WorldWideScience

Sample records for cholesterol biosynthesis lipogenesis

  1. Freshwater Clam Extract Ameliorates Triglyceride and Cholesterol Metabolism through the Expression of Genes Involved in Hepatic Lipogenesis and Cholesterol Degradation in Rats

    Directory of Open Access Journals (Sweden)

    Thomas Laurent

    2013-01-01

    Full Text Available The freshwater clam (Corbicula spp. is a popular edible bivalve and has been used as a folk remedy for liver disease in Asia. As a Chinese traditional medicine, it is said that freshwater clam ameliorates alcoholic intoxication and cholestasis. In this study, to estimate the practical benefit of freshwater clam extract (FCE, we compared the effects of FCE and soy protein isolate (SPI on triglyceride and cholesterol metabolism in rats. FCE and SPI lowered serum cholesterol, and FCE tended to reduce serum triglycerides. FCE enhanced fecal sterol excretion and hepatic mRNA levels of CYP7A1 and ABCG5 more substantially than SPI; however, both diets reduced hepatic cholesterol. Both of the diets similarly suppressed liver lipids improved Δ9-desaturated fatty acid profile, and FCE was associated with a reduction in FAS and SCD1 mRNA levels. Hepatic transcriptome analysis revealed that inhibition of lipogenesis-related gene expression may contribute to downregulation of hepatic triglycerides by FCE. FCE would have better potential benefits for preventing metabolic disorders, through greater improvement of metabolism of triglycerides and cholesterol, likely through a mechanism similar to SPI.

  2. LXRß is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux

    NARCIS (Netherlands)

    Hessvik, N.P.; Boekschoten, M.V.; Baltzersen, M.A.; Kersten, A.H.; Xu, X.; Andersen, H.E.; Rustan, A.C.; Thoresen, G.H.

    2010-01-01

    Liver X receptors (LXRs) are important regulators of cholesterol, lipid, and glucose metabolism and have been extensively studied in liver, macrophages, and adipose tissue. However, their role in skeletal muscle is poorly studied and the functional role of each of the LXR and LXRß subtypes in skelet

  3. A Grape Seed Procyanidin Extract Ameliorates Fructose-Induced Hypertriglyceridemia in Rats via Enhanced Fecal Bile Acid and Cholesterol Excretion and Inhibition of Hepatic Lipogenesis.

    Directory of Open Access Journals (Sweden)

    Laura E Downing

    Full Text Available The objective of this study was to determine whether a grape seed procyanidin extract (GSPE exerts a triglyceride-lowering effect in a hyperlipidemic state using the fructose-fed rat model and to elucidate the underlying molecular mechanisms. Rats were fed either a starch control diet or a diet containing 65% fructose for 8 weeks to induce hypertriglyceridemia. During the 9th week of the study, rats were maintained on their respective diet and administered vehicle or GSPE via oral gavage for 7 days. Fructose increased serum triglyceride levels by 171% after 9 weeks, compared to control, while GSPE administration attenuated this effect, resulting in a 41% decrease. GSPE inhibited hepatic lipogenesis via down-regulation of sterol regulatory element binding protein 1c and stearoyl-CoA desaturase 1 in the fructose-fed animals. GSPE increased fecal bile acid and total lipid excretion, decreased serum bile acid levels and increased the expression of genes involved in cholesterol synthesis. However, bile acid biosynthetic gene expression was not increased in the presence of GSPE and fructose. Serum cholesterol levels remained constant, while hepatic cholesterol levels decreased. GSPE did not modulate expression of genes responsible for esterification or biliary export of the newly synthesized cholesterol, but did increase fecal cholesterol excretion, suggesting that in the presence of GSPE and fructose, the liver may secrete more free cholesterol into the plasma which may then be shunted to the proximal small intestine for direct basolateral to apical secretion and subsequent fecal excretion. Our results demonstrate that GSPE effectively lowers serum triglyceride levels in fructose-fed rats after one week administration. This study provides novel insight into the mechanistic actions of GSPE in treating hypertriglyceridemia and demonstrates that it targets hepatic de novo lipogenesis, bile acid homeostasis and non-biliary cholesterol excretion as

  4. A Grape Seed Procyanidin Extract Ameliorates Fructose-Induced Hypertriglyceridemia in Rats via Enhanced Fecal Bile Acid and Cholesterol Excretion and Inhibition of Hepatic Lipogenesis.

    Science.gov (United States)

    Downing, Laura E; Heidker, Rebecca M; Caiozzi, Gianella C; Wong, Brian S; Rodriguez, Kelvin; Del Rey, Fernando; Ricketts, Marie-Louise

    2015-01-01

    The objective of this study was to determine whether a grape seed procyanidin extract (GSPE) exerts a triglyceride-lowering effect in a hyperlipidemic state using the fructose-fed rat model and to elucidate the underlying molecular mechanisms. Rats were fed either a starch control diet or a diet containing 65% fructose for 8 weeks to induce hypertriglyceridemia. During the 9th week of the study, rats were maintained on their respective diet and administered vehicle or GSPE via oral gavage for 7 days. Fructose increased serum triglyceride levels by 171% after 9 weeks, compared to control, while GSPE administration attenuated this effect, resulting in a 41% decrease. GSPE inhibited hepatic lipogenesis via down-regulation of sterol regulatory element binding protein 1c and stearoyl-CoA desaturase 1 in the fructose-fed animals. GSPE increased fecal bile acid and total lipid excretion, decreased serum bile acid levels and increased the expression of genes involved in cholesterol synthesis. However, bile acid biosynthetic gene expression was not increased in the presence of GSPE and fructose. Serum cholesterol levels remained constant, while hepatic cholesterol levels decreased. GSPE did not modulate expression of genes responsible for esterification or biliary export of the newly synthesized cholesterol, but did increase fecal cholesterol excretion, suggesting that in the presence of GSPE and fructose, the liver may secrete more free cholesterol into the plasma which may then be shunted to the proximal small intestine for direct basolateral to apical secretion and subsequent fecal excretion. Our results demonstrate that GSPE effectively lowers serum triglyceride levels in fructose-fed rats after one week administration. This study provides novel insight into the mechanistic actions of GSPE in treating hypertriglyceridemia and demonstrates that it targets hepatic de novo lipogenesis, bile acid homeostasis and non-biliary cholesterol excretion as important mechanisms for

  5. The biosynthesis, absorption, and origin of cholesterol and plant sterols in the Florida land crab.

    Science.gov (United States)

    Douglass, T S; Connor, W E; Lin, D S

    1981-08-01

    In order to study the biosynthesis, composition, and origin of sterols in the Florida land crabs, Cardisoma guanhumi (Latreille), we fed 17 male crabs either a cholesterol-free or a high cholesterol diet for 2 to 7 weeks. The origin of sterols in these crabs, whether from biosynthesis or from the diet, was determined by tahree procedures: the incorporation of isotopic mevalonate into the cholesterol when the diet was cholesterol-free; the absorption of isotopic cholesterol and sitosterol from the diet; the cholesterol and plant sterol concentrations of hepatopancreas, plasma, and muscle under conditions of cholesterol-free and high cholesterol diets. In addition, the interconversion of cholesterol and sitosterol was investigated. Dietary sterols of plant and animal sources were readily absorbed and provided the major source of sterols for this species of crab. The biosynthesis of cholesterol from mevalonate in this crab was minimal. However, cholesterol was synthesized from dietary sitosterol by dealkylation. Cholesterol and the three plant sterols (24 epsilon-methyl cholesterol, stigmasterol, and sitosterol) were found in the hepatopancreas, plasma, and muscle of the crab. Plant sterols contributed from 9 to 37% of the total sterols in the hepatopancreas, plasma, and muscle of the crabs fed a cholesterol-free diet.

  6. Effect of cholesterol biosynthesis inhibitor on some biochemical parameters in normal male rats

    Directory of Open Access Journals (Sweden)

    M. S. Kalo

    2009-01-01

    Full Text Available Endogenous cholesterol acts as a precursor of testosterone and other steroids hormones, this study was conducted to evaluate if there is a counterproductive effect associated with inhibition of cholesterol biosynthesis pathway specially in high doses and the degree of these effects in normal male rats. Forty eight adult Wistar rats divided into four groups, the first is control while the remaining three groups were treated with simvastatin (cholesterol biosynthesis inhibitor in doses of 25, 50 and 100 mg.kg-1 respectively. Serum samples were observed at the baseline then every fifteen days while tissue samples were observed at day 30 and 60. Results of statistic refered to a significant decrease (p≤ 0.05 in serum total cholesterol and triglycerides (by 24 and 49% ± 3 respectively, also serum testosterone was significantly decreased (by 71% ± 2 in all groups compared to control after thirty and sixty days. The activity of alanine aminotransferase was increased (57% ± 3 versus to aspartate aminotransferase. Liver cholesterol was significantly decreased (by 72% ± 2 while testicular cholesterol was decreased except the group of 100 mg.kg-1 which in turns to elevate (61% ± 4, in addition also there was a decrease in body weight gain percentage neither the weights of liver nor testis was affected. In conclusion, the inhibition of denovo pathway of cholesterol biosynthesis negatively affects testosterone level in addition to cholesterol concentration in the tissues, body weight gain and alanine aminotransferase with no successful compensatory mechanism as related with testosterone level.

  7. Euterpe oleracea Mart.-Derived Polyphenols Protect Mice from Diet-Induced Obesity and Fatty Liver by Regulating Hepatic Lipogenesis and Cholesterol Excretion.

    Directory of Open Access Journals (Sweden)

    Paola Raquel B de Oliveira

    Full Text Available The aim of this study was to investigate the effect of a polyphenol-rich Açaí seed extract (ASE, 300 mg/kg-1d-1 on adiposity and hepatic steatosis in mice that were fed a high-fat (HF diet and its underlying mechanisms based on hepatic lipid metabolism and oxidative stress. Four groups were studied: C57BL/6 mice that were fed with standard diet (10% fat, Control, 10% fat + ASE (ASE, 60% fat (HF, and 60% fat + ASE (HF + ASE for 12 weeks. We evaluated the food intake, body weight gain, serum glucose and lipid profile, hepatic cholesterol and triacyglycerol (TG, hepatic expression of pAMPK, lipogenic proteins (SREBP-1c, pACC, ACC, HMG-CoA reductase and cholesterol excretion transporters, ABCG5 and ABCG8. We also evaluated the steatosis in liver sections and oxidative stress. ASE reduced body weight gain, food intake, glucose levels, accumulation of cholesterol and TG in the liver, which was associated with a reduction of hepatic steatosis. The increased expressions of SREBP-1c and HMG-CoA reductase and reduced expressions of pAMPK and pACC/ACC in HF group were antagonized by ASE. The ABCG5 and ABCG8 transporters expressions were increased by the extract. The antioxidant effect of ASE was demonstrated in liver of HF mice by restoration of SOD, CAT and GPx activities and reduction of the increased levels of malondialdehyde and protein carbonylation. In conclusion, ASE substantially reduced the obesity and hepatic steatosis induced by HF diet by reducing lipogenesis, increasing cholesterol excretion and improving oxidative stress in the liver, providing a nutritional resource for prevention of obesity-related adiposity and hepatic steatosis.

  8. Radiographic features of the skeleton in disorders of post-squalene cholesterol biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Massimiliano; Edery, Patrick [Hospices Civils de Lyon, Genetic Department, Referral Centre for Developmental Abnormalities, Femme-Mere-Enfant Hospital, Bron (France); INSERM U1028 UMR CNRS 5,292, UCBL, CRNL TIGER Team, CH le Vinater, Bron (France); Hall, Christine M. [Retired from Department of Radiology, Great Ormond Street Hospital, London (United Kingdom); Bouvier, Raymonde; Collardeau-Frachon, Sophie [Hospices Civils de Lyon, Department of Pathology, CBPE, Bron (France); Le Breton, Frederique [Hospices Civils de Lyon, Department of Pathology, Croix-Rousse Hospital, Lyon (France); Bucourt, Martine [AP-HP, Foetopathology Unit, Jean Verdier Hospital, Bondy (France); Cordier, Marie Pierre [Hospices Civils de Lyon, Genetic Department, Referral Centre for Developmental Abnormalities, Femme-Mere-Enfant Hospital, Bron (France); Vianey-Saban, Christine [Hospices Civils de Lyon, Department of Inborn Errors of Metabolism and Neonatal Screening, CBPE, Bron (France); Parenti, Giancarlo; Andria, Generoso [Federico II University, Department of Translational Medical Sciences, Section of Pediatrics, Naples (Italy); Le Merrer, Martine [AP-HP, Genetic Department, Referal Centre for Skeletal Dysplasias, Institut Imagine, Necker-Enfants Malades Hospital, Paris (United Kingdom); Offiah, Amaka C. [Stephenson Wing Sheffield Children' s NHS Foundation Trust Western Bank, Radiology Department, Children' s Hospital, Academic Unit of Child Health Room C4, Sheffield (United Kingdom)

    2015-07-15

    Disorders of post-squalene cholesterol biosynthesis are inborn errors of metabolism characterised by multiple congenital abnormalities, including significant skeletal involvement. The most frequent and best-characterised example is the Smith-Lemli-Opitz syndrome. Nine other disorders are known, namely autosomal-recessive Antley-Bixler syndrome, Greenberg dysplasia, X-linked dominant chondrodysplasia punctata, X-linked recessive male emopamil-binding protein deficiency, CHILD syndrome, CK syndrome, sterol C4 methyloxidase-like deficiency, desmosterolosis and lathosterolosis. This study provides an overview of the radiologic features observed in these diseases. A common pattern of limb abnormalities is recognisable, including polydactyly, which is typically post-axial and rarely interdigital and can involve all four limbs, and syndactyly of the toes. Chondrodysplasia punctata is specifically associated with a subgroup of disorders of cholesterol biosynthesis (Greenberg dysplasia, CHILD syndrome, X-linked dominant chondrodysplasia punctata, male emopamil-binding protein deficiency). The possible occurrence of epiphyseal stippling in the Smith-Lemli-Opitz syndrome, initially reported, does not appear to be confirmed. Stippling is also associated with other congenital disorders such as chromosomal abnormalities, brachytelephalangic chondrodysplasia punctata (X-linked recessive chondrodysplasia punctata, disruptions of vitamin K metabolism, maternal autoimmune diseases), rhizomelic chondrodysplasia punctata (peroxisomal disorders) and lysosomal storage disorders. In the differential diagnosis of epiphyseal stippling, a moth-eaten appearance of bones, asymmetry, or presence of a common pattern of limb abnormalities indicate inborn errors of cholesterol biosynthesis. We highlight the specific differentiating radiologic features of disorders of post-squalene cholesterol biosynthesis. (orig.)

  9. Radiographic features of the skeleton in disorders of post-squalene cholesterol biosynthesis

    International Nuclear Information System (INIS)

    Disorders of post-squalene cholesterol biosynthesis are inborn errors of metabolism characterised by multiple congenital abnormalities, including significant skeletal involvement. The most frequent and best-characterised example is the Smith-Lemli-Opitz syndrome. Nine other disorders are known, namely autosomal-recessive Antley-Bixler syndrome, Greenberg dysplasia, X-linked dominant chondrodysplasia punctata, X-linked recessive male emopamil-binding protein deficiency, CHILD syndrome, CK syndrome, sterol C4 methyloxidase-like deficiency, desmosterolosis and lathosterolosis. This study provides an overview of the radiologic features observed in these diseases. A common pattern of limb abnormalities is recognisable, including polydactyly, which is typically post-axial and rarely interdigital and can involve all four limbs, and syndactyly of the toes. Chondrodysplasia punctata is specifically associated with a subgroup of disorders of cholesterol biosynthesis (Greenberg dysplasia, CHILD syndrome, X-linked dominant chondrodysplasia punctata, male emopamil-binding protein deficiency). The possible occurrence of epiphyseal stippling in the Smith-Lemli-Opitz syndrome, initially reported, does not appear to be confirmed. Stippling is also associated with other congenital disorders such as chromosomal abnormalities, brachytelephalangic chondrodysplasia punctata (X-linked recessive chondrodysplasia punctata, disruptions of vitamin K metabolism, maternal autoimmune diseases), rhizomelic chondrodysplasia punctata (peroxisomal disorders) and lysosomal storage disorders. In the differential diagnosis of epiphyseal stippling, a moth-eaten appearance of bones, asymmetry, or presence of a common pattern of limb abnormalities indicate inborn errors of cholesterol biosynthesis. We highlight the specific differentiating radiologic features of disorders of post-squalene cholesterol biosynthesis. (orig.)

  10. Polyunsaturated fatty acyl-coenzyme As are inhibitors of cholesterol biosynthesis in zebrafish and mice

    Directory of Open Access Journals (Sweden)

    Santhosh Karanth

    2013-11-01

    Lipid disorders pose therapeutic challenges. Previously we discovered that mutation of the hepatocyte β-hydroxybutyrate transporter Slc16a6a in zebrafish causes hepatic steatosis during fasting, marked by increased hepatic triacylglycerol, but not cholesterol. This selective diversion of trapped ketogenic carbon atoms is surprising because acetate and acetoacetate can exit mitochondria and can be incorporated into both fatty acids and cholesterol in normal hepatocytes. To elucidate the mechanism of this selective diversion of carbon atoms to fatty acids, we fed wild-type and slc16a6a mutant animals high-protein ketogenic diets. We find that slc16a6a mutants have decreased activity of the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr, despite increased Hmgcr protein abundance and relative incorporation of mevalonate into cholesterol. These observations suggest the presence of an endogenous Hmgcr inhibitor. We took a candidate approach to identify such inhibitors. First, we found that mutant livers accumulate multiple polyunsaturated fatty acids (PUFAs and PUFA-CoAs, and we showed that human HMGCR is inhibited by PUFA-CoAs in vitro. Second, we injected mice with an ethyl ester of the PUFA eicosapentaenoic acid and observed an acute decrease in hepatic Hmgcr activity, without alteration in Hmgcr protein abundance. These results elucidate a mechanism for PUFA-mediated cholesterol lowering through direct inhibition of Hmgcr.

  11. Glucose-dependent de Novo Lipogenesis in B Lymphocytes

    Science.gov (United States)

    Dufort, Fay J.; Gumina, Maria R.; Ta, Nathan L.; Tao, Yongzhen; Heyse, Shannon A.; Scott, David A.; Richardson, Adam D.; Seyfried, Thomas N.; Chiles, Thomas C.

    2014-01-01

    Bacterially derived lipopolysaccharide (LPS) stimulates naive B lymphocytes to differentiate into immunoglobulin (Ig)-secreting plasma cells. Differentiation of B lymphocytes is characterized by a proliferative phase followed by expansion of the intracellular membrane secretory network to support Ig production. A key question in lymphocyte biology is how naive B cells reprogram metabolism to support de novo lipogenesis necessary for proliferation and expansion of the endomembrane network in response to LPS. We report that extracellularly acquired glucose is metabolized, in part, to support de novo lipogenesis in response to LPS stimulation of splenic B lymphocytes. LPS stimulation leads to increased levels of endogenous ATP-citrate lyase (ACLY), and this is accompanied by increased ACLY enzymatic activity. ACLY produces cytosolic acetyl-CoA from mitochondrially derived citrate. Inhibition of ACLY activity in LPS-stimulated B cells with the selective inhibitor 2-hydroxy-N-arylbenzenesulfonamide (compound-9; C-9) blocks glucose incorporation into de novo lipid biosynthesis, including cholesterol, free fatty acids, and neutral and acidic phospholipids. Moreover, inhibition of ACLY activity in splenic B cells results in inhibition of proliferation and defective endomembrane expansion and reduced expression of CD138 and Blimp-1, markers for plasma-like B cell differentiation. ACLY activity is also required for LPS-induced IgM production in CH12 B lymphoma cells. These data demonstrate that ACLY mediates glucose-dependent de novo lipogenesis in response to LPS signaling and identify a role for ACLY in several phenotypic changes that define plasma cell differentiation. PMID:24469453

  12. A quinazoline-based HDAC inhibitor affects gene expression pathways involved in cholesterol biosynthesis and mevalonate in prostate cancer cells.

    Science.gov (United States)

    Lin, Z; Bishop, K S; Sutherland, H; Marlow, G; Murray, P; Denny, W A; Ferguson, L R

    2016-03-01

    Chronic inflammation can lead to the development of cancers and resolution of inflammation is an ongoing challenge. Inflammation can result from dysregulation of the epigenome and a number of compounds that modify the epigenome are in clinical use. In this study the anti-inflammatory and anti-cancer effects of a quinazoline epigenetic-modulator compound were determined in prostate cancer cell lines using a non-hypothesis driven transcriptomics strategy utilising the Affymetrix PrimeView® Human Gene Expression microarray. GATHER and IPA software were used to analyse the data and to provide information on significantly modified biological processes, pathways and networks. A number of genes were differentially expressed in both PC3 and DU145 prostate cancer cell lines. The top canonical pathways that frequently arose across both cell lines at a number of time points included cholesterol biosynthesis and metabolism, and the mevalonate pathway. Targeting of sterol and mevalonate pathways may be a powerful anticancer approach. PMID:26759180

  13. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  14. A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila.

    Science.gov (United States)

    Enya, Sora; Ameku, Tomotsune; Igarashi, Fumihiko; Iga, Masatoshi; Kataoka, Hiroshi; Shinoda, Tetsuro; Niwa, Ryusuke

    2014-01-01

    In insects, the precise timing of moulting and metamorphosis is strictly guided by ecdysteroids that are synthesised from dietary cholesterol in the prothoracic gland (PG). In the past decade, several ecdysteroidogenic enzymes, some of which are encoded by the Halloween genes, have been identified and characterised. Here, we report a novel Halloween gene, noppera-bo (nobo), that encodes a member of the glutathione S-transferase family. nobo was identified as a gene that is predominantly expressed in the PG of the fruit fly Drosophila melanogaster. We generated a nobo knock-out mutant, which displayed embryonic lethality and a naked cuticle structure. These phenotypes are typical for Halloween mutants showing embryonic ecdysteroid deficiency. In addition, the PG-specific nobo knock-down larvae displayed an arrested phenotype and reduced 20-hydroxyecdysone (20E) titres. Importantly, both embryonic and larval phenotypes were rescued by the administration of 20E or cholesterol. We also confirm that PG cells in nobo loss-of-function larvae abnormally accumulate cholesterol. Considering that cholesterol is the most upstream material for ecdysteroid biosynthesis in the PG, our results raise the possibility that nobo plays a crucial role in regulating the behaviour of cholesterol in steroid biosynthesis in insects. PMID:25300303

  15. Lipogenesis in Huh7 cells is promoted by increasing the fructose: Glucose molar ratio

    Science.gov (United States)

    Windemuller, Fernando; Xu, Jiliu; Rabinowitz, Simon S; Hussain, M Mahmood; Schwarz, Steven M

    2016-01-01

    AIM: To determine whether hepatocyte lipogenesis, in an in vitro cell culture model, is modulated by adjusting culture media monosaccharide content and concentration. METHODS: Hepatocytes (Huh7), demonstrating glucose and fructose uptake and lipid biosynthesis, were incubated in culture media containing either glucose alone (0.65-0.72 mmol/L) or isosmolar monosaccharide (0.72 mmol/L) comprising fructose:glucose (F:G) molar ratios ranging from 0.58-0.67. Following a 24-h incubation, cells were harvested and analyzed for total protein, triglyceride (TG) and cholesterol (C) content. Significant differences (P < 0.05) among groups were determined using analysis of variance followed by Dunnett’s test for multiple comparisons. RESULTS: After a 24 h incubation period, Huh7 cell mass and viability among all experimental groups were not different. Hepatocytes cultured with increasing concentrations of glucose alone did not demonstrate a significant change either in C or in TG content. However, when the culture media contained increasing F:G molar ratios, at a constant total monosaccharide concentration, synthesis both of C and of TG increased significantly [F:G ratio = 0.58, C/protein (μg/μg) = 0.13; F:G = 0.67, C/protein = 0.18, P < 0.01; F:G ratio = 0.58, TG/protein (μg/μg) = 0.06; F:G ratio = 0.67, TG/protein = 0.11, P < 0.01]. CONCLUSION: In an in vitro hepatocyte model, glucose or fructose plus glucose support total cell mass and lipogenic activity. Increasing the fructose:glucose molar ratio (but not glucose alone) enhances triglyceride and cholesterol synthesis. These investigations demonstrate fructose promotes hepatocellular lipogenesis, and they provide evidence supporting future, in vivo studies of fructose’s role in the development of hepatic steatosis and non-alcoholic fatty liver disease. PMID:27458503

  16. Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato[W][OPEN

    Science.gov (United States)

    Sawai, Satoru; Ohyama, Kiyoshi; Yasumoto, Shuhei; Seki, Hikaru; Sakuma, Tetsushi; Yamamoto, Takashi; Takebayashi, Yumiko; Kojima, Mikiko; Sakakibara, Hitoshi; Aoki, Toshio; Muranaka, Toshiya; Saito, Kazuki; Umemoto, Naoyuki

    2014-01-01

    Potatoes (Solanum tuberosum) contain α-solanine and α-chaconine, two well-known toxic steroidal glycoalkaloids (SGAs). Sprouts and green tubers accumulate especially high levels of SGAs. Although SGAs were proposed to be biosynthesized from cholesterol, the biosynthetic pathway for plant cholesterol is poorly understood. Here, we identify sterol side chain reductase 2 (SSR2) from potato as a key enzyme in the biosynthesis of cholesterol and related SGAs. Using in vitro enzyme activity assays, we determined that potato SSR2 (St SSR2) reduces desmosterol and cycloartenol to cholesterol and cycloartanol, respectively. These reduction steps are branch points in the biosynthetic pathways between C-24 alkylsterols and cholesterol in potato. Similar enzymatic results were also obtained from tomato SSR2. St SSR2-silenced potatoes or St SSR2-disrupted potato generated by targeted genome editing had significantly lower levels of cholesterol and SGAs without affecting plant growth. Our results suggest that St SSR2 is a promising target gene for breeding potatoes with low SGA levels. PMID:25217510

  17. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo.

    Directory of Open Access Journals (Sweden)

    Anna Bobrowska

    Full Text Available Huntington's disease (HD is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. The molecular pathogenesis of HD is complex and many mechanisms and cellular processes have been proposed as potential sites of therapeutic intervention. However, prior to embarking on drug development initiatives, it is essential that therapeutic targets can be validated in mammalian models of HD. Previous studies in invertebrate and cell culture HD models have suggested that inhibition of SIRT2 could have beneficial consequences on disease progression. SIRT2 is a NAD(+-dependent deacetylase that has been proposed to deacetylate α-tubulin, histone H4 K16 and to regulate cholesterol biogenesis - a pathway which is dysregulated in HD patients and HD mouse models. We have utilized mice in which SIRT2 has been reduced or ablated to further explore the function of SIRT2 and to assess whether SIRT2 loss has a beneficial impact on disease progression in the R6/2 mouse model of HD. Surprisingly we found that reduction or loss of SIRT2 had no effect on the acetylation of α-tubulin or H4K16 or on cholesterol biosynthesis in the brains of wild type mice. Equally, genetic reduction or ablation of SIRT2 had no effect on HD progression as assessed by a battery of physiological and behavioural tests. Furthermore, we observed no change in aggregate load or levels of soluble mutant huntingtin transprotein. Intriguingly, neither the constitutive genetic loss nor acute pharmacological inhibition of SIRT2 affected the expression of cholesterol biosynthesis enzymes in the context of HD. Therefore, we conclude that SIRT2 inhibition does not modify disease progression in the R6/2 mouse model of HD and SIRT2 inhibition should not be prioritised as a therapeutic option for HD.

  18. Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice

    Directory of Open Access Journals (Sweden)

    Chen Jianliang

    2007-04-01

    Full Text Available Abstract Background Targeted disruption of the murine 3β-hydroxysterol-Δ7-reductase gene (Dhcr7, an animal model of Smith-Lemli-Opitz syndrome, leads to loss of cholesterol synthesis and neonatal death that can be partially rescued by transgenic replacement of DHCR7 expression in brain during embryogenesis. To gain further insight into the role of non-brain tissue cholesterol deficiency in the pathophysiology, we tested whether the lethal phenotype could be abrogated by selective transgenic complementation with DHCR7 expression in the liver. Results We generated mice that carried a liver-specific human DHCR7 transgene whose expression was driven by the human apolipoprotein E (ApoE promoter and its associated liver-specific enhancer. These mice were then crossed with Dhcr7+/- mutants to generate Dhcr7-/- mice bearing a human DHCR7 transgene. Robust hepatic transgene expression resulted in significant improvement of cholesterol homeostasis with cholesterol concentrations increasing to 80~90 % of normal levels in liver and lung. Significantly, cholesterol deficiency in brain was not altered. Although late gestational lung sacculation defect reported previously was significantly improved, there was no parallel increase in postnatal survival in the transgenic mutant mice. Conclusion The reconstitution of DHCR7 function selectively in liver induced a significant improvement of cholesterol homeostasis in non-brain tissues, but failed to rescue the neonatal lethality of Dhcr7 null mice. These results provided further evidence that CNS defects caused by Dhcr7 null likely play a major role in the lethal pathogenesis of Dhcr7-/- mice, with the peripheral organs contributing the morbidity.

  19. Innovative Target Therapies Are Able to Block the Inflammation Associated with Dysfunction of the Cholesterol Biosynthesis Pathway.

    Science.gov (United States)

    Marcuzzi, Annalisa; Piscianz, Elisa; Loganes, Claudia; Vecchi Brumatti, Liza; Knowles, Alessandra; Bilel, Sabrine; Tommasini, Alberto; Bortul, Roberta; Zweyer, Marina

    2016-01-01

    The cholesterol pathway is an essential biochemical process aimed at the synthesis of bioactive molecules involved in multiple crucial cellular functions. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids and other molecules such as ubiquinone. Several diseases are caused by defects in this metabolic pathway: the most severe forms of which cause neurological involvement (psychomotor retardation and cerebellar ataxia) as a result of a variety of cellular impairments, including mitochondrial dysfunction. These pathologies are induced by convergent mechanisms in which the mitochondrial unit plays a pivotal role contributing to defective apoptosis, autophagy and mitophagy processes. Unraveling these mechanisms would contribute to the development of effective drug treatments for these disorders. In addition, the development of biochemical models could have a substantial impact on the understanding of the mechanism of action of drugs that act on this pathway in multifactor disorders. In this review we will focus in particular on inhibitors of cholesterol synthesis, mitochondria-targeted drugs and inhibitors of the inflammasome.

  20. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    Science.gov (United States)

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  1. Changes in rat liver and adipose tissue lipogenesis after single lethal X-irradiation: modification by the restricted food intake

    International Nuclear Information System (INIS)

    Male rats of Wistar strain were adapted during a 4-week period to the nutritional regimes of meal feeding (MF) and ad libitum (AL) and were irradiated with the single whole-body lethal X-ray dose 14.35 Gy after 22 h of fasting. Within the intervals 1, 24, 48 and 72 h after irradiation lipogenesis changes in the liver were studied by measuring 1-14C-acetate incorporation (74 KBq) in the total lipids, fatty acids and cholesterol, and in the white adipose tissue pieces by measuring U-14C-glucose incorporation (74 KBq) in the total lipids, fatty acids and glyceride glycerol. Lipogenesis increased in the liver of the irradiated rats as compared with sham irradiated rats and reached the maximal values at 72 h after irradiation in AL animals and at 48 h after irradiation in MF animals. Lipogenesis in the adipose tissue decreased in the irradiated rats as compared with the sham irradiated ones and continued to decrease with the post-irradiation period. The adaptation to the nutritional regime of meal feeding markedly modified lipogenesis in the liver and the adipose tissue of the irradiated rats. Long-term fasting (before and after irradiation) was supposed to be another modifying factor in the lipogenesis changes. Lipogenesis changes in the liver depended on the MF nutritional regime. (author)

  2. Insulin Dissociates the Effects of Liver X Receptor on Lipogenesis, Endoplasmic Reticulum Stress, and Inflammation.

    Science.gov (United States)

    Sun, Xiaowei; Haas, Mary E; Miao, Ji; Mehta, Abhiruchi; Graham, Mark J; Crooke, Rosanne M; Pais de Barros, Jean-Paul; Wang, Jian-Guo; Aikawa, Masanori; Masson, David; Biddinger, Sudha B

    2016-01-15

    Diabetes is characterized by increased lipogenesis as well as increased endoplasmic reticulum (ER) stress and inflammation. The nuclear hormone receptor liver X receptor (LXR) is induced by insulin and is a key regulator of lipid metabolism. It promotes lipogenesis and cholesterol efflux, but suppresses endoplasmic reticulum stress and inflammation. The goal of these studies was to dissect the effects of insulin on LXR action. We used antisense oligonucleotides to knock down Lxrα in mice with hepatocyte-specific deletion of the insulin receptor and their controls. We found, surprisingly, that knock-out of the insulin receptor and knockdown of Lxrα produced equivalent, non-additive effects on the lipogenic genes. Thus, insulin was unable to induce the lipogenic genes in the absence of Lxrα, and LXRα was unable to induce the lipogenic genes in the absence of insulin. However, insulin was not required for LXRα to modulate the phospholipid profile, or to suppress genes in the ER stress or inflammation pathways. These data show that insulin is required specifically for the lipogenic effects of LXRα and that manipulation of the insulin signaling pathway could dissociate the beneficial effects of LXR on cholesterol efflux, inflammation, and ER stress from the negative effects on lipogenesis.

  3. Mechanisms of nutritional and hormonal regulation of lipogenesis

    NARCIS (Netherlands)

    Kersten, S.

    2001-01-01

    Fat build-up is determined by the balance between lipogenesis and lipolysis/fatty acid oxidation. In the past few years, our understanding of the nutritional, hormonal and particularly transcriptional regulation of lipogenesis has expanded greatly. Lipogenesis is stimulated by a high carbohydrate di

  4. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    Science.gov (United States)

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  5. What's Cholesterol?

    Science.gov (United States)

    ... Skiing, Snowboarding, Skating Crushes What's a Booger? What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? Print A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  6. Propiconazole enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras famesylation

    Science.gov (United States)

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic ...

  7. About Cholesterol

    Science.gov (United States)

    ... High Blood Pressure Tools & Resources Stroke More About Cholesterol Updated:Aug 10,2016 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  8. Lipogenesis in arterial wall and vascular smooth muscular cells: regulation and abnormalities in insulin-resistance

    Directory of Open Access Journals (Sweden)

    Feugier Patrick

    2009-12-01

    Full Text Available Abstract Background Vascular smooth muscular cells (VSMC express lipogenic genes. Therefore in situ lipogenesis could provide fatty acids for triglycerides synthesis and cholesterol esterification and contribute to lipid accumulation in arterial wall with aging and during atheroma. Methods We investigated expression of lipogenic genes in human and rat arterial walls, its regulation in cultured VSMC and determined if it is modified during insulin-resistance and diabetes, situations with increased risk for atheroma. Results Zucker obese (ZO and diabetic (ZDF rats accumulated more triglycerides in their aortas than their respective control rats, and this triglycerides content increased with age in ZDF and control rats. However the expression in aortas of lipogenic genes, or of genes involved in fatty acids uptake, was not higher in ZDF and ZO rats and did not increase with age. Expression of lipogenesis-related genes was not increased in human arterial wall (carotid endarterectomy of diabetic compared to non-diabetic patients. In vitro, glucose and adipogenic medium (ADM stimulated moderately the expression and activity of lipogenesis in VSMC from control rats. LXR agonists, but not PXR agonist, stimulated also lipogenesis in VSMC but not in arterial wall in vivo. Lipogenic genes expression was lower in VSMC from ZO rats and not stimulated by glucose or ADM. Conclusion Lipogenic genes are expressed in arterial wall and VSMC; this expression is stimulated (VSMC by glucose, ADM and LXR agonists. During insulin-resistance and diabetes, this expression is not increased and resists to the actions of glucose and ADM. It is unlikely that this metabolic pathway contribute to lipid accumulation of arterial wall during insulin-resistance and diabetes and thus to the increased risk of atheroma observed in these situations.

  9. Wnt/β-catenin signaling participates in the regulation of lipogenesis in the liver of juvenile turbot (Scophthalmus maximus L.).

    Science.gov (United States)

    Liu, Dongwu; Mai, Kangsen; Zhang, Yanjiao; Xu, Wei; Ai, Qinghui

    2016-01-01

    In this study, the mechanism that Wnt/β-catenin signaling inhibits lipogenesis was investigated in the liver of juvenile turbot (Scophthalmus maximus L.) by LiCl or XAV939 treatment. Wnt/β-catenin signaling was activated by LiCl treatment or inhibited by XAV939 treatment through regulating the expression of glycogen synthase kinase-3β (GSK-3β) and Wnt10b. In addition, the expression of lipoprotein lipase (LPL), fatty acid synthetase (FAS), peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα) was inhibited by LiCl treatment, but induced by XAV939 treatment. In the plasma of juvenile turbot, the level of nonesterified fatty acid (NEFA), glycerol, triglyceride (TG), total cholesterol (TC), and low density lipoprotein cholesterol (LDL-C) was decreased by LiCl treatment, which was related to the decrease of the activity of LPL and FAS. Thus the inhibitory effect of Wnt/β-catenin signaling on lipogenesis was associated with the expression of key enzymes and transcriptional factors. Wnt/β-catenin signaling may participate in inhibiting lipogenesis by inhibiting the expression of PPARγ and C/EBPα in the liver of juvenile turbot. PMID:26545985

  10. Cholesterol (image)

    Science.gov (United States)

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  11. Hepatic Lipogenesis Associated with Biochemical Changes in Overfed Landaise Geese and China Xupu Geese

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-you; HE Rui-guo; HUANG Chou-shen; LI Xiang; ZHOU Qi-an; WANG Cheng; ZHAO Na; ZHOU Shi-xia

    2006-01-01

    This experiment studied hepatic lipogenesis associated with biochemical changes in overfed Landaise Geese and China Xupu geese. Twenty healthy male Landaise geese and 20 healthy male Xupu geese, hatched on the same day under the same feeding conditions, were selected as experimental animals. The animals were divided into two groups and each breed served as an experimental group. Per goose of per experimental group served for a repeat. Brown rice was selected as test diet. After overfeeding for 21 d and then slaughtering, the biochemical changes of hepatic lipogenesis in the genetic susceptibility to fatty liver were evaluated. These results showed that (1) the weight of fatty liver of the two breeds of geese were 801 and 375 g (P<0.05), respectively. There were no differences on the abdominal fat pat, filet total and filet pectoralis major in the two breeds experimental of the geese group (P<0.05) and no difference on body and filet skin plus subcutaneous adipose tissue (P>0.05) was found; (2) in these two breeds of geese, there were no differences on very-lowdensity lipoprotein (VLDL), cholesteryl esters (CE) (P< 0.05), free cholesterol (FC), triglycerides (TG), phospholipids (PL) and protein (P<0.05); (3) there were no differences on activities of malic enzyme (ME), glucose-6-phosphatedehydrogenase (G6PDH), acetyl-CoA-carboxylas (ACX), fatty acid synthase (FAS), and mRNA level of ME in the two experimental breeds of geese groups (P < 0.05); (4) test in Landaise geese group showed that there was no significant correlation with the specific enzymatic activities, while in Xupu geese group, the liver weight was negatively correlated to the specific activity of ACX and positively to that of ME; (5) in these overfed geese, ME activity appeared to be a major factor involved in the genetic susceptibility to hepatic steatosis and it determined the hepatic lipogenesis capacity.

  12. Bile acid biosynthesis and its regulation

    Directory of Open Access Journals (Sweden)

    Areta Hebanowska

    2010-10-01

    Full Text Available Bile acid biosynthesis is the main pathway of cholesterol catabolism. Bile acids are more soluble than cholesterol so are easier to excrete. As amphipathic molecules they participate in lipid digestion and absorption in the intestine and they help to excrete free cholesterol with bile. They are also ligands for nuclear receptors regulating the expression of genes involved in cholesterol metabolism. Interconversion of cholesterol into bile acids is an important point of its homeostasis. Seventeen enzymes are engaged in this process and many of them are cytochromes P450. Bile acid synthesis initiation may proceed with the “classical” pathway (starting with cholesterol hydroxylation at the C7α position or the “alternative” pathway (starting with cholesterol hydroxylation at the C27 position. Two additional pathways are possible, though their quantitative significance is small (initiated with cholesterol hydroxylations of C24 and C25 positions. Oxysterols produced are not only intermediates of bile acid biosynthesis but also important regulators of metabolism. Bile acid biosynthesis takes place in the liver, but some enzymes are also present in other organs, where they participate in regulation of cholesterol metabolism. Those enzymes are potential targets for new drugs against cholesterol metabolism disturbances. This article is a brief description of the bile acid biosynthesis pathway and participating enzymes.

  13. Effects of dietary carbohydrate on hepatic de novo lipogenesis in European seabass (Dicentrarchus labrax L.).

    Science.gov (United States)

    Viegas, Ivan; Jarak, Ivana; Rito, João; Carvalho, Rui A; Metón, Isidoro; Pardal, Miguel A; Baanante, Isabel V; Jones, John G

    2016-07-01

    Farmed seabass have higher adiposity than their wild counterparts and this is often attributed to carbohydrate (CHO) feeding. Whether this reflects a reduction in fat oxidation, increased de novo lipogenesis (DNL), or both, is not known. To study the effects of high CHO diets on hepatic TG biosynthesis, hepatic TG deuterium ((2)H) enrichment was determined following 6 days in (2)H-enriched tank water for fish fed with a no-CHO control diet (CTRL), and diets with digestible starch (DS) and raw starch (RS). Hepatic fractional synthetic rates (FSRs, percent per day(-1)) were calculated for hepatic TG-glyceryl and FA moieties through (2)H NMR analysis. Glyceryl FSRs exceeded FA FSRs in all cases, indicating active cycling. DS fish did not show increased lipogenic potential compared to CTRL. RS fish had lower glyceryl FSRs compared with the other diets and negligible levels of FA FSRs despite similar hepatic TG levels to CTRL. DS-fed fish showed higher activity for enzymes that can provide NADPH for lipogenesis, relative to CTRL in the case of glucose-6-phosphate dehydrogenase (G6PDH) and relative to RS for both G6PDH and 6-phosphogluconate dehydrogenase. This approach indicated that elevated hepatic adiposity from DS feeding was not attributable to increased DNL. PMID:27247346

  14. Jatropha curcas Protein Concentrate Stimulates Insulin Signaling, Lipogenesis, Protein Synthesis and the PKCα Pathway in Rat Liver.

    Science.gov (United States)

    León-López, Liliana; Márquez-Mota, Claudia C; Velázquez-Villegas, Laura A; Gálvez-Mariscal, Amanda; Arrieta-Báez, Daniel; Dávila-Ortiz, Gloria; Tovar, Armando R; Torres, Nimbe

    2015-09-01

    Jatropha curcas is an oil seed plant that belongs to the Euphorbiaceae family. Nontoxic genotypes have been reported in Mexico. The purpose of the present work was to evaluate the effect of a Mexican variety of J. curcas protein concentrate (JCP) on weight gain, biochemical parameters, and the expression of genes and proteins involved in insulin signaling, lipogenesis, cholesterol and protein synthesis in rats. The results demonstrated that short-term consumption of JCP increased serum glucose, insulin, triglycerides and cholesterol levels as well as the expression of transcription factors involved in lipogenesis and cholesterol synthesis (SREBP-1 and LXRα). Moreover, there was an increase in insulin signaling mediated by Akt phosphorylation and mTOR. JCP also increased PKCα protein abundance and the activation of downstream signaling pathway targets such as the AP1 and NF-κB transcription factors typically activated by phorbol esters. These results suggested that phorbol esters are present in JCP, and that they could be involved in the activation of PKC which may be responsible for the high insulin secretion and consequently the activation of insulin-dependent pathways. Our data suggest that this Mexican Jatropha variety contains toxic compounds that produce negative metabolic effects which require caution when using in the applications of Jatropha-based products in medicine and nutrition. PMID:26243665

  15. Reciprocal regulation of LXRα activity by ASXL1 and ASXL2 in lipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ui-Hyun; Seong, Mi-ran [Department of Bioscience and Biotechnology, Institute of Bioscience, BK21 Graduate Program, Sejong University, Seoul 143-747 (Korea, Republic of); Kim, Eun-Joo; Hur, Wonhee; Kim, Sung Woo [Department of Molecular Biology, BK21 Graduate Program, Dankook University, Gyeonggi-do 448-701 (Korea, Republic of); Yoon, Seung Kew [The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University, College of Medicine, Seoul 137-701 (Korea, Republic of); Um, Soo-Jong, E-mail: umsj@sejong.ac.kr [Department of Bioscience and Biotechnology, Institute of Bioscience, BK21 Graduate Program, Sejong University, Seoul 143-747 (Korea, Republic of)

    2014-01-10

    Highlights: •ASXL1 and ASXL2 directly interact with ligand-bound LXRα. •Ligand-induced LXRα activity is repressed by ASXL1 and activated by ASXL2. •ASXL1 and ASXL2 bind to the LXRE of the LXRα target promoter. •ASXL1 and ASXL2 reciprocally regulate lipogenesis in liver cells. -- Abstract: Liver X receptor alpha (LXRα), a member of the nuclear receptor superfamily, plays a pivotal role in hepatic cholesterol and lipid metabolism, regulating the expression of genes associated with hepatic lipogenesis. The additional sex comb-like (ASXL) family was postulated to regulate chromatin function. Here, we investigate the roles of ASXL1 and ASXL2 in regulating LXRα activity. We found that ASXL1 suppressed ligand-induced LXRα transcriptional activity, whereas ASXL2 increased LXRα activity through direct interaction in the presence of the ligand. Chromatin immunoprecipitation (ChIP) assays showed ligand-dependent recruitment of ASXLs to ABCA1 promoters, like LXRα. Knockdown studies indicated that ASXL1 inhibits, while ASXL2 increases, lipid accumulation in H4IIE cells, similar to their roles in transcriptional regulation. We also found that ASXL1 expression increases under fasting conditions, and decreases in insulin-treated H4IIE cells and the livers of high-fat diet-fed mice. Overall, these results support the reciprocal role of the ASXL family in lipid homeostasis through the opposite regulation of LXRα.

  16. Good vs. Bad Cholesterol

    Science.gov (United States)

    ... Pressure Tools & Resources Stroke More Good vs. Bad Cholesterol Updated:Mar 23,2016 Cholesterol can't dissolve ... test . View an animation of cholesterol . LDL (Bad) Cholesterol LDL cholesterol is considered the “bad” cholesterol because ...

  17. Tissue specific regulation of lipogenesis by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Blennemann, B.; Freake, H. (Univ. of Connecticut, Storrs (United States))

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  18. Cholesterol Test

    Science.gov (United States)

    ... seen when there is an existing problem like malnutrition , liver disease , or cancer . However there is no ... cholesterol levels include anabolic steroids, beta blockers , epinephrine, oral contraceptives, and vitamin D. ^ Back to top ... Health Professionals Get the Mobile App iTunes | Android | Kindle ...

  19. Cholesterol and Your Child

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth Cholesterol and Your Child KidsHealth > For Parents > Cholesterol and ... child's risk of developing heart disease later. About Cholesterol Cholesterol is a waxy substance produced by the ...

  20. Women and Cholesterol

    Science.gov (United States)

    ... Blood Pressure Tools & Resources Stroke More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... Glossary Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  1. HDL Cholesterol Test

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? HDL Cholesterol Share this page: Was this page helpful? Also ... HDL; HDL-C Formal name: High-density Lipoprotein Cholesterol Related tests: Cholesterol ; LDL Cholesterol ; Triglycerides ; Lipid Profile ; ...

  2. LDL Cholesterol Test

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? LDL Cholesterol Share this page: Was this page helpful? Also ... LDL; LDL-C Formal name: Low-Density Lipoprotein Cholesterol Related tests: Cholesterol ; HDL Cholesterol ; Triglycerides ; Lipid Profile ; ...

  3. Cholesterol IQ Quiz

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  4. Direct Visualization of De novo Lipogenesis in Single Living Cells

    Science.gov (United States)

    Li, Junjie; Cheng, Ji-Xin

    2014-10-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders.

  5. CHOLESTEROL OXIDATION PRODUCTS IN MILK AND MILK PRODUCTS

    Directory of Open Access Journals (Sweden)

    A. Kemal SEÇKİN

    2004-02-01

    Full Text Available Cholesterol oxidation products (COPs are occurred by heat and light factors during processing, improper packaging and storage conditions. COPs are mutagenic, carcinogenity, cytotoxic, angiotoxic and damage to cell membrane and effect biosynthesis cholesterol in the metabolism . So, COPs have potential risk for public health. Also, in milk and milk products that have high cholesterol COPs can be also formed during processing and storage. Therefore it is necessary that measurements must be taken and standards must be in dairy about COPs.

  6. Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver.

    Directory of Open Access Journals (Sweden)

    Rebecca M Heidker

    complementary efficacy as a lipid-lowering combination therapy in conjunction with CHY by attenuating hepatic cholesterol synthesis, enhancing BA biosynthesis and decreasing lipogenesis, which warrants further investigation.

  7. Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver.

    Science.gov (United States)

    Heidker, Rebecca M; Caiozzi, Gianella C; Ricketts, Marie-Louise

    2016-01-01

    efficacy as a lipid-lowering combination therapy in conjunction with CHY by attenuating hepatic cholesterol synthesis, enhancing BA biosynthesis and decreasing lipogenesis, which warrants further investigation.

