunomodulatory activities. This article reviewed studies published that investigated the anti-inflammatory activity of propolis of different origins and/or its isolated components, focusing on the mechanisms of action underlying this activity and also addressing some aspects of immunomodulatory effects. The search was performed of the following databases: PubMed, Science Direct, HighWire Press, Scielo, Google Academics, Research Gate and ISI Web of Knowledgement. The anti-inflammatory activity was associated with propolis or compounds such as polyphenols (flavonoids, phenolic acids and their esters, terpenoids, steroids and amino acids. CAPE is the most studied compounds. The main mechanisms underlying the anti-inflammatory activity of propolis included the inhibition of cyclooxygenase and consequent inhibition of prostaglandin biosynthesis, free radical scavenging, inhibition of nitric oxide synthesis, reduction in the concentration of inflammatory cytokines and immunosuppressive activity. Propolis was found to exert an anti-inflammatory activity in vivo and in vitro models of acute and chronic inflammation and others studies, indicating its promising potential as anti-inflammatory agent of natural origin and as a source of chemical compounds for the development of new drugs.

  3. Non-steroidal anti-inflammatory drugs and benign oesophageal stricture.

    Science.gov (United States)

    Heller, S R; Fellows, I W; Ogilvie, A L; Atkinson, M

    1982-01-01

    Drug histories were obtained from 76 patients at the time of initial Eder-Puestow dilatation for benign oesophageal stricture. Six patients had consumed drugs known to cause oesophageal ulceration (emepronium bromide and potassium preparations). Of the remaining 70 patients, 22 had regularly taken a non-steroidal anti-inflammatory drug before the onset of dysphagia compared with 10 patients in a control group matched for age and sex; this difference was significant (p less than 0.02). Non-steroidal anti-inflammatory drugs may have a causative role in the formation of oesophageal stricture in patients with gastro-oesophageal reflux, in whom they should be prescribed with caution. PMID:6807392

  4. Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages.

    Science.gov (United States)

    Pentecost, A E; Witherel, C E; Gogotsi, Y; Spiller, K L

    2017-09-26

    Chronic inflammatory disorders such as rheumatoid arthritis are characterized by excessive pro-inflammatory or "M1" activation of macrophages, the primary cells of the innate immune system. Current treatments include delivery of glucocorticoids (e.g. dexamethasone - Dex), which reduce pro-inflammatory M1 behaviour in macrophages. However, these treatments have many off-target effects on cells other than macrophages, resulting in broad immunosuppression. To limit such side effects, drug-incorporated nano- and microparticles may be used to selectively target macrophages via phagocytosis, because of their roles as highly effective phagocytes in the body. In this study, surface-modified nanodiamond (ND) was explored as a platform for the delivery of dexamethasone to macrophages because of ND's rich surface chemistry, which contributes to ND's high potential as a versatile drug delivery platform. After finding that octadecylamine-functionalized nanodiamond (ND-ODA) enhanced adsorption of Dex compared to carboxylated ND, the effects of Dex, ND-ODA, and Dex-adsorbed ND-ODA on primary human macrophage gene expression were characterized. Surprisingly, even in the absence of Dex, ND-ODA had strong anti-inflammatory effects, as determined by multiplex gene expression via NanoString and by protein secretion analysis via ELISA. ND-ODA also inhibited expression of M2a markers yet increased the expression of M2c markers and phagocytic receptors. Interestingly, the adsorption of Dex to ND-ODA further increased some anti-inflammatory effects, but abrogated the effect on phagocytic receptors, compared to its individual components. Overall, the ability of ND-ODA to promote anti-inflammatory and pro-phagocytic behaviour in macrophages, even in the absence of loaded drugs, suggests its potential for use as an anti-inflammatory therapeutic to directly target macrophages through phagocytosis.

  5. Lymphocyte Glucose and Glutamine Metabolism as Targets of the Anti-Inflammatory and Immunomodulatory Effects of Exercise

    Directory of Open Access Journals (Sweden)

    Frederick Wasinski

    2014-01-01

    Full Text Available Glucose and glutamine are important energetic and biosynthetic nutrients for T and B lymphocytes. These cells consume both nutrients at high rates in a function-dependent manner. In other words, the pathways that control lymphocyte function and survival directly control the glucose and glutamine metabolic pathways. Therefore, lymphocytes in different functional states reprogram their glucose and glutamine metabolism to balance their requirement for ATP and macromolecule production. The tight association between metabolism and function in these cells was suggested to introduce the possibility of several pathologies resulting from the inability of lymphocytes to meet their nutrient demands under a given condition. In fact, disruptions in lymphocyte metabolism and function have been observed in different inflammatory, metabolic, and autoimmune pathologies. Regular physical exercise and physical activity offer protection against several chronic pathologies, and this benefit has been associated with the anti-inflammatory and immunomodulatory effects of exercise/physical activity. Chronic exercise induces changes in lymphocyte functionality and substrate metabolism. In the present review, we discuss whether the beneficial effects of exercise on lymphocyte function in health and disease are associated with modulation of the glucose and glutamine metabolic pathways.

  6. Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system.

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2010-02-01

    Full Text Available Inflammatory response following central nervous system (CNS injury contributes to progressive neuropathology and reduction in functional recovery. Axons are sensitive to mechanical injury and toxic inflammatory mediators, which may lead to demyelination. Although it is well documented that degenerated myelin triggers undesirable inflammatory responses in autoimmune diseases such as multiple sclerosis (MS and its animal model, experimental autoimmune encephalomyelitis (EAE, there has been very little study of the direct inflammatory consequences of damaged myelin in spinal cord injury (SCI, i.e., there is no direct evidence to show that myelin debris from injured spinal cord can trigger undesirable inflammation in vitro and in vivo. Our data showed that myelin can initiate inflammatory responses in vivo, which is complement receptor 3 (CR3-dependent via stimulating macrophages to express pro-inflammatory molecules and down-regulates expression of anti-inflammatory cytokines. Mechanism study revealed that myelin-increased cytokine expression is through activation of FAK/PI3K/Akt/NF-kappaB signaling pathways and CR3 contributes to myelin-induced PI3K/Akt/NF-kappaB activation and cytokine production. The myelin induced inflammatory response is myelin specific as sphingomyelin (the major lipid of myelin and myelin basic protein (MBP, one of the major proteins of myelin are not able to activate NF-kappaB signaling pathway. In conclusion, our results demonstrate a crucial role of myelin as an endogenous inflammatory stimulus that induces pro-inflammatory responses and suggest that blocking myelin-CR3 interaction and enhancing myelin debris clearance may be effective interventions for treating SCI.

  7. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    Science.gov (United States)

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-02

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Phytochemical screening, safety evaluation, anti-inflammatory and ...

    African Journals Online (AJOL)

    The analgesic and anti-inflammatory activities of the leaves of Lannea welwitschii ... was investigated in this study because the plant is used in Traditional African Medicine (TAM) to treat swellings, oedema, gout and diarrhoea. ... that tannin, flavonoid and reducing sugar were present while alkaloids, cardiac glycosides, ...

  9. Antibacterial and Anti-Inflammatory Activities of Anacardium ...

    African Journals Online (AJOL)

    ABSTRACT: Anacardium occidentale is a local medicinal plant used in ethno medicine for the treatment of diarrhea, constipation,pain and inflammation. The aqueous and ethanolic extracts of this plant parts were assessed for anti- inflammatory and antibacterial activities using experimental animal model and agar disc ...

  10. Anti-Inflammatory and Antinociceptive Effects of Ethyl Acetate Fraction of an Edible Red Macroalgae Sarcodia ceylanica

    Directory of Open Access Journals (Sweden)

    Chieh-Chih Shih

    2017-11-01

    Full Text Available Research so far has only shown that edible red macroalgae, Sarcodia ceylanica has the ability to eliminate free radicals and anti-diabetic, anti-bacterial properties. This study was conducted both in vitro and in vivo on the ethyl acetate extract (PD1 of farmed red macroalgae in order to explore its anti-inflammatory properties. In order to study the in vitro anti-inflammatory effects of PD1, we used lipopolysaccharide (LPS to induce inflammatory responses in murine macrophages. For evaluating the potential in vivo anti-inflammatory and antinociceptive effects of PD1, we used carrageenan-induced rat paw edema to produce inflammatory pain. The in vitro results indicated that PD1 inhibited the LPS-induced pro-inflammatory protein, inducible nitric oxide synthase (iNOS in macrophages. Oral PD1 can reduce carrageenan-induced paw edema and inflammatory nociception. PD1 can significantly inhibit carrageenan-induced leukocyte infiltration, as well as the protein expression of inflammatory mediators (iNOS, interleukin-1β, and myeloperoxidase in inflammatory tissue. The above results indicated that PD1 has great potential to be turned into a functional food or used in the development of new anti-inflammatory and antinociceptive agents. The results from this study are expected to help scientists in the continued development of Sarcodia ceylanica for other biomedical applications.

  11. In-vitro antioxidant and in-vivo anti-inflammatory activities of aerial parts of Cassia species

    Directory of Open Access Journals (Sweden)

    Jignasu P. Mehta

    2017-05-01

    The antioxidant activity of the extracts was measured using scavenging of 2,2′-Diphenyl-1-picrylhydrazyl hydrate (DPPH, bleaching of β-carotene and % inhibition of H2O2. The anti-inflammatory activity was evaluated using carrageenan induced paw edema method on Wistar albino rats. The etahnolic extracts of aerial parts of C. siamea and C. javanica were evaluated for in vivo anti-inflammatory activity against the animal model of female Wistar albino rats. Ethanol extracts showed significant and dose-dependent anti-inflammatory effects. The contents of flavonoids and total phenolic compounds could be correlated with the antioxidant and anti-inflammatory activities observed for C. siamea and C. javanica. Our findings suggest that aerial parts of C. siamea and C. javanica contain potential antioxidant and anti-inflammatory compounds, which could be tested as drug candidates against oxidative and inflammation-related pathological processes in medicinal chemistry studies.

  12. Nutraceuticals of anti-inflammatory activity as complementary therapy for rheumatoid arthritis.

    Science.gov (United States)

    Al-Okbi, Sahar Y

    2014-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by elevated oxidative stress and inflammatory biomarkers. The severe side effects of drug used during such disease necessitate the search for new and safe approaches. Food is a rich source of antioxidants and anti-inflammatory bioactive constituents including phenolic compounds, polyunsaturated fatty acids, phytosterols, toccopherols, and carotenoids. We have a series of publications dealing with the anti-inflammatory activity of different food extracts (as nutraceuticals) in experimental animals (acute and chronic inflammation model) and in clinical study (RA patients). Fish oil, primrose oil, extracts of black cumin, fenugreek, liquorice, coriander, tomato, carrot, sweet potato, broccoli, green tea, rosemary, hazelnut, walnut, wheat germ, and date in addition to the probiotic Bifidobacterium bifidum were the nutraceuticals studied. During these studies, changes in inflammatory biomarkers (erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), seromucoids, fibrinogen, tumor necrosis factor-α (TNF-α), prostaglandin E2), oxidative stress (malondialdehyde), antioxidant status (total antioxidant capacity, vitamin C, vitamin E, retinol, β-carotene), the level of copper (Cu) and zinc (Zn) and colonic microflora in response to the administration of nutraceuticals have been assessed. Results of these studies showed that the majority of nutraceuticals studied possess beneficial effect toward chronic inflammatory diseases, which might be due to the presence of one or more of the above-mentioned phytochemicals. Anti-inflammatory and antioxidant nutraceuticals may serve as complementary medicine for the management of RA. © The Author(s) 2012.

  13. Propolis: a review of its anti-inflammatory and healing actions

    Directory of Open Access Journals (Sweden)

    A. F. N. Ramos

    2007-01-01

    Full Text Available Tissue healing is an adaptive biological response by which the organism repairs damaged tissue. The initial stage of healing is represented by an acute inflammatory reaction, in which inflammatory cells migrate to damaged tissue and phagocyte debris. At a later stage, fibroblasts and endothelial cells proliferate and generate a scar. The occurrence of inflammatory processes and healing imperfections have been a concern for hundreds of years, especially for individuals with healing difficulties, such as diabetics and carriers of peripheral circulation deficiencies. A wide variety of natural products have been used as anti-inflammatory and healing agents, with propolis being a remarkable option. Propolis has been used in popular medicine for a very long time; however, it is not a drug intended for all diseases. Currently, the determination of quality standards of propolis-containing products is a major problem due to their varying pharmacological activities and chemical compositions. The aim of this review is to discuss the use of propolis with emphasis on its anti-inflammatory and healing properties.

  14. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways.

    Science.gov (United States)

    Peng, Hui-Ling; Huang, Wen-Chung; Cheng, Shu-Chen; Liou, Chian-Jiun

    2018-07-01

    Fisetin, a flavone that can be isolated from fruits and vegetables, has anti-tumor and anti-oxidative properties and ameliorates airway hyperresponsiveness in asthmatic mice. This study investigated whether fisetin can suppress the expression of inflammatory mediators and intercellular adhesion molecule 1 (ICAM-1) in A549 human lung epithelial cells that were stimulated with interleukin-1β (IL-1β) to induce inflammatory responses. A549 cells were treated with fisetin (3-30 μM) and then with IL-1β. Fisetin significantly inhibited COX-2 expression and reduced prostaglandin E 2 production, and it suppressed the levels of IL-8, CCL5, monocyte chemotactic protein 1, tumor necrosis factor α, and IL-6. Fisetin also significantly attenuated the expression of chemokine and inflammatory cytokine genes and decreased the expression of ICAM-1, which mediates THP-1 monocyte adhesion to inflammatory A549 cells. Fisetin decreased the translocation of nuclear transcription factor kappa-B (NF-κB) subunit p65 into the nucleus and inhibited the phosphorylation of proteins in the ERK1/2 pathway. Co-treatment of IL-1β-stimulated A549 cells with ERK1/2 inhibitors plus fisetin reduced ICAM-1 expression. Furthermore, fisetin significantly increased the effects of the protective antioxidant pathway by promoting the expression of nuclear factor erythroid-2-related factor-2 and heme oxygenase 1. Taken together, these data suggest that fisetin has anti-inflammatory effects and that it suppresses the expression of chemokines, inflammatory cytokines, and ICAM-1 by suppressing the NF-κB and ERK1/2 signaling pathways in IL-1β-stimulated human lung epithelial A549 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Anti-Inflammatory Activity of Lactobacillus on Carrageenan-Induced Paw Edema in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sarika Amdekar

    2012-01-01

    Full Text Available Introduction. Lactobacillus casei and Lactobacillus acidophilus were used to assess the anti-inflammatory properties in carrageenan induced acute inflammatory model. Materials and Methods. Diclofenac sodium was used as standard drug at concentration of 150 mg/kg of body weight. Culture of Lactobacillus  2×107 CFU/ml was given orally. Edema was induced with 1% carrageenan to all the groups after one hour of the oral treatments. Paw thickness was checked at =1, 2, 3, 4, 5, and 24 hours. Stair climbing score and motility score were assessed at =24 hours. Cytokines assay for IL-6, IL-10, and TNF-α was performed on serum samples. Results. Lactobacillus showed a statistically significant decrease in paw thickness at <0.001. L. acidophilus and L. casei decreased by 32% and 28% in paw thickness. They both significantly increased the stair climbing and motility score. Lactobacillus treatment significantly downregulated IL-6 and TNF-α while upregulated IL-10 at <0.0001. Conclusion. L. casei and L. acidophilus significantly decreased the inflammatory reactions induced by carrageenan. This study has also proposed that Lactobacillus ameliorated the inflammatory reaction by downregulating the proinflammatory cytokines pathway.

  16. Improvement of bioavailability and anti-inflammatory potential of curcumin in combination with emu oil.

    Science.gov (United States)

    Jeengar, Manish Kumar; Shrivastava, Shweta; Nair, Kala; Singareddy, Sreenivasa Reddy; Putcha, Uday Kumar; Talluri, M V N Kumar; Naidu, V G M; Sistla, Ramakrishna

    2014-12-01

    The purpose of the present study is to evaluate the effect of emu oil on bioavailability of curcumin when co-administered and to evaluate the property that enhances the anti-inflammatory potential of curcumin. Oral bioavailability of curcumin in combination with emu oil was determined by measuring the plasma concentration of curcumin by HPLC. The anti-inflammatory potential was evaluated in carrageenan-induced paw edema model (acute model) and in Freund's complete adjuvant (FCA)-induced arthritis model (chronic model) in male SD rats. The anti-inflammatory potential of curcumin in combination with emu oil has been significantly increased in both acute and chronic inflammatory models as evident from inhibition of increase in paw volume, arthritic score, and expression of pro-inflammatory cytokines. The increased anti-inflammatory activity in combination therapy is due to enhanced bioavailability (5.2-fold compared to aqueous suspension) of curcumin by emu oil. Finally, it is concluded that the combination of emu oil with curcumin will be a promising approach for the treatment of arthritis.

  17. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  18. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ke-Wu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Li, Jun [Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China); Dong, Xin; Wang, Ying-Hong; Ma, Zhi-Zhong; Jiang, Yong; Jin, Hong-Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Tu, Peng-Fei, E-mail: pengfeitu@vip.163.com [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China)

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators. Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.

  19. Anti-inflammatory, analgesic and diuretic activity of Ludwigia ...

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    2014-10-11

    Oct 11, 2014 ... paw edema, acetic acid-‐induced writhing, and diuresis in mice were ... KEY WORDS: Ludwigia hyssopifolia Linn; Anti-‐inflammatory .... experimental animals were placed into ... The time kinetics of carrageenan-‐induced.

  20. Melatonin as an Anti-Inflammatory Agent Modulating Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Gaia Favero

    2017-01-01

    Full Text Available Inflammation may be defined as the innate response to harmful stimuli such as pathogens, injury, and metabolic stress; its ultimate function is to restore the physiological homeostatic state. The exact aetiology leading to the development of inflammation is not known, but a combination of genetic, epigenetic, and environmental factors seems to play an important role in the pathogenesis of many inflammation-related clinical conditions. Recent studies suggest that the pathogenesis of different inflammatory diseases also involves the inflammasomes, intracellular multiprotein complexes that mediate activation of inflammatory caspases thereby inducing the secretion of proinflammatory cytokines. Melatonin, an endogenous indoleamine, is considered an important multitasking molecule with fundamental clinical applications. It is involved in mood modulation, sexual behavior, vasomotor control, and immunomodulation and influences energy metabolism; moreover, it acts as an oncostatic and antiaging molecule. Melatonin is an important antioxidant and also a widespread anti-inflammatory molecule, modulating both pro- and anti-inflammatory cytokines in different pathophysiological conditions. This review, first, gives an overview concerning the growing importance of melatonin in the inflammatory-mediated pathological conditions and, then, focuses on its roles and its protective effects against the activation of the inflammasomes and, in particular, of the NLRP3 inflammasome.

  1. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    Directory of Open Access Journals (Sweden)

    Xichun Wang

    2018-01-01

    Full Text Available Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS- induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg, and a dexamethasone (DEX (5 mg/kg group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

  2. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    Science.gov (United States)

    Feng, Shibin; Ding, Nana; He, Yanting; Li, Cheng; Li, Manman; Ding, Xuedong; Ding, Hongyan; Li, Jinchun

    2018-01-01

    Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS-) induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg), and a dexamethasone (DEX) (5 mg/kg) group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

  3. Anti-inflammatory effects of jojoba liquid wax in experimental models.

    Science.gov (United States)

    Habashy, Ramy R; Abdel-Naim, Ashraf B; Khalifa, Amani E; Al-Azizi, Mohammed M

    2005-02-01

    Jojoba [Simmondsia chinensis (Link 1822) Schneider 1907] is an arid perennial shrub grown in several American and African countries. Jojoba seeds, which are rich in liquid wax, were used in folk medicine for diverse ailments. In the current study, the potential anti-inflammatory activity of jojoba liquid wax (JLW) was evaluated in a number of experimental models. Results showed that JLW caused reduction of carrageenin-induced rat paw oedema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In a test for anti-inflammatory potential utilizing the chick's embryo chroioallantoic membrane (CAM), JLW also caused significant lowering of granulation tissue formation. Topical application of JLW reduced ear oedema induced by croton oil in rats. In the same animal model, JLW also reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In addition, JLW ameliorated histopathological changes affected by croton oil application. In the lipopolysaccharide (LPS)-induced inflammation in air pouch in rats, JLW reduced nitric oxide (NO) level and tumor necrosis factor-alpha (TNF-alpha) release. In conclusion, this study demonstrates the effectiveness of JLW in combating inflammation in several experimental models. Further investigations are needed to identify the active constituents responsible for the anti-inflammatory property of JLW.

  4. Antioxidant, anti-inflammatory and antinociceptive activities of ...

    African Journals Online (AJOL)

    Background of study: Plants used for traditional medicine contain a wide range of substances which can be used to treat various infectious diseases. Aim: The study evaluated the in vitro antioxidant, antinociceptive, and anti-inflammatory activities of the methanolic extract of Justicia secunda Vahl leaf. Methods: The acute ...

  5. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts

    Directory of Open Access Journals (Sweden)

    B N Ramesh

    2014-01-01

    Full Text Available Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer′s disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer′s disease.

  6. [Non steroidal anti-inflammatory drugs and rheumatic diseases].

    Science.gov (United States)

    Cossermelli, W; Pastor, E H

    1995-01-01

    Nonsteroidal anti-inflammatory drugs (NSAID) comprise an important class of medicaments that reduced the symptoms of inflamation in rheumatic disease. This article emphasizes similarities and class characteristics of the NSAID, mechanisms of action, and drug-interactions.

  7. Endogenous stress proteins as targets for anti-inflammatory T cells

    NARCIS (Netherlands)

    Wieten, L.

    2009-01-01

    Stress proteins such as heat shock proteins (Hsp) are important controllers of both cellular and immune homeostasis. Enhanced Hsp expression can be observed in virtually every inflammatory condition and has been proposed by us and others to lead to local activation of Hsp-specific anti-inflammatory

  8. Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana.

    Science.gov (United States)

    Toro, Reina M; Aragón, Diana M; Ospina, Luis F; Ramos, Freddy A; Castellanos, Leonardo

    2014-11-01

    Physalis peruviana calyces are used extensively in folk medicine. The crude ethanolic extract and some fractions of calyces were evaluated in order to explore antioxidant and anti-inflammatory activities. The anti-inflammatory activity was evaluated by the TPA-induced ear edema model. The antioxidant in vitro activity was measured by means of the superoxide and nitric oxide scavenging activity of the extracts and fractions. The butanolic fraction was found to be promising due to its anti-inflammatory and antioxidant activities. Therefore, a bio-assay guided approach was employed to isolate and identify rutin (1) and nicotoflorin (2) from their NMR spectroscopic and MS data. The identification of rutin in calyces of P. peruviana supports the possible use of this waste material for phytotherapeutic, nutraceutical and cosmetic preparations.

  9. Tabetri™ (Tabebuia avellanedae Ethanol Extract Ameliorates Osteoarthritis Symptoms Induced by Monoiodoacetate through Its Anti-Inflammatory and Chondroprotective Activities

    Directory of Open Access Journals (Sweden)

    Jae Gwang Park

    2017-01-01

    Full Text Available Although osteoarthritis (OA, a degenerative joint disease characterized by the degradation of joint articular cartilage and subchondral bones, is generally regarded as a degenerative rather than inflammatory disease, recent studies have indicated the involvement of inflammation in OA pathogenesis. Tabebuia avellanedae has long been used to treat various diseases; however, its role in inflammatory response and the underlying molecular mechanisms remain poorly understood. In this study, the pharmacological effects of Tabetri (Tabebuia avellanedae ethanol extract (Ta-EE on OA pathogenesis induced by monoiodoacetate (MIA and the underlying mechanisms were investigated using experiments with a rat model and in vitro cellular models. In the animal model, Ta-EE significantly ameliorated OA symptoms and reduced the serum levels of inflammatory mediators and proinflammatory cytokines without any toxicity. The anti-inflammatory activity of Ta-EE was further confirmed in a macrophage-like cell line (RAW264.7. Ta-EE dramatically suppressed the production and mRNA expressions of inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells without any cytotoxicity. Finally, the chondroprotective effect of Ta-EE was examined in a chondrosarcoma cell line (SW1353. Ta-EE markedly suppressed the mRNA expression of matrix metalloproteinase genes. The anti-inflammatory and chondroprotective activities of Ta-EE were attributed to the targeting of the nuclear factor-kappa B (NF-κB and activator protein-1 (AP-1 signaling pathways in macrophages and chondrocytes.

  10. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Chiara eLauritano

    2016-05-01

    Full Text Available Marine microalgae are considered a potentially new and valuable source of biologically active molecules for applications in the food industry as well as in the pharmaceutical, nutraceutical and cosmetic sectors. They can be easily cultured, have short generation times and enable an environmentally-friendly approach to drug discovery by overcoming problems associated with the over-utilization of marine resources and the use of destructive collection practices. In this study, 21 diatoms, 7 dinoflagellates and 4 flagellate species were grown in three different culturing conditions and the corresponding extracts were tested for possible antioxidant, anti-inflammatory, anticancer, anti-diabetes, antibacterial and anti-biofilm activities. In addition, for two diatoms we also tested two different clones to disclose diversity in clone bioactivity. Six diatom species displayed specific anti-inflammatory, anticancer (blocking human melanoma cell proliferation and anti-biofilm (against the bacteria Staphylococcus epidermidis activities whereas, none of the other microalgae were bioactive against the conditions tested for. Furthermore, none of the 6 diatom species tested were toxic on normal human cells. Culturing conditions (i.e. nutrient starvation conditions greatly influenced bioactivity of the majority of the clones/species tested. This study denotes the potential of diatoms as sources of promising bioactives for the treatment of human pathologies.

  11. Polyphenols from Cymbopogon citratus leaves as topical anti-inflammatory agents.

    Science.gov (United States)

    Costa, Gustavo; Ferreira, João Pinto; Vitorino, Carla; Pina, Maria Eugénia; Sousa, João José; Figueiredo, Isabel Vitória; Batista, Maria Teresa

    2016-02-03

    A variety of plant polyphenols have been reported to have anti-inflammatory, frequently associated with erythema, edema, hyperplasia, skin photoaging and photocarcinogenesis. Cymbopogon citratus (DC). Stapf (Poaceae) is a worldwide known medicinal plant, used in traditional medicine in inflammation-related conditions. In this work, the anti-inflammatory potential of C. citratus infusion (CcI) and its polyphenols as topical agents was evaluated in vivo. The plant extract was prepared and its fractioning led two polyphenol-rich fractions: flavonoids fraction (CcF) and tannins fraction (CcT). An oil/water emulsion was developed with each active (CcI, CcF+CcT and diclofenac), pH and texture having been evaluated. Release tests were further performed using static Franz diffusion cells and all collected samples were monitored by HPLC-PDA. In vivo topical anti-inflammatory activity evaluation was performed by the carrageenan-induced rat paw edema model. The texture analysis revealed statistically significant differences for all tested parameters to CcF+CcT, supporting its topical application. Release experiments lead to the detection of the phenolic compounds from each sample in the receptor medium and the six major flavonoids were quantified, by HPLC-PDA: carlinoside, isoorientin, cynaroside, luteolin 7-O-neohesperidoside, kurilesin A and cassiaoccidentalin B. The CcF+CcT formulation prompted to the higher release rate for all these flavonoids. CcI4%, CcI1% and CcF+CcT exhibited an edema reduction of 43.18, 29.55 and 59.09%, respectively. Our findings highlight that CcI, containing luteolin 7-O-neohesperidoside, cassiaoccidentalin B, carlinoside, cynaroside and tannins have a potential anti-inflammatory topical activity, suggesting their promising application in the treatment of skin inflammatory pathologies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Anti-inflammatory and Analgesic Activities of Amorphophallus bulbifer

    African Journals Online (AJOL)

    HP

    time of the animals treated with either standard or extract. Pentazocin ... standard. Results: The extract showed significant anti-inflammatory and analgesic activities at the two test dose ..... effectiveness of analgesic agents in the tail- flick pain ...

  13. Assessment of anti-inflammatory potential of Sesbania bispinosa ...

    African Journals Online (AJOL)

    Ganesh D. Boddawar

    2015-12-23

    Dec 23, 2015 ... anti-inflammatory remedy as it was found to possess higher ... of cell injury, & remove necrotic cells that causes inflamma- ... need of time to invent and evaluate more and more herbal .... serotonin on vascular permeability.

  14. Outstanding Anti-inflammatory Potential of Selected Asteraceae Species through the Potent Dual Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase.

    Science.gov (United States)

    Chagas-Paula, Daniela Aparecida; Oliveira, Tiago Branquinho; Faleiro, Danniela Príscylla Vasconcelos; Oliveira, Rejane Barbosa; Costa, Fernando Batista Da

    2015-09-01

    Cyclooxygenase and 5-lipoxygenase are enzymes that catalyze important inflammatory pathways, suggesting that dual cyclooxygenase/lipoxygenase inhibitors should be more efficacious as anti-inflammatory medicines with lower side effects than the currently available nonsteroidal anti-inflammatory drugs. Many plants from the family Asteraceae have anti-inflammatory activities, which could be exerted by inhibiting the cyclooxygenase-1 and 5-lipoxygenase enzymes. Nevertheless, only a small number of compounds from this family have been directly evaluated for their ability to inhibit the enzymes in cell-free assays. Therefore, this study systematically evaluated 57 Asteraceae extracts in vitro in enzyme activity experiments to determine whether any of these extracts exhibit dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The chemical profiles of the extracts were obtained by the high-performance liquid chromatography-ultraviolet-diode array detector method, and their major constituents were dereplicated. Of the 57 tested extracts, 13 (26.6 %, IC50 range from 0.03-36.2 µg/mL) of them displayed dual inhibition. Extracts from known anti-inflammatory herbs, food plants, and previously uninvestigated species are among the most active. Additionally, the extract action was found to be specific with IC50 values close to or below those of the standard inhibitors. Thus, the active extracts and active substances of these species are potent inhibitors acting through the mechanism of dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The extracts were prepared for this study using nontoxic extraction solvents (EtOH-H2O), requiring only a small amount of plant material to carry out the bioassays and the phytochemical analyses. In summary, this study demonstrated the potential of the investigated species as dual inhibitors, revealing their potential as pharmaceuticals or nutraceuticals. Georg Thieme Verlag KG Stuttgart · New York.

  15. Health Promoting Effects of Brassica-Derived Phytochemicals: From Chemopreventive and Anti-Inflammatory Activities to Epigenetic Regulation

    Directory of Open Access Journals (Sweden)

    Anika Eva Wagner

    2013-01-01

    Full Text Available A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways.

  16. Anti-inflammatory and Antinociceptive Activity of Ouabain in Mice

    Directory of Open Access Journals (Sweden)

    Danielle Ingrid Bezerra de Vasconcelos

    2011-01-01

    Full Text Available Ouabain, an inhibitor of the Na+/K+-ATPase pump, was identified as an endogenous substance of human plasma. Ouabain has been studied for its ability to interfere with various regulatory mechanisms. Despite the studies portraying the ability of ouabain to modulate the immune response, little is known about the effect of this substance on the inflammatory process. The aim of this work was to study the effects triggered by ouabain on inflammation and nociceptive models. Ouabain produced a reduction in the mouse paw edema induced by carrageenan, compound 48/80 and zymosan. This anti-inflammatory potential might be related to the inhibition of prostaglandin E2, bradykinin, and mast-cell degranulation but not to histamine. Ouabain also modulated the inflammation induced by concanavalin A by inhibiting cell migration. Besides that, ouabain presented antinociceptive activity. Taken these data together, this work demonstrated, for the first time, that ouabain presented in vivo analgesic and anti-inflammatory effects.

  17. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    International Nuclear Information System (INIS)

    Luo, Ying; Li, Shu-Jun; Yang, Jian; Qiu, Yuan-Zhen; Chen, Fang-Ping

    2013-01-01

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway

  18. Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant.

    Science.gov (United States)

    Muhammad, Naveed; Saeed, Muhammad; Khan, Haroon

    2012-05-02

    Pyrexia, algesia and inflammation are associated with several pathological conditions. Synthetic drugs available for the treatment of these conditions cause multiple unwanted effects. Several studies are ongoing worldwide to find natural healing agents with better safety profile. The current study was thus aimed at evaluating antipyretic, analgesic and anti-inflammatory activities of the methanolic extract of whole plant of V. betonicifolia (VBME). VBME was employed to assess antipyretic activity in yeast induced hyperthermia. Analgesic profile was ascertained in acetic acid induced writhing, hot plat and tail immersion test. Nevertheless, the anti-inflammatory activity was tested in carrageenan induced paw edema and histamine induced inflammatory tests. BALB/c mice were used at test doses of 100, 200 and 300 mg/kg body weight intra peritoneally (i.p). In yeast induced pyrexia, VBME demonstrated dose dependently (78.23%) protection at 300 mg/kg, similar to standard drug, paracetamol (90%) at 150 mg/kg i.p. VBME showed a dose dependent analgesia in various pain models i.e. acetic acid, hot plat and tail immersion having 78.90%, 69.96% and 68.58% protection respectively at 300 mg/kg. However, the analgesic action of VBME was completely antagonized by the injection of naloxone like opiate antagonists. Similarly carrageenan and histamine induces inflammation was significantly antagonized by VBME, 66.30% and 60.80% respectively at 300 mg/kg. It is concluded that VBME has marked antipyretic, analgesic and anti-inflammatory activities in various animal models and this strongly supports the ethnopharmacological uses of Viola betonicifolia as antipyretic, analgesic and anti-inflammatory plant.

  19. Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid

    Directory of Open Access Journals (Sweden)

    Jueun Oh

    2012-01-01

    Full Text Available Carnosic acid (CA is a diterpene compound exhibiting antioxidative, anticancer, anti-angiogenic, anti-inflammatory, anti-metabolic disorder, and hepatoprotective and neuroprotective activities. In this study, the effect of CA on various skin inflammatory responses and its inhibitory mechanism were examined. CA strongly suppressed the production of IL-6, IL-8, and MCP-1 from keratinocyte HaCaT cells stimulated with sodium lauryl sulfate (SLS and retinoic acid (RA. In addition, CA blocked the release of nitric oxide (NO, tumor necrosis factor (TNF-α, and prostaglandin E2 (PGE2 from RAW264.7 cells activated by the toll-like receptor (TLR-2 ligands, Gram-positive bacterium-derived peptidoglycan (PGN and pam3CSK, and the TLR4 ligand, Gram-negative bacterium-derived lipopolysaccharide (LPS. CA arrested the growth of dermatitis-inducing Gram-positive and Gram-negative microorganisms such Propionibacterium acnes, Pseudomonas aeruginosa, and Staphylococcus aureus. CA also blocked the nuclear translocation of nuclear factor (NF-κB and its upstream signaling including Syk/Src, phosphoinositide 3-kinase (PI3K, Akt, inhibitor of κBα (IκBα kinase (IKK, and IκBα for NF-κB activation. Kinase assays revealed that Syk could be direct enzymatic target of CA in its anti-inflammatory action. Therefore, our data strongly suggest the potential of CA as an anti-inflammatory drug against skin inflammatory responses with Src/NF-κB inhibitory properties.

  20. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities.

    Science.gov (United States)

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-09-16

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested.

  1. Antioxidant and Anti-Inflammatory Activities in Extracts from Minke Whale (Balaenoptera acutorostrata Blubber

    Directory of Open Access Journals (Sweden)

    Mari Johannessen Walquist

    2017-01-01

    Full Text Available Intake of long-chain omega-3 polyunsaturated fatty acids (LC-n3-PUFA is commonly recognized to reduce cardiovascular disease (CVD. In previous studies, cold-pressed whale oil (CWO and cod liver oil (CLO were given as a dietary supplement to healthy volunteers. Even though CWO contains less than half the amount of LC-n3-PUFA of CLO, CWO supplement resulted in beneficial effects on anti-inflammatory and CVD risk markers compared to CLO. In the present study, we prepared virtually lipid-free extracts from CWO and CLO and evaluated the antioxidative capacity (AOC and anti-inflammatory effects. Oxygen radical absorbance capacity (ORAC and ferric reducing antioxidant power (FRAP assays were used to test the AOC, and the results indicated high levels of antioxidants present in all extracts. The anti-inflammatory effects of the extracts were tested with lipopolysaccharide- (LPS- treated THP-1 cells, measuring its ability to reduce cytokine and chemokine secretion. Several CWO extracts displayed anti-inflammatory activity, and a butyl alcohol extract of CWO most effectively reduced TNF-α (50%, p<0.05 and MCP-1 (85%, p<0.001 secretion. This extract maintained a stable effect of reducing MCP-1 secretion (60%, p<0.05 even after long-term storage. In conclusion, CWO has antioxidant and anti-inflammatory activities that may act in addition to its well-known LC-n3-PUFA effects.

  2. Evaluation of anti-inflammatory activity of some Libyan medicinal plants in experimental animals

    Directory of Open Access Journals (Sweden)

    Nahar Lutfun

    2012-01-01

    Full Text Available Ballota pseudodictamnus (L. Benth. (Lamiaceae, Salvia fruticosa Mill. (Lamiaceae and Thapsia garganica L. (Apiaceae are three well-known medicinal plants from the Libyan flora, which have long been used for the treatment of inflammations. The aim of the present study was to investigate, for the first time, the anti-inflammatory property of the methanol (MeOH extracts of the aerial parts of these plants. Shade-dried and ground aerial parts of B. pseudodictamnus, S. fruticosa and T. garganica were Soxhlet-extracted with MeOH. The extracts were concentrated by evaporation under reduced pressure at 40°C. The anti-inflammatory activity of the extracts was evaluated using the carrageenan-induced mice paw edema model. The administration of the extracts at a dose of 500 mg/kg body weight produced statistically significant inhibition (p < 0.05 of edema within 3 h of carrageenan administration. The results demonstrated significant anti-inflammatory properties of the test extracts. Among the extracts, the S. fruticosa extract exhibited the most significant inhibition of inflammation after 3 h (62.1%. Thus, S. fruticosa could be a potential source for the discovery and development of newer anti-inflammatory ‘leads’ for drug development. The anti-inflammatory activity of B. pseudodictamnus and S. fruticosa could be assumed to be related to high levels of phenolic compounds, e.g., flavonoids, present in these plants.

  3. Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood model.

    Science.gov (United States)

    Serpe, Loredana; Canaparo, Roberto; Daperno, Marco; Sostegni, Raffaello; Martinasso, Germana; Muntoni, Elisabetta; Ippolito, Laura; Vivenza, Nicoletta; Pera, Angelo; Eandi, Mario; Gasco, Maria Rosa; Zara, Gian Paolo

    2010-03-18

    Standard treatment for inflammatory bowel diseases (IBD) necessitates frequent intake of anti-inflammatory and/or immunosuppressive drugs, leading to significant adverse events. To evaluate the role solid lipid nanoparticles (SLN) play as drug delivery system in enhancing anti-inflammatory activity for drugs such as dexamethasone and butyrate in a human inflammatory bowel diseases whole-blood model. ELISA assay and the peripheral blood mononuclear cell (PBMC) cytokine mRNA expression levels were evaluated by quantitative SYBR Green real-time RT-PCR to determine the IL-1beta, TNF-alpha, IFN-gamma and IL-10 secretion in inflammatory bowel diseases patients' PBMC culture supernatants. There was a significant decrease in IL-1beta (p<0.01) and TNF-alpha (p<0.001) secretion, whilst IL-10 (p<0.05) secretion significantly increased after cholesteryl butyrate administration, compared to that of butyrate alone at the highest concentration tested (100 microM), at 24h exposure. There was a significant decrease in IL-1beta (p<0.01), TNF-alpha (p<0.001) and IL-10 (p<0.001) secretion after dexamethasone loaded SLN administration, compared to dexamethasone alone at the highest concentration tested (250 nM) at 24h exposure. No IFN-gamma was detected under any conditions and no cytotoxic effects observed even at the highest concentration tested. The incorporation of butyrate and dexamethasone into SLN has a significant positive anti-inflammatory effect in the human inflammatory bowel disease whole-blood model. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Anti-inflammatory activity of Syzygium cumini seed

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... The Syzygium cumini (Myrtaceae) is a popular traditional medicinal plant in India. This study was intended to evaluate the anti-inflammatory activity of ethyl acetate and methanol extracts of S. cumini seed in carrageenan induced paw oedema in wistar rats at the dose level of 200 and 400 mg/kg.

  5. 3-Aminothiophene-2-Acylhydrazones: Non-Toxic, Analgesic and Anti-Inflammatory Lead-Candidates

    Directory of Open Access Journals (Sweden)

    Yolanda Karla Cupertino da Silva

    2014-06-01

    Full Text Available Different chemotypes are described as anti-inflammatory. Among them the N-acylhydrazones (NAH are highlighted by their privileged structure nature, being present in several anti-inflammatory drug-candidates. In this paper a series of functionalized 3-aminothiophene-2-acylhydrazone derivatives 5a–i were designed, synthesized and bioassayed. These new derivatives showed great anti-inflammatory and analgesic potency and efficacy. Compounds 5a and 5d stand out in this respect, and were also active in CFA-induced arthritis in rats. After daily treatment for seven days with 5a and 5d (50 µmol/Kg, by oral administration, these compounds were not renal or hepatotoxic nor immunosuppressive. Compounds 5a and 5d also displayed good drug-scores and low risk toxicity calculated in silico using the program OSIRIS Property Explorer.

  6. Study of evaluation of anti-inflammatory activity of macrolide antibiotics in rats: an experimental study

    OpenAIRE

    Punam A. Gosavi; Jugalkishore B. Jaju; Vishal M. Ubale; Ganesh R. Pawar; Shrikant C. Dharmadhikari

    2015-01-01

    Background: Inflammation is a complex and dynamic condition in which many changes take place at the site of inflammation, as well as systemically. In general, inflammatory response acts to protect the host, but many times it goes unchecked with tissue destruction leading to a spectrum of inflammatory disorders. Anti-inflammatory drugs have long been used to treat spectrum of inflammatory conditions. Anti-inflammatory agents, in use today, though have efficacy, cause a variety of side effects ...

  7. Reducing inappropriate non-steroidal anti-inflammatory prescription in primary care patients with chronic kidney disease.

    Science.gov (United States)

    Keohane, David M; Dennehy, Thomas; Keohane, Kenneth P; Shanahan, Eamonn

    2017-08-14

    Purpose The purpose of this paper is to reduce inappropriate non-steroidal anti-inflammatory prescribing in primary care patients with chronic kidney disease (CKD). Once diagnosed, CKD management involves delaying progression to end stage renal failure and preventing complications. It is well established that non-steroidal anti-inflammatories have a negative effect on kidney function and consequently, all nephrology consensus groups suggest avoiding this drug class in CKD. Design/methodology/approach The sampling criteria included all practice patients with a known CKD risk factor. This group was refined to include those with an estimated glomerular filtration rate (eGFR)<60 ml/min per 1.73m2 (stage 3 CKD or greater). Phase one analysed how many prescriptions had occurred in this group over the preceding three months. The intervention involved creating an automated alert on at risk patient records if non-steroidal anti-inflammatories were prescribed and discussing the rationale with practice staff. The re-audit phase occurred three months' post intervention. Findings The study revealed 728/7,500 (9.7 per cent) patients at risk from CKD and 158 (2.1 per cent) who were subsequently found to have an eGFR<60 ml/min, indicating=stage 3 CKD. In phase one, 10.2 per cent of at risk patients had received a non-steroidal anti-inflammatory prescription in the preceding three months. Additionally, 6.2 per cent had received non-steroidal anti-inflammatories on repeat prescription. Phase two post intervention revealed a significant 75 per cent reduction in the total non-steroidal anti-inflammatories prescribed and a 90 per cent reduction in repeat non-steroidal anti-inflammatory prescriptions in those with CKD. Originality/value The study significantly reduced non-steroidal anti-inflammatory prescription in those with CKD in primary care settings. It also created a CKD register within the practice and an enduring medication alert system for individuals that risk nephrotoxic

  8. PEGylated bilirubin nanoparticle as an anti-oxidative and anti-inflammatory demulcent in pancreatic islet xenotransplantation.

    Science.gov (United States)

    Kim, Min Jun; Lee, Yonghyun; Jon, Sangyong; Lee, Dong Yun

    2017-07-01

    Transplanted islets suffer hypoxic stress, which leads to nonspecific inflammation. This is the major cause of islet graft failure during the early stage of intrahepatic islet transplantation. Although bilirubin has shown potent anti-oxidative and anti-inflammatory functions, its clinical applications have been limited due to its insolubility and short half-life. To overcome this problem, novel amphiphilic bilirubin nanoparticles are designed. Hydrophilic poly(ethylene glycol) (PEG) is conjugated to the hydrophobic bilirubin molecule. Then, the PEG-bilirubin conjugates form nanoparticles via self-assembly, i.e., so-called to BRNPs. BRNPs can protect islet cells not only from chemically induced oxidative stress by scavenging reactive oxygen species molecules, but also from activated macrophages by suppressing cytokine release. Importantly, in vivo experiments demonstrate that BRNP treatment can dramatically and significantly prolong islet graft survival compared to bilirubin treatment. In addition, immunohistochemical analysis shows BRNPs have potent anti-oxidative and anti-inflammatory capabilities. Collectively, novel BRNPs can be a new potent remedy for successful islet transplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In ova angiogenesis analgesic and anti inflammatory potency of Aerva monsoniae (Amaranthaceae

    Directory of Open Access Journals (Sweden)

    Sandhya S

    2012-10-01

    Full Text Available Objective: To evaluate the wound healing potency of aqueous extract of Aerva monsoniae (A. monsoniae by in vitro method using fertilized eggs, in vivo analgesic and anti inflammatory activity in rodents and the anti bacterial activity on the bacterial strains that infect the wound. Methods: The whole plant of A. monsoniae was extracted with water and then subjected to preliminary chemical screening. It was then evaluated for in ova angiogenesis on fertilized white leg horn eggs using the concentrations of 200-600 毺 g/mL. The analgesic activity was evaluated in mice using the dose 100 and 250 mg/kg. The anti inflammatory activity was evaluated in rats using the dose 250 mg/kg and 500 mg/kg. In both the parameters water was used as the control and diclofenac was used the standard. The anti bacterial activity on Staphylococcus aureus and Pseudomonas aerugenosa was performed. Results: The phytochemical screening revealed the presence of tannins, flavonoids and saponins. The in ova angiogenesis revealed a dose dependent activity which proves the wound healing claim of the plant as more number of blood capillaries were formed at the site of the drug. The plant proved to be a potent analgesic and anti inflammatory agent at doses 1 00 mg/kg and 250 mg/kg. The anti bacterial activity was present but at higher doses. Conclusions: The parameters studied in the present investigation proved that the plant is a potent wound healer. Further in vivo wound healing studies on animal model is desired. As the extract showed potent analgesic, anti inflammatory and anti bacterial properties, it can be considered that when formulated into suitable formulation, and it can reduce the pain, inflammation and infections related to wound very well.

  10. Anti-inflammatory activity of hydroalcoholic extracts of Lavandula dentata L. and Lavandula stoechas L.

    Science.gov (United States)

    Algieri, Francesca; Rodriguez-Nogales, Alba; Vezza, Teresa; Garrido-Mesa, Jose; Garrido-Mesa, Natividad; Utrilla, M Pilar; González-Tejero, M Reyes; Casares-Porcel, Manuel; Molero-Mesa, Joaquin; Del Mar Contreras, Maria; Segura-Carretero, Antonio; Pérez-Palacio, José; Diaz, Caridad; Vergara, Noemí; Vicente, Francisca; Rodriguez-Cabezas, M Elena; Galvez, Julio

    2016-08-22

    Plants from genus Lavandula have been used as anti-inflammatory drugs in Mediterranean traditional medicine. Nowadays, there is a growing interest for complementary medicine, including herbal remedies, to treat inflammatory bowel disease (IBD). To test the anti-inflammatory properties of Lavandula dentata and Lavandula stoechas extracts in two inflammatory experimental models: TNBS model of rat colitis and the carrageenan-induced paw edema in mice, in order to mimic the intestinal conditions and the extra-intestinal manifestations of human IBD, respectively. The extracts were characterized through the qualitative HPLC analysis. Then, they were assayed in vitro and in vivo. In vitro studies were performed in BMDMs and CMT-93 epithelial cells with different concentrations of the extracts (ranging from 0.1 to 100µg/ml). The extracts were tested in vivo in the TNBS model of rat colitis (10 and 25mg/kg) and in the carrageenan-induced paw edema in mice (10, 25 and 100mg/kg). L. dentata and L. stoechas extracts displayed immunomodulatory properties in vitro down-regulating different mediators of inflammation like cytokines and nitric oxide. They also showed anti-inflammatory effects in the TNBS model of colitis as evidenced by reduced myeloperoxidase activity and increased total glutathione content, indicating a decrease of neutrophil infiltration and an improvement of the oxidative state. Besides, both extracts modulated the expression of pro-inflammatory cytokines and chemokines, and ameliorated the altered epithelial barrier function. They also displayed anti-inflammatory effects in the carrageenan-induced paw edema in mice, since a significant reduction of the paw thickness was observed. This was associated with a down-regulation of the expression of different inducible enzymes like MMP-9, iNOS and COX-2 and pro-inflammatory cytokines, all involved in the maintenance of the inflammatory condition. L. dentata and L. stoechas extracts showed intestinal anti-inflammatory

  11. Anti-Inflammatory Activity of Iridoids and Verbascoside Isolated from Castilleja tenuiflora

    Directory of Open Access Journals (Sweden)

    Verónica Rodríguez-López

    2013-09-01

    Full Text Available Castilleja tenuiflora (Orobanchaceae has been used in Mexican traditional medicine as a treatment for cough, dysentery, anxiety, nausea and vomiting as well as hepatic and gastrointestinal diseases. The ethanolic extract of the aerial parts of Castilleja tenuiflora was separated by silica gel column chromatography. The fractions were evaluated using the induced edema acetate 12-O-tetradecanoylphorbol (TPA anti-inflammatory activity model. The most active fraction was subjected to medium-pressure liquid chromatography (MPLC with UV detection at 206 and 240 nm. The following iridoids were isolated: geniposidic acid, aucubin, bartioside, 8-epi-loganin, mussaenoside, and the phenylpropanoid verbascoside. The most active iridoid was geniposidic acid, which was more active than the control (indomethacin, and the least active iridoid was mussaenoside. 8-epi-Loganin, and mussaenoside have not been previously reported to be anti-inflammatory compounds. The results of these investigations confirm the potential of Mexican plants for the production of bioactive compounds and validate the ethnomedical use of Castilleja tenuiflora-like anti-inflammatory plants.

  12. Peracetylated hydroxytyrosol, a new hydroxytyrosol derivate, attenuates LPS-induced inflammatory response in murine peritoneal macrophages via regulation of non-canonical inflammasome, Nrf2/HO1 and JAK/STAT signaling pathways.

    Science.gov (United States)

    Montoya, Tatiana; Aparicio-Soto, Marina; Castejón, María Luisa; Rosillo, María Ángeles; Sánchez-Hidalgo, Marina; Begines, Paloma; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina

    2018-03-18

    The present study was designed to investigate the anti-inflammatory effects of a new derivative of hydroxytyrosol (HTy), peracetylated hydroxytyrosol (Per-HTy), compared with its parent, HTy, on lipopolysaccharide (LPS)-stimulated murine macrophages as well as potential signaling pathways involved. In particular, we attempted to characterize the role of the inflammasome underlying Per-HTy possible anti-inflammatory effects. Isolated murine peritoneal macrophages were treated with HTy or its derivative in the presence or absence of LPS (5 μg/ml) for 18 h. Cell viability was determined using sulforhodamine B (SRB) assay. Nitric oxide (NO) production was analyzed by Griess method. Production of pro-inflammatory cytokines was evaluated by enzyme-linked immunosorbent assay (ELISA) and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway (STAT3), haem oxigenase 1 (HO1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and mitogen-activated protein kinases (MAPKs) activation was determined by Western blot. Per-HTy significantly reduced the levels of NO and pro-inflammatory cytokines as well as both COX-2 and iNOS expressions. Furthermore, Per-HTy treatment inhibited STAT3 and increased Nrf2 and HO1 protein levels in murine macrophages exposed to LPS. In addition, Per-HTy anti-inflammatory activity was related with an inhibition of non-canonical nucleotide binding domain (NOD)-like receptor (NLRP3) inflammasome pathways by decreasing pro-inflammatory interleukin (IL)-1β and IL-18 cytokine levels as consequence of regulation of cleaved caspase-11 enzyme. These results support that this new HTy derivative may offer a new promising nutraceutical therapeutic strategy in the management of inflammatory-related pathologies. Copyright © 2018. Published by Elsevier Inc.

  13. [Antioxidant and anti-inflammatory activities of Moroccan Erica arborea L].

    Science.gov (United States)

    Amezouar, F; Badri, W; Hsaine, M; Bourhim, N; Fougrach, H

    2013-12-01

    The present study was carried out to evaluate the antioxidant and anti-inflammatory capacity, and acute toxicity of Moroccan Erica arborea leaves. Antioxidant capacity was assessed by diphenyle-picryl-hydrazyl (DPPH), phosphomolybdate (PPM) and ferric reducing antioxidant power (FRAP) tests and anti-inflammatory capacity was evaluated by hind paw oedema model using carrageenan-induced inflammation in rat. The acute toxicity was evaluated using mice. Acute toxicity of ethanolic extract of E. arborea showed no sign of toxicity at dose of 5 g/kg B.W. Our extracts have important antioxidant properties. The efficient concentration of the ethanolic extract (10.22 μg/ml) required for decreasing initial DPPH concentration by 50% was comparable to that of standard solution butyl-hydroxy-toluene (BHT) (8.87 μg/ml). The administration of ethanolic extract at doses of 200 and 400mg/kg B.W. was able to prevent plantar oedema and exhibited a significant inhibition against carrageenan-induced inflammation when compared to the control group (NaCl 0.9%) but comparable to those of diclofenac (reference drug). Our results show that the leaves of E. arborea may contain some bioactive compounds which are responsible for the antioxidant and anti-inflammatory activities observed here. Our finding may indicate the possibility of using the extracts of this plant to prevent the antioxidant and inflammatory processes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. A glycoprotein with anti-inflammatory properties secreted by an Aspergillus nidulans modified strain

    Directory of Open Access Journals (Sweden)

    J. C. F. Queiroz

    2007-01-01

    Full Text Available Total RNA from lipopolysaccharide (LPS-stimulated rat macrophages used to treat protoplasts from an Aspergillus nidulans strain originated the RT2 regenerated strain, whose culture supernatant showed anti-inflammatory activity in Wistar rats. The protein fraction presenting such anti-inflammatory activity was purified and biochemically identified. The screening of the fraction responsible for such anti-inflammatory property was performed by evaluating the inhibition of carrageenan-induced paw edema in male Swiss mice. Biochemical analyses of the anti-inflammatory protein used chromatography, carbohydrates quantification of the protein sample, amino acids content analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Total sugar quantification revealed 32% glycosylation of the protein fraction. Amino acid analysis of such fraction showed a peculiar pattern presenting 29% valine. SDS-PAGE revealed that the protein sample is pure and its molecular weight is about 40kDa. Intravenous injection of the isolated substance into mice significantly inhibited carrageenan-induced paw edema. The isolated glycoprotein decreased carrageenan-induced paw edema in a prostaglandin-dependent phase, suggesting an inhibitory effect of the isolated glycoprotein on prostaglandin synthesis.