  8. Cholesterol suppresses antimicrobial effect of statins

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haeri

    2015-12-01

    Full Text Available Objective(s:Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. Materials and Methods: To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli bacteria using gel diffusion assay. Results: Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. Conclusion: It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol.

  9. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain

    OpenAIRE

    Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G.; Guizzetti, Marina

    2014-01-01

    Aims: Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cho...

  10. Computational model for monitoring cholesterol metabolism.

    Science.gov (United States)

    Selvakumar, R; Rashith Muhammad, M; Poornima Devi, G

    2014-12-01

    A non-deterministic finite automaton is designed to observe the cholesterol metabolism with the states of acceptance and rejection. The acceptance state of the automaton depicts the normal level of metabolism and production of good cholesterol as an end product. The rejection state of this machine shows the inhibition of enzymatic activity in cholesterol synthesis and removal of free fatty acids. The deficiency in human cholesterol metabolism pathway results in abnormal accumulation of cholesterol in plasma, arterial tissues leading to diseases such as hypercholesterolemia, atherosclerosis respectively and formation of gallstones. The designed machine can be used to monitor the cholesterol metabolism at molecular level through regulation of enzymes involved in the biosynthesis and metabolism of cholesterol for the treatment of diseases incident due to the respective metabolic disorder. In addition, an algorithm for this machine has been developed to compare the programmed string with the given string. This study demonstrates the construction of a machine that is used for the development of molecular targeted therapy for the disorders in cholesterol metabolism. PMID:26396654

  11. What Is Cholesterol?

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Cholesterol KidsHealth > For Teens > Cholesterol Print A A A ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  12. Auxin Biosynthesis

    OpenAIRE

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then unde...

  13. Cholesterol and lifestyle

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000099.htm Cholesterol and lifestyle To use the sharing features on ... Stroke Serious heart or blood vessel disease Your Cholesterol Numbers All men should have their blood cholesterol ...

  14. Cholesterol testing and results

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000386.htm Cholesterol testing and results To use the sharing features ... can tell you what your goal should be. Cholesterol Tests Some cholesterol is considered good and some ...

  15. Cholesterol Facts and Statistics

    Science.gov (United States)

    ... Blood Pressure Salt Million Hearts® WISEWOMAN Program High Cholesterol Facts Recommend on Facebook Tweet Share Compartir As ... the facts about high cholesterol [PDF-281K] . High Cholesterol in the United States 73.5 million adults ( ...

  16. Nutrigenomics and Beef Quality: A Review about Lipogenesis

    Directory of Open Access Journals (Sweden)

    Marcio M. Ladeira

    2016-06-01

    Full Text Available The objective of the present review is to discuss the results of published studies that show how nutrition affects the expression of genes involved in lipid metabolism and how diet manipulation might change marbling and composition of fat in beef. Several key points in the synthesis of fat in cattle take place at the molecular level, and the association of nutritional factors with the modulation of this metabolism is one of the recent targets of nutrigenomic research. Within this context, special attention has been paid to the study of nuclear receptors associated with fatty acid metabolism. Among the transcription factors involved in lipid metabolism, the peroxisome proliferator-activated receptors (PPARs and sterol regulatory element-binding proteins (SREBPs stand out. The mRNA synthesis of these transcription factors is regulated by nutrients, and their metabolic action might be potentiated by diet components and change lipogenesis in muscle. Among the options for dietary manipulation with the objective to modulate lipogenesis, the use of different sources of polyunsaturated fatty acids, starch concentrations, forage ratios and vitamins stand out. Therefore, special care must be exercised in feedlot feed management, mainly when the goal is to produce high marbling beef.

  17. Nutrigenomics and Beef Quality: A Review about Lipogenesis.

    Science.gov (United States)

    Ladeira, Marcio M; Schoonmaker, Jon P; Gionbelli, Mateus P; Dias, Júlio C O; Gionbelli, Tathyane R S; Carvalho, José Rodolfo R; Teixeira, Priscilla D

    2016-01-01

    The objective of the present review is to discuss the results of published studies that show how nutrition affects the expression of genes involved in lipid metabolism and how diet manipulation might change marbling and composition of fat in beef. Several key points in the synthesis of fat in cattle take place at the molecular level, and the association of nutritional factors with the modulation of this metabolism is one of the recent targets of nutrigenomic research. Within this context, special attention has been paid to the study of nuclear receptors associated with fatty acid metabolism. Among the transcription factors involved in lipid metabolism, the peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding proteins (SREBPs) stand out. The mRNA synthesis of these transcription factors is regulated by nutrients, and their metabolic action might be potentiated by diet components and change lipogenesis in muscle. Among the options for dietary manipulation with the objective to modulate lipogenesis, the use of different sources of polyunsaturated fatty acids, starch concentrations, forage ratios and vitamins stand out. Therefore, special care must be exercised in feedlot feed management, mainly when the goal is to produce high marbling beef. PMID:27294923

  18. Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular dystrophy.

    Science.gov (United States)

    Paran, Christopher W; Zou, Kai; Ferrara, Patrick J; Song, Haowei; Turk, John; Funai, Katsuhiko

    2015-12-01

    Muscular dystrophy is accompanied by a reduction in activity of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) that contributes to abnormal Ca(2+) homeostasis in sarco/endoplasmic reticulum (SR/ER). Recent findings suggest that skeletal muscle fatty acid synthase (FAS) modulates SERCA activity and muscle function via its effects on SR membrane phospholipids. In this study, we examined muscle's lipid metabolism in mdx mice, a mouse model for Duchenne muscular dystrophy (DMD). De novo lipogenesis was ~50% reduced in mdx muscles compared to wildtype (WT) muscles. Gene expressions of lipogenic and other ER lipid-modifying enzymes were found to be differentially expressed between wildtype (WT) and mdx muscles. A comprehensive examination of muscles' SR phospholipidome revealed elevated phosphatidylcholine (PC) and PC/phosphatidylethanolamine (PE) ratio in mdx compared to WT mice. Studies in primary myocytes suggested that defects in key lipogenic enzymes including FAS, stearoyl-CoA desaturase-1 (SCD1), and Lipin1 are likely contributing to reduced SERCA activity in mdx mice. Triple transgenic expression of FAS, SCD1, and Lipin1 (3TG) in mdx myocytes partly rescued SERCA activity, which coincided with an increase in SR PE that normalized PC/PE ratio. These findings implicate a defect in lipogenesis to be a contributing factor for SERCA dysfunction in muscular dystrophy. Restoration of muscle's lipogenic pathway appears to mitigate SERCA function through its effects on SR membrane composition.

  19. Reverse cholesterol transport revisited

    Institute of Scientific and Technical Information of China (English)

    Astrid; E; van; der; Velde

    2010-01-01

    Reverse cholesterol transport was originally described as the high-density lipoprotein-mediated cholesterol flux from the periphery via the hepatobiliary tract to the intestinal lumen, leading to fecal excretion. Since the introduction of reverse cholesterol transport in the 1970s, this pathway has been intensively investigated. In this topic highlight, the classical reverse cholesterol transport concepts are discussed and the subject reverse cholesterol transport is revisited.

  20. Arabinogalactan biosynthesis

    DEFF Research Database (Denmark)

    Poulsen, Christian Peter; Dilokpimol, Adiphol; Geshi, Naomi

    2015-01-01

    Arabinogalactan proteins are abundant cell surface proteoglycans in plants and are implicated to act as developmental markers during plant growth. We previously reported that AtGALT31A, AtGALT29A, and AtGLCAT14A-C, which are involved in the biosynthesis of arabinogalactan proteins, localize...

  1. Restriction of dietary protein does not promote hepatic lipogenesis in lean or fatty pigs.

    Science.gov (United States)

    Madeira, Marta S; Pires, Virgínia M R; Alfaia, Cristina M; Lopes, Paula A; Martins, Susana V; Pinto, Rui M A; Prates, José A M

    2016-04-01

    The influence of genotype (lean v. fatty) and dietary protein level (normal v. reduced) on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid-sensitive factors is reported for the first time, using the pig as an experimental model. The experiment was conducted on forty entire male pigs (twenty lean pigs of Large White×Landrace×Pietrain cross-breed and twenty fatty pigs of Alentejana purebreed) from 60 to 93 kg of live weight. Each pig genotype was divided into two subgroups, which were fed the following diets: a normal protein diet (NPD) equilibrated for lysine (17·5 % crude protein and 0·7 % lysine) and a reduced protein diet (RPD) not equilibrated for lysine (13·1 % crude protein and 0·4 % lysine). The majority of plasma metabolites were affected by genotype, with lean pigs having higher contents of lipids, whereas fatty pigs presented higher insulin, leptin and urea levels. RPD increased plasma TAG, free fatty acids and VLDL-cholesterol compared with NPD. Hepatic total lipids were higher in fatty pigs than in the lean genotype. RPD affected hepatic fatty acid composition but had a slight influence on gene expression levels in the liver. Sterol regulatory element-binding factor 1 was down-regulated by RPD, and fatty acid desaturase 1 (FADS1) and fatty acid binding protein 4 (FABP4) were affected by the interaction between genotype and diet. In pigs fed RPD, FADS1 was up-regulated in the lean genotype, whereas FABP4 increased in the fatty genotype. Although there is a genotype-specific effect of dietary protein restriction on hepatic lipid metabolism, lipogenesis is not promoted in the liver of lean or fatty pigs. PMID:26927728

  2. Fractional cholesterol absorption measurements in humans : Determinants of the blood-based dual stable isotope tracer technique

    NARCIS (Netherlands)

    Stellaard, Frans; Luetjohann, Dieter

    2015-01-01

    BACKGROUND: The flux of absorbed cholesterol is a controlling element in the regulation of cholesterol biosynthesis and catabolism. A review of 5 published methods to measure cholesterol absorption is presented, including 2 dual stable isotope approaches. The continuous dual isotope feeding procedur

  3. Effects of Gemfibrozil on Cholesterol Metabolism and Steroidogenesis in the Fathead Minnow (Pimephales promelas)

    Science.gov (United States)

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  4. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    Science.gov (United States)

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors, which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fibrate th...

  5. GLUT4 Expression in Adipocytes Regulates De Novo Lipogenesis and Levels of a Novel Class of Lipids With Antidiabetic and Anti-inflammatory Effects.

    Science.gov (United States)

    Moraes-Vieira, Pedro M; Saghatelian, Alan; Kahn, Barbara B

    2016-07-01

    Adipose tissue (AT) regulates systemic insulin sensitivity through multiple mechanisms, and alterations in de novo lipogenesis appear to contribute. Mice overexpressing GLUT4 in adipocytes (AG4OX) have elevated AT lipogenesis and enhanced glucose tolerance despite being obese and having elevated circulating fatty acids. Lipidomic analysis of AT identified a structurally unique class of lipids, branched fatty acid esters of hydroxy-fatty acids (FAHFAs), which were elevated in AT and serum of AG4OX mice. Palmitic acid esters of hydroxy-stearic acids (PAHSAs) are among the most upregulated FAHFA families in AG4OX mice. Eight PAHSA isomers are present in mouse and human tissues. PAHSA levels are reduced in insulin resistant people, and levels correlate highly with insulin sensitivity. PAHSAs have beneficial metabolic effects. Treatment of obese mice with PAHSAs lowers glycemia and improves glucose tolerance while stimulating glucagon-like peptide 1 and insulin secretion. PAHSAs also reduce inflammatory cytokine production from immune cells and ameliorate adipose inflammation in obesity. PAHSA isomer concentrations are altered in physiological and pathophysiological conditions in a tissue- and isomer-specific manner. The mechanisms most likely involve changes in PAHSA biosynthesis, degradation, and secretion. The discovery of PAHSAs reveals the existence of previously unknown endogenous lipids and biochemical pathways involved in metabolism and inflammation, two fundamental physiological processes. PMID:27288004

  6. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Matthias Orth

    2012-01-01

    Full Text Available Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules. We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

  7. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice

    Directory of Open Access Journals (Sweden)

    Beppu Fumiaki

    2012-09-01

    Full Text Available Abstract Background Fucoxanthin is a xanthophyll present in brown seaweeds and has several beneficial effects, including anti-obesity and anti-diabetic effects. However, we and another group previously observed that fucoxanthin increases serum cholesterol levels in rodents. Cholesterol is an important component of cell membranes and biosynthesis of bile acids. Serum cholesterol levels are also closely associated with atherosclerosis. Therefore, we sought to identify the mechanism underlying the increase in serum cholesterol levels by fucoxanthin. Methods Diabetic/obese KK-Ay mice were fed a diet containing 0.2% fucoxanthin for 4 weeks. The mice were sacrificed, and total blood samples were collected for the measurement of serum total cholesterol, HDL-cholesterol and non-HDL-cholesterol levels. Cholesterol content in tissues was also analyzed. Real-time PCR and Western blotting were performed to determine hepatic mRNA and protein expression of genes involved in cholesterol metabolism, respectively. Results Dietary fucoxanthin significantly increased serum HDL and non-HDL cholesterol levels, and reduced hepatic cholesterol content. In liver, the expression of SREBP1, SREBP2 and their target genes involved in cholesterol biosynthesis significantly increased and tended to increase in the fucoxanthin-fed mice, respectively. In contrast, hepatic levels of LDLR and SR-B1 proteins which is important factors for LDL-cholesterol and HDL-cholesterol uptake in the liver from serum, decreased to 60% and 80% in the fucoxanthin-fed mice, respectively, compared with the control mice. Further, we found that dietary fucoxanthin significantly increased the mRNA expression of proprotein convertase subtilisin/kexin type 9 (PCSK9, which enhances intracellular degradation of LDLR in lysosomes. Conclusions Fucoxanthin increased HDL-cholesterol and non-HDL-cholesterol levels in KK-Ay mice by inducing SREBP expression and reduced cholesterol uptake in the liver via

  8. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Laura L Gathercole

    Full Text Available Patients with glucocorticoid (GC excess, Cushing's syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the activity of 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 and we have hypothesized that 11β-HSD1 activity can regulate lipid homeostasis in human adipose tissue (Chub-S7 cell line and primary cultures of human subcutaneous (sc and omental (om adipocytes. Across adipocyte differentiation, lipogenesis increased whilst β-oxidation decreased. GC treatment decreased lipogenesis but did not alter rates of β-oxidation in Chub-S7 cells, whilst insulin increased lipogenesis in all adipocyte cell models. Low dose Dexamethasone pre-treatment (5 nM of Chub-S7 cells augmented the ability of insulin to stimulate lipogenesis and there was no evidence of adipose tissue insulin resistance in primary sc cells. Both cortisol and cortisone decreased lipogenesis; selective 11β-HSD1 inhibition completely abolished cortisone-mediated repression of lipogenesis. GCs have potent actions upon lipid homeostasis and these effects are dependent upon interactions with insulin. These in vitro data suggest that manipulation of GC availability through selective 11β-HSD1 inhibition modifies lipid homeostasis in human adipocytes.

  9. Get Your Cholesterol Checked

    Science.gov (United States)

    ... You also get cholesterol by eating foods like egg yolks, fatty meats, and regular cheese. If you have too much cholesterol in your body, it can build up inside your blood vessels and make it hard for blood to ...

  10. Cholesterol - drug treatment

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000314.htm Cholesterol - drug treatment To use the sharing features on ... treatment; Hardening of the arteries - statin Statins for Cholesterol Statins reduce your risk of heart disease, stroke, ...

  11. Rice bran proteins and their hydrolysates modulate cholesterol metabolism in mice on hypercholesterolemic diets.

    Science.gov (United States)

    Zhang, Huijuan; Wang, Jing; Liu, Yingli; Gong, Lingxiao; Sun, Baoguo

    2016-06-15

    The hypolipidemic properties of defatted rice bran protein (DRBP), fresh rice bran protein (FRBP), DRBP hydrolysates (DRBPH), and FRBP hydrolysates (FRBPH) were determined in mice on high fat diets for four weeks. Very low-density lipoprotein cholesterol (VLDL-C), low-density lipoprotein cholesterol (LDL-C) contents, and the hepatic total cholesterol content were reduced while fecal total cholesterol and total bile acid (TBA) contents were increased in the FRBPH diet group. The expression levels of hepatic genes for cholesterol biosynthesis HMG-CoAR and SREBP-2 were lowest in the FRBPH diet group. The mRNA level of HMG-CoAR was significantly positively correlated with the hepatic TG content (r = 0.82, P < 0.05). The mRNA levels of genes related to bile acid biosynthesis and cholesterol efflux, CYP7A1, ABCA1, and PPARγ were up-regulated in all test groups. The results suggest that FRBPH regulates cholesterol metabolism in mice fed the high fat and cholesterol diet by increasing fecal steroid excretion and expression levels of genes related to bile acid synthesis and cholesterol efflux, and the down-regulation of the expression levels of genes related to cholesterol biosynthesis. PMID:27216972

  12. Common Misconceptions about Cholesterol

    Science.gov (United States)

    ... your doctor recommends. Learn more about eating a healthy diet. Thin people don't have to worry about high cholesterol. A person with any body type can have high cholesterol. Overweight people are more likely to have ... heart-healthy. Have your cholesterol checked regularly regardless of your ...

  13. Cholesterol and ocular pathologies: focus on the role of cholesterol-24S-hydroxylase in cholesterol homeostasis

    Directory of Open Access Journals (Sweden)

    Fourgeux Cynthia

    2015-03-01

    Full Text Available The retina is responsible for coding the light stimulus into a nervous signal that is transferred to the brain via the optic nerve. The retina is formed by the association of the neurosensory retina and the retinal pigment epithelium that is supported by Bruch’s membrane. Both the physical and metabolic associations between these partners are crucial for the functioning of the retina, by means of nutrient intake and removal of the cell and metabolic debris from the retina. Dysequilibrium are involved in the aging processes and pathologies such as age-related macular degeneration, the leading cause of visual loss after the age of 50 years in Western countries. The retina is composed of several populations of cells including glia that is involved in cholesterol biosynthesis. Cholesterol is the main sterol in the retina. It is present as free form in cells and as esters in Bruch’s membrane. Accumulation of cholesteryl esters has been associated with aging of the retina and impairment of the retinal function. Under dietary influence and in situ synthesized, the metabolism of cholesterol is regulated by cell interactions, including neurons and glia via cholesterol-24S-hydroxylase. Several pathophysiological associations with cholesterol and its metabolism can be suggested, especially in relation to glaucoma and age-related macular degeneration.

  14. Home-Use Tests - Cholesterol

    Science.gov (United States)

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  15. The mechanism of dietary cholesterol effects on lipids metabolism in rats

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    2010-01-01

    Full Text Available Abstract Background Cholesterol administration has been reported to influence hepatic lipid metabolism in rats. In the present study, the effect of dietary cholesterol on hepatic activity and mRNA expression of the enzymes involved in lipid metabolism were investigated. Fourteen male Wistar rats were randomly divided into 2 groups and fed 1% cholesterol or cholesterol free AIN76 diets for 4 weeks. Results The serum triglyceride and high density lipoprotein cholesterol levels were significantly decreased but the total cholesterol and non high density lipoprotein cholesterol levels were significantly increased in the cholesterol-fed rats compared with the control rats. And the concentrations of the hepatic total cholesterol and triglyceride increased about 4-fold and 20-fold separately by dietary cholesterol. The activities of hepatic malic enzyme, glucose-6-phosphate dehydrogenase, fatty acid synthase, phosphatidate phophatase and carnitine palmitoyl transferase were depressed by the cholesterol feeding (40%, 70%, 50%, 15% and 25% respectively. The results of mRNA expression showed that fatty acid synthase, carnitine palmitoyl transferase 1, carnitine palmitoyl transferase 2, and HMG-CoA reductase were down-regulated (35%, 30%, 50% and 25% respectively and acyl-CoA: cholesterol acyltransferase and cholesterol 7α-hydroxylase were up regulated (1.6 and 6.5 folds in liver by the cholesterol administration. Conclusions The dietary cholesterol increased the triglyceride accumulation in liver, but did not stimulate the activity and the gene expression of hepatic enzymes related to triglyceride and fatty acid biosynthesis.

  16. The Fruit Fly Drosophila melanogaster as a Model System to Study Cholesterol Metabolism and Homeostasis

    Directory of Open Access Journals (Sweden)

    Ryusuke Niwa

    2011-01-01

    Full Text Available Cholesterol has long been recognized for its versatile roles in influencing the biophysical properties of cell membranes and for serving as a precursor of steroid hormones. While many aspects of cholesterol biosynthesis are well understood, little is currently known about the molecular mechanisms of cholesterol metabolism and homeostasis. Recently, genetic approaches in the fruit fly, Drosophila melanogaster, have been successfully used for the analysis of molecular mechanisms that regulate cholesterol metabolism and homeostasis. This paper summarizes the recent studies on genes that regulate cholesterol metabolism and homeostasis, including neverland, Niemann Pick type C(NPC disease genes, and DHR96.

  17. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice.

    Science.gov (United States)

    Cordoba-Chacon, Jose; Majumdar, Neena; List, Edward O; Diaz-Ruiz, Alberto; Frank, Stuart J; Manzano, Anna; Bartrons, Ramon; Puchowicz, Michelle; Kopchick, John J; Kineman, Rhonda D

    2015-09-01

    Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have low growth hormone (GH) production and/or hepatic GH resistance. GH replacement can resolve the fatty liver condition in diet-induced obese rodents and in GH-deficient patients. However, it remains to be determined whether this inhibitory action of GH is due to direct regulation of hepatic lipid metabolism. Therefore, an adult-onset, hepatocyte-specific, GH receptor (GHR) knockdown (aLivGHRkd) mouse was developed to model hepatic GH resistance in humans that may occur after sexual maturation. Just 7 days after aLivGHRkd, hepatic de novo lipogenesis (DNL) was increased in male and female chow-fed mice, compared with GHR-intact littermate controls. However, hepatosteatosis developed only in male and ovariectomized female aLivGHRkd mice. The increase in DNL observed in aLivGHRkd mice was not associated with hyperactivation of the pathway by which insulin is classically considered to regulate DNL. However, glucokinase mRNA and protein levels as well as fructose-2,6-bisphosphate levels were increased in aLivGHRkd mice, suggesting that enhanced glycolysis drives DNL in the GH-resistant liver. These results demonstrate that hepatic GH actions normally serve to inhibit DNL, where loss of this inhibitory signal may explain, in part, the inappropriate increase in hepatic DNL observed in NAFLD patients. PMID:26015548

  18. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation.

    Science.gov (United States)

    Burhans, Maggie S; Flowers, Matthew T; Harrington, Kristin R; Bond, Laura M; Guo, Chang-An; Anderson, Rozalyn M; Ntambi, James M

    2015-02-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues.

  19. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity

    Science.gov (United States)

    Grasa-López, Ameyalli; Miliar-García, Ángel; Quevedo-Corona, Lucía; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Reyes-Maldonado, Elba; Jaramillo-Flores, María-Eugenia

    2016-01-01

    Brown algae and its carotenoids have been shown to have a positive influence on obesity and its comorbidities. This study evaluated the effect of Undaria pinnatifida and fucoxanthin on biochemical, physiological and inflammation markers related to obesity and on the expression of genes engaged on white adipose tissue lipid metabolism in a murine model of diet-induced obesity. The treatments improved energy expenditure, β-oxidation and adipogenesis by upregulating PPARα, PGC1α, PPARγ and UCP-1. Adipogenesis was also confirmed by image analysis of the retroperitoneal adipose tissue, by measuring cell area, perimeter and cellular density. Additionally, the treatments, ameliorated adipose tissue accumulation, insulin resistance, blood pressure, cholesterol and triglycerides concentration in serum, and reduced lipogenesis and inflammation by downregulating acetyl-CoA carboxylase (ACC) gene expression, increasing serum concentration and expression of adiponectin as well as downregulating IL-6 expression. Both fucoxanthin and Undaria pinnatifida may be considered for treating obesity and other diseases related. PMID:27527189

  20. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity.

    Science.gov (United States)

    Grasa-López, Ameyalli; Miliar-García, Ángel; Quevedo-Corona, Lucía; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Reyes-Maldonado, Elba; Jaramillo-Flores, María-Eugenia

    2016-01-01

    Brown algae and its carotenoids have been shown to have a positive influence on obesity and its comorbidities. This study evaluated the effect of Undaria pinnatifida and fucoxanthin on biochemical, physiological and inflammation markers related to obesity and on the expression of genes engaged on white adipose tissue lipid metabolism in a murine model of diet-induced obesity. The treatments improved energy expenditure, β-oxidation and adipogenesis by upregulating PPARα, PGC1α, PPARγ and UCP-1. Adipogenesis was also confirmed by image analysis of the retroperitoneal adipose tissue, by measuring cell area, perimeter and cellular density. Additionally, the treatments, ameliorated adipose tissue accumulation, insulin resistance, blood pressure, cholesterol and triglycerides concentration in serum, and reduced lipogenesis and inflammation by downregulating acetyl-CoA carboxylase (ACC) gene expression, increasing serum concentration and expression of adiponectin as well as downregulating IL-6 expression. Both fucoxanthin and Undaria pinnatifida may be considered for treating obesity and other diseases related. PMID:27527189

  1. Bacterial colonization of host cells in the absence of cholesterol.

    Directory of Open Access Journals (Sweden)

    Stacey D Gilk

    2013-01-01

    Full Text Available Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24(-/- mouse embryonic fibroblasts (MEFs. DHCR24(-/- MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24(-/- MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24(-/- MEFs. In contrast, C. burnetii entry was significantly decreased in -cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated α(Vβ(3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24(-/- MEFs lacked the CD63-positive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions.

  2. A Phospholipid-Protein Complex from Krill with Antioxidative and Immunomodulating Properties Reduced Plasma Triacylglycerol and Hepatic Lipogenesis in Rats

    Directory of Open Access Journals (Sweden)

    Marie S. Ramsvik

    2015-07-01

    Full Text Available Dietary intake of marine omega-3 polyunsaturated fatty acids (n-3 PUFAs can change the plasma profile from atherogenic to cardioprotective. In addition, there is growing evidence that proteins of marine origin may have health benefits. We investigated a phospholipid-protein complex (PPC from krill that is hypothesized to influence lipid metabolism, inflammation, and redox status. Male Wistar rats were fed a control diet (2% soy oil, 8% lard, 20% casein, or diets where corresponding amounts of casein and lard were replaced with PPC at 3%, 6%, or 11% (wt %, for four weeks. Dietary supplementation with PPC resulted in significantly lower levels of plasma triacylglycerols in the 11% PPC-fed group, probably due to reduced hepatic lipogenesis. Plasma cholesterol levels were also reduced at the highest dose of PPC. In addition, the plasma and liver content of n-3 PUFAs increased while n-6 PUFAs decreased. This was associated with increased total antioxidant capacity in plasma and increased liver gene expression of mitochondrial superoxide dismutase (Sod2. Finally, a reduced plasma level of the inflammatory mediator interleukin-2 (IL-2 was detected in the PPC-fed animals. The present data show that PPC has lipid-lowering effects in rats, and may modulate risk factors related to cardiovascular disease progression.

  3. Adiposity, lipogenesis, and fatty acid composition of subcutaneous and intramuscular adipose tissues of Brahman and Angus crossbred cattle.

    Science.gov (United States)

    Campbell, E M G; Sanders, J O; Lunt, D K; Gill, C A; Taylor, J F; Davis, S K; Riley, D G; Smith, S B

    2016-04-01

    The objective of this study was to demonstrate differences in aspects of adipose tissue cellularity, lipid metabolism, and fatty and cholesterol composition in Angus and Brahman crossbred cattle. We hypothesized that in vitro measures of lipogenesis would be greater in three-fourths Angus progeny than in three-fourths Brahman progeny, especially in intramuscular (i.m.) adipose tissue. Progeny ( = 227) were fed a standard, corn-based diet for approximately 150 d before slaughter. Breed was considered to be the effect of interest and was forced into the model. There were 9 breed groups including all 4 kinds of three-fourths Angus calves: Angus bulls Angus-sired F cows ( = 32), Angus bulls Brahman-sired F cows ( = 20), Brahman-sired F bulls Angus cows ( = 24), and Angus-sired F bulls Angus cows ( = 20). There were all 4 kinds of three-fourths Brahman calves: Brahman bulls Brahman-sired F cows ( = 21), Brahman bulls Angus-sired F cows ( = 43), Brahman-sired F bulls Brahman cows ( = 26), and Angus-sired F bulls Brahman cows ( = 13). Additionally, F calves (one-half Brahman and one-half Angus) were produced only from Brahman-sired F bulls Angus-sired F cows ( = 28). Contrasts were calculated when breed was an important fixed effect, using the random effect family(breed) as the error term. Most contrasts were nonsignificant ( > 0.10). Those that were significant ( F, three-fourths Brahman > F, and three-fourths crossbred progeny combined > F), s.c. adipocyte volume (three-fourths Angus > F and three-fourths bloods combined > F), lipogenesis from acetate in s.c. adipose tissue (three-fourths Brahman calves from Brahman dams > three-fourths Brahman calves from F dams), and percentage 18:3-3 in s.c. adipose tissue (three-fourths Brahman calves from Brahman-sired F dams Brahman calves from Angus-sired F dams). Intramuscular adipocyte volume ( Brahman cattle than in three-fourths Angus cattle. Additionally, several differences were observed in i.m. adipose tissue that were

  4. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    International Nuclear Information System (INIS)

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  5. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Mairal, Aline [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); Mališová, Lucia; Štich, Vladimír [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Langin, Dominique [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, Cedex 4 (France); Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, Cedex 9 (France); Rossmeislová, Lenka, E-mail: Lenka.Rossmeislova@lf3.cuni.cz [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic)

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  6. National Cholesterol Education Month

    Centers for Disease Control (CDC) Podcasts

    2009-09-01

    Do you know your cholesterol numbers? Your doctor can do a simple test to check your cholesterol levels and help you make choices that lower your risk for heart disease and stroke.  Created: 9/1/2009 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 9/9/2009.

  7. Bile acid sequestrants for cholesterol

    Science.gov (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  8. What Causes High Blood Cholesterol?

    Science.gov (United States)

    ... the NHLBI on Twitter. What Causes High Blood Cholesterol? Many factors can affect the cholesterol levels in your blood. You can control some ... but not others. Factors You Can Control Diet Cholesterol is found in foods that come from animal ...

  9. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis.

    Science.gov (United States)

    Ma, Jiguang; Duan, Wanxing; Han, Suxia; Lei, Jianjun; Xu, Qinhong; Chen, Xin; Jiang, Zhengdong; Nan, Ligang; Li, Jiahui; Chen, Ke; Han, Liang; Wang, Zheng; Li, Xuqi; Wu, Erxi; Huo, Xiongwei

    2015-08-28

    Ginkgolic acid (GA) is a botanical drug extracted from the seed coat of Ginkgo biloba L. with a wide range of bioactive properties, including anti-tumor effect. However, whether GA has antitumor effect on pancreatic cancer cells and the underlying mechanisms have yet to be investigated. In this study, we show that GA suppressed the viability of cancer cells but has little toxicity on normal cells, e.g, HUVEC cells. Furthermore, treatment of GA resulted in impaired colony formation, migration, and invasion ability and increased apoptosis of cancer cells. In addition, GA inhibited the de novo lipogenesis of cancer cells through inducing activation of AMP-activated protein kinase (AMPK) signaling and downregulated the expression of key enzymes (e.g. acetyl-CoA carboxylase [ACC], fatty acid synthase [FASN]) involved in lipogenesis. Moreover, the in vivo experiment showed that GA reduced the expression of the key enzymes involved in lipogenesis and restrained the tumor growth. Taken together, our results suggest that GA may serve as a new candidate against tumor growth of pancreatic cancer partially through targeting pathway driving lipogenesis. PMID:25895130

  10. Steroid biosynthesis in adipose tissue.

    Science.gov (United States)

    Li, Jiehan; Papadopoulos, Vassilios; Vihma, Veera

    2015-11-01

    Tissue-specific expression of steroidogenic enzymes allows the modulation of active steroid levels in a local manner. Thus, the measurement of local steroid concentrations, rather than the circulating levels, has been recognized as a more accurate indicator of the steroid action within a specific tissue. Adipose tissue, one of the largest endocrine tissues in the human body, has been established as an important site for steroid storage and metabolism. Locally produced steroids, through the enzymatic conversion from steroid precursors delivered to adipose tissue, have been proven to either functionally regulate adipose tissue metabolism, or quantitatively contribute to the whole body's steroid levels. Most recently, it has been suggested that adipose tissue may contain the steroidogenic machinery necessary for the initiation of steroid biosynthesis de novo from cholesterol. This review summarizes the evidence indicating the presence of the entire steroidogenic apparatus in adipose tissue and discusses the potential roles of local steroid products in modulating adipose tissue activity and other metabolic parameters.

  11. Lifestyle Changes and Cholesterol

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Lifestyle Changes and Cholesterol Updated:Oct 26,2015 As ... disease and stroke, your doctor may suggest some lifestyle changes. Regardless of whether your plan includes drug ...

  12. Cholesterol in unusual places

    Energy Technology Data Exchange (ETDEWEB)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J, E-mail: John.Katsaras@nrc.gc.ca, E-mail: Norbert.Kucerka@nrc.gc.ca

    2010-11-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  13. New conception concerning the dynamical state of cholesterol in rat; Conception nouvelle concernant l'etat dynamyque du cholesterol chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-03-15

    It presents the study of the cholesterol metabolism in rats. This thesis has been divided in three chapters. In a first part, it will discuss about the dynamic state of biological constituents in organism and in particular the dynamic state of cholesterol. This matter will be considered, firstly under its theoretical aspect and secondly under an experimental point of view with isotopic techniques. The current data on the dynamic state of cholesterol will allow to identify the essential points which are the subject of this research. In particular, the full understanding of the different cholesterol origins (diet, biosynthesis or formation of cholesterol from degradation or transformation of precursors as acetate or butyric acid for example) and the different cholesterol disappearance way (excretion, destruction, transformation or esters formation) is necessary to further research. In a second part, the experimental techniques and methods are described. A brief presentation of the methods for the study of the cholesterol transport and synthesis will be given as well as the experimental conditions and in particular the animal diet and cholesterol ingestion, the administration of acetate and {gamma}-phenyl {alpha}-aminobutyric. The different preparations of the {sup 14}C labelled cholesterol are also described as well as the extraction and measuring of the specific {sup 14}C radioactivity in the animal tissues extract, carbon dioxide gas and sodium acetate. Finally, the results will be given and discussed according to the way of intake: a radioactive cholesterol ingestion or an acetate intraperitoneal injection. (M.P.)

  14. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    OpenAIRE

    Corcos Laurent; Kervizic Gwenael

    2008-01-01

    Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivo...

  15. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction.

    Science.gov (United States)

    Petrov, A M; Kasimov, M R; Zefirov, A L

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body's total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington's, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer's disease, Parkinson's disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  16. Cholesterol and bile acids regulate cholesterol 7 alpha-hydroxylase expression at the transcriptional level in culture and in transgenic mice.

    OpenAIRE

    Ramirez, M.I.; Karaoglu, D; Haro, D; Barillas, C; Bashirzadeh, R; Gil, G.

    1994-01-01

    Cholesterol 7 alpha-hydroxylase (7 alpha-hydroxylase) is the rate-limiting enzyme in bile acid biosynthesis. It is subject to a feedback control, whereby high levels of bile acids suppress its activity, and cholesterol exerts a positive control. It has been suggested that posttranscriptional control plays a major part in that regulation. We have studied the mechanisms by which cholesterol and bile acids regulate expression of the 7 alpha-hydroxylase gene and found it to be solely at the trans...

  17. Energy and protein relations in the broiler chicken. 4. Role of sex, line and substrate on in vitro lipogenesis

    International Nuclear Information System (INIS)

    Experiments were conducted with dwarf (dw) and normal lines of chickens to determine the effect of sex, diet and line on lipogenesis in the 28-day-old chick. The chicks were fed diets containing 12, 18, 23 and 30% protein. In the first experiment, in vitro lipogenesis (incorporation of [2-14C] sodium acetate into hepatic fatty acids) as well as growth from 7 to 28 days of age were determined in males and females of both lines. In the second experiment, only males and females of the dwarf line were fed to determine the relative contribution of acetate and pyruvate to in vitro lipogenesis (incorporation of either [2-14C] sodium acetate or [2-14C) pyruvate into hepatic fatty acids). Chicks of the dwarf line were smaller than were those of the normal line. Females of both lines were smaller than males. In vitro lipogenesis was lower in the dwarf line; however the rate for both sexes within a given line was equal. An increase in the dietary protein decreased in vitro lipogenesis in both lines. The use of pyruvate as an in vitro precursor indicated that the regulation of lipid and carbohydrate metabolism may be an integrated process involving pyruvate carboxylation and subsequent flux of pyruvate carbon into either glucose or fatty acids. Based on the data presented, there is no evidence to assume, that the dwarf gene per se influences lipogenesis

  18. ABCC6 : a new player in cellular cholesterol and lipoprotein metabolism?

    OpenAIRE

    Kuzaj, Patricia; Kuhn, Joachim; Dabisch-Ruthe, Mareike; Faust, Isabel; Götting, Christian; Knabbe, Cornelius; Hendig, Doris

    2014-01-01

    Background Dysregulations in cholesterol and lipid metabolism have been linked to human diseases like hypercholesterolemia, atherosclerosis or the metabolic syndrome. Many ABC transporters are involved in trafficking of metabolites derived from these pathways. Pseudoxanthoma elasticum (PXE), an autosomal-recessive disease caused by ABCC6 mutations, is characterized by atherogenesis and soft tissue calcification. Methods In this study we investigated the regulation of cholesterol biosynthesis ...

  19. Microbial Exopolysaccharides: Biosynthesis and Potential Applications

    Directory of Open Access Journals (Sweden)

    K. V. Madhuri

    2014-09-01

    Full Text Available Many bacteria synthesize extracellular polysaccharides (EPSs with commercially significant physiological and therapeutic activities. Microbial polysaccharides have also been reported to have potential therapeutic applications. Recently, much attention has been devoted to the microbial exopolysaccharides (EPSs due to their numerous health benefits.EPSs from lactic acid bacteria are reported to possess antitumor effects, immunostimulatory activity, and the ability to lower blood cholesterol. EPSs also offer an alternative class of biothickeners that are widely used in the food and dairy industries and have been proven to provide strong emulsifying activity, which is important in many food formulations. It is also important to understand the mechanism of microbial biosynthesis of EPSs in order to enhance their production by genetic alterations. The potential applications and the mode of microbial biosynthesis of the EPSs have been presented in this article.

  20. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction

    Energy Technology Data Exchange (ETDEWEB)

    Jin, So Hee; Yang, Ji Hye; Shin, Bo Yeon; Seo, Kyuhwa; Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Il Je, E-mail: skek023@dhu.ac.kr [MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbukdo 712-715 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2013-08-15

    Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα–RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis. - Highlights: • We investigated the effect of resveratrol in LXRα-mediated lipogenesis. • Resveratrol attenuated the ability of the LXRα-mediated lipogenic gene expression. • Resveratrol’s effects on T090-induced lipogenesis is not dependent on Sirt1 or AMPK.

  1. Polymorphisms, de novo lipogenesis, and plasma triglyceride response following fish oil supplementation

    OpenAIRE

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-01-01

    Interindividual variability in the response of plasma triglyceride concentrations (TG) following fish oil consumption has been observed. Our objective was to examine the associations between single-nucleotide polymorphisms (SNPs) within genes encoding proteins involved in de novo lipogenesis and the relative change in plasma TG levels following a fish oil supplementation. Two hundred and eight participants were recruited in the greater Quebec City area. The participants completed a six-week f...

  2. Nicotinamide phosphoribosyl transferase (Nampt is required for de novo lipogenesis in tumor cells.

    Directory of Open Access Journals (Sweden)

    Sarah C Bowlby

    Full Text Available Tumor cells have increased metabolic requirements to maintain rapid growth. In particular, a highly lipogenic phenotype is a hallmark of many tumor types, including prostate. Cancer cells also have increased turnover of nicotinamide adenine dinucleotide (NAD(+, a coenzyme involved in multiple metabolic pathways. However, a specific role for NAD(+ in tumor cell lipogenesis has yet to be described. Our studies demonstrate a novel role for the NAD(+-biosynthetic enzyme Nicotinamide phosphoribosyltransferase (Nampt in maintaining de novo lipogenesis in prostate cancer (PCa cells. Inhibition of Nampt reduces fatty acid and phospholipid synthesis. In particular, short chain saturated fatty acids and the phosphatidylcholine (PC lipids into which these fatty acids are incorporated were specifically reduced by Nampt inhibition. Nampt blockade resulted in reduced ATP levels and concomitant activation of AMP-activated protein kinase (AMPK and phosphorylation of acetyl-CoA carboxylase (ACC. In spite of this, pharmacological inhibition of AMPK was not sufficient to fully restore fatty acid synthesis. Rather, Nampt blockade also induced protein hyperacetylation in PC-3, DU145, and LNCaP cells, which correlated with the observed decreases in lipid synthesis. Moreover, the sirtuin inhibitor Sirtinol, and the simultaneous knockdown of SIRT1 and SIRT3, phenocopied the effects of Nampt inhibition on fatty acid synthesis. Altogether, these data reveal a novel role for Nampt in the regulation of de novo lipogenesis through the modulation of sirtuin activity in PCa cells.

  3. CHOLESTEROL AND CHOLESTEROL ESTER CONTENT OF BOVINE COLOSTRUM

    Science.gov (United States)

    Shope, Richard E.; Gowen, John W.

    1928-01-01

    The total amount of cholesterol found in colostrum and milk is comparatively low. The amount of cholesterol found in colostrum declines at an ever decreasing rate as milk secretion develops until at 48 hours the cholesterol is nearly the same as that found in milk 3 months or 7 months after parturition. The morning milk differs from the evening milk in that the cholesterol bound as ester is greater in amount. PMID:19869468

  4. Transintestinal cholesterol efflux

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Brufau, Gemma; Groen, Albert K.

    2010-01-01

    Purpose of review Regulation of cholesterol homeostasis is a complex interplay of a multitude of metabolic pathways situated in different organs. The liver plays a central role and has received most attention of the research community. In this review, we discuss recent progress in the understanding

  5. Regulation of cholesterol homeostasis

    NARCIS (Netherlands)

    van der Wulp, Mariette Y. M.; Verkade, Henkjan J.; Groen, Albert K.

    2013-01-01

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-codin

  6. Cholesterol transport in model membranes

    Science.gov (United States)

    Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2010-03-01

    Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.

  7. What Your Cholesterol Levels Mean

    Science.gov (United States)

    ... Blood Pressure Tools & Resources Stroke More What Your Cholesterol Levels Mean Updated:Aug 9,2016 How’s your ... the Terms and Conditions and Privacy Policy Interactive Cholesterol Guide Find videos, trackers and more with our ...

  8. GLP-1 receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE*3-Leiden mice.

    Directory of Open Access Journals (Sweden)

    Edwin T Parlevliet

    Full Text Available OBJECTIVE: In addition to improve glucose intolerance, recent studies suggest that glucagon-like peptide-1 (GLP-1 receptor agonism also decreases triglyceride (TG levels. The aim of this study was to evaluate the effect of GLP-1 receptor agonism on very-low-density lipoprotein (VLDL-TG production and liver TG metabolism. EXPERIMENTAL APPROACH: The GLP-1 peptide analogues CNTO3649 and exendin-4 were continuously administered subcutaneously to high fat diet-fed APOE*3-Leiden transgenic mice. After 4 weeks, hepatic VLDL production, lipid content, and expression profiles of selected genes involved in lipid metabolism were determined. RESULTS: CNTO3649 and exendin-4 reduced fasting plasma glucose (up to -30% and -28% respectively and insulin (-43% and -65% respectively. In addition, these agents reduced VLDL-TG production (-36% and -54% respectively and VLDL-apoB production (-36% and -43% respectively, indicating reduced production of VLDL particles rather than reduced lipidation of apoB. Moreover, they markedly decreased hepatic content of TG (-39% and -55% respectively, cholesterol (-30% and -55% respectively, and phospholipids (-23% and -36% respectively, accompanied by down-regulation of expression of genes involved in hepatic lipogenesis (Srebp-1c, Fasn, Dgat1 and apoB synthesis (Apob. CONCLUSION: GLP-1 receptor agonism reduces VLDL production and hepatic steatosis in addition to an improvement of glycemic control. These data suggest that GLP-receptor agonists could reduce hepatic steatosis and ameliorate dyslipidemia in patients with type 2 diabetes mellitus.

  9. Effects of dietary cholesterol on cholesterol and bile acid homeostasis in patients with cholesterol gallstones.

    OpenAIRE

    Kern, F

    1994-01-01

    We examined changes in cholesterol and bile acid metabolism produced by dietary cholesterol in gallstone subjects and matched controls. Healthy women were recruited and, after confirming the presence or absence of radiolucent gallstones, they were studied on regular diets and again on the same diet supplemented with five eggs daily for 15-18 d. Studies included plasma lipids, lipoproteins and apolipoproteins, dietary records, cholesterol absorption, cholesterol synthesis, plasma clearance of ...

  10. Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples

    DEFF Research Database (Denmark)

    Le Hellard, S; Mühleisen, T W; Djurovic, S;

    2010-01-01

    in glial cell lines that antipsychotic drugs induce the expression of genes involved in cholesterol and fatty acids biosynthesis through activation of the sterol regulatory element binding protein (SREBP) transcription factors, encoded by the sterol regulatory element binding transcription factor 1 (SREBF1...... collaboration of psychiatric etiology study, SCOPE) replicated the association for the five SREBF1 markers and for two markers in SREBF2. A combined analysis of all samples resulted in highly significant genotypic P-values of 9 x 10(-4) for SREBF1 (rs11868035, odd ration (OR)=1.26, 95% confidence interval (CI...

  11. Mitochondrial function is involved in regulation of cholesterol efflux to apolipoprotein (apoA-I from murine RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Allen Anne Marie

    2012-12-01

    Full Text Available Abstract Background Mitochondrial DNA damage, increased production of reactive oxygen species and progressive respiratory chain dysfunction, together with increased deposition of cholesterol and cholesteryl esters, are hallmarks of atherosclerosis. This study investigated the role of mitochondrial function in regulation of macrophage cholesterol efflux to apolipoprotein A-I, by the addition of established pharmacological modulators of mitochondrial function. Methods Murine RAW 264.7 macrophages were treated with a range of concentrations of resveratrol, antimycin, dinitrophenol, nigericin and oligomycin, and changes in viability, cytotoxicity, membrane potential and ATP, compared with efflux of [3H]cholesterol to apolipoprotein (apo A-I. The effect of oligomycin treatment on expression of genes implicated in macrophage cholesterol homeostasis were determined by quantitative polymerase chain reaction, and immunoblotting, relative to the housekeeping enzyme, Gapdh, and combined with studies of this molecule on cholesterol esterification, de novo lipid biosynthesis, and induction of apoptosis. Significant differences were determined using analysis of variance, and Dunnett’s or Bonferroni post t-tests, as appropriate. Results The positive control, resveratrol (24 h, significantly enhanced cholesterol efflux to apoA-I at concentrations ≥30 μM. By contrast, cholesterol efflux to apoA-I was significantly inhibited by nigericin (45%; ppAbca1 mRNA. Oligomycin treatment did not affect cholesterol biosynthesis, but significantly inhibited cholesterol esterification following exposure to acetylated LDL, and induced apoptosis at ≥30 μM. Finally, oligomycin induced the expression of genes implicated in both cholesterol efflux (Abca1, Abcg4, Stard1 and cholesterol biosynthesis (Hmgr, Mvk, Scap, Srebf2, indicating profound dysregulation of cholesterol homeostasis. Conclusions Acute loss of mitochondrial function, and in particular Δψm, reduces

  12. Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity.

    Directory of Open Access Journals (Sweden)

    Marina R Pulido

    Full Text Available Lipid droplets (LDs are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K, the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.

  13. Importance of macrophage cholesterol content on the flux of cholesterol mass

    OpenAIRE

    Sankaranarayanan, Sandhya; de la Llera-Moya, Margarita; Drazul-Schrader, Denise; Asztalos, Bela F.; Weibel, Ginny L.; Rothblat, George H.

    2010-01-01

    Net flux of cholesterol represents the difference between efflux and influx and can result in net cell-cholesterol accumulation, net cell-cholesterol depletion, or no change in cellular cholesterol content. We measured radiolabeled cell-cholesterol efflux and cell-cholesterol mass using cholesterol-normal and -enriched J774 and elicited mouse peritoneal macrophage cells. Net cell-cholesterol effluxes were observed when cholesterol-enriched J774 cells were incubated with 3.5% apolipoprotein (a...