  15. Evaluation of Anti-Nociceptive and Anti-Inflammatory Activities of a Heterofucan from Dictyota menstrualis

    Directory of Open Access Journals (Sweden)

    Helena Bonciani Nader

    2013-08-01

    Full Text Available Fucan is a term that defines a family of homo- and hetero-polysaccharides containing sulfated l-fucose in its structure. In this work, a heterofucan (F2.0v from the seaweed, Dictyota menstrualis, was evaluated as an antinociceptive and anti-inflammatory agent. F2.0v (20.0 mg/kg inhibits 100% of leukocyte migration into the peritoneal cavity after chemical stimulation. However, F2.0v does not alter the expression of interleukin-1 beta (IL-1β and interleukin-6 (IL-6, as well as tumor necrosis factor alpha (TNF-α. F2.0v (20.0 mg/kg has peripheral antinociceptive activity with potency similar to dipyrone. On the other hand, it had no effect on pain response on the hot plate test. Confocal microscopy analysis and flow cytometry showed that F2.0v binds to the surface of leucocytes, which leads us to suggest that the mechanism of action of anti-inflammatory and antinociceptive F2.0v is related to its ability to inhibit the migration of leukocytes to the site of tissue injury. In summary, the data show that F2.0v compound has great potential as an antinociceptive and anti-inflammatory, and future studies will be performed to further characterize the mechanism of action of F2.0v.

  16. Anti-inflammatory activity of Heliotropium strigosum in animal models.

    Science.gov (United States)

    Khan, Haroon; Khan, Murad Ali; Gul, Farah; Hussain, Sajjid; Ashraf, Nadeem

    2015-12-01

    The current project was designed to evaluate the anti-inflammatory activity of crude extract of Heliotropium strigosum and its subsequent solvent fractions in post carrageenan-induced edema and post xylene-induced ear edema at 50, 100, and 200 mg/kg intraperitoneally. The results revealed marked attenuation of edema induced by carrageenan injection in a dose-dependent manner. The ethyl acetate fraction was most dominant with 73.33% inhibition followed by hexane fraction (70.66%). When the extracts were challenged against xylene-induced ear edema, again ethyl acetate and hexane fractions were most impressive with 38.21 and 35.77% inhibition, respectively. It is concluded that various extracts of H. strigosum possessed strong anti-inflammatory activity in animal models. © The Author(s) 2012.

  17. Design, synthesis, and structure-activity relationships of 2-benzylidene-1-indanone derivatives as anti-inflammatory agents for treatment of acute lung injury.

    Science.gov (United States)

    Xiao, Siyang; Zhang, Wenxin; Chen, Hongjin; Fang, Bo; Qiu, Yinda; Chen, Xianxin; Chen, Lingfeng; Shu, Sheng; Zhang, Yali; Zhao, Yunjie; Liu, Zhiguo; Liang, Guang

    2018-01-01

    The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f , was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury.

  18. Design, synthesis, and structure–activity relationships of 2-benzylidene-1-indanone derivatives as anti-inflammatory agents for treatment of acute lung injury

    Science.gov (United States)

    Chen, Hongjin; Fang, Bo; Qiu, Yinda; Chen, Xianxin; Chen, Lingfeng; Shu, Sheng; Zhang, Yali; Zhao, Yunjie; Liu, Zhiguo; Liang, Guang

    2018-01-01

    Purpose The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. Methods A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. Results Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f, was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. Conclusion The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury. PMID:29719375

  19. Intra-amniotic pharmacological blockade of inflammatory signalling pathways in an ovine chorioamnionitis model.

    Science.gov (United States)

    Ireland, D J; Kemp, M W; Miura, Y; Saito, M; Newnham, J P; Keelan, J A

    2015-05-01

    Intrauterine inflammation (IUI) associated with infection is the major cause of preterm birth (PTB) at PTBs. Pharmacological strategies to prevent PTB and improve fetal outcomes will likely require both antimicrobial and anti-inflammatory therapies. Here we investigated the effects of two cytokine-suppressive anti-inflammatory drugs (CSAIDs), compounds that specifically target inflammatory signalling pathways, in an ovine model of lipopolysaccharide (LPS)-induced chorioamnionitis. Chronically catheterized ewes at 116 days gestation (n = 7/group) received an intra-amniotic (IA) bolus of LPS (10 mg) plus vehicle or CSAIDS: TPCA-1 (1.2 mg/kg fetal weight) or 5z-7-oxozeaenol (OxZnl; 0.4 mg/kg fetal weight); controls received vehicle (dimethylsulphoxide). Amniotic fluid (AF), fetal and maternal blood samples were taken 0, 2, 6, 12, 24 and 48 h later; tissues were taken at autopsy (48 h). Administration of TPCA-1 or OxZnl abrogated the stimulatory effects of LPS (P < 0.01 versus vehicle control) on production of PGE2 in AF, with lesser (non-significant) effects on IL-6 production. Fetal membrane polymorphonuclear cell infiltration score was significantly higher in LPS versus vehicle control animals (P < 0.01), and this difference was absent with TPCA-1 and OxZnl treatment. LPS-induced systemic fetal inflammation was highly variable, with no significant effects of CSAIDs observed. Lung inflammation was evident with LPS exposure, but unaffected by CSAID treatment. We have shown in a large animal model that IA administration of a single dose of CSAIDs can suppress LPS-induced IA inflammatory responses, while fetal effects were minimal. Further development and investigation of these compounds in infectious models is warranted. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Treating Gulf War Illness with Novel Anti-Inflammatories: A Screening of Botantical Microglia Modulators

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0623 TITLE: Treating Gulf War Illness with Novel Anti-Inflammatories: A Screening of Botantical Microglia Modulators...Report 3. DATES COVERED 30 Sep 2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Treating Gulf War Illness with Novel Anti...SUBJECT TERMS Gulf War Illness, botanical, anti-inflammatory, biomarker, microglia, improvement, treatment 16. SECURITY CLASSIFICATION OF: 17

  1. Calcitonin protects chondrocytes from lipopolysaccharide-induced apoptosis and inflammatory response through MAPK/Wnt/NF-κB pathways.

    Science.gov (United States)

    Zhang, Lai-Bo; Man, Zhen-Tao; Li, Wei; Zhang, Wei; Wang, Xian-Quan; Sun, Shui

    2017-07-01

    Calcitonin (CT) is an anti-absorbent, which has long been used for treatment of osteoporosis. However, little information is available about the effects of CT on osteoarthritis (OA). This study was mainly aimed to explore the effects of CT on the treatment of OA, as well as the underlying mechanisms. Chondrocytes were isolated from immature mice and then were incubated with lipopolysaccharide (LPS), CT, small interfering (si) RNA against bone morphogenetic protein (BMP)-2, and/or the inhibitors of MAPK/Wnt/NF-κB pathway. Thereafter, cell viability, apoptosis, nitric oxide (NO) and inflammatory factors productions, and expression levels of cartilage synthesis protein key factors, cartilage-derived morphogenetic protein (CDMP) 1, SRY (sex-determining region Y)-box 9 protein (SOX9), and MAPK/Wnt/NF-κB pathways key factors were determined. CT significantly reversed LPS-induced cell viability decrease, apoptosis increase, the inflammatory factors and NO secretion, the abnormally expression of cartilage synthesis proteins and the activation of MAPK/Wnt/NF-κB pathways (Ppathways statistically further increased the levels of CDMP1 and SOX9 (Ppathways, and could partially abolish CT-modulated the expression changes in CDMP1 and SOX9, and MAPK/Wnt/NF-κB pathways key factors (Ppathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Anti-inflammatory activity of bark of Xeromphis spinosa

    Directory of Open Access Journals (Sweden)

    Biswa Nath Das

    2009-06-01

    Full Text Available The bark of Xeromphis spinosa extracted by a mixture of equal proportions of petroleum ether, ethyl acetate and methanol at an oral dose of 200 and 400 mg/kg body weight exhibited significant anti-inflammatory activity when compared with control.

  3. Anti-Inflammatory Activity of Compounds Isolated from Plants

    Directory of Open Access Journals (Sweden)

    R.M. Perez G.

    2001-01-01

    Full Text Available This review shows over 300 compounds isolated and identified from plants that previously demonstrated anti-inflammatory activity. They have been classified in appropriate chemical groups and data are reported on their pharmacological effects, mechanisms of action, and other properties.

  4. Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant

    Directory of Open Access Journals (Sweden)

    Muhammad Naveed

    2012-05-01

    Full Text Available Abstract Background Pyrexia, algesia and inflammation are associated with several pathological conditions. Synthetic drugs available for the treatment of these conditions cause multiple unwanted effects. Several studies are ongoing worldwide to find natural healing agents with better safety profile. The current study was thus aimed at evaluating antipyretic, analgesic and anti-inflammatory activities of the methanolic extract of whole plant of V. betonicifolia (VBME. Methods VBME was employed to assess antipyretic activity in yeast induced hyperthermia. Analgesic profile was ascertained in acetic acid induced writhing, hot plat and tail immersion test. Nevertheless, the anti-inflammatory activity was tested in carrageenan induced paw edema and histamine induced inflammatory tests. BALB/c mice were used at test doses of 100, 200 and 300mg/kg body weight intra peritoneally (i.p. Results In yeast induced pyrexia, VBME demonstrated dose dependently (78.23% protection at 300mg/kg, similar to standard drug, paracetamol (90% at 150mg/kg i.p. VBME showed a dose dependent analgesia in various pain models i.e. acetic acid, hot plat and tail immersion having 78.90%, 69.96% and 68.58% protection respectively at 300mg/kg. However, the analgesic action of VBME was completely antagonized by the injection of naloxone like opiate antagonists. Similarly carrageenan and histamine induces inflammation was significantly antagonized by VBME, 66.30% and 60.80% respectively at 300mg/kg. Conclusions It is concluded that VBME has marked antipyretic, analgesic and anti-inflammatory activities in various animal models and this strongly supports the ethnopharmacological uses of Viola betonicifolia as antipyretic, analgesic and anti-inflammatory plant.

  5. Anti-inflammatory, gastroprotective and anti-ulcerogenic effects of red algae Gracilaria changii (Gracilariales, Rhodophyta) extract

    Science.gov (United States)

    2013-01-01

    Background Gracilaria changii (Xia et Abbott) Abbott, Zhang et Xia, a red algae commonly found in the coastal areas of Malaysia is traditionally used for foods and for the treatment of various ailments including inflammation and gastric ailments. The aim of the study was to investigate anti-inflammatory, gastroprotective and anti-ulcerogenic activities of a mass spectrometry standardized methanolic extract of Gracilaria changii. Methods Methanolic extract of Gracilaria changii (MeOHGCM6 extract) was prepared and standardized using mass spectrometry (MS). Anti-inflammatory activities of MeOHGCM6 extract were examined by treating U937 cells during its differentiation with 10 μg/ml MeOHGCM6 extract. Tumour necrosis factors-α (TNF-α) response level and TNF-α and interleukin-6 (IL-6) gene expression were monitored and compared to that treated by 10 nM betamethasone, an anti-inflammatory drug. Gastroprotective and anti-ulcerogenic activities of MeOHGCM6 extract were examined by feeding rats with MeOHGCM6 extract ranging from 2.5 to 500 mg/kg body weight (b.w.) following induction of gastric lesions. Production of mucus and gastric juice, pH of the gastric juice and non-protein sulfhydryls (NP-SH) levels were determined and compared to that fed by 20 mg/kg b.w. omeprazole (OMP), a known anti-ulcer drug. Results MS/MS analysis of the MeOHGCM6 extracts revealed the presence of methyl 10-hydroxyphaeophorbide a and 10-hydroxypheophytin a, known chlorophyll proteins and several unidentified molecules. Treatment with 10 μg/ml MeOHGCM6 extract during differentiation of U937 cells significantly inhibited TNF-α response level and TNF-α and IL-6 gene expression. The inhibitory effect was comparable to that of betamethasone. No cytotoxic effects were recorded for cells treated with the 10 μg/ml MeOHGCM6 extract. Rats fed with MeOHGCM6 extract at 500 mg/kg b.w. showed reduced absolute ethanol-induced gastric lesion sizes by > 99% (p < 0.05). This protective

  6. Marine Invertebrate Natural Products for Anti-Inflammatory and Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Kalimuthu Senthilkumar

    2013-01-01

    Full Text Available The marine environment represents a relatively available source of functional ingredients that can be applied to various aspects of food processing, storage, and fortification. Moreover, numerous marine invertebrates based compounds have biological activities and also interfere with the pathogenesis of diseases. Isolated compounds from marine invertebrates have been shown to pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS, osteoporosis, and so forth. Extensive research within the last decade has revealed that most chronic illnesses such as cancer, neurological diseases, diabetes, and autoimmune diseases exhibit dysregulation of multiple cell signaling pathways that have been linked to inflammation. On the basis of their bioactive properties, this review focuses on the potential use of marine invertebrate derived compounds on anti-inflammatory and some chronic diseases such as cardiovascular disease, osteoporosis, diabetes, HIV, and cancer.

  7. Inhibition of amyloidogenesis by non-steroidal anti-inflammatory drugs and their hybrid nitrates

    Science.gov (United States)

    Schiefer, Isaac T.; Abdul-Hay, Samer; Wang, Huali; Vanni, Michael; Qin, Zhihui; Thatcher, Gregory R. J.

    2011-01-01

    Poor blood-brain barrier penetration of non-steroidal anti-inflammatory drugs (NSAIDs) has been blamed for the failure of the selective amyloid lowering agent (SALA) R-flurbiprofen in phase 3 clinical trials for Alzheimer’s disease (AD). NO-donor NSAIDs (NO-NSAIDs) provide an alternative, gastric-sparing approach to NSAID SALAs, which may improve bioavailability. NSAID analogs were studied for anti-inflammatory activity and for SALA activity in N2a neuronal cells transfected with human amyloid precursor protein (APP). Flurbiprofen (1) analogs were obtained with enhanced anti-inflammatory and anti-amyloidogenic properties compared to 1, however, esterification led to elevated Aβ1–42 levels. Hybrid nitrate prodrugs possessed superior anti-inflammatory activity and reduced toxicity relative to the parent NSAIDs, including clinical candidate, CHF5074. Although hybrid nitrates elevated Aβ1–42 at higher concentration, SALA activity was observed at low concentrations (≤ 1 µM): both Aβ1–42 and the ratio of Aβ1–42/Aβ1–40 were lowered. This biphasic SALA activity was attributed to the intact nitrate drug. For several compounds the selective modulation of amyloidogenesis was tested using an immunoprecipitation MALDI-TOF approach. These data support the development of NO-NSAIDs as an alternative approach towards a clinically useful SALA. PMID:21405086

  8. Screening of Ficus religiosa leaves fractions for analgesic and anti-inflammatory activities

    OpenAIRE

    Gulecha, Vishal; Sivakumar, T; Upaganlawar, Aman; Mahajan, Manoj; Upasani, Chandrashekhar

    2011-01-01

    Objective : To evaluate the different fractions of dried leaves of Ficus religiosa Linn for analgesic and anti-inflammatory activity using different models of pain and inflammation Materials and Methods : The analgesic activity of F. religiosa carried out using acetic acid-induced writhing in mice and tail flick test in rats. The anti-inflammatory activity was evaluated using carrageenan-induced rat paw edema and cotton pellet-granuloma formation in rats. Five different fractions (FRI, FR...

  9. Molecular mechanisms of topical anti-inflammatory effects of lipoxin A(4) in endotoxin-induced uveitis.

    Science.gov (United States)

    Medeiros, Rodrigo; Rodrigues, Gustavo Büchele; Figueiredo, Cláudia Pinto; Rodrigues, Eduardo Büchele; Grumman, Astor; Menezes-de-Lima, Octavio; Passos, Giselle Fazzioni; Calixto, João Batista

    2008-07-01

    Lipoxin A(4) (LXA(4)) is a lipid mediator that plays an important role in inflammation resolution. We assessed the anti-inflammatory effect of LXA(4) on endotoxin-induced uveitis (EIU) in rats. The inflammatory cell number and levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), prostaglandin E(2) (PGE(2)), and protein, as well as expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF), in the anterior chamber of the eye were determined 24 h after lipopolysaccharide (LPS; 200 mug/paw) intradermal injection. The immunohistochemical reactivities of nuclear factor-kappaB (NF-kappaB) and c-Jun were also examined. Topical LXA(4) (1-10 ng/eye) pretreatment decreased the number of inflammatory cells and the protein leakage into the aqueous humor (AqH). In addition, topical LXA(4) (10 ng/eye) inhibited the LPS-induced production of IL-1beta, TNF-alpha, and PGE(2), and expression of COX-2 and VEGF. A decreased activation of NF-kappaB and c-Jun was also found in LXA(4)-treated eyes. It is very interesting that an anti-inflammatory effect was achieved even when LXA(4) (10 ng/eye) was applied topically after LPS challenge, as indicated by the reduction in the cellular and protein extravasations into the AqH. Moreover, topical treatment of corticosteroid prednisolone (200 mug/eye) beginning before or after LPS injection reduced all of the molecular and biochemical alterations promoted on EIU rats in an efficacy similar to that of LXA(4). Together, the present results provide clear evidence that pharmacological activation of LXA(4) signaling pathway potently reduces the EIU in rats. Therefore, LXA(4) stable analogs could represent promising agents for the management of ocular inflammatory diseases.

  10. Anti-oxidant and anti-inflammatory effects of rice bran and green tea ...

    African Journals Online (AJOL)

    assay and flow cytometry. The anti-inflammatory effects of OCB were assessed by a nitric oxide (NO) assay ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... officially used at the 11th Winter Olympics Games of 1972 in ... well known for its beneficial properties on body condition ...

  11. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders.

    Science.gov (United States)

    Johnson, Tyler A; Sohn, Johann; Inman, Wayne D; Bjeldanes, Leonard F; Rayburn, Keith

    2013-01-15

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activities in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves was also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with a standard compound celastrol (1) but were moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects greater than or equal to 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of stinging nettle may be more effective than traditional tinctures (water, methanol, ethanol) in clinical evaluations for the treatment of inflammatory disorders especially arthritis. A chemical investigation into the lipophilic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. Published by Elsevier GmbH.

  12. Are anti-inflammatory agents effective in treating gingivitis as solo or adjunct therapies? A systematic review.

    Science.gov (United States)

    Polak, David; Martin, Conchita; Sanz-Sánchez, Ignacio; Beyth, Nurit; Shapira, Lior

    2015-04-01

    Systematically review the scientific evidence for efficiency of anti-inflammatory agents against gingivitis, either as solo treatments or adjunctive therapies. A protocol was developed aimed to answer the following focused question: "Are anti-inflammatory agents effective in treating gingivitis as solo or adjunct therapies?" RCTs and cohort studies on anti-inflammatory agents against gingivitis studies were searched electronically. Screening, data extraction and quality assessment were conducted. The primary outcome measures were indices of gingival inflammation. A sub-analysis was performed dividing the active agents into anti-inflammatory and other drugs. The search identified 3188 studies, of which 14 RCTs met the inclusion criteria. The use of anti-inflammatory or other agents, in general showed a higher reduction in the test than in the control in terms of gingival indexes and bleeding scores. Only two RCTs on inflammatory drugs could be meta-analysed, showing a statistically significant reduction in the GI in the experimental group [WMD = -0.090; 95% CI (-0.105; -0.074); p = 0.000]. However, the contribution of both studies to the global result was unbalanced (% weight: 99.88 and 0.12 respectively). Most of the tested material showed beneficial effect as anti-inflammatory agents against gingivitis, either as a single treatment modality or as an adjunctive therapy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Antinociceptive and anti-inflammatory activities of the methanol ...

    African Journals Online (AJOL)

    This study was aimed at screening the methanol tuber extract of Chlorophytum alismifolium for antinociceptive and anti-inflammatory activities using experimental animal models. The antinociceptive activity was tested using acetic acid-induced writhing response in Swiss albino mice and formalininduced pain in Wistar rats, ...

  14. Anti-inflammatory and anti-nociceptive activities of methanolic leaf extract of Indigofera cassioides Rottl. Ex. DC.

    Directory of Open Access Journals (Sweden)

    Raju Senthil Kumar

    2013-01-01

    Conclusions: All the results obtained revealed that the extract MEIC showed potent anti-inflammatory and anti-nociceptive activity against all the tested models and the results obtained were comparable with the standards used. The activity of the extract may be due to the presence of terpenoids, flavonoids and other phytochemicals.

  15. ANTI-INFLAMMATORY ACTIVITY OF EUCALYPTUS SPP. AND PISTASCIA LENTISCUS LEAF EXTRACTS.

    Science.gov (United States)

    Qabaha, Khaled; Ras, Sari Abu; Abbadi, Jehad; Al-Rimawi, Fuad

    2016-01-01

    Eucalyptus spp. and Pistascia lentiscus are among the Palestinian trees that are traditionally used in folkloric medicine in treating many diseases; leaves of which are thought to have anti-inflammatory, antibacterial and antioxidant effects. The goal of this study is to evaluate the in vitro inhibitory effect of Eucalyptus spp . and Pistascia lentiscus extracts on Lipopolysacaride (LPS)-induced Interlukin-6 (Il-6) and Tumor Necrosis Factor-α (TNF-α) by polymorphonuclear Cells (PMNCs). Polymorphonuclear cells were isolated from the whole blood using Histopaque (Ficol-1077) method and then cultured in an enriched Roswell Park Memorial Institute (RBMI) medium. Supernatants' Interlukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α) levels were determined 24 hour after LPS stimulation. HPLC was employed to determine the concentration of phenolic compounds in the extracts. The concentrations of TNF-α and IL-6 were compared using paired-samples t test. Eucalyptus spp . and Pistascia lentiscus leaves extracts have shown significant reduction in the levels of both Il-6 and TNF-α Gallic acid; a strong anti-inflammatory agent was found to be the major phenolic compound in both leaf extracts. However, other anti-inflammatory phenolic compounds were detected in Pitascia lentiscus extract including syringic acid and p-coumaric acid, while chlorogenic acid was detected in Eucalyptus spp . leaf extract. Reduction in the levels of Il-6 and TNF-α upon the effect of both Eucalyptus spp . and Pistascia lentiscus extract is an indication of their anti-inflammatory effects. Our results may also indicate that the observed anti-inflammatory effect of the above extracts may be due to the presence of gallic acid and other phenolic compounds. List of Abbreviations and Nomenclature: LPS: Lipopolysacaride, Il-6: Interlukin-6, TNF-α: Tumor Necrosis Factor-α, PMNCs: Polymorphonuclear Cells, HPLC: High Performance Liquid Chromatography, ELISA: Enzyme Linked Immune Sorbent Assay, EDTA

  16. Use of nonsteroidal anti-inflammatory drugs among healthy people and specific cerebrovascular safety

    DEFF Research Database (Denmark)

    Fosbøl, Emil L; Olsen, Anne-Marie Schjerning; Olesen, Jonas Bjerring

    2014-01-01

    BACKGROUND: Nonsteroidal anti-inflammatory drugs can increase bleeding and thrombosis, but little is known about the cerebrovascular safety of these drugs, especially among healthy people. AIMS: The aim of this study was to examine the risk of ischemic and hemorrhagic stroke associated with the use...... stroke). RESULTS: We selected 1,028,437 healthy individuals (median age 39 years). At least one nonsteroidal anti-inflammatory drug was claimed by 44·7% of the study population, and the drugs were generally used for a short period of time and in low doses. High-dose ibuprofen and diclofenac were......·35-3·42)]. CONCLUSIONS: In healthy individuals, use of commonly available nonsteroidal anti-inflammatory drugs such as ibuprofen, diclofenac, and naproxen was associated with increased risk of stroke....

  17. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root.

    Science.gov (United States)

    Othman, Ahmad Razi; Abdullah, Norhani; Ahmad, Syahida; Ismail, Intan Safinar; Zakaria, Mohamad Pauzi

    2015-02-05

    The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved. In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites. The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid. This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.

  18. Anti-B cell antibody therapies for inflammatory rheumatic diseases

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Jayne, David R W

    2014-01-01

    Several monoclonal antibodies targeting B cells have been tested as therapeutics for inflammatory rheumatic diseases. We review important observations from randomized clinical trials regarding the efficacy and safety of anti-B cell antibody-based therapies for rheumatoid arthritis, systemic lupus...... and functions in rheumatic disorders. Future studies should also evaluate how to maintain disease control by means of conventional and/or biologic immunosuppressants after remission-induction with anti-B cell antibodies....

  19. Anti-inflammatory Elafin in human fetal membranes.

    Science.gov (United States)

    Stalberg, Cecilia; Noda, Nathalia; Polettini, Jossimara; Jacobsson, Bo; Menon, Ramkumar

    2017-02-01

    Elafin is a low molecular weight protein with antileukoproteinase, anti-inflammatory, antibacterial and immunomodulating properties. The profile of Elafin in fetal membranes is not well characterized. This study determined the changes in Elafin expression and concentration in human fetal membrane from patients with preterm prelabor rupture of membranes (PPROM) and in vitro in response to intra-amniotic polymicrobial pathogens. Elafin messenger RNA (mRNA) expressions were studied in fetal membranes from PPROM, normal term as well as in normal term not in labor membranes in an organ explant system treated (24 h) with lipopolysaccharide (LPS), using quantitative reverse transcription-polymerase chain reaction (RT-PCR). Enzyme-linked immunosorbent assay (ELISA) measured Elafin concentrations in culture supernatants from tissues treated with LPS and polybacterial combinations of heat-inactivated Mycoplasma hominis (MH), Ureaplasma urealyticum (UU) and Gardnerella vaginalis (GV). Elafin mRNA expression in fetal membranes from women with PPROM was significantly higher compared to women who delivered at term after normal pregnancy (5.09±3.50 vs. 11.71±2.21; Pmembranes showed a significantly increased Elafin m-RNA expression (Pmembranes also showed no changes in Elafin protein concentrations compared to untreated controls. Higher Elafin expression in PPROM fetal membranes suggests a host response to an inflammatory pathology. However, lack of Elafin response to LPS and polymicrobial treatment is indicative of the minimal anti-inflammatory impact of this molecule in fetal membranes.

  20. Immuno-modulation and anti-inflammatory benefits of antibiotics: The example of tilmicosin

    OpenAIRE

    Buret, André G.

    2010-01-01

    Exagerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokine...

  1. Anti-Cytotoxic and Anti-Inflammatory Effects of the Macrolide Antibiotic Roxithromycin in Sulfur Mustard-Exposed Human Airway Epithelial Cells

    National Research Council Canada - National Science Library

    Gao1, Radharaman Ray2, Yan Xiao3, Peter E. Barker3 and Prab, Xiugong

    2006-01-01

    .... In this study, the anti-cytotoxic and anti-inflammatory effects of a representative macrolide antibiotic, roxithromycin, were tested in vitro using SM-exposed normal human small airway epithelial (SAE...

  2. Comparison of Anti-inflammatory Activities of Six Curcuma Rhizomes: A Possible Curcuminoid-independent Pathway Mediated by Curcuma phaeocaulis Extract

    OpenAIRE

    Tohda, Chihiro; Nakayama, Natsuki; Hatanaka, Fumiyuki; Komatsu, Katsuko

    2006-01-01

    We aimed to compare the anti-inflammatory activities of six species of Curcuma drugs using adjuvant arthritis model mice. When orally administered 1 day before the injection of adjuvant, the methanol extract of Curcuma phaeocaulis significantly inhibited paw swelling and the serum haptoglobin concentration in adjuvant arthritis mice. Also when orally administered 1 day after the injection of adjuvant, the methanol extract of Curcuma phaeocaulis significantly inhibited paw swelling. Other C...

  3. Antinociceptive and anti-inflammatory properties of methanol fruit ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-inflammatory and antinociceptive properties of crude methanol fruit extract of Quercus incana (QI), as well as its acute toxicity and phytochemical profile. Methods: Two animal models were used: Wistar rats for carrageenan-induced paw inflammation and Swiss albino mice for acetic ...

  4. Phytochemical, Analgesic And Anti-Inflammatory Effects Of The ...

    African Journals Online (AJOL)

    Phytochemical screening was carried out on the ethylacetate portion of the ethanolic extract of the leaves of Pseudocedrella kotschyii and then evaluated for its analgesic (acetic acid-induced writhing) and anti-inflammatory (raw egg albumin-induced oedema) activities in mice and rats respectively. Phytochemical screening ...

  5. anti-inflammatory activity of selected nigerian medicinal plants

    African Journals Online (AJOL)

    Extracts of nineteen plant species from an inventory of Nigerian medicinal plants were screened for activity in two in vitro anti-inflammatory model test systems, inhibition of prostaglandin biosynthesis and PAF-induced elastase release from neutrophilis. Anacardium occidentale and Acalipha hispida were active in both test ...

  6. Flavonoids, anti-inflammatory activity and cytotoxicity of Macfadyena ...

    African Journals Online (AJOL)

    kaempferol, 7-O, 8-C diglucoside and vicenin II were isolated, while 6, methoxy, acacetin 7-O glucoside; and quercitrin were isolated from ethanol extract. These compounds were characterized and identified by their physicochemical and spectral data. The crude ethanol extract exhibited significant anti-inflammatory activity ...

  7. PRGF exerts more potent proliferative and anti-inflammatory effects than autologous serum on a cell culture inflammatory model.

    Science.gov (United States)

    Anitua, E; Muruzabal, F; de la Fuente, M; Riestra, A; Merayo-Lloves, J; Orive, G

    2016-10-01

    Ocular graft versus host disease (oGVHD) is part of a systemic inflammatory disease that usually affects ocular surface tissues manifesting as a dry eye syndrome. Current treatments provide unsatisfactory results. Blood-derived products, like plasma rich in growth factors (PRGF) emerge as a potential therapy for this disease. The purpose of this study was to evaluate the tissue regeneration and anti-inflammatory capability of PRGF, an autologous platelet enriched plasma eye-drop, compared to autologous serum (AS) obtained from oGVHD patients on ocular surface cells cultured in a pro-inflammatory environment. PRGF and AS were obtained from four GVHD patients. Cell proliferation and inflammation markers, intercellular adhesion molecule-1 (ICAM-1) and cyclooxygenase-2 (COX-2), were measured in corneal and conjunctival fibroblastic cells cultured under pro-inflammatory conditions and after treatment with PRGF or AS eye drops. Moreover, cell proliferation increased after treatment with PRGF and AS, though this enhancement in the case of keratocytes was significantly higher with PRGF. PRGF eye drops showed a significant reduction of both inflammatory markers with respect to the initial inflammatory situation and to the AS treatment. Our results concluded that PRGF exerts more potent regenerative and anti-inflammatory effects than autologous serum on ocular surface fibroblasts treated with pro-inflammatory IL-1β and TNFα. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS.

    Science.gov (United States)

    González-Chávez, Marco Martín; Ramos-Velázquez, Cinthia Saraí; Serrano-Vega, Roberto; Pérez-González, Cuauhtemoc; Sánchez-Mendoza, Ernesto; Pérez-Gutiérrez, Salud

    2017-12-01

    A previous study demonstrated that the chloroform extract of Salvia connivens Epling (Lamiaceae) has anti-inflammatory activity. Identification of the active components in the dicholorometane extract (DESC), and, standardization of the extract based in ursolic acid. DESC was prepared by percolation with dichlromethane and after washed with hot hexane, its composition was determined by CG-MS and NMR, and standardized by HPLC. The anti-inflammatory activity was tested on acute TPA-induced mouse ear oedema at doses of 2.0 mg/ear. The cell viability of macrophages was evaluated by MTT method, and pro- and anti-inflammatory interleukin levels were measured using an ELISA kit. Ursolic acid, oleanolic acid, dihydroursolic acid and eupatorin were identified in DESC, which was standardized based on the ursolic acid concentration (126 mg/g). The anti-inflammatory activities of DESC, the acid mixture, and eupatorin (2 mg/ear) were 60.55, 57.20 and 56.40% inhibition, respectively, on TPA-induced ear oedema. The IC 50 of DESC on macrophages was 149.4 μg/mL. DESC (25 μg/mL) significantly reduced TNF-α (2.0-fold), IL-1β (2.2-fold) and IL-6 (2.0-fold) in macrophages stimulated with LPS and increased the production of IL-10 (1.9-fold). Inflammation is a basic response to injuries, and macrophages are involved in triggering inflammation. Macrophage cells exhibit a response to LPS, inducing inflammatory mediators, and DESC inhibits the biosynthesis of the pro-inflammatory and promote anti-inflammatory cytokines. DESC has an anti-inflammatory effect; reduced the levels of IL-1β, Il-6 and TNF-α; and increases IL-10 in macrophages stimulated with LPS. Ursolic acid is a good phytochemical marker.

  9. A randomized, double blind, placebo and active comparator controlled pilot study of UP446, a novel dual pathway inhibitor anti-inflammatory agent of botanical origin

    Directory of Open Access Journals (Sweden)

    Sampalis John S

    2012-04-01

    Full Text Available Abstract Background Current use of prescribed or over the counter non-steroidal anti-inflammatory drugs (NSAIDs for pain and osteoarthritis (OA have untoward gastrointestinal and cardiovascular related side effects, as a result the need for a safe and effective alternative has become unequivocally crucial. Method A randomized, double blind, placebo and active controlled pilot study of a novel dual pathway, COX1/2 and LOX, inhibitor anti-inflammatory agent of botanical origin, UP446 was conducted. Sixty subjects (age 40-75 with symptomatic OA of the hip or knee were assigned to 4 treatment groups (n = 15; Group A0 (Placebo, CMC capsule, Group A1 (UP446 250 mg/day, Group A2 (UP446 500 mg/day and Group A3 (Celecoxib, 200 mg/day. MOS-SF-36 and Western Ontario and McMaster University Osteoarthritis Index (WOMAC data were collected at baseline and after 30, 60 and 90 days of treatment as a measure of efficacy. Erythrocyte sedimentation rate, C-reactive protein, plasma thrombin time (PTT, fructosamine, Hematology, clinical chemistry and fecal occult blood were monitored for safety. Results Statistically significant decrease in WOMAC pain score were observed for Group A1 at day 90, Group A2 at 30 and 90 days and Group A3 at 60 and 90 days. Statistically significant decrease in WOMAC stiffness score were observed for Group A1 and Group A2 at 30, 60 and 90 days; but not for Group A0 and Group A3. The mean change in WOMAC functional impairment scores were statistically significant for Group A1 and Group A2 respectively at 30 days (p = 0.006 and p = 0.006, at 60 days (p = 0.016 and p = 0.002 and at 90 days (p = 0.018 and p = 0.002, these changes were not significant for Group A0 and Group A3. Based on MOS -SF-36 questionnaires, statistically significant improvements in physical function, endurance and mental health scores were observed for all active treatment groups compared to placebo. No significant changes suggestive of toxicity in routine hematologies

  10. Effects of alpha-mangostin on the expression of anti-inflammatory genes in U937 cells

    Directory of Open Access Journals (Sweden)

    Liu Szu-Hsiu

    2012-08-01

    Full Text Available Abstract Background α-Mangostin (α-MG is a main constituent of the fruit hull of the mangosteen. Previous studies have shown that α-MG has pharmacological activities such as antioxidant, antitumor, anti-inflammatory, antiallergic, antibacterial, antifungal and antiviral effects. This study aims to investigate the anti-inflammatory molecular action of α-MG on gene expression profiles. Methods U937 and EL4 cells were treated with different concentrations of α-MG in the presence of 0.1 ng/mL lipopolysaccharide (LPS for 4 h. The anti-inflammatory effects of α-MG were measured by the levels of tumor necrosis factor (TNF-α and interleukin (IL-4 in cell culture media, which were determined with enzyme-linked immunosorbent assay kits. The gene expression profiles of all samples were analyzed with a whole human genome microarray, Illumina BeadChip WG-6 version 3, containing 48804 probes. The protein levels were determined by Western blotting analyses. Results α-MG decreased the LPS induction of the inflammatory cytokines TNF-α (P = 0.038 and IL-4 (P = 0.04. α-MG decreased the gene expressions in oncostatin M signaling via mitogen-activated protein kinase (MAPK pathways, including extracellular signal-regulated kinases (P = 0.016, c-Jun N-terminal kinase (P = 0.01 , and p38 (P = 0.008. α-MG treatment of U937 cells reduced the phosphorylation of MAPK kinase 3 / MAPK kinase 6 (P = 0.0441, MAPK-activated protein kinase-2 (P = 0.0453, signal transducers and activators of transcription-1 (STAT1 (P = 0.0012, c-Fos (P = 0.04, c-Jun (P = 0.019 and Ets-like molecule 1 (Elk-1 (P = 0.038. Conclusion This study demonstrates that α-MG attenuates LPS-mediated activation of MAPK, STAT1, c-Fos, c-Jun and EIK-1, inhibiting TNF-α and IL-4 production in U937 cells.

  11. Osteoarthritis guidelines: a progressive role for topical nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Stanos, Steven P

    2013-01-01

    Current treatment guidelines for the treatment of chronic pain associated with osteoarthritis reflect the collective clinical knowledge of international experts in weighing the benefits of pharmacologic therapy options while striving to minimize the negative effects associated with them. Consideration of disease progression, pattern of flares, level of functional impairment or disability, response to treatment, coexisting conditions such as cardiovascular disease or gastrointestinal disorders, and concomitant prescription medication use should be considered when creating a therapeutic plan for a patient with osteoarthritis. Although topical nonsteroidal anti-inflammatory drugs historically have not been prevalent in many of the guidelines for osteoarthritis treatment, recent evidence-based medicine and new guidelines now support their use as a viable option for the clinician seeking alternatives to typical oral formulations. This article provides a qualitative review of these treatment guidelines and the emerging role of topical nonsteroidal anti-inflammatory drugs as a therapy option for patients with localized symptoms of osteoarthritis who may be at risk for oral nonsteroidal anti-inflammatory drug-related serious adverse events.

  12. Gelatin-carboxymethyl tamarind gum biocomposites: In vitro characterization & anti-inflammatory pharmacodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sougata, E-mail: janapharmacy@rediffmail.com; Banerjee, Abhisek; Sen, Kalyan Kumar; Maiti, Sabyasachi

    2016-12-01

    In this study, gelatin and carboxymethyl tamarind gum (CTG) were chemically cross-linked to control the delivery of aceclofenac from their interpenetrating network (IPNs). Infrared spectra, thermal and X-ray data supported that drug and polymer was compatible in the composite hydrogels. Irregularly shaped IPN microstructures were seen under field emission scanning electron microscope (FE-SEM). IPN system was capable of entrapping about 96% of the drug fed. CTG in IPN structures suppressed the drug release rate in HCl solution (pH 1.2); however extended the same in phosphate buffer solution (pH 6.8). The drug release was controlled by polymer chain relaxation/swelling and simple diffusion in vitro. The anti-inflammatory activity of drug-loaded biocomposites lasted over 7 h in albino rats, thus suggesting their potential as an anti-inflammatory therapeutics. - Highlights: • Novel gelatin-carboxymethyl tamarind gum biocomposites was synthesized. • FTIR, thermal and X-ray study ensured compatibility between drug and polymers. • FE-SEM image revealed irregular shape of the IPN microstructures. • In vivo anti-inflammatory pharmacodynamics in rat model was encouraging.

  13. Methyl salicylate 2-O-β-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes.

    Science.gov (United States)

    Lan, Xi; Liu, Rui; Sun, Lan; Zhang, Tiantai; Du, Guanhua

    2011-08-11

    Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD). Activation of microglia and astrocytes is a characteristic of brain inflammation. Epidemiological studies have shown that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) delays the onset of AD and suppresses its progression. Methyl salicylate-2-O-β-D-lactoside (DL0309) is a new molecule chemically related to salicylic acid. The present study aimed to evaluate the anti-inflammatory effects of DL0309. Our studies show that DL0309 significantly inhibits lipopolysaccharide (LPS)-induced release of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the expression of the inflammation-related proteins iNOS, COX-1, and COX-2 by microglia and astrocytes. At a concentration of 10 μM, DL0309 prominently inhibited LPS-induced activation of NF-κB in glial cells by blocking phosphorylation of IKK and p65, and by blocking IκB degradation. We demonstrate here for the first time that DL0309 exerts anti-inflammatory effects in glial cells by suppressing different pro-inflammatory cytokines and iNOS/NO. Furthermore, it also regulates the NF-κB signaling pathway by blocking IKK and p65 activation and IκB degradation. DL0309 also acts as a non-selective COX inhibitor in glial cells. These studies suggest that DL0309 may be effective in the treatment of neuroinflammatory disorders, including AD.

  14. Methyl salicylate 2-O-β-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes

    Directory of Open Access Journals (Sweden)

    Du Guanhua

    2011-08-01

    Full Text Available Abstract Background Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD. Activation of microglia and astrocytes is a characteristic of brain inflammation. Epidemiological studies have shown that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs delays the onset of AD and suppresses its progression. Methyl salicylate-2-O-β-D-lactoside (DL0309 is a new molecule chemically related to salicylic acid. The present study aimed to evaluate the anti-inflammatory effects of DL0309. Findings Our studies show that DL0309 significantly inhibits lipopolysaccharide (LPS-induced release of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the expression of the inflammation-related proteins iNOS, COX-1, and COX-2 by microglia and astrocytes. At a concentration of 10 μM, DL0309 prominently inhibited LPS-induced activation of NF-κB in glial cells by blocking phosphorylation of IKK and p65, and by blocking IκB degradation. Conclusions We demonstrate here for the first time that DL0309 exerts anti-inflammatory effects in glial cells by suppressing different pro-inflammatory cytokines and iNOS/NO. Furthermore, it also regulates the NF-κB signaling pathway by blocking IKK and p65 activation and IκB degradation. DL0309 also acts as a non-selective COX inhibitor in glial cells. These studies suggest that DL0309 may be effective in the treatment of neuroinflammatory disorders, including AD.

  15. Fluocinolone acetonide partially restores the mineralization of LPS-stimulated dental pulp cells through inhibition of NF-κB pathway and activation of AP-1 pathway

    Science.gov (United States)

    Liu, Zhongning; Jiang, Ting; Wang, Xinzhi; Wang, Yixiang

    2013-01-01

    BACKGROUND AND PURPOSE Fluocinolone acetonide (FA) is commonly used as a steroidal anti-inflammatory drug. We recently found that in dental pulp cells (DPCs) FA has osteo-/odonto-inductive as well as anti-inflammatory effects. However, the mechanism by which FA induces these effects in DPCs is poorly understood. EXPERIMENTAL APPROACH The effect of FA on the mineralization of DPCs during inflammatory conditions and the underlying mechanism were investigated by real-time PCR, Western blot, EMSA, histochemical staining, immunostaining and pathway blockade assays. KEY RESULTS FA significantly inhibited the inflammatory response in LPS-treated DPCs not only by down-regulating the expression of pro–inflammation-related genes, but also by up-regulating the expression of the anti-inflammatory gene PPAR-γ and mineralization-related genes. Moreover, histochemical staining and immunostaining showed that FA could partially restore the expressions of alkaline phosphatase, osteocalcin and dentin sialophosphoprotein (DSPP) and mineralization in LPS-stimulated DPCs. Real-time PCR and Western blot analysis revealed that FA up-regulated DSPP and runt-related transcription factor 2 expression by inhibiting the expression of phosphorylated-NF-κB P65 and activating activator protein-1 (AP-1) (p-c-Jun and Fra-1). These results were further confirmed through EMSA, by detection of NF-κB DNA-binding activity and pathway blockade assays using a NF-κB pathway inhibitor, AP-1 pathway inhibitor and glucocorticoid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Inflammation induced by LPS suppresses the mineralization process in DPCs. FA partially restored this osteo-/odonto-genesis process in LPS-treated DPCs and had an anti-inflammatory effect through inhibition of the NF-κB pathway and activation of the AP-1 pathway. Hence, FA is a potential new treatment for inflammation-associated bone/teeth diseases. PMID:24024985

  16. Regulation of drugs affecting striatal cholinergic activity by corticostriatal projections

    International Nuclear Information System (INIS)

    Ladinsky, H.

    1986-01-01

    Research demonstrates that the chronic degeneration of the corticostriatal excitatory pathway makes the cholinergic neurons of the striatum insensitive to the neuropharmacological action of a number of different drugs. Female rats were used; they were killed and after the i.v. infusion of tritium-choline precursor, choline acetyltransferase activity was measured. Striatal noradrenaline, dopamine and serotonin content was measured by electrochemical detection coupled with high pressure liquid chromatography. Uptake of tritium-glutamic acid was estimated. The data were analyzed statistically. It is shown that there is evidence that the effects of a number of drugs capable of depressing cholinergic activity through receptor-mediated responses are operative only if the corticostriatal pathway is integral. Neuropharmacological responses in the brain appear to be the result of an interaction between several major neurotransmitter systems

  17. Analgesic and Anti-Inflammatory Activities of Methanol Extract of Cissus repens in Mice

    Directory of Open Access Journals (Sweden)

    Ching-Wen Chang

    2012-01-01

    Full Text Available The aim of this study was to investigate possible analgesic and anti-inflammatory mechanisms of the CRMeOH. Analgesic effect was evaluated in two models including acetic acid-induced writhing response and formalin-induced paw licking. The anti-inflammatory effect was evaluated by λ-carrageenan-induced mouse paw edema and histopathologic analyses. The results showed that CRMeOH (500 mg/kg decreased writhing response in the acetic acid assay and licking time in the formalin test. CRMeOH (100 and 500 mg/kg significantly decreased edema paw volume at 4th to 5th hours after λ-carrageenan had been injected. Histopathologically, CRMeOH abated the level of tissue destruction and swelling of the edema paws. These results were indicated that anti-inflammatory mechanism of CRMeOH may be due to declined levels of NO and MDA in the edema paw through increasing the activities of SOD, GPx, and GRd in the liver. Additionally, CRMeOH also decreased IL-1β, IL-6, NFκB, TNF-α, COX-2, and iNOS levels. The contents of two active ingredients, ursolic acid and lupeol, were quantitatively determined. This paper demonstrated possible mechanisms for the analgesic and anti-inflammatory effects of CRMeOH and provided evidence for the classical treatment of Cissus repens in inflammatory diseases.

  18. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity.

    Directory of Open Access Journals (Sweden)

    Emília R Vaz

    Full Text Available The transforming growth factor beta 1 (TGF-β1 is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils' chemoattraction.

  19. In Vivo Anti-inflammatory Activity of Lipoic Acid Derivatives in Mice 

    Directory of Open Access Journals (Sweden)

    Brunon Kwiecień

    2013-04-01

    Full Text Available Background: In mammals lipoic acid (LA and its reduced form dihydrolipoic acid (DHLA function as cofactors for multienzymatic complexes catalyzing the decarboxylation of α-ketoacids. Moreover, LA is used as a drug in a variety of diseases including inflammatory diseases. The aim of the study was to examine anti-inflammatory properties of LA metabolites.Material/methods:The present paper reports the chemical synthesis of 2,4-bismethylthio-butanoic acid (BMTBA and tetranor-dihydrolipoic acid (tetranor-DHLA. BMTBA is one of the biotransformation products of LA, while tetranor-DHLA is an analogue of DHLA. Structural identity of these compounds was confirmed by 1H NMR. These compounds were assessed for their anti-inflammatory activity in mice. For this purpose, the zymosan-induced peritonitis and the carrageenan-induced hind paw edema animal models were applied.Results/conclusions: The obtained results indicated that the early vascular permeability measured at 30 min of zymosan-induced peritonitis was significantly inhibited in groups receiving BMTBA (10, 30, 50 mg/kg. The early infiltration of neutrophils measured at 4 hours of zymosan-induced peritonitis was inhibited in the group receiving BMTBA (50 mg/kg and tetranor-DHLA (50 mg/kg. The results indicated that the increase in paw edema was significantly inhibited in the groups receiving BMTBA (50, 100 mg/kg and tetranor-DHLA (30, 50 mg/kg. In summary, the present studies clearly demonstrated that both BMTBA and tetranor-DHLA were able to act as anti-inflammatory agents. This is the first study examining in vivo the anti-inflammatory properties of LA metabolites.

  20. Antioxidant and Anti-Inflammatory Properties of Longan (Dimocarpus longan Lour. Pericarp

    Directory of Open Access Journals (Sweden)

    Guan-Jhong Huang

    2012-01-01

    Full Text Available This study examined the antioxidant and anti-inflammatory activities of the water extract of longan pericarp (WLP. The results showed that WLP exhibited radical scavenging, reducing activity and liposome protection activity. In addition, WLP also inhibited lipopolysaccharide (LPS-induced nitric oxide (NO production in macrophages. Further, administration of WLP, in the range of 100–400 mg/kg, showed a concentration-dependent inhibition on paw edema development following carrageenan (Carr treatment in mice. The anti-inflammatory effects of WLP may be related to NO and tumor necrosis factor (TNF-α suppression and associated with the increase in the activities of antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Overall, the results showed that WLP might serve as a natural antioxidant and inflammatory inhibitor.

  1. Evaluation of Anti-Inflammatory Properties of Isoorientin Isolated from Tubers of Pueraria tuberosa

    Directory of Open Access Journals (Sweden)

    Kotha Anilkumar

    2017-01-01

    Full Text Available Inflammation is the major causative factor of different diseases such as cardiovascular disease, diabetes, obesity, osteoporosis, rheumatoid arthritis, inflammatory bowel disease, and cancer. Anti-inflammatory drugs are often the first step of treatment in many of these diseases. The present study is aimed at evaluating the anti-inflammatory properties of isoorientin, a selective cyclooxygenase-2 (COX-2 inhibitor isolated from the tubers of Pueraria tuberosa, in vitro on mouse macrophage cell line (RAW 264.7 and in vivo on mouse paw edema and air pouch models of inflammation. Isoorientin reduced inflammation in RAW 264.7 cell line in vitro and carrageenan induced inflammatory animal model systems in vivo. Cellular infiltration into pouch tissue was reduced in isoorientin treated mice compared to carrageenan treated mice. Isoorientin treated RAW 264.7 cells and animals showed reduced expression of inflammatory proteins like COX-2, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, 5-lipoxygenase (5-LOX, and interleukin 1-β (IL-1-β both in vitro and in vivo. The antioxidant enzyme levels of catalase and GST were markedly increased in isoorientin treated mice compared to carrageenan treated mice. These results suggest that isoorientin, a selective inhibitor of COX-2, not only exerts anti-inflammatory effects in LPS induced RAW cells and carrageenan induced inflammatory model systems but also exhibits potent antioxidant properties.

  2. Cholinergic modulation of mesolimbic dopamine function and reward.

    Science.gov (United States)

    Mark, Gregory P; Shabani, Shkelzen; Dobbs, Lauren K; Hansen, Stephen T

    2011-07-25

    The substantial health risk posed by obesity and compulsive drug use has compelled a serious research effort to identify the neurobiological substrates that underlie the development these pathological conditions. Despite substantial progress, an understanding of the neurochemical systems that mediate the motivational aspects of drug-seeking and craving remains incomplete. Important work from the laboratory of Bart Hoebel has provided key information on neurochemical systems that interact with dopamine (DA) as potentially important components in both the development of addiction and the expression of compulsive behaviors such as binge eating. One such modulatory system appears to be cholinergic pathways that interact with DA systems at all levels of the reward circuit. Cholinergic cells in the pons project to DA-rich cell body regions in the ventral tegmental area (VTA) and substantial nigra (SN) where they modulate the activity of dopaminergic neurons and reward processing. The DA terminal region of the nucleus accumbens (NAc) contains a small but particularly important group of cholinergic interneurons, which have extensive dendritic arbors that make synapses with a vast majority of NAc neurons and afferents. Together with acetylcholine (ACh) input onto DA cell bodies, cholinergic systems could serve a vital role in gating information flow concerning the motivational value of stimuli through the mesolimbic system. In this report we highlight evidence that CNS cholinergic systems play a pivotal role in behaviors that are motivated by both natural and drug rewards. We argue that the search for underlying neurochemical substrates of compulsive behaviors, as well as attempts to identify potential pharmacotherapeutic targets to combat them, must include a consideration of central cholinergic systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Smoking, caffeine, and nonsteroidal anti-inflammatory drugs in families with Parkinson disease.

    Science.gov (United States)

    Hancock, Dana B; Martin, Eden R; Stajich, Jeffrey M; Jewett, Rita; Stacy, Mark A; Scott, Burton L; Vance, Jeffery M; Scott, William K

    2007-04-01

    To assess associations between Parkinson disease (PD) and putatively protective factors-smoking, caffeine (coffee, tea, and soft drinks), and nonsteroidal anti-inflammatory drugs (aspirin, ibuprofen, and naproxen). Family-based case-control study. Academic medical center clinic. A total of 356 case subjects and 317 family controls who self-reported environmental exposures. Associations between PD and environmental measures (history, status, dosage, duration, and intensity) of smoking, coffee, caffeine, nonsteroidal anti-inflammatory drugs, and non-aspirin nonsteroidal anti-inflammatory drugs were examined using generalized estimating equations with an independent correlation matrix while controlling for age and sex. Individuals with PD were significantly less likely to report ever smoking (odds ratio = 0.56; 95% confidence interval, 0.41-0.78). Additional measures of smoking revealed significant inverse associations with PD (Pcoffee drinking was inversely associated with PD (test for trend P = .05). Increasing dosage (trend P = .009) and intensity (trend P = .01) of total caffeine consumption were also inversely associated, with high dosage presenting a significant inverse association for PD (odds ratio = 0.58; 95% confidence interval, 0.34-0.99). There were no significant associations between nonsteroidal anti-inflammatory drugs and PD. Inverse associations of smoking and caffeine were corroborated using families with PD, thus emphasizing smoking and caffeine as important covariates to consider in genetic studies of PD.