  14. Dietary Cholesterol Promotes Adipocyte Hypertrophy and Adipose Tissue Inflammation in Visceral, But Not Subcutaneous, Fat in Monkeys

    Science.gov (United States)

    Chung, Soonkyu; Cuffe, Helen; Marshall, Stephanie M.; McDaniel, Allison L.; Ha, Jung-Heun; Kavanagh, Kylie; Hong, Cynthia; Tontonoz, Peter; Temel, Ryan E.; Parks, John S

    2014-01-01

    Objective Excessive caloric intake is associated with obesity and adipose tissue dysfunction. However, the role of dietary cholesterol in this process is unknown. The aim of this study was to determine whether increasing dietary cholesterol intake alters adipose tissue cholesterol content, adipocyte size, and endocrine function in nonhuman primates. Approach and Results Age-matched, male African Green monkeys (n=5 per group) were assigned to one of three diets containing 0.002 (Lo), 0.2 (Med) or 0.4 (Hi) mg cholesterol/Kcal. After 10 weeks of diet feeding, animals were euthanized for adipose tissue, liver, and plasma collection. With increasing dietary cholesterol, free cholesterol (FC) content and adipocyte size increased in a step-wise manner in visceral, but not subcutaneous fat, with a significant association between visceral adipocyte size and FC content (r2=0.298; n=15; p=0.035). In visceral fat, dietary cholesterol intake was associated with: 1) increased pro-inflammatory gene expression and macrophage recruitment, 2) decreased expression of genes involved in cholesterol biosynthesis and lipoprotein uptake, and 3) increased expression of proteins involved in FC efflux. Conclusions Increasing dietary cholesterol selectively increases visceral fat adipocyte size, FC and macrophage content, and proinflammatory gene expression in nonhuman primates. Visceral fat cells appear to compensate for increased dietary cholesterol by limiting cholesterol uptake/synthesis and increasing FC efflux pathways. PMID:24969772

  15. Effects of pantethine on lipogenesis and CO2 production in the isolated hepatocytes of the chick (Gallus domesticus).

    Science.gov (United States)

    Hsu, J C; Tanaka, K; Inayama, I; Ohtani, S

    1992-07-01

    1. Isolated hepatocytes from chicks were used to study the effects of pantethine supplementation to incubation medium on in vitro lipogenesis, CO2 production and beta-oxidation of fatty acid. 2. In vitro lipogenesis, determined by the incorporation of 1-[14C]acetate into total lipid and various lipid fractions, as depressed in concordance with the increase of pantethine concentration in the medium. 3. Incubation of isolated hepatocytes with pantethine resulted in a significant decrease (P pantethine addition to the medium at a low level. PMID:1359945

  16. Conversion of exogenous cholesterol into glycoalkaloids in potato shoots, using two methods for sterol solubilisation.

    Directory of Open Access Journals (Sweden)

    Erik V Petersson

    Full Text Available Steroidal glycoalkaloids (SGA are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D in the sterol ring structure (D5- or D6-labelled, or side chain (D7-labelled, and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato.

  17. Conversion of Exogenous Cholesterol into Glycoalkaloids in Potato Shoots, Using Two Methods for Sterol Solubilisation

    Science.gov (United States)

    Petersson, Erik V.; Nahar, Nurun; Dahlin, Paul; Broberg, Anders; Tröger, Rikard; Dutta, Paresh C.; Jonsson, Lisbeth; Sitbon, Folke

    2013-01-01

    Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato. PMID:24349406

  18. Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats.

    Science.gov (United States)

    Margolis, Lee M; Rivas, Donato A; Ezzyat, Yassine; Gaffney-Stomberg, Erin; Young, Andrew J; McClung, James P; Fielding, Roger A; Pasiakos, Stefan M

    2016-01-01

    The purpose of this investigation was to assess the influence of calorie restriction (CR) alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL), and intrahepatic triglycerides. Twelve-week old male Sprague Dawley rats consumed ad libitum (AL) or CR (40% restriction), adequate (10%), or high (32%) protein (PRO) milk-based diets for 16 weeks. Metabolic profiles were assessed in serum, and intrahepatic triglyceride concentrations and molecular markers of de novo lipogenesis were determined in liver. Independent of calorie intake, 32% PRO tended to result in lower homeostatic model assessment of insulin resistance (HOMA-IR) values compared to 10% PRO, while insulin and homeostatic model assessment of β-cell function (HOMA-β) values were lower in CR than AL, regardless of protein intake. Intrahepatic triglyceride concentrations were 27.4 ± 4.5 and 11.7 ± 4.5 µmol·g(-1) lower (p protein intake. Total protein of FASN and SCD were 50% ± 1% and 26% ± 1% lower (p health benefits associated with CR-specifically reduction in intrahepatic triglyceride content-may be enhanced by consuming a higher-protein/lower-carbohydrate diet. PMID:27649241

  19. Consumption of resistant starch decreases postprandial lipogenesis in white adipose tissue of the rat

    Directory of Open Access Journals (Sweden)

    Brown Marc A

    2006-09-01

    Full Text Available Abstract Chronic consumption of diets high in resistant starch (RS leads to reduced fat cell size compared to diets high in digestible starch (DS in rats and increases total and meal fat oxidation in humans. The aim of the present study was to examine the rate of lipogenesis in key lipogenic organs following a high RS or DS meal. Following an overnight fast, male Wistar rats ingested a meal with an RS content of 2% or 30% of total carbohydrate and were then administered an i.p bolus of 50 μCi 3H2O either immediately or 1 hour post-meal. One hour following tracer administration, rats were sacrificed, a blood sample collected, and the liver, white adipose tissue (WAT, and gastrocnemius muscle excised and frozen until assayed for total 3H-lipid and 3H-glycogen content. Plasma triglyceride and NEFA concentrations and 3H-glycogen content did not differ between groups. In all tissues, except the liver, there was a trend for the rate of lipogenesis to be higher in the DS group than the RS group which reached significance only in WAT at 1 h (p

  20. Evodia alkaloids suppress gluconeogenesis and lipogenesis by activating the constitutive androstane receptor.

    Science.gov (United States)

    Yu, Lushan; Wang, Zhangting; Huang, Minmin; Li, Yingying; Zeng, Kui; Lei, Jinxiu; Hu, Haihong; Chen, Baian; Lu, Jing; Xie, Wen; Zeng, Su

    2016-09-01

    The constitutive androstane receptor (CAR) is a key sensor in xenobiotic detoxification and endobiotic metabolism. Increasing evidence suggests that CAR also plays a role in energy metabolism by suppressing the hepatic gluconeogenesis and lipogenesis. In this study, we investigated the effects of two evodia alkaloids, rutaecarpine (Rut) and evodiamine (Evo), on gluconeogenesis and lipogenesis through their activation of the human CAR (hCAR). We found that both Rut and Evo exhibited anti-lipogenic and anti-gluconeogenic effects in the hyperlipidemic HepG2 cells. Both compounds can potently activate hCAR, and treatment of cells with hCAR antagonists reversed the anti-lipogenic and anti-gluconeogenic effects of Rut and Evo. The anti-gluconeogenic effect of Rut and Evo was due to the CAR-mediated inhibition of the recruitment of forkhead box O1 (FoxO1) and hepatocyte nuclear factor 4α (HNF4α) onto the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene promoters. In vivo, we showed that treatment of mice with Rut improved glucose tolerance in a CAR-dependent manner. Our results suggest that the evodia alkaloids Rut and Evo may have a therapeutic potential for the treatment of hyperglycemia and type 2 diabetes. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26455953

  1. The Role of Dietary Sugars and De novo Lipogenesis in Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    J. Bernadette Moore

    2014-12-01

    Full Text Available Dietary sugar consumption, in particular sugar-sweetened beverages and the monosaccharide fructose, has been linked to the incidence and severity of non-alcoholic fatty liver disease (NAFLD. Intervention studies in both animals and humans have shown large doses of fructose to be particularly lipogenic. While fructose does stimulate de novo lipogenesis (DNL, stable isotope tracer studies in humans demonstrate quantitatively that the lipogenic effect of fructose is not mediated exclusively by its provision of excess substrates for DNL. The deleterious metabolic effects of high fructose loads appear to be a consequence of altered transcriptional regulatory networks impacting intracellular macronutrient metabolism and altering signaling and inflammatory processes. Uric acid generated by fructose metabolism may also contribute to or exacerbate these effects. Here we review data from human and animal intervention and stable isotope tracer studies relevant to the role of dietary sugars on NAFLD development and progression, in the context of typical sugar consumption patterns and dietary recommendations worldwide. We conclude that the use of hypercaloric, supra-physiological doses in intervention trials has been a major confounding factor and whether or not dietary sugars, including fructose, at typically consumed population levels, effect hepatic lipogenesis and NAFLD pathogenesis in humans independently of excess energy remains unresolved.

  2. Food combinations for cholesterol lowering.

    Science.gov (United States)

    Harland, Janice I

    2012-12-01

    Reducing elevated LDL-cholesterol is a key public health challenge. There is substantial evidence from randomised controlled trials (RCT) that a number of foods and food components can significantly reduce LDL-cholesterol. Data from RCT have been reviewed to determine whether effects are additive when two or more of these components are consumed together. Typically components, such as plant stanols and sterols, soya protein, β-glucans and tree nuts, when consumed individually at their target rate, reduce LDL-cholesterol by 3-9 %. Improved dietary fat quality, achieved by replacing SFA with unsaturated fat, reduces LDL-cholesterol and can increase HDL-cholesterol, further improving blood lipid profile. It appears that the effect of combining these interventions is largely additive; however, compliance with multiple changes may reduce over time. Food combinations used in ten 'portfolio diet' studies have been reviewed. In clinical efficacy studies of about 1 month where all foods were provided, LDL-cholesterol is reduced by 22-30 %, whereas in community-based studies of >6 months' duration, where dietary advice is the basis of the intervention, reduction in LDL-cholesterol is about 15 %. Inclusion of MUFA into 'portfolio diets' increases HDL-cholesterol, in addition to LDL-cholesterol effects. Compliance with some of these dietary changes can be achieved more easily compared with others. By careful food component selection, appropriate to the individual, the effect of including only two components in the diet with good compliance could be a sustainable 10 % reduction in LDL-cholesterol; this is sufficient to make a substantial impact on cholesterol management and reduce the need for pharmaceutical intervention.

  3. Reducing Cholesterol Intake: Are the recommendations valid?

    OpenAIRE

    Chan, Joanna K.; McDonald, Bruce E.

    1991-01-01

    The authors question dietary recommendations for the general public calling for reduced cholesterol intake. Metabolic studies have shown that dietary cholesterol normally induces only small increases in blood cholesterol level. There is evidence that only a portion of the population responds to a change in cholesterol intake; hence lowering dietary cholesterol will be effective for only some.

  4. Epigenetic Regulation of Cholesterol Homeostasis

    Directory of Open Access Journals (Sweden)

    Steve eMeaney

    2014-09-01

    Full Text Available Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g. the Hedgehog system. A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more ‘traditional’ regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.

  5. Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster

    OpenAIRE

    Heidrich, John E.; Contos, Linda M; Hunsaker, Lucy A; Deck, Lorraine M.; Vander Jagt, David L.

    2004-01-01

    Background Pancreatic cholesterol esterase has three proposed functions in the intestine: 1) to control the bioavailability of cholesterol from dietary cholesterol esters; 2) to contribute to incorporation of cholesterol into mixed micelles; and 3) to aid in transport of free cholesterol to the enterocyte. Inhibitors of cholesterol esterase are anticipated to limit the absorption of dietary cholesterol. Results The selective and potent cholesterol esterase inhibitor 6-chloro-3-(1-ethyl-2-cycl...

  6. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  7. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    International Nuclear Information System (INIS)

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H+-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  8. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2-14C, benzoic acid-1-14C, benzoic acid-ring 14C, acetate-2-14C, ornithine-5-14C, acetate-2-14C, ornithine-5-14C and cinnamic acid-2-14C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  9. Understand Your Risk for High Cholesterol

    Science.gov (United States)

    ... Resources Stroke More Understand Your Risk for High Cholesterol Updated:Apr 1,2016 LDL (bad) cholesterol is ... content was last reviewed on 04/21/2014. Cholesterol Guidelines: Putting the pieces together Myth vs. Truth – ...

  10. Overview of Cholesterol and Lipid Disorders

    Science.gov (United States)

    ... Medical Dictionary Additional Content Medical News Overview of Cholesterol and Lipid Disorders By Anne Carol Goldberg, MD ... Version. DOCTORS: Click here for the Professional Version Cholesterol Disorders Overview of Cholesterol and Lipid Disorders Dyslipidemia ...

  11. Cholesterol - what to ask your doctor

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000211.htm Cholesterol - what to ask your doctor To use the ... this page, please enable JavaScript. Your body needs cholesterol to work properly. When you have extra cholesterol ...

  12. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis.

    Directory of Open Access Journals (Sweden)

    Simon R Dunn

    Full Text Available The cnidarian-dinoflagellate symbiosis is arguably one of the most important within the marine environment in that it is integral to the formation of coral reefs. However, the regulatory processes that perpetuate this symbiosis remain unresolved. It is essential to understand these processes, if we are to elucidate the mechanisms that support growth and resource accumulation by coral host, and conversely, recently observed reduction and/or mortality of corals in response to rapid environmental change. This study specifically focused on one area of metabolic activity within the symbiosis, that of free fatty acid synthesis within both the dinoflagellate symbionts and cnidarian host. The main model system used was Aiptasia pulchella and Symbiodinium sp. in combination with aposymbiotic A. pulchella, the symbiotic coral Acropora millepora system and dinoflagellate culture. Fatty acids (FAs were selected because of their multiple essential roles inclusive of energy storage (resource accumulation, membrane structure fluidity and cell signaling. The study addressed free FA lipogenesis by using a new method of enriched stable isotopic ((13C incorporation from dissolved inorganic carbon (DI(13C combined with HPLC-MS. FAs derived from DI(13C aligned with a mixture of known lipogenesis pathways with the addition of some unusual FAs. After 120 hr, (13C-enriched FA synthesis rates were attributed to only a complex integration of both n-3 and n-6 lipogenesis pathways within the dinoflagellate symbionts. Furthermore, there was no detectible evidence of symbiont derived enriched isotope fatty acids, catabolized (13C derivatives or DI(13C being directly utilized, in host late n-6 pathway long-chain FA lipogenesis. These findings do not align with a popular mutualistic translocation model with respect to the use of translocated symbiont photoassimilates in host long-chain FA lipogenesis, which has important connotations for linking nutrient sources with

  13. Trans-11 vaccenic acid reduces hepatic lipogenesis and chylomicron secretion in JCR:LA-cp rats.

    Science.gov (United States)

    Wang, Ye; Jacome-Sosa, M Miriam; Ruth, Megan R; Goruk, Sue D; Reaney, Martin J; Glimm, David R; Wright, David C; Vine, Donna F; Field, Catherine J; Proctor, Spencer D

    2009-11-01

    Trans-11 vaccenic acid (VA) is the predominant trans isomer in ruminant fat and a major precursor to the endogenous synthesis of cis9,trans11-conjugated linoleic acid in humans and animals. We have previously shown that 3-wk VA supplementation has a triglyceride (TG)-lowering effect in a rat model of dyslipidemia, obesity, and metabolic syndrome (JCR:LA-cp rats). The objective of this study was to assess the chronic effect (16 wk) of VA on lipid homeostasis in both the liver and intestine in obese JCR:LA-cp rats. Plasma TG (P JCR:LA-cp rats. The appreciable hypolipidemic benefits of VA may be attributed to a reduction in both intestinal CM and hepatic de novo lipogenesis pathways.

  14. Clinical assessment of hepatic de novo lipogenesis in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Paglialunga, Sabina; Dehn, Clayton A

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is heralded as the next big global epidemic. Hepatic de novo lipogenesis (DNL), the synthesis of new fatty acids from non-lipid sources, is thought to play a pivotal role in the development of NAFLD. While there is currently no NAFLD-specific therapeutic agent available, pharmaceutical drugs aimed at reducing hepatic fat accretion may prove to be a powerful ally in the treatment and management of this disease. With a focus on NAFLD, the present review summarizes current techniques examining DNL from a clinical perspective, and describes the merits and limitations of three commonly used assays; stable-label isotope tracer studies, fatty acid indexes and indirect calorimetry as non-invasive measures of hepatic DNL. Finally, the application of DNL assessments in the pharmacological and nutraceutical treatment of NAFLD/NASH is summarized. In a clinical research setting, measures of DNL are an important marker in the development of anti-NAFLD treatments.

  15. Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats

    Directory of Open Access Journals (Sweden)

    Lee M. Margolis

    2016-09-01

    Full Text Available The purpose of this investigation was to assess the influence of calorie restriction (CR alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL, and intrahepatic triglycerides. Twelve-week old male Sprague Dawley rats consumed ad libitum (AL or CR (40% restriction, adequate (10%, or high (32% protein (PRO milk-based diets for 16 weeks. Metabolic profiles were assessed in serum, and intrahepatic triglyceride concentrations and molecular markers of de novo lipogenesis were determined in liver. Independent of calorie intake, 32% PRO tended to result in lower homeostatic model assessment of insulin resistance (HOMA-IR values compared to 10% PRO, while insulin and homeostatic model assessment of β-cell function (HOMA-β values were lower in CR than AL, regardless of protein intake. Intrahepatic triglyceride concentrations were 27.4 ± 4.5 and 11.7 ± 4.5 µmol·g−1 lower (p < 0.05 in CR and 32% PRO compared to AL and 10% PRO, respectively. Gene expression of fatty acid synthase (FASN, stearoyl-CoA destaurase-1 (SCD1 and pyruvate dehydrogenase kinase, isozyme 4 (PDK4 were 45% ± 1%, 23% ± 1%, and 57% ± 1% lower (p < 0.05, respectively, in CR than AL, regardless of protein intake. Total protein of FASN and SCD were 50% ± 1% and 26% ± 1% lower (p < 0.05 in 32% PRO compared to 10% PRO, independent of calorie intake. Results from this investigation provide evidence that the metabolic health benefits associated with CR—specifically reduction in intrahepatic triglyceride content—may be enhanced by consuming a higher-protein/lower-carbohydrate diet.

  16. Early nocturnal meal skipping alters the peripheral clock and increases lipogenesis in mice

    Directory of Open Access Journals (Sweden)

    Yoshida Chika

    2012-09-01

    Full Text Available Abstract Background In humans, skipping meals, especially breakfast, has been associated with obesity and other related syndromes. Recent studies in rodents suggest that fasting and feeding times are potential factors that affect the peripheral circadian clocks and metabolism. However, the link between fasting and obesity in rodents has yet to be fully demonstrated. Method We conducted early nocturnal fasting (ENF from zeitgeber time (ZT 12 to 18 for 4 consecutive days in C57B6 mice. The first set of experiments was performed under ad libitum conditions, where ENF and free-feeding (FF control groups were compared. The second set was performed under isocaloric adjustment by restricting the diet to 90% of the basal intake of ENF mice. Calorie-restricted ENF (ENF-CR mice were then compared with isocaloric controls (IC-control. Body weight, food intake, core body temperature, activity, adiposity, and clock-related gene expression levels in the liver and adipose tissues were investigated. A stable isotopic analysis was also conducted to estimate de novo lipogenesis fluxes. Results In the ad libitum condition, the ENF mice ate more during the day, increased their overall daily food intake and gained more weight than FF-control mice. The amplitude of the body core temperature rhythm in ENF mice was also lower than in the FF-controls. Under isocaloric conditions, ENF-CR attenuated the CR-induced body weight loss, compared with the IC-control. ENF-CR also altered the acrophase time of the expression of the clock genes, which is associated with time-shift of genes involved in lipid metabolism and increased lipogenesis, compared with the IC-control. Conclusions ENF in nocturnal mice disturbs the peripheral clock and increases de novo lipid synthesis and results in a predisposition to obesity.

  17. A Compartmental Comparison of Major Lipid Species in a Coral-Symbiodinium Endosymbiosis: Evidence that the Coral Host Regulates Lipogenesis of Its Cytosolic Lipid Bodies.

    Directory of Open Access Journals (Sweden)

    Hung-Kai Chen

    Full Text Available The lipid body (LB formation in the host coral gastrodermal cell cytoplasm is a hallmark of the coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosymbiont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how it is related to the lipid metabolism of the host and endosymbiont could provide direct insight to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite Symbiodinium populations, was examined by high performance liquid chromatography (HPLC and gas chromatography/mass spectrometry (GC/MS, and six major lipid species were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and phospholipids. Their concentrations differed significantly between host coral cells, LBs, and Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral and were particularly highly concentrated in LBs. Amongst the four species of WE, the monoene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastrodermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in hospite Symbiodinium populations were significantly distinct from those of the cultured Symbiodinium, potentially suggesting a host regulation effect that may be fundamental to lipid metabolism in endosymbiotic associations involving clade C Symbiodinium.

  18. A Compartmental Comparison of Major Lipid Species in a Coral-Symbiodinium Endosymbiosis: Evidence that the Coral Host Regulates Lipogenesis of Its Cytosolic Lipid Bodies.

    Science.gov (United States)

    Chen, Hung-Kai; Song, Shin-Ni; Wang, Li-Hsueh; Mayfield, Anderson B; Chen, Yi-Jyun; Chen, Wan-Nan U; Chen, Chii-Shiarng

    2015-01-01

    The lipid body (LB) formation in the host coral gastrodermal cell cytoplasm is a hallmark of the coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosymbiont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how it is related to the lipid metabolism of the host and endosymbiont could provide direct insight to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite Symbiodinium populations, was examined by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS), and six major lipid species were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and phospholipids. Their concentrations differed significantly between host coral cells, LBs, and Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral and were particularly highly concentrated in LBs. Amongst the four species of WE, the monoene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastrodermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in hospite Symbiodinium populations were significantly distinct from those of the cultured Symbiodinium, potentially suggesting a host regulation effect that may be fundamental to lipid metabolism in endosymbiotic associations involving clade C Symbiodinium. PMID:26218797

  19. (S)YS-51, a novel isoquinoline alkaloid, attenuates obesity-associated non-alcoholic fatty liver disease in mice by suppressing lipogenesis, inflammation and coagulation.

    Science.gov (United States)

    Park, Eun Jung; Kim, Young Min; Kim, Hye Jung; Jang, Se-Yun; Oh, Moo Hyun; Lee, Duck-Hyung; Chang, Ki Churl

    2016-10-01

    Obesity-associated non-alcoholic fatty liver disease (NAFLD) increases coagulation and inflammation. We hypothesized that (S)YS-51, an agent found to be beneficial in animal models of sepsis, may reduce NAFLD in high-fat diet (HFD) mice by reducing coagulation and inflammation. C57BL/6 mice were fed either a chow diet or HFD and each was supplemented with or without (S)YS-51 (10mg/kg, daily, i.p.) for 16 weeks. The results showed that HFD caused significant increases in lipogenesis [CD36, fatty acid synthase (FAS) and sterol response element binding protein (SREBP)-1c mRNA and protein], inflammation [monocyte chemotactic protein (MCP)-1, tumor necrosis factor (TNF)-α, intercellular cell adhesion molecule-1 (ICAM-1), TGF-β, and procollagen type 1 mRNA, macrophage infiltration] and coagulation [tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) mRNA and thrombin antithrombin complex (TAT)] in the liver, adipose tissue and serum, which were significantly reduced by (S)YS-51. These results of (S)YS-51 were accompanied by significant reduction of weight gain, liver size, hepatic steatosis and fibrosis, blood cholesterol, hepatic triglyceride, and macrophage infiltration and inflammatory cytokines in adipose tissue without affecting food intake in HFD mice. Interestingly, (S)YS-51 increased SIRT1 mRNA and protein and AMPK expression in the liver of HFD mice by increasing both NAD(+)/NADH ratio and LKB1 phosphorylation. In HepG2 cells, (S)YS-51 activated SIRT1 followed by AMPK. Finally, (S)YS-51 improved glucose tolerance and insulin resistance in HFD mice. We concluded that (S)YS-51 attenuates NAFLD and insulin resistance in HFD mice by, at least, activation of SIRT1/AMPK signals. Thus, (S)YS-51 may be beneficial in NAFLD treatment.

  20. Characterization of placental cholesterol transport

    DEFF Research Database (Denmark)

    Lindegaard, Marie L; Wassif, Christopher A; Vaisman, Boris;

    2008-01-01

    circulation might attenuate congenital malformations. The cholesterol transporters Abca1, Abcg1, and Sr-b1 are present in placenta; however, their potential role in placental transport remains undetermined. In mice, expression analyses showed that Abca1 and Abcg1 transcripts increased 2-3-fold between...... embryonic days 13.5 and 18.5 in placental tissue; whereas, Sr-b1 expression decreased. To examine the functional role of Abca1, Abcg1 and Sr-b1 we measured the maternal-fetal transfer of (14)C-cholesterol in corresponding mutant embryos. Disruption of either Abca1 or Sr-b1 decreased cholesterol transfer...

  1. Boots for Achilles: progesterone's reduction of cholesterol is a second-order adaptation.

    Science.gov (United States)

    Amir, Dorsa; Fessler, Daniel M T

    2013-06-01

    Progesterone and cholesterol are both vital to pregnancy. Among other functions, progesterone downregulates inflammatory responses, allowing for maternal immune tolerance of the fetal allograft. Cholesterol a key component of cell membranes, is important in intracellular transport, cell signaling, nerve conduction, and metabolism Despite the importance of each substance in pregnancy, one exercises an antagonistic effect on the other, as periods of peak progesterone correspond with reductions in cholesterol availability, a consequence of progesterone's negative effects on cholesterol biosynthesis. This arrangement is understandable in light of the threat posed by pathogens early in pregnancy. Progesterone-induced immunomodulation entails increased vulnerability to infection, an acute problem in the first trimester, when fetal development is highly susceptible to insult. Many pathogens rely on cholesterol for cell entry, egress, and replication. Progesterone's antagonistic effects on cholesterol thus partially compensate for the costs entailed by progesterone-induced immunomodulation. Among pathogens to which the host's vulnerability is increased by progesterone's effects, approximately 90% utilize cholesterol, and this is notably true of pathogens that pose a risk during pregnancy. In addition to having a number of possible clinical applications, our approach highlights the potential importance of second-order adaptations, themselves a consequence of the lack of teleology in evolutionary processes. PMID:23909226

  2. Imaging appearances of cholesterol pneumonia

    International Nuclear Information System (INIS)

    Objection: To analyze the imaging appearances of cholesterol pneumonia. Methods We retrospectively analyzed the X-ray and CT findings of 3 patients with cholesterol pneumonia confirmed pathologically and reviewed correlative literature. Results: Lesions similar to mass were found in X-ray and CT imaging of three cases. Two of them appeared cavity with fluid-level and one showed multiple ring enhancement after CT contrast. The course of disease was very. long and it had no respond to antibiotic therapy. Amounts of foam cells rich in cholesterol crystal were detected in pathological examination. Conclusions: Cholesterol pneumonia is a rare chronic pulmonary idiopathic disease, and the radiological findings can do some help to its diagnosis. (authors)

  3. Cholesterol testing on a smartphone.

    Science.gov (United States)

    Oncescu, Vlad; Mancuso, Matthew; Erickson, David

    2014-02-21

    Home self-diagnostic tools for blood cholesterol monitoring have been around for over a decade but their widespread adoption has been limited by the relatively high cost of acquiring a quantitative test-strip reader, complicated procedure for operating the device, and inability to easily store and process results. To address this we have developed a smartphone accessory and software application that allows for the quantification of cholesterol levels in blood. Through a series of human trials we demonstrate that the system can accurately quantify total cholesterol levels in blood within 60 s by imaging standard test strips. In addition, we demonstrate how our accessory is optimized to improve measurement sensitivity and reproducibility across different individual smartphones. With the widespread adoption of smartphones and increasingly sophisticated image processing technology, accessories such as the one presented here will allow cholesterol monitoring to become more accurate and widespread, greatly improving preventive care for cardiovascular disease.

  4. Cholesterol's location in lipid bilayers.

    Science.gov (United States)

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R; Harroun, Thad A; Katsaras, John

    2016-09-01

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown - at least in some bilayers - to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid-water interface. In this article we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies. PMID:27056099

  5. Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies.

    Science.gov (United States)

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K

    2013-08-01

    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol %. With spin-labeled cholesterol analogues, it was shown that the CBDs begin to form at ~50 mol % cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol % cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that the formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol % is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol % cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals.

  6. Cholesterol Worships a New Idol

    Institute of Scientific and Technical Information of China (English)

    Ira G. Schulman

    2009-01-01

    The growing worldwide epidemic of cardiovascular disease suggests that new therapeutic strategies are needed to complement statins in the lowering of cholesterol levels. In a recent paper in Science, Tontonoz and colleagues have identified Idol as a protein that can control cholesterol levels by regulating the stability of the low-density lipoprotein receptor; inhibiting the activity of Idol could provide novel approaches for the treatment of cardiovascular disease.

  7. A relation between high-density-lipoprotein cholesterol and bile cholesterol saturation.

    OpenAIRE

    Thornton, J R; Heaton, K. W.; Macfarlane, D G

    1981-01-01

    The association of cholesterol gall stones with coronary artery disease is controversial. To investigate this possible relation at the biochemical level, bile cholesterol saturation and the plasma concentrations of triglycerides, total cholesterol, and high-density-lipoprotein cholesterol (HDL cholesterol) were measured in 25 healthy, middle-aged women. Bile cholesterol saturation index was negatively correlated with HDL cholesterol. It was positively correlated with plasma triglycerides and ...

  8. Formation of Cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Cholesterol/Dimyristoylphosphatidylcholine Membranes: EPR and DSC Studies

    OpenAIRE

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K.

    2013-01-01

    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol%. With spin-labeled cholesterol analogs it was shown that the...

  9. Facts about...Blood Cholesterol. Revised.

    Science.gov (United States)

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet on blood cholesterol examines the connection between cholesterol and heart disease, lists risk factors for heart disease that can and cannot be controlled, points out who can benefit from lowering blood cholesterol, distinguishes between blood and dietary cholesterol, describes low density lipoprotein and high density lipoprotein…

  10. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    Directory of Open Access Journals (Sweden)

    Corcos Laurent

    2008-11-01

    Full Text Available Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivotal role in dislypidemia and, ultimately, in cancer through intermediates such as mevalonate, farnesyl pyrophosphate and geranyl geranyl pyrophosphate, but no dynamic model of this pathway has been proposed until now. Results We set up a computational framework to dynamically analyze large biological networks. This framework associates a classical and computationally efficient synchronous Boolean analysis with a newly introduced method based on Markov chains, which identifies spurious cycles among the results of the synchronous simulation. Based on this method, we present here the results of the analysis of the cholesterol biosynthesis pathway and its physiological regulation by the Sterol Response Element Binding Proteins (SREBPs, as well as the modeling of the action of statins, inhibitor drugs, on this pathway. The in silico experiments show the blockade of the cholesterol endogenous synthesis by statins and its regulation by SREPBs, in full agreement with the known biochemical features of the pathway. Conclusion We believe that the method described here to identify spurious cycles opens new routes to compute large and biologically relevant models, thanks to the computational efficiency of synchronous simulation. Furthermore, to the best of our knowledge, we present here the first dynamic systems biology model of the human cholesterol pathway and several of its key regulatory control elements, hoping it would provide a good basis to perform in silico

  11. BIOSYNTHESIS OF YEAST CAROTENOIDS

    Science.gov (United States)

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  12. Xyloglucan and its biosynthesis

    Directory of Open Access Journals (Sweden)

    Olga A Zabotina

    2012-06-01

    Full Text Available The hemicellulosic polysaccharide xyloglucan (XyG, found in the primary cell walls of most plant tissues, is important for structural organization of the cell wall and regulation of growth and development. Significant recent progress in structural characterization of XyGs from different plant species has shed light on the diversification of XyG during plant evolution. Also, identification of XyG biosynthetic enzymes and examination of their interactions suggests the involvement of a multiprotein complex in XyG biosynthesis. This mini-review presents an updated overview of the diversity of XyG structures in plant taxa and recent findings on XyG biosynthesis.

  13. Hidden Disease Susceptibility and Sexual Dimorphism in the Heterozygous Knockout of Cyp51 from Cholesterol Synthesis

    OpenAIRE

    Monika Lewinska; Peter Juvan; Martina Perse; Jera Jeruc; Spela Kos; Gregor Lorbek; Ziga Urlep; Rok Keber; Simon Horvat; Damjana Rozman

    2014-01-01

    We examined the genotype-phenotype interactions of Cyp51+/- mice carrying one functional allele of lanosterol 14α-demethylase from cholesterol biosynthesis. No distinct developmental or morphological abnormalities were observed by routine visual inspection of Cyp51+/- and Cyp51+/+ mice and fertility was similar. We further collected a large data-set from female and male Cyp51+/- mice and controls fed for 16 weeks with three diets and applied linear regression modeling. We used 3 predictor var...

  14. Effects of Consuming Dietary Fructose versus Glucose on de novo Lipogenesis in Overweight and Obese Human Subjects

    OpenAIRE

    Lam, Patrick

    2011-01-01

    The effects of consuming a diet high in fructose,compared to a diet high in glucose, on the rate ofhepatic de novo lipogenesis (DNL) in overweightand obese individuals were studied. Thesesubjects were given a diet in which either glucoseor fructose was substituted for 25% of their energyrequirements for 10 weeks. During the fasted state,subjects’ DNL for those on a glucose and fructosediet were similar. However, in the fed state, DNLwas increased significantly in subjects given afructose diet...

  15. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway.

    Science.gov (United States)

    Cárdenas, Pablo D; Sonawane, Prashant D; Pollier, Jacob; Vanden Bossche, Robin; Dewangan, Veena; Weithorn, Efrat; Tal, Lior; Meir, Sagit; Rogachev, Ilana; Malitsky, Sergey; Giri, Ashok P; Goossens, Alain; Burdman, Saul; Aharoni, Asaph

    2016-01-01

    Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops. PMID:26876023

  16. Cholesterol confusion and statin controversy

    Institute of Scientific and Technical Information of China (English)

    Robert; Du; Broff; Michel; de; Lorgeril

    2015-01-01

    The role of blood cholesterol levels in coronary heart disease(CHD) and the true effect of cholesterollowering statin drugs are debatable. In particular,whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently,the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes,cancer,and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary,we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD.

  17. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  18. Cholesterol metabolism: increasingly complex; El metabolismo del colesterol: cada vez mas complejo

    Energy Technology Data Exchange (ETDEWEB)

    Sanhueza, J.; Valenzuela, R.; Valenzuela, A.

    2012-07-01

    Cholesterol is an important molecule; it is necessary for the biosynthesis of steroidal hormones, bile salts and to maintain the stability of biological membranes in animal cells. However, its excess is negative and is responsible for the development of many diseases involving the heart and brain, or in the generation of some types of cancer. For these reasons, the cellular cholesterol levels must be finely regulated and therefore, an infinite number of mechanisms participate in this regulation, which undertake the organism as a whole. These mechanisms should begin to operate efficiently from the intake of cholesterol from the diet, its incorporation into the enterocytes, where are involved carriers such as ABC and NCP1 transporters, PDZ structural motif, to name a few. It is also necessary an adequate regulation of circulating cholesterol and once inside the body, there should be a perfect harmony between the addition of cholesterol to various tissues, its metabolic use, the mechanisms of its tissue deposition, and the synthesis of this lipid. From this perspective, this review offers a general view of the molecular mechanisms that allow the regulation of extra and intracellular cholesterol levels. (Author) 82 refs.

  19. Effect of mevalonic acid on cholesterol synthesis in bovine intramuscular and subcutaneous adipocytes.

    Science.gov (United States)

    Liu, Xiaomu; You, Wei; Cheng, Haijian; Zhang, Qingfeng; Song, Enliang; Wan, Fachun; Han, Hong; Liu, Guifen

    2016-02-01

    Mevalonic acid (MVA) is a key material in the synthesis of cholesterol; indeed, intracellular cholesterol synthesis is also called the mevalonic acid pathway. 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is an essential enzyme in cholesterol biosynthesis. This study suggests that MVA may play an important role in the differentiation of bovine adipose tissue in vivo. We investigated differential mRNA expression in bovine intramuscular preadipocytes (BIPs) and bovine subcutaneous preadipocytes (BSPs) by culturing cells from the longissimus dorsi muscle and subcutaneous fat tissues of Luxi yellow cattle. The morphology of lipid accumulation of bovine preadipocytes was detected by Oil Red O staining, and total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), and high-density lipoprotein cholesterol (HDLC) levels were measured. Temporospatial expression of HMGR was investigated by real-time quantitative polymerase chain reaction (PCR). The TC, LDLC, and HDLC content did not significantly differ over time but increased slowly with increasing MVA concentration. HMGR expression increased over time and with increasing concentrations of MVA. MVA increased adipose cell proliferation in a dose-dependent and time-dependent manner. MVA stimulated HMGR expression in two cell types and its influence on adipocyte differentiation. PMID:26122311

  20. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    Science.gov (United States)

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation. PMID:26571352

  1. Effect of dietary docosahexaenoic acid on lipogenesis and lipolysis in black sea bream, Acanthopagrus schlegeli

    Institute of Scientific and Technical Information of China (English)

    JI Hong; OM Ahamd Daud; YOSHIMATSU Takao; UMINO Testuya; NAKAGAWA Heisuke; FURUHASHI Makoto; SAKAMOTO Shuichi

    2007-01-01

    Hatchery-reared juvenile black sea breams are characterized by a low level of highly unsaturated fatty acids in their bodies, as compared with wild fish. To assess the effect of docosahaxaenoic acid (DHA) on lipogenic and lipolysis enzymes, one-year fish were reared on a casein-based purified diet and a DHA fortified diet (1.5% DHA ethyl ester/kg diet) for 60 d, followed with a period of 55 d for starvation. Dietary DHA was effectively incorporated into the fish body. Fortification of DHA depressed activities of glucose-6-phosphate dehydrogenase and NADP-isocitrate dehydrogenase as lipogenic enzymes in the hepatopancreas and intraperitoneal fat body. Carnitine palmitoyltransferase as lipolysis enzyme in the hepatopancreas was active in the DHA fortified fish. Starvation after feeding experiment induced increased carnitine palmitoyltransferase activity in both control and DHA fortified fish and the activity remained higher in the DHA fortified fish, while the monoenes were selectively consumed prior to highly unsaturated fatty acids. These results indicated that dietary DHA depressed lipogenesis and activated lipolysis.

  2. Polarizable multipolar electrostatics for cholesterol

    Science.gov (United States)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  3. Alterations in the homeostasis of phospholipids and cholesterol by antitumor alkylphospholipids

    Directory of Open Access Journals (Sweden)

    Segovia Josefa L

    2010-03-01

    Full Text Available Abstract The alkylphospholipid analog miltefosine (hexadecylphosphocholine is a membrane-directed antitumoral and antileishmanial drug belonging to the alkylphosphocholines, a group of synthetic antiproliferative agents that are promising candidates in anticancer therapy. A variety of mechanisms have been suggested to explain the actions of these compounds, which can induce apoptosis and/or cell growth arrest. In this review, we focus on recent advances in our understanding of the actions of miltefosine and other alkylphospholipids on the human hepatoma HepG2 cell line, with a special emphasis on lipid metabolism. Results obtained in our laboratory indicate that miltefosine displays cytostatic activity and causes apoptosis in HepG2 cells. Likewise, treatment with miltefosine produces an interference with the biosynthesis of phosphatidylcholine via both CDP-choline and phosphatidylethanolamine methylation. With regard to sphingolipid metabolism, miltefosine hinders the formation of sphingomyelin, which promotes intracellular accumulation of ceramide. We have demonstrated for the first time that treatment with miltefosine strongly impedes the esterification of cholesterol and that this effect is accompanied by a considerable increase in the synthesis of cholesterol, which leads to higher levels of cholesterol in the cells. Indeed, miltefosine early impairs cholesterol transport from the plasma membrane to the endoplasmic reticulum, causing a deregulation of cholesterol homeostasis. Similar to miltefosine, other clinically-relevant synthetic alkylphospholipids such as edelfosine, erucylphosphocholine and perifosine show growth inhibitory effects on HepG2 cells. All the tested alkylphospholipids also inhibit the arrival of plasma-membrane cholesterol to the endoplasmic reticulum, which induces a significant cholesterogenic response in these cells, involving an increased gene expression and higher levels of several proteins related to the pathway of

  4. Regulation of biliary cholesterol secretion and reverse cholesterol transport

    NARCIS (Netherlands)

    Dikkers, Arne

    2016-01-01

    According to the World Health Organization the number one cause of death throughout the world is cardiovascular disease. Therefore, there is an urgent need for new therapeutic strategies to prevent and treat cardiovascular disease. One possible way is to target the HDL-driven reverse cholesterol tra

  5. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    Directory of Open Access Journals (Sweden)

    Ewing Andrew G

    2008-12-01

    Full Text Available Abstract Background Primordial germ cells (PGCs are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.

  6. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism

    DEFF Research Database (Denmark)

    Caesar, Robert; Nygren, Heli; Orešič, Matej;

    2016-01-01

    esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota......The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene...... of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl...

  7. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    Science.gov (United States)

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  8. Euterpe oleracea Mart.-Derived Polyphenols Protect Mice from Diet-Induced Obesity and Fatty Liver by Regulating Hepatic Lipogenesis and Cholesterol Excretion

    OpenAIRE

    de Oliveira, Paola Raquel B.; Cristiane A da Costa; de Bem, Graziele F.; Cordeiro, Viviane S. C.; Izabelle B Santos; de Carvalho, Lenize C. R. M.; Ellen Paula S da Conceição; Patrícia Cristina Lisboa; Ognibene, Dayane T.; Pergentino José C Sousa; Gabriel R Martins; Antônio Jorge R da Silva; Moura, Roberto S.; Resende, Angela C.

    2015-01-01

    The aim of this study was to investigate the effect of a polyphenol-rich Açaí seed extract (ASE, 300 mg/kg-1d-1) on adiposity and hepatic steatosis in mice that were fed a high-fat (HF) diet and its underlying mechanisms based on hepatic lipid metabolism and oxidative stress. Four groups were studied: C57BL/6 mice that were fed with standard diet (10% fat, Control), 10% fat + ASE (ASE), 60% fat (HF), and 60% fat + ASE (HF + ASE) for 12 weeks. We evaluated the food intake, body weight gain, se...

  9. Characterization and Transcriptional Profile of Genes Involved in Glycoalkaloid Biosynthesis in New Varieties of Solanum tuberosum L.

    NARCIS (Netherlands)

    Mariot, Roberta Fogliatto; Oliveira, De Luisa Abruzzi; Voorhuijzen, M.M.; Staats, Martijn; Hutten, R.C.B.; Dijk, Van J.P.; Kok, E.J.; Frazzon, Jeverson

    2016-01-01

    Before commercial release, new potato (Solanum tuberosum) varieties must be evaluated for content of toxic compounds such as glycoalkaloids (GAs), which are potent poisons. GA biosynthesis proceeds via the cholesterol pathway to α-chaconine and α-solanine. The goal of this study was to evaluate t

  10. Membrane Cholesterol Modulates Superwarfarin Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  11. The ABC of cholesterol transport

    NARCIS (Netherlands)

    Plösch, Torsten

    2004-01-01

    Cholesterol fulfills an indispensable role in mammalian physiology. It is an important constituent of all cell membranes. Furthermore, it is the precursor of steroid hormones, which regulate a variety of physiological functions, and of bile salts, which are necessary for the generation of bile flow

  12. Membrane Cholesterol Modulates Superwarfarin Toxicity.

    Science.gov (United States)

    Marangoni, M Natalia; Martynowycz, Michael W; Kuzmenko, Ivan; Braun, David; Polak, Paul E; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content. PMID:27119638

  13. Small interfering RNA against transcription factor STAT6 leads to increased cholesterol synthesis in lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Richa Dubey

    Full Text Available STAT6 transcription factor has become a potential molecule for therapeutic intervention because it regulates broad range of cellular processes in a large variety of cell types. Although some target genes and interacting partners of STAT6 have been identified, its exact mechanism of action needs to be elucidated. In this study, we sought to further characterize the molecular interactions, networks, and functions of STAT6 by profiling the mRNA expression of STAT6 silenced human lung cells (NCI-H460 using microarrays. Our analysis revealed 273 differentially expressed genes after STAT6 silencing. Analysis of the gene expression data with Ingenuity Pathway Analysis (IPA software revealed Gene expression, Cell death, Lipid metabolism as the functions associated with highest rated network. Cholesterol biosynthesis was among the most enriched pathways in IPA as well as in PANTHER analysis. These results have been validated by real-time PCR and cholesterol assay using scrambled siRNA as a negative control. Similar findings were also observed with human type II pulmonary alveolar epithelial cells, A549. In the present study we have, for the first time, shown the inverse relationship of STAT6 with the cholesterol biosynthesis in lung cancer cells. The present findings are potentially significant to advance the understanding and design of therapeutics for the pathological conditions where both STAT6 and cholesterol biosynthesis are implicated viz. asthma, atherosclerosis etc.

  14. Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jean E. Vance

    2012-11-01

    Full Text Available Dysregulation of cholesterol homeostasis in the brain is increasingly being linked to chronic neurodegenerative disorders, including Alzheimer’s disease (AD, Huntington’s disease (HD, Parkinson’s disease (PD, Niemann-Pick type C (NPC disease and Smith-Lemli Opitz syndrome (SLOS. However, the molecular mechanisms underlying the correlation between altered cholesterol metabolism and the neurological deficits are, for the most part, not clear. NPC disease and SLOS are caused by mutations in genes involved in the biosynthesis or intracellular trafficking of cholesterol, respectively. However, the types of neurological impairments, and the areas of the brain that are most affected, differ between these diseases. Some, but not all, studies indicate that high levels of plasma cholesterol correlate with increased risk of developing AD. Moreover, inheritance of the E4 isoform of apolipoprotein E (APOE, a cholesterol-carrying protein, markedly increases the risk of developing AD. Whether or not treatment of AD with statins is beneficial remains controversial, and any benefit of statin treatment might be due to anti-inflammatory properties of the drug. Cholesterol balance is also altered in HD and PD, although no causal link between dysregulated cholesterol homeostasis and neurodegeneration has been established. Some important considerations for treatment of neurodegenerative diseases are the impermeability of the blood-brain barrier to many therapeutic agents and difficulties in reversing brain damage that has already occurred. This article focuses on how cholesterol balance in the brain is altered in several neurodegenerative diseases, and discusses some commonalities and differences among the diseases.

  15. Active membrane cholesterol as a physiological effector.

    Science.gov (United States)

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily. PMID:26874289

  16. Do You Know Your Cholesterol Levels?

    Science.gov (United States)

    ... The Health Information Center Do You Know Your Cholesterol Levels? Print-friendly Version (PDF, 6.1 MB) ... Eat Smart Did you know that high blood cholesterol is a serious problem among Latinos? About one ...

  17. Analysis of Cholesterol Trafficking with Fluorescent Probes

    DEFF Research Database (Denmark)

    Maxfield, Frederick R.; Wustner, Daniel

    2012-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport...... that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy...

  18. Cerebral cholesterol granuloma in homozygous familial hypercholesterolemia

    OpenAIRE

    Francis, Gordon A; Johnson, Royce L.; Findlay, J. Max; Wang, Jian; Hegele, Robert A.

    2005-01-01

    Familial hypercholesterolemia (FH) is characterized by the accumulation of excess cholesterol in tissues including the artery wall and tendons. We describe a patient with homozygous FH who presented with asymptomatic cholesterol granuloma of the brain. The patient's plasma low-density lipoprotein cholesterol level was remarkably responsive to combination hypolipidemic therapy with statin plus ezetimibe. This case illustrates another potential complication of whole-body cholesterol excess and ...

  19. Expression of Protease-Activated Receptor-2 in SZ95 Sebocytes and its Role in Sebaceous Lipogenesis, Inflammation, and Innate Immunity.

    Science.gov (United States)

    Lee, Sang E; Kim, Ji-Min; Jeong, Se K; Choi, Eung H; Zouboulis, Christos C; Lee, Seung H

    2015-09-01

    Protease-activated receptor-2 (PAR-2) functions as innate biosensor for proteases and regulates numerous functions of the skin. However, the expression and physiological role of PAR-2 in sebocytes remain to be elucidated. Here, we identified PAR-2 expression in SZ95 sebocytes at both mRNA and protein levels. Intracellular Ca(2+) mobilization by PAR-2 agonist peptide (PAR-2 AP) or Propionibacterium acnes (P. acnes) culture supernatant was detected, indicating that P. acnes is a potent activator of PAR-2 on sebocytes. The small interfering RNA (siRNA)-mediated PAR-2 knockdown in sebocytes resulted in defective differentiation and lipogenesis. PAR-2 AP treatment enhanced lipogenesis and sterol response element-binding protein-1 (SREBP-1) expression, suggesting a role of PAR-2 in the differentiation and lipogenesis of sebocytes. Moreover, PAR-2 AP induced cytokines and human β-defensin-2 (hBD-2) transcription in sebocytes. PAR-2 expression was increased in sebaceous glands of acne lesions. PAR-2 silencing by siRNA abrogated the increase in sebaceous lipogenesis and SREBP-1 expression by P. acnes supernatant. PAR-2 knockdown also inhibited the P. acnes supernatant-induced expression of cytokines and hBD-2. In conclusion, PAR-2 is expressed in SZ95 sebocytes and mediates differentiation, lipogenesis, inflammation, and innate immunity in response to P. acnes. Therefore, PAR-2 might be a therapeutic target for sebaceous gland disorders such as acne. PMID:25880702

  20. Quantitative proteomic profiling reveals hepatic lipogenesis and liver X receptor activation in the PANDER transgenic model.