  4. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ...

    African Journals Online (AJOL)

    Purpose: To investigate the anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in rat pups. Methods: The expression levels of cyclooxygenase (COX)-1, COX-2 and tumour necrosis factor-α (TNF-α) were determined by western blotting; the inhibition of these proteins by plant compounds was evaluated.

  5. Anti-hyperalgesic activity of the aqueous and methanol extracts of the leaves of Pittosporum mannii Hook on CFA-induced persistent inflammatory pain.

    Science.gov (United States)

    Wandji, Bibiane Aimée; Bomba, Francis Desire Tatsinkou; Nkeng-Efouet, Pepin Alango; Piegang, Basile Nganmegne; Kamanyi, Albert; Nguelefack, Télesphore Benoît

    2018-02-01

    Previous study showed that aqueous (AEPM) and methanol (MEPM) extracts from the leaves of Pittosporum mannii have analgesic effects in acute pain models. The present study evaluates the acute and chronic anti-hypernociceptive and anti-inflammatory effects of AEPM and MEPM in a model of persistent inflammatory pain. The third day after induction of inflammatory pain by subplantar injection of 100 µL of CFA in Wistar rats, AEPM and MEPM were administered orally (75, 150 and 300 mg/kg/day) and their anti-hyperalgesic and anti-inflammatory effects were follow in acute (1-24 h) and chronic (for 14 days) treatments. At the end of the chronic treatment, oxidative stress and liver parameters were assessed. Effects of plant extracts were also evaluated on nociception induced by Phorbol 12-Myristate 13-Acetate (PMA) and 8-bromo 3',5'-cAMP (8-Br-cAMP) in mice. AEPM and MEPM significantly reversed the mechanical hyperalgesia caused by CFA in acute and chronic treatment. Moreover, AEPM and MEPM also significantly reduced the nociception caused by PMA (60%) and 8-Br-cAMP (87%). Nevertheless, AEPM and MEPM failed to inhibit the paw edema caused by CFA. Plant extracts significantly reduced the nitric oxide content in the spinal cord and the plasmatic concentration of alanine aminotransferase. MEPM also significantly increased the glutathione content in the spinal cord. AEPM and MEPM given orally are effective in inhibiting mechanical hyperalgesia in persistent inflammatory pain caused by CFA. Their mechanisms of action seem to involve an interaction with PKC, PKA and nitric oxide pathways. These extracts might be devoid of hepatotoxic effects.

  6. The anti-inflammatory effect of Sonchus oleraceus aqueous extract on lipopolysaccharide stimulated RAW 264.7 cells and mice.

    Science.gov (United States)

    Li, Qi; Dong, Dan-Dan; Huang, Qiu-Ping; Li, Jing; Du, Yong-Yong; Li, Bin; Li, Huan-Qing; Huyan, Ting

    2017-12-01

    Sonchus oleraceus L. (Asteraceae) (SO) is a dietary and traditional medicinal plant in China. However, its underlying mechanism of action as an anti-inflammatory agent is not known. This study evaluates the anti-inflammatory activity of aqueous extract of SO. The extract of SO was used to treat RAW 264.7 cells (in the working concentrations of 500, 250, 125, 62.5, 31.3 and 15.6 μg/mL) for 24 h. Pro-inflammatory cytokines and mediators produced in LPS-stimulated RAW 264.7 cells were assessed. Meanwhile, the expression level of TLR-4, COX-2, pSTATs and NF-κB was tested. Moreover, the anti-inflammatory activity of the extract in vivo was assessed using xylene-induced mouse ear oedema model and the anti-inflammatory compounds in the extracts were analyzed by HPLC-MS. SO extract significantly inhibited the production of pro-inflammatory cytokines and mediators at gene and protein levels with the concentration of 31.3 μg/mL, and suppressed the expression of TLR-4, COX-2, NF-κB and pSTAT in RAW 264.7 cells. The anti-inflammatory activity of SO in vivo has significant anti-inflammatory effects with the concentration of 250 and 125 mg/kg, and less side effect on the weights of the mice at the concentration of 250 mg/kg. Moreover, HPLC-MS analysis revealed that the anti-inflammatory compounds in the extract were identified as villosol, ferulaic acid, β-sitosterol, ursolic acid and rutin. This study indicated that SO extract has anti-inflammatory effects in vitro and in vivo, which will be further developed as novel pharmacological strategies in order to defeat inflammatory diseases.

  7. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    Science.gov (United States)

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.

  8. Anti-Inflammatory Effect of the Blueberry Anthocyanins Malvidin-3-Glucoside and Malvidin-3-Galactoside in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wu-Yang Huang

    2014-08-01

    Full Text Available Blueberry fruits have a wide range of health benefits because of their abundant anthocyanins, which are natural antioxidants. The purpose of this study was to investigate the inhibitory effect of blueberry’s two main anthocyanins (malvidin-3-glucoside and malvidin-3-galactoside on inflammatory response in endothelial cells. These two malvidin glycosides could inhibit tumor necrosis factor-alpha (TNF-α induced increases of monocyte chemotactic protein-1 (MCP-1, intercellular adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule-1 (VCAM-1 production both in the protein and mRNA levels in a concentration-dependent manner. Mv-3-glc at the concentration of 1 μM could inhibit 35.9% increased MCP-1, 54.4% ICAM-1, and 44.7% VCAM-1 protein in supernatant, as well as 9.88% MCP-1 and 48.6% ICAM-1 mRNA expression (p < 0.05. In addition, they could decrease IκBα degradation (Mv-3-glc, Mv-3-gal, and their mixture at the concentration of 50 μM had the inhibition rate of 84.8%, 75.3%, and 43.2%, respectively, p < 0.01 and block the nuclear translocation of p65, which suggested their anti-inflammation mechanism was mediated by the nuclear factor-kappa B (NF-κB pathway. In general malvidin-3-glucoside had better anti-inflammatory effect than malvidin-3-galactoside. These results indicated that blueberry is good resource of anti-inflammatory anthocyanins, which can be promising molecules for the development of nutraceuticals to prevent chronic inflammation in many diseases.

  9. Anti-inflammatory effects of aqueous extract of Mangifera indica in Wistar rats.

    Science.gov (United States)

    Oluwole, Oluwafemi Gabriel; Esume, Celestine

    2015-05-01

    Recent studies in standard laboratories have indicated that a typical mango stem bark aqueous extract (Magnifera indica Linn) possess anti-malaria and anti-fever properties. Recent information also exists in the literature, suggesting its potency as a very effective anti-inflammatory plant extract. This study will therefore contribute immensely to the systemic search for a useful, less toxic and natural bioactive medicinal compound. This study investigated the anti-inflammatory effects of the aqueous extract of Mangifera indica (MI) in a carrageenin-induced rat paw oedema model of acute inflammation. Rats (n=5) were treated orally with MI (50, 100 and 200 mg/kg), acetylsalicylic acid (100 mg/kg) or distilled water (3 mL). Thirty minutes later, acute inflammation was induced with a sub-plantar injection of 0.1 mL of 1% carrageenin solution into the right hind paw of the rats. The paw oedema sizes were measured with the aid of a Vernier calliper over a period of 3 hours. The aqueous extract of MI (50-200 mg/kg, p.o.) produced a dose-dependent and significant inhibition of the acute inflammation induced by the carrageenin in rats when compared with controls. The percentage inhibition of oedema formation produced by MI (200 mg/kg, p.o.) was similar to that elicited by acetylsalicylic acid (100 mg/kg, p.o.). The results of this preliminary investigation suggest that MI contains active compounds with an anti-inflammatory activity. However, more detailed studies using additional models are necessary to further characterise the effects of MI in inflammatory disorders.

  10. Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Model.

    Science.gov (United States)

    Shao, Yi-Ye; Li, Bing; Huang, Yong-Mei; Luo, Qiong; Xie, Yang-Mei; Chen, Ying-Hui

    2017-01-01

    Status epilepticus (SE) results in the generation of reactive oxygen species (ROS), which contribute to seizure-induced brain injury. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Thymoquinone (TQ) is a bioactive monomer extracted from black cumin (Nigella sativa) seed oil that has anti-inflammatory, anti-cancer, and antioxidant activity in various diseases. This study evaluated the protective effects of TQ on brain injury in a lithium-pilocarpine rat model of SE and investigated the underlying mechanism related to antioxidative pathway. Electroencephalogram and Racine scale were used to value seizure severity. Passive-avoidance test was used to determine learning and memory function. Moreover, anti-oxidative activity of TQ was observed using Western blot and super oxide dismutase (SOD) activity assay. Latency to SE increased in the TQ-pretreated group compared with rats in the model group, while the total power was significantly lower. Seizure severity measured on the Racine scale was significantly lower in the TQ group compared with the model group. Results of behavioral experiments suggest that TQ may also have a protective effect on learning and memory function. Investigation of the protective mechanism of TQ showed that TQ-pretreatment significantly increased the expression of Nrf2, HO-1 proteins and SOD in the hippocampus. These findings showed that TQ attenuated brain injury induced by SE via an anti-oxidative pathway.

  11. SIRT1 induces resistance to apoptosis in human granulosa cells by activating the ERK pathway and inhibiting NF-κB signaling with anti-inflammatory functions.

    Science.gov (United States)

    Han, Ying; Luo, Haining; Wang, Hui; Cai, Jun; Zhang, Yunshan

    2017-10-01

    SIRT1, a member of the sirtuin family, has recently emerged as a vital molecule in controlling ovarian function. The aims of the present study were to investigate SIRT1 expression and analyze SIRT1-mediated apoptosis in human granulosa cells (GCs). Human ovarian tissues were subjected to immunohistochemistry for localization of SIRT1 expression. SIRT1 knockdown in a human ovarian GC tumor line (COV434) was achieved by small interfering RNA, and the relationship between apoptosis and SIRT1 was assessed by quantitative reverse transcription polymerase chain reaction and western blotting. We further detected SIRT1 expression in human luteinized GCs. Associations among SIRT1 knockdown, SIRT1 stimulation (resveratrol) and expression of ERK1/2 and apoptotic regulatory proteins were analyzed in cell lines and luteinized GCs. Resveratrol downregulated the levels of nuclear factor (NF)-κB/p65, but this inhibitory effect was attenuated by suppressing SIRT1 activity. The NF-κB/p65 inhibitor pyrrolidine dithiocarbamate achieved similar anti-apoptosis effects. These results suggest that SIRT1 might play an anti-apoptotic role in apoptosis processes in GCs, possibly by sensing and regulating the ERK1/2 pathway, which has important clinical implications. Thus, our study provides a mechanistic link, whereby activation of SIRT1 function might help to sustain human reproduction by maintaining GCs as well as oocytes, offering a novel approach for developing a new class of therapeutic anti-inflammatory agents.

  12. Antimicrobial, Anti-Inflammatory, Antiparasitic, and Cytotoxic Activities of Laennecia confusa

    Directory of Open Access Journals (Sweden)

    María G. Martínez Ruiz

    2012-01-01

    Full Text Available The current paper investigated the potential benefit of the traditional Mexican medicinal plant Laennecia confusa (Cronquist G. L. Nesom (Asteraceae. Fractions from the hexane, chloroform, methanol, and aqueous extracts were analyzed for antibacterial, antifungal, anti-inflammatory, and antiparasitic activities. The antimicrobial activity of the extracts and fractions was assessed on bacterial and fungal strains, in addition to the protozoa Leishmania donovani, using a microdilution assay. The propensity of the plant's compounds to produce adverse effects on human health was also evaluated using propidium iodine to identify damage to human macrophages. The anti-inflammatory activity of the extracts and fractions was investigated by measuring the secretion of interleukin-6. Chemical analyses demonstrated the presence of flavonoids, cyanogenic and cardiotonic glycosides, saponins, sesquiterpene lactones, and triterpenes in the chloroform extract. A number of extracts and fractions show antibacterial activity. Of particular interest is antibacterial activity against Staphylococcus aureus and its relative methicillin-resistant strain, MRSA. Hexanic and chloroformic fractions also exhibit antifungal activity and two extracts and the fraction CE 2 antiparasitic activity against Leishmania donovani. All bioactive extracts and fractions assayed were also found to be cytotoxic to macrophages. In addition, the hexane and methane extracts show anti-inflammatory activity by suppressing the secretion of interleukine-6.

  13. Vitamin D as an anti-microbial and anti-inflammatory therapy for Cystic Fibrosis.

    Science.gov (United States)

    Herscovitch, K; Dauletbaev, N; Lands, Larry C

    2014-06-01

    Cystic fibrosis (CF) is characterized by chronic infection and inflammation in the airways that lead to progressive lung damage and early death. Current anti-inflammatory therapies are limited by extensive adverse effects or insufficient efficacy. There is a large body of studies indicating beneficial anti-microbial and anti-inflammatory properties of vitamin D. Since most patients with CF present with vitamin D deficiency, and serum vitamin D levels demonstrate a positive correlation with lung function and negative correlation with airway inflammation and infection, correcting vitamin D deficiency may be an attractive therapeutic strategy in CF. The function of vitamin D is intricately tied to its metabolism, which may be impaired at multiple steps in patients with CF, with a potential to limit the efficacy of vitamin D supplementation. It is likely that the aforementioned beneficial properties of vitamin D require supplementation with doses of vitamin D markedly higher than those recommended to maintain proper bone function. This review will illustrate the potential for supplementation with vitamin D or its metabolites to modulate inflammation and improve defence against chronic infection in CF lung, as well as appropriate vitamin D supplementation strategies for improving lung function in CF. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways.

    Science.gov (United States)

    Zdanowski, Robert; Krzyżowska, Małgorzata; Ujazdowska, Dominika; Lewicka, Aneta; Lewicki, Sławomir

    2015-01-01

    Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine system found throughout the last few years has indicated this neurotransmitter as one of the major cellular signaling molecules (associated e.g. with kinases and transcription factors activity). This system is responsible for maintenance and optimization of the cellular function, such as proliferation, differentiation, adhesion, migration, intercellular contact and apoptosis. Additionally, it controls proper activity of immune cells and affects differentiation, antigen presentation or cytokine production (both pro- and anti-inflammatory). The present article reviews recent findings about the non-neuronal cholinergic system in the field of immune system and intracellular signaling pathways.

  15. Anti-Inflammatory and Antibothropic Properties of Jatropha Elliptica, a Plant from Brazilian Cerrado Biome

    Directory of Open Access Journals (Sweden)

    Sára Costa Ferreira-Rodrigues

    2016-12-01

    Full Text Available Purpose: The aim of this study was to evaluate the antibothropic and anti-inflammatory properties of J. elliptica. Methods: Phytochemical screening and thin-layer chromatography (TLC assays were performed on J. elliptica hydroalcoholic extract (TE in order to observe its main constituents. The antibothropic activity of TE was evaluated by the in vitro neuromuscular blockade caused by Bothrops jararacussu venom (Bjssu, in a mouse phrenic nerve-diaphragm model (PND. A quantitative histological study was carried out to observe a possible protection of TE against the venom myotoxicity. The anti-inflammatory activity was also evaluated in two models, Bjssu-induced paw edema, and carrageenan-induced neutrophils migration in the peritoneal cavity. Results: TLC analysis revealed several compounds in TE, such as saponins, alkaloids, and phenolic constituents. TE was able to neutralize the blockade and the myotoxicity induced by venom, when it was pre-incubated for 30 min with venom. In addition, it showed anti-inflammatory activity, inducing less neutrophils migration and reducing paw edema. Conclusion: J. elliptica showed both antibothropic and anti-inflammatory properties.

  16. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain condition.

    Science.gov (United States)

    Hua, Susan; Cabot, Peter J

    2013-01-01

    The peripheral immune-derived opioid analgesic pathway has been well established as a novel target in the clinical pain management of a number of painful pathologies, including acute inflammatory pain, neuropathic pain, and rheumatoid arthritis. Our objective was to engineer targeted nanoparticles that mimic immune cells in peripheral pain control to deliver opioids, in particular loperamide HCl, specifically to peripheral opioid receptors to induce analgesic and anti-inflammatory actions for use in painful inflammatory conditions. This peripheral analgesic system is devoid of central opioid mediated side effects (e.g., respiratory depression, sedation, dependence, tolerance). A randomized, double blind, controlled animal trial. Thirty-six adult male Wistar rats (200 - 250 g) were randomly divided into 6 groups: loperamide HCl-encapsulated anti-ICAM-1 immunoliposomes, naloxone methiodide + loperamide HCl-encapsulated anti-ICAM-1 immunoliposomes, loperamide HCl-encapsulated liposomes, empty anti-ICAM-1 immunoliposomes, empty liposomes, and loperamide solution. Animals received an intraplantar injection of 150 μL Complete Freund's Adjuvant (CFA) into the right hindpaw and experiments were performed 5 days post-CFA injection, which corresponded to the peak inflammatory response. All formulations were administered intravenously via tail vein injection. The dose administered was 200 μL, which equated to 0.8 mg of loperamide HCl for the loperamide HCl treatment groups (sub-therapeutic dose). Naloxone methiodide (1 mg/kg) was administered via intraplantar injection, 15 minutes prior to loperamide-encapsulated anti-ICAM-1 immunoliposomes. An investigator blinded to the treatment administered assessed the time course of the antinociceptive and anti-inflammatory effects using a paw pressure analgesiometer and plethysmometer, respectively. Biodistribution studies were performed 5 days post-CFA injection with anti-ICAM-1 immunoliposomes and control liposomes via tail vein

  17. Investigation of radiation-induced multilayered signalling response of the inflammatory pathway

    International Nuclear Information System (INIS)

    Babini, G.; Ugolini, M.; Morini, J.; Baiocco, G.; Ottolenghi, A.; Mariotti, L.; Tabarelli de Fatis, P.; Liotta, M.

    2015-01-01

    Ionising radiation exposure of cells might induce the perturbation of cell functions and, in particular, the activation or inhibition of several important pathways. This perturbation can cause the deregulation of both intra- and extra-cellular signalling cascades (such as the inflammatory pathway) and alter not only the behaviour of directly exposed cells but also the neighbouring nonirradiated ones, through the so-called bystander effect. The aim of the present work was to investigate the complex nonlinear interactions between the inflammatory pathway and other strictly interlaced signalling pathways, such as Erk1/2 and Akt/PKB, focusing on the radiation-induced perturbation of such pathways in the dose range of 0 -2 Gy. The results show how radiation affects these interconnected pathways and how confounding factors, such as the change of culture medium, can hide radiation-induced perturbations. (authors)

  18. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention.

    NARCIS (Netherlands)

    Vonkeman, Harald Erwin; van de Laar, Mart A F J

    2010-01-01

    Objectives: To discuss nonsteroidal anti-inflammatory drugs (NSAIDs), their history, development, mode of action, toxicities, strategies for the prevention of toxicity, and future developments. - Methods: Medline search for articles published up to 2007, using the keywords acetylsalicylic acid,

  19. Novel chloroacetamido compound CWR-J02 is an anti-inflammatory glutaredoxin-1 inhibitor.

    Directory of Open Access Journals (Sweden)

    Olga Gorelenkova Miller

    Full Text Available Glutaredoxin (Grx1 is a ubiquitously expressed thiol-disulfide oxidoreductase that specifically catalyzes reduction of S-glutathionylated substrates. Grx1 is known to be a key regulator of pro-inflammatory signaling, and Grx1 silencing inhibits inflammation in inflammatory disease models. Therefore, we anticipate that inhibition of Grx1 could be an anti-inflammatory therapeutic strategy. We used a rapid screening approach to test 504 novel electrophilic compounds for inhibition of Grx1, which has a highly reactive active-site cysteine residue (pKa 3.5. From this chemical library a chloroacetamido compound, CWR-J02, was identified as a potential lead compound to be characterized. CWR-J02 inhibited isolated Grx1 with an IC50 value of 32 μM in the presence of 1 mM glutathione. Mass spectrometric analysis documented preferential adduction of CWR-J02 to the active site Cys-22 of Grx1, and molecular dynamics simulation identified a potential non-covalent binding site. Treatment of the BV2 microglial cell line with CWR-J02 led to inhibition of intracellular Grx1 activity with an IC50 value (37 μM. CWR-J02 treatment decreased lipopolysaccharide-induced inflammatory gene transcription in the microglial cells in a parallel concentration-dependent manner, documenting the anti-inflammatory potential of CWR-J02. Exploiting the alkyne moiety of CWR-J02, we used click chemistry to link biotin azide to CWR-J02-adducted proteins, isolating them with streptavidin beads. Tandem mass spectrometric analysis identified many CWR-J02-reactive proteins, including Grx1 and several mediators of inflammatory activation. Taken together, these data identify CWR-J02 as an intracellularly effective Grx1 inhibitor that may elicit its anti-inflammatory action in a synergistic manner by also disabling other pro-inflammatory mediators. The CWR-J02 molecule provides a starting point for developing more selective Grx1 inhibitors and anti-inflammatory agents for therapeutic

  20. N-arylmethylideneaminophthalimide: Design, synthesis and evaluation as analgesic and anti-inflammatory agents.

    Science.gov (United States)

    Banarouei, Nasimossadat; Davood, Asghar; Shafaroodi, Hamed; Saeedi, Ghazaleh; Shafiee, Abbas

    2018-04-23

    N-aryl derivatives of phthalimide and 4-nitro phthalimide have demonstrated cyclooxygenase inhibitory activity. Also they possess an excellent analgesic and anti-inflammatory activity. In this work, a new series of N-arylmethylideneamino derivatives of phthalimide and 4-nitro phthalimide were designed and synthesized. The designed compounds were synthesized by condensation of the appropriate aldehyde and N-aminophthalimide in ethanol at room temperature at PH around 3. Their analgesic and anti-inflammatory activity were evaluated by acetic acid-induced pain test and carrageenan-induced paw edema test in mice and rats, respectively. The details of the synthesis and chemical characterization of the analogs are described. In vivo screening showed compounds 3a, 3b, 3f and 3h were the most potent analgesic compounds. In addition compounds 3a, 3c, 3d, 3e and 3j indicated comparable anti-inflammatory activity to indomethacin as reference drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models

    NARCIS (Netherlands)

    Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, A.S.M.; Erk, M.J. van; Wielinga, P.Y.; Kooistra, T.

    2011-01-01

    Objective: Polyphenols such as quercetin may exert several beneficial effects, including those resulting from anti-inflammatory activities, but their impact on cardiovascular health is debated. We investigated the effect of quercetin on cardiovascular risk markers including human C-reactive protein

  2. Evaluation of Analgesic and Anti-Inflammatory Effects of Ethanol Extract of Ficus Iteophylla Leaves in Rodents

    OpenAIRE

    Abdulmalik, IA; Sule, MI; Musa, A M; Yaro, A H; Abdullahi, MI; Abdulkadir, MF; Yusuf, H

    2011-01-01

    This study was undertaken to investigate the leaf part of the plant for analgesic and anti-inflammatory. The ethanol extract of Ficus iteophylla leaves (100, 200, and 400mgkg−1, i.p) was evaluated for analgesic and anti-inflammatory activities. The analgesic effect was studied using acetic acid-induced abdominal constriction and hot plate test in mice, while the anti-inflammatory effect was investigated using carrageenan induced paw oedema in rats. The ethanol extract at 100mgkg−1, 200mgkg−1,...

  3. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Lin Sen

    2012-03-01

    Full Text Available Abstract Background Inflammatory injury plays a critical role in intracerebral hemorrhage (ICH-induced neurological deficits; however, the signaling pathways are not apparent by which the upstream cellular events trigger innate immune and inflammatory responses that contribute to neurological impairments. Toll-like receptor 4 (TLR4 plays a role in inflammatory damage caused by brain disorders. Methods In this study, we investigate the role of TLR4 signaling in ICH-induced inflammation. In the ICH model, a significant upregulation of TLR4 expression in reactive microglia has been demonstrated using real-time RT-PCR. Activation of microglia was detected by immunohistochemistry, cytokines were measured by ELISA, MyD88, TRIF and NF-κB were measured by Western blot and EMSA, animal behavior was evaluated by animal behavioristics. Results Compared to WT mice, TLR4−/− mice had restrained ICH-induced brain damage showing in reduced cerebral edema and lower neurological deficit scores. Quantification of cytokines including IL-6, TNF-α and IL-1β and assessment of macrophage infiltration in perihematoma tissues from TLR4−/−, MyD88−/− and TRIF−/− mice showed attenuated inflammatory damage after ICH. TLR4−/− mice also exhibited reduced MyD88 and TRIF expression which was accompanied by decreased NF-κB activity. This suggests that after ICH both MyD88 and TRIF pathways might be involved in TLR4-mediated inflammatory injury possibly via NF-κB activation. Exogenous hemin administration significantly increased TLR4 expression and microglial activation in cultures and also exacerbated brain injury in WT mice but not in TLR4−/− mice. Anti-TLR4 antibody administration suppressed hemin-induced microglial activation in cultures and in the mice model of ICH. Conclusions Our findings suggest that heme potentiates microglial activation via TLR4, in turn inducing NF-κB activation via the MyD88/TRIF signaling pathway, and ultimately

  4. Nonsteroidal anti-inflammatory drugs for treatment of acute gout

    NARCIS (Netherlands)

    van Durme, Caroline M. P. G.; Wechalekar, Mihir D.; Landewé, Robert B. M.

    2015-01-01

    Are nonsteroidal anti-inflammatory drugs (NSAIDs) associated with better outcomes than cyclooxygenase inhibitors, glucocorticoids, IL-1 inhibitors or placebo in the treatment of acute gout? NSAIDs are not significantly associated with a difference in pain reduction compared with cyclooxygenase

  5. Taurine supplementation has anti-atherogenic and anti-inflammatory effects before and after incremental exercise in heart failure.

    Science.gov (United States)

    Ahmadian, Mehdi; Roshan, Valiollah Dabidi; Aslani, Elaheh; Stannard, Stephen R

    2017-07-01

    The purpose of this study was to examine the anti-atherogenic and anti-inflammatory effect of supplemental taurine prior to and following incremental exercise in patients with heart failure (HF). Patients with HF and left ventricle ejection fraction less than 50%, and placed in functional class II or III according to the New York Heart Association classification, were randomly assigned to two groups: (1) taurine supplementation; or (2) placebo. The taurine group received oral taurine (500 mg) 3 times a day for 2 weeks, and performed exercise before and after the supplementation period. The placebo group followed the same protocol, but with a starch supplement (500 mg) rather than taurine. The incremental multilevel treadmill test was done using a modified Bruce protocol. Our results indicate that inflammatory indices [C-reactive protein (CRP), platelets] decreased in the taurine group in pre-exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation in the placebo group ( p exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p 0.05). our results suggest that 2 weeks of oral taurine supplementation increases the taurine levels and has anti-atherogenic and anti-inflammatory effects prior to and following incremental exercise in HF patients.

  6. Anti-inflammatory Effects of apo-9′-Fucoxanthinone from the Brown Alga, Sargassum Muticum

    Directory of Open Access Journals (Sweden)

    Eun-Jin Yang

    2013-07-01

    Full Text Available Background:The marine environment is a unique source of bioactive natural products, of which Sargassum muticum (Yendo Fensholt is an important brown algae distributed in Jeju Island, Korea. S. muticum is a traditional Korean food stuff and has pharmacological functions including anti-inflammatory effects. However, the active ingredients from S. muticum have not been characterized.Methods:Bioguided fractionation of the ethanolic extract of S. muticum, collected from Jeju island, led to the isolation of a norisoprenoid. Its structure was determined by analysis of the spectroscopic data. In vitro anti-inflammatory activity and mechanisms of action of this compound were examined using lipopolysaccharide (LPS-stimulated RAW 264.7 cells through ELISA assays and Western blot analysis.Results:Apo-9′-fucoxanthinone, belonging to the norisoprenoid family were identified. Apo-9′-fucoxanthinone effectively suppressed LPS-induced nitric oxide (NO and prostaglandin E2 (PGE2 production. This compound also exerted their anti-inflammatory actions by down-regulating of NF-κB activation via suppression of IκB-α in macrophages.Conclusions:This is the first report describing effective anti-inflammatory activity for apo-9’-fucoxanthinone′-fucoxanthnone isolated from S. muticum. Apo-9′-fucoxanthinone may be a good candidate for delaying the progression of human inflammatory diseases and warrants further studies.

  7. Antioxidant and Anti-Inflammatory Activities of Unexplored Brazilian Native Fruits

    Science.gov (United States)

    Infante, Juliana; Rosalen, Pedro Luiz; Lazarini, Josy Goldoni; Franchin, Marcelo; de Alencar, Severino Matias

    2016-01-01

    Brazilian native fruits are unmatched in their variety, but a poorly explored resource for the development of food and pharmaceutical products. The aim of this study was to evaluate the phenolic composition as well as the antioxidant and anti-inflammatory activities of the extracts of leaves, seeds, and pulp of four Brazilian native fruits (Eugenia leitonii, Eugenia involucrata, Eugenia brasiliensis, and Eugenia myrcianthes). GC—MS analyses of the ethanolic extracts showed the presence of epicatechin and gallic acid as the major compounds in these fruits. Antioxidant activity was measured using synthetic DPPH free-radical scavenging, β-carotene bleaching assay, and reactive oxygen species (ROO·, O2·−, and HOCl). The fruit extracts also exhibited antioxidant effect against biologically relevant radicals such as peroxyl, superoxide, and hypochlorous acid. In general, the pulps were the fruit fractions that exhibited the lowest antioxidant activities, whereas the leaves showed the highest ones. The anti-inflammatory activity was assessed in an in vivo model using the carrageenan-induced neutrophil migration assay, which evaluates the inflammatory response in the acute phase. The pulp, seeds, and leaves of these fruits reduced the neutrophil influx by 40% to 64%. Based on these results, we suggest that the anti-inflammatory activity of these native fruits is related to the modulation of neutrophil migration, through the inhibition of cytokines, chemokines, and adhesion molecules, as well as to the antioxidant action of their ethanolic extracts in scavenging the free-radicals released by neutrophils. Therefore, these native fruits can be useful to produce food additives and functional foods. PMID:27050817

  8. The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo

    International Nuclear Information System (INIS)

    Eisele, Petra Sabine; Furrer, Regula; Beer, Markus; Handschin, Christoph

    2015-01-01

    The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is abundantly expressed in trained muscles and regulates muscle adaptation to endurance exercise. Inversely, mice lacking a functional PGC-1α allele in muscle exhibit reduced muscle functionality and increased inflammation. In isolated muscle cells, PGC-1α and the related PGC-1β counteract the induction of inflammation by reducing the activity of the nuclear factor κB (NFκB). We now tested the effects of these metabolic regulators on inflammatory reactions in muscle tissue of control and muscle-specific PGC-1α/-1β transgenic mice in vivo in the basal state as well as after an acute inflammatory insult. Surprisingly, we observed a PGC-1-dependent alteration of the cytokine profile characterized by an increase in anti-inflammatory factors and a strong suppression of the pro-inflammatory interleukin 12 (IL-12). In conclusion, the anti-inflammatory environment in muscle that is promoted by the PGC-1s might contribute to the beneficial effects of these coactivators on muscle function and provides a molecular link underlying the tight mutual regulation of metabolism and inflammation. - Highlights: • Muscle PGC-1s are insufficient to prevent acute systemic inflammation. • The muscle PGC-1s however promote a local anti-inflammatory environment. • This anti-inflammatory environment could contribute to the therapeutic effect of the PGC-1s

  9. The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, Petra Sabine [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, CH-4056 Basel (Switzerland); Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich (Switzerland); Furrer, Regula; Beer, Markus [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, CH-4056 Basel (Switzerland); Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich (Switzerland)

    2015-08-28

    The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is abundantly expressed in trained muscles and regulates muscle adaptation to endurance exercise. Inversely, mice lacking a functional PGC-1α allele in muscle exhibit reduced muscle functionality and increased inflammation. In isolated muscle cells, PGC-1α and the related PGC-1β counteract the induction of inflammation by reducing the activity of the nuclear factor κB (NFκB). We now tested the effects of these metabolic regulators on inflammatory reactions in muscle tissue of control and muscle-specific PGC-1α/-1β transgenic mice in vivo in the basal state as well as after an acute inflammatory insult. Surprisingly, we observed a PGC-1-dependent alteration of the cytokine profile characterized by an increase in anti-inflammatory factors and a strong suppression of the pro-inflammatory interleukin 12 (IL-12). In conclusion, the anti-inflammatory environment in muscle that is promoted by the PGC-1s might contribute to the beneficial effects of these coactivators on muscle function and provides a molecular link underlying the tight mutual regulation of metabolism and inflammation. - Highlights: • Muscle PGC-1s are insufficient to prevent acute systemic inflammation. • The muscle PGC-1s however promote a local anti-inflammatory environment. • This anti-inflammatory environment could contribute to the therapeutic effect of the PGC-1s.

  10. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    Science.gov (United States)

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro; Fernandes, Patricia Dias

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

  11. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    Directory of Open Access Journals (Sweden)

    Jorge Luis Amorim

    Full Text Available Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o. and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

  12. Anti-inflammatory drugs in the 21st century.

    Science.gov (United States)

    Rainsford, K D

    2007-01-01

    Historically, anti-inflammatory drugs had their origins in the serendipitous discovery of certain plants and their extracts being applied for the relief of pain, fever and inflammation. When salicylates were discovered in the mid-19th century to be the active components of Willow Spp., this enabled these compounds to be synthesized and from this, acetyl-salicylic acid or Aspirin was developed. Likewise, the chemical advances of the 19th-20th centuries lead to development of the non-steroidal anti-inflammatory drugs (NSAIDs), most of which were initially organic acids, but later non-acidic compounds were discovered. There were two periods of NSAID drug discovery post-World War 2, the period up to the 1970's which was the pre-prostaglandin period and thereafter up to the latter part of the last century in which their effects on prostaglandin production formed part of the screening in the drug-discovery process. Those drugs developed up to the 1980-late 90's were largely discovered empirically following screening for anti-inflammatory, analgesic and antipyretic activities in laboratory animal models. Some were successfully developed that showed low incidence of gastro-intestinal (GI) side effects (the principal adverse reaction seen with NSAIDs) than seen with their predecessors (e.g. aspirin, indomethacin, phenylbutazone); the GI reactions being detected and screened out in animal assays. In the 1990's an important discovery was made from elegant molecular and cellular biological studies that there are two cyclo-oxygenase (COX) enzyme systems controlling the production of prostanoids [prostaglandins (PGs) and thromboxane (TxA2)]; COX-1 that produces PGs and TxA2 that regulate gastrointestinal, renal, vascular and other physiological functions, and COX-2 that regulates production of PGs involved in inflammation, pain and fever. The stage was set in the 1990's for the discovery and development of drugs to selectively control COX-2 and spare the COX-1 that is central to

  13. Phytochemical Analysis by HPLC–HRESI-MS and Anti-Inflammatory Activity of Tabernaemontana catharinensis

    Directory of Open Access Journals (Sweden)

    José Ivan Marques

    2018-02-01

    Full Text Available Tabernaemontana catharinensis (Apocynaceae has been popularly used by folk medicine because of its anti-inflammatory, analgesic, and antiophidic properties. This study aims to analyze the flavonoids composition of the hydroethanolic extract and of the ethyl acetate (EtOAc and butanol (BuOH fractions of T. catharinensis leaves, as well as to evaluate their anti-inflammatory activity using in vivo models. The phytochemical profile, determined by High-Performance Liquid Chromatography–High-Resolution Electrospray Ionization-Mass Spectrometry (HPLC–HRESI-MS, showed the presence of flavonoids mainly having an isorhamnetin nucleus. The anti-inflammatory activity was evaluated in carrageenan-induced paw edema (pre- and post-treatment with oral administration of a T. catharinensis hydroethanolic extract (50, 100, and 150 mg/kg and of organic fractions (50 mg/kg. The extract and fractions showed antiedematogenic activity by decreasing myeloperoxidase (MPO production. In the zymosan-air-pouch model, the extract and fractions inhibited leukocyte migration and significantly decreased the levels of various proteins, such as MPO, interleukin (IL-1β, and tumor necrosis factor (TNF-α. The cytotoxicity was evaluated by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, which revealed no cytotoxicity of the extract and the fractions. These results suggest that the hydroethanolic extract and organic fractions of T. catharinensis leaves have sufficient anti-inflammatory activity to support the popular use of this plant in the treatment of inflammatory disorders.

  14. SYNTHESIS NEW POTENTIAL ANTI-INFLAMMATORY AGENT SODIUM SALT OF PENTAGAMAVUNON-0

    Directory of Open Access Journals (Sweden)

    Enade Perdana Istyastono

    2010-06-01

    Full Text Available Inflammation is the response of living tissues to injury. The process affects physiological changes such as erythema, edema, asthma and fever. Non-steroid Anti-inflammatory Drugs (NSAIDs have been developed since they could inhibit inflammation process because of its ability to inhibit biosynthesis of prostaglandin, one of inflammation mediators, through inhibition of cyclooxigenase (COX enzymes. Molecules, which have been reported having anti-inflammatory activity, for example, are curcumin, some curcumin derivatives and curcumin analogues. One of curcumin analogues that has been  developed is pentagamavunon-0 (PGV-0 whose IUPAC name is 2,5-bis(4'-hidroxy-3'-methoxy-benzylidenecyclo-pentanone. But PGV-0, which is like curcumin, practically insoluble in water, so it causes problems in the development. The aim of this research is to synthesize a derivative of PGV-0, a natrium salt of PGV-0 (natrium pentagamavunonate-0/Na-pentagamavunonate-0, which is hoped to have a better anti-inflammatory activity and solubility in water than PGV-0. PGV-0 was synthesized by reacting vanillin and cyclopentanone catalized by acid. Na-pentagamavunonate-0 was synthesized with PGV-0 as a starting material using an appropriate method. This research was able to synthesize new compound that was estimated as a natrium salt of PGV-0 (natrium pentagamavunonate-0/Na-pentagamavunonate-0.   Keywords: Curcumin, PGV-0, Na-pentagamavunonate-0, anti-inflammation

  15. Anti-inflammatory activities of the hydroalcoholic extracts from Erythrina velutina and E. mulungu in mice

    Directory of Open Access Journals (Sweden)

    Silvânia M. M. Vasconcelos

    2011-12-01

    Full Text Available This work studied the anti-inflammatory activities of the hydroalcoholic extracts (HAEs from Erythrina velutina Willd. (Ev and E. mulungu Mart. ex Benth. (Em in the carrageenan- and dextran-induced mice hind paw edema models. These medicinal plants belonging to the Fabaceae family are used in some Brazilian communities to treat pain, inflammation, insomnia and disorders of the central nervous system. In the present work, the extracts were administered orally in male mice at the doses of 200 or 400 mg/kg. In the carrageenan-induced test, only Em showed anti-inflammatory activity, decreasing the paw edema, at the doses of 200 and 400 mg/kg. No effect was observed with Ev in this model. On the other hand, in the dextran model, Ev demonstrated anti-inflammatory effect, showing decrease of the paw edema at the 1, 2, 3, 4 and 24th h. Em (200 or 400 mg/kg presented anti-inflammatory effect at the 2, 3 and 4th h after administration of dextran, as compared to control. In conclusion, the work showed that Ev and Em present anti-edematous actions, which possibly occurs by distinct mechanisms. While Ev seems to interfere especially in inflammatory processes in which mast cells have an important role, Em exerts greater activity in the inflammatory process that depends mainly on polymorphonuclear leucocytes. However, further studies are needed to determine the exact mechanism of action of the species investigated.

  16. Anti-inflammatory activities of the hydroalcoholic extracts from Erythrina velutina and E. mulungu in mice

    Directory of Open Access Journals (Sweden)

    Silvânia M. M. Vasconcelos

    2011-08-01

    Full Text Available This work studied the anti-inflammatory activities of the hydroalcoholic extracts (HAEs from Erythrina velutina Willd. (Ev and E. mulungu Mart. ex Benth. (Em in the carrageenan- and dextran-induced mice hind paw edema models. These medicinal plants belonging to the Fabaceae family are used in some Brazilian communities to treat pain, inflammation, insomnia and disorders of the central nervous system. In the present work, the extracts were administered orally in male mice at the doses of 200 or 400 mg/kg. In the carrageenan-induced test, only Em showed anti-inflammatory activity, decreasing the paw edema, at the doses of 200 and 400 mg/kg. No effect was observed with Ev in this model. On the other hand, in the dextran model, Ev demonstrated anti-inflammatory effect, showing decrease of the paw edema at the 1, 2, 3, 4 and 24th h. Em (200 or 400 mg/kg presented anti-inflammatory effect at the 2, 3 and 4th h after administration of dextran, as compared to control. In conclusion, the work showed that Ev and Em present anti-edematous actions, which possibly occurs by distinct mechanisms. While Ev seems to interfere especially in inflammatory processes in which mast cells have an important role, Em exerts greater activity in the inflammatory process that depends mainly on polymorphonuclear leucocytes. However, further studies are needed to determine the exact mechanism of action of the species investigated.

  17. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    Science.gov (United States)

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Anti-Inflammatory and Antinociceptive Activities of Untreated, Germinated, and Fermented Mung Bean Aqueous Extract

    Directory of Open Access Journals (Sweden)

    Norlaily Mohd Ali

    2014-01-01

    Full Text Available Evaluation of anti-inflammatory and antinociceptive activities of untreated mung bean (MB, germinated mung bean (GMB, and fermented mung bean (FMB was performed on both in vitro (inhibition of inflammatory mediator, nitric oxide(NO and in vivo (inhibition of ear oedema and reduction of response to pain stimulus studies. Results showed that both GMB and FMB aqueous extract exhibited potent anti-inflammatory and antinociceptive activities in a dose-dependent manner. In vitro results showed that GMB and FMB were potent inflammatory mediator (NO inhibitors at both 2.5 and 5 mg/mL. Further in vivo studies showed that GMB and FMB aqueous extract at 1000 mg/kg can significantly reduce ear oedema in mice caused by arachidonic acid. Besides, both 200 mg/kg and 1000 mg/kg concentrations of GMB and FMB were found to exhibit potent antinociceptive effects towards hotplate induced pain. With these, it can be concluded that GMB and FMB aqueous extract exhibited potential anti-inflammatory and antinociceptive effects.

  19. Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons: the incipit of the Alzheimer′s disease story?

    Directory of Open Access Journals (Sweden)

    Viviana Triaca

    2016-01-01

    Full Text Available The current idea behind brain pathology is that disease is initiated by mild disturbances of common physiological processes. Overtime, the disruption of the neuronal homeostasis will determine irreversible degeneration and neuronal apoptosis. This could be also true in the case of nerve growth factor (NGF alterations in sporadic Alzheimer′s disease (AD, an age-related pathology characterized by cholinergic loss, amyloid plaques and neurofibrillary tangles. In fact, the pathway activated by NGF, a key neurotrophin for the metabolism of basal forebrain cholinergic neurons (BFCN, is one of the first homeostatic systems affected in prodromal AD. NGF signaling dysfunctions have been thought for decades to occur in AD late stages, as a mere consequence of amyloid-driven disruption of the retrograde axonal transport of neurotrophins to BFCN. Nowadays, a wealth of knowledge is potentially opening a new scenario: NGF signaling impairment occurs at the onset of AD and correlates better than amyloid load with cognitive decline. The recent acceleration in the characterization of anatomical, functional and molecular profiles of early AD is aimed at maximizing the efficacy of existing treatments and setting novel therapies. Accordingly, the elucidation of the molecular events underlying APP metabolism regulation by the NGF pathway in the septo-hippocampal system is crucial for the identification of new target molecules to slow and eventually halt mild cognitive impairment (MCI and its progression toward AD.

  20. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis.

    Science.gov (United States)

    Trelle, Sven; Reichenbach, Stephan; Wandel, Simon; Hildebrand, Pius; Tschannen, Beatrice; Villiger, Peter M; Egger, Matthias; Jüni, Peter

    2011-01-11

    To analyse the available evidence on cardiovascular safety of non-steroidal anti-inflammatory drugs. Network meta-analysis. Bibliographic databases, conference proceedings, study registers, the Food and Drug Administration website, reference lists of relevant articles, and reports citing relevant articles through the Science Citation Index (last update July 2009). Manufacturers of celecoxib and lumiracoxib provided additional data. All large scale randomised controlled trials comparing any non-steroidal anti-inflammatory drug with other non-steroidal anti-inflammatory drugs or placebo. Two investigators independently assessed eligibility. The primary outcome was myocardial infarction. Secondary outcomes included stroke, death from cardiovascular disease, and death from any cause. Two investigators independently extracted data. 31 trials in 116 429 patients with more than 115 000 patient years of follow-up were included. Patients were allocated to naproxen, ibuprofen, diclofenac, celecoxib, etoricoxib, rofecoxib, lumiracoxib, or placebo. Compared with placebo, rofecoxib was associated with the highest risk of myocardial infarction (rate ratio 2.12, 95% credibility interval 1.26 to 3.56), followed by lumiracoxib (2.00, 0.71 to 6.21). Ibuprofen was associated with the highest risk of stroke (3.36, 1.00 to 11.6), followed by diclofenac (2.86, 1.09 to 8.36). Etoricoxib (4.07, 1.23 to 15.7) and diclofenac (3.98, 1.48 to 12.7) were associated with the highest risk of cardiovascular death. Although uncertainty remains, little evidence exists to suggest that any of the investigated drugs are safe in cardiovascular terms. Naproxen seemed least harmful. Cardiovascular risk needs to be taken into account when prescribing any non-steroidal anti-inflammatory drug.

  1. Anti-inflammatory properties of desipramine and fluoxetine

    Directory of Open Access Journals (Sweden)

    Portet Karine

    2007-05-01

    Full Text Available Abstract Background Antidepressants are heavily prescribed drugs and have been shown to affect inflammatory signals. We examined whether these have anti-inflammatory properties in animal models of septic shock and allergic asthma. We also analysed whether antidepressants act directly on peripheral cell types that participate in the inflammatory response in these diseases. Methods The antidepressants desipramine and fluoxetine were compared in vivo to the glucocorticoid prednisolone, an anti-inflammatory drug of reference. In a murine model of lipopolysaccharides (LPS-induced septic shock, animals received the drugs either before or after injection of LPS. Circulating levels of tumour necrosis factor (TNF-α and mortality rate were measured. In ovalbumin-sensitized rats, the effect of drug treatment on lung inflammation was assessed by counting leukocytes in bronchoalveolar lavages. Bronchial hyperreactivity was measured using barometric plethysmography. In vitro production of TNF-α and Regulated upon Activation, Normal T cell Expressed and presumably Secreted (RANTES from activated monocytes and lung epithelial cells, respectively, was analysed by immunoassays. Reporter gene assays were used to measure the effect of antidepressants on the activity of nuclear factor-κB and activator protein-1 which are involved in the control of TNF-α and RANTES expression. Results In the septic shock model, all three drugs given preventively markedly decreased circulating levels of TNF-α and mortality (50% mortality in fluoxetine treated group, 30% in desipramine and prednisolone treated groups versus 90% in controls. In the curative trial, antidepressants had no statistically significant effect, while prednisolone still decreased mortality (60% mortality versus 95% in controls. In ovalbumin-sensitized rats, the three drugs decreased lung inflammation, albeit to different degrees. Prednisolone and fluoxetine reduced the number of macrophages, lymphocytes

  2. Anti-inflammatory activity of Lippia dulcis.

    Science.gov (United States)

    Pérez, S; Meckes, M; Pérez, C; Susunaga, A; Zavala, M A

    2005-10-31

    Lippia dulcis hexane and ethanol extracts were tested for its anti-inflammatory activity in several animal models. Hexane extract showed to be inactive, but the ethanol extract at doses of 400 mg/kg produced significant inhibition of carrageenan-induced paw oedema and reduced the weight of cotton pellet-induced granuloma, moreover, the topical application of 0.5 mg/ear of this extract inhibited the edema induced with TPA by 49.13%, an effect which is of less intensity than that produced by indomethacine at the same dose.

  3. Dobutamine does not influence inflammatory pathways during human endotoxemia

    NARCIS (Netherlands)

    Lemaire, Lucienne C.; de Kruif, Martijn D.; Giebelen, Ida A.; Levi, Marcel; van der Poll, Tom; Heesen, Michael

    2006-01-01

    OBJECTIVE: Catecholamines have anti-inflammatory and anticoagulant properties. Dobutamine is a synthetic catecholamine frequently used in patients with septic myocardial dysfunction. The objective was to determine whether a continuous infusion of dobutamine exerts immunomodulatory effects in healthy

  4. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    Science.gov (United States)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  5. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Nagib, Marwa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Tadros, Mariane G., E-mail: mirogeogo@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); ELSayed, Moushira I. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo (Egypt); Khalifa, Amani E. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-α), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  6. Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L.

    Science.gov (United States)

    Sohn, Eun-Hwa; Jang, Seon-A; Joo, Haemi; Park, Sulkyoung; Kang, Se-Chan; Lee, Chul-Hoon; Kim, Sun-Young

    2011-02-08

    Atopic dermatitis is a chronic, allergic inflammatory skin disease that is accompanied by markedly increased levels of inflammatory cells, including eosinophils, mast cells, and T cells. Arctium lappa L. is a traditional medicine in Asia. This study examined whether a butanol extract of A. lappa (ALBE) had previously unreported anti-allergic or anti-inflammatory effects. This study examined the effect of ALBE on the release of β-hexosaminidase in antigen-stimulated-RBL-2H3 cells. We also evaluated the ConA-induced expression of IL-4, IL-5, mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB using RT-PCR, Western blotting, and ELISA in mouse splenocytes after ALBE treatment. We observed significant inhibition of β-hexosaminidase release in RBL-2H3 cells and suppressed mRNA expression and protein secretion of IL-4 and IL-5 induced by ConA-treated primary murine splenocytes after ALBE treatment. Additionally, ALBE (100 μg/mL) suppressed not only the transcriptional activation of NF-κB, but also the phosphorylation of MAPKs in ConA-treated primary splenocytes. These results suggest that ALBE inhibits the expression of IL-4 and IL-5 by downregulating MAPKs and NF-κB activation in ConA-treated splenocytes and supports the hypothesis that ALBE may have beneficial effects in the treatment of allergic diseases, including atopic dermatitis.

  7. Anti-inflammatory agents in the treatment of bipolar depression: a systematic review and meta-analysis.

    Science.gov (United States)

    Rosenblat, Joshua D; Kakar, Ron; Berk, Michael; Kessing, Lars V; Vinberg, Maj; Baune, Bernhard T; Mansur, Rodrigo B; Brietzke, Elisa; Goldstein, Benjamin I; McIntyre, Roger S

    2016-03-01

    Inflammation has been implicated in the risk, pathophysiology, and progression of mood disorders and, as such, has become a target of interest in the treatment of bipolar disorder (BD). Therefore, the objective of the current qualitative and quantitative review was to determine the overall antidepressant effect of adjunctive anti-inflammatory agents in the treatment of bipolar depression. Completed and ongoing clinical trials of anti-inflammatory agents for BD published prior to 15 May 15 2015 were identified through searching the PubMed, Embase, PsychINFO, and Clinicaltrials.gov databases. Data from randomized controlled trials (RCTs) assessing the antidepressant effect of adjunctive mechanistically diverse anti-inflammatory agents were pooled to determine standard mean differences (SMDs) compared with standard therapy alone. Ten RCTs were identified for qualitative review. Eight RCTs (n = 312) assessing adjunctive nonsteroidal anti-inflammatory drugs (n = 53), omega-3 polyunsaturated fatty acids (n = 140), N-acetylcysteine (n = 76), and pioglitazone (n = 44) in the treatment of BD met the inclusion criteria for quantitative analysis. The overall effect size of adjunctive anti-inflammatory agents on depressive symptoms was -0.40 (95% confidence interval -0.14 to -0.65, p = 0.002), indicative of a moderate and statistically significant antidepressant effect. The heterogeneity of the pooled sample was low (I² = 14%, p = 0.32). No manic/hypomanic induction or significant treatment-emergent adverse events were reported. Overall, a moderate antidepressant effect was observed for adjunctive anti-inflammatory agents compared with conventional therapy alone in the treatment of bipolar depression. The small number of studies, diversity of agents, and small sample sizes limited interpretation of the current analysis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Anti-inflammatory and analgesic activities of Tunisian Citrullus colocynthis Schrad. immature fruit and seed organic extracts.

    Science.gov (United States)

    Marzouk, B; Marzouk, Z; Fenina, N; Bouraoui, A; Aouni, M

    2011-06-01

    Inflammations and immune-related diseases including rheumatoid arthritis are widespread in the entire globe. The treatment of these illnesses is mainly based on the use of synthetic and biotechnological drugs, in recent years. Tunisian traditional medicine is a potential source of new remedies namely Citrullus colocynthis Schrad. (Cucurbitaceae): endemic in southern Tunisia and used in folk medicine to treat many inflammation disorders. Our goal was to assess the in vivo analgesic and anti-inflammatory activities of Tunisian Citrullus colocynthis immature fruit and seed organic extracts (petroleum ether, chloroform, ethyl acetate, acetone and finely methanol extract). Yields of prepared organic extracts are gravimetrically determined. For the analgesic and anti-inflammatory activities, we have used respectively, the acetic acid writhing test in mice and the carrageenan-induced paw edema assay in rats. All extracts displayed an important analgesic and anti-inflammatory activities at different doses without inducing any side effects. This study has demonstrated the analgesic and anti-inflammatory activities of Citrullus colocynthis immature fruit and seed extracts. Experiment results provide scientific insight into the ancient practice of utilizing Citrullus colocynthis Schrad. as analgesic and as anti-inflammatory agents.

  9. [Upper gastrointestinal hemorrhage caused by anti-inflammatory agents].