    Science.gov (United States)

    Athanason, Mark G; Ratliff, Whitney A; Chaput, Dale; MarElia, Catherine B; Kuehl, Melanie N; Stevens, Stanley M; Burkhardt, Brant R

    2016-11-15

    PANcreatic-DERived factor (PANDER) is a member of a superfamily of FAM3 proteins modulating glycemic levels by metabolic regulation of the liver and pancreas. The precise PANDER-induced hepatic signaling mechanism is still being elucidated and has been very complex due to the pleiotropic nature of this novel hormone. Our PANDER transgenic (PANTG) mouse displays a selective hepatic insulin resistant (SHIR) phenotype whereby insulin signaling is blunted yet lipogenesis is increased, a phenomena observed in type 2 diabetes. To examine the complex PANDER-induced mechanism of SHIR, we utilized quantitative mass spectrometry-based proteomic analysis using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) to reveal the global hepatic proteome differences within the PANTG under the metabolic states of fasting, fed and insulin-stimulated conditions. Proteomic analysis identified lipid metabolism as one of the top cellular functions differentially altered in all metabolic states. Differentially expressed proteins within the PANTG having a lipid metabolic role included ACC, ACLY, CD36, CYP7A1, FASN and SCD1. Central to the differentially expressed proteins involved in lipid metabolism was the predicted activation of the liver X receptor (LXR) pathway. Western analysis validated the increased hepatic expression of LXRα along with LXR-directed targets such as FASN and CYP7A1 within the PANTG liver. Furthermore, recombinant PANDER was capable of inducing LXR promoter activity in-vitro as determined by luciferase reporter assays. Taken together, PANDER strongly impacts hepatic lipid metabolism across metabolic states and may induce a SHIR phenotype via the LXR pathway. PMID:27394190

  1. The Expression of Can and Camk is Associated with Lipogenesis in the Muscle of Chicken

    Directory of Open Access Journals (Sweden)

    Y Yang

    2015-09-01

    Full Text Available ABSTRACTIntramuscular fat (IMF content in chickens significantly contributes to meat quality. The main objective of this study was to assess the expression of calcineurin (CaN and Ca2+/calmodulin-dependent protein kinase (CaMK in lipogenesis in chicken muscle. Chickens were slaughtered and sampled at 4, 8, and 16 weeks of age. IMF content and the expression of CaN subunits and CaMK isoforms were measured in the thigh muscle tissue. The results showed that the IMF contents were greater at 16 weeks compared with those at 4 and 8 weeks (p<0.05. Transcription of fatty acid synthase (FAS and fatty acid translocase CD36 (FAT/CD36 mRNA significantly increased with age, from four to 16 weeks (p<0.05. The mRNA levels of CaNB and CaMK IV were significantly lower at 16 weeks than at four weeks (p<0.05, but CaMK II mRNA levels were significantly higher than at four weeks (p<0.05. In order to evaluate the role of CaMK and CaN in adipogenesis, SV cells were incubated in standard adipogenic medium for 24 h and treated with specific inhibitor of CaMK and CaN. The expressions of CCAAT/enhancer binding protein b (C/EBPb, sterol regulatory element-binding protein 1 (SREBP1,and peroxisome proliferation-activated receptor g (PPARγwere dramatically enhanced by the CsA, CaN inhibitor (p<0.05. KN93, CaMK II inhibitor, dramatically repressed the expression of those lipogenic gene (p<0.05. These results indicated that CaN and CaMK had different effects on adipogenesis in the muscle of chickens.

  2. Modulation of adipocyte lipogenesis by octanoate: involvement of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Han Jianrong

    2006-07-01

    Full Text Available Abstract Background Octanoate is a medium-chain fatty acid (MCFA that is rich in milk and tropical dietary lipids. It also accounts for 70% of the fatty acids in commercial medium chain triglycerides (MCT. Use of MCT for weight control tracks back to early 1950s and is highlighted by recent clinical trials. The molecular mechanisms of the weight reduction effect remain not completely understood. The findings of significant amounts of MCFA in adipose tissue in MCT-fed animals and humans suggest a direct influence of MCFA on fat cell functions. Methods 3T3-L1 adipocytes were treated with octanoate in a high glucose culture medium supplemented with 10% fetal bovine serum and 170 nM insulin. The effects on lipogenesis, fatty acid oxidation, cellular concentration of reactive oxygen species (ROS, and the expression and activity of peroxisome proliferator receptor gamma (PPARγ and its associated lipogenic genes were assessed. In selected experiments, long-chain fatty acid oleate, PPARγ agonist troglitazone, and antioxidant N-acetylcysteine were used in parallel. Effects of insulin, L-carnitine, and etomoxir on β-oxidation were also measured. Results β-oxidation of octanoate was primarily independent of CPT-I. Treatment with octanoate was linked to an increase in ROS in adipocytes, a decrease in triglyceride synthesis, and reduction of lipogenic gene expression. Co-treatment with troglitazone, N-acetylcysteine, or over-expression of glutathione peroxidase largely reversed the effects of octanoate. Conclusion These findings suggest that octanoate-mediated inactivation of PPARγ might contribute to the down regulation of lipogenic genes in adipocytes, and ROS appears to be involved as a mediator in this process.

  3. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning.

    Science.gov (United States)

    Bartelt, Alexander; Weigelt, Clara; Cherradi, M Lisa; Niemeier, Andreas; Tödter, Klaus; Heeren, Joerg; Scheja, Ludger

    2013-05-01

    Efficient storage of dietary and endogenous fatty acids is a prerequisite for a healthy adipose tissue function. Lipoprotein lipase (LPL) is the master regulator of fatty acid uptake from triglyceride-rich lipoproteins. In addition to LPL-mediated fatty acid uptake, adipocytes are able to synthesize fatty acids from non-lipid precursor, a process called de novo lipogenesis (DNL). As the physiological relevance of fatty acid uptake versus DNL for brown and white adipocyte function remains unclear, we studied the role of adipocyte LPL using adipocyte-specific LPL knockout animals (aLKO). ALKO mice displayed a profound increase in DNL-fatty acids, especially palmitoleate and myristoleate in brown adipose tissue (BAT) and white adipose tissue (WAT) depots while essential dietary fatty acids were markedly decreased. Consequently, we found increased expression in adipose tissues of genes encoding DNL enzymes (Fasn, Scd1, and Elovl6) as well as the lipogenic transcription factor carbohydrate response element binding protein-β. In a high-fat diet (HFD) study aLKO mice were characterized by reduced adiposity and improved plasma insulin and adipokines. However, neither glucose tolerance nor inflammatory markers were ameliorated in aLKO mice compared to controls. No signs of increased BAT activation or WAT browning were detected in aLKO mice either on HFD or after 1 week of β3-adrenergic stimulation using CL316,243. We conclude that despite a profound increase in DNL-derived fatty acids, proposed to be metabolically favorable, aLKO mice are not protected from metabolic disease per se. In addition, induction of DNL alone is not sufficient to promote browning of WAT. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  4. Intestinal cholesterol secretion : future clinical implications

    NARCIS (Netherlands)

    Jakulj, L.; Besseling, J.; Stroes, E. S. G.; Groen, A. K.

    2013-01-01

    Together with the liver, the intestine serves as a homeostatic organ in cholesterol metabolism. Recent evidence has substantiated the pivotal role of the intestine in reverse cholesterol transport (RCT). RCT is a fundamental antiatherogenic pathway, mediating the removal of cholesterol from tissues

  5. Isolation of Cholesterol from an Egg Yolk

    Science.gov (United States)

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  6. Public health aspects of serum cholesterol

    NARCIS (Netherlands)

    S. Houterman (Saskia)

    2001-01-01

    textabstractIn the beginning of this century Anitschkow and De Langen started pioneering work concerning the relation between cholesterol and coronary heart disease. Both showed that there was a possible relation between cholesterol in the diet, blood cholesterol levels and atherosclerosis. It took

  7. Remnant cholesterol and ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G

    2014-01-01

    PURPOSE OF REVIEW: To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). RECENT FINDINGS: Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride...

  8. High Cholesterol: Medicines to Help You

    Science.gov (United States)

    ... risks of taking these medicines. Talk to your doctor or pharmacist about all of the risks of taking your ... 20 should have their cholesterol checked by a doctor. Most people do not show ... Good vs. Bad Cholesterol Not all cholesterol in your blood ...

  9. Cholesterol Screening: A Practical Guide to Implementation.

    Science.gov (United States)

    Kingery, Paul M.

    1995-01-01

    Dry-chemistry cholesterol analysis has made screening feasible in a variety of settings. The article provides practical tips for the implementation of mass cholesterol screening using a portable dry-chemistry analyzer and discusses issues involved in conducting effective cholesterol screening programs from start to finish. (SM)

  10. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    Science.gov (United States)

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux.

  11. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  12. Relationship between plasma cholesterol levels and cholesterol esterification in isolated human mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Dallongeville, J.; Davignon, J.; Lussier-Cacan, S. (Clinical Research Institute of Montreal, Quebec (Canada))

    1990-01-01

    The authors studied the relationship between plasma lipoprotein concentrations and cholesterol esterification in freshly isolated human mononuclear cells from 27 normolipidemic and 32 hyperlipidemic individuals. Cells were either incubated for 5 hours with radiolabeled oleate immediately after isolation or were preincubated for 18 hours in the presence of exogenous cholesterol, and then incubated with ({sup 14}C)sodium-oleate-albumin complex. In the absence of exogenous cholesterol, control and hypercholesterolemic subjects had similarly low values of intracellular cholesterol esterification. In the presence of exogenous cholesterol, both hypertriglyceridemic and hypercholesterolemic subjects had higher cholesterol esterification than controls. There was a significant correlation between the rate of cholesterol esterification and plasma total cholesterol. These results suggest that plasma cholesterol levels may regulate mononuclear cell intra-cellular cholesterol esterification in humans.

  13. Biliary cholesterol secretion : More than a simple ABC

    NARCIS (Netherlands)

    Dikkers, Arne; Tietge, Uwe J. F.

    2010-01-01

    Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol originat

  14. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes

    International Nuclear Information System (INIS)

    Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role

  15. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Heyward, Scott; Moeller, Timothy [Bioreclamation In Vitro Technologies, Baltimore, MD 21227 (United States); Swaan, Peter W. [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Wang, Hongbing, E-mail: hwang@rx.umaryland.edu [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States)

    2014-08-15

    Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role

  16. Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets.

    Science.gov (United States)

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2012-03-01

    Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis. PMID:22181072

  17. How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids

    OpenAIRE

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2004-01-01

    How do cells sense and control their cholesterol levels? Whereas most of the cell cholesterol is located in the plasma membrane, the effectors of its abundance are regulated by a small pool of cholesterol in the endoplasmic reticulum (ER). The size of the ER compartment responds rapidly and dramatically to small changes in plasma membrane cholesterol around the normal level. Consequently, increasing plasma membrane cholesterol in vivo from just below to just above the basal level evoked an ac...

  18. Peptide mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  19. Epididymis cholesterol homeostasis and sperm fertilizing ability

    Institute of Scientific and Technical Information of China (English)

    Fabrice Saez; Aurélia Ouvrier; Jo(e)l R Drevet

    2011-01-01

    Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.

  20. From Cholesterogenesis to Steroidogenesis: Role of Riboflavin and Flavoenzymes in the Biosynthesis of Vitamin D12

    OpenAIRE

    Pinto, John T.; Arthur J. L. Cooper

    2014-01-01

    Flavin-dependent monooxygenases and oxidoreductases are located at critical branch points in the biosynthesis and metabolism of cholesterol and vitamin D. These flavoproteins function as obligatory intermediates that accept 2 electrons from NAD(P)H with subsequent 1-electron transfers to a variety of cytochrome P450 (CYP) heme proteins within the mitochondria matrix (type I) and the (microsomal) endoplasmic reticulum (type II). The mode of electron transfer in these systems differs slightly i...

  1. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism

    Science.gov (United States)

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V.; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V.; Zimmer, Andreas; Hoefler, Gerald; Hussain, M. Mahmood; Groen, Albert K.; Kratky, Dagmar

    2016-01-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1−/−) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1−/− and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia. PMID:27344248

  2. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism.

    Science.gov (United States)

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V; Zimmer, Andreas; Hoefler, Gerald; Hussain, M Mahmood; Groen, Albert K; Kratky, Dagmar

    2016-09-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1(-/-)) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1(-/-) and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia. PMID:27344248

  3. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    OpenAIRE

    A. C. Beynen; Katan, M B; Gent, van, H.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and bile acids minus cholesterol intake. In addition, we determined serum concentrations of lanosterol, a precursor of cholesterol and a possible indicator of cholesterol biosynthetic activity. The stud...

  4. Hidden disease susceptibility and sexual dimorphism in the heterozygous knockout of Cyp51 from cholesterol synthesis.

    Directory of Open Access Journals (Sweden)

    Monika Lewinska

    Full Text Available We examined the genotype-phenotype interactions of Cyp51+/- mice carrying one functional allele of lanosterol 14α-demethylase from cholesterol biosynthesis. No distinct developmental or morphological abnormalities were observed by routine visual inspection of Cyp51+/- and Cyp51+/+ mice and fertility was similar. We further collected a large data-set from female and male Cyp51+/- mice and controls fed for 16 weeks with three diets and applied linear regression modeling. We used 3 predictor variables (genotype, sex, diet, and 39 response variables corresponding to the organ characteristics (7, plasma parameters (7, and hepatic gene expression (25. We observed significant differences between Cyp51+/- and wild-type mice in organ characteristics and blood lipid profile. Hepatomegaly was observed in Cyp51+/- males, together with elevated total and low-density lipoprotein cholesterol. Cyp51+/- females fed high-fat, high-cholesterol diet were leaner and had elevated plasma corticosterone compared to controls. We observed elevated hepatocyte apoptosis, mitosis and lipid infiltration in heterozygous knockouts of both sexes. The Cyp51+/- females had a modified lipid storage homeostasis protecting them from weight-gain when fed high-fat high-cholesterol diet. Malfunction of one Cyp51 allele therefore initiates disease pathways towards cholesterol-linked liver pathologies and sex-dependent response to dietary challenge.

  5. Transcriptome profiling unveils the role of cholesterol in IL-17A signaling in psoriasis.

    Science.gov (United States)

    Varshney, Pallavi; Narasimhan, Aarti; Mittal, Shankila; Malik, Garima; Sardana, Kabir; Saini, Neeru

    2016-01-01

    Psoriasis is a chronic inflammatory skin disease characterized by altered proliferation and differentiation of keratinocytes as well as infiltration of immune cells. Increased expression of Th17 cells and cytokines secreted by them provides evidence for its central role in the pathogenesis of psoriasis. IL-17A, signature cytokine of Th17 cells was found to be highly differentially expressed in psoriatic lesional skin. However, cellular and molecular mechanism by which IL-17A exerts its function on keratinocyte is incompletely understood. To understand IL-17A mediated signal transduction pathways, gene expression profiling was done and differentially expressed genes were analysed by IPA software. Here, we demonstrate that during IL-17A signaling total cholesterol levels were elevated, which in turn resulted in the suppression of genes of cholesterol and fatty acid biosynthesis. We found that accumulation of cholesterol was essential for IL-17A signaling as reduced total cholesterol levels by methyl β cyclodextrin (MBCD), significantly decreased IL-17A induced secretion of CCL20, IL-8 and S100A7 from the keratinocytes. To our knowledge this study for the first time unveils that high level of intracellular cholesterol plays a crucial role in IL-17A signaling in keratinocytes and may explain the strong association between psoriasis and dyslipidemia. PMID:26781963

  6. Intracellular transport of cholesterol in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Brasaemle, D.L.

    1989-01-01

    The erythrocyte was selected as a simple cell for the study of transbilayer movement of cholesterol. Cholesterol oxidase was used to measure the distribution of ({sup 3}H)cholesterol across the erythrocyte membrane. Cholesterol oxidase was also used to estimate the rate of transport of low density lipoprotein (LDL) cholesterol to the plasma membrane of cultured Chinese hamster ovary (CHO) fibroblasts; the half-time of this process was 42 minutes. The rate of transport of LDL cholesterol to the plasma membrane was confirmed by a second procedure using amphotericin B. Amphotericin B was also used to estimate the rate of transport of endogenously synthesized cholesterol to the plasma membrane of CHO cells. New methodology was developed including improvements of the previously published cholesterol oxidase assay for plasma membrane cholesterol. A new method for detecting transport of cholesterol to the plasma membrane in cultured cells was developed using amphotericin B. Preliminary studies investigated the use of fluorescent polyenes, pimaricin and etruscomycin, as probes for plasma membrane cholesterol in transport studies. Finally, a modification of a previously published cell staining protocol yielded a simple, quantitative assay for cell growth.

  7. Cholesterol and bile acids regulate cholesterol 7 alpha-hydroxylase expression at the transcriptional level in culture and in transgenic mice.

    Science.gov (United States)

    Ramirez, M I; Karaoglu, D; Haro, D; Barillas, C; Bashirzadeh, R; Gil, G

    1994-04-01

    Cholesterol 7 alpha-hydroxylase (7 alpha-hydroxylase) is the rate-limiting enzyme in bile acid biosynthesis. It is subject to a feedback control, whereby high levels of bile acids suppress its activity, and cholesterol exerts a positive control. It has been suggested that posttranscriptional control plays a major part in that regulation. We have studied the mechanisms by which cholesterol and bile acids regulate expression of the 7 alpha-hydroxylase gene and found it to be solely at the transcriptional level by using two different approaches. First, using a tissue culture system, we localized a liver-specific enhancer located 7 kb upstream of the transcriptional initiation site. We also showed that low-density lipoprotein mediates transcriptional activation of chimeric genes, containing either the 7 alpha-hydroxylase or the albumin enhancer in front of the 7 alpha-hydroxylase proximal promoter, to the same extent as the in vivo cholesterol-mediated regulation of 7 alpha-hydroxylase mRNA. In a second approach, using transgenic mice, we have found that expression of an albumin enhancer-7 alpha-hydroxylase-lacZ fusion gene is restricted to the liver and is regulated by cholesterol and bile acids in a manner quantitatively similar to that of the endogenous gene. We also found, that a liver-specific enhancer is necessary for expression of the rat 7 alpha-hydroxylase gene, in agreement with the tissue culture experiments. Together, these results demonstrate that cholesterol and bile acids regulate the expression of the 7 alpha-hydroxylase gene solely at the transcriptional level. PMID:8139578

  8. Biosynthesis and biological action of pineal allopregnanolone

    Directory of Open Access Journals (Sweden)

    Kazuyoshi eTsutsui

    2014-05-01

    Full Text Available The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone.

  9. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.

    Science.gov (United States)

    Silverman, Andrew M; Qiao, Kangjian; Xu, Peng; Stephanopoulos, Gregory

    2016-04-01

    Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain's ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH

  10. Diverse inhibitors of aflatoxin biosynthesis.

    Science.gov (United States)

    Holmes, Robert A; Boston, Rebecca S; Payne, Gary A

    2008-03-01

    Pre-harvest and post-harvest contamination of maize, peanuts, cotton, and tree nuts by members of the genus Aspergillus and subsequent contamination with the mycotoxin aflatoxin pose a widespread food safety problem for which effective and inexpensive control strategies are lacking. Since the discovery of aflatoxin as a potently carcinogenic food contaminant, extensive research has been focused on identifying compounds that inhibit its biosynthesis. Numerous diverse compounds and extracts containing activity inhibitory to aflatoxin biosynthesis have been reported. Only recently, however, have tools been available to investigate the molecular mechanisms by which these inhibitors affect aflatoxin biosynthesis. Many inhibitors are plant-derived and a few may be amenable to pathway engineering for tissue-specific expression in susceptible host plants as a defense against aflatoxin contamination. Other compounds show promise as protectants during crop storage. Finally, inhibitors with different modes of action could be used in comparative transcriptional and metabolomic profiling experiments to identify regulatory networks controlling aflatoxin biosynthesis.

  11. Dietary whole cottonseed depresses lipogenesis but has no effect on stearoyl coenzyme desaturase activity in bovine subcutaneous adipose tissue.

    Science.gov (United States)

    Page, A M; Sturdivant, C A; Lunt, D K; Smith, S B

    1997-09-01

    The primary objective of this study was to determine the effect of long-term feeding of whole cottonseed (WCS) on lipogenesis and stearoyl-coenzyme A desaturase activity in growing steers. Brangus steers were fed either a control, cornbased diet (n = 11) or 30% WCS (n = 12). The 30% WCS contributed an estimated 6.6% additional lipid to the diet. Steers fed the added WCS had greater live weights (P = 0.04) and kidney, pelvic, and heart fat (P = 0.005). Subcutaneous fat thickness was not different (P = 0.20) between treatment groups, although WCS elicited an increase in the proportion of large diameter subcutaneous adipocytes. The rate of [U-14C]acetate incorporation into fatty acids in subcutaneous adipose tissue was reduced by dietary WCS (171.4 vs 122.1 nmol x 100 mg adipose tissue-1 x 2 hr-1, P = 0.03), indicating that the increased dietary fat depressed de novo lipogenesis. Hepatic desaturase activity was much lower than that of subcutaneous adipose tissue, a feature common to cattle. We anticipated that added WCS also would depress stearoyl-coenzyme A desaturase activity in subcutaneous adipose tissue and liver due to its cyclopropene fatty acid content. Instead, desaturase activity was numerically (although not significantly) greater in liver (P = 0.37) and adipose tissue (P = 0.23). PMID:9417995

  12. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. PMID:27161889

  13. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Frédéric Raymond

    Full Text Available Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF diet that has a high (H or a low (L protein-to-carbohydrate (P/C ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words.

  14. The Role of Cholesterol in Cancer.

    Science.gov (United States)

    Kuzu, Omer F; Noory, Mohammad A; Robertson, Gavin P

    2016-04-15

    The roles played by cholesterol in cancer development and the potential of therapeutically targeting cholesterol homeostasis is a controversial area in the cancer community. Several epidemiologic studies report an association between cancer and serum cholesterol levels or statin use, while others suggest that there is not one. Furthermore, the Cancer Genome Atlas (TCGA) project using next-generation sequencing has profiled the mutational status and expression levels of all the genes in diverse cancers, including those involved in cholesterol metabolism, providing correlative support for a role of the cholesterol pathway in cancer development. Finally, preclinical studies tend to more consistently support the role of cholesterol in cancer, with several demonstrating that cholesterol homeostasis genes can modulate development. Because of space limitations, this review provides selected examples of the epidemiologic, TCGA, and preclinical data, focusing on alterations in cholesterol homeostasis and its consequent effect on patient survival. In melanoma, this focused analysis demonstrated that enhanced expression of cholesterol synthesis genes was associated with decreased patient survival. Collectively, the studies in melanoma and other cancer types suggested a potential role of disrupted cholesterol homeostasis in cancer development but additional studies are needed to link population-based epidemiological data, the TCGA database results, and preclinical mechanistic evidence to concretely resolve this controversy. Cancer Res; 76(8); 2063-70. ©2016 AACR. PMID:27197250

  15. Glycolipid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    The biosynthesis of monogalactosyldiacyl-glycerol (MGDG) was studied in five different cyanobacteria. Previous work has shown Anabaena variabilis to synthesize both MGDG and monoglucosyl-diacylglycerol (MG1cDG) with MG1cDG being the precursor of MGDG. They have examined four other cyanobacteria to determine if a similar relationship exists. The cyanobacteria studied were Anabaena variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis nidulans, and Anacystis marina. Each were grown in liquid culture and lipids were labeled with 14C]CO2 for 20 min., 1.0 hr, 1.0 hr + 10 hr chase. Glycolipids were analyzed by initial separation of MGDG and MG1cDG by TLC followed by further analysis by HPLC. Complete separation of molecular species was obtained isocratically on an ODS column. All of the cyanobacteria labeled 16-C and 18-C fatty acids except for A. marina which labeled only 14-C and 16-C fatty acids. Desaturation of the fatty acids could be observed in the 1.0 hr and chase experiments. All were capable of labeling both MG1cDG and MGDG with the precursor-product relationship being observed. There does not appear to be a direct relationship between the epimerization of the sugar moiety and fatty acid desaturation

  16. Biliary cholesterol secretion: More than a simple ABC

    Institute of Scientific and Technical Information of China (English)

    Arne; Dikkers; Uwe; JF; Tietge

    2010-01-01

    Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease. With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the f inal step for the elimination of cholesterol originating from cholesterol-laden macrophage foam cells in the vessel wall in a pathway named reverse cholesterol transport. On the other hand, cholesterol hypersecretion into the bile is considered the main pathophys...

  17. Raising HDL cholesterol in women

    Directory of Open Access Journals (Sweden)

    Danny J Eapen

    2009-11-01

    Full Text Available Danny J Eapen1, Girish L Kalra1, Luay Rifai1, Christina A Eapen2, Nadya Merchant1, Bobby V Khan11Emory University School of Medicine, Atlanta, GA, USA; 2University of South Florida School of Medicine, Tampa, FL, USAAbstract: High-density lipoprotein cholesterol (HDL-C concentration is essential in the determination of coronary heart disease (CHD risk in women. This is especially true in the postmenopausal state, where lipid profiles and CHD risk mimic that of age-matched men. Thus, interventions designed to reduce CHD risk by raising HDL-C levels may have particular significance during the transition to menopause. This review discusses HDL-C-raising therapies and the role of HDL in the primary prevention of CHD in women. Lifestyle-based interventions such as dietary change, aerobic exercise regimens, and smoking cessation are initial steps that are effective in raising HDL-C, and available data suggest women respond similarly to men with these interventions. When combined with pharmacotherapy, the effects of these lifestyle alterations are further amplified. Though studies demonstrating gender-specific differences in therapy are limited, niacin continues to be the most effective agent in raising HDL-C levels, especially when used in combination with fibrate or statin therapy. Emerging treatments such as HDL mimetic therapy show much promise in further raising HDL-C levels and improving cardiovascular outcomes.Keywords: high-density lipoprotein, HDL, women, cholesterol, heart disease

  18. Structure of Cholesterol in Lipid Rafts

    Science.gov (United States)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  19. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins.

    Science.gov (United States)

    Duangjai, Acharaporn; Ingkaninan, Kornkanok; Praputbut, Sakonwun; Limpeanchob, Nanteetip

    2013-04-01

    Black pepper (Piper nigrum L.) lowers blood lipids in vivo and inhibits cholesterol uptake in vitro, and piperine may mediate these effects. To test this, the present study aimed to compare actions of black pepper extract and piperine on (1) cholesterol uptake and efflux in Caco-2 cells, (2) the membrane/cytosol distribution of cholesterol transport proteins in these cells, and (3) the physicochemical properties of cholesterol micelles. Piperine or black pepper extract (containing the same amount of piperine) dose-dependently reduced cholesterol uptake into Caco-2 cells in a similar manner. Both preparations reduced the membrane levels of NPC1L1 and SR-BI proteins but not their overall cellular expression. Micellar cholesterol solubility of lipid micelles was unaffected except by 1 mg/mL concentration of black pepper extract. These data suggest that piperine is the active compound in black pepper and reduces cholesterol uptake by internalizing the cholesterol transporter proteins.

  20. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Lund, Frederik Wendelboe; Röhrl, Clemens;

    2016-01-01

    Cholesterol is an abundant and important lipid component of cellular membranes. Analysis of cholesterol transport and diffusion in living cells is hampered by the technical challenge of designing suitable cholesterol probes which can be detected for example by optical microscopy. One strategy...... is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol......), whose synthesis and initial characterization was pioneered by Robert Bittman. Here, we give a general overview of the properties and applications but also limitations of BODIPY-tagged cholesterol probes for analyzing intracellular cholesterol trafficking. We describe our own experiences...

  1. Cholesterol-Independent SREBP-1 Maturation Is Linked to ARF1 Inactivation.

    Science.gov (United States)

    Smulan, Lorissa J; Ding, Wei; Freinkman, Elizaveta; Gujja, Sharvari; Edwards, Yvonne J K; Walker, Amy K

    2016-06-28

    Lipogenesis requires coordinated expression of genes for fatty acid, phospholipid, and triglyceride synthesis. Transcription factors, such as SREBP-1 (Sterol regulatory element binding protein), may be activated in response to feedback mechanisms linking gene activation to levels of metabolites in the pathways. SREBPs can be regulated in response to membrane cholesterol and we also found that low levels of phosphatidylcholine (a methylated phospholipid) led to SBP-1/SREBP-1 maturation in C. elegans or mammalian models. To identify additional regulatory components, we performed a targeted RNAi screen in C. elegans, finding that both lpin-1/Lipin 1 (which converts phosphatidic acid to diacylglycerol) and arf-1.2/ARF1 (a GTPase regulating Golgi function) were important for low-PC activation of SBP-1/SREBP-1. Mechanistically linking the major hits of our screen, we find that limiting PC synthesis or LPIN1 knockdown in mammalian cells reduces the levels of active GTP-bound ARF1. Thus, changes in distinct lipid ratios may converge on ARF1 to increase SBP-1/SREBP-1 activity. PMID:27320911

  2. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes

    OpenAIRE

    Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Landrock, Kerstin K.; Martin, Gregory G.; Landrock, Danilo; Payne, H. Ross; Atshaves, Barbara P.; Kier, Ann B.; Schroeder, Friedhelm

    2012-01-01

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-af...

  3. Oxidised LDL, HDL cholesterol, LDL cholesterol levels in patients of coronary artery disease

    OpenAIRE

    Ghosh, Joya; T K Mishra; Rao, Y. N.; Aggarwal, S. K.

    2006-01-01

    Coronary artery disease is a major cause of morbidity and has various risk factors. Lipid profile i.e. low HDL-cholesterol, high LDL cholesterol, high total cholesterol, high triglycerides playing important role in its causation. Recently interest has been shown in the oxidized fraction of LDL as one of the risk factors. In the present study 60 age and sex matched normal healthy individuals were taken as controls and 60 patients of CAD were taken. Cholesterol was measured by enzymatic method,...

  4. Mast Cells and HDL Studies on Cholesterol Efflux and Reverse Cholesterol Transport

    OpenAIRE

    Kareinen, Ilona

    2015-01-01

    Atherosclerosis is an inflammatory disease characterized by the accumulation of cholesterol in the arterial intima and consequently the formation of atherosclerotic plaques. Formation of these plaques is initiated by the appearance of macrophage foam cell in the arterial intima. Foam cells are formed as excessive cholesterol accumulates in the cytosol of macrophages and finally the net influx exceeds the efflux of cholesterol. Excessive accumulation of chemically modified cholesterol in foam ...

  5. Dietary cholesterol and fats at a young age : do they influence cholesterol metabolism in adult life?

    NARCIS (Netherlands)

    Temmerman, A M; Vonk, R J; Niezen-Koning, K; Berger, R.; Fernandes, J

    1989-01-01

    The effects of dietary cholesterol and fats on cholesterol metabolism later in life were studied in Mongolian gerbils. Three groups were given a basic diet with soybean oil, palm kernel oil amounting to 8.75% (w/w), or the basic diet only. In three other groups, cholesterol (0.05%) was added to the

  6. From blood to gut : Direct secretion of cholesterol via transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.

    2010-01-01

    The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol lowering therapies By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body For a long time this removal via

  7. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan Albert; Tietge, Uwe J.F.; Brufau Dones, Gemma; Groen, Albert K

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins we

  8. Purification and characterization of a novel cholesterol-lowering protein from the seeds of Senna obtusifolia

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    "Juemingzi", a source of traditional Chinese herbal medicine, has been demonstrated to play a role in decreasing serum cholesterol concentration. In this study, a novel protein, which has shown an in-hibitory effect on cholesterol biosynthesis, was isolated from Senna obtusifolia L. seed by gel filtration and ion exchange chromatography. The novel protein’s molecular mass was 19.7 kD and its pI was 4.80. Both SDS-PAGE and isoelectric-focusing (IEF) revealed a single Coomassie brilliant blue stained band, indicating that the novel protein was a single peptide. The N-terminal amino acid sequence of the pro-tein was IPYISASFPLNIEFLPSE, which had no similarity with any other protein sequences in the NCBI protein database. Circular dichroism (CD) signals indicated that S. obtusifolia seed protein contained 12.5% α-helix, 55.6% β-sheet, and 31.9% random coil.

  9. Effects of pantethine supplementation to diets with different energy cereals on hepatic lipogenesis of laying hens.

    Science.gov (United States)

    Hsu, J C; Tanaka, K; Ohtani, S; Collado, C M

    1987-02-01

    Effects on dietary pantethine supplementation on hepatic lipid accumulation and on the activities of lipogenic-related enzymes in the liver were studied in Single Comb White Leghorn laying hens fed isocaloric and isonitrogenous diets containing corn or barley as the carbohydrate source. Addition of 200 ppm pantethine to the corn-soy (CS) basal diet significantly reduced abdominal fat weight, liver triglyceride, as well as total cholesterol and 17 beta-estradiol concentrations in the plasma. Activities of citrate cleavage enzyme (EC 4.1.3.8; CCE) and fatty acid synthetase (FAS) in the liver were significantly reduced when the CS basal diet was supplemented with pantethine, but the activities of nicotinamide adenine dinucleotide phosphate-malate dehydrogenase (EC 1.1.1.40; NADP-MDH) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49; G6PDH), were not significantly affected. However, liver triglyceride, total cholesterol, and 17 beta-estradiol concentrations in plasma as well as the activities of CCE, FAS, and NADP-MDH in liver were significantly lower in laying hens fed the barley-soy (BS) basal diet than in those fed the CS basal diet. Pantethine supplementation to the BS diet failed to show any significant effect on liver triglyceride content and on the hepatic activities of lipogenic-related enzymes. There were no significant differences in liver weight, rate of egg production, and egg weight among dietary treatments. these results suggest that dietary pantethine is effective in reducing the accumulation of liver and abdominal fat in laying hens fed a CS diet. PMID:3588494

  10. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose.

    Science.gov (United States)

    Sanders, Francis W B; Griffin, Julian L

    2016-05-01

    Hepatic de novo lipogenesis (DNL) is the biochemical process of synthesising fatty acids from acetyl-CoA subunits that are produced from a number of different pathways within the cell, most commonly carbohydrate catabolism. In addition to glucose which most commonly supplies carbon units for DNL, fructose is also a profoundly lipogenic substrate that can drive DNL, important when considering the increasing use of fructose in corn syrup as a sweetener. In the context of disease, DNL is thought to contribute to the pathogenesis of non-alcoholic fatty liver disease, a common condition often associated with the metabolic syndrome and consequent insulin resistance. Whether DNL plays a significant role in the pathogenesis of insulin resistance is yet to be fully elucidated, but it may be that the prevalent products of this synthetic process induce some aspect of hepatic insulin resistance.

  11. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose.

    Science.gov (United States)

    Sanders, Francis W B; Griffin, Julian L

    2016-05-01

    Hepatic de novo lipogenesis (DNL) is the biochemical process of synthesising fatty acids from acetyl-CoA subunits that are produced from a number of different pathways within the cell, most commonly carbohydrate catabolism. In addition to glucose which most commonly supplies carbon units for DNL, fructose is also a profoundly lipogenic substrate that can drive DNL, important when considering the increasing use of fructose in corn syrup as a sweetener. In the context of disease, DNL is thought to contribute to the pathogenesis of non-alcoholic fatty liver disease, a common condition often associated with the metabolic syndrome and consequent insulin resistance. Whether DNL plays a significant role in the pathogenesis of insulin resistance is yet to be fully elucidated, but it may be that the prevalent products of this synthetic process induce some aspect of hepatic insulin resistance. PMID:25740151

  12. Inherited Cholesterol Disorder Significantly Boosts Heart Risks

    Science.gov (United States)

    ... leaves her cholesterol untreated, her risk of coronary heart disease death or nonfatal heart attack would be comparable to ... Recent Health News Related MedlinePlus Health Topics Cholesterol Heart Diseases--Prevention ... Us Get email updates Subscribe to RSS Follow us ...

  13. Cholesterol, the central lipid of mammalian cells

    NARCIS (Netherlands)

    Maxfield, F. R.; van Meer, G.

    2010-01-01

    Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, invo

  14. Cholesterol modulates bitter taste receptor function.

    Science.gov (United States)

    Pydi, Sai Prasad; Jafurulla, Md; Wai, Lisa; Bhullar, Rajinder P; Chelikani, Prashen; Chattopadhyay, Amitabha

    2016-09-01

    Bitter taste perception in humans is believed to act as a defense mechanism against ingestion of potential toxic substances. Bitter taste is perceived by 25 distinct bitter taste receptors (T2Rs) which belong to the family of G protein-coupled receptors (GPCRs). In the overall context of the role of membrane lipids in GPCR function, we show here that T2R4, a representative member of the bitter taste receptor family, displays cholesterol sensitivity in its signaling function. In order to gain further insight into cholesterol sensitivity of T2R4, we mutated two residues Tyr114(3.59) and Lys117(3.62) present in the cholesterol recognition amino acid consensus (CRAC) motif in T2R4 with alanines. We carried out functional characterization of the mutants by calcium mobilization, followed by cholesterol depletion and replenishment. CRAC motifs in GPCRs have previously been implicated in preferential cholesterol association. Our analysis shows that the CRAC motif represents an intrinsic feature of bitter taste receptors and is conserved in 22 out of 25 human T2Rs. We further demonstrate that Lys117, an important CRAC residue, is crucial in the reported cholesterol sensitivity of T2R4. Interestingly, cholesterol sensitivity of T2R4 was observed at quinine concentrations in the lower mM range. To the best of our knowledge, our results represent the first report addressing the molecular basis of cholesterol sensitivity in the function of taste receptors. PMID:27288892

  15. Metabolic regulation of invadopodia and invasion by acetyl-CoA carboxylase 1 and de novo lipogenesis.

    Directory of Open Access Journals (Sweden)

    Kristen E N Scott

    Full Text Available Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1, the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis.

  16. Pathways commonly dysregulated in mouse and human obese adipose tissue: FAT/CD36 modulates differentiation and lipogenesis.

    Science.gov (United States)

    Berger, E; Héraud, S; Mojallal, A; Lequeux, C; Weiss-Gayet, M; Damour, O; Géloën, A

    2015-01-01

    Obesity is linked to adipose tissue hypertrophy (increased adipocyte cell size) and hyperplasia (increased cell number). Comparative analyses of gene datasets allowed us to identify 1426 genes which may represent common adipose phenotype in humans and mice. Among them we identified several adipocyte-specific genes dysregulated in obese adipose tissue, involved in either fatty acid storage (acyl CoA synthase ACSL1, hormone-sensitive lipase LIPE, aquaporin 7 AQP7, perilipin PLIN) or cell adhesion (fibronectin FN1, collagens COL1A1, COL1A3, metalloprotein MMP9, or both (scavenger receptor FAT/CD36). Using real-time analysis of cell surface occupancy on xCELLigence system we developed a new method to study lipid uptake and differentiation of mouse 3T3L1 fibroblasts and human adipose stem cells. Both processes are regulated by insulin and fatty acids such as oleic acid. We showed that fatty acid addition to culture media increased the differentiation rate and was required for full differentiation into unilocular adipocytes. Significant activation of lipogenesis, i.e. lipid accumulation, by either insulin or oleic acid was monitored in times ranging from 1 to 24 h, depending on differentiation state, whereas significant effects on adipogenesis, i.e., surperimposed lipid accumulation and gene transcriptional regulations were measured after 3 to 4 d. Combination of selected times for analysis of lipid contents, cell counts, size fractionations, and gene transcriptional regulations showed that FAT/CD36 specific inhibitor AP5258 significantly increased cell survival of oleic acid-treated mouse and human adipocytes, and partially restored the transcriptional response to oleic acid in the presence of insulin through JNK pathway. Taken together, these data open new perspectives to study the molecular mechanisms commonly dysregulated in mouse and human obesity at the level of lipogenesis linked to hypertrophy and adipogenesis linked to hyperplasia. PMID:26257990

  17. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet

    Science.gov (United States)

    Jiao, Jun; Han, Shu-Fen; Zhang, Wei; Xu, Jia-Ying; Tong, Xing; Yin, Xue-Bin; Yuan, Lin-Xi; Qin, Li-Qiang

    2016-01-01

    Background Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD). Design C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group) or 3% leucine (HFCD+3% Leu group) for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC), triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT) browning were determined. Results Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase) and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion This study demonstrated that chronic leucine supplementation reduced the body weight and improved the lipid profile of

  18. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet

    Directory of Open Access Journals (Sweden)

    Jun Jiao

    2016-09-01

    Full Text Available Background: Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD. Design: C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group or 3% leucine (HFCD+3% Leu group for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC, triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT browning were determined. Results: Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion: This study demonstrated that chronic leucine supplementation reduced the body weight and improved the

  19. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus).

    Science.gov (United States)

    Omidi, Arash; Ansari nik, Hossein; Ghazaghi, Mahmood

    2013-02-01

    Ten blue-neck male ostriches (Struthio camelus) were fed Prosopis farcta beans throughout a 30-day experiment. Blood samples were collected from ostriches on days 0 and 30 to measure levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, total serum protein, albumin, globulin, cholesterol, calcium, inorganic phosphorus, the activity of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transferase (γ-GT). From days 0 to 30, HDL cholesterol, total protein, and globulins levels increased significantly whereas LDL cholesterol, inorganic phosphorus, and γ-GT activity decreased significantly.

  20. Biliary cholesterol excretion: A novel mechanism that regulates dietary cholesterol absorption

    OpenAIRE

    Sehayek, Ephraim; Ono, Jennie G.; Shefer, Sarah; Nguyen, Lien B.; Wang, Nan; Batta, Ashok K.; Salen, Gerald; Smith, Jonathan D.; Tall, Alan R.; Breslow, Jan L.

    1998-01-01

    The regulation of dietary cholesterol absorption was examined in C57BL/6 and transgenic mice with liver overexpression of the scavenger receptor BI (SR-BI Tg). In C57BL/6 animals, feeding 0.02 to 1% (wt/wt) dietary cholesterol resulted in a dose-dependent decrease in the percentage of dietary cholesterol absorbed. A plot of total daily mass of dietary cholesterol absorbed versus the percentage by weight of cholesterol in the diet yielded a curve suggesting a saturable process with a Km of 0.4...

  1. The Structure of Cholesterol in Lipid Rafts

    CERN Document Server

    Toppozini, Laura; Armstrong, Clare L; Yamani, Zahra; Kucerka, Norbert; Schmid, Friederike; Rheinstaedter, Maikel C

    2014-01-01

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking and lipid/protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short-lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules we observe raft-like structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to orderin...

  2. Trapping crystal nucleation of cholesterol monohydrate

    DEFF Research Database (Denmark)

    Solomonov, I.; Weygand, M.J.; Kjær, K.;

    2005-01-01

    Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers...... in a monoclinic cholesterol . H2O phase, has been monitored and their structures characterized to near atomic resolution. Crystallographic evidence is presented that this multilayer phase is similar to that of a reported metastable cholesterol phase of undetermined structure obtained from bile before...... transformation to the triclinic phase of cholesterol . H2O, the thermodynamically stable macroscopic form. According to grazing incidence x-ray diffraction measurements and crystallographic data, a transformation from the monoclinic film structure to a multilayer of the stable monohydrate phase involves...

  3. Alternate biosynthesis of valerenadiene and related sesquiterpenes.

    Science.gov (United States)

    Paknikar, Shashikumar K; Kadam, Shahuraj H; Ehrlich, April L; Bates, Robert B

    2013-09-01

    It is proposed that the biosynthesis of the sesquiterpene valerenadiene, a key intermediate in the biosynthesis of a sedative in valerian, involves cyclopropane and not cyclobutane intermediates and includes as a key step a cyclopropylcarbinylcation-cyclopropylcarbinylcation rearrangement analogous to the one observed in the conversion of presqualene to squalene in triterpene and steroid biosynthesis. Similar mechanisms are proposed for the biosynthesis of the related sesquiterpenes pacifigorgiol, tamariscene and (+)-pacifigorgia-1,10-diene. PMID:24273843

  4. Major Risk Factors for Heart Disease: High Blood Cholesterol

    Science.gov (United States)

    ... Major Risk Factors for Heart Disease High Blood Cholesterol High blood cholesterol is another major risk factor for heart disease ... can do something about. The higher your blood cholesterol level, the greater your risk for developing heart ...

  5. High Blood Cholesterol: What You Need to Know

    Science.gov (United States)

    ... Audiences Contact The Health Information Center High Blood Cholesterol: What You Need To Know Table of Contents ... Lifestyle Changes (TLC) Drug Treatment Resources Why Is Cholesterol Important? Your blood cholesterol level has a lot ...

  6. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.; Gent, van C.M.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and b

  7. The Evolution of Aflatoxin Biosynthesis

    Science.gov (United States)

    The biosynthesis of aflatoxin (AF) involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST) and O-methylsterigmatocysin (OMST), the respective penultimate and ultimate precursors of AF. Although ST, OMST, and ...

  8. Biosynthesis and transport of terpenes

    NARCIS (Netherlands)

    Ting, H.M.

    2014-01-01

    Terpenoids are the largest class of natural product that are produced by plants, with functions that range from a role in plant development to direct defence against pathogens and indirect defence against insects through the attraction of natural enemies. While terpene biosynthesis genes have been w

  9. The Structural Basis of Cholesterol Accessibility in Membranes

    OpenAIRE

    Olsen, Brett N.; Bielska, Agata A.; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-01-01

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes mo...

  10. (-)-Menthol biosynthesis and molecular genetics

    Science.gov (United States)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  11. Polyphenolic extract from Hibiscus sabdariffa reduces body fat by inhibiting hepatic lipogenesis and preadipocyte adipogenesis.

    Science.gov (United States)

    Kao, Erl-Shyh; Yang, Mon-Yuan; Hung, Chia-Hung; Huang, Chien-Ning; Wang, Chau-Jong

    2016-01-01

    Diets high in fat lead to excess lipid accumulation in adipose tissue, which is a crucial factor in the development of obesity, hepatitis, and hyperlipidemia. In this study, we investigated the anti-obesity effect of Hibiscus sabdariffa extract (HSE) in vivo. Hamsters fed a high-fat diet (HFD) develop symptoms of obesity, which were determined based on body weight changes and changes in plasma and serum triglycerides, free fatty acid concentrations, total cholesterol levels, LDL-C levels, HDL-C levels, and adipocyte tissue weight. HFD-fed hamsters were used to investigate the effects of HSE on symptoms of obesity such as adipogenesis and fatty liver, loss of blood glucose regulation, and serum ion imbalance. Interestingly, HSE treatment effectively reduced the effects of the HFD in hamsters in a dose-dependent manner. Further, after inducing maturation of preadipocytes, Hibiscus sabdariffa polyphenolic extract (HPE) was shown to suppress the adipogenesis of adipocytes. However, HPE does not affect the viability of preadipocytes. Therefore, both HSE and HPE are effective and viable treatment strategies for preventing the development and treating the symptoms of obesity. PMID:26489044

  12. Perturbed cholesterol homeostasis in aging spinal cord.

    Science.gov (United States)

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  13. Physiological and pathological implications of cholesterol.

    Science.gov (United States)

    Cortes, Victor A; Busso, Dolores; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2014-01-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signaling and endocrine requirements of animal systems. At a cellular level, cholesterol is found in membranes, where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signaling functions. At an organismal level, cholesterol is the precursor for all steroid hormones, including gluco- and mineralo-corticoids, sex hormones and vitamin D, all of which regulate carbohydrate, sodium, reproductive and bone homeostasis, respectively. This sterol is also the precursor for bile acids, which are important for intestinal absorption of dietary lipids as well as energy and glucose metabolic regulation. Importantly, complex mechanisms maintain cholesterol within physiological ranges and the disregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these diseases has been demonstrated by diverse genetic and pharmacologic animal models that are commented in this review. PMID:24389193

  14. HDL: More Than Just Cholesterol

    Directory of Open Access Journals (Sweden)

    Anna Meilina

    2010-12-01

    Full Text Available BACKGROUND: Plasma concentration of high density lipoprotein cholesterol (HDL-C are strongly, consistenly, and independently inversely associated with risk of atheroschlerotic cardiovascular disease (CVD. However, the last decade has seen several observations that do not follow this simple script. CONTENT: A proteomic analysis of HDL has given us an intriguing glimpse into novel components of HDL. HDL isolated from normal humans contains several classes of proteins, including not only apolipoproteins, but also complement regulatory proteins, endopeptidase inhibitors, hemopexin, and acute phase response proteins. These observations raise the possibility of unsuspected roles for HDL. HDL delivery of complement proteins would implicate HDL in innate immunity. Serine proteinase inhibitors would enable HDL to modulate proteolysis of the vessel wall. HDL from patients with coronary artery disease was enriched in apoE, apoC-IV, apoA-IV, Paraoxonase (PON, and complement factor C3. Highlighted additional mechanisms through which HDL protects the vessel wall are: HDL improves vascular function, decreases vascular inflammation, detoxifies radicals, and limits thrombosis. SUMMARY: Both inter- and intra-organ desynchrony may be involved in the pathogenesis of cardiometabolic disease attributable to effects in brain and multiple metabolic tissues including heart, liver, fat, muscle, pancreas, and gut. Efforts to dissect the molecular mediators that coordinate circadian, metabolic, and cardiovascular systems may ultimately lead to both improved therapeutics and preventive interventions. KEYWORDS: HDL, Apo–A1, RCT, inflammation, HDL dysfunction, HDL proteome, HDL & Apo-A1 mimetics.

  15. Diet serum cholesterol and coronary diseases

    Directory of Open Access Journals (Sweden)

    Narindar Nath

    1961-07-01

    Full Text Available The probable sequence of events leading to atherosclerotic disease of the coronary artery and heart attack are briefly described. Blood cholesterol as a casual agent in atherosclerosis and how blood cholesterol can be modified are discussed. The effects of various dietary components particularly quality and quantity of fat and protein on the blood cholesterol concentration are discussed and it is emphasized that more work needs to be done to ascertain the role of individual components of the diet and their relative importance in atherogenesis.

  16. The role of cholesterol in membrane fusion.

    Science.gov (United States)

    Yang, Sung-Tae; Kreutzberger, Alex J B; Lee, Jinwoo; Kiessling, Volker; Tamm, Lukas K

    2016-09-01

    Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion. PMID:27179407

  17. Prenatal detection of the cholesterol biosynthetic defect in the Smith-Lemli-Opitz syndrome by the analysis of amniotic fluid sterols.

    Science.gov (United States)

    Abuelo, D N; Tint, G S; Kelley, R; Batta, A K; Shefer, S; Salen, G

    1995-04-10

    The Smith-Lemli-Opitz (SLO or RSH) syndrome is an autosomal recessive disorder characterized by a recognizable pattern of minor facial anomalies, congenital anomalies of many organs, failure to thrive, and mental retardation. Its cause is a defect in cholesterol biosynthesis characterized by abnormally low plasma cholesterol levels and concentrations of the cholesterol precursor 7-dehydrocholesterol (7DHC) elevated up to several thousand-fold above normal. We used capillary column gas-chromatography to quantify sterols in amniotic fluid, amniotic cells, plasma, placenta, and breast milk from a heterozygous mother who had previously given birth to an affected son and in cord blood and plasma from her affected newborn daughter. The cholesterol concentration in amniotic fluid at 16 weeks gestation was normal, but 7DHC, normally undetectable, was greatly elevated. In cultured amniocytes, the level of 7DHC was 11% of total cholesterol, similar to cultured fibroblasts from patients with SLO syndrome. At 38 weeks, a girl with phenotype consistent with the syndrome was born. Cholesterol concentrations were abnormally low in cord blood and in the baby's plasma at 12 weeks, while levels of 7DHC were grossly elevated, confirming the prenatal diagnosis. The mother's plasma cholesterol increased steadily during gestation but remained below the lower 95% limit reported for normal control women. We conclude that it is now possible to detect the SLO syndrome at 16 weeks gestation by analyzing amniotic fluid sterols.

  18. Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet.

    Science.gov (United States)

    Kim, Minji; Kim, Yangha

    2010-06-01

    There is an increasing interest in curcumin (Curcuma longa L.) as a cardiovascular disease (CVD) protective agent via decreased blood total cholesterol and low-density lipoprotein-cholesterol (LDL-cholesterol) level. The aim of this study was to investigate further the potential mechanism in the hypocholesterolemic effect of curcumin by measuring cholesterol 7a-hydroxylase (CYP7A1), a rate limiting enzyme in the biosynthesis of bile acid from cholesterol, at the mRNA level. Male Sprague-Dawley rats were fed a 45% high fat diet or same diet supplemented with curcumin (0.1% wt/wt) for 8 weeks. The curcumin diet significantly decreased serum triglyceride (TG) by 27%, total cholesterol (TC) by 33.8%, and LDL-cholesterol by 56%, respectively as compared to control group. The curcumin-supplemented diet also significantly lowered the atherogenic index (AI) by 48% as compared to control group. Hepatic TG level was significantly reduced by 41% in rats fed with curcumin-supplemented diet in comparison with control group (P curcumin diet significantly increased fecal TG and TC. The curcumin diet up-regulated hepatic CYP7A1 mRNA level by 2.16-fold, compared to control group p (P curcumin.

  19. Triglyceride kinetics, tissue lipoprotein lipase, and liver lipogenesis in septic rats

    Energy Technology Data Exchange (ETDEWEB)

    Lanza-Jacoby, S.; Tabares, A. (Jefferson Medical College, Philadelphia, PA (USA))

    1990-04-01

    The mechanism for the development of hypertriglyceridemia during gram-negative sepsis was studied by examining liver production and clearance of very-low-density lipoprotein (VLDL) triglyceride (TG). To assess liver output and peripheral clearance the kinetics of VLDL-TG were determined by a constant iv infusion of (2-3H)glycerol-labeled VLDL. Clearance of VLDL-TG was also evaluated by measuring activities of lipoprotein lipase (LPL) in heart, soleus muscle, and adipose tissue from fasted control, fasted E. coli-treated, fed control, and fed E. coli-treated rats. Lewis inbred rats, 275-300 g, were made septic with 8 x 10(7) live E. coli colonies per 100 g body wt. Twenty-four hours after E. coli injection, serum TG, free fatty acids (FFA), and cholesterol of fasted E. coli-treated rats were elevated by 170, 76, and 16%, respectively. The elevation of serum TG may be attributed to the 67% decrease in clearance rate of VLDL-TG in fasted E. coli-treated rats compared with their fasted controls. The suppressed activities of LPL in adipose tissue, skeletal muscle, and heart were consistent with reduced clearance of TG. Secretion of VLDL-TG declined by 31% in livers of fasted E. coli-treated rats, which was accompanied by a twofold increase in the composition of liver TG. Rates of in vivo TG synthesis in livers of the fasted E. coli-treated rats were twofold higher than in those of fasted control rats. Decreased rate of TG appearance along with the increase in liver synthesis of TG contributed to the elevation of liver lipids in the fasted E. coli-treated rats.

  20. What Do My Cholesterol Levels Mean?

    Science.gov (United States)

    ... goes beyond cholesterol levels alone and considers overall risk assessment and reduction. It's still important to know your numbers, but work with your healthcare provider to treat your risk. What numbers do ...

  1. How to Get Your Cholesterol Tested

    Science.gov (United States)

    ... six years as part of a cardiovascular risk assessment. You may need to have your cholesterol and other risk factors assessed more often if your risk is elevated. Your healthcare provider will talk with you about what your ...

  2. Cholesterol oxidation products and their biological importance.

    Science.gov (United States)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr; Rog, Tomasz; Vattulainen, Ilpo

    2016-09-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have a substantial effect on membrane properties. In this spirit, this review describes the biological importance and the roles of oxysterols in the human body. We focus primarily on the effect of oxysterols on lipid membranes, but we also consider other issues such as enzymatic and nonenzymatic synthesis processes of oxysterols as well as pathological conditions induced by oxysterols. PMID:26956952

  3. Nutritional Recovery with a Soybean Diet after Weaning Reduces Lipogenesis but Induces Inflammation in the Liver in Adult Rats Exposed to Protein Restriction during Intrauterine Life and Lactation

    OpenAIRE

    Sílvia Regina de Lima Reis; Naoel Hassan Feres; Leticia Martins Ignacio-Souza; Roberto Vilela Veloso; Vanessa Cristina Arantes; Nair Honda Kawashita; Edson Moleta Colodel; Bárbara Laet Botosso; Marise Auxiliadora de Barros Reis; Márcia Queiroz Latorraca

    2015-01-01

    We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein) in a percentage of 17% (control, C) or 6% (low, L) during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp.) or soybean (CS and LS groups, resp.) after weaning until 90 days of age. LS and ...

  4. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice

    OpenAIRE

    Ann, Ji-Young; Eo, Hyeyoon; LIM, YUNSOOK

    2015-01-01

    Obesity is associated with chronic diseases such as fatty liver, type 2 diabetes, cardiovascular disease, and severe metabolic syndrome. Obesity causes metabolic impairment including excessive lipid accumulation and fibrosis in the hepatic tissue as well as the increase in oxidative stress. In order to investigate the effect of mulberry leaf (Morus alba L.) extract (MLE) on obesity-induced oxidative stress, lipogenesis, and fibrosis in liver, MLE has been gavaged for 12 weeks in high-fat diet...

  5. The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation

    OpenAIRE

    Solinas, Giovanni; Summermatter, Serge; Mainieri, Davide; Gubler, Marcel; Pirola, Luciano; Wymann, Matthias P.; Rusconi, Sandro; Montani, Jean-Pierre; Seydoux, Josiane

    2005-01-01

    We report here studies that integrate data of respiration rate from mouse skeletal muscle in response to leptin and pharmacological interference with intermediary metabolism, together with assays for phosphatidylinositol 3-kinase (PI3K) and AMP-activated protein kinase (AMPK). Our results suggest that the direct effect of leptin in stimulating thermogenesis in skeletal muscle is mediated by substrate cycling between de novo lipogenesis and lipid oxidation, and that this cycle requires both PI...

  6. Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men

    OpenAIRE

    I. Marques-Lopes; D. Ansorena; Astiasaran, I. (Iciar); L. Forga; J. A. Martinez

    2001-01-01

    BACKGROUND: Adjustments of carbohydrate intake and oxidation occur in both normal-weight and overweight individuals. Nevertheless, the contribution of carbohydrates to the accumulation of fat through either reduction of fat oxidation or stimulation of fat synthesis in obesity remains poorly investigated. OBJECTIVE: The objective of this study was to assess the postprandial metabolic changes and the fractional hepatic de novo lipogenesis (DNL) induced by a high-carbohydrate, low-fat...

  7. A new framework for reverse cholesterol transport: Non-biliary contributions to reverse cholesterol transport

    Institute of Scientific and Technical Information of China (English)

    Ryan; E; Temel; J; Mark; Brown

    2010-01-01

    Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Major efforts are now focused on therapies that augment high-density lipoprotein (HDL)-mediated reverse cholesterol transport (RCT), and ultimately increase the fecal disposal of cholesterol. The process of RCT has long been thought to simply involve HDL-media...

  8. From blood to gut: Direct secretion of cholesterol via transintestinal cholesterol efflux

    Institute of Scientific and Technical Information of China (English)

    Carlos; LJ; Vrins

    2010-01-01

    The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol-lowering therapies. By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body. For a long time this removal via the hepatobiliary secretion was considered to be the sole route involved in the RCT. However, observations from early studies in animals and humans already pointed towards the possibility of another route. In t...

  9. Assessing possible hazards of reducing serum cholesterol.

    OpenAIRE

    Law, M. R.; Thompson, S. G.; Wald, N J

    1994-01-01

    OBJECTIVE--To assess whether low serum cholesterol concentration increases mortality from any cause. DESIGN--Systematic review of published data on mortality from causes other than ischaemic heart disease derived from the 10 largest cohort studies, two international studies, and 28 randomised trials, supplemented by unpublished data on causes of death obtained when necessary. MAIN OUTCOME MEASURES--Excess cause specific mortality associated with low or lowered serum cholesterol concentration....

  10. Dietary Phospholipids and Intestinal Cholesterol Absorption

    OpenAIRE

    Sally Tandy; Chung, Rosanna W. S.; Elaine Wat; Alvin Kamili; Cohn, Jeffrey S.

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the abili...

  11. Biosynthesis of enediyne antitumor antibiotics.

    Science.gov (United States)

    Van Lanen, Steven G; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been cloned and sequenced, providing the foundation to understand natures' means to biosynthesize such complex, exotic molecules. Presented here is a review of the current progress in delineating the biosynthesis of the enediynes with an emphasis on the model enediyne, C-1027. PMID:18397168

  12. Lignification: Flexibility, Biosynthesis and Regulation.

    Science.gov (United States)

    Zhao, Qiao

    2016-08-01

    Lignin is a complex phenolic polymer that is deposited in the secondary cell wall of all vascular plants. The evolution of lignin is considered to be a critical event during vascular plant development, because lignin provides mechanical strength, rigidity, and hydrophobicity to secondary cell walls to allow plants to grow tall and transport water and nutrients over a long distance. In recent years, great research efforts have been made to genetically alter lignin biosynthesis to improve biomass degradability for the production of second-generation biofuels. This global focus on lignin research has significantly advanced our understanding of the lignification process. Based on these advances, here I provide an overview of lignin composition, the biosynthesis pathway and its regulation. PMID:27131502

  13. CFTR depletion results in changes in fatty acid composition and promotes lipogenesis in intestinal Caco 2/15 cells.

    Directory of Open Access Journals (Sweden)

    Geneviève Mailhot

    Full Text Available BACKGROUND: Abnormal fatty acid composition (FA in plasma and tissue lipids frequently occurs in homozygous and even in heterozygous carriers of cystic fibrosis transmembrane conductance regulator (CFTR mutations. The mechanism(s underlying these abnormalities remained, however, poorly understood despite the potentially CFTR contributing role. METHODOLOGY/PRINCIPAL FINDINGS: The aim of the present study was to investigate the impact of CFTR depletion on FA uptake, composition and metabolism using the intestinal Caco-2/15 cell line. shRNA-mediated cftr gene silencing induced qualitative and quantitative modifications in FA composition in differentiated enterocytes as determined by gas-liquid chromatography. With the cftr gene disruption, there was a 1,5 fold increase in the total FA amount, largely attributable to monounsaturated and saturated FA compared to controls. The activity of delta-7 desaturase, estimated by the 16:1(n-7/16:0, was significantly higher in knockdown cells and consistent with the striking elevation of the n-7 FA family. When incubated with [14C]-oleic acid, CFTR-depleted cells were capable of quick incorporation and export to the medium concomitantly with the high protein expression of L-FABP known to promote intracellular FA trafficking. Accordingly, lipoprotein vehicles (CM, VLDL, LDL and HDL, isolated from CFTR knockdown cells, exhibited higher levels of radiolabeled FA. Moreover, in the presence of [14C]-acetate, knockdown cells exhibited enhanced secretion of newly synthesized phospholipids, triglycerides, cholesteryl esters and free FA, thereby suggesting a stimulation of the lipogenic pathway. Conformably, gene expression of SREBP-1c, a key lipogenic transcription factor, was increased while protein expression of the phosphorylated and inactive form of acetylCoA carboxylase was reduced, confirming lipogenesis induction. Finally, CFTR-depleted cells exhibited lower gene expression of transcription factors (PPARalpha

  14. Fructose surges damage hepatic adenosyl-monophosphate-dependent kinase and lead to increased lipogenesis and hepatic insulin resistance.

    Science.gov (United States)

    Gugliucci, Alejandro

    2016-08-01

    Fructose may be a key contributor to the biochemical alterations which promote the metabolic syndrome (MetS), non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2DM): (a) its consumption in all forms but especially in liquid form has much increased alongside with incidence of MetS conditions; (b) it is metabolized almost exclusively in the liver, where it stimulates de novo lipogenesis to drive hepatic triglyceride (TG) synthesis which (c) contributes to hepatic insulin resistance and NAFLD (Lustig et al., 2015; Weiss et al., 2013; Lim et al., 2010; Schwarzet al., 2015; Stanhope et al., 2009, 2013) [1-6]. The specifics of fructose metabolism and its main location in the liver serve to explain many of the possible mechanisms involved. It also opens questions, as the consequences of large increases in fructose flux to the liver may wreak havoc with the regulation of metabolism and would produce two opposite effects (inhibition and activation of AMP dependent kinase-AMPK) that would tend to cancel each other. We posit that (1) surges of fructose in the portal vein lead to increased unregulated flux to trioses accompanied by unavoidable methylglyoxal (MG) production, (2) the new, sudden flux exerts carbonyl stress on the three arginines on the γ subunits AMP binding site of AMPK, irreversible blocking some of the enzyme molecules to allosteric modulation, (3) this explains why, even when fructose quick phosphorylation increases AMP and should therefore activate AMPK, the effects of fructose are compatible with inactivation of AMPK, which then solves the apparent metabolic paradox. We put forward the hypothesis that fructose loads, via the increase in MG flux worsens the fructose-driven metabolic disturbances that lead to unrestricted de novo lipogenesis, fatty liver and hepatic insulin resistance. It does so via the silencing of AMPK. Our hypothesis is testable and if proven correct will shed some further light on fructose metabolism in the liver. It will

  15. Biosynthesis of Enediyne Antitumor Antibiotics

    OpenAIRE

    Van Lanen, Steven G.; Shen, Ben

    2008-01-01

    The enediyne polyketides are secondary metabolites isolated from a variety of Actinomycetes. All members share very potent anticancer and antibiotic activity, and prospects for the clinical application of the enediynes has been validated with the recent marketing of two enediyne derivatives as anticancer agents. The biosynthesis of these compounds is of interest because of the numerous structural features that are unique to the enediyne family. The gene cluster for five enediynes has now been...

  16. Fatty acid biosynthesis in actinomycetes

    OpenAIRE

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation fo...

  17. Taxol biosynthesis and molecular genetics

    OpenAIRE

    Croteau, Rodney; Ketchum, Raymond E.B.; Long, Robert M.; Kaspera, Rüdiger; Wildung, Mark R.

    2006-01-01

    Biosynthesis of the anticancer drug Taxol in Taxus (yew) species involves 19 steps from the universal diterpenoid progenitor geranylgeranyl diphosphate derived by the plastidial methyl erythritol phosphate pathway for isoprenoid precursor supply. Following the committed cyclization to the taxane skeleton, eight cytochrome P450-mediated oxygenations, three CoA-dependent acyl/aroyl transfers, an oxidation at C9, and oxetane (D-ring) formation yield the intermediate baccatin III, to which the fu...

  18. Dietary cholesterol modulates pathogen blocking by Wolbachia.

    Directory of Open Access Journals (Sweden)

    Eric P Caragata

    Full Text Available The bacterial endosymbiont Wolbachia pipientis protects its hosts from a range of pathogens by limiting their ability to form infections inside the insect. This "pathogen blocking" could be explained by innate immune priming by the symbiont, competition for host-derived resources between pathogens and Wolbachia, or the direct modification of the cell or cellular environment by Wolbachia. Recent comparative work in Drosophila and the mosquito Aedes aegypti has shown that an immune response is not required for pathogen blocking, implying that there must be an additional component to the mechanism. Here we have examined the involvement of cholesterol in pathogen blocking using a system of dietary manipulation in Drosophila melanogaster in combination with challenge by Drosophila C virus (DCV, a common fly pathogen. We observed that flies reared on cholesterol-enriched diets infected with the Wolbachia strains wMelPop and wMelCS exhibited reduced pathogen blocking, with viral-induced mortality occurring 2-5 days earlier than flies reared on Standard diet. This shift toward greater virulence in the presence of cholesterol also corresponded to higher viral copy numbers in the host. Interestingly, an increase in dietary cholesterol did not have an effect on Wolbachia density except in one case, but this did not directly affect the strength of pathogen blocking. Our results indicate that host cholesterol levels are involved with the ability of Wolbachia-infected flies to resist DCV infections, suggesting that cholesterol contributes to the underlying mechanism of pathogen blocking.

  19. CHOLESTEROL ASSIMILATION BY COMMERCIAL YOGHURT STARTER CULTURES

    Directory of Open Access Journals (Sweden)

    Małgorzata Ziarno

    2007-03-01

    Full Text Available The ability to in vitro cholesterol level reduction in laboratory media has been shown for numerous strains of lactic acid bacteria, but not for all strains of lactic bacteria used in the dairy industry. The aim of this work was the determination of the ability of selected thermophilic lactic acid bacteria to cholesterol assimilation during 24 h culture in MRS broth. Commercial starter cultures showed various ability to cholesterol assimilation from laboratory medium. In case of starter cultures used for production of traditional yoghurt, consisting of Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, the quantity of assimilated cholesterol did not exceed 27% of its initial contents (0.7 g in 1 dm3. Starter cultures used for bioyoghurt production, containing also probiotic strains (came from Lactobacillus acidophilus species or Bifidobacterium genus assimilated from almost 18% to over 38% of cholesterol. For one monoculture of Lb. acidophilus, cholesterol assimilation ability of 49-55% was observed, despite that the number of bacterial cells in this culture was not different from number of bacteria in other cultures.

  20. Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: Relevance of optimum host membrane cholesterol.

    Science.gov (United States)

    Kumar, G Aditya; Roy, Saptarshi; Jafurulla, Md; Mandal, Chitra; Chattopadhyay, Amitabha

    2016-09-01

    Leishmania are obligate intracellular protozoan parasites that invade and survive within host macrophages leading to leishmaniasis, a major cause of mortality and morbidity worldwide, particularly among economically weaker sections in tropical and subtropical regions. Visceral leishmaniasis is a potent disease caused by Leishmania donovani. The detailed mechanism of internalization of Leishmania is poorly understood. A basic step in the entry of Leishmania involves interaction of the parasite with the host plasma membrane. In this work, we have explored the effect of chronic metabolic cholesterol depletion using lovastatin on the entry and survival of Leishmania donovani in host macrophages. We show here that chronic cholesterol depletion of host macrophages results in reduction in the attachment of Leishmania promastigotes, along with a concomitant reduction in the intracellular amastigote load. These results assume further relevance since chronic cholesterol depletion is believed to mimic physiological cholesterol modulation. Interestingly, the reduction in the ability of Leishmania to enter host macrophages could be reversed upon metabolic replenishment of cholesterol. Importantly, enrichment of host membrane cholesterol resulted in reduction in the entry and survival of Leishmania in host macrophages. As a control, the binding of Escherichia coli to host macrophages remained invariant under these conditions, thereby implying specificity of cholesterol requirement for effective leishmanial infection. To the best of our knowledge, these results constitute the first comprehensive demonstration that an optimum content of host membrane cholesterol is necessary for leishmanial infection. Our results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated leishmanial infection. PMID:27319380

  1. Nutritional recovery with a soybean diet after weaning reduces lipogenesis but induces inflammation in the liver in adult rats exposed to protein restriction during intrauterine life and lactation.

    Science.gov (United States)

    Reis, Sílvia Regina de Lima; Feres, Naoel Hassan; Ignacio-Souza, Leticia Martins; Veloso, Roberto Vilela; Arantes, Vanessa Cristina; Kawashita, Nair Honda; Colodel, Edson Moleta; Botosso, Bárbara Laet; Reis, Marise Auxiliadora de Barros; Latorraca, Márcia Queiroz

    2015-01-01

    We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein) in a percentage of 17% (control, C) or 6% (low, L) during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp.) or soybean (CS and LS groups, resp.) after weaning until 90 days of age. LS and CS rats had low body weight, normal basal serum triglyceride levels, increased ALT concentrations, and high HOMA-IR indices compared with LC and CC rats. The soybean diet reduced PPARγ as well as malic enzyme and citrate lyase contents and activities. The lipogenesis rate and liver fat content were lower in LS and CS rats relative to LC and CC rats. TNFα mRNA and protein levels were higher in LS and CS rats than in LC and CC rats. NF-κB mRNA levels were lower in the LC and LS groups compared with the CC and LC groups. Thus, the soybean diet prevented hepatic steatosis at least in part through reduced lipogenesis but resulted in TNFα-mediated inflammation.

  2. Nutritional Recovery with a Soybean Diet after Weaning Reduces Lipogenesis but Induces Inflammation in the Liver in Adult Rats Exposed to Protein Restriction during Intrauterine Life and Lactation

    Directory of Open Access Journals (Sweden)

    Sílvia Regina de Lima Reis

    2015-01-01

    Full Text Available We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein in a percentage of 17% (control, C or 6% (low, L during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp. or soybean (CS and LS groups, resp. after weaning until 90 days of age. LS and CS rats had low body weight, normal basal serum triglyceride levels, increased ALT concentrations, and high HOMA-IR indices compared with LC and CC rats. The soybean diet reduced PPARγ as well as malic enzyme and citrate lyase contents and activities. The lipogenesis rate and liver fat content were lower in LS and CS rats relative to LC and CC rats. TNFα mRNA and protein levels were higher in LS and CS rats than in LC and CC rats. NF-κB mRNA levels were lower in the LC and LS groups compared with the CC and LC groups. Thus, the soybean diet prevented hepatic steatosis at least in part through reduced lipogenesis but resulted in TNFα-mediated inflammation.

  3. Nutritional recovery with a soybean diet after weaning reduces lipogenesis but induces inflammation in the liver in adult rats exposed to protein restriction during intrauterine life and lactation.

    Science.gov (United States)

    Reis, Sílvia Regina de Lima; Feres, Naoel Hassan; Ignacio-Souza, Leticia Martins; Veloso, Roberto Vilela; Arantes, Vanessa Cristina; Kawashita, Nair Honda; Colodel, Edson Moleta; Botosso, Bárbara Laet; Reis, Marise Auxiliadora de Barros; Latorraca, Márcia Queiroz

    2015-01-01

    We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein) in a percentage of 17% (control, C) or 6% (low, L) during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp.) or soybean (CS and LS groups, resp.) after weaning until 90 days of age. LS and CS rats had low body weight, normal basal serum triglyceride levels, increased ALT concentrations, and high HOMA-IR indices compared with LC and CC rats. The soybean diet reduced PPARγ as well as malic enzyme and citrate lyase contents and activities. The lipogenesis rate and liver fat content were lower in LS and CS rats relative to LC and CC rats. TNFα mRNA and protein levels were higher in LS and CS rats than in LC and CC rats. NF-κB mRNA levels were lower in the LC and LS groups compared with the CC and LC groups. Thus, the soybean diet prevented hepatic steatosis at least in part through reduced lipogenesis but resulted in TNFα-mediated inflammation. PMID:25892856

  4. The Structural Basis of Cholesterol Activity in Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  5. Chromatographic separation of cholesterol in foods.

    Science.gov (United States)

    Fenton, M

    1992-10-30

    Based on the current literature and on experience gained in the laboratory, a simplified procedure using direct saponification (0.4 M potassium hydroxide in ethanol and heating at 60 degrees C for 1 h) is the most appropriate method for the determination of total cholesterol in foods. Extraction of the unsaponifiable matter with hexane is efficient and no extra clean-up is required before quantification. An internal standard, 5 alpha-cholestane or epicoprostanol, should be added to the sample prior to saponification and, together with reference standards, carried through the entire procedure to ensure accurate results. A significant improvement in cholesterol methodology has been achieved by decreasing the sample size and performing all the sample preparation steps in a single tube. The method has the advantages of elimination of an initial solvent extraction for total lipids and errors resulting from multiple extractions, transfers, filtration and wash steps after saponification. The resulting hexane extract, which contains a variety of sterols and fat soluble vitamins, requires an efficient capillary column for complete resolution of cholesterol from the other compounds present. The development of fused-silica capillary columns using cross-linked and bonded liquid phases has provided high thermal stability, inertness and separation efficiency and, together with automated cold on-column gas chromatographic injection systems, has resulted in reproducible cholesterol determinations in either underivatized or derivatized form. If free cholesterol and its esters need to be determined separately, they are initially extracted with other lipids with chloroform-methanol followed by their separation by column or thin-layer chromatography and subsequently analysed by gas or liquid chromatography. Although capillary gas chromatography offers superior efficiency in separation, the inherent benefits of liquid chromatography makes it a potential alternative. Isotope dilution

  6. Dairy products and plasma cholesterol levels

    Directory of Open Access Journals (Sweden)

    Lena Ohlsson

    2010-08-01

    Full Text Available Cholesterol synthesized in the body or ingested is an essential lipid component for human survival from our earliest life. Newborns ingest about 3–4 times the amount per body weight through mother's milk compared to the dietary intake of adults. A birth level of 1.7 mmol/L plasma total cholesterol will increase to 4–4.5 mmol/L during the nursing period and continue to increase from adulthood around 40% throughout life. Coronary artery disease and other metabolic disorders are strongly associated with low-density lipoprotein (LDL and high-density lipoprotein (HDL cholesterol as well as triacylglycerol concentration. Milk fat contains a broad range of fatty acids and some have a negative impact on the cholesterol rich lipoproteins. The saturated fatty acids (SFAs, such as palmitic acid (C16:0, myristic acid (C14:0, and lauric acid (C12:0, increase total plasma cholesterol, especially LDL, and constitute 11.3 g/L of bovine milk, which is 44.8% of total fatty acid in milk fat. Replacement of dairy SFA and trans-fatty acids with polyunsaturated fatty acids decreases plasma cholesterol, especially LDL cholesterol, and is associated with a reduced risk of cardiovascular disease. Available data shows different effects on lipoproteins for different dairy products and there is uncertainty as to the impact a reasonable intake amount of dairy items has on cardiovascular risk. The aim of this review is to elucidate the effect of milk components and dairy products on total cholesterol, LDL, HDL, and the LDL/HDL quotients. Based on eight recent randomized controlled trials of parallel or cross-over design and recent reviews it can be concluded that replacement of saturated fat mainly (but not exclusively derived from high-fat dairy products with low-fat dairy products lowers LDL/HDL cholesterol and total/HDL cholesterol ratios. Whey, dairy fractions enriched in polar lipids, and techniques such as fermentation, or fortification of cows feeding can be used

  7. Possible protective role of pregnenolone-16 alpha-carbonitrile in lithocholic acid-induced hepatotoxicity through enhanced hepatic lipogenesis.

    Science.gov (United States)

    Miyata, Masaaki; Nomoto, Masahiro; Sotodate, Fumiaki; Mizuki, Tomohiro; Hori, Wataru; Nagayasu, Miho; Yokokawa, Shinya; Ninomiya, Shin-ichi; Yamazoe, Yasushi

    2010-06-25

    Lithocholic acid (LCA) feeding causes both liver parenchymal and cholestatic damages in experimental animals. Although pregnenolone-16 alpha-carbonitrile (PCN)-mediated protection against LCA-induced hepatocyte injury may be explained by induction of drug metabolizing enzymes, the protection from the delayed cholestasis remains incompletely understood. Thus, the PCN-mediated protective mechanism has been studied from the point of modification of lipid metabolism. At an early stage of LCA feeding, an imbalance of biliary bile acid and phospholipid excretion was observed. Co-treatment with PCN reversed the increase in serum alanine aminotransferase (ALT) as well as alkaline phosphatase (ALP) activities and hepatic hydrophobic bile acid levels. LCA feeding decreased hepatic mRNA levels of several fatty acid- and phospholipid-related genes before elevation of serum ALT and ALP activities. On the other hand, PCN co-treatment reversed the decrease in the mRNA levels and hepatic levels of phospholipids, triglycerides and free fatty acids. PCN co-treatment also reversed the decrease in biliary phospholipid output in LCA-fed mice. Treatment with PCN alone increased hepatic phospholipid, triglyceride and free fatty acid concentrations. Hepatic fatty acid and phosphatidylcholine synthetic activities increased in mice treated with PCN alone or PCN and LCA, compared to control mice, whereas these activities decreased in LCA-fed mice. These results suggest the possibility that PCN-mediated stimulation of lipogenesis contributes to the protection from lithocholic acid-induced hepatotoxicity.

  8. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism

    Science.gov (United States)

    Tang, Yuefeng; Wallace, Martina; Sanchez-Gurmaches, Joan; Hsiao, Wen-Yu; Li, Huawei; Lee, Peter L.; Vernia, Santiago; Metallo, Christian M.; Guertin, David A.

    2016-01-01

    Adipose tissue de novo lipogenesis (DNL) positively influences insulin sensitivity, is reduced in obesity, and predicts insulin resistance. Therefore, elucidating mechanisms controlling adipose tissue DNL could lead to therapies for type 2 diabetes. Here, we report that mechanistic target of rapamycin complex 2 (mTORC2) functions in white adipose tissue (WAT) to control expression of the lipogenic transcription factor ChREBPβ. Conditionally deleting the essential mTORC2 subunit Rictor in mature adipocytes decreases ChREBPβ expression, which reduces DNL in WAT, and impairs hepatic insulin sensitivity. Mechanistically, Rictor/mTORC2 promotes ChREBPβ expression in part by controlling glucose uptake, but without impairing pan-AKT signalling. High-fat diet also rapidly decreases adipose tissue ChREBPβ expression and insulin sensitivity in wild-type mice, and does not further exacerbate insulin resistance in adipose tissue Rictor knockout mice, implicating adipose tissue DNL as an early target in diet-induced insulin resistance. These data suggest mTORC2 functions in WAT as part of an extra-hepatic nutrient-sensing mechanism to control glucose homeostasis. PMID:27098609

  9. De novo lipogenesis is suppressed during fasting but upregulated at population decline in cyclic voles.

    Science.gov (United States)

    Nieminen, Petteri; Rouvinen-Watt, Kirsti; Harris, Lora; Huitu, Otso; Henttonen, Heikki; Mustonen, Anne-Mari

    2016-04-01

    Arvicolines are susceptible to the development of fatty liver during short-term fasting. We examined the potential role of de novo lipogenesis (DNL) (i) in the development of fasting-induced fatty liver and (ii) during a population cycle by measuring the mRNA expression of acetyl-CoA carboxylase-1 (ACC1) and fatty acid synthase (FAS). Laboratory voles (Microtus oeconomus and Microtus arvalis) were fed or fasted for 12 or 18 h and their liver mRNA levels were determined. Both species showed decreased mRNA expression of ACC1 and FAS during fasting. This suggests that DNL does not participate in the development of fatty liver in voles, different from human non-alcoholic fatty liver disease. In wild bank voles (Myodes glareolus), the mRNA levels of the genes of interest were higher during the population decline compared to the increase phase. In conclusion, DNL was suppressed during acute fasting but upregulated during a long-term population decline-a period of purported scarcity of high-quality food. PMID:26892709

  10. Lipogenesis from U14C lactate in obese Zucker rat hepatocytes. Effect of albumin-bound oleate

    International Nuclear Information System (INIS)

    Lipogenesis from U(14C) lactate was studied in hepatocytes isolated from obese Zucker rats (fa/fa) their lean littermates (Fa/.) and Sprague Dawley rats. The distribution of radioactive carbon between the glycerol and the fatty acid moieties of the acylglycerols were studied. Radioactive lactate was better utilized for glycerol formation than it was for fatty acid formation in the obese rats. However, when oleate was added to the hepatocytic incubation medium, radioactive lactate was preferentially incorporated into the fatty acid moiety of the acyglycerols. Among the nutrients, lactate seems to be a better source of carbon than glucose for lipid synthesis. It has been shown that there is increased hepatic portal blood concentration of lactate several hours after eating: about 4 mM in Wistar rats and 10-15 mM in obese Zucher rats. We are interested in determin the incorporation of carbon from lactate either into glycerol or into fatty acid moieties of hepatic acylgylcerols, and in determining the influence of exogenous fatty acids on acylgylcerol synthesis, since a high level of circulating fatty acids in Zucher obese rats has been reported. The purpose was to determine the incorporaton of lactate into glycerol and fatty moieties of acylglycerols, under the influence of oleate

  11. Regulation of glucose utilization and lipogenesis in adipose tissue of diabetic and fat fed animals: Effects of insulin and manganese

    Indian Academy of Sciences (India)

    Najma Z Baquer; M Sinclair; S Kunjara; Umesh C S Yadav; P McLean

    2003-03-01

    In order to evaluate the modulatory effects of manganese, high fat diet fed and alloxan diabetic rats were taken and the changes in the glucose oxidation, glycerol release and effects of manganese on these parameters were measured from adipose tissue. An insulin-mimetic effect of manganese was observed in the adipose tissue in the controls and an additive effect of insulin and manganese on glucose oxidation was seen when Mn2+ was added in vitro. The flux of glucose through the pentose phosphate pathway and glycolysis was significantly decreased in high fat fed animals. Although the in vitro addition of Mn2+ was additive with insulin when 14CO2 was measured from control animals, it was found neither in young diabetic animals (6–8 weeks old) nor in the old (16 weeks old). Both insulin and manganese caused an increased oxidation of carbon-1 of glucose and an increase of its incorporation into 14C-lipids in the young control animals; the additive effect of insulin and manganese suggests separate site of action. This effect was decreased in fat fed animals, diabetic animals and old animals. Manganese alone was found to decrease glycerol in both the control and diabetic adipose tissue in in vitro incubations. The results of the effects of glucose oxidation, lipogenesis, and glycerol release in adipose tissue of control and diabetic animals of different ages are presented together with the effect of manganese on adipose tissue from high fat milk diet fed animals.

  12. Effects of Exercise Training on Molecular Markers of Lipogenesis and Lipid Partitioning in Fructose-Induced Liver Fat Accumulation

    Directory of Open Access Journals (Sweden)

    Siham Yasari

    2012-01-01

    Full Text Available The present study was designed to investigate the impact of exercise training on lipogenic gene expression in liver and lipid partitioning following the ingestion of a high fructose load. Female rats were exercise-trained for 8 wk or kept sedentary before being submitted to a fasting/refeeding protocol. Rats were further subdivided as follow: rats were fasted for 24 h, refed a standard diet for 24 h, starved for another 24 h, and refed with a standard or a high-fructose diet 24 h before sacrifice. Fructose refeeding was associated with an increase in hepatic lipid content, endocannabinoid receptor 1, sterol regulatory element-binding protein1c, and stearoyl-CoA desaturase1 gene expression in both Sed and TR rats. However, desaturation indexes measured in liver (C16 : 1/C16 : 0 and C18 : 1/C18 : 0 and plasma (C18 : 1/C18 : 0 were higher (P<0.01 in TR than in Sed rats following fructose refeeding. It is concluded that exercise training does not significantly affect fat accumulation and the molecular expression of genes involved in lipogenesis after fasting and fructose refeeding but does modify the partitioning of lipids so as to provide more unsaturated fatty acids in liver without affecting liver fat content.

  13. Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jeong [Department of Biochemistry, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of); Park, Sahng Wook [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Hojeong [Department of Anatomy, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of); Park, Sang-Kyu, E-mail: 49park@kd.ac.kr [Department of Biochemistry, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of); Yoon, Dojun, E-mail: mozart@kd.ac.kr [Department of Biochemistry, Kwandong University College of Medicine, Gangneung, Gangwondo 210-701 (Korea, Republic of)

    2010-02-19

    Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor {gamma}2, CCAAT/enhancer-binding protein alpha (C/EBP{alpha}), sterol regulatory element binding protein-1c, and Krueppel-like factor 15, but not those of C/EBP{beta} or C/EBP{delta}, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.

  14. The Epigenetic Drug 5-Azacytidine Interferes with Cholesterol and Lipid Metabolism*

    Science.gov (United States)

    Poirier, Steve; Samami, Samaneh; Mamarbachi, Maya; Demers, Annie; Chang, Ta Yuan; Vance, Dennis E.; Hatch, Grant M.; Mayer, Gaétan

    2014-01-01

    DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties. PMID:24855646

  15. The epigenetic drug 5-azacytidine interferes with cholesterol and lipid metabolism.

    Science.gov (United States)

    Poirier, Steve; Samami, Samaneh; Mamarbachi, Maya; Demers, Annie; Chang, Ta Yuan; Vance, Dennis E; Hatch, Grant M; Mayer, Gaétan

    2014-07-01

    DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties. PMID:24855646

  16. Cholesterol efflux analyses using stable isotopes and mass spectrometry

    OpenAIRE

    Robert J Brown; Shao, Fei; Baldán, Ángel; Albert, Carolyn J.; Ford, David A.

    2012-01-01

    Cholesterol efflux from macrophages and the vascular wall is the initial step of the cardiovascular protective reverse cholesterol transport process. This study demonstrates a mass spectrometry based assay to measure the cellular and media content of [d7]-cholesterol and unlabeled cholesterol that can be used to measure cholesterol efflux from cell lines. Using a triple quadrupole ESI-MS instrument in direct infusion mode, product ion scanning for m/z 83, neutral loss (NL) 375.5 scanning and ...

  17. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization.

    Science.gov (United States)

    Hofmann, Kristina; Thiele, Christoph; Schött, Hans-Frieder; Gaebler, Anne; Schoene, Mario; Kiver, Yuriy; Friedrichs, Silvia; Lütjohann, Dieter; Kuerschner, Lars

    2014-03-01

    Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy. PMID:24334219

  18. Lignin biosynthesis and its molecular regulation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lignin biosynthesis has become increasingly highlighted because it plays an important role in the growth and development of plant, in the systematic evolution of plant and in the human life. Due to the progress in the field of lignin studies in recent years, the lignin biosynthesis pathway has been 修订日期:. Here we discuss some genetic engineering approaches on lignin biosynthesis, and conceive strategy to regulate lignin biosynthesis in order to use lignin resource more efficiently in agricultural and industrial productions.

  19. Emerging roles of the intestine in control of cholesterol metabolism

    Institute of Scientific and Technical Information of China (English)

    Janine K Kruit; Albert K Groen; Theo J van Berkel; Folkert Kuipers

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis,clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor to high density lipoprotein (HDL; good cholesterol) formation. The liver has a central position in the classical definition of the reverse cholesterol transport pathway by taking up peripheryderived cholesterol from lipoprotein particles followed by conversion into bile acids or its direct secretion into bile for eventual removal via the feces. During the past couple of years, however, an additional important role of the intestine in maintenance of cholesterol homeostasis and regulation of plasma cholesterol levels has become apparent. Firstly, molecular mechanisms of cholesterol absorption have been elucidated and novel pharmacological compounds have been identified that interfere with the process and positively impact plasma cholesterol levels. Secondly, it is now evident that the intestine itself contributes to fecal neutral sterol loss as a cholesterol-secreting organ. Finally, very recent work has unequivocally demonstrated that the intestine contributes significantly to plasma HDL cholesterol levels.Thus, the intestine is a potential target for novel antiatherosclerotic treatment strategies that, in addition to interference with cholesterol absorption, modulate direct cholesterol excretion and plasma HDL cholesterol levels.

  20. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    Science.gov (United States)

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases.

  1. Lipoproteins, cholesterol homeostasis and cardiac health

    Directory of Open Access Journals (Sweden)

    Tyler F. Daniels, Karen M. Killinger, Jennifer J. Michal, Raymond W. Wright Jr., Zhihua Jiang

    2009-01-01

    Full Text Available Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.

  2. LDL cholesterol: controversies and future therapeutic directions.

    Science.gov (United States)

    Ridker, Paul M

    2014-08-16

    Lifelong exposure to raised concentrations of LDL cholesterol increases cardiovascular event rates, and the use of statin therapy as an adjunct to diet, exercise, and smoking cessation has proven highly effective in reducing the population burden associated with hyperlipidaemia. Yet, despite consistent biological, genetic, and epidemiological data, and evidence from randomised trials, there is controversy among national guidelines and clinical practice with regard to LDL cholesterol, its measurement, the usefulness of population-based screening, the net benefit-to-risk ratio for different LDL-lowering drugs, the benefit of treatment targets, and whether aggressive lowering of LDL is safe. Several novel therapies have been introduced for the treatment of people with genetic defects that result in loss of function within the LDL receptor, a major determinant of inherited hyperlipidaemias. Moreover, the usefulness of monoclonal antibodies that extend the LDL-receptor lifecycle (and thus result in substantial lowering of LDL cholesterol below the levels achieved with statins alone) is being assessed in phase 3 trials that will enrol more than 60,000 at-risk patients worldwide. These trials represent an exceptionally rapid translation of genetic observations into clinical practice and will address core questions of how low LDL cholesterol can be safely reduced, whether the mechanism of LDL-cholesterol lowering matters, and whether ever more aggressive lipid-lowering provides a safe, long-term mechanism to prevent atherothrombotic complications.

  3. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    OpenAIRE

    Sonawane Nitin D; Previs Stephen F; Jiang Dechen; Ruddy Jennifer; Manson Mary E; West Richard H; Fang Danjun; Burgess James D; Kelley Thomas J

    2010-01-01

    Abstract Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detectio...

  4. Elevated Remnant Cholesterol Causes Both Low-Grade Inflammation and Ischemic Heart Disease, Whereas Elevated Low-Density Lipoprotein Cholesterol Causes Ischemic Heart Disease Without Inflammation

    DEFF Research Database (Denmark)

    Varbo, Anette; Tybjærg-Hansen, Anne; Nordestgaard, Børge G;

    2013-01-01

    Elevated nonfasting remnant cholesterol and low-density lipoprotein (LDL) cholesterol are causally associated with ischemic heart disease (IHD), but whether elevated nonfasting remnant cholesterol and LDL cholesterol both cause low-grade inflammation is currently unknown....

  5. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans : a meta-analysis

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Katan, M.B.

    2001-01-01

    Several epidemiologic studies found no effect of egg consumption on the risk of coronary heart disease. It is possible that the adverse effect of eggs on LDL-cholesterol is offset by their favorable effect on HDL cholesterol. Objective: The objective was to review the effect of dietary cholesterol o

  6. CHOBIMALT: A Cholesterol-Based Detergent†

    Science.gov (United States)

    Howell, Stanley C.; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M.; Sanders, Charles R.

    2010-01-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins, but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3–4μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210 ± 30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1. PMID:20919740

  7. CHOBIMALT: a cholesterol-based detergent.

    Science.gov (United States)

    Howell, Stanley C; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M; Sanders, Charles R

    2010-11-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems, a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3−4 μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210±30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1.

  8. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    Science.gov (United States)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  9. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    Directory of Open Access Journals (Sweden)

    Sonawane Nitin D

    2010-05-01

    Full Text Available Abstract Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age. Results Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility. Conclusions The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content.

  10. The cholesterol system of the swine

    International Nuclear Information System (INIS)

    The purpose of this work was to characterize the dynamic system of adult female Large White swine. The content of this system and its relationships with both the external environment and between the different parts of the system were explained. The analysis of these results in terms of compared physiology showed that the structure of the cholesterol system was the same in man and in the swine. Consequently, the swine constitutes a good biological tool to study human cholesterol indirectly and to foresee the changes that might be induced in various physio-pathological cases. (author)

  11. Ordering effects of cholesterol and its analogues

    DEFF Research Database (Denmark)

    Róg, Tomasz; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo;

    2009-01-01

    . In this review, we discuss the biophysical effects of cholesterol on the lipid bilayer, in particular the ordering and condensing effects, concentrating on the molecular level or inter-atomic interactions perspective, starting from two-component systems and proceeding to many-component ones e.g., modeling lipid...... rafts. Particular attention is paid to the roles of the methyl groups in the cholesterol ring system, and their possible biological function. Although our main research methodology is computer modeling, in this review we make extensive comparisons between experiments and different modeling approaches....

  12. Electron Transfer Pathways in Cholesterol Synthesis.

    Science.gov (United States)

    Porter, Todd D

    2015-10-01

    Cholesterol synthesis in the endoplasmic reticulum requires electron input at multiple steps and utilizes both NADH and NADPH as the electron source. Four enzymes catalyzing five steps in the pathway require electron input: squalene monooxygenase, lanosterol demethylase, sterol 4α-methyl oxidase, and sterol C5-desaturase. The electron-donor proteins for these enzymes include cytochrome P450 reductase and the cytochrome b5 pathway. Here I review the evidence for electron donor protein requirements with these enzymes, the evidence for additional electron donor pathways, and the effect of deletion of these redox enzymes on cholesterol and lipid metabolism. PMID:26344922

  13. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14CO2. None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14CO2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  14. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Soufi Muhidien

    2008-11-01

    Full Text Available Abstract Background Elevated plasma cholesterol promotes the formation of atherosclerotic lesions in which monocyte-derived lipid-laden macrophages are frequently found. To analyze, if circulating monocytes already show increased lipid content and differences in lipoprotein metabolism, we compared monocytes from patients with Familial Hypercholesterolemia (FH with those from healthy individuals. Methods Cholesterol and oxidized cholesterol metabolite serum levels of FH and of healthy, gender/age matched control subjects were measured by combined gas chromatography – mass spectroscopy. Monocytes from patients with FH and from healthy subjects were isolated by antibody-assisted density centrifugation. Gene expression profiles of isolated monocytes were measured using Affymetrix HG-U 133 Plus 2.0 microarrays. We compared monocyte gene expression profiles from FH patients with healthy controls using a Welch T-test with correction for multiple testing (p Results Using microarray analysis we found in FH patients a significant up-regulation of 1,617 genes and a down-regulation of 701 genes compared to monocytes from healthy individuals. These include genes of proteins that are involved in the uptake, biosynthesis, disposition, and cellular efflux of cholesterol. In addition, plasma from FH patients contains elevated amounts of sterols and oxysterols. An increased uptake of oxidized as well as of native LDL by FH monocytes combined with a down-regulation of NPC1 and ABCA1 explains the lipid accumulation observed in these cells. Conclusion Our data demonstrate that circulating FH monocytes show differences in cell physiology that may contribute to the early onset of atherosclerosis in this disease.

  15. Apolipoprotein A-I Helsinki promotes intracellular acyl-CoA cholesterol acyltransferase (ACAT) protein accumulation.

    Science.gov (United States)

    Toledo, Juan D; Garda, Horacio A; Cabaleiro, Laura V; Cuellar, Angela; Pellon-Maison, Magali; Gonzalez-Baro, Maria R; Gonzalez, Marina C

    2013-05-01

    Reverse cholesterol transport is a process of high antiatherogenic relevance in which apolipoprotein AI (apoA-I) plays an important role. The interaction of apoA-I with peripheral cells produces through mechanisms that are still poorly understood the mobilization of intracellular cholesterol depots toward plasma membrane. In macrophages, these mechanisms seem to be related to the modulation of the activity of acyl-CoA cholesterol acyltransferase (ACAT), the enzyme responsible for the intracellular cholesterol ester biosynthesis that is stored in lipid droplets. The activation of ACAT and the accumulation of lipid droplets play a key role in the transformation of macrophages into foam cells, leading to the formation of atheroma or atherosclerotic plaque. ApoA-I Helsinki (or ∆K107) is a natural apoA-I variant with a lysine deletion in the central protein region, carriers of which have increased atherosclerosis risk. We herein show that treatment of cultured RAW macrophages or CHOK1 cells with ∆K107, but not with wild-type apoA-I or a variant containing a similar deletion at the C-terminal region (∆K226), lead to a marked increase (more than 10 times) in the intracellular ACAT1 protein level as detected by western blot analysis. However, we could only detect a slight increase in cholesteryl ester produced by ∆K107 mainly when Chol loading was supplied by low-density lipoprotein (LDL). Although a similar choline-phospholipid efflux is evoked by these apoA-I variants, the change in phosphatidylcholine/sphyngomyelin distribution produced by wild-type apoA-I is not observed with either ∆K107 or ∆K226. PMID:23456478

  16. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice.

    Science.gov (United States)

    Bura, Kanwardeep S; Lord, Caleb; Marshall, Stephanie; McDaniel, Allison; Thomas, Gwyn; Warrier, Manya; Zhang, Jun; Davis, Matthew A; Sawyer, Janet K; Shah, Ramesh; Wilson, Martha D; Dikkers, Arne; Tietge, Uwe J F; Collet, Xavier; Rudel, Lawrence L; Temel, Ryan E; Brown, J Mark

    2013-06-01

    Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.

  17. Increased hepatic VLDL secretion, lipogenesis, and SREBP-1 expression in the corpulent JCR:LA-cp rat.

    Science.gov (United States)

    Elam, M B; Wilcox, H G; Cagen, L M; Deng, X; Raghow, R; Kumar, P; Heimberg, M; Russell, J C

    2001-12-01

    The corpulent JCR:LA-cp rat (cp/cp) is a useful model for study of the metabolic consequences of obesity and hyperinsulinemia. To assess the effect of hyperinsulinemia on VLDL secretion in this model, we measured rates of secretion of VLDL in perfused livers derived from cp/cp rats and their lean littermates. Livers of cp/cp rats secreted significantly greater amounts of VLDL triglyceride and apolipoprotein, compared with lean littermates. The content of apoB, apoE, and apoCs in both perfusate and plasma VLDL was greater in the cp/cp rat, as was the apolipoprotein (apo)C, apoA-I, and apoA-IV content of plasma HDL. Triglyceride content was also greater in cp/cp livers, as was hepatic lipogenesis and expression of lipogenic enzymes and sterol regulatory element binding protein-1 (SREBP-1). Hepatic mRNAs for apoE, and apoA-I were higher in livers of cp/cp rats. In contrast, the steady state levels of apoC-II, apoC-III, and apoB mRNAs were unchanged. Thus, livers of obese hyperinsulinemic cp/cp JCR:LA-cp rats secrete a greater number of VLDL particles that are enriched in triglyceride, apoE, and apoC. Greater secretion of VLDL in the cp/cp rat in part results from higher endogenous fatty acid synthesis, which in turn may occur in response to increased expression of the lipogenic enzyme regulator SREBP-1c.

  18. Differing endoplasmic reticulum stress response to excess lipogenesis versus lipid oversupply in relation to hepatic steatosis and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Lu-Ping Ren

    Full Text Available Mitochondrial dysfunction and endoplasmic reticulum (ER stress have been implicated in hepatic steatosis and insulin resistance. The present study investigated their roles in the development of hepatic steatosis and insulin resistance during de novo lipogenesis (DNL compared to extrahepatic lipid oversupply. Male C57BL/6J mice were fed either a high fructose (HFru or high fat (HFat diet to induce DNL or lipid oversupply in/to the liver. Both HFru and HFat feeding increased hepatic triglyceride within 3 days (by 3.5 and 2.4 fold and the steatosis remained persistent from 1 week onwards (p<0.01 vs Con. Glucose intolerance (iAUC increased by ∼60% and blunted insulin-stimulated hepatic Akt and GSK3β phosphorylation (∼40-60% were found in both feeding conditions (p<0.01 vs Con, assessed after 1 week. No impairment of mitochondrial function was found (oxidation capacity, expression of PGC1α, CPT1, respiratory complexes, enzymatic activity of citrate synthase & β-HAD. As expected, DNL was increased (∼60% in HFru-fed mice and decreased (32% in HFat-fed mice (all p<0.05. Interestingly, associated with the upregulated lipogenic enzymes (ACC, FAS and SCD1, two (PERK/eIF2α and IRE1/XBP1 of three ER stress pathways were significantly activated in HFru-fed mice. However, no significant ER stress was observed in HFat-fed mice during the development of hepatic steatosis. Our findings indicate that HFru and HFat diets can result in hepatic steatosis and insulin resistance without obvious mitochondrial defects via different lipid metabolic pathways. The fact that ER stress is apparent only with HFru feeding suggests that ER stress is involved in DNL per se rather than resulting from hepatic steatosis or insulin resistance.

  19. Cholesterol homeostasis: How do cells sense sterol excess?

    Science.gov (United States)

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J

    2016-09-01

    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis. PMID:26993747

  20. Remnant cholesterol as a cause of ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Nordestgaard, Børge G

    2014-01-01

    levels of remnant cholesterol may cause atherosclerosis same way as elevated levels of low-density lipoprotein (LDL) cholesterol, by cholesterol accumulation in the arterial wall. Genetic studies of variants associated with elevated remnant cholesterol levels show that an increment of 1mmol/L (39mg....... However, elevated levels of LDL cholesterol are associated with IHD, but not with low-grade inflammation. Such results indicate that elevated LDL cholesterol levels cause atherosclerosis without a major inflammatory component, whereas an inflammatory component of atherosclerosis is driven by elevated...

  1. Breast cancer 1 (BrCa1 may be behind decreased lipogenesis in adipose tissue from obese subjects.

    Directory of Open Access Journals (Sweden)

    Francisco J Ortega

    Full Text Available CONTEXT: Expression and activity of the main lipogenic enzymes is paradoxically decreased in obesity, but the mechanisms behind these findings are poorly known. Breast Cancer 1 (BrCa1 interacts with acetyl-CoA carboxylase (ACC reducing the rate of fatty acid biosynthesis. In this study, we aimed to evaluate BrCa1 in human adipose tissue according to obesity and insulin resistance, and in vitro cultured adipocytes. RESEARCH DESIGN AND METHODS: BrCa1 gene expression, total and phosphorylated (P- BrCa1, and ACC were analyzed in adipose tissue samples obtained from a total sample of 133 subjects. BrCa1 expression was also evaluated during in vitro differentiation of human adipocytes and 3T3-L1 cells. RESULTS: BrCa1 gene expression was significantly up-regulated in both omental (OM; 1.36-fold, p = 0.002 and subcutaneous (SC; 1.49-fold, p = 0.001 adipose tissue from obese subjects. In parallel with increased BrCa1 mRNA, P-ACC was also up-regulated in SC (p = 0.007 as well as in OM (p = 0.010 fat from obese subjects. Consistent with its role limiting fatty acid biosynthesis, both BrCa1 mRNA (3.5-fold, p<0.0001 and protein (1.2-fold, p = 0.001 were increased in pre-adipocytes, and decreased during in vitro adipogenesis, while P-ACC decreased during differentiation of human adipocytes (p = 0.005 allowing lipid biosynthesis. Interestingly, BrCa1 gene expression in mature adipocytes was restored by inflammatory stimuli (macrophage conditioned medium, whereas lipogenic genes significantly decreased. CONCLUSIONS: The specular findings of BrCa1 and lipogenic enzymes in adipose tissue and adipocytes reported here suggest that BrCa1 might help to control fatty acid biosynthesis in adipocytes and adipose tissue from obese subjects.

  2. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux.

    Directory of Open Access Journals (Sweden)

    Maria João Nunes

    Full Text Available Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi such as trichostatin A (TSA are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.

  3. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  4. The Success Story of LDL Cholesterol Lowering.

    Science.gov (United States)

    Pedersen, Terje R

    2016-02-19

    We can look back at >100 years of cholesterol research that has brought medicine to a stage where people at risk of severe or fatal coronary heart disease have a much better prognosis than before. This progress has not come about without resistance. Perhaps one of the most debated topics in medicine, the cholesterol controversy, could only be brought to rest through the development of new clinical research methods that were capable of taking advantage of the amazing achievements in basic and pharmacological science after the second World War. It was only after understanding the biochemistry and physiology of cholesterol synthesis, transport and clearance from the blood that medicine could take advantage of drugs and diets to reduce the risk of atherosclerotic diseases. This review points to the highlights of the history of low-density lipoprotein-cholesterol lowering, with the discovery of the low-density lipoprotein receptor and its physiology and not only the development of statins as the stellar moments but also the development of clinical trial methodology as an effective tool to provide scientifically convincing evidence. PMID:26892969

  5. Mitochondria, cholesterol and cancer cell metabolism.

    Science.gov (United States)

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  6. [Giant cholesterol cysts of the petrous apex].

    Science.gov (United States)

    Pellet, W; Valenzuela, S; Malca, S; Cannoni, M; Perez-Castillo, A M

    1992-01-01

    In connection with their two own cases, the authors deal about the giant cholesterol cysts of the petrous apex. The lesions which are to be differentiated from epidermoid cysts are cholesterol granulomas. Their petrous apex location explains their characteristic large appearance. As each cholesterol granuloma, they occur when a bony cell is obstructed. This chronic obstruction induces mucosal edema then bleedings which lead to the formation and, by the lack of drainage, to the accumulation of cholesterol crystals. These crystals initiate a non specific reaction to foreign bodies, a granuloma, which also can bleed. Thus, a continuous cycle perpetuates the growth of the lesion. This lesion, when it is localized in the petrous apex, can reach a big size before the appearance of some signs. Usually, these are otologic (sensorineural hearing loss, tinnitus, vertigo) and/or cranial nerve palsies (V, VI, VII). C.T. scan (well defined, sharply marginated bony expansible lesion with isodense to the brain central part) and M.R.I. (central region of increased intensity on both T1 and T2 weighted images and peripheral rim of markedly decreased signal intensity in all instances) features are characteristic enough to allow diagnose with other petrous apex lesions (cholesteatoma, mucocele, epithelial cyst, histiocytosis X, ...). Surgical treatment must try to evacuate and to aerate the cavity or perhaps to obliterate it with fatty pieces in order to prevent the recurrence. PMID:1299772

  7. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Pharmaceutical Engineering, International University of Korea, Jinju (Korea, Republic of); Choi, Jae Ho; Kim, Hyung Gyun; Khanal, Tilak; Song, Gye Young [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Myoung Soo [College of Agriculture and Life Sciences, Chungnam National University, Daejeon (Korea, Republic of); Lee, Hyun-Sun [Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young Chul; Lee, Young Chun [Division of Food Science, International University of Korea, Jinju (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-03-01

    AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the livers of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. - Highlights: ► CKS attenuated fat accumulation in HFD-fed rats and in steatotic HepG2 cells. ► CKS and its major component, platycodin D, inhibited the levels of SREBP-1 and FAS. ► CKS and platycodin D increased the phosphorylation of AMPK and ACC. ► Platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells.

  8. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin

    Science.gov (United States)

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-01-01

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts. PMID:27428951

  9. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells

    International Nuclear Information System (INIS)

    AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the livers of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. - Highlights: ► CKS attenuated fat accumulation in HFD-fed rats and in steatotic HepG2 cells. ► CKS and its major component, platycodin D, inhibited the levels of SREBP-1 and FAS. ► CKS and platycodin D increased the phosphorylation of AMPK and ACC. ► Platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells

  10. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin

    Directory of Open Access Journals (Sweden)

    Chien-Liang Fang

    2016-07-01

    Full Text Available Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM. Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1, Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL, and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR, adiponectin receptor 1 (AdipoR1, matrix metalloproteinase-1 (MMP-1, MMP-3, and cyclooxygenase-2 (COX-2, but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts.

  11. Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase.

    Science.gov (United States)

    Li, Shuijie; Bouzar, Célia; Cottet-Rousselle, Cécile; Zagotta, Ivana; Lamarche, Frédéric; Wabitsch, Martin; Tokarska-Schlattner, Malgorzata; Fischer-Posovszky, Pamela; Schlattner, Uwe; Rousseau, Denis

    2016-06-01

    Resveratrol is attracting much interest because of its potential to decrease body weight and increase life span, influencing liver and muscle function by increasing mitochondrial mass and energy expenditure. Even though resveratrol was already shown to reduce the adipose tissue mass in animal models, its effects on mitochondrial mass and network structure in adipocytes have not yet been studied. For this purpose, we investigated the effect of resveratrol on mitochondrial mass increase and remodeling during adipogenic differentiation of two in vitro models of adipocyte biology, the murine 3T3-L1 cell line and the human SGBS cell strain. We confirm that resveratrol inhibits lipogenesis in differentiating adipocytes, both mouse and human. We further show that this is linked to inhibition of the normally observed mitochondrial mass increase and mitochondrial remodeling. At the molecular level, the anti-lipogenic effect of resveratrol seems to be mediated by a blunted expression increase and an inhibition of acetyl-CoA carboxylase (ACC). This is one of the consequences of an inhibited insulin-induced signaling via Akt, and maintained signaling via AMP-activated protein kinase. The anti-lipogenic effect of resveratrol is further modulated by expression levels of mitochondrial ATAD3, consistent with the emerging role of this protein as an important regulator of mitochondrial biogenesis and lipogenesis. Our data suggest that resveratrol acts on differentiating preadipocytes by inhibiting insulin signaling, mitochondrial biogenesis, and lipogenesis, and that resveratrol-induced reduction of mitochondrial biogenesis and lipid storage contribute to adipose tissue weight loss in animals and humans.

  12. Fluorimetric determination of cholesterol in hypercholesterolemia serum

    Science.gov (United States)

    Lan, Xiufeng; Liu, Jiangang; Liu, Ying; Luo, Xiaosen; Lu, Jian; Ni, Xiaowu

    2005-01-01

    With the increase of people"s living standard and the changes of living form, the number of people who suffer from hypercholesterolemia is increasing. It is not only harmful to heart and blood vessel, but also leading to obstruction of cognition. The conventional blood detection technology has weakness such as complex operation, long detecting period, and bad visibility. In order to develop a new detection method that can checkout hypercholesterolemia conveniently, spectroscopy of cholesterol in hypercholesterolemia serum is obtained by the multifunctional grating spectrograph. The experiment results indicate that, under the excitation of light-emitting diode (LED) with the wavelength at 407 nm, the serum from normal human and the hypercholesterolemia serum emit different fluorescence spectra. The former can emit one fluorescence region with the peak locating at 516 nm while the latter can emit two more regions with peaks locating at 560 nm and 588 nm. Moreover, the fluorescence intensity of serum is non-linear increasing with the concentration of cholesterol increases when the concentration of cholesterol is lower than 13.8 mmol/L, and then, with the concentration of cholesterol increase, the fluorescence intensity decreases. However, the fluorescence intensity is still much higher than that of serum from normal human. Conclusions can be educed from the experiments: the intensity and the shape of fluorescence spectra of hypercholesterolemia serum are different of those of normal serum, from which the cholesterol abnormal in blood can be judged. The consequences in this paper may offer an experimental reference for the diagnosis of the hypercholesterolemia.

  13. Enzymatic Quantification of Cholesterol and Cholesterol Esters from Silicone Hydrogel Contact Lenses

    OpenAIRE

    Pucker, Andrew D.; Thangavelu, Mirunalni; Nichols, Jason J.

    2010-01-01

    There is significant interest in lipid deposition associated with current silicone hydrogel contact lens materials. This work describes the application of a cholesterol assay used to examine this question.

  14. Hearing Outcomes after Surgical Drainage of Petrous Apex Cholesterol Granuloma

    OpenAIRE

    Rihani, Jordan; Kutz, J. Walter; Isaacson, Brandon

    2014-01-01

    Objective This study aims to assess the hearing outcomes of patients undergoing surgical management of petrous apex cholesterol granuloma and to discuss the role of otic capsule–sparing approaches in drainage of petrous apex cholesterol granulomas.

  15. Plasma Ubiquinone, Alpha-Tocopherol and Cholesterol in Man

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Edlund, Per Olof;

    1992-01-01

    Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle......Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle...

  16. Nonfasting triglycerides, cholesterol, and ischemic stroke in the general population

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne;

    2011-01-01

    Current guidelines on stroke prevention have recommendations on desirable cholesterol levels, but not on nonfasting triglycerides. We compared stepwise increasing levels of nonfasting triglycerides and cholesterol for their association with risk of ischemic stroke in the general population....

  17. Trans Fat Now Listed With Saturated Fat and Cholesterol

    Science.gov (United States)

    ... Trans Fat Now Listed With Saturated Fat and Cholesterol Share Tweet Linkedin Pin it More sharing options ... I Do About Saturated Fat, Trans Fat, and Cholesterol? When comparing foods, look at the Nutrition Facts ...

  18. Talk with Your Health Care Provider about High Cholesterol

    Science.gov (United States)

    ... you do? Always ask your provider what your cholesterol numbers are and write them down. Discuss these ... provider may prescribe medicine to help lower your cholesterol. y y Take your medicine every day, or ...

  19. Acylphloroglucinol Biosynthesis in Strawberry Fruit.

    Science.gov (United States)

    Song, Chuankui; Ring, Ludwig; Hoffmann, Thomas; Huang, Fong-Chin; Slovin, Janet; Schwab, Wilfried

    2015-11-01

    Phenolics have health-promoting properties and are a major group of metabolites in fruit crops. Through reverse genetic analysis of the functions of four ripening-related genes in the octoploid strawberry (Fragaria × ananassa), we discovered four acylphloroglucinol (APG)-glucosides as native Fragaria spp. fruit metabolites whose levels were differently regulated in the transgenic fruits. The biosynthesis of the APG aglycones was investigated by examination of the enzymatic properties of three recombinant Fragaria vesca chalcone synthase (FvCHS) proteins. CHS is involved in anthocyanin biosynthesis during ripening. The F. vesca enzymes readily catalyzed the condensation of two intermediates in branched-chain amino acid metabolism, isovaleryl-Coenzyme A (CoA) and isobutyryl-CoA, with three molecules of malonyl-CoA to form phlorisovalerophenone and phlorisobutyrophenone, respectively, and formed naringenin chalcone when 4-coumaroyl-CoA was used as starter molecule. Isovaleryl-CoA was the preferred starter substrate of FvCHS2-1. Suppression of CHS activity in both transient and stable CHS-silenced fruit resulted in a substantial decrease of APG glucosides and anthocyanins and enhanced levels of volatiles derived from branched-chain amino acids. The proposed APG pathway was confirmed by feeding isotopically labeled amino acids. Thus, Fragaria spp. plants have the capacity to synthesize pharmaceutically important APGs using dual functional CHS/(phloriso)valerophenone synthases that are expressed during fruit ripening. Duplication and adaptive evolution of CHS is the most probable scenario and might be generally applicable to other plants. The results highlight that important promiscuous gene function may be missed when annotation relies solely on in silico analysis.

  20. Ezetimibe and Simvastatin Reduce Cholesterol Levels in Zebrafish Larvae Fed a High-Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Ji Sun Baek

    2012-01-01

    Full Text Available Cholesterol-fed zebrafish is an emerging animal model to study metabolic, oxidative, and inflammatory vascular processes relevant to pathogenesis of human atherosclerosis. Zebrafish fed a high-cholesterol diet (HCD develop hypercholesterolemia and are characterized by profound lipoprotein oxidation and vascular lipid accumulation. Using optically translucent zebrafish larvae has the advantage of monitoring vascular pathology and assessing the efficacy of drug candidates in live animals. Thus, we investigated whether simvastatin and ezetimibe, the principal drugs used in management of hypercholesterolemia in humans, would also reduce cholesterol levels in HCD-fed zebrafish larvae. We found that ezetimibe was well tolerated by zebrafish and effectively reduced cholesterol levels in HCD-fed larvae. In contrast, simvastatin added to water was poorly tolerated by zebrafish larvae and, when added to food, had little effect on cholesterol levels in HCD-fed larvae. Combination of low doses of ezetimibe and simvastatin had an additive effect in reducing cholesterol levels in zebrafish. These results suggest that ezetimibe exerts in zebrafish a therapeutic effect similar to that in humans and that the hypercholesterolemic zebrafish can be used as a low-cost and informative model for testing new drug candidates and for investigating mechanisms of action for existing drugs targeting dyslipidemia.

  1. Polymer sorbent with the properties of an artificial cholesterol receptor

    Science.gov (United States)

    Polyakova, I. V.; Ezhova, N. M.; Osipenko, A. A.; Pisarev, O. A.

    2015-02-01

    A cholesterol-imprinted polymer sorbent and the corresponding reticular control copolymer were synthesized from hydroxyethyl methacrylate and ethyleneglycol dimethacrylate. The sorption isotherms of cholesterol were analyzed using the generalized Langmuir and Freundlich equations. In the case of the imprinted reticular polymer, cholesterol sorption occurred on the energetically homogeneous binding centers, forming one monolayer, while the nonspecific sorption of cholesterol on the control copolymer occurred with energetically nonhomogeneous binding of the sorbate and depended on the physicochemical conditions of sorption.

  2. When cholesterol meets histamine, it gives rise to dendrogenin A: a tumour suppressor metabolite.

    Science.gov (United States)

    Poirot, Marc; Silvente-Poirot, Sandrine

    2016-04-15

    Dendrogenin A (DDA) is the first steroidal alkaloid (SA) to be identified in human tissues to date and arises from the stereoselective enzymatic conjugation of 5,6α-epoxycholesterol (5,6α-EC) with histamine (HA). DDA induces the re-differentiation of cancer cellsin vitroandin vivoand prevents breast cancer (BC) and melanoma development in mice, evidencing its protective role against oncogenesis. In addition, DDA production is lower in BCs compared with normal tissues, suggesting a deregulation of its biosynthesis during carcinogenesis. The discovery of DDA reveals the existence of a new metabolic pathway in mammals which lies at the crossroads of cholesterol and HA metabolism and which leads to the production of this metabolic tumour suppressor. PMID:27068981

  3. Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suman [Central Mechanical Engineering Research Institute, G. Avenue, Durgapur 713209, West Bengal (India); Singhal, Rahul [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)]. E-mail: bansi.malhotra@gmail.com

    2007-01-23

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 deg. C, response time as 180 s, linearity up to 780 mg dL{sup -1} (12 mM), shelf life of 1 month, detection limit of 12 mg dL{sup -1} and sensitivity as 5.4 x 10{sup -5} Abs. mg{sup -1} dL{sup -1}.

  4. Pantethine stimulates lipolysis in adipose tissue and inhibits cholesterol and fatty acid synthesis in liver and intestinal mucosa in the normolipidemic rat.

    Science.gov (United States)

    Bocos, C; Herrera, E

    1998-08-01

    In vitro effects of pantethine on adipose tissue lipolysis and on both hepatic and intestinal cholesterol and fatty acid synthesis in normolipidemic rats are determined and related to their respective in vivo hypolipidemic effects after acute oral administration. At 3, 5, 7 and 24 h after a single high dose of pantethine to rats, free fatty acids (FFA), cholesterol and triglycerides levels decreased whereas plasma glycerol increased, the effect becoming significant at 7 h. The release of glycerol and FFA by epididymal fat pad pieces from rats was measured in Krebs Ringer bicarbonate-albumin buffer supplemented or not with epinephrine and several concentrations of pantethine (0, 10(-5), 10(-4), or 10(-3) M), and it turned out to be enhanced as pantethine concentration increased. Besides, when glucose was present in the medium, this drug lowered fatty acid re-esterification in a dose-dependent manner, the effect being specially evident in the presence of epinephrine. In vitro synthesis of both cholesterol and fatty acids by slices of liver or intestinal epithelial cells was depressed as the concentration of pantethine increased in the medium. Thus, an inhibition of both cholesterolgenesis and lipogenesis seems to contribute to the hypocholesterolemic and hypotriglyceridemic effects of pantethine. On the other hand, the stimulation of lipolysis and the inhibition of fatty acid re-esterification on adipose tissue caused by pantethine must be counteracted by a high fatty acid oxidation in the liver which would explain the decrease in FFA and the increase in glycerol levels detected in the plasma of the pantethine-treated animals. PMID:21781882

  5. Moderate alcohol consumption increases cholesterol efflux mediated by ABCA1

    NARCIS (Netherlands)

    Beulens, J.W.J.; Sierksma, A.; Tol, van A.; Fournier, C.

    2004-01-01

    Moderate alcohol consumption increases HDL cholesterol, which is involved in reverse cholesterol transport (RCT). The aim of this study was to investigate the effect of moderate alcohol consumption on cholesterol efflux, using J774 mouse macrophages and Fu5AH cells, and on other parameters in the RC

  6. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor t

  7. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids

    Science.gov (United States)

    Biggerstaff, Kyle D.; Wooten, Joshua S.

    2004-01-01

    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  8. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    OpenAIRE

    Catherine Tomaro-Duchesneau; Mitchell L. Jones; Divya Shah; Poonam Jain; Shyamali Saha; Satya Prakash

    2014-01-01

    Excess cholesterol is associated with cardiovascular diseases (CVD), an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and ch...

  9. Hypercholesterolemia: The Role of Schools in Cholesterol Screening.

    Science.gov (United States)

    Price, James H.; Casler, Suzanne M.

    1997-01-01

    Examines the prevalence of cardiovascular disease risk factors among children and adolescents, the pros and cons of cholesterol screening among youth, cholesterol assessments of at-risk youth, and the role of schools in cholesterol education and screening (focusing on comprehensive school health education and services). (SM)

  10. CHROMATOGRAPHIC METHODS IN THE ANALYSIS OF CHOLESTEROL AND RELATED LIPIDS

    NARCIS (Netherlands)

    HOVING, EB

    1995-01-01

    Methods using thin-layer chromatography, solid-phase extraction, gas chromatography, high-performance liquid chromatography and supercritical fluid chromatography are described for the analysis of single cholesterol, esterified and sulfated cholesterol, and for cholesterol in the context of other li

  11. HDL Cholesterol and Risk of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Nordestgaard, Børge G;

    2015-01-01

    Observationally, low levels of HDL cholesterol are consistently associated with increased risk of type 2 diabetes. Therefore, plasma HDL cholesterol increasing has been suggested as a novel therapeutic option to reduce the risk of type 2 diabetes. Whether levels of HDL cholesterol are causally as...

  12. Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection.

    Science.gov (United States)

    Zhong, Qifeng; Xie, Zhuoying; Ding, Haibo; Zhu, Cun; Yang, Zixue; Gu, Zhongze

    2015-11-18

    Carbon inverse opal rods made from silica photonic crystal rods are used for nonenzymatic cholesterol sensing. The characteristic reflection peak originating from the physical periodic structure works as sensing signals for quantitatively estimating cholesterol concentrations. Carbon inverse opal rods work both in cholesterol standard solutions and human serum. They are suitable for practical use in clinical diagnose.

  13. Porcine artery elastin preparation reduces serum cholesterol level in rats

    OpenAIRE

    Liyanage, Ruvini; Nakamura, Yumi; Shimada, Ken-ichiro; SEKIKAWA, Mitsuo; Jayawardana, Barana Chaminda; HAN, Kyu-Ho; Tomoko, Okada; Ohba, Kiyoshi; Takahata, Yoshihisa; Morimatsu, Fumiki; FUKUSHIMA, Michihiro; 福島, 道広; 島田, 謙一郎; 関川, 三男; 韓, 圭鎬

    2009-01-01

    The effect of porcine artery elastin on serum cholesterol level was investigated in rats fed a cholesterol-free diet. Rats were fed for 4 weeks, with a diet (ED) containing 15% casein and 5% of porcine artery elastin in comparison with a diet (CD) containing 20% casein. The total serum and non-HDL-cholesterol concentrations were lower (P

  14. 25-Hydroxycholesterol Increases the Availability of Cholesterol in Phospholipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2011-02-01

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.

  15. On the puzzling distribution of cholesterol in the plasma membrane.

    Science.gov (United States)

    Giang, H; Schick, M

    2016-09-01

    The distribution of cholesterol between the two leaves of the plasma membrane in mammalian cells presents a conundrum; given cholesterol's known affinity for sphingomyelin, which resides predominantly in the exoplasmic leaf, why is it that experiment finds a majority of the cholesterol in the cytoplasmic leaf? This article reviews a recently proposed solution to this puzzle. PMID:26724709

  16. Alcohol consumption stimulates early steps in reverse cholesterol transport

    NARCIS (Netherlands)

    Gaag, M.S. van der; Tol, A. van; Vermunt, S.H.F.; Scheek, L.M.; Schaafsma, G.; Hendriks, H.F.J.

    2001-01-01

    Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol pathw

  17. Evolution of catalase activity during nystatin biosynthesis

    Directory of Open Access Journals (Sweden)

    Cristina Bota

    2009-03-01

    Full Text Available The research studies focused on the dynamics of catalase during nystatin biosynthesis by Streptomyces noursei. The catalase activity was determined by growing a pure culture of Streptomyces noursei from the strain collection owned by the company S.C. Antibiotice Iasi on biosynthesis medium. The test was performed on two experimental models of biosynthesis, one using sunflower oil, while the other soybean oil as basic nutrients. Special attention was paid to the connection between the evolution of the biomass and the level of catalase activity.

  18. Fluorinated Sterols Are Suicide Inhibitors of Ergosterol Biosynthesis and Growth in Trypanosoma brucei.

    Science.gov (United States)

    Leaver, David J; Patkar, Presheet; Singha, Ujjal K; Miller, Matthew B; Haubrich, Brad A; Chaudhuri, Minu; Nes, W David

    2015-10-22

    Trypanosoma brucei, the causal agent for sleeping sickness, depends on ergosterol for growth. Here, we describe the effects of a mechanism-based inhibitor, 26-fluorolanosterol (26FL), which converts in vivo to a fluorinated substrate of the sterol C24-methyltransferase essential for sterol methylation and function of ergosterol, and missing from the human host. 26FL showed potent inhibition of ergosterol biosynthesis and growth of procyclic and bloodstream forms while having no effect on cholesterol biosynthesis or growth of human epithelial kidney cells. During exposure of cloned TbSMT to 26-fluorocholesta-5,7,24-trienol, the enzyme is gradually killed as a consequence of the covalent binding of the intermediate C25 cation to the active site (kcat/kinact = 0.26 min(-1)/0.24 min(-1); partition ratio of 1.08), whereas 26FL is non-productively bound. These results demonstrate that poisoning of ergosterol biosynthesis by a 26-fluorinated Δ(24)-sterol is a promising strategy for developing a new treatment for trypanosomiasis.

  19. Effect of testosterone deficiency on cholesterol metabolism in pigs fed a high-fat and high-cholesterol diet

    OpenAIRE

    Cai, Zhaowei; Xi, Haitao; Pan, Yongming; Jiang, Xiaoling; Chen, Liang; Cai, Yueqin; Zhu, Keyan; Chen, Cheng; XU, XIAOPING; Chen, Minli

    2015-01-01

    Background Testosterone deficiency is associated with increased serum cholesterol levels. However, how testosterone deficiency precisely affects cholesterol metabolism remains unclear. Therefore, in the current study, we examined the effect of testosterone deficiency on cholesterol metabolism and liver gene expression in pigs fed a high-fat and high-cholesterol (HFC) diet. Methods Sexually mature male miniature pigs (6–7 months old) were randomly divided into 3 groups as follows: intact male ...

  20. Accessibility of Cholesterol in Endoplasmic Reticulum Membranes and Activation of SREBP-2 Switch Abruptly at a Common Cholesterol Threshold

    OpenAIRE

    Sokolov, Anna; Radhakrishnan, Arun

    2010-01-01

    Recent studies have shown that cooperative interactions in endoplasmic reticulum (ER) membranes between Scap, cholesterol, and Insig result in switch-like control over activation of SREBP-2 transcription factors. This allows cells to rapidly adjust rates of cholesterol synthesis and uptake in response to even slight deviations from physiological set-point levels, thereby ensuring cholesterol homeostasis. In the present study we directly probe for the accessibility of cholesterol in purified E...

  1. Understanding Cholesterol and Heart Health | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... cholesterol throughout the body: Low-density lipoproteins (LDL): LDL cholesterol sometimes is called "bad" cholesterol. A high LDL ... or even death. The higher the level of LDL cholesterol in your blood, the GREATER your chance is ...

  2. Effects of saturated and unsaturated fats given with and without dietary cholesterol on hepatic cholesterol synthesis and hepatic lipid metabolism.

    Science.gov (United States)

    Bochenek, W; Rodgers, J B

    1978-01-27

    Hepatic cholesterol synthesis was studied in rats after consuming diets of varying neutral lipid and cholesterol content. Cholesterol synthesis was evaluated by measuring 3-hydroxy-3-methylglutaryl-CoA reductase and by determining the rate of 3H-labeled sterol production from [3H]mevalonate. Results were correlated with sterol balance data and hepatic lipid content. Hepatic cholesterol synthesis was relatively great when cholesterol was excluded from the diet. The source of neutral dietary lipids, saturated vs. unsaturated, produced no change in hepatic sterol synthesis. Values for fecal sterol outputs and hepatic cholesterol levels were also similar in rats consuming either saturated or unsaturated fats. When 1% cholesterol was added to the diet, hepatic cholesterol synthesis was suppressed but the degree of suppression was greater in rats consuming unsaturated vs. saturated fats. This was associated with greater accumulation of cholesterol in livers from rats consuming unsaturates and a reduction in fecal neutral sterol output in this group as opposed to results from rats on saturated fats. Cholesterol consumption also altered the fatty acid composition of hepatic phospholipids producing decreases in the percentages of essential polyunsaturated fatty acids. It is concluded that dietary cholesterol alters cholesterol and fatty acid metabolism in the liver and that this effect is enhanced by dietary unsaturated fats.

  3. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine

    NARCIS (Netherlands)

    Bosch, van den H.M.; Wit, de N.J.W.; Hooiveld, G.J.E.J.; Vermeulen, H.; Veen, van der J.N.; Houten, S.M.; Kuipers, F.; Müller, M.R.; Meer, van der R.

    2008-01-01

    Transporters present in the epithelium of the small intestine determine the efficiency by which dietary and biliary cholesterol are taken up into the body and thus control whole-body cholesterol balance. Niemann-Pick C1 Like Protein 1 (Npc1l1) transports cholesterol into the enterocyte, whereas ATP-

  4. Fibroblast cholesterol efflux to plasma from metabolic syndrome subjects is not defective despite low high-density lipoprotein cholesterol

    NARCIS (Netherlands)

    R.P.F. Dullaart (Robin); A. Groen (Albert); G.M. Dallinga-Thie (Geesje); R. de Vries (Rindert); W. Sluiter (Wim); A. van Tol (Arie)

    2008-01-01

    textabstractObjective: We tested whether in metabolic syndrome (MetS) subjects the ability of plasma to stimulate cellular cholesterol efflux, an early step in the anti-atherogenic reverse cholesterol transport pathway, is maintained despite low high-density lipoprotein (HDL) cholesterol. Design: In

  5. Increased prostacyclin and thromboxane A2 biosynthesis in atherosclerosis

    International Nuclear Information System (INIS)

    It has been proposed that atherosclerotic arteries produce less prostacyclin (PGI2) than nonatherosclerotic arteries do, thereby predisposing arteries to vasospasm and thrombosis in vivo. The authors reexamined this concept by measuring spontaneous as well as arachidonate-induced PGI2 biosynthesis in aortic segments from nonatherosclerotic and cholesterol-fed atherosclerotic New Zealand White rabbits. Thromboxane A2 (TXA2) generation was also measured. Formation of PGI2, as well as TXA2, as measured by radioimmunoassay (RIA) of their metabolites, was increased in atherosclerotic aortic segments relative to nonatherosclerotic segments at 0, 5, 10, 15 and 30 min of incubation with arachidonate. Pretreatment of arterial segments with indomethacin inhibited PGI2 as well as TXA2 formation, whereas pretreatment with the selective TXA2 inhibitor OKY-046 inhibited only TXA2 release, thus confirming the identity of icosanoids. To confirm the RIA data, aortic segments were incubated with [14C]arachidonate prior to stimulation with unlabeled arachidonate. The uptake of arachidonate was similar, but the release of incorporated [14C]arachidonate was significantly greater in atherosclerotic segments than in nonatherosclertic ones. Thus, synthesis of PGI2 as well as TXA2 is increased in atherosclerosis, and this alteration in arachidonate metabolism is related to increased release of arachidonate

  6. Cholesterol efflux capacity: An introduction for clinicians.

    Science.gov (United States)

    Anastasius, Malcolm; Kockx, Maaike; Jessup, Wendy; Sullivan, David; Rye, Kerry-Anne; Kritharides, Leonard

    2016-10-01

    Epidemiologic studies have shown an inverse correlation between high-density lipoprotein (HDL) cholesterol (HDL-C) levels and cardiovascular disease outcomes. However, the hypothesis of a causal relationship between HDL-C and cardiovascular disease has been challenged by genetic and clinical studies. Serum cholesterol efflux capacity (CEC) is an important measure of HDL function in humans. Recent large clinical studies have shown a correlation between in vitro CEC and cardiovascular disease prevalence and incidence, which appears to be independent of HDL-C concentration. The present review summarizes recent large clinical studies and introduces important methodological considerations. Further studies are required to standardize and establish the reproducibility of this measure of HDL function and clarify whether modulating CEC will emerge as a useful therapeutic target. PMID:27659883

  7. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  8. Sterols of the fungi - Distribution and biosynthesis

    Science.gov (United States)

    Weete, J. D.

    1973-01-01

    The importance of sterols in the growth and reproduction in fungi is becoming increasingly apparent. This article concerns the composition and biosynthesis of ergosterol in these organisms. Comparison to plant and animal sterol formation are made.

  9. Cholesterol in serum lipoprotein fractions after spaceflight

    Science.gov (United States)

    Leach, Carolyn S.; Johnson, Philip C., Jr.; Krauhs, Jane M.; Cintron, Nitza M.

    1988-01-01

    Results are reported from blood-lipid measurements obtained from 125 Space Shuttle crew members before and after space flight. The data are presented in tables and discussed in detail. The main differences noted between preflight and postflight values are a 12.8-percent decrease in high-density lipoproteins on postflight day 1 and significant decreases in total cholesterol and both high- and low-density lipoproteins later in the 23-day postflight period.

  10. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.;

    2005-01-01

    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two....... As ceramide incorporates the lipid backbone common to all sphingolipids, this arrangement may be relevant to the understanding of the molecular organization of lipid rafts....

  11. Potent and selective mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  12. Common Force Field Thermodynamics of Cholesterol

    OpenAIRE

    Francesco Giangreco; Eiji Yamamoto; Yoshinori Hirano; Milan Hodoscek; Volker Knecht; Matteo di Giosia; Matteo Calvaresi; Francesco Zerbetto; Kenji Yasuoka; Tetsu Narumi; Masato Yasui; Siegfried Höfinger

    2013-01-01

    Four different force fields are examined for dynamic characteristics using cholesterol as a case study. The extent to which various types of internal degrees of freedom become thermodynamically relevant is evaluated by means of principal component analysis. More complex degrees of freedom (angle bending, dihedral rotations) show a trend towards force field independence. Moreover, charge assignments for membrane-embedded compounds are revealed to be critical with s...

  13. [HDL cholesterol as a sensitive diagnostic parameter in malaria].

    Science.gov (United States)

    Kittl, E M; Diridl, G; Lenhart, V; Neuwald, C; Tomasits, J; Pichler, H; Bauer, K

    1992-01-01

    In patients with malaria the lipid parameters triglycerides, cholesterol, and HDL-cholesterol were determined routinely. At the time of admission hypertriglyceridemia, hypocholesterolemia, and an extreme decrease in HDL-cholesterol were found. This dyslipoproteinemia was present in cases of falciparum malaria, as well as in cases of benign tertian malaria. The extent of HDL-cholesterol decrease showed no correlation to the severity of the clinical course of disease. HDL-cholesterol has proven to be an independent diagnostic laboratory finding in cases of suspected malarial infection. This parameter displays high diagnostic sensitivity, but no specificity for malaria. PMID:1546481

  14. Biosynthesis of monoterpene scent compounds in roses

    OpenAIRE

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frederic; Nicolè, Florence; Raymond, Olivier; Huguet, Stephanie; Baltenweck-Guyot, Raymonde; Meyer, Sophie; Claudel, Patricia

    2015-01-01

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribut...

  15. Antibacterial Targets in Fatty Acid Biosynthesis

    OpenAIRE

    Wright, H. Tonie; Reynolds, Kevin A.

    2007-01-01

    The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs...

  16. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins.

    Directory of Open Access Journals (Sweden)

    Yunjiu Cheng

    Full Text Available To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25 g/kg/d on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins.

  17. Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice

    Science.gov (United States)

    2012-01-01

    Background Frequent consumption of a diet high in fat and sucrose contributes to lifestyle-related diseases. However, limited information is available regarding the short-term effects of such a diet on the onset of obesity-associated metabolic abnormalities. Methods Male C57BL/6 J mice were divided into two groups and fed a standard chow diet (control group) or a high fat–high sucrose diet containing 21% fat and 34% sucrose (HF–HS diet group) for 2 or 4 weeks. Results The HF–HS diet significantly induced body weight gain beginning at week 1 and similarly increased mesenteric white adipose tissue weight and plasma insulin levels at weeks 2 and 4. Plasma resistin levels were notably elevated after feeding with the HF–HS diet for 4 weeks. Measurement of hepatic triglycerides and Oil Red O staining clearly indicated increased hepatic lipid accumulation in response to the HF–HS diet as early as 2 weeks. Quantitative PCR analysis of liver and white adipose tissue indicated that, starting at week 2, the HF–HS diet upregulated mRNA expression from genes involved in lipid metabolism and inflammation and downregulated genes involved in insulin signalling. Although plasma cholesterol levels were also rapidly increased by the HF–HS diet, no differences were found between the control and HF–HS diet–fed animals in the expression of key genes involved in cholesterol biosynthesis. Conclusions Our study demonstrates that the rapid onset of hepatosteatosis, adipose tissue hypertrophy and hyperinsulinemia by ingestion of a diet high in fat and sucrose may possibly be due to the rapid response of lipogenic, insulin signalling and inflammatory genes. PMID:22762794

  18. Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice

    Directory of Open Access Journals (Sweden)

    Yang Zhi-Hong

    2012-07-01

    Full Text Available Abstract Background Frequent consumption of a diet high in fat and sucrose contributes to lifestyle-related diseases. However, limited information is available regarding the short-term effects of such a diet on the onset of obesity-associated metabolic abnormalities. Methods Male C57BL/6 J mice were divided into two groups and fed a standard chow diet (control group or a high fat–high sucrose diet containing 21% fat and 34% sucrose (HF–HS diet group for 2 or 4 weeks. Results The HF–HS diet significantly induced body weight gain beginning at week 1 and similarly increased mesenteric white adipose tissue weight and plasma insulin levels at weeks 2 and 4. Plasma resistin levels were notably elevated after feeding with the HF–HS diet for 4 weeks. Measurement of hepatic triglycerides and Oil Red O staining clearly indicated increased hepatic lipid accumulation in response to the HF–HS diet as early as 2 weeks. Quantitative PCR analysis of liver and white adipose tissue indicated that, starting at week 2, the HF–HS diet upregulated mRNA expression from genes involved in lipid metabolism and inflammation and downregulated genes involved in insulin signalling. Although plasma cholesterol levels were also rapidly increased by the HF–HS diet, no differences were found between the control and HF–HS diet–fed animals in the expression of key genes involved in cholesterol biosynthesis. Conclusions Our study demonstrates that the rapid onset of hepatosteatosis, adipose tissue hypertrophy and hyperinsulinemia by ingestion of a diet high in fat and sucrose may possibly be due to the rapid response of lipogenic, insulin signalling and inflammatory genes.

  19. Single dose testosterone increases total cholesterol levels and induces the expression of HMG CoA Reductase

    Directory of Open Access Journals (Sweden)

    Gårevik Nina

    2012-03-01

    Full Text Available Abstract Background Cholesterol is mainly synthesised in liver and the rate-limiting step is the reduction of 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA to mevalonate, a reaction catalysed by HMG-CoA reductase (HMGCR. There is a comprehensive body of evidence documenting that anabolic-androgenic steroids are associated with deleterious alterations of lipid profile. In this study we investigated whether a single dose of testosterone enanthate affects the cholesterol biosynthesis and the expression of HMGCR. Methods 39 healthy male volunteers were given 500 mg testosterone enanthate as single intramuscular dose of Testoviron®--Depot. The total cholesterol levels prior to and two days after testosterone administration were analysed. Protein expression of HMGCR in whole blood was investigated by Western blotting. In order to study whether testosterone regulates the mRNA expression of HMGCR, in vitro studies were performed in a human liver cell-line (HepG2. Results The total cholesterol level was significantly increased 15% two days after the testosterone injection (p = 0.007. This is the first time a perturbation in the lipoprotein profile is observed after only a single dose of testosterone. Moreover, the HMGCR mRNA and protein expression was induced by testosterone in vitro and in vivo, respectively. Conclusion Here we provide a molecular explanation how anabolic androgenic steroids may impact on the cholesterol homeostasis, i.e. via an increase of the HMGCR expression. Increasing knowledge and understanding of AAS induced side-effects is important in order to find measures for treatment and care of these abusers.

  20. Preterm delivery and low maternal serum cholesterol level: Any correlation?

    Directory of Open Access Journals (Sweden)

    Ayodeji A Oluwole

    2014-01-01

    Full Text Available Background: The study assessed whether low maternal serum cholesterol during early pregnancy is associated with preterm delivery. Patients and Methods: It was a prospective observational cohort study involving pregnant women at gestational age of 14-20 weeks over a period of 12 months. Blood samples were obtained to measure total serum cholesterol concentrations and the sera were then analysed enzymatically by the cholesterol oxidase: p-aminophenazone (CHOD PAP method. Results: The study showed an incidence of 5.0% for preterm delivery in the low risk study patients. Preterm birth was 4.83-times more common with low total maternal cholesterol than with midrange total cholesterol (11.8% versus 2.2%, P = 0.024. Conclusion: Low maternal serum cholesterol (hypocholesterolaemia is associated with preterm delivery. Optimal maternal serum cholesterol during pregnancy may have merit, therefore pregnant women should be encouraged to follow a healthy, balanced diet.

  1. Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Sheetal; Rawal, Rachna; Sonia; Ramrati; Pundir, C. S., E-mail: pundircs@rediffmail.com [M. D. University, Department of Biochemistry (India)

    2013-09-15

    The nanoparticle (NP) aggregates of commercial cholesterol oxidase (ChOx) were prepared by desolvation method. The formation and characterization of ChOxNP aggregates were studied by transmission electron microscopy and scanning electron microscopy. NP aggregates were more stable, active and had a higher shelf life than that of free enzyme. An amperometric cholesterol biosensor was constructed by immobilizing ChOxNPs onto Au electrode. The biosensor showed optimum response within 8 s at pH 6.0 and 35 Degree-Sign C, when polarized at +0.27 V versus Ag/AgCl. The biosensor possesses high sensitivity and measures cholesterol concentrations as low as 1.56 mg/dl. The working linear range was 12.5-700 mg/dl for cholesterol. The biosensor was evaluated and employed for measurement of total cholesterol in human serum. The enzyme electrode lost 50 % of its initial activity during its regular use for 180 times over a period of 90 days when stored in 0.1 M sodium phosphate buffer, pH 7.0 at 4 Degree-Sign C.

  2. Carotenoid Biosynthesis in Daucus carota.

    Science.gov (United States)

    Simpson, Kevin; Cerda, Ariel; Stange, Claudia

    2016-01-01

    Carrot (Daucus carota) is one of the most important vegetable cultivated worldwide and the main source of dietary provitamin A. Contrary to other plants, almost all carrot varieties accumulate massive amounts of carotenoids in the root, resulting in a wide variety of colors, including those with purple, yellow, white, red and orange roots. During the first weeks of development the root, grown in darkness, is thin and pale and devoid of carotenoids. At the second month, the thickening of the root and the accumulation of carotenoids begins, and it reaches its highest level at 3 months of development. This normal root thickening and carotenoid accumulation can be completely altered when roots are grown in light, in which chromoplasts differentiation is redirected to chloroplasts development in accordance with an altered carotenoid profile. Here we discuss the current evidence on the biosynthesis of carotenoid in carrot roots in response to environmental cues that has contributed to our understanding of the mechanism that regulates the accumulation of carotenoids, as well as the carotenogenic gene expression and root development in D. carota. PMID:27485223

  3. When cholesterol is not cholesterol: a note on the enzymatic determination of its concentration in model systems containing vegetable extracts

    Directory of Open Access Journals (Sweden)

    Pamplona Reinald

    2010-06-01

    Full Text Available Abstract Background Experimental evidences demonstrate that vegetable derived extracts inhibit cholesterol absorption in the gastrointestinal tract. To further explore the mechanisms behind, we modeled duodenal contents with several vegetable extracts. Results By employing a widely used cholesterol quantification method based on a cholesterol oxidase-peroxidase coupled reaction we analyzed the effects on cholesterol partition. Evidenced interferences were analyzed by studying specific and unspecific inhibitors of cholesterol oxidase-peroxidase coupled reaction. Cholesterol was also quantified by LC/MS. We found a significant interference of diverse (cocoa and tea-derived extracts over this method. The interference was strongly dependent on model matrix: while as in phosphate buffered saline, the development of unspecific fluorescence was inhibitable by catalase (but not by heat denaturation, suggesting vegetable extract derived H2O2 production, in bile-containing model systems, this interference also comprised cholesterol-oxidase inhibition. Several strategies, such as cholesterol standard addition and use of suitable blanks containing vegetable extracts were tested. When those failed, the use of a mass-spectrometry based chromatographic assay allowed quantification of cholesterol in models of duodenal contents in the presence of vegetable extracts. Conclusions We propose that the use of cholesterol-oxidase and/or peroxidase based systems for cholesterol analyses in foodstuffs should be accurately monitored, as important interferences in all the components of the enzymatic chain were evident. The use of adequate controls, standard addition and finally, chromatographic analyses solve these issues.

  4. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    Science.gov (United States)

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  5. Phytosterol ester constituents affect micellar cholesterol solubility in model bile.

    Science.gov (United States)

    Brown, Andrew W; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2010-09-01

    Plant sterols and stanols (phytosterols) and their esters are nutraceuticals that lower LDL cholesterol, but the mechanisms of action are not fully understood. We hypothesized that intact esters and simulated hydrolysis products of esters (phytosterols and fatty acids in equal ratios) would differentially affect the solubility of cholesterol in model bile mixed micelles in vitro. Sodium salts of glycine- and taurine-conjugated bile acids were sonicated with phosphatidylcholine and either sterol esters or combinations of sterols and fatty acids to determine the amount of cholesterol solubilized into micelles. Intact sterol esters did not solubilize into micelles, nor did they alter cholesterol solubility. However, free sterols and fatty acids altered cholesterol solubility independently (no interaction effect). Equal contents of cholesterol and either campesterol, stigmasterol, sitosterol, or stigmastanol (sitostanol) decreased cholesterol solubility in micelles by approximately 50% compared to no phytosterol present, with stigmasterol performing slightly better than sitosterol. Phytosterols competed with cholesterol in a dose-dependent manner, demonstrating a 1:1 M substitution of phytosterol for cholesterol in micelle preparations. Unsaturated fatty acids increased the micelle solubility of sterols as compared with saturated or no fatty acids. No differences were detected in the size of the model micelles. Together, these data indicate that stigmasterol combined with saturated fatty acids may be more effective at lowering cholesterol micelle solubility in vivo.

  6. Liver MicroRNA-291b-3p Promotes Hepatic Lipogenesis through Negative Regulation of Adenosine 5'-Monophosphate (AMP)-activated Protein Kinase α1.

    Science.gov (United States)

    Meng, Xiangyu; Guo, Jun; Fang, Weiwei; Dou, Lin; Li, Meng; Huang, Xiuqing; Zhou, Shutong; Man, Yong; Tang, Weiqing; Yu, Liqing; Li, Jian

    2016-05-13

    In a microarray study, we found that hepatic miR-291b-3p was significantly increased in leptin-receptor-deficient type 2 mice (db/db), a mouse model of diabetes. The function of miR-291b-3p is unknown. The potential role of miR-291b-3p in regulating hepatic lipid metabolism was explored in this study. High-fat diet (HFD)- and chow-fed mice were injected with an adenovirus expressing a miR-291b-3p inhibitor and a miR-291b-3p mimic through the tail vein. Hepatic lipids and lipogenic gene expression were analyzed. Additionally, gain- and loss-of-function studies were performed in vitro to identify direct targets of miR-291b-3p. MiR-291b-3p expression and the protein levels of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) were increased in the steatotic liver of db/db mice and HFD-fed mice versus their respective controls. Inhibition of hepatic miR-291b-3p expression prevented increases in hepatic lipogenesis and steatosis in HFD-fed mice. The opposite was observed when miR-291b-3p was overexpressed in the livers of chow-fed C57BL/6J wild-type mice. In vitro studies revealed that silencing of miR-291b-3p in NCTC1469 hepatic cells ameliorated oleic acid/palmitic acid mixture-induced elevation of cellular triglycerides. Importantly, we identified AMP-activated protein kinase (AMPK)-α1 as a direct target of miR-291b-3p. Using metformin, an activator of AMPK, we showed that AMPK activation-induced inhibition of hepatic lipid accumulation was accompanied by reduced expression of miR-291b-3p in the liver. Liver miR-291b-3p promoted hepatic lipogenesis and lipid accumulation in mice. AMPKα1 is a direct target of miR-291b-3p. In conclusion, our findings indicate that miR-291b-3p promotes hepatic lipogenesis by suppressing AMPKα1 expression and activity, indicating the therapeutic potential of miR-291b-3p inhibitors in fatty liver disease. PMID:27013659

  7. Dietary olive oil and menhaden oil mitigate induction of lipogenesis in hyperinsulinemic corpulent JCR:LA-cp rats: microarray analysis of lipid-related gene expression.

    Science.gov (United States)

    Deng, Xiong; Elam, Marshall B; Wilcox, Henry G; Cagen, Lauren M; Park, Edwards A; Raghow, Rajendra; Patel, Divyen; Kumar, Poonam; Sheybani, Ali; Russell, James C

    2004-12-01

    In the corpulent James C. Russell corpulent (JCR:LA-cp) rat, hyperinsulinemia leads to induction of lipogenic enzymes via enhanced expression of sterol-regulatory-binding protein (SREBP)-1c. This results in increased hepatic lipid production and hypertriglyceridemia. Information regarding down-regulation of SREBP-1c and lipogenic enzymes by dietary fatty acids in this model is limited. We therefore assessed de novo hepatic lipogenesis and hepatic and plasma lipids in corpulent JCR rats fed diets enriched in olive oil or menhaden oil. Using microarray and Northern analysis, we determined the effect of these diets on expression of mRNA for lipogenic enzymes and other proteins related to lipid metabolism. In corpulent JCR:LA-cp rats, both the olive oil and menhaden oil diets reduced expression of SREBP-1c, with concomitant reductions in hepatic triglyceride content, lipogenesis, and expression of enzymes related to lipid synthesis. Unexpectedly, expression of many peroxisomal proliferator-activated receptor-dependent enzymes mediating fatty acid oxidation was increased in livers of corpulent JCR rats. The menhaden oil diet further increased expression of these enzymes. Induction of SREBP-1c by insulin is dependent on liver x receptor (LXR)alpha. Although hepatic expression of mRNA for LXR itself was not increased in corpulent rats, expression of Cyp7a1, an LXR-responsive gene, was increased, suggesting increased LXR activity. Expression of mRNA encoding fatty acid translocase and ATP-binding cassette subfamily DALD member 3 was also increased in livers of corpulent JCR rats, indicating a potential role for these fatty acid transporters in the pathogenesis of disordered lipid metabolism in obesity. This study clearly demonstrates that substitution of dietary polyunsaturated fatty acid for carbohydrate in the corpulent JCR:LA-cp rat reduces de novo lipogenesis, at least in part, by reducing hepatic expression of SREBP-1c and that strategies directed toward reducing

  8. Cholesterol Metabolism and Prostate Cancer Lethality.

    Science.gov (United States)

    Stopsack, Konrad H; Gerke, Travis A; Sinnott, Jennifer A; Penney, Kathryn L; Tyekucheva, Svitlana; Sesso, Howard D; Andersson, Swen-Olof; Andrén, Ove; Cerhan, James R; Giovannucci, Edward L; Mucci, Lorelei A; Rider, Jennifer R

    2016-08-15

    Cholesterol metabolism has been implicated in prostate cancer pathogenesis. Here, we assessed the association of intratumoral mRNA expression of cholesterol synthesis enzymes, transporters, and regulators in tumor specimen at diagnosis and lethal prostate cancer, defined as mortality or metastases from prostate cancer in contrast to nonlethal disease without evidence of metastases after at least 8 years of follow-up. We analyzed the prospective prostate cancer cohorts within the Health Professionals Follow-up Study (n = 249) and the Physicians' Health Study (n = 153) as well as expectantly managed patients in the Swedish Watchful Waiting Study (n = 338). The expression of squalene monooxygenase (SQLE) was associated with lethal cancer in all three cohorts. Men with high SQLE expression (>1 standard deviation above the mean) were 8.3 times (95% confidence interval, 3.5 to 19.7) more likely to have lethal cancer despite therapy compared with men with the mean level of SQLE expression. Absolute SQLE expression was associated with lethal cancer independently from Gleason grade and stage, as was a SQLE expression ratio in tumor versus surrounding benign prostate tissue. Higher SQLE expression was tightly associated with increased histologic markers of angiogenesis. Collectively, this study establishes the prognostic value of intratumoral cholesterol synthesis as measured via SQLE, its second rate-limiting enzyme. SQLE expression at cancer diagnosis is prognostic for lethal prostate cancer both after curative-intent prostatectomy and in a watchful waiting setting, possibly by facilitating micrometastatic disease. Cancer Res; 76(16); 4785-90. ©2016 AACR.

  9. Biosynthesis of gold nanoparticles: A green approach.

    Science.gov (United States)

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed. PMID:27236049

  10. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaorong [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2011-10-30

    We demonstrate herein a newly developed serum total cholesterol biosensor by using the direct electron transfer of cholesterol oxidase (ChOx), which is based on the immobilization of cholesterol oxidase and cholesterol esterase (ChEt) on potassium-doped multi-walled carbon nanotubes (KMWNTs) modified electrodes. The KMWNTs accelerate the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx and maintaining its bioactivity. As a new platform in cholesterol analysis, the resulting electrode (ChOx/KMWNTs/GCE) exhibits a sensitive response to free cholesterol, with a linear range of 0.050-16.0 {mu}mol L{sup -1} and a detection limit of 5.0 nmol L{sup -1} (S/N = 3). Coimmobilization of ChEt and ChOx (ChEt/ChOx/KMWNTs/GCE) allows the determination of both free cholesterol and esterified cholesterol. The resulting biosensor shows the same linear range of 0.050-16.0 {mu}mol L{sup -1} for free cholesterol and cholesteryl oleate, with the detection limit of 10.0 and 12.0 nmol L{sup -1} (S/N = 3), respectively. The concentrations of total (free and esterified) cholesterol in human serum samples, determined by using the techniques developed in the present study, are in good agreement with those determined by the well-established techniques using the spectrophotometry.

  11. Influence of infant and juvenile diets on serum cholesterol, lipoprotein cholesterol, and apolipoprotein concentrations in juvenile baboons (Papio sp.).

    Science.gov (United States)

    Mott, G E; McMahan, C A; Kelley, J L; Farley, C M; McGill, H C

    1982-11-01

    The long-term effects of infant diet (breast milk or formula containing 2, 30, or 60 mg/dl cholesterol) and subsequent dietary cholesterol (1 mg/kcal) and fat (saturated or unsaturated) on serum lipid and apolipoprotein concentrations were estimated using 82 juvenile baboons 4-6 years of age. A significant interaction of infant diet (breast vs formula) with type of fat (saturated vs unsaturated) at 4-6 years of age was observed on HDL cholesterol and apolipoprotein A-I (apoA-I) concentrations. That is, animals breast-fed as infants had higher HDL cholesterol and apoA-I concentrations when fed unsaturated fat from weaning to 4-6 years of age than those fed saturated fat (77 vs 68 mg/dl). In contrast, animals fed formulas in infancy followed by a diet containing unsaturated fat had lower HDL cholesterol and apoA-I concentrations at 4-6 years of age than did those fed saturated fat (67 vs 78 mg/dl). However, breast feeding or feeding formulas containing various levels of cholesterol for 3 months during infancy did not result in statistically significant differences in total serum cholesterol, VLDL + LDL cholesterol and apolipoprotein B (apoB) concentrations. Dietary cholesterol after infancy significantly increased serum total cholesterol, VLDL + LDL and HDL cholesterol, apoA-I and apoB concentrations. All of these response variables also were higher in animals fed saturated fat compared to those fed unsaturated fat on the same level of cholesterol. At 4-6 years of age, regardless of diet, females had significantly higher serum VLDL + LDL cholesterol (57 vs 43 mg/dl) and apoB concentrations (39 vs 30 mg/dl) than did males.

  12. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies.

  13. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies. PMID:26416797

  14. Cholesterol monohydrate nucleation in ultrathin films on water

    DEFF Research Database (Denmark)

    Rapaport, H.; Kuzmenko, I.; Lafont, S.;

    2001-01-01

    The growth of a cholesterol crystalline phase, three molecular layers thick at the air-water interface, was monitored by grazing incidence x-ray diffraction and x-ray reflectivity. Upon compression, a cholesterol film transforms from a monolayer of trigonal symmetry and low crystallinity to a...... trilayer, composed of a highly crystalline bilayer in a rectangular lattice and a disordered top cholesterol layer. This system undergoes a phase transition into a crystalline trilayer incorporating ordered water between the hydroxyl groups of the top and middle sterol layers in an arrangement akin to the...... triclinic 3-D crystal structure of cholesterol . H(2)O. By comparison, the cholesterol derivative stigmasterol transforms, upon compression, directly into a crystalline trilayer in the rectangular lattice. These results may contribute to an understanding of the onset of cholesterol crystallization in...

  15. Apoprotein E genotype and the response of serum cholesterol to dietary fat, cholesterol and cafestol

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Ordovas, J.M.; Pedro-Botet, J.; Katan, M.B.

    2001-01-01

    Previous studies on the effect of apoprotein E (APOE) polymorphism on the response of serum lipids to diet showed inconsistent results. We therefore studied the effect of apoprotein E polymorphism on responses of serum cholesterol and lipoproteins to various dietary treatments. We combined data on r

  16. Percentage of Adults with High Cholesterol Whose LDL Cholesterol Levels Are Adequately Controlled

    Science.gov (United States)

    ... non-missing response to cholesterol questionnaire. Exclusion Criteria: Pregnant women. Estimates for 18-39 year olds were not ... for only one type of service, such as dental or vision care. Persons covered by ... and Prevention, National Center for Health Statistics from the National ...

  17. Melittin-Lipid Bilayer Interactions and the Role of Cholesterol

    OpenAIRE

    Wessman, Per; Strömstedt, Adam A; Malmsten, Martin; Edwards, Katarina

    2008-01-01

    The membrane-destabilizing effect of the peptide melittin on phosphatidylcholine membranes is modulated by the presence of cholesterol. This investigation shows that inclusion of 40 mol % cholesterol in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes reduces melittin's affinity for the membrane. It is significant that the presence of cholesterol does not increase the amount of membrane-associated melittin needed to cause maximum leakage f...

  18. Interaction of Melittin with Membrane Cholesterol: A Fluorescence Approach

    OpenAIRE

    Raghuraman, H.; Chattopadhyay, Amitabha

    2004-01-01

    We have monitored the organization and dynamics of the hemolytic peptide melittin in membranes containing cholesterol by utilizing the intrinsic fluorescence properties of its functionally important sole tryptophan residue and circular dichroism spectroscopy. The significance of this study is based on the fact that the natural target for melittin is the erythrocyte membrane, which contains high amounts of cholesterol. Our results show that the presence of cholesterol inhibits melittin-induced...

  19. A review on lecithin:cholesterol acyltransferase deficiency.

    Science.gov (United States)

    Saeedi, Ramesh; Li, Min; Frohlich, Jiri

    2015-05-01

    Lecithin cholesterol acyl transferase (LCAT) is a plasma enzyme which esterifies cholesterol, and plays a key role in the metabolism of high-density lipoprotein cholesterol (HDL-C). Genetic disorders of LCAT are associated with lipoprotein abnormalities including low levels of HDL-C and presence of lipoprotein X, and clinical features mainly corneal opacities, changes in erythrocyte morphology and renal failure. Recombinant LCAT is being developed for the treatment of patients with LCAT deficiency. PMID:25172171

  20. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    Science.gov (United States)

    Mulas, Maria Franca; Mandas, Antonella; Abete, Claudia; Dessì, Sandra; Mocali, Alessandra; Paoletti, Francesco

    2011-01-01

    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells. PMID:22184540

  1. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend cells

    Directory of Open Access Journals (Sweden)

    Maria Franca Mulas

    2011-10-01

    Full Text Available Cholesterol is an essential constituent of all mammalian cell membranes, and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3 and acylCoA:cholesterol acyltransferase (ACAT and cholesterol export (caveolin-1 in Friend virus-induced erythroleukemia cells (MELC, in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA. FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells.

  2. Interaction of G protein coupled receptors and cholesterol.

    Science.gov (United States)

    Gimpl, Gerald

    2016-09-01

    G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs. PMID:27108066

  3. Cholesterol granuloma of the paratesticular tissue: A case report

    Science.gov (United States)

    Unal, Dursun; Kilic, Metin; Oner, Sedat; Erkinuresin, Taskın; Demirbas, Murat; Coban, Soner; Aydos, Mustafa Murat

    2015-01-01

    A 38-year-old man was admitted to our clinic with an enlarging right scrotal mass that had been present for 7 years. Right radical inguinal orchiectomy was performed and a histopathological diagnosis confirmed a very rare case of cholesterol granuloma of the paratesticular tissue. It can be very difficult to preoperatively distinguish testicular tumours from cholesterol granulomas of the testis or epididymis. Cholesterol granuloma should be kept in mind in patients with large and non-tender scrotal masses. PMID:26225185

  4. Alterations of serum cholesterol and serum lipoprotein in breast cancer of women

    OpenAIRE

    Hasija, Kiran; Bagga, Hardeep K.

    2005-01-01

    Fasting blood sample of 50 normal subjects (control) and 100 patients of breast cancer were investigated for serum total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, very low density lipoprotein, high density lipoprotein cholesterol:low density lipoprotein cholesterol ratio and total cholesterol:high density lipoprotein cholesterol ratio during breast cancer of women. Five cancer stages, types, age groups, parity and menopausal status were undertaken...

  5. Development of alimentary cholesterol in the plasma and the plasmatic lipoproteins in man, after ingestion of a meal containing octa-deuterated cholesterol; Devenir du cholesterol alimentaire dans le plasma et les lipoproteines plasmatiques chez l`homme, apres ingestion d`un repas contenant du cholesterol octa-deutere

    Energy Technology Data Exchange (ETDEWEB)

    Becue, T.; Ferezou, J.; Simon, G. [Paris-11 Univ., 91 - Orsay (France); Bernard, P.M.; Portugal, H. [Hopital Sainte-Marguerite, 13 - Marseille (France); Dubois, C.; Lairon, D.

    1994-12-31

    Cholesterol absorbed after a test-meal has two origins with man: the biliary cholesterol and the alimentary cholesterol. In order to understand the mechanism of the modification of cholesterol intestinal absorption by oat bran, the alimentary cholesterol has been labelled with octa-deuterated cholesterol, in test-diets. The kinetics of D-cholesterol in plasma and chylomicrons is described. 1 fig., 6 refs.

  6. Nectandrin B, a lignan isolated from nutmeg, inhibits liver X receptor-α-induced hepatic lipogenesis through AMP-activated protein kinase activation.

    Science.gov (United States)

    Choi, Du Gon; Kim, Eun Kyung; Yang, Jin Won; Song, Jae Sook; Kim, Young-Mi

    2015-11-01

    Nonalcoholic fatty liver disease is recognized as the most commonly occurring chronic liver disease. Liver X receptor α (LXRα) and sterol regulatory element-binding protein (SREBP)-1c play a central role in de novo fatty acid synthesis. This study investigated pharmacological effects of nectandrin B, a lignan isolated from nutmeg extract, on hepatic lipogenesis stimulated by LXRα-SREBP-1c-mediated pathway and the possible molecular basis. The reporter gene assay revealed that nectandrin B completely represses LXRα activity enhanced by a synthetic LXRα ligand (T0901317) in HepG2 cells. The inhibitory effect was further supported by the suppression of mRNA expression of LXRα target genes, SREBP-1c and LXRα itself. Nectandrin B also inhibited the increase in SREBP-1c expression promoted by insulin plus high glucose, major contributors to hepatic lipid accumulation. LXRα-SREBP-1c-mediated induction of acetyl-CoA carboxylase 1 and fatty acid synthase, major genes for de novo lipogenesis, was suppressed by nectandrin B. Moreover, Oil Red O staining showed that nectandrin B notably attenuates LXRα-induced lipid accumulation. AMP-activated protein kinase (AMPK) inhibits the activities of LXRα and SREBP-1c. Nectandrin B strongly activated AMPK signaling in HepG2 cells. Taken together, the suppressive effects of nectandrin B on lipogenic gene expression and lipid accumulation in hepatocytes may be due to its inhibitory effect on the LXRα-SREBP-1c pathway presumably via AMPK activation. These results suggest the potential of nectandrin B as a therapeutic candidate for fatty liver disease. PMID:26790190

  7. Crystallogeny fundamentals of the cholesterol gallstone

    Institute of Scientific and Technical Information of China (English)

    Wu Jie; Zhou Jianli; He Lijun; Qu Xingang; Gu Lin; Yang Haimin

    2007-01-01

    The nucleation mechanism and crystal growth process of the cholesterol gallstone are studied and a systematic theory expounded by crystallogeny is proposed. Normal feed and stone-forming feed were used to raise guinea pigs in the control and stone-causing groups respectively. The state and transformation of liquid crystal vesicles, the appearance of crystal nuclei, and the formation of microcrystal grains were observed under a polarizing microscope during the experimental period. It was found that the liquid crystal vesicles in the bile of the control group were small, scattered, and always existed as single forms, and no shaped gallstone crystals were formed.While in the stone-causing group, liquid crystal vesicles grew to larger ones, and then aggregated to form large liquid crystal cells. Solid crystal growth along the edge of these liquid crystal cells formed microcrystal grains. These demonstrated that bile liquid crystal vesicles form the basic nuclei of cholesterol gallstone. Heterogeneous nucleation is the common process in the formation of crystal nuclei and crystal growth.

  8. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal

    2012-01-01

    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  9. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  10. The Terpenoid Biosynthesis Toolkit of Trichoderma.

    Science.gov (United States)

    Bansal, Ravindra; Mukherjee, Prasun Kumar

    2016-04-01

    The widely used biotechnologically important fungi belonging to the genus Trichoderma are rich sources of secondary metabolites. Even though the genomes of several Trichoderma spp. have been published, and data are available on the genes involved in biosynthesis of non-ribosomal peptide synthetases and polyketide synthases, no genome-wide data are available for the terpenoid biosynthesis machinery in these organisms. In the present study, we have identified the genes involved in terpene biosynthesis in the genomes of three Trichoderma spp., viz., T. virens, T. atroviride and T. reesei. While the genes involved in the condensation steps are highly conserved across the three species, these fungi differed in the number and organization of terpene cyclases. T. virens genome harbours eleven terpene cyclases, while T. atroviride harbours seven, and T. reeseisix in their genomes; seven, three and two being part of putative secondary metabolism related gene clusters. PMID:27396184

  11. The Terpenoid Biosynthesis Toolkit of Trichoderma.

    Science.gov (United States)

    Bansal, Ravindra; Mukherjee, Prasun Kumar

    2016-04-01

    The widely used biotechnologically important fungi belonging to the genus Trichoderma are rich sources of secondary metabolites. Even though the genomes of several Trichoderma spp. have been published, and data are available on the genes involved in biosynthesis of non-ribosomal peptide synthetases and polyketide synthases, no genome-wide data are available for the terpenoid biosynthesis machinery in these organisms. In the present study, we have identified the genes involved in terpene biosynthesis in the genomes of three Trichoderma spp., viz., T. virens, T. atroviride and T. reesei. While the genes involved in the condensation steps are highly conserved across the three species, these fungi differed in the number and organization of terpene cyclases. T. virens genome harbours eleven terpene cyclases, while T. atroviride harbours seven, and T. reeseisix in their genomes; seven, three and two being part of putative secondary metabolism related gene clusters.

  12. Flavonoids: Biosynthesis, Biological functions and Biotechnological applications

    Directory of Open Access Journals (Sweden)

    Maria Lorena eFalcone Ferreyra

    2012-09-01

    Full Text Available Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, bHLH and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.

  13. Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation.

    Science.gov (United States)

    Tomaro-Duchesneau, Catherine; Jones, Mitchell L; Shah, Divya; Jain, Poonam; Saha, Shyamali; Prakash, Satya

    2014-01-01

    Excess cholesterol is associated with cardiovascular diseases (CVD), an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18±0.55 mg/10(10) cfu) in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70±63.33 mg/10(10) cfu) of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic. PMID:25295259

  14. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    Directory of Open Access Journals (Sweden)

    Catherine Tomaro-Duchesneau

    2014-01-01

    Full Text Available Excess cholesterol is associated with cardiovascular diseases (CVD, an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18 ± 0.55 mg/1010 cfu in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70 ± 63.33 mg/1010 cfu of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic.

  15. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes.

    Science.gov (United States)

    Alsop, Richard J; Toppozini, Laura; Marquardt, Drew; Kučerka, Norbert; Harroun, Thad A; Rheinstädter, Maikel C

    2015-03-01

    Aspirin and other non-steroidal anti-inflammatory drugs have a high affinity for phospholipid membranes, altering their structure and biophysical properties. Aspirin has been shown to partition into the lipid head groups, thereby increasing membrane fluidity. Cholesterol is another well known mediator of membrane fluidity, in turn increasing membrane stiffness. As well, cholesterol is believed to distribute unevenly within lipid membranes leading to the formation of lipid rafts or plaques. In many studies, aspirin has increased positive outcomes for patients with high cholesterol. We are interested if these effects may be, at least partially, the result of a non-specific interaction between aspirin and cholesterol in lipid membranes. We have studied the effect of aspirin on the organization of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membranes containing cholesterol. Through Langmuir-Blodgett experiments we show that aspirin increases the area per lipid and decreases compressibility at 32.5 mol% cholesterol, leading to a significant increase of fluidity of the membranes. Differential scanning calorimetry provides evidence for the formation of meta-stable structures in the presence of aspirin. The molecular organization of lipids, cholesterol and aspirin was studied using neutron diffraction. While the formation of rafts has been reported in binary DPPC/cholesterol membranes, aspirin was found to locally disrupt membrane organization and lead to the frustration of raft formation. Our results suggest that aspirin is able to directly oppose the formation of cholesterol structures through non-specific interactions with lipid membranes.

  16. Transfer of cholesterol from macrophages to lymphocytes in culture.

    Science.gov (United States)

    de Bittencourt Júnior, P I; Curi, R

    1998-02-01

    A major feature of macrophage metabolism is its capacity to produce and export cholesterol. Several reports have shown that the manipulation of lymphocyte cholesterol content elicits important changes in lymphocyte proliferation. These findings lead to an inquiry as to whether macrophage-derived cholesterol released into the lymphocyte surroundings may be transferred to the latter thus affecting lymphocyte function. In this study, cholesterol transfer from macrophages to lymphocytes was examined in vitro using rat cells in culture. The findings indicate that there may be a significant transfer of cholesterol from [4-14C]cholesterol labeled resident peritoneal macrophages to mesenteric lymph node resting lymphocytes (up to 173.9 +/- 2.7 pmol/10(7) lymphocytes/10(7) macrophages when co-cultivated for 48 h), in a lipoprotein-dependent manner. This represents the mass transfer of ca. 17 nmoles of cholesterol molecules per 10(7) lymphocytes from 10(7) macrophages (calculated on the basis of specific radioactivity incorporated into macrophages after the pre-labelling period), which suggests that macrophages are capable of replacing the whole lymphocyte cholesterol pool every 21 h. Moreover, an 111%-increase in the total cholesterol content of lymphocytes was found after co-cultivation with macrophages for 48 h. When compared to peritoneal cells, monocytes/macrophages obtained from circulating blood leukocytes presented a much higher cholesterol transfer capacity to lymphocytes (3.06 +/- 0.10 nmol/10(7) lymphocytes/10(7) macrophages co-cultivated for 24 h). Interestingly, inflammatory macrophages dramatically reduced their cholesterol transfer ability (by up to 91%, as compared to resident macrophages). Cholesterol transfer may involve a humoral influence, since it is not only observed when cells are co-cultivated in a single-well chamber system (cells in direct contact), but also in a two-compartment system (where cells can communicate but not by direct contact). Co

  17. Determination of cholesterol in human biliary calculus by TLC scanning

    Institute of Scientific and Technical Information of China (English)

    Yin Kang Yang; Kai Xiong Qiu; Yu Zhu Zhan; Er Yi Zhan; Hai Ming Yang; Ping Zheng

    2000-01-01

    AIM To study the physico-chemical properties of biliary calculus and the relationship between the calculusformation and the phase change of liquid crystal, providing the best evidence for the biliary calculusprevention and treatment.METHODS The cholesterol contents in thirty one cases of biliary calculus in Kunming were determined bydouble-wave-length TLC scanning with high efficiency silica gel films.RESULTS Under magnifiers, the granular biliary calculus from 31 patients were classified according totheir section structures and colours, as cholesterol cholelith, 25 cases; bilirubin cholelith, 4 cases andcompound cholelith, 2 cases. By TLC scanning, it was found that the content of cholesterol in human biliarycalculus was 71%- 100%, about 80% cholesterol bilestones whose cholesterol content was more than 90%being pure cholesterol bilestones.CONCLUSION Cholesterol bilestone is the main human biliary calculus in Kunming, which was inaccordance with X-ray analysis. Compared with the related reports, it is proved that the proportion ofcholesterol bilestones to biliary calculus is increasing because of the improved life standard and the decreaseof bilirubin bilestones resulted from bile duct ascariasis or bacteria infection in China since 90s, and that theincrease of cholesterol in-take leads to the increase of cholesterol metabolism disorder

  18. Cholesterol granuloma of the petrous apex: CT diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.; Gruskin, P.

    1984-12-01

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  19. Cholesterol and Copper Affect Learning and Memory in the Rabbit

    Directory of Open Access Journals (Sweden)

    Bernard G. Schreurs

    2013-01-01

    Full Text Available A rabbit model of Alzheimer’s disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease including beta amyloid accumulation and learning and memory changes. Although we have shown that feeding 2% cholesterol and adding copper to the drinking water can retard learning, other studies have shown that feeding dietary cholesterol before learning can improve acquisition and feeding cholesterol after learning can degrade long-term memory. We explore the development of this model, the issues surrounding the role of copper, and the particular contributions of the late D. Larry Sparks.

  20. New horizons for cholesterol ester transfer protein inhibitors.

    Science.gov (United States)

    Schwartz, Gregory G

    2012-02-01

    High-density lipoprotein (HDL) cholesterol levels bear an inverse relationship to cardiovascular risk. To date, however, no intervention specifically targeting HDL has been demonstrated to reduce cardiovascular risk. Cholesterol ester transfer protein (CETP) mediates transfer of cholesterol ester from HDL to apolipoprotein B-containing particles. Most, but not all observational cohort studies indicate that genetic polymorphisms of CETP associated with reduced activity and higher HDL cholesterol levels are also associated with reduced cardiovascular risk. Some, but not all studies indicate that CETP inhibition in rabbits retards atherosclerosis, whereas transgenic CETP expression in mice promotes atherosclerosis. Torcetrapib, the first CETP inhibitor to reach phase III clinical development, was abandoned due to excess mortality associated with increases in aldosterone and blood pressure. Two other CETP inhibitors have entered phase III clinical development. Anacetrapib is a potent inhibitor of CETP that produces very large increases in HDL cholesterol and large reductions in low-density lipoprotein (LDL) cholesterol, beyond those achieved with statins. Dalcetrapib is a less potent CETP inhibitor that produces smaller increases in HDL cholesterol with minimal effect on LDL cholesterol. Both agents appear to allow efflux of cholesterol from macrophages to HDL in vitro, and neither agent affects blood pressure or aldosterone in vivo. Two large cardiovascular outcomes trials, one with anacetrapib and one with dalcetrapib, should provide a conclusive test of the hypothesis that inhibition of CETP decreases cardiovascular risk. PMID:22083134

  1. Retracted: Advances in the physiological and pathological implications of cholesterol.

    Science.gov (United States)

    Cortes, Victor A; Busso, Dolores; Mardones, Pablo; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2013-11-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signalling, and endocrine functions in animal systems. At the cellular level, cholesterol is found in membranes where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signalling functions. At the organismal level, cholesterol is the precursor of all steroid hormones, including gluco- and mineralo-corticoids, sex hormones, and vitamin D, which regulate carbohydrate, sodium, reproductive, and bone homeostasis, respectively. This sterol is also the immediate precursor of bile acids, which are important for intestinal absorption of dietary lipids as well as energy homeostasis and glucose regulation. Complex mechanisms maintain cholesterol within physiological ranges and the dysregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these conditions has been demonstrated by genetic and pharmacological manipulations in animal models of human disease that are discussed herein. Importantly, the understanding of basic aspects of cholesterol biology has led to the development of high-impact pharmaceutical therapies during the past century. The continuing effort to offer successful treatments for prevalent cholesterol-related diseases, such as atherosclerosis and neurodegenerative disorders, warrants further interdisciplinary research in the coming decades. PMID:23445165

  2. Reconstitution of Cholesterol-Dependent Vaginolysin into Tethered Phospholipid Bilayers

    DEFF Research Database (Denmark)

    Budvytyte, Rima; Pleckaityte, M.; Zvirbliene, A.;

    2013-01-01

    Functional reconstitution of the cholesterol-dependent cytolysin vaginolysin (VLY) from Gardnerella vaginalis into artificial tethered bilayer membranes (tBLMs) has been accomplished. The reconstitution of VLY was followed in real-time by electrochemical impedance spectroscopy (EIS). Changes of the...... EIS parameters of the tBLMs upon exposure to VLY solutions were consistent with the formation of water-filled pores in the membranes. It was found that reconstitution of VLY is a strictly cholesterol-dependent, irreversible process. At a constant cholesterol concentration reconstitution of VLY...... platform for the detection of the activity of VLY and possibly other cholesterol-dependent cytolysins....

  3. Effect of doxazosin on cholesterol synthesis in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    D' Eletto, R.D.; Javitt, N.B.

    1989-01-01

    The effect of doxazosin on cholesterol synthesis was determined by measuring the content of deuterium-enriched cholesterol in rabbit fibroblasts with and without receptors for low-density lipoproteins (LDL) and in hepatoma (Hep G2 cells). Doxazosin, at concentrations of 5-20 mumol/L, increased LDL binding to hepatic cells in a dose-related manner. Also, in these hepatic cells, doxazosin produced dose-related decreases in both newly synthesized cholesterol and cholesterol ester. In rabbit fibroblasts that were LDL receptor negative, de novo cholesterol synthesis was markedly reduced by increasing concentrations of doxazosin. Taken together, these results suggest that doxazosin may have a direct inhibitory effect on cholesterol synthesis independent of the LDL receptor. The inhibition of cholesterol synthesis by doxazosin may cause cells to compensate by upregulating the LDL receptor, thereby increasing the importation of lipoprotein cholesterol and reducing LDL cholesterol in the medium. This hypothesis supports findings in the clinical setting whereby doxazosin has a beneficial effect on the lipid profile, and suggests a useful additional property for this antihypertensive agent.

  4. Triterpenoid biosynthesis in Euphorbia lathyris latex

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I/sub 50/ concentration of 3.2 ..mu..M. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I/sub 50/ of 4 ..mu..M. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-/sup 3/H-mevalonic acid and incubating latex with a mixture of this and /sup 14/C-mevalonic acid. From the /sup 3/H//sup 14/C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs.

  5. Triterpenoid biosynthesis in Euphorbia lathyris latex

    International Nuclear Information System (INIS)

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I50 concentration of 3.2 μM. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I50 of 4 μM. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-3H-mevalonic acid and incubating latex with a mixture of this and 14C-mevalonic acid. From the 3H/14C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs

  6. The structural biology of phenazine biosynthesis.

    Science.gov (United States)

    Blankenfeldt, Wulf; Parsons, James F

    2014-12-01

    The phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in the last decade. Here, we review the contribution of structural biology that has led to our current understanding of phenazine biosynthesis. PMID:25215885

  7. Apoprotein E phenotype determines serum cholesterol in infants during both high-cholesterol breast feeding and low-cholesterol formula feeding.

    Science.gov (United States)

    Kallio, M J; Salmenperä, L; Siimes, M A; Perheentupa, J; Gylling, H; Miettinen, T A

    1997-04-01

    Our objective was to establish the role of the apoprotein (apo) E phenotype in determining serum cholesterol levels in infants fed exclusively on high-fat, high-cholesterol human milk and in those fed a low-cholesterol, high-unsaturated fat formula. The total and lipoprotein cholesterol, apoB, and triglyceride concentrations in serum were quantified and related to the apoE phenotype in 151 infants at birth and at 2, 6, 9, and 12 months of age. Forty-four had the E3/4 or 4/4 phenotype (E4 group), 94 had the E3/3 phenotype (E3 group), and 13 had the E2/3 or 2/4 phenotype (E2 group). In cord blood, cholesterol concentrations tended to be higher in the E4 than in the E2 group. With exclusive breast-feeding, the concentrations rose significantly faster and higher in the E4 group than in the E3 group or, especially, the E2 group. The values (mmol/L, mean +/- SEM) were 1.6 +/- 0.15, 1.5 +/- 0.05, 1.4 +/- 0.1 (P = n.s.) at birth; 4.2 +/- 0.1, 3.8 +/- 0.08, 3.4 +/- 0.2 (P HDL, HDL2, and HDL3 cholesterol concentrations did not depend on the apoE phenotype. Among infants fed high-fat, high-cholesterol human milk, the total and LDL-cholesterol concentrations and the LDL apoB concentration of those with the apoE phenotype 4/4 or 3/4 rose faster and to higher levels than in other infants. Among formula-fed infants, receiving a low-cholesterol, high-unsaturated fat diet, the differences between the apoE groups were smaller.

  8. Saturated fatty acid (SFA) status and SFA intake exhibit different relations with serum total cholesterol and lipoprotein cholesterol : a mechanistic explanation centered around lifestyle-induced low-grade inflammation

    NARCIS (Netherlands)

    Ruiz Nunez, Begona; Kuipers, Remko S.; Luxwolda, Martine F.; De Graaf, Deti J.; Breeuwsma, Benjamin B.; Dijck-Brouwer, Janneke; Muskiet, Frits A. J.

    2014-01-01

    We investigated the relations between fatty acid status and serum total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein (HDL) cholesterol and total cholesterol/HDL cholesterol ratio in five Tanzanian ethnic groups and one Dutch group. Total cholesterol/HDL cholesterol rati

  9. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice

    NARCIS (Netherlands)

    Kruit, J. K.; Kremer, P. H. C.; Dai, L.; Tang, R.; Ruddle, P.; de Haan, W.; Brunham, L. R.; Verchere, C. B.; Hayden, M. R.

    2010-01-01

    Cellular cholesterol accumulation is an emerging mechanism for beta cell dysfunction in type 2 diabetes. Absence of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) results in increased islet cholesterol and impaired insulin secretion, indicating that impaired cholesterol effl

  10. Assessment of modes of action and efficacy of plasma cholesterol-lowering drugs : measurement of cholesterol absorption, cholesterol synthesis and bile acid synthesis and turnover using novel stable isotope techniques

    NARCIS (Netherlands)

    Stellaard, Frans; Kuipers, Folkert

    2005-01-01

    Several processes are involved in control of plasma cholesterol levels, e.g., intestinal cholesterol absorption, endogenous cholesterol synthesis and transport and bile acid synthesis. Adaptation of either of these processes allows the body to adapt to changes in dietary cholesterol intake. Disturba

  11. Dehydroepiandrosterone biosynthesis, metabolism, biological effects, and clinical use (analytical review

    Directory of Open Access Journals (Sweden)

    N. P. Goncharov

    2015-04-01

    Full Text Available The review presents the fundamental information on the metabolism of dehydroepiandrosterone (DHEA, its biological role and possibilities of its use for replacement therapy. There were studied species differences in the synthesis of DHEA in the adrenal cortex. It was found that DHEA and DHEA-sulfate are produced only by the adrenal glands of humans and monkeys, including lower monkeys. Their biosynthesis involves the following steps: cholesterol → pregnenolone → 17-hydroxypregnenolone → DHEA. The adrenal glands of other species, including rats and mice do not synthesize DHEA. At the same time, in certain brain structures not only in man and monkey, but also in other animals DHEA and its precursors are synthesized de novo which are denoted as neurosteroids. It was demonstrated that Purkinje cells which play an important role in memory formation and learning are mainly place neurosteroid formation in mammals and other vertebrates. To establish the relationship of age and the level of DHEA and other steroids we studied the dynamics of their levels at different periods of postnatal development of people. Peak concentration DHEA observed in aged 25–30 years. In the interval from 20 to 90 years in humans the level falls approximately for 90 %. Cortisol levels in blood does not vary with age, leading to an imbalance in the ratio of cortisol/DHEA. Proved a major role of DHEA as a source (precursor for the synthesis of biologically active sex steroids – testosterone, estradiol and estrone in peripheral tissues. This review presents the bioavailability of DHEA in various physiological and pathological processes in humans and animals. In animal experiments has shown a higher bioavailability of DHEA in transdermal administration as compared with oral administration as in this case there is no steroid rapid inactivation in the liver during its first passage. According to recent studies there is a pronounced dependence of bioavailability of DHEA

  12. LDL Cholesterol, Statins And PCSK 9 Inhibitors

    Science.gov (United States)

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  13. Cholesterol interactions with ceramide and sphingomyelin.

    Science.gov (United States)

    García-Arribas, Aritz B; Alonso, Alicia; Goñi, Felix M

    2016-09-01

    Sphingolipids contain in their polar heads chemical groups allowing them to establish a complex network of H-bonds (through different OH and NHgroups) with other lipids in the bilayer. In the recent years the specific interaction of sphingomyelin (SM) with cholesterol (Chol) has been examined, largely in the context of the "lipid raft" hypothesis. Formation of SM-Ceramide (Cer) complexes, proposed to exist in cell membranes in response to stress, has also been described. More recently, a delicate balance of phase formation and transformation in ternary mixtures of SM, Chol and Cer, with mutual displacement of Chol and Cer from their interaction with SM is considered to exist. In addition, data demonstrating direct Chol-Cer interaction are becoming available. PMID:27132117

  14. [Addition of pomegranate juice to statin inhibits cholesterol accumulation in macrophages: protective role for the phytosterol beta-sitosterol and for the polyphenolic antioxidant punicalagin].

    Science.gov (United States)

    Rosenblat, Mira; Volkova, Nina; Aviram, Michael

    2013-09-01

    Macrophage cholesterol and oxidized lipids accumulation and foam cell formation occur in the early stages of atherosclerosis development. In the current study we used the J774A.1 murine macrophage cell line in order to analyze two atherogenic functions: a. the ability of the cells to produce reactive oxygen species (ROS), and to increase cellular oxidative stress, and b. the ability of the cells to synthesize cholesterol, leading to cholesterol accumulation in the cells. The addition of punicalagin, or beta-sitosterol, or pomegranate juice (which contains both of the above) to simvastatin, significantly improved the statin's ability to inhibit macrophage cholesterol biosynthesis. Furthermore, the addition of pomegranate juice (or punicalagin, but not beta sitosterol) to simvastatin significantly increased the statin ability to protect the cells from oxidative stress. Taken together, the current research provides evidence for the additional cardio protection of statins, that is provided by pomegranate juice antioxidant and hypocholesterolemic effects. The use of statins in combination with pomegranate juice in hypercholesterolemic patients, may allow for the use of lower dosages of statin in order to prevent statin deleterious side effects.

  15. Outlining eicosanoid biosynthesis in the crustacean Daphnia

    Directory of Open Access Journals (Sweden)

    Timmermans Martijn JTN

    2008-07-01

    Full Text Available Abstract Background Eicosanoids are biologically active, oxygenated metabolites of three C20 polyunsaturated fatty acids. They act as signalling molecules within the autocrine or paracrine system in both vertebrates and invertebrates mainly functioning as important mediators in reproduction, the immune system and ion transport. The biosynthesis of eicosanoids has been intensively studied in mammals and it is known that they are synthesised from the fatty acid, arachidonic acid, through either the cyclooxygenase (COX pathway; the lipoxygenase (LOX pathway; or the cytochrome P450 epoxygenase pathway. However, little is still known about the synthesis and structure of the pathway in invertebrates. Results Here, we show transcriptomic evidence from Daphnia magna (Crustacea: Branchiopoda together with a bioinformatic analysis of the D. pulex genome providing insight on the role of eicosanoids in these crustaceans as well as outlining a putative pathway of eicosanoid biosynthesis. Daphnia appear only to have one copy of the gene encoding the key enzyme COX, and phylogenetic analysis reveals that the predicted protein sequence of Daphnia COX clusters with other invertebrates. There is no current evidence of an epoxygenase pathway in Daphnia; however, LOX products are most certainly synthesised in daphnids. Conclusion We have outlined the structure of eicosanoid biosynthesis in Daphnia, a key genus in freshwater ecosystems. Improved knowledge of the function and synthesis of eicosanoids in Daphnia and other invertebrates could have important implications for several areas within ecology. This provisional overview of daphnid eicosanoid biosynthesis provides a guide on where to focus future research activities in this area.

  16. Combinatorial biosynthesis of medicinal plant secondary metabolites

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Koulman, Albert; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2006-01-01

    Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors

  17. Biosynthesis of sphinganine-analog mycotoxins.

    Science.gov (United States)

    Du, L; Zhu, X; Gerber, R; Huffman, J; Lou, L; Jorgenson, J; Yu, F; Zaleta-Rivera, K; Wang, Q

    2008-06-01

    Sphinganine-analog mycotoxins (SAMT) are polyketide-derived natural products produced by a number of plant pathogenic fungi and are among the most economically important mycotoxins. The toxins are structurally similar to sphinganine, a key intermediate in the biosynthesis of ceramides and sphingolipids, and competitive inhibitors for ceramide synthase. The inhibition of ceramide and sphingolipid biosynthesis is associated with several fatal diseases in domestic animals and esophageal cancer and neural tube defects in humans. SAMT contains a highly reduced, acyclic polyketide carbon backbone, which is assembled by a single module polyketide synthase. The biosynthesis of SAMT involves a unique polyketide chain-releasing mechanism, in which a pyridoxal 5'-phosphate-dependent enzyme catalyzes the termination, offloading and elongation of the polyketide chain. This leads to the introduction of a new carbon-carbon bond and an amino group to the polyketide chain. The mechanism is fundamentally different from the thioesterase/cyclase-catalyzed polyketide chain releasing found in bacterial and other fungal polyketide biosynthesis. Genetic data suggest that the ketosynthase domain of the polyketide synthase and the chain-releasing enzyme are important for controlling the final product structure. In addition, several post-polyketide modifications have to take place before SAMT become mature toxins.

  18. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Émilie Pepin

    Full Text Available Diet induced obese (DIO mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR and high responders (HDR. This allows the study of β-cell failure and the transitions to prediabetes (LDR and early diabetes (HDR. C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed, but were prominent between HDR and ND islets (1508 differentially expressed. In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR is largely independent of transcriptional adaptive changes, whereas the

  19. Disturbances in cholesterol, bile acid and glucose metabolism in peroxisomal 3-ketoacylCoA thiolase B deficient mice fed diets containing high or low fat contents.

    Science.gov (United States)

    Nicolas-Francès, Valérie; Arnauld, Ségolène; Kaminski, Jacques; Ver Loren van Themaat, Emiel; Clémencet, Marie-Claude; Chamouton, Julie; Athias, Anne; Grober, Jacques; Gresti, Joseph; Degrace, Pascal; Lagrost, Laurent; Latruffe, Norbert; Mandard, Stéphane

    2014-03-01

    The peroxisomal 3-ketoacyl-CoA thiolase B (ThB) catalyzes the thiolytic cleavage of straight chain 3-ketoacyl-CoAs. Up to now, the ability of ThB to interfere with lipid metabolism was studied in mice fed a laboratory chow enriched or not with the synthetic agonist Wy14,643, a pharmacological activator of the nuclear hormone receptor PPARα. The aim of the present study was therefore to determine whether ThB could play a role in obesity and lipid metabolism when mice are chronically fed a synthetic High Fat Diet (HFD) or a Low Fat Diet (LFD) as a control diet. To investigate this possibility, wild-type (WT) mice and mice deficient for Thb (Thb(-/-)) were subjected to either a synthetic LFD or a HFD for 25 weeks, and their responses were compared. First, when fed a normal regulatory laboratory chow, Thb(-/-) mice displayed growth retardation as well as a severe reduction in the plasma level of Growth Hormone (GH) and Insulin Growth Factor-I (IGF-I), suggesting alterations in the GH/IGF-1 pathway. When fed the synthetic diets, the corrected energy intake to body mass was significantly higher in Thb(-/-) mice, yet those mice were protected from HFD-induced adiposity. Importantly, Thb(-/-) mice also suffered from hypoglycemia, exhibited reduction in liver glycogen stores and circulating insulin levels under the LFD and the HFD. Thb deficiency was also associated with higher levels of plasma HDL (High Density Lipoproteins) cholesterol and increased liver content of cholesterol under both the LFD and the HFD. As shown by the plasma lathosterol to cholesterol ratio, a surrogate marker for cholesterol biosynthesis, whole body cholesterol de novo synthesis was increased in Thb(-/-) mice. By comparing liver RNA from WT mice and Thb(-/-) mice using oligonucleotide microarray and RT-qPCR, a coordinated decrease in the expression of critical cholesterol synthesizing genes and an increased expression of genes involved in bile acid synthesis (Cyp7a1, Cyp17a1, Akr1d1) were

  20. 22(R)-hydroxycholesterol and pioglitazone synergistically decrease cholesterol ester via the PPARγ–LXRα–ABCA1 pathway in cholesterosis of the gallbladder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Min, E-mail: wjm730222@163.com; Wang, Dong, E-mail: 8888dd@163.com; Tan, Yu-Yan, E-mail: tyytyz@sina.com; Zhao, Gang, E-mail: zhao_gang7@126.com; Ji, Zhen-Ling, E-mail: zlji@me.com

    2014-04-25

    Highlights: • Cholesterosis is a metabolic disease characterized by excessive lipid droplets. • Lipid droplet efflux is mediated by the ABCA1 transporter. • 22(R)-hydroxycholesterol can activate LXRα and up-regulate ABCA1. • Pioglitazone up-regulates ABCA1 in a PPARγ–LXRα–ABCA1-dependent manner. • 22(R)-hydroxycholesterol and pioglitazone synergistically decrease lipid droplets. - Abstract: Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis and the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets

  1. Serum cholesterol decline and depression in the postpartum period

    NARCIS (Netherlands)

    Dam, van R.M.; Schuit, A.J.; Schouten, E.G.; Vader, H.L.; Pop, V.J.M.

    1999-01-01

    We examined the relation between total serum cholesterol decline and depression in the postpartum period in a prospective study of 266 Dutch women, who were followed until 34 weeks after delivery. The decline in serum cholesterol between week 32 of pregnancy and week 10 postpartum was similar for wo

  2. The ins and outs of reverse cholesterol transport

    NARCIS (Netherlands)

    Groen, AK; Elferink, RPJO; Verkade, HJ; Kuipers, F

    2004-01-01

    It is generally assumed that HDL is the obligate transport vehicle for 'reverse cholesterol transport'. the pathway for removal of excess cholesterol from peripheral tissues via the liver into bile and subsequent excretion via the feces. During the last few years, intensive research has generated ex

  3. CDC Vital Signs: High Blood Pressure and Cholesterol

    Science.gov (United States)

    ... 1.36 MB] Read the MMWR Science Clips High Blood Pressure and Cholesterol Out of Control Recommend on Facebook ... by County http://apps.nccd.cdc.gov/GISCVH2/ High Blood Pressure and High Cholesterol Among US Adults SOURCES: National ...

  4. Low serum cholesterol, serotonin metabolism, and violent death

    NARCIS (Netherlands)

    P.H.A. Steegmans

    1995-01-01

    textabstractA high serum cholesterol level is a well documented risk factor for atherosclerotic cardiovascular disease. Consequently, a low serum cholesterol has in general been viewed as beneficial. However, since the early 70s, results from several cohort studies and randomized trials have suggest

  5. Cholesterol Check (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2015-09-10

    High blood cholesterol is a risk factor for cardiovascular disease. This podcast discusses the importance of a healthy diet and regular cholesterol screening.  Created: 9/10/2015 by MMWR.   Date Released: 9/10/2015.

  6. Composition of and cholesterol in Araucana and commercial eggs.

    Science.gov (United States)

    Peterson, D W; Lilyblade, A; Clifford, C K; Ernst, R; Clifford, A J; Dunn, P

    1978-01-01

    Araucana eggs from six sources and commercial-type white eggs of two major supermarket brands and from the University of California flock were collected and analyzed for cholesterol content of the yolk. The yolks of Araucana eggs were significantly higher in cholesterol than those of commercial white eggs. PMID:563887

  7. Transport of cholesterol autoxidation products in rabbit lipoproteins

    International Nuclear Information System (INIS)

    Radiolabeled pure [4-14C] cholesterol was kept at 600C under air to autoxidize for 5 weeks, after which approximately 12% cholesterol oxidation products were formed. The mixture, suspended in gelatin, was given to rabbits by gastric gavage. Rabbits were killed 4, 24 and 48 h after treatment. Cholesterol and its autoxidation products were separated by thin-layer chromatography into 5 fractions and radioactivities of each fraction were measured. Percentages of each fraction of cholesterol oxidation products and cholesterol in the original mixture before administration and in the rabbit sera after administration were similar, suggesting that the rates of absorption of cholesterol oxidation products are not significantly different from that of cholesterol. Lipoproteins were fractioned by ultracentrifugation into VLDL, LDL and HDL. Radioactivities of each fraction in lipoproteins separated by thin layer chromatography showed that fractions containing cholestane-3β, 5α, 6β-triol, 7α- and 7β-hydroxycholesterol and 7-ketocholesterol were more selectively transported in VLDL, whereas most of the 25-hydroxycholesterol was present in LDL. HDL contained only minute amounts of cholesterol oxidation products. 22 refs

  8. LDL cholesterol still a problem in old age?

    DEFF Research Database (Denmark)

    Postmus, Iris; Deelen, Joris; Sedaghat, Sanaz;

    2015-01-01

    BACKGROUND: Observational studies in older subjects have shown no or inverse associations between cholesterol levels and mortality. However, in old age plasma low-density lipoprotein cholesterol (LDL-C) may not reflect the lifetime level due to reverse causality, and hence the risk may be underes...

  9. Cholesterol and Sphingomyelin-Containing Model Condensed Lipid Monolayers: Heterogeneities Involving Ordered Microdomains Assessed by Two Cholesterol Derivatives.

    Science.gov (United States)

    Lecompte, Marie-France; Gaibelet, Gérald; Lebrun, Chantal; Tercé, François; Collet, Xavier; Orlowski, Stéphane

    2015-11-01

    Lipid monolayers are often considered as model membranes, but they are also the physiologic lipid part of the peripheral envelope of lipoproteins and cytosolic lipid bodies. However, their structural organization is still rather elusive, in particular when both cholesterol and sphingomyelin are present. To investigate such structural organization of hemimembranes, we measured, using alternative current voltammetry, the differential capacitance of condensed phosphatidylcholine-based monolayers as a function of applied potential, which is sensitive to their lipid composition and molecular arrangement. Especially, monolayers containing both sphingomyelin and cholesterol, at 15% w/w, presented specific characteristics of the differential capacitance versus potential curves recorded, which was indicative of specific interactions between these two lipid components. We then compared the behavior of two cholesterol derivatives (at 15% w/w), 21-methylpyrenyl-cholesterol (Pyr-met-Chol) and 22-nitrobenzoxadiazole-cholesterol (NBD-Chol), with that of cholesterol when present in model monolayers. Indeed, these two probes were chosen because of previous findings reporting opposite behaviors within bilayer membranes regarding their interaction with ordered lipids, with only Pyr-met-Chol mimicking cholesterol well. Remarkably, in monolayers containing sphingomyelin or not, Pyr-met-Chol and NBD-Chol presented contrasting behaviors, and Pyr-met-Chol mimicked cholesterol only in the presence of sphingomyelin. These two observations (i.e., optimal amounts of sphingomyelin and cholesterol, and the ability to discriminate between Pyr-met-Chol and NBD-Chol) can be interpreted by the existence of heterogeneities including ordered patches in sphingomyelin- and cholesterol-containing monolayers. Since such monolayer lipid arrangement shares some properties with the raft-type lipid microdomains well-described in sphingomyelin- and cholesterol-containing bilayer membranes, our data thus

  10. The regulation of alfalfa saponin extract on key genes involved in hepatic cholesterol metabolism in hyperlipidemic rats.

    Directory of Open Access Journals (Sweden)

    Yinghua Shi

    Full Text Available To investigate the cholesterol-lowering effects of alfalfa saponin extract (ASE and its regulation mechanism on some key genes involved in cholesterol metabolism, 40 healthy 7 weeks old male Sprague Dawley (SD rats were randomly divided into four groups with 10 rats in each group: control group, hyperlipidemic group, ASE treatment group, ASE prevention group. The body weight gain, relative liver weight and serum lipid 1evels of rats were determined. Total cholesterol (TC and total bile acids (TBA levels in liver and feces were also measured. Furthermore, the activity and mRNA expressions of Hmgcr, Acat2, Cyp7a1 and Ldlr were investigated. The results showed the following: (1 The abnormal serum lipid levels in hyperlipidemic rats were ameliorated by ASE administration (both ASE prevention group and treatment group (P<0.05. (2 Both ASE administration to hyperlipidemic rats significantly reduced liver TC and increased liver TBA level (P<0.05. TC and TBA levels in feces of hyperlipidemic rats were remarkably elevated by both ASE administration (P<0.05. (3 mRNA expressions of Hmgcr and Acat2 in the liver of hyperlipidemic rats were remarkably down-regulated (P<0.05, as well as mRNA expressions of Cyp7a1 and Ldlr were dramatically up-regulated by both ASE administration (P<0.05. The activities of these enzymes also paralleled the observed changes in mRNA levels. (4 There was no significant difference between ASE treatment and ASE prevention group for most parameters evaluated. Our present study indicated that ASE had cholesterol-lowering effects. The possible mechanism could be attributed to (1 the down-regulation of Hmgcr and Acat2, as well as up-regulation of Cyp7a1 and Ldlr in the liver of hyperlipidemic rats, which was involved in cholesterol biosynthesis, uptake, and efflux pathway; (2 the increase in excretion of cholesterol. The findings in our study suggested ASE had great potential usefulness as a natural agent for treating hyperlipidemia.

  11. Ursodeoxycholic Acid for the Treatment of Cholesterol Gallstones

    International Nuclear Information System (INIS)

    Cholesterol is the principal constituent of more than three quarters of gallstones. Pure cholesterol crystals are quite soft, and protein contributes importantly to the strength of cholesterol stones. The risk of gallstones does not correlate with total serum cholesterol levels, but it does correlate with decreased high-density lipoprotein cholesterol and increased triglyceride levels. At least 10 percent of adults have gallstones where female: male ratio of about 2:1 in the younger age groups with increasing prevalence with age. Nine patients with gallstones (6 females and 3 males) were included in the study. Patients were treated with ursodeoxycholic acids tablets in two oral doses, one after breakfast, and the other after dinner for 9 months. Ultrasound examination was repeated every 3 months. Re-examination by abdominal ultrasonography revealed that gallstone 1 cm or less in diameter disappeared within 6 months, and the largest stone 3.06 cm in diameter disappeared within 9 months.

  12. Enzymatic-fluorometric quantification of cholesterol in bovine milk

    DEFF Research Database (Denmark)

    Larsen, Torben

    2012-01-01

    The present paper describes an enzymatic–fluorometric method for the determination of cholesterol in milk and other opaque matrices. The initial step of the method is to liberate chemically and physically bound cholesterol from the milk fat globule membrane by enzymatic action. The method is able...... to discriminate between esterified and free cholesterol in milk. The analysis is cost effective and is developed to work directly on whole, fresh milk thereby eliminating time consuming and tedious pre-treatment procedures of the sample. More than 1000 milk samples were analysed on the day of sampling. The total...... concentration of milk cholesterol ranged from 80 to 756 μM (n = 1068; mean 351 μM). Milk cholesterol was significantly correlated to milk fat concentration as analysed by mid-infra red spectrometry (r = 0.630; n = 853) and by an enzymatic–fluorometric method (triacylglycerol) (r = 0.611; n = 842)....

  13. Bad cholesterol and good mood: exploring the link

    Directory of Open Access Journals (Sweden)

    Yashaswi Gupta

    2016-01-01

    Full Text Available It is a well-known fact that high cholesterol increases the risks of heart disease. Hence, physicians actively encourage cholesterol-lowering interventions using medications and lifestyle modifications. However, there is considerable evidence that aggressive lowering of cholesterol is associated with depression, bipolar disorders, violent behaviour, and suicidal ideation. It has been hypothesised that low cholesterol leads to low levels of serotonin, a chemical that is responsible for maintaining mood balance. South Korea and India have highest number of suicides in Asia. It is a significant challenge for physicians to search an alternative that will not only maintain healthy level of cholesterol, but also contribute to psychological well-being of the patient. Generally, the role of diet and physical activity is considered secondary to medications. However, dietary supplements like coenzyme Q10 (CoQ10, omega-3 fatty acids, niacin, and physical activity like Yoga are extremely beneficial for improving lipid profile and symptoms of depression.

  14. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma.

    Science.gov (United States)

    Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2016-09-01

    SND1 is a multifunctional protein participating, among others, in gene transcription and mRNA metabolism. SND1 is overexpressed in cancer cells and promotes viability and tumourigenicity of hepatocellular carcinoma cells. This study shows that cholesterol synthesis is increased in SND1-overexpressing hepatoma cells. Neither newly synthesised nor extracellularly supplied cholesterol are able to suppress this increase; however, inhibition of cholesterol esterification reverted the activated state of sterol-regulatory element-binding protein 2 (SREBP2) and cholesterogenesis. These results highlight SND1 as a potential regulator of cellular cholesterol distribution and homeostasis in hepatoma cells, and support the rationale for the therapeutic use of molecules that influence cholesterol management when SND1 is overexpressed. PMID:27238764

  15. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    Science.gov (United States)

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies. PMID:24447914

  16. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, H.; Miwa, A. (Josai Univ., Saitama (Japan))

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  17. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells

    Science.gov (United States)

    Augustin, Megan M.; Ruzicka, Dan R.; Shukla, Ashutosh K.; Augustin, Jörg M.; Starks, Courtney M.; O’Neil-Johnson, Mark; McKain, Michael R.; Evans, Bradley S.; Barrett, Matt D.; Smithson, Ann; Wong, Gane Ka-Shu; Deyholos, Michael K.; Edger, Patrick P.; Pires, J. Chris; Leebens-Mack, James H.; Mann, David A.; Kutchan, Toni M.

    2015-01-01

    Summary Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA-seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern-matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ-aminobutyrate transaminase; together they produce verazine from cholesterol. PMID:25939370

  18. Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice

    NARCIS (Netherlands)

    Haan, W. de; Hoogt, C.C. van der; Westerterp, M.; Hoekstra, M.; Dallinga-Thie, G.M.; Princen, H.M.G.; Romijn, J.A.; Jukema, J.W.; Havekes, L.M.; Rensen, P.C.N.

    2008-01-01

    Objective: In addition to lowering low-density lipoprotein (LDL)-cholesterol, statins modestly increase high-density lipoprotein (HDL)-cholesterol in humans and decrease cholesteryl ester transfer protein (CETP) mass and activity. Our aim was to determine whether the increase in HDL depends on CETP

  19. Function of MRP1/ABCC1 is not dependent on cholesterol or cholesterol-stabilized lipid rafts

    NARCIS (Netherlands)

    Meszaros, Peter; Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem

    2011-01-01

    MRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly comple

  20. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine

    NARCIS (Netherlands)

    den Bosch, Heleen M. de Vogel-van; de Wit, Nicole J. W.; Hooiveld, Guido J. E. J.; Vermeulen, Hanneke; van der Veen, Jelske N.; Houten, Sander M.; Kuipers, Folkert; Mueller, Michael; van der Meer, Roelof

    2008-01-01

    A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine. Am J Physiol Gastrointest Liver Physiol 294: G1171-G1180, 2008. First published March 20, 2008; doi:10.1152/ajpgi.00360.2007.-Transporters present in the epithelium of the small intest

  1. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC and tilted domains

    Directory of Open Access Journals (Sweden)

    Jacques eFantini

    2013-02-01

    Full Text Available The plasma membrane of eukaryotic cells contains several types of lipids displaying high biochemical variability in both their apolar moiety (e.g. the acyl chain of glycerolipids and their polar head (e.g. the sugar structure of glycosphingolipids. Among these lipids, cholesterol is unique because its biochemical variability is almost exclusively restricted to the oxidation of its polar -OH group. Although generally considered the most rigid membrane lipid, cholesterol can adopt a broad range of conformations due to the flexibility of its isooctyl chain linked to the polycyclic sterane backbone. Moreover, cholesterol is an asymmetric molecule displaying a planar face and a rough  face. Overall, these structural features open up a number of possible interactions between cholesterol and membrane lipids and proteins, consistent with the prominent regulatory functions that this unique lipid exerts on membrane components. The aim of this review is to describe how cholesterol interacts with membrane lipids and proteins at the molecular/atomic scale, with special emphasis on transmembrane domains of proteins containing either the consensus cholesterol-binding motifs CRAC and CARC or a tilted peptide. Despite their broad structural diversity, all these domains bind cholesterol through common molecular mechanisms, leading to the identification of a subset of amino acid residues that are overrepresented in both linear and three-dimensional membrane cholesterol-binding sites.

  2. The influence of cholesterol and biomass concentration on the uptake of cholesterol by Lactobacillus from MRS broth

    Directory of Open Access Journals (Sweden)

    Małgorzata Ziarno

    2007-06-01

    Full Text Available The aim of this study was the determination of some factors influence (i.e. the vitality of bacteria cells and the cholesterol concentration on the ability of selected Lactobacillus sp. to cholesterol uptake during culture in MRS broth. Three Lactobacillus strains (Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei isolated from commercial single species lyophilized dairy starter cultures and three Lactobacillus strains (Lb. plantarum, Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus originated from commercial pharmaceuticals were used in this study. The uptake of cholesterol from MRS broth during the growth of Lactobacillus sp., expressed as the difference between the final and the initial concentrations of cholesterol, ranged from 0.053 to 0.153 g/dm³, apart from the initial cholesterol content and the origin of Lactobacillus sp. The results confirmed that biomass concentration have a statistically significant effect on uptake of cholesterol. The ten-fold increase of the amount of intact cells biomass caused about 1.5-2-fold increase of the amount of cholesterol removed. The influence of the concentration of biomass of alive cells on the removal of cholesterol was bigger than in case of the heat-sterilized cells.

  3. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.

    2012-01-01

    Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). T

  4. Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study123

    OpenAIRE

    Racette, Susan B.; Lin, Xiaobo; Lefevre, Michael; Spearie, Catherine Anderson; MOST, MARLENE M.; Ma, Lina; Ostlund, Richard E

    2009-01-01

    Background: Phytosterol supplementation of 2 g/d is recommended by the National Cholesterol Education Program to reduce LDL cholesterol. However, the effects of different intakes of phytosterol on cholesterol metabolism are uncertain.

  5. High Blood Cholesterol Q&A Dr. Michael Lauer | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... this page please turn Javascript on. Feature: High Cholesterol High Blood Cholesterol Q&A with Dr. Michael Lauer Past Issues / ... heavier and older, what does recent research on cholesterol and heart health tell us that Americans need ...

  6. LCAT, HDL Cholesterol and Ischemic Cardiovascular Disease: A Mendelian Randomization Study of HDL Cholesterol in 54,500 Individuals

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Ali Qayyum, Abbas;

    2012-01-01

    Background:Epidemiologically, high-density lipoprotein (HDL) cholesterol levels associate inversely with risk of ischemic cardiovascular disease. Whether this is a causal relation is unclear.Methods:We studied 10,281 participants in the Copenhagen City Heart Study (CCHS) and 50,523 participants...... in the Copenhagen General Population Study (CGPS), of which 991 and 1,693 participants, respectively, had developed myocardial infarction (MI) by August 2010. Participants in the CCHS were genotyped for all six variants identified by resequencing lecithin-cholesterol acyltransferase in 380 individuals. One variant......, S208T (rs4986970, allele frequency 4%), associated with HDL cholesterol levels in both the CCHS and the CGPS was used to study causality of HDL cholesterol using instrumental variable analysis.Results:Epidemiologically, in the CCHS, a 13% (0.21 mmol/liter) decrease in plasma HDL cholesterol levels...

  7. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells[S

    OpenAIRE

    Sankaranarayanan, Sandhya; de la Llera-Moya, Margarita; Drazul-Schrader, Denise; Phillips, Michael C.; Kellner-Weibel, Ginny; Rothblat, George H.

    2013-01-01

    An important mechanism contributing to cell cholesterol efflux is aqueous transfer in which cholesterol diffuses from cells into the aqueous phase and becomes incorporated into an acceptor particle. Some compounds can enhance diffusion by acting as shuttles transferring cholesterol to cholesterol acceptors, which act as cholesterol sinks. We have examined whether particles in serum can enhance cholesterol efflux by acting as shuttles. This task was accomplished by incubating radiolabeled J774...

  8. Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness.

    OpenAIRE

    Rukmini, R; Rawat, S S; Biswas, S. C.; Chattopadhyay, A

    2001-01-01

    Cholesterol is often found distributed nonrandomly in domains in biological and model membranes and has been reported to be distributed heterogeneously among various intracellular membranes. Although a large body of literature exists on the organization of cholesterol in plasma membranes or membranes with high cholesterol content, very little is known about organization of cholesterol in membranes containing low amounts of cholesterol. Using a fluorescent cholesterol analog (25-[N-[(7-nitrobe...

  9. Resveratrol Protects Rabbits Against Cholesterol Diet-Induced Hyperlipidaemia.

    Science.gov (United States)

    Tanko, Y; Jimoh, A; Ahmed, A; Mohammed, A; Ayo, J O

    2016-01-01

    The excessive consumption of high cholesterol diet has been associated with an increased incidence oflipidaemia. Lipidaemia is enhanced by formation of oxidative stress, lipid peroxidation and hyperglycaemia. The aim ofthese experiments was to investigate the protective effect of resveratrol co-administered with cholesterol diet inducedhyperlipidaemia in rabbits. Thirty rabbits divided into six groups of five animal (group= 5) each: group 1 = normal control,group 2 = cholesterol diet/high fat diet group only (HFD), group 3 = resveratrol 200 mg/kg (R200), group 4 = resveratrol400 mg/kg (R400), group 5 = HFD + R200 and group 6 = HFD + R400. The normal group was fed with standard animalfeeds only; while the HFD groups were fed with standard animal feeds + cholesterol diet (10% Groundnut oil, 20%Groundnut mill and 2% cholesterol). Resveratrol-treated rabbits received resveratrol suspended in 10 g/Lcarboxymethylcellulose (CMC) and the control group received the vehicle only, CMC. The preparations were administeredfor 8 weeks of experimental protocol. At the end of the study period, the animals were sacrificed. Blood and plasma sampleswere collected. Serum evaluation of lipid profile such as total cholesterol (TC), triacylglycerol (Tg), low density lipoproteincholesterol (LDP-c) and high density lipoprotein cholesterol (HDL-c) were also assessed. The results obtained showsignificant (P resveratrol treated groups compared to HFD group only.In conclusion, the findings indicated that Resveratrol may contain polar products able to lower plasma lipid concentrationsand might be beneficial in treatment of hyperlipidemia and atherosclerosis. PMID:27574767

  10. CHOLESTEROL LEVELS AND SUICIDAL BEHAVIOR: A CASE CONTROL STUDY

    Directory of Open Access Journals (Sweden)

    Nikhil

    2014-06-01

    Full Text Available BACKGROUND: In modern psychiatry, there is a movement to understand mental health, not solely based on behaviors and subjective report, but also based on objective markers of illness. Several studies have focused on a relationship between serum cholesterol levels and aggressive behaviors including suicide. AIM: To identify a potential link between cholesterol and suicidal behavior. MATERIAL AND METHODS: 150 patients with psychiatry diagnosis were divided into three equal groups (50 each: those who had a recent suicidal attempt, those who had suicidal ideations but no attempts and those with psychiatry diagnosis but no suicidal ideations and attempts. Blood sample for total cholesterol level was on IPD or OPD basis. The study was started after taking approval from institute ethical committee. Analysis was done using Chi square test. OBSERVATIONS AND RESULTS: It was found that maximum patients who attempted suicide belonged to major depression and schizophrenia followed by substance dependence and bipolar affective disorder (BPAD with major depression and there was statistical difference in cholesterol levels of patients with suicide attempt, with suicidal ideations and control group. 42% and 44% of major depression and schizophrenia cases respectively had low total serum cholesterol levels (below 160 mg%. CONCLUSION: There is a potential link between serum total cholesterol levels and suicidal behavior. Taking the literature as a whole there is substantial evidence that low cholesterol levels are found in suicidal behaviors of various psychiatric illnesses especially major depressive disorder, schizophrenia, substance dependence and bipolar depressive disorder

  11. 2H2O incorporation into hepatic acetyl-CoA and de novo lipogenesis as measured by Krebs cycle-mediated 2H-enrichment of glutamate and glutamine.

    Science.gov (United States)

    Silva, Ana Maria; Martins, Fatima; Jones, John G; Carvalho, Rui

    2011-12-01

    Deuterated water is widely used for measuring de novo lipogenesis on the basis of quantifying lipid (2)H-enrichment relative to that of body water. However, incorporation of (2)H-enrichment from body water into newly synthesized lipid molecules is incomplete therefore the true lipid precursor enrichment differs from that of body water. We describe a novel measurement of de novo lipogenesis that is based on a true precursor-product analysis of hepatic acetyl-CoA and triglyceride methyl enrichments from deuterated water. After deuterated water administration to seven in situ and seven perfused livers, acetyl-CoA methyl enrichment was inferred from (2)H nuclear magnetic resonance analysis of hepatic glutamate/glutamine (Glx) enrichment and triglyceride methyl enrichment was directly determined by (2)H nuclear magnetic resonance of triglycerides. Acetyl-CoA (2) H-enrichment was 71% ± 1% that of body water for in situ livers and 53% ± 2% of perfusate water for perfused livers. From the ratio of triglyceride-methyl/acetyl-CoA enrichments, fractional de novo lipogenesis rates of 0.97% ± 0.09%/2 hr and 7.92% ± 1.47%/48 hr were obtained for perfused and in situ liver triglycerides, respectively. Our method reveals that acetyl-CoA enrichment is significantly less than body water both for in situ and perfused livers. Furthermore, the difference between acetyl-CoA and body water enrichments is sensitive to the experimental setting.

  12. Cholesterol induces fetal rat enterocyte death in culture

    Directory of Open Access Journals (Sweden)

    Gazzola J.

    2004-01-01

    Full Text Available The effect of cholesterol on fetal rat enterocytes and IEC-6 cells (line originated from normal rat small intestine was examined. Both cells were cultured in the presence of 20 to 80 µM cholesterol for up to 72 h. Apoptosis was determined by flow cytometric analysis and fluorescence microscopy. The expression of HMG-CoA reductase and peroxisome proliferator-activated receptor gamma (PPARgamma was measured by RT-PCR. The addition of 20 µM cholesterol reduced enterocyte proliferation as early as 6 h of culture. Reduction of enterocyte proliferation by 28 and 41% was observed after 24 h of culture in the presence and absence of 10% fetal calf serum, respectively, with the effect lasting up to 72 h. Treatment of IEC-6 cells with cholesterol for 24 h raised the proportion of cells with fragmented DNA by 9.7% at 40 µM and by 20.8% at 80 µM. When the culture period was extended to 48 h, the effect of cholesterol was still more pronounced, with the percent of cells with fragmented DNA reaching 53.5% for 40 µM and 84.3% for 80 µM. Chromatin condensation of IEC-6 cells was observed after treatment with cholesterol even at 20 µM. Cholesterol did not affect HMG-CoA reductase expression. A dose-dependent increase in PPARgamma expression in fetal rat enterocytes was observed. The expression of PPAR-gamma was raised by 7- and 40-fold, in the presence and absence of fetal calf serum, respectively, with cholesterol at 80 mM. The apoptotic effect of cholesterol on enterocytes was possibly due to an increase in PPARgamma expression.

  13. Low HDL cholesterol, aggression and altered central serotonergic activity.

    Science.gov (United States)

    Buydens-Branchey, L; Branchey, M; Hudson, J; Fergeson, P

    2000-03-01

    Many studies support a significant relation between low cholesterol levels and poor impulse, aggression and mood control. Evidence exists also for a causal link between low brain serotonin (5-HT) activity and these behaviors. Mechanisms linking cholesterol and hostile or self-destructive behavior are unknown, but it has been suggested that low cholesterol influences 5-HT function. This study was designed to explore the relationship between plasma cholesterol, measures of impulsivity and aggression, and indices of 5-HT function in personality disordered cocaine addicts. Thirty-eight hospitalized male patients (age 36.8+/-7.1) were assessed with the DSM-III-R, the Buss-Durkee Hostility Inventory (BDHI), the Barratt Impulsiveness Scale (BIS) and the Brown-Goodwin Assessment for Life History of Aggression. Fasting basal cholesterol (total, LDL and HDL) was determined 2 weeks after cocaine discontinuation. On the same day 5-HT function was assessed by neuroendocrine (cortisol and prolactin) and psychological (NIMH and 'high' self-rating scales) responses following meta-chlorophenylpiperazine (m-CPP) challenges. Reduced neuroendocrine responses, 'high' feelings and increased 'activation-euphoria' following m-CPP have been interpreted as indicating 5-HT alterations in a variety of psychiatric conditions. Significantly lower levels of HDL cholesterol were found in patients who had a history of aggression (P=0.005). Lower levels of HDL cholesterol were also found to be significantly associated with more intense 'high' and 'activation-euphoria' responses as well as with blunted cortisol responses to m-CPP (P=0.033, P=0.025 and P=0.018, respectively). This study gives further support to existing evidence indicating that in some individuals, the probability of exhibiting impulsive and violent behaviors may be increased when cholesterol is low. It also suggests that low cholesterol and alterations in 5-HT activity may be causally related.

  14. Statins: Cholesterol guidelines and Indian perspective

    Directory of Open Access Journals (Sweden)

    Anil S Menon

    2015-01-01

    Full Text Available Statins have become an important drug in preventing the occurrence of atherosclerotic cardiovascular disease (ASCVD. The effectiveness of statins in reducing ASCVD has been established in large-scale clinical trials. The lipid management guidelines have been periodically modified due to accumulating evidence about the proportionate benefit achieved with a progressive reduction in cholesterol levels with higher doses of statins and even in those at low risk of development of ASCVD. The current American College of Cardiology/American Heart Association guidelines have based its recommendations from data gathered exclusively from randomized controlled trials. It has simplified the use of statins, but also raised questions regarding the validity of its cardiovascular event risk prediction tool. Epidemiology of cardiovascular disease in India differs from the western population; there is an increased the prevalence of metabolic syndrome and atherogenic dyslipidemia phenotype a group not addressed in the current guidelines. The guidelines are based on trials, which do not have a representative South Asian population. This article reviews the relevant literature, and examines the issues involved in adopting the guidelines to the Indian population.

  15. Carotenoid Metabolism: Biosynthesis, Regulation,and Beyond

    Institute of Scientific and Technical Information of China (English)

    Shan Lu; Li Li

    2008-01-01

    Carotenoids are Indispensable to plants and play a critical role in human nutrition and health. Significant progress has been made in our understanding of carotenoid metabolism in plants. The biosynthetic pathway has been extensively studied.Nearly all the genes encoding the biosynthetic enzymes have been isolated and characterized from various organisms. In recent years, there is an increasing body of work on the signaling pathways and plastid development, which might provide global control of carotenoid biosynthesis and accumulation. Herein, we will highlight recent progress on the biosynthesis,regulation, and metabolic engineering of carotenoids in plants, as well as the future research towards elucidating the regulatory mechanisms and metabolic network that control carotenoid metabolism.

  16. Functional specialization in proline biosynthesis of melanoma.

    Directory of Open Access Journals (Sweden)

    Jessica De Ingeniis

    Full Text Available Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C, and then to proline via pyrroline-5-carboxylate reductases (PYCRs. Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of (13C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis.

  17. Functional Specialization in Proline Biosynthesis of Melanoma

    Science.gov (United States)

    Richardson, Adam D.; Scott, David A.; Aza-Blanc, Pedro; De, Surya K.; Kazanov, Marat; Pellecchia, Maurizio; Ronai, Ze'ev; Osterman, Andrei L.; Smith, Jeffrey W.

    2012-01-01

    Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of 13C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis. PMID:23024808

  18. Biosynthesis and toxicological effects of patulin.

    Science.gov (United States)

    Puel, Olivier; Galtier, Pierre; Oswald, Isabelle P

    2010-04-01

    Patulin is a toxic chemical contaminant produced by several species of mold, especially within Aspergillus, Penicillium and Byssochlamys. It is the most common mycotoxin found in apples and apple-derived products such as juice, cider, compotes and other food intended for young children. Exposure to this mycotoxin is associated with immunological, neurological and gastrointestinal outcomes. Assessment of the health risks due to patulin consumption by humans has led many countries to regulate the quantity in food. A full understanding of the molecular genetics of patulin biosynthesis is incomplete, unlike other regulated mycotoxins (aflatoxins, trichothecenes and fumonisins), although the chemical structures of patulin precursors are now known. The biosynthetic pathway consists of approximately 10 steps, as suggested by biochemical studies. Recently, a cluster of 15 genes involved in patulin biosynthesis was reported, containing characterized enzymes, a regulation factor and transporter genes. This review includes information on the current understanding of the mechanisms of patulin toxinogenesis and summarizes its toxicological effects.

  19. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  20. Plant Terpenoids: Biosynthesis and Ecological Functions

    Institute of Scientific and Technical Information of China (English)

    Ai-Xia Cheng; Yong-Gen Lou; Ying-Bo Mao; Shan Lu; Ling-Jian Wang; Xiao-Ya Chen

    2007-01-01

    Among plant secondary metabolites terpenoids are a structurally most diverse group; they function as phytoalexins in plant direct defense, or as signals in indirect defense responses which involves herbivores and their natural enemies. In recent years, more and more attention has been paid to the investigation of the ecological role of plant terpenoids. The biosynthesis pathways of monoterpenes, sesquiterpenes, and diterpenes include the synthesis of C5 precursor isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), the synthesis of the immediate diphosphate precursors, and the formation of the diverse terpenoids. Terpene synthases (TPSs) play a key role in volatile terpene synthesis. By expression of the TPS genes, significant achievements have been made on metabolic engineering to increase terpenoid production. This review mainly summarizes the recent research progress in elucidating the ecological role of terpenoids and characterization of the enzymes involved in the terpenoid biosynthesis. Spatial and temporal regulations of terpenoids metabolism are also discussed.

  1. Does fat in milk, butter and and cholesterol differently?

    DEFF Research Database (Denmark)

    Tholstrup, T,; Høy, Carl-Erik; Andersen, L.N.;

    2004-01-01

    and 8 hours following intake of the meals. Results: Fasting LDL cholesterol concentration was significantly higher after butter than cheese diet (p 0.037), with a borderline significant difference in total cholesterol (p = 0.054) after the experimental periods of three weeks. Postprandial glucose showed...... a higher response after cheese diet than after milk diet (p = 0.010, diet X time interaction). Conclusions: A different effect of fat in milk and butter could not be confirmed in this study. The moderately lower LDL cholesterol after cheese diet compared to butter diet should be investigated further....

  2. Reverse cholesterol transport: From classical view to new insights

    Institute of Scientific and Technical Information of China (English)

    Astrid; E; van; der; Velde

    2010-01-01

    Cholesterol is of vital importance for the human body. It is a constituent for most biological membranes, it is needed for the formation of bile salts, and it is the pre- cursor for steroid hormones and vitamin D. However, the presence of excess cholesterol in cells, and in particular in macrophages in the arterial vessel wall, might be harmful. The accumulation of cholesterol in arteries can lead to atherosclerosis, and in turn, to other cardiovascular diseases. The route that is primarily thought to be re...

  3. Moss cell walls: structure and biosynthesis

    OpenAIRE

    Alison W. Roberts; Eric M Roberts; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperm...

  4. Efficiency of Lignin Biosynthesis: a Quantitative Analysis

    OpenAIRE

    Amthor, Jeffrey S.

    2003-01-01

    Lignin is derived mainly from three alcohol monomers: p‐coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. Biochemical reactions probably responsible for synthesizing these three monomers from sucrose, and then polymerizing the monomers into lignin, were analysed to estimate the amount of sucrose required to produce a unit of lignin. Included in the calculations were amounts of respiration required to provide NADPH (from NADP+) and ATP (from ADP) for lignin biosynthesis. Two pathways in...

  5. Structural basis for phosphatidylinositol-phosphate biosynthesis

    OpenAIRE

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinosito...

  6. The structural biology of phenazine biosynthesis

    OpenAIRE

    Blankenfeldt, Wulf; Parsons, James F.

    2014-01-01

    The phenazines are a class of over 150 nitrogen-containing aromatic compounds of bacterial and archeal origin. Their redox properties not only explain their activity as broad-specificity antibiotics and virulence factors but also enable them to function as respiratory pigments, thus extending their importance to the primary metabolism of phenazine-producing species. Despite their discovery in the mid-19th century, the molecular mechanisms behind their biosynthesis have only been unraveled in ...

  7. Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol

    Science.gov (United States)

    Lee, Hyeon Jeong; Zhang, Wandi; Zhang, Delong; Yang, Yang; Liu, Bin; Barker, Eric L.; Buhman, Kimberly K.; Slipchenko, Lyudmila V.; Dai, Mingji; Cheng, Ji-Xin

    2015-01-01

    We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms.

  8. Comparison of biosensors based on entrapment of cholesterol oxidase and cholesterol esterase in electropolymerized films of polypyrrole and diaminonaphthalene derivatives for amperometric determination of cholesterol.

    Science.gov (United States)

    Vidal, J C; Garcia-Ruiz, E; Espuelas, J; Aramendia, T; Castillo, J R

    2003-09-01

    Cholesterol amperometric biosensors constructed with enzymes entrapped in electropolymerized layers of polypyrrole and poly-naphthalene derivative polymers are compared. The biosensors are based on entrapment of cholesterol oxidase and/or cholesterol esterase in monolayer or multilayer films electrochemically synthesised from pyrrole, 1,8-diaminonaphthalene (1,8-DAN), and 1,5-diaminonaphthalene (1,5-DAN) monomers. Seven configurations were assayed and compared, and different analytical properties were obtained depending on the kind of polymer and the arrangement of the layers. The selectivity properties were evaluated for the different monolayer and bilayer configurations proposed as a function of the film permeation factor. All the steps involved in the preparation of the biosensors and determination of cholesterol were carried out in a flow system. Sensitivity and selectivity depend greatly on hydrophobicity, permeability, compactness, thickness, and the kind of the polymer used. In some cases a protective outer layer of non-conducting poly( o-phenylenediamine) polymer improves the analytical characteristics of the biosensor. A comparative study was made of the analytical performance of each of the configurations developed. The biosensors were also applied to the flow-injection determination of cholesterol in a synthetic serum. PMID:12923606

  9. Biosynthesis and biological action of pineal allopregnanolone

    OpenAIRE

    Kazuyoshi eTsutsui; Shogo eHaraguchi

    2014-01-01

    The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demon...

  10. Inhibitory Effects of Purple Sweet Potato Leaf Extract on the Proliferation and Lipogenesis of the 3T3-L1 Preadipocytes.

    Science.gov (United States)

    Lee, Shou-Lun; Lee, Hsien-Kuang; Chin, Ting-Yu; Tu, Ssu-Chieh; Kuo, Ming-Hsun; Kao, Ming-Ching; Wu, Yang-Chang

    2015-01-01

    Purple sweet potato leaves (PSPLs) are healthy vegetable that is rich in anti-oxidants. A solution of boiling water extract of PSPL (PSPLE) is believed to be able to prevent obesity and metabolic syndrome in the countryside of Taiwan, but its efficacy has not yet been verified. The purpose of this study was to investigate the possible anti-adipogenesis effect of PSPLE in vitro. PSPLE was used to treat the 3T3-L1 cells, and the effects on cell proliferation and adipogenesis were investigated. The results showed that PSPLE caused a dose-dependent decrease in the cell proliferation of 3T3-L1 preadipocytes, but did not alter the cell viability. In addition, PSPLE induced ERK inactivation in the 3T3-L1 preadipocytes. Furthermore, pre-treatment of confluent 3T3-L1 cells with PSPLE led to reduced lipid accumulation in differentiated 3T3-L1 cells. The inhibition of lipogenesis could result from the PSPLE-induced down-regulation of the expression of the C/EBPα and SREBP-1 transcription factors during 3T3-L1 adipocyte differentiation. These results suggest that PSPLE not only inhibits cell proliferation at an early stage but also inhibits adipogenesis at a later stage of the differentiation program. PMID:26205968

  11. Dihydrotestosterone induces SREBP-1 expression and lipogenesis through the phosphoinositide 3-kinase/Akt pathway in HaCaT cells

    Directory of Open Access Journals (Sweden)

    Zhou Bing-rong

    2012-11-01

    Full Text Available Abstract Background The purpose of this study was to investigate the effects and mechanisms of dihydrotestosterone (DHT-induced expression of sterol regulatory element binding protein-1 (SREBP-1, and the synthesis and secretion of lipids, in HaCaT cells. HaCaT cells were treated with DHT and either the phosphoinositide 3-kinase inhibitor LY294002 or the extracellular-signal-regulated kinase (ERK inhibitor PD98059. Real time-PCR, Western blot, Oil Red staining and flow cytometry were employed to examine the mRNA and protein expressions of SREBP-1, the gene transcription of lipid synthesis, and lipid secretion in HaCaT cells. Findings We found that DHT upregulated mRNA and protein expressions of SREBP-1. DHT also significantly upregulated the transcription of lipid synthesis-related genes and increased lipid secretion, which can be inhibited by the addition of LY294002. Conclusions Collectively, these results indicate that DHT induces SREBP-1 expression and lipogenesis in HaCaT cells via activation of the phosphoinositide 3-kinase/Akt Pathway.

  12. Microbiota-Dependent Hepatic Lipogenesis Mediated by Stearoyl CoA Desaturase 1 (SCD1) Promotes Metabolic Syndrome in TLR5-Deficient Mice.

    Science.gov (United States)

    Singh, Vishal; Chassaing, Benoit; Zhang, Limin; San Yeoh, Beng; Xiao, Xia; Kumar, Manish; Baker, Mark T; Cai, Jingwei; Walker, Rachel; Borkowski, Kamil; Harvatine, Kevin J; Singh, Nagendra; Shearer, Gregory C; Ntambi, James M; Joe, Bina; Patterson, Andrew D; Gewirtz, Andrew T; Vijay-Kumar, Matam

    2015-12-01

    The gut microbiota plays a key role in host metabolism. Toll-like receptor 5 (TLR5), a flagellin receptor, is required for gut microbiota homeostasis. Accordingly, TLR5-deficient (T5KO) mice are prone to develop microbiota-dependent metabolic syndrome. Here we observed that T5KO mice display elevated neutral lipids with a compositional increase of oleate [C18:1 (n9)] relative to wild-type littermates. Increased oleate contribution to hepatic lipids and liver SCD1 expression were both microbiota dependent. Analysis of short-chain fatty acids (SCFAs) and (13)C-acetate label incorporation revealed elevated SCFA in ceca and hepatic portal blood and increased liver de novo lipogenesis in T5KO mice. Dietary SCFAs further aggravated metabolic syndrome in T5KO mice. Deletion of hepatic SCD1 not only prevented hepatic neutral lipid oleate enrichment but also ameliorated metabolic syndrome in T5KO mice. Collectively, these results underscore the key role of the gut microbiota-liver axis in the pathogenesis of metabolic diseases. PMID:26525535

  13. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation.

    Science.gov (United States)

    Mottillo, Emilio P; Balasubramanian, Priya; Lee, Yun-Hee; Weng, Changren; Kershaw, Erin E; Granneman, James G

    2014-11-01

    Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous "beige," and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL.

  14. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage.

    Science.gov (United States)

    Marcelino, Helena; Veyrat-Durebex, Christelle; Summermatter, Serge; Sarafian, Delphine; Miles-Chan, Jennifer; Arsenijevic, Denis; Zani, Fabio; Montani, Jean-Pierre; Seydoux, Josiane; Solinas, Giovanni; Rohner-Jeanrenaud, Françoise; Dulloo, Abdul G

    2013-02-01

    Catch-up growth, a risk factor for type 2 diabetes, is characterized by hyperinsulinemia and accelerated body fat recovery. Using a rat model of semistarvation-refeeding that exhibits catch-up fat, we previously reported that during refeeding on a low-fat diet, glucose tolerance is normal but insulin-dependent glucose utilization is decreased in skeletal muscle and increased in adipose tissue, where de novo lipogenic capacity is concomitantly enhanced. Here we report that isocaloric refeeding on a high-fat (HF) diet blunts the enhanced in vivo insulin-dependent glucose utilization for de novo lipogenesis (DNL) in adipose tissue. These are shown to be early events of catch-up growth that are independent of hyperphagia and precede the development of overt adipocyte hypertrophy, adipose tissue inflammation, or defective insulin signaling. These results suggest a role for enhanced DNL as a glucose sink in regulating glycemia during catch-up growth, which is blunted by exposure to an HF diet, thereby contributing, together with skeletal muscle insulin resistance, to the development of glucose intolerance. Our findings are presented as an extension of the Randle cycle hypothesis, whereby the suppression of DNL constitutes a mechanism by which dietary lipids antagonize glucose utilization for storage as triglycerides in adipose tissue, thereby impairing glucose homeostasis during catch-up growth.

  15. Three cases of cholesterol granuloma in the mandible

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Min Jung; Huh, Kyung Hoe; Yi, Won Jin; Moon, Je Woon; Choi, Soon Chul [Seoul National Univ. School of Dentitry, Seoul (Korea, Republic of); Shin, Jae Myung [Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    2007-12-15

    Cholesterol granuloma is an unusual clinical entity described as an inflammatory granulation in response to the deposit of cholesterol crystals. It can develop in any portion of air cells within the temporal bone as a result of a lack of aeration and inadequate drainage, especially in the middle ear cavity. Here, we report very unusual three cases of cholesterol granuloma developed in mandible. In the first case a 68-year-old male with a large mass arising from the mandible was observed. Panoramic radiograph and computed tomography scans revealed a huge expanding lesion in the mandible. In the second case a 47-years-old female with a cystic lesion in the mandible was observed. And in the third case a 19-year-old male complaining atypical facial pain had a large lesion in the mandibular ramous. The histopathologic examinations of the cases showed numerous cholesterol crystal surrounded by multinucleated foreign body giant cells.

  16. Preterm delivery and low maternal serum cholesterol level: any correlation?

    Directory of Open Access Journals (Sweden)

    Ayodeji A. Oluwole

    2014-04-01

    Results: The study showed an incidence of 5.0% for preterm delivery in the low risk study patients. Preterm birth was 4.83-times more common with low total maternal cholesterol than with midrange total cholesterol (11.8% versus 2.2%, P = 0.024. Conclusions: We can infer from the study that the low maternal serum cholesterol (hypocholesterolaemia is associated with preterm delivery. We can therefore recommend on this basis that the concept of an optimal range for maternal serum cholesterol during pregnancy may have merit and pregnant women should be encouraged to follow a healthy, balanced diet and ensure regular antenatal visit to their healthcare provider. [Int J Reprod Contracept Obstet Gynecol 2014; 3(2.000: 442-446

  17. Interaction between cholesterol and chitosan in Langmuir monolayers

    Directory of Open Access Journals (Sweden)

    Felippe J. Pavinatto

    2005-06-01

    Full Text Available Chitosan incorporated in the aqueous subphase is found to affect the Langmuir monolayers of cholesterol, causing the surface pressure and the surface potential isotherms to become more expanded. The mean molecular area per cholesterol molecule in the condensed monolayer increases from 53 Ų in the absence of chitosan to 61 Ų for a concentration of 0.100 mg/mL of chitosan in the subphase. If additional chitosan is incorporated in the subphase, no change is noted, which points to saturation in the effects from chitosan. The interaction between chitosan and cholesterol probably occurs via hydrogen bonding. The monolayer expansion is also manifested in the monolayer morphology, as indicated by Brewster angle microscopy measurements, where larger cholesterol domains are visualized when chitosan is present in the subphase.

  18. Alternative to decrease cholesterol in sheep milk cheeses.

    Science.gov (United States)

    Gómez-Cortés, P; Viturro, E; Juárez, M; de la Fuente, M A

    2015-12-01

    The presence of cholesterol in foods is of nutritional interest because high levels of this molecule in human plasma are associated with an increasing risk of cardiovascular disease and nowadays consumers are demanding healthier products. The goal of this experiment was to diminish the cholesterol content of Manchego, the most popular Spanish cheese manufactured from ewes milk. For this purpose three bulk milks coming from dairy ewe fed with 0 (Control), 3 and 6% of linseed supplement on their diet were used. Nine cheeses (3 per bulk milk) were manufactured and ripened for 3 months. Cholesterol of ewes milk cheese from 6% to 12% linseed supplemented diets decreased by 9.6% and 16.1% respectively, therefore supplying a healthier profile. In a second experiment, different sources of unsaturated fatty acids (rich in oleic, linoleic and α-linolenic acids) were supplemented to dairy ewes and no significant differences were found on cheese cholesterol levels. PMID:26041199

  19. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling.

    Science.gov (United States)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-25

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol. PMID:27545348

  20. Cholesterol granuloma of the orbit: An atypical presentation

    Directory of Open Access Journals (Sweden)

    Syed A R Rizvi

    2014-01-01

    Full Text Available Cholesterol granuloma is a rare, well-defined lesion of the orbit. In the orbit, diploe of the frontal bone is involved almost exclusively. We report an atypical case of cholesterol granuloma involving superomedial quadrant of orbit. A 42-year-old male presented with progressive, painless, proptosis with infero-temporal displacement of left eye. A large mass was felt beneath the bony orbital margin in the superomedial quadrant of the left orbit. Computerized tomography (CT scan revealed an extraconal superomedial, heterogeneous enhancing mass which was isodense with brain and pushing the globe inferolaterally and anteriorly. Excision biopsy of the tumor revealed the typical features of a cholesterol granuloma without any epithelial elements. Cholesterol granuloma of the orbit is a rare entity, but it can be diagnosed and differentiated from other lesions of the superior orbit by its characteristic clinical, radiological and histopathological features. An appropriate intervention in time carries a good prognosis with almost no recurrence.