    Science.gov (United States)

    Duhamel, C; Czernichow, P; Dechelotte, P; Ducrotte, P; Lerebours, E; Colin, R

    1989-03-01

    The aim of this study was to describe the clinical and evolutive characteristics of gastroduodenal bleeding occurring in patients receiving nonsteroidal anti-inflammatory (NSAI) drugs, containing salicylates or not, and to determine the relative toxicity of the NSAI drugs without salicylates. Eight hundred and fourty-five consecutive patients with upper gastrointestinal bleeding related to endoscopically proven peptic ulcer or gastroduodenal erosions were admitted between 1983 and June 1987 to an intensive care unit for digestive tract hemorrhage. Of these, 267 were using anti-inflammatory drugs; 151 (56 p. 100) were taking NSAI drugs other than salicylates, 97 salicylates (36 p. 100) and 10, steroids (4 p. 100). Patients taking nonsteroidal drugs without or with salicylates were compared with patients bleeding from gastroduodenal ulcer or erosion not receiving anti-inflammatory therapy. Patients receiving nonsteroidal drugs not containing salicylates were older (70 p. 100 over 65 years of age vs 46 p. 100, p less than 0.001) and the proportion of female patients was greater (54 p. 100 vs 33 p. 100, p less than 0.001) than in the other group. No significant difference was observed with regard to the following parameters: percentage of gastric lesions, concomitant anticoagulant therapy, need for surgical hemostasis, or mortality. Patients taking aspirin had more gastric lesions (75 p. 100 vs 64 p. 100, p less than 0.05) and less need for surgical hemostasis (7 p. 100 vs 15 p. 100, p less than 0.05); the other parameters did not differ. NSAI drugs other than salicylates were taken more often for osteoarthritis than salicylates (33.6 p. 100 vs 17.4 p. 100, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. ANTI INFLAMMATORY ACTIVITY OF MORINGA OLIEFERA. LAM

    Science.gov (United States)

    Rao, K.N. Venkataswera; Gopalakrishnan, V.; Loganathan, V.; Nathan, S. Shanmuganathan

    1999-01-01

    The aqueous and ethanolic (90%) extract of the leaves of M.Oliera Lam (Fam: Moringaceae) were studied for their anti inflammatory action in ale albino rats. Two extracts exhibited maximum action within two hours of challenge. The aqueous extract sowed significant (P<0.01) odema suppression similar to that of Ibuprofen at the first hour of carrageenan injection. The results confirms the folkers claim of the plant. PMID:22556890

  11. Evaluation of analgesic and anti-inflammatory activities of ...

    African Journals Online (AJOL)

    Background: Bovine mastitis is one of the most relevant and problematic diseases to treat and control in practice. Puxing Yinyang San (PYS) is a compound of herbs to treat bovine mastitis in China. This study was performed to evaluate the analgesic and anti-inflammatory activities of PYS in mice and rats. Materials and ...

  12. Anti-inflammatory, cytotoxic and antioxidant effects of methanolic ...

    African Journals Online (AJOL)

    ... 67.05μg/ml (ABTS). Methanol extract was able to inhibit inflammation by in vitro about 85-90% (HRBC stabilization method) and in vivo about 40-45% (Paw oedema method) anti-inflammatory assays compared to standard produced 50.04% at 6h period. In cytotoxicity assay (MTT assay) methanolic extract exhibited IC50 ...

  13. Anti-inflammatory and hepatoprotective potentials of the aerial parts ...

    African Journals Online (AJOL)

    Methods: Toxicity of S. villosa extract was evaluated in rats. ... Conclusion: The results suggest that S. villosa possesses anti-inflammatory and hepatoprotective activities ..... membrane integrity of hepatocytes of the CCl4- ... stabilization of endoplasmic reticulum that is ..... Erythrocytes Subjected to Oxidative Stress Phytother.

  14. Identification of active anti-inflammatory principles of betabeta wood ...

    African Journals Online (AJOL)

    Purpose: To identify the anti-inflammatory components of beta-beta (Lunasia amara Blanco.) wood. Methods: The wood material was extracted with 96 % ethanol and fractionated with dichloromethane using a liquid-liquid continuous extraction (LLCE). The fractions were subjected to silica gel column chromatography.

  15. Evaluation of In Vitro Anti-inflammatory Activity of Azomethines of Aryl Oxazoles

    Directory of Open Access Journals (Sweden)

    V. Niraimathi

    2011-01-01

    Full Text Available Ability to inhibit erythrocyte hemolysis is often used as a characteristic of the membrane stabilising action of chemical compounds. Azomethines of aryl oxazoles were evaluated for anti-inflammatory by in vitro hemolytic membrane stabilising study. The effect of inflammation condition was studied on erythrocyte exposed to hypotonic solution. In this in vitro method the membrane stabilising action leads to anti-inflammatory activity and was compared with that produced by diclofenac sodium as the reference standard. Results of the evaluation indicate that the synthesised compounds found to exhibit membrane stabilising activity.

  16. Gastrointestinal Complications Depending on the Selectivity of Non-Steroidal Anti-Inflammatory Drug

    Directory of Open Access Journals (Sweden)

    G.V. Dzyak

    2013-02-01

    Full Text Available The article deals with the problem of gastrointestinal complications during administration of nonsteroidal anti-inflammatory drugs, commonly used to treat a range of conditions, particularly rheumatic diseases. The results of own researches, which served to define the characteristics of changes in the state of gastric secretory function in patients receiving non-selective and selective anti-inflammatory agent and their comparative analysis, are provided. The data obtained demonstrated a certain contribution to the understanding of the mechanism of development of complications from the gastrointestinal tract when taken drugs of above group.

  17. Anti-inflammatory and analgesic potential of Caesalpinia ferrea

    Directory of Open Access Journals (Sweden)

    Sandrine Maria A. Lima

    2012-02-01

    Full Text Available Caesalpinia ferrea Mart. belongs to the family Fabaceae. Known as pau-ferro and jucá, it is used in folk medicine to treat diabetes, as antipyretic and antirheumatic. This study aimed to evaluate the anti-inflammatory and antinociceptive activities of the ethanol extract of the fruits of C. ferrea (EECf. In the evaluation of anti-inflammatory activity, EECf (50 mg/kg produced significantly inhibition of ear edema by 66.6% compared to control. Indomethacin (10 mg/kg showed inhibition of 83.9% compared to control. EECf (50 mg/kg inhibited of vascular permeability induced by acetic acid and was also able to reduce of cell migration to the peritoneal cavity induced by thioglycolate. In the writhing test induced by acid acetic, EECf (12.5, 25 and 50 mg/kg significantly reduced the number of contortions by 24.9, 46.9 and 74.2%, respectively. In the formalin test, EECf presented effects only in the second phase. The results provided experimental evidence for the effectiveness of the traditional use of C. ferrea in treating various diseases associated with inflammation and pain.

  18. Proniosomal formulation of curcumin having anti-inflammatory and anti-arthritic activity in different experimental animal models.

    Science.gov (United States)

    Kumar, K; Rai, A K

    2012-10-01

    Curcumin, the active ingredient of the spice turmeric, has a long history as an herbal remedy for a variety of diseases. Transdermal drug delivery has been recognized as an alternative route to oral delivery. Proniosomes offer a versatile vesicle delivery concept with the potential for drug delivery via the transdermal route. In this study, different proniosomal gel bases were prepared by the ether injection method, using Span 60 and Span 80, Tween 20, cholesterol, and formulation PA2. They were characterized by scanning electron microscopy, revealing vesicular structures, and assessed for stability and effect on in vitro skin permeation using rat skin. Anti-inflammatory and anti-arthritic effects of formulation PA2 and PB1 were compared with a standard market product containing indomethacin. The effect of formulation PA2 and PB1 was evaluated for acute inflammation in carrageenan induced rat paw edema and for chronic inflammation in complete Freud's adjuvant (CFA) induced arthritis in rats. Further histopathological and radiographic evaluation was performed. The investigated curcumin loaded proniosomal formula proved to be non-irritant, non-toxic, but had lower anti-inflammatory and anti-arthritic effects than the marketed indomethacin products.

  19. 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome

    Science.gov (United States)

    Kumar, Naresh; Gupta, Geetika; Anilkumar, Kotha; Fatima, Naireen; Karnati, Roy; Reddy, Gorla Venkateswara; Giri, Priyanka Voori; Reddanna, Pallu

    2016-01-01

    The ratio of ω-6 to ω-3 polyunsaturated fatty acids (PUFAs) appears to be critical in the regulation of various pathophysiological processes and to maintain cellular homeostasis. While a high proportion of dietary intake of ω-6 PUFAs is associated with various inflammatory disorders, higher intake of ω-3 PUFAs is known to offer protection. It is now well established that beneficial effects of ω-3 PUFAs are mediated in part by their oxygenated metabolites mainly via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. However, the down-stream signaling pathways that are involved in these anti-inflammatory effects of ω-3 PUFAs have not been elucidated. The present study evaluates the effects of 15-LOX metabolites of α-linolenic acid (ALA, ω-3 PUFA) on lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells and peritoneal macrophages. Further, the effect of these metabolites on the survival of BALB/c mice in LPS mediated septic shock and also polymicrobial sepsis in Cecal Ligation and Puncture (CLP) mouse model was studied. These studies reveal the anti-inflammatory effects of 13-(S)-hydroperoxyoctadecatrienoic acid [13-(S)-HPOTrE] and 13-(S)-hydroxyoctadecatrienoic acid [13-(S)-HOTrE] by inactivating NLRP3 inflammasome complex through the PPAR-γ pathway. Additionally, both metabolites also deactivated autophagy and induced apoptosis. In mediating all these effects 13-(S)-HPOTrE was more potent than 13-(S)-HOTrE. PMID:27535180

  20. Caloric Restriction Mimetic 2-Deoxyglucose Alleviated Inflammatory Lung Injury via Suppressing Nuclear Pyruvate Kinase M2-Signal Transducer and Activator of Transcription 3 Pathway.

    Science.gov (United States)

    Hu, Kai; Yang, Yongqiang; Lin, Ling; Ai, Qing; Dai, Jie; Fan, Kerui; Ge, Pu; Jiang, Rong; Wan, Jingyuan; Zhang, Li

    2018-01-01

    Inflammation is an energy-intensive process, and caloric restriction (CR) could provide anti-inflammatory benefits. CR mimetics (CRM), such as the glycolytic inhibitor 2-deoxyglucose (2-DG), mimic the beneficial effects of CR without inducing CR-related physiologic disturbance. This study investigated the potential anti-inflammatory benefits of 2-DG and the underlying mechanisms in mice with lipopolysaccharide (LPS)-induced lethal endotoxemia. The results indicated that pretreatment with 2-DG suppressed LPS-induced elevation of tumor necrosis factor alpha and interleukin 6. It also suppressed the upregulation of myeloperoxidase, attenuated Evans blue leakage, alleviated histological abnormalities in the lung, and improved the survival of LPS-challenged mice. Treatment with 2-DG had no obvious effects on the total level of pyruvate kinase M2 (PKM2), but it significantly suppressed LPS-induced elevation of PKM2 in the nuclei. Prevention of PKM2 nuclear accumulation by ML265 mimicked the anti-inflammatory benefits of 2-DG. In addition, treatment with 2-DG or ML265 suppressed the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3). Inhibition of STAT3 by stattic suppressed LPS-induced inflammatory injury. Interestingly, posttreatment with 2-DG at the early stage post-LPS challenge also improved the survival of the experimental animals. This study found that treatment with 2-DG, a representative CRM, provided anti-inflammatory benefits in lethal inflammation. The underlying mechanisms included suppressed nuclear PKM2-STAT3 pathway. These data suggest that 2-DG might have potential value in the early intervention of lethal inflammation.

  1. Identification of cholinergic synaptic transmission in the insect nervous system.

    Science.gov (United States)

    Thany, Steeve Hervé; Tricoire-Leignel, Hélène; Lapied, Bruno

    2010-01-01

    A major criteria initially used to localize cholinergic neuronal elements in nervous systems tissues that involve acetylcholine (ACh) as neurotransmitter is mainly based on immunochemical studies using choline acetyltransferase (ChAT), an enzyme which catalyzes ACh biosynthesis and the ACh degradative enzyme named acetylcholinesterase (AChE). Immunochemical studies using anti-ChAT monoclonal antibody have allowed the identification of neuronal processes and few types of cell somata that contain ChAT protein. In situ hybridization using cRNA probes to ChAT or AChE messenger RNA have brought new approaches to further identify cell bodies transcribing the ChAT or AChE genes. Combined application of all these techniques reveals a widespread expression of ChAT and AChE activities in the insect central nervous system and peripheral sensory neurons which implicates ACh as a key neurotransmitter. The discovery of the snake toxin alpha-bungatoxin has helped to identify nicotinic acetylcholine receptors (nAChRs). In fact, nicotine when applied to insect neurons, resulted in the generation of an inward current through the activation of nicotinic receptors which were blocked by alpha-bungarotoxin. Thus, insect nAChRs have been divided into two categories, sensitive and insensitive to this snake toxin. Up to now, the recent characterization and distribution pattern of insect nAChR subunits and the biochemical evidence that the insect central nervous system contains different classes of cholinergic receptors indicated that ACh is involved in several sensory pathways.

  2. Synthesis and Anti-Inflammatory Activity of New Alkyl-Substituted Phthalimide 1H-1,2,3-Triazole Derivatives

    Directory of Open Access Journals (Sweden)

    Shalom Pôrto de Oliveira Assis

    2012-01-01

    Full Text Available Four new 1,2,3-triazole phthalimide derivatives with a potent anti-inflammatory activity have been synthesized in the good yields by the 1,3-dipolar cycloaddition reaction from N-(azido-alkylphthalimides and terminal alkynes. The anti-inflammatory activity was determined by injecting carrageenan through the plantar tissue of the right hind paw of Swiss white mice to produce inflammation. All the compounds 3a–c and 5a–c exhibited an important anti-inflammatory activity; the best activity was found for the compounds 3b and 5c, which showed to be able to decrease by 69% and 56.2% carrageenan-induced edema in mice. These compounds may also offer a future promise as a new anti-inflammatory agent.

  3. Anti-inflammatory effects of essential oils from Mangifera indica.

    Science.gov (United States)

    Oliveira, R M; Dutra, T S; Simionatto, E; Ré, N; Kassuya, C A L; Cardoso, C A L

    2017-03-16

    Mangifera indica is widely found in Brazil, and its leaves are used as an anti-inflammatory agent in folk medicine. The aim of this study is to perform composition analysis of essential oils from the M. indica varieties, espada (EOMIL1) and coração de boi (EOMIL2), and confirm their anti-inflammatory properties. Twenty-three volatile compounds were identified via gas chromatography-mass spectrometry (GC-MS) in two essential oils from the leaves. Paw edema and myeloperoxidase (MPO) activity were evaluated using the carrageenan-induced paw model, while leukocyte migration was analyzed using the pleurisy model. At oral doses of 100 and 300 mg/kg, the essential oils significantly reduced edema formation and the increase in MPO activity induced by carrageenan in rat paws. For a dose of 300 mg/kg EOMIL1, 62 ± 8% inhibition of edema was observed, while EOMIL2 led to 51 ± 7% inhibition of edema. At a dose of 100 mg/kg, the inhibition was 54 ± 9% for EOMIL1 and 37 ± 7% for EOMIL2. EOMIL1 and EOMIL2 significantly reduced MPO activity at doses of 100 mg/kg (47 ± 5 and 23 ± 8%, respectively) and 300 mg/kg (50 ± 9 and 31 ± 7%, respectively). In the pleurisy model, inhibitions were also observed for EOMIL1 and EOMIL2 in the leukocyte migration test. The results of the present study show that essential oils from M. indica differ in chemical composition and anti-inflammatory activity in rats.

  4. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L.

    Science.gov (United States)

    Orhan, I; Küpeli, E; Aslan, M; Kartal, M; Yesilada, E

    2006-04-21

    The ethanolic and aqueous extracts prepared from different parts of Pistacia vera L. (Anacardiaceae) as well as its oleoresin were evaluated for their in vivo anti-inflammatory and antinociceptive activities. Among the extracts screened, only the oleoresin was shown to possess a marked anti-inflammatory activity against carrageenan-induced hind paw edema model in mice without inducing any gastric damage at both 250 and 500 mg/kg doses whereas the rest of the extracts were totally inactive. While the oleoresin was found to display significant antinociceptive activity at 500 mg/kg dose, the ethanolic and aqueous extracts belonging to fruit, leaf, branch and peduncle of Pistacia vera did not exhibit any noticeable antinociception in p-benzoquinone-induced abdominal contractions in mice. Fractionation of the oleoresin indicated the n-hexane fraction to be active, which further led to recognition of some monoterpenes, mainly alpha-pinene (77.5%) by capillary gas chromatography-mass spectrometry (GC-MS) as well as the oleoresin itself. alpha-Pinene was also assessed for its antinociceptive and anti-inflammatory activities in the same manner and exerted a moderate anti-inflammatory effect at 500 mg/kg dose.

  5. Valosin containing protein (VCP) interacts with macrolide antibiotics without mediating their anti-inflammatory activities.

    Science.gov (United States)

    Nujić, Krunoslav; Smith, Marjorie; Lee, Michael; Belamarić, Daniela; Tomašković, Linda; Alihodžić, Sulejman; Malnar, Ivica; Polančec, Denis; Schneider, Klaus; Eraković Haber, Vesna

    2012-02-29

    In addition to antibacterial activity, some macrolide antibiotics, such as azithromycin and clarithromycin, also exhibit anti-inflammatory properties in vitro and in vivo, although the targets and mechanism(s) of action remain unknown. The aim of the present study was to identify protein targets of azithromycin and clarithromycin which could potentially explain their anti-inflammatory effects. Using chemical proteomics approach, based on compound-immobilized affinity chromatography, valosin containing protein (VCP) was identified as a potential target of the macrolides. Validation studies confirmed the interaction of macrolides and VCP and gave some structural characteristics of this interaction. Cell based assays however, including the use of gene silencing and the study of VCP specific cellular functions in J774.A1 (murine macrophage) and IB3-1 (human cystic fibrotic epithelial) cell lines, failed to confirm an association between the binding of the macrolides to VCP and anti-inflammatory effects. These findings suggest the absence of an abundant high affinity protein target and the potential involvement of other biological molecules in the anti-inflammatory activity of macrolides. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Avicenna's Canon of Medicine: a review of analgesics and anti-inflammatory substances

    Directory of Open Access Journals (Sweden)

    Shahla Mahdizadeh

    2015-04-01

    Full Text Available Naturally occurring substances mentioned in medieval medical literatures currently have, and will continue to have, a crucial place in drug discovery. Avicenna was a Persian physician who is known as the most influential medical writers in the Middle ages. Avicenna`s Canon of Medicine, the most famous books in the history of medicine, presents a clear and organized summary of all the medical knowledge of the time, including a long list of drugs. Several hundred substances and receipts from different sources are mentioned for treatment of different illnesses in this book. The aim of the present study was to provide a descriptive review of all anti-inflammatory and analgesic drugs presented in this comprehensive encyclopedia of medicine. Data for this review were provided by searches of different sections of this book. Long lists of anti-inflammatory and analgesic substances used in the treatment of various diseases are provided. The efficacy of some of these drugs, such as opium, willow oil, curcuma, and garlic, was investigated by modern medicine; pointed to their potent anti-inflammatory and analgesic properties. This review will help further research into the clinical benefits of new drugs for treatment of inflammatory diseases and pain.

  7. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats.

    Science.gov (United States)

    Wang, Qin; Dai, Peng; Bao, Han; Liang, Ping; Wang, Wei; Xing, An; Sun, Jianbin

    2017-01-01

    Stroke is one of the leading causes of mortality worldwide. Protective agents that can diminish injuries caused by cerebral ischemia-reperfusion (I/R) are important in alleviating the harmful outcomes of stroke. The aim of the present study was to investigate the protective role of sanguinarine in cerebral I/R injury. A rat middle cerebral artery occlusion model was used to assess the clinical effect of sanguinarine, and inflammatory cytokines in the serum were detected by ELISA. Western blotting was performed to examine the change in levels of apoptosis-associated proteins in the injured brains. The results suggested that sanguinarine, an anti-inflammatory agent derived from the roots of Sanguinaria canadensis , improved the state of cerebral ischemia in a rat model. The data demonstrated that when rats were treated with sanguinarine prior to middle cerebral artery occlusion, the infarct volume was reduced significantly. The inflammatory factors tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were measured in sanguinarine and vehicle-treated groups using an enzyme-linked immunosorbent assay, and the expression levels of the three factors were significantly reduced following treatment with sanguinarine (Pprotective effect in cerebral ischemia, and that this effect is associated with the anti-inflammatory and anti-apoptotic properties of sanguinarine.

  8. Antinociceptive and anti-inflammatory activities of Cuscuta chinensis seeds in mice.

    Science.gov (United States)

    Liao, Jung-Chun; Chang, Wen-Te; Lee, Meng-Shiou; Chiu, Yung-Jia; Chao, Wei-Kai; Lin, Ying-Chih; Lin, Ming-Kuem; Peng, Wen-Huang

    2014-01-01

    The seeds of Cuscuta chinensis, Cuscutae Semen, are commonly used as a medicinal material for treating the aching and weakness of the loins and knees, tonifying the defects of the liver and the kidney, and treating the diarrhea due to hypofunction of the kidney and the spleen. Since aching and inflammation are highly correlated with such diseases, the aim of this study is to investigate the possible antinociceptive and anti-inflammatory mechanisms of the seeds of C. chinensis. The antinociceptive effect of the seeds of C. chinensis was evaluated via the acetic acid-induced writhing response and formalin-induced paw licking methods. The anti-inflammatory effect was evaluated via the λ-carrageenan induced mouse paw edema method. The results found that 100 and 500 mg/kg of the methanol extract of the seeds of C. chinensis( CC MeOH ) significantly decreased (p Cuscutae Semen in inflammatory diseases.

  9. Arzanol, a Potent mPGES-1 Inhibitor: Novel Anti-Inflammatory Agent

    Directory of Open Access Journals (Sweden)

    Pankaj S. Kothavade

    2013-01-01

    Full Text Available Arzanol is a novel phloroglucinol α-pyrone, isolated from a Mediterranean plant Helichrysum italicum (Roth Don ssp. microphyllum which belongs to the family Asteraceae. Arzanol has been reported to possess a variety of pharmacological activities. However, anti-inflammatory, anti-HIV, and antioxidant activities have been studied in some detail. Arzanol has been reported to inhibit inflammatory transcription factor NFκB activation, HIV replication in T cells, releases of IL-1β, IL-6, IL-8, and TNF-α, and biosynthesis of PGE2 by potentially inhibiting mPGES-1 enzyme. Diversity of mechanisms of actions of arzanol may be useful in treatment of disease involving these inflammatory mediators such as autoimmune diseases and cancer. This review presents comprehensive information on the chemistry, structure-activity relationship, and pharmacological activities of arzanol. In addition this review discusses recent developments and the scope for future research in these aspects.

  10. Arzanol, a Potent mPGES-1 Inhibitor: Novel Anti-Inflammatory Agent

    Science.gov (United States)

    Kothavade, Pankaj S.; Nagmoti, Dnyaneshwar M.; Bulani, Vipin D.; Juvekar, Archana R.

    2013-01-01

    Arzanol is a novel phloroglucinol α-pyrone, isolated from a Mediterranean plant Helichrysum italicum (Roth) Don ssp. microphyllum which belongs to the family Asteraceae. Arzanol has been reported to possess a variety of pharmacological activities. However, anti-inflammatory, anti-HIV, and antioxidant activities have been studied in some detail. Arzanol has been reported to inhibit inflammatory transcription factor NFκB activation, HIV replication in T cells, releases of IL-1β, IL-6, IL-8, and TNF-α, and biosynthesis of PGE2 by potentially inhibiting mPGES-1 enzyme. Diversity of mechanisms of actions of arzanol may be useful in treatment of disease involving these inflammatory mediators such as autoimmune diseases and cancer. This review presents comprehensive information on the chemistry, structure-activity relationship, and pharmacological activities of arzanol. In addition this review discusses recent developments and the scope for future research in these aspects. PMID:24198734

  11. Ilexgenin A exerts anti-inflammation and anti-angiogenesis effects through inhibition of STAT3 and PI3K pathways and exhibits synergistic effects with Sorafenib on hepatoma growth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao [Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou 225001, Jiangsu (China); College of Medicine, Yangzhou University, Yangzhou 225001, Jiangsu (China); Institute of Pharmacology and Toxicology, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222000, Jiangsu (China); Wang, Juan [Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou 225001, Jiangsu (China); College of Medicine, Yangzhou University, Yangzhou 225001, Jiangsu (China); Fan, Jin-hong; Zhang, Ya-qi; Zhao, Jun-xian [Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou 225001, Jiangsu (China); Dai, Xiao-jun [Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou 225001, Jiangsu (China); Chinese Medicine Hospital of Yangzhou City, Yangzhou 225009, Jiangsu (China); Liu, Qi; Shen, Yan-jun [Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou 225001, Jiangsu (China); College of Medicine, Yangzhou University, Yangzhou 225001, Jiangsu (China); Liu, Chang [Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou 225001, Jiangsu (China); Sun, Wei-dong, E-mail: zyykjc@sina.com [Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou 225001, Jiangsu (China); Chinese Medicine Hospital of Yangzhou City, Yangzhou 225009, Jiangsu (China); Sun, Yun, E-mail: ysun@yzu.edu.cn [Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou 225001, Jiangsu (China); College of Medicine, Yangzhou University, Yangzhou 225001, Jiangsu (China)

    2017-01-15

    Recently, we reported that Ilexgenin A exhibits anti-cancer activities and induces cell arrest. Here, we investigated the effect of Ilexgenin A on the inflammation, angiogenesis and tumor growth of hepatocellular carcinoma (HCC). Our current study revealed that Ilexgenin A significantly inhibited the inflammatory cytokines TNF-α and IL-6 levels and downregulated pro-angiogenic factor VEGF production and transcription in HepG2 cells. The underlying mechanism for Ilexgenin A effects appears to be through inhibiting STAT3 and PI3K pathways. Furthermore, we found that not only Ilexgenin A inhibited STAT3 and PI3K pathways in HepG2 cells but also blocked these signaling pathways in HUVECs. Most importantly, by employing two HCC xenografts models - HepG2 and H22, we showed that Ilexgenin A reduced tumor growth and exhibited synergy effect with Sorafenib. ELISA assay, histological analysis and immunohistochemistry examination revealed that the expression of VEGF and MVD was significantly decreased after the treatment with Ilexgenin A and the combination. Moreover, Ilexgenin A could enhance caspase-3/7 activity in vitro and transmission electron microscope indicated that the combination induced evident apoptosis of tumor cells and caused the structural changes of mitochondria in vivo. Although no apparent adverse effects occurred during the treatment period, Sorafenib monotherapy elicited hepatotoxicity for specific expression in the increased level of AST and the ratio of AST/ALT. However, the combination could remedy this adverse effect. In conclusion, the results described in the present study identifies Ilexgenin A as a promising therapeutic candidate that modulates inflammation, angiogenesis, and HCC growth. - Highlights: • Ilexgenin A exerts anti-inflammatory and anti-angiogenesis effects in hepatoma. • Ilexgenin A may exert these effects through inhibition of STAT3 and PI3K pathways. • Ilexgenin A exhibits synergistic effects with Sorafenib on hepatoma growth

  12. Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats

    Directory of Open Access Journals (Sweden)

    Roussel Anne M

    2007-01-01

    Full Text Available Abstract Background Tristetraprolin (TTP/ZFP36 family proteins have anti-inflammatory activity by binding to and destabilizing pro-inflammatory mRNAs such as Tnf mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has anti-inflammatory properties but the molecular mechanisms have not been completely elucidated. We hypothesized that TTP and/or its homologues might contribute to the beneficial effects of tea as an anti-inflammatory product. Methods Quantitative real-time PCR was used to investigate the effects of green tea (0, 1, and 2 g solid extract/kg diet on the expression of Ttp family genes (Ttp/Tis11/Zfp36, Zfp36l1/Tis11b, Zfp36l2/Tis11d, Zfp36l3, pro-inflammatory genes (Tnf, Csf2/Gm-csf, Ptgs2/Cox2, and Elavl1/Hua/Hur and Vegf genes in liver and muscle of rats fed a high-fructose diet known to induce insulin resistance, oxidative stress, inflammation, and TNF-alpha levels. Results Ttp and Zfp36l1 mRNAs were the major forms in both liver and skeletal muscle. Ttp, Zfp36l1, and Zfp36l2 mRNA levels were more abundant in the liver than those in the muscle. Csf2/Gm-csf and Zfp36l3 mRNAs were undetectable in both tissues. Tea (1 g solid extract/kg diet increased Ttp mRNA levels by 50–140% but Tnf mRNA levels decreased by 30% in both tissues, and Ptgs2/Cox2 mRNA levels decreased by 40% in the muscle. Tea (2 g solid extract/kg diet increased Elavl1/Hua/Hur mRNA levels by 40% in the liver but did not affect any of the other mRNA levels in liver or muscle. Conclusion These results show that tea can modulate Ttp mRNA levels in animals and suggest that a post-transcriptional mechanism through TTP could partially account for tea's anti-inflammatory properties. The results also suggest that drinking adequate amounts of green tea may play a role in the prevention of inflammation-related diseases.

  13. Anti-Inflammatory and Antioxidant Activities of Methanol Extracts and ...

    African Journals Online (AJOL)

    Background: Methanol extracts and alkaloid fractions of different parts of four plant species belonging to Solanaceae family and used in Mexican traditional medicine were investigated for their total phenolic contents, anti-inflammatory and antioxidant properties. Materials and Methods: The total phenolic compounds of each ...

  14. Essential Oil Composition and Anti-Inflammatory Activity of Salvia ...

    African Journals Online (AJOL)

    Purpose: Sage, Salvia officinalis L (Lamiaceae), is widely cultivated medicinal plant for its economic importance and large content of bioactive components; therefore, in the present study, the active components (volatile compounds) and the anti-inflammatory effect of S. officinalis have been investigated. Methods: Salvia ...

  15. Analgesic and anti-inflammatory activity of root bark of Grewia asiatica Linn. in rodents.

    Science.gov (United States)

    Paviaya, Udaybhan Singh; Kumar, Parveen; Wanjari, Manish M; Thenmozhi, S; Balakrishnan, B R

    2013-01-01

    Grewia asiatica Linn. (Family: Tiliaceae), called Phalsa in Hindi is an Indian medicinal plant used for a variety of therapeutic and nutritional uses. The root bark of the plant is traditionally used in rheumatism (painful chronic inflammatory condition). The present study demonstrates the analgesic and anti-inflammatory activity of root bark of G. asiatica in rodents. The methanolic extract of Grewia asiatica (MEGA) and aqueous extract of Grewia asiatica (AEGA) of the bark were prepared and subjected to phytochemical tests and pharmacological screening for analgesic and anti-inflammatory effect in rodents. Analgesic effect was studied using acetic acid-induced writhing in mice and hot plate analgesia in rats while anti-inflammatory activity was investigated using carrageenan-induced paw oedema in rats. The MEGA or AEGA was administered orally in doses of 200 and 400 mg/kg/day of body weight. Data were analysed by one-way analysis of variance followed by Dunnett's test. The extracts showed a significant inhibition of writhing response and increase in hot plate reaction time and also caused a decrease in paw oedema. The effects were comparable with the standard drugs used. The present study indicates that root bark of G. asiatica exhibits peripheral and central analgesic effect and anti-inflammatory activity, which may be attributed to the various phytochemicals present in root bark of G. asiatica.

  16. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells

    OpenAIRE

    Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok

    2017-01-01

    Background Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory e...

  17. Anti-inflammatory activity of Punica granatum L. (Pomegranate) rind extracts applied topically to ex vivo skin.

    Science.gov (United States)

    Houston, David M J; Bugert, Joachim; Denyer, Stephen P; Heard, Charles M

    2017-03-01

    Coadministered pomegranate rind extract (PRE) and zinc (II) produces a potent virucidal activity against Herpes simplex virus (HSV); however, HSV infections are also associated with localised inflammation and pain. Here, the objective was to determine the anti-inflammatory activity and relative depth penetration of PRE, total pomegranate tannins (TPT) and zinc (II) in skin, ex vivo. PRE, TPT and ZnSO 4 were dosed onto freshly excised ex vivo porcine skin mounted in Franz diffusion cells and analysed for COX-2, as a marker for modulation of the arachidonic acid inflammation pathway, by Western blotting and immunohistochemistry. Tape stripping was carried out to construct relative depth profiles. Topical application of PRE to ex vivo skin downregulated expression of COX-2, which was significant after just 6h, and maintained for up to 24h. This was achieved with intact stratum corneum, proving that punicalagin penetrated skin, further supported by the depth profiling data. When PRE and ZnSO 4 were applied together, statistically equal downregulation of COX-2 was observed when compared to the application of PRE alone; no effect followed the application of ZnSO 4 alone. TPT downregulated COX-2 less than PRE, indicating that tannins alone may not be entirely responsible for the anti-inflammatory activity of PRE. Punicalagin was found throughout the skin, in particular the lower regions, indicating appendageal delivery as a significant route to the viable epidermis. Topical application of TPT and PRE had significant anti-inflammatory effects in ex vivo skin, confirming that PRE penetrates the skin and modulates COX-2 regulation in the viable epidermis. Pomegranates have potential as a novel approach in ameliorating the inflammation and pain associated with a range of skin conditions, including cold sores and herpetic stromal keratitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Novel anti-inflammatory agents in COPD

    DEFF Research Database (Denmark)

    Loukides, Stelios; Bartziokas, Konstantinos; Vestbo, Jørgen

    2013-01-01

    Inflammation plays a central role in chronic obstructive pulmonary disease (COPD). COPD related inflammation is less responsive to inhaled steroids compared to asthma. There are three major novel anti-inflammatory approaches to the management of COPD. The first approach is phosphodiesterase...... on these strategies exist at the moment. A third potential approach involves novel agents whose mechanism of action is closely related to COPD mechanisms and pathophysiology. Such novel treatments are of great interest since they may treat both COPD and co-morbidities. Several novel agents are currently under...

  19. In vitro anti-proliferative and anti-inflammatory activity of leaf and fruit extracts from Vaccinium bracteatum Thunb

    Czech Academy of Sciences Publication Activity Database

    Landa, Přemysl; Skálová, L.; Boušová, I.; Kutil, Zsófia; Langhansová, Lenka; Lou, J.D.; Vaněk, Tomáš

    2014-01-01

    Roč. 27, č. 1 (2014), s. 103-106 ISSN 1011-601X R&D Projects: GA MŠk ME08070 Institutional support: RVO:61389030 Keywords : anti-proliferative activity * anti-inflammatory activity * breast cancer Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.682, year: 2014 http://www.pjps.pk/wp-content/uploads/pdfs/27/1/Paper-15.pdf

  20. Antinociceptive and Anti-Inflammatory Effects of Total Alkaloid Extract from Fumaria capreolata

    Directory of Open Access Journals (Sweden)

    Noureddine Bribi

    2015-01-01

    Full Text Available Fumaria capreolata is used in traditional medicine in North Africa for its gastrointestinal and anti-inflammatory activities. The present study investigates the effects of total alkaloids extracted from the aerial parts of Fumaria capreolata (AFC on LPS-induced production of proinflammatory mediators (IL-6, IL-1β, iNOS, TNF-α, COX-2, and MIP-2 in RAW264.7 cells. AFC significantly reduced the inflammatory response inhibiting the production of nitric oxide (NO and IL-6 in a dose-dependent manner, without affecting the viability of cells, and downregulated mRNA expression of proinflammatory key players: IL-6, IL-1β, iNOS, TNF-α, and COX-2. AFC antinociceptive and anti-inflammatory properties were also evaluated on the acetic acid- and formalin-induced pain models in mice. AFC oral administration significantly inhibited acetic acid-induced writhes and reduced formalin-induced paw licking time. Therefore, AFC may be a potential candidate for the treatment of inflammatory diseases, such as colitis and arthritis.

  1. Anti-Inflammatory and Antioxidant Effects of an Ethanolic Extract of ...

    African Journals Online (AJOL)

    inflammatory agent dexamethasone (0.3-3 mg kg-1, i.p.) dosedependently reduced ... HLE as well as the positive controls, dexamethasone and methotrexate, showed significant anti-arthritic properties when applied to established adjuvant arthritis.

  2. Evaluation of the anti-inflammatory properties of the hexane extract ...

    African Journals Online (AJOL)

    Maj Obaseki

    2016-08-26

    Aug 26, 2016 ... and human red blood cell (HRBC) membrane stabilization assays. ... bonariensis affirms the anti-inflammatory property of the plant and the phytochemicals ..... Plasma for liver function tests was obtained by centrifuging the.

  3. Anti-inflammatory activity of Agaricus blazei Murill extract in the ...

    African Journals Online (AJOL)

    admin

    potential therapy of atherosclerosis disease. Keywords: Anti-inflammatory agent, Agaricus blazei Murill, Proinflammatory cytokine, TNF-α, IL-10. This is an ..... belong to the β2 integrin family. .... Response through Intestinal Epithelial Cells and.

  4. Screening of Ficus religiosa leaves fractions for analgesic and anti-inflammatory activities.

    Science.gov (United States)

    Gulecha, Vishal; Sivakumar, T; Upaganlawar, Aman; Mahajan, Manoj; Upasani, Chandrashekhar

    2011-11-01

    To evaluate the different fractions of dried leaves of Ficus religiosa Linn for analgesic and anti-inflammatory activity using different models of pain and inflammation The analgesic activity of F. religiosa carried out using acetic acid-induced writhing in mice and tail flick test in rats. The anti-inflammatory activity was evaluated using carrageenan-induced rat paw edema and cotton pellet-granuloma formation in rats. Five different fractions (FRI, FRII, FRIII, FRIV and FRV) of F. religiosa at the dose level of 20 and 40 mg/kg, p.o were tested. The fraction FRI (40 mg/kg, p.o.) and FRIII (40 mg/kg, p.o) were found to be more effective (Pacetic acid induced writhing compared to the other fractions. FRI (20 mg/kg, p.o.) and FRIII (20 mg/kg, p.o.) were also found to be more effective in increasing latency period in tail flick method. Out of five different fractions of F. religiosa leaves tested, FRI and FRIII possess potent analgesic and anti-inflammatory activities against different models of inflammation and pain.

  5. Study of antinociceptive and anti-inflammatory activities of certain Iranian medicinal plants

    Directory of Open Access Journals (Sweden)

    Fariba Sharififar

    2012-02-01

    Methods: The antinociceptive and anti-inflammatory activity of methanol extracts of tested plants were evaluated using hot-plate and carrageenan-induced edema methods respectively. The plant extracts were studied by i.p administration at three doses of 100, 200 and 400mg/kg. Results: In the hot-plate test, the extracts of T. foeunm-graecum (100 mg/kg and Z. majdae (200 and 400m g/kg significantly increased the tolerance to pain in female albino mice in comparison to control. The administration of T. foenum-graecum at doses of 100 and 200mg/kg and V. tricolor (400mg/kg significantly reduced the paw edema in male rat which measured in all the times of observation after carrageenan administration in comparison to control and reference (Ibuprofen, 400mg/kg. Conclusions: The present work comparatively demonstrated considerable antinociceptive and anti inflammatory effect of all of the tested plants especially T. foeunm-graecum. The results here confirm traditional uses of T. foeunm-graecum both as analgesic or anti inflammatory agents. [J Intercult Ethnopharmacol 2012; 1(1.000: 19-24

  6. Spinal cholinergic involvement after treatment with aspirin and paracetamol in rats

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Kommalage, Mahinda; Höglund, A Urban

    2004-01-01

    Aspirin and paracetamol have been shown to suppress non-inflammatory pain conditions like thermal, visceral and mechanical pain in mice and rats. The non-inflammatory antinociception appears to be mediated by central receptor mechanisms, such as the cholinergic system. In this study, we tested...... the hypothesis that the non-inflammatory antinociception of aspirin and paracetamol could be mediated by an increase of intraspinal acetylcholine release. Microdialysis probes were placed intraspinally in anesthetized rats for acetylcholine sampling. Subcutaneously administered aspirin 100 and 300 mg....../kg increased, while paracetamol 300 mg/kg decreased intraspinal acetylcholine release. Intraspinal drug administration did not affect acetylcholine release. Our results suggest that an increased intraspinal acetylcholine release could be involved in part of the non-inflammatory pain suppression by aspirin...

  7. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea.

    Science.gov (United States)

    Passos, Giselle F; Fernandes, Elizabeth S; da Cunha, Fernanda M; Ferreira, Juliano; Pianowski, Luiz F; Campos, Maria M; Calixto, João B

    2007-03-21

    The anti-inflammatory and anti-allergic effects of the essential oil of Cordia verbenacea (Boraginaceae) and some of its active compounds were evaluated. Systemic treatment with the essential oil of Cordia verbenacea (300-600mg/kg, p.o.) reduced carrageenan-induced rat paw oedema, myeloperoxidase activity and the mouse oedema elicited by carrageenan, bradykinin, substance P, histamine and platelet-activating factor. It also prevented carrageenan-evoked exudation and the neutrophil influx to the rat pleura and the neutrophil migration into carrageenan-stimulated mouse air pouches. Moreover, Cordia verbenacea oil inhibited the oedema caused by Apis mellifera venom or ovalbumin in sensitized rats and ovalbumin-evoked allergic pleurisy. The essential oil significantly decreased TNFalpha, without affecting IL-1beta production, in carrageenan-injected rat paws. Neither the PGE(2) formation after intrapleural injection of carrageenan nor the COX-1 or COX-2 activities in vitro were affected by the essential oil. Of high interest, the paw edema induced by carrageenan in mice was markedly inhibited by both sesquiterpenic compounds obtained from the essential oil: alpha-humulene and trans-caryophyllene (50mg/kg, p.o.). Collectively, the present results showed marked anti-inflammatory effects for the essential oil of Cordia verbenacea and some active compounds, probably by interfering with TNFalpha production. Cordia verbenacea essential oil or its constituents might represent new therapeutic options for the treatment of inflammatory diseases.

  8. Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Fechtner, Sabrina; Singh, Anil; Chourasia, Mukesh; Ahmed, Salahuddin

    2017-08-15

    In this study, we found that catechins found in green tea (EGCG, EGC, and EC) differentially interfere with the IL-1β signaling pathway which regulates the expression of pro-inflammatory mediators (IL-6 and IL-8) and Cox-2 in primary human rheumatoid arthritis synovial fibroblasts (RASFs). EGCG and EGC inhibited IL-6, IL-8, and MMP-2 production and selectively inhibited Cox-2 expression. EC did not exhibit any inhibitory effects. When we looked at the expression of key signaling proteins in the IL-1β signaling pathway, we found all the tested catechins could inhibit TAK-1 activity. Therefore, the consumption of green tea offers an overall anti-inflammatory effect. Molecular docking analysis confirms that EGCG, EGC, and EC all occupy the active site of the TAK1 kinase domain. However, EGCG occupies the majority of the TAK1 active site. In addition to TAK1 inhibition, EGCG can also inhibit P38 and nuclear NF-κB expression whereas EC and EGC were not effective inhibitors. Our findings suggest one of the main health benefits associated with the consumption of green tea are due to the activity of EGCG and EGC which are both present at higher amounts. Although EGCG is the most effective catechin at inhibiting downstream inflammatory signaling, its effectiveness could be hindered by the presence of EC. Therefore, varying EC content in green tea may reduce the anti-inflammatory effects of other potential catechins in green tea. Copyright © 2017. Published by Elsevier Inc.

  9. Benzimidazole derivatives: search for GI-friendly anti-inflammatory analgesic agents

    Directory of Open Access Journals (Sweden)

    Monika Gaba

    2015-07-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs have been successfully used for the alleviation of pain and inflammation in the past and continue to be used daily by millions of patients worldwide. However, gastrointestinal (GI toxicity associated with NSAIDs is an important medical and socioeconomic problem. Local generation of various reactive oxygen species plays a significant role in the formation of gastric ulceration associated with NSAIDs therapy. Co-medication of antioxidants along with NSAIDs has been found to be beneficial in the prevention of GI injury. This paper describes the synthesis and biological evaluation of N-1-(phenylsulfonyl-2-methylamino-substituted-1H-benzimidazole derivatives as anti-inflammatory analgesic agents with lower GI toxicity. Studies in vitro and in vivo demonstrated that the antioxidant activity of the test compounds decreased GI toxicity.

  10. Low-Dose Tramadol and Non-Steroidal Anti-Inflammatory Drug Combination Therapy Prevents the Transition to Chronic Low Back Pain.

    Science.gov (United States)

    Inage, Kazuhide; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Takane; Suzuki, Miyako; Sakuma, Yoshihiro; Kubota, Go; Oikawa, Yasuhiro; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Takahashi, Kazuhisa; Ohtori, Seiji

    2016-08-01

    Retrospective study. To determine whether low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy could prevent the transition of acute low back pain to chronic low back pain. Inadequately treated early low back pain transitions to chronic low back pain occur in approximately 30% of affected individuals. The administration of non-steroidal anti-inflammatory drugs is effective for treatment of low back pain in the early stages. However, the treatment of low back pain that is resistant to non-steroidal anti-inflammatory drugs is challenging. Patients who presented with acute low back pain at our hospital were considered for inclusion in this study. After the diagnosis of acute low back pain, non-steroidal anti-inflammatory drug administration was started. Forty patients with a visual analog scale score of >5 for low back pain 1 month after treatment were finally enrolled. The first 20 patients were included in a non-steroidal anti-inflammatory drug group, and they continued non-steroidal anti-inflammatory drug therapy for 1 month. The next 20 patients were included in a combination group, and they received low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy for 1 month. The incidence of adverse events and the improvement in the visual analog scale score at 2 months after the start of treatment were analyzed. No adverse events were observed in the non-steroidal anti-inflammatory drug group. In the combination group, administration was discontinued in 2 patients (10%) due to adverse events immediately following the start of tramadol administration. At 2 months, the improvement in the visual analog scale score was greater in the combination group than in the non-steroidal anti-inflammatory drug group (ppain to chronic low back pain.

  11. Anti-inflammatory activity of the apolar extract from the seaweed Galaxaura marginata (Rhodophyta, Nemaliales

    Directory of Open Access Journals (Sweden)

    E. Rozas

    2007-01-01

    Full Text Available The red seaweed Galaxaura marginata (Ellis & Solander Lamouroux, well known by the antibacterial activity of its polar extract and the cytotoxic activity of its oxygenated desmosterol, showed anti-inflammatory action in its apolar fraction. Topical anti-inflammatory activity was observed in samples collected at São Sebastião channel, northern littoral of São Paulo State, Brazil. The apolar extract and its fractions obtained through Thin-Layer Chromatography (TLC reduced the topical inflammation produced by croton oil in mouse ear. Such data indicated that the apolar extract from the marine red alga G. marginata displayed anti-inflammatory activity (since 1mg/ear extract reduced 95±0.5% inflammation, which could be the result of the synergic activity of the four fractions present in the apolar extract.

  12. analgesic and anti-inflammatory activities of ethanolic extract of ...

    African Journals Online (AJOL)

    2015-04-30

    Apr 30, 2015 ... The analgesic and anti-inflammatory activities of the ethanolic extract of Rheumatic Tea Formula ... Salix alba were studied in mice and rats using acetic acid induced writhing, hot plate method, ... albino mice, while the phytochemical screening showed the presence of alkaloids, tannins and glycosides.

  13. Anti-inflammatory and Antinociceptive Effects of the Alcoholic Extract ...

    African Journals Online (AJOL)

    The alcoholic extract of Polygala arvensis (family Polygalaceae) was screened for antinociceptive and anti-inflammatory activities in experimental animals. The extract was administered for three consecutive days. Following an oral dose of 25 - 100 mg/kg, the extract exhibited graded dose response equivalent to 16.24% ...

  14. Anti-inflammatory and analgesic effects of coral reef associated ...

    African Journals Online (AJOL)

    Chellaram

    2012-10-04

    Oct 4, 2012 ... pharmacologists in 1989 and the potential of the oceans became clear with many unique bioactive substances .... their general behavior. Anti-inflammatory potential of the 100% acetone ... covery from the world's oceans has been accelerated by the chemical uniqueness of marine organisms and by the.

  15. Investigations into the antioxidant and anti-inflammatory potentials of ...

    African Journals Online (AJOL)

    This study was designed to investigate the antioxidant and anti-inflammatory potentials of the ethanolic extract and fractions of Citrus sinensis stem-bark, investigate and to evaluate the hepatoprotective potential of the most active fraction (EAF) of the ethanolic extract against acetaminophen-induced acute hepatic injury.

  16. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves.

    Science.gov (United States)

    Branquinho, Lidiane Schultz; Santos, Joyce Alencar; Cardoso, Claudia Andrea Lima; Mota, Jonas da Silva; Junior, Ubirajara Lanza; Kassuya, Cândida Aparecida Leite; Arena, Arielle Cristina

    2017-02-23

    Although some of the species of the genus Piper exhibit interesting biological properties, studies on Piper glabratum Kunth are very limited. This study investigated the anti-inflammatory activity and the toxicological profile of the essential oil from P. glabratum leaves (OEPG) in mice. The acute toxicity of OEPG was evaluated by oral administration to female mice as single doses of 500, 1000, 2000 or 5000mg/kg/body weight. In the subacute toxicity test, the females received 500 or 1000mg/kg/body weight of OEPG for 28 days. The anti-inflammatory potential of OEPG was evaluated using four models including pleurisy, edema, mechanical hyperalgesia and cold allodynia models in mouse paws. No clinical signs of toxicity were observed in animals after acute treatment, which suggested that the LD 50 is greater than 5000mg/kg. The subacute exposure to OEPG produced no significant changes in the hematological or biochemical parameters. Similarly, the histology of the organs and the estrus cycle displayed no marked alterations. OEPG exhibited anti-inflammatory activity as indicated by inhibition of the leukocyte migration (100, 300, 700mg/kg) and the protein extravasation into the pleural exudates (700mg/kg). After intraplantar injection of carrageenan, it was observed that the 700mg/kg dose of OEPG reduced edema formation and decreased the sensitivity to mechanical stimulation and cold. These results demonstrate the anti-inflammatory potential of the essential oil of P. glabratum leaves in the absence of toxicity in female mice. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due to anti-fibrotic and anti-inflammatory properties.

    Science.gov (United States)

    Beiert, Thomas; Tiyerili, Vedat; Knappe, Vincent; Effelsberg, Verena; Linhart, Markus; Stöckigt, Florian; Klein, Sabine; Schierwagen, Robert; Trebicka, Jonel; Nickenig, Georg; Schrickel, Jan W; Andrié, René P

    2017-08-26

    Relaxin-2 (RLX) is a peptide hormone that exerts beneficial anti-fibrotic and anti-inflammatory effects in diverse models of cardiovascular disease. The goal of this study was to determine the effects of RLX treatment on the susceptibility to atrial fibrillation (AF) after myocardial infarction (MI). Mice with cryoinfarction of the left anterior ventricular wall were treated for two weeks with either RLX (75 μg/kg/d) or vehicle (sodium acetate) delivered via subcutaneously implanted osmotic minipumps. RLX treatment significantly attenuated the increase in AF-inducibility following cryoinfarction and reduced the mean duration of AF episodes. Furthermore, epicardial mapping of both atria revealed an increase in conduction velocity. In addition to an attenuation of atrial hypertrophy, chronic application of RLX reduced atrial fibrosis, which was linked to a significant reduction in atrial mRNA expression of connective tissue growth factor. Transcript levels of the pro-inflammatory cytokines interleukin-6 and interleukin-1β were reduced in RLX treated mice, but macrophage infiltration into atrial myocardium was similar in the vehicle and RLX treated groups. Treatment with RLX in mice after MI reduces susceptibility to AF due to anti-inflammatory and anti-fibrotic properties. Because to these favorable actions, RLX may become a new therapeutic option in the treatment of AF, even when complicating MI. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I.

    Science.gov (United States)

    Wan, Zemin; Zhang, Xiujuan; Peng, Anping; He, Min; Lei, Zhenhua; Wang, Yunxiu

    2016-12-01

    To analyze the effects of TLR4 on the expression of the HMGB1, MHC-I and downstream cytokines IL-6 and TNF-α, and to investigate the biological role of the TLR4-HMGB1 signaling pathway in the development of the autoimmune myositis. We built mice models with experimental autoimmune myositis (EAM) and used the inverted screen experiment to measure their muscle endurance; we also examined inflammatory infiltration of muscle tissues after HE staining; and we assessed the expression of MHC-I using immunohistochemistry. In addition, peripheral blood mononuclear cells (PBMC) were extracted and flow cytometry was utilized to detect the effect of IFN-γ on the expression of MHC-I. Furthermore, PBMCs were treated with IFN-γ, anti-TLR4, anti-HMGB1 and anti-MHC-I. Real-time PCR and western blotting were employed to examine the expressions of TLR4, HMGB1 and MHC-I in different groups. The ELISA method was also utilized to detect the expression of the downstream cytokines TNF-α and IL-6. The expressions of TLR4, HMGB1 and MHC-I in muscle tissues from mice with EAM were significantly higher than those in the control group (all Pmyositis inflammation by regulating the expression of MHC-I and other pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Proteomic and Metabolomic Analyses Reveal Contrasting Anti-Inflammatory Effects of an Extract of Mucor Racemosus Secondary Metabolites Compared to Dexamethasone.

    Science.gov (United States)

    Meier, Samuel M; Muqaku, Besnik; Ullmann, Ronald; Bileck, Andrea; Kreutz, Dominique; Mader, Johanna C; Knasmüller, Siegfried; Gerner, Christopher

    2015-01-01

    Classical drug assays are often confined to single molecules and targeting single pathways. However, it is also desirable to investigate the effects of complex mixtures on complex systems such as living cells including the natural multitude of signalling pathways. Evidence based on herbal medicine has motivated us to investigate potential beneficial health effects of Mucor racemosus (M rac) extracts. Secondary metabolites of M rac were collected using a good-manufacturing process (GMP) approved production line and a validated manufacturing process, in order to obtain a stable product termed SyCircue (National Drug Code USA: 10424-102). Toxicological studies confirmed that this product does not contain mycotoxins and is non-genotoxic. Potential effects on inflammatory processes were investigated by treating stimulated cells with M rac extracts and the effects were compared to the standard anti-inflammatory drug dexamethasone on the levels of the proteome and metabolome. Using 2D-PAGE, slight anti-inflammatory effects were observed in primary white blood mononuclear cells, which were more pronounced in primary human umbilical vein endothelial cells (HUVECs). Proteome profiling based on nLC-MS/MS analysis of tryptic digests revealed inhibitory effects of M rac extracts on pro-inflammatory cytoplasmic mediators and secreted cytokines and chemokines in these endothelial cells. This finding was confirmed using targeted proteomics, here treatment of stimulated cells with M rac extracts down-regulated the secretion of IL-6, IL-8, CXCL5 and GROA significantly. Finally, the modulating effects of M rac on HUVECs were also confirmed on the level of the metabolome. Several metabolites displayed significant concentration changes upon treatment of inflammatory activated HUVECs with the M rac extract, including spermine and lysophosphatidylcholine acyl C18:0 and sphingomyelin C26:1, while the bulk of measured metabolites remained unaffected. Interestingly, the effects of M rac

  20. Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Tho X. Pham

    2016-06-01

    Full Text Available We previously demonstrated that the organic extract of Spirulina platensis (SPE, an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca2+/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β, but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect.