Sample records for cholesterol 7-alpha-hydroxylase

  1. Dietary cholesterol fails to stimulate the human cholesterol 7alpha-hydroxylase gene (CYP7A1) in transgenic mice. (United States)

    Agellon, Luis B; Drover, Victor A B; Cheema, Sukhinder K; Gbaguidi, G Franck; Walsh, Annemarie


    Dietary cholesterol has been shown to have a stimulatory effect on the murine cholesterol 7alpha-hydroxylase gene (Cyp7a1), but its effect on human cholesterol 7alpha-hydroxylase gene (CYP7A1) expression in vivo is not known. A transgenic mouse strain harboring the human CYP7A1 gene and homozygous for the disrupted murine Cyp7a1 gene was created. Cholesterol feeding increased the expression of the endogenous modified Cyp7a1 allele but failed to stimulate the human CYP7A1 transgene. In transfected hepatoma cells, 25-hydroxycholesterol increased murine Cyp7a1 gene promoter activity, whereas the human CYP7A1 gene promoter was unresponsive. Electrophoretic mobility shift assays demonstrated the interaction of the liver X receptor alpha (LXRalpha): retinoid X receptor (RXR) heterodimer, a transcription factor complex that is activated by oxysterols, with the murine Cyp7a1 gene promoter, whereas no binding to the human CYP7A1 gene promoter was detected. The results demonstrate that the human CYP7A1 gene is not stimulated by dietary cholesterol in the intact animal, and this is attributable to the inability of the CYP7A1 gene promoter to interact with LXRalpha:RXR.

  2. Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhichao [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Yu, Xuemei [Department of Endocrinology, Fengxian Central Hospital, Shanghai (China); Wu, Weibin; Jia, Dongwei; Chen, Yinle; Ji, Lingling; Liu, Xijun; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Yintao [Institute of Endocrinology and Diabetology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai (China); Yang, Lili [Department of Endocrinology, Fengxian Central Hospital, Shanghai (China); Ruan, Yuanyuan; Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Ren, Shifang, E-mail: [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Songwen, E-mail: [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China)


    Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated that the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.

  3. Genetic variation in the rate-limiting enzyme in cholesterol catabolism (cholesterol 7 alpha-hydroxylase) influences the progression of atherosclerosis and risk of new clinical events

    NARCIS (Netherlands)

    Hofman, M.K.; Princen, H.M.G.; Zwinderman, A.H.; Jukema, J.W.


    CHD (coronary heart disease) is a complex disorder which is, in part, related to serum cholesterol levels. The rate-limiting enzyme in the catabolism of cholesterol into bile acids is CYP7A1 (cholesterol 7alpha-hydroxylase). The effect of the CYP7A1 A-278C promoter polymorphism on the progression of

  4. Species-specific mechanisms for cholesterol 7alpha-hydroxylase (CYP7A1) regulation by drugs and bile acids


    C. Handschin.; Gnerre, C; Fraser, D. J.; Martinez-Jimenez, C.; Jover, R; Meyer, U A


    The gene encoding cholesterol 7alpha-hydroxylase (CYP7A1) is tightly regulated in order to control intrahepatic cholesterol and bile acid levels. Ligands of the xenobiotic-sensing pregnane X receptor inhibit CYP7A1 expression. To retrace the evolution of the molecular mechanisms underlying CYP7A1 inhibition, we used a chicken hepatoma cell system that retains the ability to be induced by phenobarbital and other drugs. Whereas bile acids regulate CYP7A1 via small heterodimer partner and liver ...

  5. Role of cholesterol 7alpha-hydroxylase (CYP7A1) in nutrigenetics and pharmacogenetics of cholesterol lowering. (United States)

    Hubacek, Jaroslav A; Bobkova, Dagmar


    The relationship between dietary composition/cholesterol-lowering therapy and final plasma lipid levels is to some extent genetically determined. It is clear that these responses are under polygenic control, with multiple variants in many genes participating in the total effect (and with each gene contributing a relatively small effect). Using different experimental approaches, several candidate genes have been analyzed to date.Interesting and consistent results have been published recently regarding the A-204C promoter variant in the cholesterol 7alpha-hydroxylase (CYP7A1) gene. CYP7A1 is a rate-limiting enzyme in bile acid synthesis and therefore plays an important role in maintaining cholesterol homeostasis. CYP7A1-204CC homozygotes have the greatest decrease in total cholesterol level in response to dietary changes in different types of dietary intervention studies. In contrast, one study has reported that the effect of statins in lowering low-density lipoprotein (LDL)-cholesterol levels was slightly greater in -204AA homozygotes. The CYP7A1 A-204C variant accounts for a significant proportion of the genetic predisposition of the response of plasma cholesterol levels.

  6. Modulating effect of the A-278C promoter polymorphism in the cholesterol 7alpha-hydroxylase gene on serum lipid levels in normolipidaemic and hypertriglyceridaemic individuals

    NARCIS (Netherlands)

    Hofman, M.K.; Groenendijk, M.; Verkuijlen, P.J.J.H.; Jonkers, I.J.A.M.; Mohrschladt, M.F.; Smelt, A.H.M.; Princen, H.M.G.


    The rate-limiting enzyme in the conversion of cholesterol into bile acids is cholesterol 7alpha-hydroxylase (CYP7A1). An A to C substitution 278 bp upstream in the promoter of the CYP7A1 gene was found to be associated with variations in serum lipid levels in normolipidaemic populations. In the pres

  7. Species-specific mechanisms for cholesterol 7alpha-hydroxylase (CYP7A1) regulation by drugs and bile acids. (United States)

    Handschin, Christoph; Gnerre, Carmela; Fraser, David J; Martinez-Jimenez, Celia; Jover, Ramiro; Meyer, Urs A


    The gene encoding cholesterol 7alpha-hydroxylase (CYP7A1) is tightly regulated in order to control intrahepatic cholesterol and bile acid levels. Ligands of the xenobiotic-sensing pregnane X receptor inhibit CYP7A1 expression. To retrace the evolution of the molecular mechanisms underlying CYP7A1 inhibition, we used a chicken hepatoma cell system that retains the ability to be induced by phenobarbital and other drugs. Whereas bile acids regulate CYP7A1 via small heterodimer partner and liver receptor homolog-1, mRNA expression of these nuclear receptors is unchanged by xenobiotics. Instead, drugs repress chicken hepatic nuclear factor 4alpha (HNF4alpha) transcript levels concomitant with a reduction in CYP7A1 expression. Importantly, no reduction of HNF4alpha levels is found in mouse liver in vivo and in human primary hepatocyte cultures, respectively. Thus, besides the importance of HNF4alpha in CYP7A1 regulation in all species, birds and mammals use different signaling pathways to adjust CYP7A1 levels after exposure to xenobiotics.

  8. Regulation of diurnal variation of cholesterol 7alpha-hydroxylase (CYP7A1) activity in healthy subjects. (United States)

    Kovár, J; Lenícek, M; Zimolová, M; Vítek, L; Jirsa, M; Pitha, J


    Cholesterol 7alpha-hydroxylase (CYP7A1), the key regulatory enzyme of bile acid synthesis, displays a pronounced diurnal variation. To better understand the regulation of CYP7A1 activity, three day-long examinations were carried out in 12 healthy men. The concentrations of 7alpha-hydroxycholest-4-en-3-one (C4), a surrogate marker of CYP7A1 activity, bile acids (BA), insulin, glucose, nonesterified fatty acids, triglycerides, and cholesterol were measured in serum in 90-min intervals from 7 AM till 10 PM. To lower and to increase BA concentration during the study, the subjects received cholestyramine and chenodeoxycholic acid (CDCA), respectively, in two examinations. No drug was used in the control examination. There was a pronounced diurnal variation of C4 concentration with a peak around 1 PM in most of the subjects. The area under the curve (AUC) of C4 concentration was five times higher and three times lower when subjects were treated with cholestyramine and CDCA, respectively. No relationship was found between AUC of C4 and AUC of BA concentration, but AUC of C4 correlated positively with that of insulin. Moreover, short-term treatment with cholestyramine resulted in about 10 % suppression of glycemia throughout the day. Our results suggest that insulin is involved in the regulation of diurnal variation of CYP7A1 activity in humans.

  9. Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro. (United States)

    Lammel Lindemann, Jan A; Angajala, Anusha; Engler, David A; Webb, Paul; Ayers, Stephen D


    Thyroid hormone (TH) modulates serum cholesterol by acting on TH receptor β1 (TRβ1) in liver to regulate metabolic gene sets. In rodents, one important TH regulated step involves induction of Cyp7a1, an enzyme in the cytochrome P450 family, which enhances cholesterol to bile acid conversion and plays a crucial role in regulation of serum cholesterol levels. Current models suggest, however, that Cyp7a1 has lost the capacity to respond to THs in humans. We were prompted to re-examine TH effects on cholesterol metabolic genes in human liver cells by a recent study of a synthetic TH mimetic which showed that serum cholesterol reductions were accompanied by increases in a marker for bile acid synthesis in humans. Here, we show that TH effects upon cholesterol metabolic genes are almost identical in mouse liver, mouse and human liver primary cells and human hepatocyte cell lines. Moreover, Cyp7a1 is a direct TR target gene that responds to physiologic TR levels through a set of distinct response elements in its promoter. These findings suggest that THs regulate cholesterol to bile acid conversion in similar ways in humans and rodent experimental models and that manipulation of hormone signaling pathways could provide a strategy to enhance Cyp7a1 activity in human patients.

  10. Genetic polymorphism of cholesterol 7alpha-hydroxylase (CYP7A1) and colorectal adenomas: Self Defense Forces Health Study. (United States)

    Tabata, Shinji; Yin, Guang; Ogawa, Shinsaku; Yamaguchi, Keizo; Mineshita, Masamichi; Kono, Suminori


    Bile acids have long been implicated in colorectal carcinogenesis, but epidemiological evidence is limited. Cholesterol 7alpha-hydroxylase (CYP7A1) is the rate-limiting enzyme producing bile acids from cholesterol. A recent case-control study showed a decreased risk of proximal colon cancer associated with the CC genotype of the CYP7A1 A-203C polymorphism. The present study examined the relationship between the CYP7A1 A-203C polymorphism and colorectal adenoma, which is a well-established precursor lesion of colorectal cancer. The study subjects comprised 446 cases of colorectal adenomas and 914 controls of normal total colonoscopy among men receiving a preretirement health examination at two hospitals of the Self Defense Forces (SDF). The CYP7A1 genotype was determined by the polymerase chain reaction-restriction fragment length polymorphism method. Statistical adjustment was made for age, hospital, rank in the SDF, smoking, alcohol use, body mass index, physical activity and parental history of colorectal cancer. The CYP7A1 polymorphism was not measurably related to the overall risk of colorectal adenomas. However, the CC genotype was associated with a decreased risk of proximal colon adenomas, but not of distal colon and rectal adenomas. Adjusted odds ratios of proximal colon adenomas (95% confidence intervals) for the AC and CC genotype versus AA genotype were 0.82 (0.54-1.24) and 0.56 (0.34-0.95), respectively. The findings add to evidence for the role of bile acids in colorectal carcinogenesis. The CC genotype of the CYP7A1 A-203C polymorphism probably renders lower activity of the enzyme synthesizing bile acids.

  11. Loss of cholesterol 7 alpha-hydroxylase activity in vitro in the presence of bivalent metal ions and by dialysis of rat liver microsomes. (United States)

    Sanghvi, A; Grassi, E; Diven, W


    A loss in cholesterol 7 alpha-hydroxylase activity [cholesterol 7 alpha-monooxygenase; cholesterol,NADPH:oxygen oxidoreductase (7 alpha-hydroxylating), EC] was seen when rat liver microsomes were incubated in the presence of Ca2+, Mg2+, or Mn2+. The loss in enzyme activity was complete within only 5 min of incubation with Ca2+ and Mn2+, whereas Mg2+ required 10 to 15 min of incubation with microsomes to produce a similar inhibition. This effect of metal ions could be blocked if the incubations were carried out in phosphate buffer. Similarly, preincubation of microsomes in the presence of NaF completely prevented the loss in enzyme activity due to Ca2+ and Mg2+ ions, but only partially the loss due to Mn2+. These results suggest metal ion activation of an endogenous microsomal phosphatase, which in turn may inactivate cholesterol 7 alpha-hydroxylase through its dephosphorylation. Further, a dialyzable microsomal factor appears to be essential for stabilizing the enzyme, because dialysis of a microsomal suspension results in a considerable loss of enzyme activity. PMID:6300898

  12. Role of genetic variant A-204C of cholesterol 7alpha-hydroxylase (CYP7A1) in susceptibility to gallbladder cancer. (United States)

    Srivastava, Anvesha; Pandey, Sachchida Nand; Choudhuri, Gourdas; Mittal, Balraj


    Gallbladder carcinoma (GBC) usually arises in the background of gallstone disease. Cholesterol 7alpha-hydroxylase (CYP7A1) is a rate-limiting enzyme for cholesterol catabolism and bile acid synthesis. A-204C genetic polymorphism in CYP7A1 may influence gene expression and thus affect the risk of gallstone disease and GBC. We aimed to study the association of A-204C variation of CYP7A1 gene promoter polymorphism in GBC patients, gallstone patients and healthy subjects. The study included 141 histopathologically proven GBC patients, ultrasonographically proven 185 symptomatic gallstone patients and 200 gallstone-free healthy subjects. Genotyping was done by PCR-RFLP method. CYP7A1 A-204C genotypes in control population were in Hardy-Weinberg equilibrium. The CC genotype conferred marginally significant risk for gallstone disease (p=0.051; OR=1.54; 95% CI=0.9-3.4). In GBC patients, the CYP7A1 A-204C polymorphism conferred high risk for GBC at genotype (p=0.005; OR=2.78; 95% CI: 1.3-5.6) as well as allele levels (p=0.008; OR=1.58 and 95% CI: 1.1-2.2). After stratification of GBC patients on the basis of presence or absence of gallstones, CC genotype imparted higher risk for GBC without stones (p=0.002; OR=4.44: 95% CI=1.7-11.3). The association of the polymorphism with GBC was more pronounced in female GBC patients, and also in cancer patients who developed GBC at advanced age. The CC genotype of CYP7A1 is an independent genetic risk factor for GBC but plays a modest role in susceptibility to gallstone disease. The GBC pathogenesis by CYP7A1 polymorphism appears to be independent of gallstone pathway and probably involves genotoxicity due to lipid peroxidation mechanisms.

  13. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis. (United States)

    Song, Kwang-Hoon; Chiang, John Y L


    The gene encoding cholesterol 7alpha-hydroxylase (CYP7A1) is tightly regulated to control bile acid synthesis and maintain lipid homeostasis. Recent studies in mice suggest that bile acid synthesis is regulated by the fasted-to-fed cycle, and fasting induces CYP7A1 gene expression in parallel to the induction of peroxisome proliferators-activated receptor gamma co-activator 1alpha (PGC-1alpha) and phosphoenolpyruvate carboxykinase (PEPCK). How glucagon regulates CYP7A1 gene expression in the human liver is not clear. Here we show that glucagon and cyclic adenosine monophosphate (cAMP) strongly repressed CYP7A1 mRNA expression in human primary hepatocytes. Reporter assays confirmed that cAMP and protein kinase A (PKA) inhibited human CYP7A1 gene transcription, in contrast to their stimulation of the PEPCK gene. Mutagenesis analysis identified a PKA-responsive region located within the previously identified HNF4alpha binding site in the human CYP7A1 promoter. Glucagon and cAMP increased HNF4alpha phosphorylation and reduced the amount of HNF4alpha present in CYP7A1 chromatin. Our findings suggest that glucagon inhibited CYP7A1 gene expression via PKA phosphorylation of HNF4alpha, which lost its ability to bind the CYP7A1 gene and resulted in inhibition of human CYP7A1 gene transcription. In conclusion, this study unveils a species difference in nutrient regulation of the human and mouse CYP7A1 gene and suggests a discordant regulation of bile acid synthesis and gluconeogenesis by glucagon in human livers during fasting.

  14. Differential hepatocellular zonation pattern of cholesterol 7alpha-hydroxylase (Cyp7a1) and sterol 12alpha-hydroxylase (Cyp8b1) in the mouse. (United States)

    Wang, Jin; Olin, Maria; Rozell, Björn; Björkhem, Ingemar; Einarsson, Curt; Eggertsen, Gösta; Gåfvels, Mats


    The synthesis of primary bile acids is confined to the hepatocytes. This study aimed to evaluate the expression pattern within the liver architecture of the rate-limiting enzyme of the neutral pathway, cholesterol 7alpha-hydroxylase (Cyp7a1), and sterol 12alpha-hydroxylase (Cyp8b1), the enzyme necessary for the synthesis of cholic acid. Specific Cyp8b1 and Cyp7a1 peptide antiserums were used for immunohistochemical staining of livers from wild type and Cyp8b1 null mice, the latter instead expressing beta-galactosidase (beta-Gal) as a replacement reporter gene. Cyp8b1 was mainly expressed in the hepatocytes in a zonal pattern surrounding the central vein while the areas surrounding the portal zones showed much lower levels. The zonation was maintained in cholic acid-depleted mice using beta-Gal as a reporter protein. Cyp7a1 expression in wild type mice also showed a zonal distribution pattern, although less distinct, with a maximal expression within a 1-2 cell thick layer of hepatocytes surrounding the central vein. In Cyp8b1 null mice, a more intense staining was obtained, in accordance with the higher expression level of Cyp7a1, although the overall expression pattern was maintained. Our results in mice indicate possible differences in the regulation of the cellular zonation of Cyp7a1 and Cyp8b1. Also, cholic acid affects the set-point of Cyp7a1 expression but not its zonal distribution.

  15. Research Progress on Functional Food Regulating Cholesterol 7-alpha Hydroxylase%以调节胆固醇7α-羟化酶为靶点的功能性食品研究进展

    Institute of Scientific and Technical Information of China (English)

    郭霄; 张勇; 高鹏飞; 姚国强; 孙天松


    胆固醇7α-羟化酶(Cholesterol 7-alpha hydroxylase,CYP7A1)在维持胆固醇代谢动态平衡时起重要的作用。通过概述CYP7A1的调控机制,综述近年来报道的益生菌、膳食纤维、多酚类物质等功能性食品对CYP7A1基因表达的调节和影响,展望以CYP7A1为靶点的降胆固醇功能性食品的开发前景,旨在为筛选以CYP7A1为靶点的功能性食品提供参考。%Cholesterol 7-alpha hydroxylase (CYP7A1) have been shown to play an important role in maintaining cholesterol metabolism homeostasis. This review outlined the mechanisms underlying regulation of CYP7A1, the functional food which includes probiotics, dietary fiber and polyphenols affecting CYP7A1 and the regulation of gene expression were summarized. In addition , the development prospect of the cholesterol-lowering functional food targeting CYP7A1 was analyzed. The aim of this review was to provide clues in screening to CYP7A1 targets of functional food.

  16. Molecular Cloning and Prokaryotic Expression of Goose Cholesterol 7 alpha-hydroxylase Gene (CYP7A1)%鹅胆固醇7α-羟化酶基因克隆及原核表达

    Institute of Scientific and Technical Information of China (English)

    杜雪; 岳万福; 赵阿勇; 王晓杜


    To further study the regulatory mechanisms of Cholesterol 7a-hydroxylase (CYP7A1) in bile acid synthesis and cholesterol metabolism, the complete cDNA of CYP7A1 gene(2 279 bp) was cloned by RT-PCR and RACE from goose (Anser anser) liver. The CDS of CYP7A1 gene was sub-cloned into pET-28a to construct pET-28a-cyp7αl plasmid. The recombinant plasmid pET-28a-cyp7αl was transformed into E. coli BL21 (DE3) and the recombinant protein expres-sion was induced by IPTG. The recombinant protein His-CYP7A1 was purified with His-Bind Purification Kit. The recombinant protein was immunized into the Bal b/c mice to obtain the polyclonal antibodies. Antigenic of His-CYP7A1 and the specificity of mouse anti-goose CYP7A1 polyclonal antibodies were detected by Western blotting. The amino acid sequence of goose CYP7A1 protein has high homology with that of chicken(93%), rat(66%), human(67%), mo-nodelphis domestica(68%) and mouse(66%). The SDS-PAGE analysis result of His-CYP7A1 showed that the recombinant protein molecular size was about 59 ku, consistent with the predict-tion. High-purity His-CYP7A1 protein was obtained through His-tag affinity purification. The mouse anti-goose CYP7A1 polyclonal antibodies were obtained with high sensitivity (1 : 104). The mouse anti-his and anti-goose CYP7A1 antibodies could recognize antigens of His-CYP7A1 by Western blotting with mouse anti-goose CYP7A1 polyclonal antibodies with better specificity.The current results contribute to further understanding of gene structure and function of CYP7A1 and provide an important molecular tool for the functional study of CYP7A1.%为进一步研究胆固醇7α-羟化酶(CYP7A1)在胆汁酸合成和胆固醇代谢过程中的调节机制,采用RT-PCR和RACE方法从鹅(Anser anser)肝组织克隆CYP7A1基因全长cDNA序列,亚克隆其CDS区并构建原核表达载体pET-28a-cyp7α1.重组质粒在大肠杆菌BL21(DE3)菌株中经IPTG诱导表达.经His-Bind纯化试剂盒纯化的His-CYP7A1免疫Bal b

  17. Changes of cholesterol 7alpha-hydroxylase,farnesoid X receptor,and small heterodimer partner expression in liver tissues of rats with obstructive cholestasis%阻塞性胆汁淤积大鼠肝脏胆固醇7α-羟化酶和核受体FXR、SHP表达变化

    Institute of Scientific and Technical Information of China (English)

    吴晓平; 柴进; 陈文生


    目的:通过建立梗阻性黄疸动物模型,观察胆固醇7α-羟化酶(cholesterol 7alpha-hydroxylase,CYP7A1)、类法尼醇X受体(farnesoid X receptor,FXR)及小异源二聚体伴侣受体(small heterodimer partner,SHP)的表达变化,并分析CYP7A1和FXR、SHP之问的关系.方法:采用胆总管结扎术制备大鼠梗阻性黄疸模型,分别于术后1、3、14 d麻醉后放血处死.取大鼠肝脏,抽提总RNA,采用实时定量RT-PCR检测CYP7A1 mRNA表达;提取肝细胞核蛋白,采用蛋白质印迹技术检测FXR和SHP蛋白表达.结果:与假手术对照组相比,梗阻性黄疸组大鼠肝细胞CYP7A1 mRNA表达明显增强,FXR和SHP蛋白表达同步降低,差异均有统计学意义(P<0.001,P<0.05).结论:CYP7A1表达增强可能与FXR、SHP表达减弱有关.

  18. The inhibition of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor alpha and peroxisome proliferator-activated receptor alpha heterodimer. (United States)

    Gbaguidi, G Franck; Agellon, Luis B


    In previous work, we showed that the binding of the liver x receptor alpha:peroxisome proliferator-activated receptor alpha (LXRalpha:PPARalpha) heterodimer to the murine Cyp7a1 gene promoter antagonizes the stimulatory effect of their respective ligands. In this study, we determined if LXRalpha:PPARalpha can also regulate human CYP7A1 gene promoter activity. Co-expression of LXRalpha and PPARalpha in McArdle RH7777 hepatoma cells decreased the activity of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol. In vitro, the human CYP7A1 Site I bound LXRalpha:PPARalpha, although with substantially less affinity compared with the murine Cyp7a1 Site I. The binding of LXRalpha:PPARalpha to human CYP7A1 Site I was increased in the presence of either LXRalpha or PPARalpha ligands. In HepG2 hepatoblastoma cells, fibrates and 25-hydroxycholesterol inhibited the expression of the endogenous CYP7A1 gene as well as the human CYP7A1 gene promoter when co-transfected with plasmids encoding LXRalpha and PPARalpha. However, a derivative of the human CYP7A1 gene promoter that contains a mutant form of Site I that does not bind LXRalpha:PPARalpha was not inhibited by WY 14,643 or 25-hydroxycholesterol in both McArdle RH7777 and HepG2 cells. The ligand-dependent recruitment of LXRalpha:PPARalpha heterodimer onto the human CYP7A1 Site I can explain the inhibition of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol.

  19. Chitosan oligosaccharides promote reverse cholesterol transport and expression of scavenger receptor BI and CYP7A1 in mice. (United States)

    Zong, Chuanlong; Yu, Yang; Song, Guohua; Luo, Tian; Li, Luqin; Wang, Xinnong; Qin, Shucun


    Chitosan oligosaccharides (COS) are beneficial in improving plasma lipids and diminishing atherosclerotic risks. In this study, we examined the effects of COS on reverse cholesterol transport (RCT) in C57BL/6 mice. (3)H-cholesterol-laden macrophages were injected intraperitoneally into mice fed with various dosage of COS (250, 500, 1000 mg/kg mouse weight, respectively) or vehicle by gastric gavages. Plasma lipid level was determined and (3)H-cholesterol was traced in plasma, liver, bile and feces. The effects of COS on hepatic cholesterol 7 alpha-hydroxylase (CYP7A1) and scavenger receptor BI (SR-BI) expression were also investigated. COS administration led to a significant decrease in plasma total cholesterol and low-density lipoprotein (LDL) cholesterol and a significant increase in peritoneal macrophage-derived (3)H-cholesterol in liver and bile as well as in feces. Liver protein expressions of CYP7A1, SR-BI and LDL receptor (LDL-R) were improved in a dosage-dependent manner in COS-administered mice. Our findings provide the first in vivo demonstration of a positive role for COS in RCT pathway and hepatic CYP7A1 and SR-BI expression in mice. Additionally, the LDL cholesterol lowering effect might be relative to hepatic LDL-R expression stimulated by COS in mice.

  20. IL-1 regulates the Cyp7a1 gene and serum total cholesterol level at steady state in mice. (United States)

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Sekimoto, Masashi; Degawa, Masakuni


    We examined the role of hepatic interleukin (IL)-1alpha/beta in serum total cholesterol homeostasis using male and female IL-1-knockout (KO) mice and wild-type (WT) mice. Serum total cholesterol level was higher in males than in females in WT and KO mice. The difference between sexes was closely correlated with the difference in gene expression level of cholesterol 7alpha-hydroxylase (Cyp7a1), a rate-limiting enzyme for bile acid synthesis. No significant sex difference in gene expression level of 3-hydroxy-3-methylglutaryl-CoA reductase, a rate-limiting enzyme for cholesterol synthesis, was observed in WT mice. Interestingly, the gene expression level of hepatic Cyp7a1 was lower in KO mice than in sex-matched WT mice, while the serum total cholesterol level was the opposite. The present findings demonstrate that IL-1alpha and IL-1beta are positive regulators for the Cyp7a1 gene in steady-state mice and that Cyp7a1 is one of the factors that mediate the difference in serum total cholesterol level between sexes.

  1. 胆固醇7α—羟化酶CYP7A1表达及调控相关研究进展%Expression and regulation of cholesterol 7 alphahydroxylase: An update

    Institute of Scientific and Technical Information of China (English)

    邢万佳; 高聆; 赵家军


    胆固醇7α—羟化酶(cholesterol 7-alpha hydroxylase,CYP7Al)是胆汁酸合成代谢经典途径的限速酶,其表达不仅具有昼夜节律,而且可由基因多态性、饮食、激素、细胞因子及药物等多种因素调节.CYP7A1的基因多态性与疾病及对药物的治疗反应存在相关性,同时多种核受体参与了CYP7A1的表达的调控,共同组成了转录激活/抑制级联网络,维持体内胆汁酸合成及脂质动态平衡.本文主要对CYP7A1表达、调控及与疾病及治疗反应的相关性等方面的研究进行综述.%Cholesterol 7-alpha hydroxylase (CYP7A1) is the first and rate-limiting enzyme in the neutral pathway of bile acids synthesis. The expression of CYP7A1 can be regulated not only by diurnal rhythm, but also by gene polymorphism, diet, hormones, cytokines and drugs. CYP7A1 gene polymorphism is associated not only with some diseases but also with response to drug therapy. A cascade network consisting of multiple nuclear receptors is involved in the regulation of CYP7A1 expression to control bile acid synthesis and lipid metabolism.

  2. Digital gene-expression profiling analysis of the cholesterol-lowering effects of alfalfa saponin extract on laying hens.

    Directory of Open Access Journals (Sweden)

    Lu Zhou

    Full Text Available BACKGROUND: To prevent cardiovascular disease, people are advised to limit their intake of dietary cholesterol to less than 300 mg/day. Egg consumption has been seriously reduced because of the high levels of cholesterol. The purpose of the present study was to evaluate the cholesterol-lowering effects of alfalfa saponin extract (ASE in yolk and the molecular mechanisms underlying these effects using digital gene-expression profiling analysis. Liver and ovary tissues were isolated from laying hens fed with ASE for RNA sequencing. RESULTS: The cholesterol content of the yolks of eggs from hens fed 120 mg/kg ASE declined considerably on day 60. Other groups (60, 240, 480 mg/kg ASE group also showed decreases, but they were not significant. Digital gene expression generated over nine million reads per sample, producing expression data for least 12,384 genes. Among these genes, 110 genes showed greater than normal expression in the liver and 107 genes showed greater than normal expression in the ovary. Cholesterol 7 alpha-hydroxylase (Cyp7a1 and apolipoprotein H (Apoh, which act in the synthesis of bile acid and cholesterol efflux, showed more expression in the livers of hens given dietary ASE supplementation. In the ovary, levels of very low density lipoprotein receptor (Vldlr, apolipoprotein B (Apob, apovitellenin 1 (ApovldlII and vitellogenin (VtgI, VtgII and VtgIII in ovary decreased with dietary ASE supplementation. CONCLUSION: Transcriptome analysis revealed that the molecular mechanisms underlying the cholesterol-lowering effects of ASE were partially mediated by enhancement of cholesterol efflux in the liver and this reduced of cholesterol deposition in the ovary.

  3. Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis. (United States)

    Pandak, W M; Schwarz, C; Hylemon, P B; Mallonee, D; Valerie, K; Heuman, D M; Fisher, R A; Redford, K; Vlahcevic, Z R


    The initial and rate-limiting step in the classic pathway of bile acid biosynthesis is 7alpha-hydroxylation of cholesterol, a reaction catalyzed by cholesterol 7alpha-hydroxylase (CYP7A1). The effect of CYP7A1 overexpression on cholesterol homeostasis in human liver cells has not been examined. The specific aim of this study was to determine the effects of overexpression of CYP7A1 on key regulatory steps involved in hepatocellular cholesterol homeostasis, using primary human hepatocytes (PHH) and HepG2 cells. Overexpression of CYP7A1 in HepG2 cells and PHH was accomplished by using a recombinant adenovirus encoding a CYP7A1 cDNA (AdCMV-CYP7A1). CYP7A1 overexpression resulted in a marked activation of the classic pathway of bile acid biosynthesis in both PHH and HepG2 cells. In response, there was decreased HMG-CoA-reductase (HMGR) activity, decreased acyl CoA:cholesterol acyltransferase (ACAT) activity, increased cholesteryl ester hydrolase (CEH) activity, and increased low-density lipoprotein receptor (LDLR) mRNA expression. Changes observed in HMGR, ACAT, and CEH mRNA levels paralleled changes in enzyme specific activities. More specifically, LDLR expression, ACAT activity, and CEH activity appeared responsive to an increase in cholesterol degradation after increased CYP7A1 expression. Conversely, accumulation of the oxysterol 7alpha-hydroxycholesterol in the microsomes after CYP7A1 overexpression was correlated with a decrease in HMGR activity.

  4. NO-1886 suppresses diet-induced insulin resistance and cholesterol accumulation through STAT5-dependent upregulation of IGF1 and CYP7A1. (United States)

    Li, Qinkai; Yin, Weidong; Cai, Manbo; Liu, Yi; Hou, Hongjie; Shen, Qingyun; Zhang, Chi; Xiao, Junxia; Hu, Xiaobo; Wu, Qishisan; Funaki, Makoto; Nakaya, Yutaka


    Insulin resistance and dyslipidemia are both considered to be risk factors for metabolic syndrome. Low levels of IGF1 are associated with insulin resistance. Elevation of low-density lipoprotein cholesterol (LDL-C) concomitant with depression of high-density lipoprotein cholesterol (HDL-C) increase the risk of obesity and type 2 diabetes mellitus (T2DM). Liver secretes IGF1 and catabolizes cholesterol regulated by the rate-limiting enzyme of bile acid synthesis from cholesterol 7alpha-hydroxylase (CYP7A1). NO-1886, a chemically synthesized lipoprotein lipase activator, suppresses diet-induced insulin resistance with the improvement of HDL-C. The goal of the present study is to evaluate whether NO-1886 upregulates IGF1 and CYP7A1 to benefit glucose and cholesterol metabolism. By using human hepatoma cell lines (HepG2 cells) as an in vitro model, we found that NO-1886 promoted IGF1 secretion and CYP7A1 expression through the activation of signal transducer and activator of transcription 5 (STAT5). Pretreatment of cells with AG 490, the inhibitor of STAT pathway, completely abolished NO-1886-induced IGF1 secretion and CYP7A1 expression. Studies performed in Chinese Bama minipigs pointed out an augmentation of plasma IGF1 elicited by a single dose administration of NO-1886. Long-term supplementation with NO-1886 recovered hyperinsulinemia and low plasma levels of IGF1 suppressed LDL-C and facilitated reverse cholesterol transport by decreasing hepatic cholesterol accumulation through increasing CYP7A1 expression in high-fat/high-sucrose/high-cholesterol diet minipigs. These findings indicate that NO-1886 upregulates IGF1 secretion and CYP7A1 expression to improve insulin resistance and hepatic cholesterol accumulation, which may represent an alternative therapeutic avenue of NO-1886 for T2DM and metabolic syndrome.

  5. Cholesterol Test (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Cholesterol Share this page: Was this page helpful? Also known as: Blood Cholesterol Formal name: Total Cholesterol Related tests: HDL Cholesterol , ...

  6. What's Cholesterol? (United States)

    ... los dientes Video: Getting an X-ray What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? Print A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  7. What's Cholesterol? (United States)

    ... Room? What Happens in the Operating Room? What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? A A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  8. FXR-mediated down-regulation of CYP7A1 dominates LXRalpha in long-term cholesterol-fed NZW rabbits. (United States)

    Xu, Guorong; Li, Hai; Pan, Lu-Xing; Shang, Quan; Honda, Akira; Ananthanarayanan, M; Erickson, Sandra K; Shneider, Benjamin L; Shefer, Sarah; Bollineni, Jaya; Forman, Barry M; Matsuzaki, Yasushi; Suchy, Frederick J; Tint, G Stephen; Salen, Gerald


    We investigated how cholesterol feeding regulates cholesterol 7alpha-hydroxylase (CYP7A1) via the nuclear receptors farnesoid X receptor (FXR) and liver X receptor alpha (LXRalpha) in New Zealand white rabbits. After 1 day of 2% cholesterol feeding, when the bile acid pool size had not expanded, mRNA levels of the FXR target genes short-heterodimer partner (SHP) and sterol 12alpha-hydroxylase (CYP8B) were unchanged, indicating that FXR activation remained constant. In contrast, the mRNA levels of the LXRalpha target genes ATP binding cassette transporter A1 (ABCA1) and cholesteryl ester transfer protein (CETP) increased 5-fold and 2.3-fold, respectively, associated with significant increases in hepatic concentrations of oxysterols. Activity and mRNA levels of CYP7A1 increased 2.4 times and 2.2 times, respectively. After 10 days of cholesterol feeding, the bile acid pool size increased nearly 2-fold. SHP mRNA levels increased 4.1-fold while CYP8B declined 64%. ABCA1 mRNA rose 8-fold and CETP mRNA remained elevated. Activity and mRNA of CYP7A1 decreased 60% and 90%, respectively. Feeding cholesterol for 1 day did not enlarge the ligand pool size or change FXR activation, while LXRalpha was activated highly secondary to increased hepatic oxysterols. As a result, CYP7A1 was up-regulated. After 10 days of cholesterol feeding, the bile acid (FXR ligand) pool size increased, which activated FXR and inhibited CYP7A1 despite continued activation of LXRalpha. Thus, in rabbits, when FXR and LXRalpha are activated simultaneously, the inhibitory effect of FXR overrides the stimulatory effect of LXRalpha to suppress CYP7A1 mRNA expression.

  9. Interactions between common genetic polymorphisms in ABCG5/G8 and CYP7A1 on LDL cholesterol-lowering response to atorvastatin. (United States)

    Kajinami, Kouji; Brousseau, Margaret E; Ordovas, Jose M; Schaefer, Ernst J


    Cholesterol excretion by ATP binding cassette transporters G5 and G8 (ABCG5/G8) and bile acid biosynthesis by cholesterol 7alpha-hydroxylase (CYP7A1) are major pathways for the removal of cholesterol into bile. To investigate the interactions between common polymorphisms in ABCG5/G8 and CYP7A1 and statin response, we examined the relationships between five non-synonymous polymorphisms in ABCG5/G8 (Q604E, D19H, Y54C, T400K, and A632V) and a promoter variant in CYP7A1 (A-204C) in 337 hypercholesterolemic patients treated with atorvastatin 10mg. The ABCG8 H19 allele was significantly associated with a greater LDL cholesterol reduction relative to the wild type D19 allele (39.6% versus 36.6%, P = 0.043). This difference was enhanced in non-carriers of the CYP7A1 promoter polymorphism (42.7% versus 38.2%, P = 0.048), and was diminished in accordance with the number of CYP7A1 variant alleles (1.8% in heterozygotes and 0.2% in homozygotes). Combination analysis of these polymorphisms explained a greater percentage of LDL cholesterol response variation (8.5% difference across subgroups) than did single polymorphism analysis (4.2% in CYP7A1 and 3.0% in ABCG8 D19H). The other ABCG5/G8 polymorphisms did not show any significant interactions with the CYP7A1 polymorphism. We conclude that the ABCG8 H19 and CYP7A1 C-204 alleles appear to interact in a dose-dependent manner on atorvastatin response.

  10. About Cholesterol (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More About Cholesterol Updated:Apr 3,2017 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  11. Cholesterol (image) (United States)

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  12. Good vs. Bad Cholesterol (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Good vs. Bad Cholesterol Updated:Apr 3,2017 Cholesterol can't dissolve ... test . View an animation of cholesterol . LDL (Bad) Cholesterol LDL cholesterol is considered the “bad” cholesterol because ...

  13. High Blood Cholesterol (United States)

    ... version of this page please turn Javascript on. High Blood Cholesterol What is High Blood Cholesterol? What is Cholesterol? Cholesterol is a ... heart disease. If Your Blood Cholesterol Is Too High Too much cholesterol in your blood is called ...

  14. Women and Cholesterol (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... 2014. Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  15. HDL Cholesterol Test (United States)

    ... products and services. Advertising & Sponsorship: Policy | Opportunities HDL Cholesterol Share this page: Was this page helpful? Also ... HDL; HDL-C Formal name: High-density Lipoprotein Cholesterol Related tests: Cholesterol ; LDL Cholesterol ; Triglycerides ; Lipid Profile ; ...

  16. Cholesterol IQ Quiz (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  17. Cholesterol and Your Child (United States)

    ... Old Feeding Your 1- to 2-Year-Old Cholesterol and Your Child KidsHealth > For Parents > Cholesterol and ... child's risk of developing heart disease later. About Cholesterol Cholesterol is a waxy substance produced by the ...

  18. Lifestyle Changes and Cholesterol (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Lifestyle Changes and Cholesterol Updated:Sep 26,2016 As part of a ... to the Terms and Conditions and Privacy Policy Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  19. Common Misconceptions about Cholesterol (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Apr 3,2017 Cholesterol can be both ... misconceptions about cholesterol. Click on each misconception about cholesterol to see the truth: My choices about diet ...

  20. LDL Cholesterol Test (United States)

    ... products and services. Advertising & Sponsorship: Policy | Opportunities LDL Cholesterol Share this page: Was this page helpful? Also ... LDL; LDL-C Formal name: Low-Density Lipoprotein Cholesterol Related tests: Cholesterol ; HDL Cholesterol ; Triglycerides ; Lipid Profile ; ...

  1. Mice expressing the human CYP7A1 gene in the mouse CYP7A1 knock-out background lack induction of CYP7A1 expression by cholesterol feeding and have increased hypercholesterolemia when fed a high fat diet. (United States)

    Chen, Jean Y; Levy-Wilson, Beatriz; Goodart, Sheryl; Cooper, Allen D


    Cholesterol 7alpha-hydroxylase (CYP7A1) catalyzes the rate-limiting step in the pathway responsible for the formation of the majority of bile acids. Transcription of the gene is regulated by the size of the bile acid pool and dietary and hormonal factors. The farnesoid X receptor and the liver X receptor (LXR) are responsible for regulation by bile acids and cholesterol, respectively. To study the effects of dietary cholesterol and fat upon expression of the human CYP7A1 gene, mice were generated by crossing transgenic mice carrying the human CYP7A1 gene with mice that were homozygous knock-outs (CYP7A1(-/-)). The mice (mCYP7A1(-/-)/hCYP7A1) expressed the human gene at much higher levels than did the transgenics bred in the wild-type background. A diet containing 1% cholic acid reduced the expression of the human gene in mCYP7A1(-/-)/hCYP7A1 mice to undetectable levels. Cholestyramine (5%) increased the level of expression of the human gene and the mouse gene. Thus, farnesoid X receptor-mediated regulation was preserved. A diet containing 2% cholesterol increased expression of the mouse gene in wild-type mice, but it did not affect expression of the human gene in mCYP7A1(-/-)/hCYP7A1 mice. None of the diets altered the serum cholesterol or triglyceride levels in these mice; 1% cholic acid caused a redistribution of cholesterol from the high density lipoprotein to the low density lipoprotein density in the humanized mice but not in wild-type mice. A diet containing 30% saturated fat and 2% cholesterol caused a decrease in CYP7A1 levels in mCYP7A1(-/-)/hCYP7A1 mice. The serum cholesterol levels rose in all mice fed this diet. The increase was greater in the mCYP7A1(-/-)/hCYP7A1 mice. Together, these data suggest that the lack of an LXR element in the region from -56 to -49 of the human CYP7A1 promoter may account for some of the differences in response to diets between humans and rodents.

  2. What Is Cholesterol? (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cholesterol KidsHealth > For Teens > Cholesterol Print A A A ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  3. What Is Cholesterol? (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cholesterol KidsHealth > For Teens > Cholesterol A A A What's ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  4. Cholesterol Facts and Statistics (United States)

    ... Blood Pressure Salt Million Hearts® WISEWOMAN Program High Cholesterol Facts Recommend on Facebook Tweet Share Compartir As ... the facts about high cholesterol [PDF-281K] . High Cholesterol in the United States 73.5 million adults ( ...

  5. Get Your Cholesterol Checked (United States)

    ... Checked Print This Topic En español Get Your Cholesterol Checked Browse Sections The Basics Overview Cholesterol Test ... How often do I need to get my cholesterol checked? The general recommendation is to get your ...

  6. Dietary Fat and Cholesterol (United States)

    ... Conditions Nutrition & Fitness Emotional Health Dietary Fat and Cholesterol Posted under Health Guides . Updated 7 March 2017. + ... saturated fat found in red meat. What is cholesterol? Cholesterol is a fatlike substance that’s found in ...

  7. High Blood Cholesterol Prevention (United States)

    ... Million Hearts® WISEWOMAN Program Prevention and Management of High LDL Cholesterol: What You Can Do Recommend on ... like eating a healthy diet, can help prevent high cholesterol. High low-density lipoprotein (LDL) cholesterol increases ...

  8. Cholesterol lowering, low cholesterol, and mortality. (United States)

    LaRosa, J C


    Cholesterol lowering in both primary and secondary prevention has been clearly demonstrated to lower coronary morbidity and, in secondary prevention, to lower coronary mortality as well. Putative dangers of cholesterol lowering remain unproven. Population studies linking low cholesterol to noncoronary mortalities do not demonstrate cause-and-effect relations. In fact, based on current studies, the opposite is more likely to be the case. Neither gender nor age should automatically exclude persons from cholesterol screening. Drug intervention, however, should be used conservatively, particularly in young adults and the elderly. Drugs should be used only after diet and lifestyle interventions have failed. The evidence linking high blood cholesterol to coronary atherosclerosis and cholesterol lowering to its prevention is broad-based and definitive. Concerns about cholesterol lowering and spontaneously low cholesterols should be pursued but should not interfere with the implementation of current public policies to reduce the still heavy burden of atherosclerosis in Western society.

  9. Cooking for Lower Cholesterol (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cooking for Lower Cholesterol Updated:Oct 28,2016 A heart-healthy eating ... content was last reviewed on 04/21/2014. Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  10. Reverse cholesterol transport revisited

    Institute of Scientific and Technical Information of China (English)

    Astrid; E; van; der; Velde


    Reverse cholesterol transport was originally described as the high-density lipoprotein-mediated cholesterol flux from the periphery via the hepatobiliary tract to the intestinal lumen, leading to fecal excretion. Since the introduction of reverse cholesterol transport in the 1970s, this pathway has been intensively investigated. In this topic highlight, the classical reverse cholesterol transport concepts are discussed and the subject reverse cholesterol transport is revisited.

  11. Cholesterol testing and results (United States)

    Cholesterol test results; LDL test results; VLDL test results; HDL test results; Coronary risk profile results; Hyperlipidemia- ... Some cholesterol is considered good and some is considered bad. Different blood tests can be done to measure each ...

  12. Controlling Cholesterol with Statins (United States)

    ... For Consumers Home For Consumers Consumer Updates Controlling Cholesterol with Statins Share Tweet Linkedin Pin it More ... not, the following tips can help keep your cholesterol in check: Talk with your healthcare provider about ...

  13. Cholesterol - drug treatment (United States)

    ... this page: // Cholesterol - drug treatment To use the sharing features on ... treatment; Hardening of the arteries - statin Statins for Cholesterol Statins reduce your risk of heart disease, stroke, ...

  14. Cholesterol and public policy. (United States)

    LaRosa, J C


    Cholesterol lowering in both primary and secondary prevention has been clearly demonstrated to lower coronary morbidity and, in secondary prevention, to lower coronary mortality as well. Putative dangers of cholesterol lowering remain unproven. Population studies linking low cholesterol to noncoronary mortalities do not demonstrate cause-and-effect relations. In fact, based on current studies, the opposite is more likely to be the case. Neither gender nor age should automatically exclude persons from cholesterol screening. Drug intervention, however, should be used conservatively, particularly in young adults and the elderly. Drugs should be used only after diet and lifestyle interventions have failed. The evidence linking high blood cholesterol to coronary atherosclerosis and cholesterol lowering to its prevention is broad-based and definitive. Concerns about cholesterol lowering and spontaneously low cholesterols should be pursued but should not interfere with the implementation of current public policies to reduce the still heavy burden of atherosclerosis in Western society.

  15. High blood cholesterol levels (United States)

    ... this page: // High blood cholesterol levels To use the sharing features ... stroke, and other problems. The medical term for high blood cholesterol is lipid disorder, hyperlipidemia, or hypercholesterolemia. ...

  16. Cholesterol oxides inhibit cholesterol esterification by lecithin: cholesterol acyl transferase

    Directory of Open Access Journals (Sweden)

    Eder de Carvalho Pincinato


    Full Text Available Cholesterol oxides are atherogenic and can affect the activity of diverse important enzymes for the lipidic metabolism. The effect of 7β-hydroxycholesterol, 7-ketocholesterol, 25-hydroxycholesterol, cholestan-3β,5α,6β-triol,5,6β-epoxycholesterol, 5,6α-epoxycholesterol and 7α-hydroxycholesterol on esterification of cholesterol by lecithin:cholesterol acyl transferase (LCAT, EC and the transfer of esters of cholesterol oxides from high density lipoprotein (HDL to low density lipoproteins (LDL and very low density lipoproteins (VLDL by cholesteryl ester transfer protein (CETP was investigated. HDL enriched with increasing concentrations of cholesterol oxides was incubated with fresh plasma as source of LCAT. Cholesterol and cholesterol oxides esterification was followed by measuring the consumption of respective free sterol and oxysterols. Measurements of cholesterol and cholesterol oxides were done by gas-chromatography. 14C-cholesterol oxides were incorporated into HDL2 and HDL3 subfractions and then incubated with fresh plasma containing LCAT and CETP. The transfer of cholesterol oxide esters was followed by measuring the 14C-cholesterol oxide-derived esters transferred to LDL and VLDL. All the cholesterol oxides studied were esterified by LCAT after incorporation into HDL particles, competing with cholesterol by LCAT. Cholesterol esterification by LCAT was inversely related to the cholesterol oxide concentration. The esterification of 14C-cholesterol oxides was higher in HDL3 and the transfer of the derived esters was greater from HDL2 to LDL and VLDL. The results suggest that cholesterol esterification by LCAT is inhibited in cholesterol oxide-enriched HDL particles. Moreover, the cholesterol oxides-derived esters are efficiently transferred to LDL and VLDL. Therefore, we suggest that cholesterol oxides may exert part of their atherogenic effect by inhibiting cholesterol esterification on the HDL surface and thereby disturbing

  17. What Your Cholesterol Levels Mean (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What Your Cholesterol Levels Mean Updated:Apr 3,2017 Keeping your ... content was last reviewed on 04/21/2014. Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  18. Home-Use Tests - Cholesterol (United States)

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  19. Regulation of cholesterol homeostasis. (United States)

    van der Wulp, Mariëtte Y M; Verkade, Henkjan J; Groen, Albert K


    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.

  20. Cholesterol - what to ask your doctor (United States)

    ... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...

  1. National Cholesterol Education Month

    Centers for Disease Control (CDC) Podcasts


    Do you know your cholesterol numbers? Your doctor can do a simple test to check your cholesterol levels and help you make choices that lower your risk for heart disease and stroke.  Created: 9/1/2009 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 9/9/2009.

  2. What Causes High Blood Cholesterol? (United States)

    ... the NHLBI on Twitter. What Causes High Blood Cholesterol? Many factors can affect the cholesterol levels in your blood. You can control some ... but not others. Factors You Can Control Diet Cholesterol is found in foods that come from animal ...

  3. Bile acid sequestrants for cholesterol (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  4. Cholesterol and Women's Health (United States)

    ... can I make to reduce my risk of cardiovascular disease? • Is there medication that can help reduce my cholesterol ... It also helps your body make vitamin D and produces the bile that helps you ...

  5. MD-2 binds cholesterol. (United States)

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I


    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  6. Cholesterol in unusual places

    Energy Technology Data Exchange (ETDEWEB)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J, E-mail:, E-mail:


    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  7. Cholesterol and prostate cancer. (United States)

    Pelton, Kristine; Freeman, Michael R; Solomon, Keith R


    Prostate cancer risk can be modified by environmental factors, however the molecular mechanisms affecting susceptibility to this disease are not well understood. As a result of a series of recently published studies, the steroidal lipid, cholesterol, has emerged as a clinically relevant therapeutic target in prostate cancer. This review summarizes the findings from human studies as well as animal and cell biology models, which suggest that high circulating cholesterol increases risk of aggressive prostate cancer, while cholesterol lowering strategies may confer protective benefit. Relevant molecular processes that have been experimentally tested and might explain these associations are described. We suggest that these promising results now could be applied prospectively to attempt to lower risk of prostate cancer in select populations.

  8. Orbitofrontal cholesterol granuloma. (United States)

    Chow, L P; McNab, A A


    Cholesterol granuloma of the orbital bones is a rare but readily recognisable condition. It is an osteolytic lesion with a granulomatous reaction surrounding cholesterol crystals, old haemorrhage and a fibrous capsule. There is a male preponderance and it usually occurs in young or middle-aged men. It is treatable with drainage and curettage via an orbitotomy, and craniotomy or wide bone removal is almost never required. Six cases of this condition were reviewed to highlight the typical clinical presentation, computed tomography and magnetic resonance results, and surgical management.

  9. Cholesterol and myelin biogenesis. (United States)

    Saher, Gesine; Simons, Mikael


    Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.

  10. Intestinal cholesterol transport: Measuring cholesterol absorption and its reverse

    NARCIS (Netherlands)

    Jakulj, L.


    Intestinal cholesterol transport might serve as an attractive future target for cardiovascular disease reduction, provided that underlying molecular mechanisms are more extensively elucidated, combined with improved techniques to measure changes in cholesterol fluxes and their possible anti-atherosc

  11. Regulation of cholesterol homeostasis

    NARCIS (Netherlands)

    van der Wulp, Mariette Y. M.; Verkade, Henkjan J.; Groen, Albert K.


    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-codin

  12. Transintestinal cholesterol efflux

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Brufau, Gemma; Groen, Albert K.


    Purpose of review Regulation of cholesterol homeostasis is a complex interplay of a multitude of metabolic pathways situated in different organs. The liver plays a central role and has received most attention of the research community. In this review, we discuss recent progress in the understanding

  13. Cholesterol: Up in Smoke. (United States)

    Raloff, Janet


    Discussed is the contribution cooked meat makes to air pollution. The dozens of compounds, including cholesterol, that are released when a hamburger is grilled are described. The potential effects of these emissions on humans and the urban environment are discussed. (KR)

  14. Cholesterol transport in model membranes (United States)

    Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula


    Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.

  15. Cholesterol excretion and colon cancer. (United States)

    Broitman, S A


    Populations consuming diets high in fat and cholesterol exhibit a greater incidence of colon cancer than those consuming less fat and cholesterol. Lowering elevated serum cholesterol levels experimentally or clinically is associated with increased large-bowel tumorigenesis. Thus, cholesterol lost to the gut, either dietary or endogenously synthesized, appears to have a role in large-bowel cancer. Whether the effect(s) is mediated by increases in fecal bile acid excretion or some other mechanism is not clear.

  16. How to Get Your Cholesterol Tested (United States)

    ... Thromboembolism Aortic Aneurysm More How To Get Your Cholesterol Tested Updated:Apr 3,2017 Cholesterol plays a ... factors for heart disease and stroke . How is cholesterol tested? A cholesterol screening measures your level of ...

  17. Cholesterol crystal embolism (atheroembolism) (United States)



    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome. PMID:21977265

  18. Cholesterol binding to ion channels

    Directory of Open Access Journals (Sweden)

    Irena eLevitan


    Full Text Available Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.

  19. Effects of YangGanLiDan Granule on PPAR - γ and CYP7A1 of Liver in Mice with Cholesterol Gallstone%养肝利胆颗粒对胆固醇结石小鼠肝脏中PPAR-γ及CYP7A1表达的影响

    Institute of Scientific and Technical Information of China (English)

    梁晓强; 顾宏刚; 章学林; 张静喆; 刘胜


    Objective :To observe the effects of YangGanLiDan granule (YGLD) on liver perosisome proliferator activated reeeptor gamma ( PPAR - γ) and Cholesterol 7 alpha - hydroxylase ( CYP7A1 ) in C57BL/6J mice model with cholesterol gallstone.Methods:Thirty - eight C57BL/6J mice were randomly divided into normal control group ( n = 10) ,untreated group ( n = 15 ) and YGLD group (n = 13).Cholesterol gallstone was induced in mice of the latter two groups by feeding high cholesterol diet.Mice in the YGLD group were intragastricly administered YGLD 2.lg/( kg · d).After 8 - weeks treatment,animals were sacrificed and sampled to calculate the incidences of stone formation.The expression of PPAR - γand GYP7A1 in liver tissues were detected.Results:The incidences of stone formation were 73.33 % in untreated group,0% in normal control group, and 30.77 % in the YGLD group.And the incidence in untreated group was significantly higher than those in the normal control group and the YGLD group( P <0.01 ).The expression of PPAR - γ and CYP7A1 were up - regulated after the treatment of YGLD.Conclusion:YGLD can deerease the incidence of stone formation,regulate PPAR -γand CYP7A1 up,which may be one of the mechanisms in the treatment and prevention of cholesterol gallstone disease.%目的:观察养肝利胆颖粒对胆固醉结石小鼠肝脏PPAR-γ及CYP7A1表达的影响.方法:38只C57BLJ6雌性小鼠随机分为正常对照组(n=10)、模型组(n=15)和养肝利胆颖粒组(n=13).其中后两组小鼠采用高脂饮食诱发法建立胆固醇结石模型.造模过程中,养肝利胆颗粒组小鼠予养肝利胆颖粒2.1g/(kg·d)灌胃治疗.8周后观察各组小鼠的成石率,并用Westem Blotting法检测肝脏中PPAR-γ及CYP7A1的表达.结果:养肝利胆颗粒组成石率显著降低(P<0.01),小鼠肝脏PPARγ及CYP7A1表达增强.结论:养肝利胆颗粒可通过增强肝脏PPAγ及CYP7A1的表达,从而发挥防治胆石病的作用.

  20. Characterization of placental cholesterol transport

    DEFF Research Database (Denmark)

    Lindegaard, Marie L; Wassif, Christopher A; Vaisman, Boris


    Patients with Smith-Lemli-Opitz syndrome (SLOS) are born with multiple congenital abnormalities. Postnatal cholesterol supplementation is provided; however, it cannot correct developmental malformations due to in utero cholesterol deficit. Increased transport of cholesterol from maternal to fetal...... circulation might attenuate congenital malformations. The cholesterol transporters Abca1, Abcg1, and Sr-b1 are present in placenta; however, their potential role in placental transport remains undetermined. In mice, expression analyses showed that Abca1 and Abcg1 transcripts increased 2-3-fold between...... embryonic days 13.5 and 18.5 in placental tissue; whereas, Sr-b1 expression decreased. To examine the functional role of Abca1, Abcg1 and Sr-b1 we measured the maternal-fetal transfer of (14)C-cholesterol in corresponding mutant embryos. Disruption of either Abca1 or Sr-b1 decreased cholesterol transfer...

  1. Cholesterol metabolism in Huntington disease. (United States)

    Karasinska, Joanna M; Hayden, Michael R


    The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.

  2. Cholesterol Embolism: An Overlooked Diagnosis

    Directory of Open Access Journals (Sweden)

    Sinem Nihal ESATOĞLU


    Full Text Available Acute renal failure following angiography is usually due to radiocontrast nephropathy; however, cholesterol embolism should be kept in mind when making the differential diagnosis. Cholesterol embolism is a multisystem disease, usually seen in elderly men who have severe atherosclerosis. In this case report, we describe a patient with cholesterol embolism who had a typical clinical history of progressive renal failure. We hope that this case report will emphasize the importance of this overlooked syndrome.

  3. 胆固醇7α-羟化酶基因多态性与儿童血脂水平的关系%Relationship of 7 Alpha-hydroxylase Gene Polymorphism with Serum Lipid Levels in Children

    Institute of Scientific and Technical Information of China (English)

    叶林朋; 王程强; 张春莲; 梁建成; 汪春红



  4. Food combinations for cholesterol lowering. (United States)

    Harland, Janice I


    Reducing elevated LDL-cholesterol is a key public health challenge. There is substantial evidence from randomised controlled trials (RCT) that a number of foods and food components can significantly reduce LDL-cholesterol. Data from RCT have been reviewed to determine whether effects are additive when two or more of these components are consumed together. Typically components, such as plant stanols and sterols, soya protein, β-glucans and tree nuts, when consumed individually at their target rate, reduce LDL-cholesterol by 3-9 %. Improved dietary fat quality, achieved by replacing SFA with unsaturated fat, reduces LDL-cholesterol and can increase HDL-cholesterol, further improving blood lipid profile. It appears that the effect of combining these interventions is largely additive; however, compliance with multiple changes may reduce over time. Food combinations used in ten 'portfolio diet' studies have been reviewed. In clinical efficacy studies of about 1 month where all foods were provided, LDL-cholesterol is reduced by 22-30 %, whereas in community-based studies of >6 months' duration, where dietary advice is the basis of the intervention, reduction in LDL-cholesterol is about 15 %. Inclusion of MUFA into 'portfolio diets' increases HDL-cholesterol, in addition to LDL-cholesterol effects. Compliance with some of these dietary changes can be achieved more easily compared with others. By careful food component selection, appropriate to the individual, the effect of including only two components in the diet with good compliance could be a sustainable 10 % reduction in LDL-cholesterol; this is sufficient to make a substantial impact on cholesterol management and reduce the need for pharmaceutical intervention.

  5. Top Five Lifestyle Changes to Reduce Cholesterol (United States)

    Top 5 lifestyle changes to improve your cholesterol Lifestyle changes can help reduce cholesterol, keep you off cholesterol-lowering medications or enhance the effect of your medications. Here are five lifestyle ...

  6. Understand Your Risk for High Cholesterol (United States)

    ... Aortic Aneurysm More Understand Your Risk for High Cholesterol Updated:Apr 1,2016 LDL (bad) cholesterol is ... content was last reviewed on 04/21/2014. Cholesterol Guidelines: Putting the pieces together Myth vs. Truth – ...

  7. How Is High Blood Cholesterol Treated? (United States)

    ... the NHLBI on Twitter. How Is High Blood Cholesterol Treated? High blood cholesterol is treated with lifestyle ... need to follow a heart healthy diet . Lowering Cholesterol Using Therapeutic Lifestyle Changes TLC is a set ...

  8. Cholesterol metabolism and colon cancer. (United States)

    Broitman, S A; Cerda, S; Wilkinson, J


    While epidemiologic and concordant experimental data indicate a direct relationship between dietary fat (and presumably caloric) intake and the development of colon cancer, the effect of dietary cholesterol on this disease is still not clear. However, there appears to be a developing literature concerning an inverse relationship between serum and plasma cholesterol levels, and the risk for colon cancer. Findings that low serum cholesterol levels are apparent as early as ten years prior to the detection of colon cancer implies that sub clinical disease is probably not involved initially in this process. The possibility of low serum cholesterol as a bio-marker was considered in epidemiologic studies which focused upon obese men with lower than normal serum cholesterol levels who were found to be at increased risk to colon cancer. While the relationship between low serum cholesterol and colonic or intestinal cholesterol metabolism is presently not understood, current genetic studies provide a promising though as yet unexplored potential association. Alterations which occur during the developmental progression of colonic cancer include changes in chromosome 5, which also carries two genes vital to the biosynthesis and regulation of systemic and cellular cholesterol metabolism, 3-hydroxy-3-methylglutaryl coenzyme A synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoA R). Regulation of cholesterol metabolism in intestinal cells in vivo and in vitro varies from that seen in normal fibroblasts or hepatocytes in terms of exogenous sources of cholesterol and how these sources regulate internal synthesis. Colonic cancer cells have been used to assess small bowel enterocyte cholesterol metabolism, which has been possible because of their ability to differentiate in culture, however information regarding true colonic enterocyte cholesterol metabolism is relatively scarce. Colonic cancer cells have been shown to possess a diminished or nonexistent ability to use

  9. Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies. (United States)

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K


    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol %. With spin-labeled cholesterol analogues, it was shown that the CBDs begin to form at ~50 mol % cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol % cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that the formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol % is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol % cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals.

  10. Cholesterol testing on a smartphone. (United States)

    Oncescu, Vlad; Mancuso, Matthew; Erickson, David


    Home self-diagnostic tools for blood cholesterol monitoring have been around for over a decade but their widespread adoption has been limited by the relatively high cost of acquiring a quantitative test-strip reader, complicated procedure for operating the device, and inability to easily store and process results. To address this we have developed a smartphone accessory and software application that allows for the quantification of cholesterol levels in blood. Through a series of human trials we demonstrate that the system can accurately quantify total cholesterol levels in blood within 60 s by imaging standard test strips. In addition, we demonstrate how our accessory is optimized to improve measurement sensitivity and reproducibility across different individual smartphones. With the widespread adoption of smartphones and increasingly sophisticated image processing technology, accessories such as the one presented here will allow cholesterol monitoring to become more accurate and widespread, greatly improving preventive care for cardiovascular disease.

  11. Americans' Cholesterol Levels Keep Falling (United States)

    ... and 2013-2014, the CDC reported. Dr. David Friedman is chief of heart failure services at Long ... for cholesterol treatment, all seem to be working," Friedman said. The study was published online Nov. 30 ...

  12. Cholesterol Worships a New Idol

    Institute of Scientific and Technical Information of China (English)

    Ira G. Schulman


    The growing worldwide epidemic of cardiovascular disease suggests that new therapeutic strategies are needed to complement statins in the lowering of cholesterol levels. In a recent paper in Science, Tontonoz and colleagues have identified Idol as a protein that can control cholesterol levels by regulating the stability of the low-density lipoprotein receptor; inhibiting the activity of Idol could provide novel approaches for the treatment of cardiovascular disease.

  13. Cholesterol and benign prostate disease. (United States)

    Freeman, Michael R; Solomon, Keith R


    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association between BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemia, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept.

  14. Steroidal Triterpenes of Cholesterol Synthesis

    Directory of Open Access Journals (Sweden)

    Damjana Rozman


    Full Text Available Cholesterol synthesis is a ubiquitous and housekeeping metabolic pathway that leads to cholesterol, an essential structural component of mammalian cell membranes, required for proper membrane permeability and fluidity. The last part of the pathway involves steroidal triterpenes with cholestane ring structures. It starts by conversion of acyclic squalene into lanosterol, the first sterol intermediate of the pathway, followed by production of 20 structurally very similar steroidal triterpene molecules in over 11 complex enzyme reactions. Due to the structural similarities of sterol intermediates and the broad substrate specificity of the enzymes involved (especially sterol-Δ24-reductase; DHCR24 the exact sequence of the reactions between lanosterol and cholesterol remains undefined. This article reviews all hitherto known structures of post-squalene steroidal triterpenes of cholesterol synthesis, their biological roles and the enzymes responsible for their synthesis. Furthermore, it summarises kinetic parameters of enzymes (Vmax and Km and sterol intermediate concentrations from various tissues. Due to the complexity of the post-squalene cholesterol synthesis pathway, future studies will require a comprehensive meta-analysis of the pathway to elucidate the exact reaction sequence in different tissues, physiological or disease conditions. A major reason for the standstill of detailed late cholesterol synthesis research was the lack of several steroidal triterpene standards. We aid to this efforts by summarizing commercial and laboratory standards, referring also to chemical syntheses of meiosis-activating sterols.

  15. Niacin to Boost Your HDL "Good" Cholesterol (United States)

    Niacin can boost 'good' cholesterol Niacin is a B vitamin that may raise your HDL ("good") cholesterol. But side effects might outweigh benefits for most ... been used to increase high-density lipoprotein (HDL) cholesterol — the "good" cholesterol that helps remove low-density ...

  16. Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase. (United States)

    Aggarwal, V; Malik, J; Prashant, A; Jaiwal, P K; Pundir, C S


    We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40°C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10-700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4°C.

  17. Cholesterol confusion and statin controversy

    Institute of Scientific and Technical Information of China (English)

    Robert; Du; Broff; Michel; de; Lorgeril


    The role of blood cholesterol levels in coronary heart disease(CHD) and the true effect of cholesterollowering statin drugs are debatable. In particular,whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently,the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes,cancer,and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary,we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD.

  18. Remnant cholesterol and ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G


    PURPOSE OF REVIEW: To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). RECENT FINDINGS: Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride......-rich lipoproteins) as a contributor to the development of atherosclerosis and IHD. Observational studies show association between elevated remnant cholesterol and IHD, and mechanistic studies show remnant cholesterol accumulation in the arterial wall like LDL-cholesterol (LDL-C) accumulation. Furthermore, large...... genetic studies show evidence of remnant cholesterol as a causal risk factor for IHD independent of HDL-cholesterol levels. Genetic studies also show that elevated remnant cholesterol is associated with low-grade inflammation, whereas elevated LDL-C is not. There are several pharmacologic ways of lowering...

  19. Polarizable multipolar electrostatics for cholesterol (United States)

    Fletcher, Timothy L.; Popelier, Paul L. A.


    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  20. Regulation of biliary cholesterol secretion and reverse cholesterol transport

    NARCIS (Netherlands)

    Dikkers, Arne


    According to the World Health Organization the number one cause of death throughout the world is cardiovascular disease. Therefore, there is an urgent need for new therapeutic strategies to prevent and treat cardiovascular disease. One possible way is to target the HDL-driven reverse cholesterol tra

  1. Cholesterol absorption and excretion in ileostomy subjects on high- and low-dietary-cholesterol intakes. (United States)

    Ellegård, L; Bosaeus, I


    Six healthy ileostomy subjects were given [3H]cholesterol and [14C]beta-sitosterol in a single meal together with two controlled diets containing 150 or 450 mg cholesterol/d. Each diet was eaten for 3 d. Cholesterol absorption and excretion of cholesterol, bile acids, fat, energy, and nitrogen were analyzed. Fractional cholesterol absorption increased from 44 +/- 2.6% (mean +/- SE) to 61 +/- 3.4% (P effluent, or excretion of energy, nitrogen, fat, and bile acids did not differ between periods. Endogenous cholesterol excretion remained unchanged whereas net cholesterol excretion (output minus intake) was 37% higher (P < 0.05) on low compared with high cholesterol intake.

  2. The ABC of cholesterol transport

    NARCIS (Netherlands)

    Plösch, Torsten


    Cholesterol fulfills an indispensable role in mammalian physiology. It is an important constituent of all cell membranes. Furthermore, it is the precursor of steroid hormones, which regulate a variety of physiological functions, and of bile salts, which are necessary for the generation of bile flow

  3. Membrane Cholesterol Modulates Superwarfarin Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.


    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  4. What You Need to Know about Cholesterol (United States)

    ... 164304.html What You Need to Know About Cholesterol Heart expert explains the difference between good and ... 28, 2017 MONDAY, March 27, 2017 (HealthDay News) -- Cholesterol plays a vital role in your health, so ...

  5. Do You Know Your Cholesterol Levels? (United States)

    ... The Health Information Center Do You Know Your Cholesterol Levels? Print-friendly Version (PDF, 6.1 MB) ... Eat Smart Did you know that high blood cholesterol is a serious problem among Latinos? About one ...

  6. High Cholesterol: Medicines to Help You (United States)

    ... Consumers Consumer Information by Audience For Women High Cholesterol--Medicines To Help You Share Tweet Linkedin Pin ... side effects for each drug, check Drugs@FDA . Cholesterol Absorption Inhibitors Brand Name Generic Name Zetia Ezetimibe ...

  7. Active membrane cholesterol as a physiological effector. (United States)

    Lange, Yvonne; Steck, Theodore L


    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.

  8. Cholesterol, bile acid and triglyceride metabolism intertwined

    NARCIS (Netherlands)

    Schonewille, Marleen


    Hyperlipidemie wordt gekarakteriseerd door verhoogd plasma cholesterol en/of triglyceriden en sterk geassocieerd met het risico op cardiovasculaire aandoeningen. Dit proefschrift beschrijft onderzoek naar de regulatie van plasma cholesterol en triglyceriden concentraties en de achterliggende mechani

  9. Cholesterol metabolism and homeostasis in the brain


    Zhang, Juan; Qiang LIU


    Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer’s disease (AD), Huntington’s disease (HD)...

  10. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. (United States)

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang


    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  11. Mechanism of Resistance to Dietary Cholesterol

    Directory of Open Access Journals (Sweden)

    Lindsey R. Boone


    Full Text Available Background. Alterations in expression of hepatic genes that could contribute to resistance to dietary cholesterol were investigated in Sprague-Dawley rats, which are known to be resistant to the serum cholesterol raising action of dietary cholesterol. Methods. Microarray analysis was used to provide a comprehensive analysis of changes in hepatic gene expression in rats in response to dietary cholesterol. Changes were confirmed by RT-PCR analysis. Western blotting was employed to measure changes in hepatic cholesterol 7α hydroxylase protein. Results. Of the 28,000 genes examined using the Affymetrix rat microarray, relatively few were significantly altered. As expected, decreases were observed for several genes that encode enzymes of the cholesterol biosynthetic pathway. The largest decreases were seen for squalene epoxidase and lanosterol 14α demethylase (CYP 51A1. These changes were confirmed by quantitative RT-PCR. LDL receptor expression was not altered by dietary cholesterol. Critically, the expression of cholesterol 7α hydroxylase, which catalyzes the rate-limiting step in bile acid synthesis, was increased over 4-fold in livers of rats fed diets containing 1% cholesterol. In contrast, mice, which are not resistant to dietary cholesterol, exhibited lower hepatic cholesterol 7α hydroxylase (CYP7A1 protein levels, which were not increased in response to diets containing 2% cholesterol.

  12. Isolation of Cholesterol from an Egg Yolk (United States)

    Taber, Douglass F.; Li, Rui; Anson, Cory M.


    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  13. Intestinal cholesterol secretion : future clinical implications

    NARCIS (Netherlands)

    Jakulj, L.; Besseling, J.; Stroes, E. S. G.; Groen, A. K.


    Together with the liver, the intestine serves as a homeostatic organ in cholesterol metabolism. Recent evidence has substantiated the pivotal role of the intestine in reverse cholesterol transport (RCT). RCT is a fundamental antiatherogenic pathway, mediating the removal of cholesterol from tissues

  14. Public health aspects of serum cholesterol

    NARCIS (Netherlands)

    S. Houterman (Saskia)


    textabstractIn the beginning of this century Anitschkow and De Langen started pioneering work concerning the relation between cholesterol and coronary heart disease. Both showed that there was a possible relation between cholesterol in the diet, blood cholesterol levels and atherosclerosis. It took

  15. Cholesterol Screening: A Practical Guide to Implementation. (United States)

    Kingery, Paul M.


    Dry-chemistry cholesterol analysis has made screening feasible in a variety of settings. The article provides practical tips for the implementation of mass cholesterol screening using a portable dry-chemistry analyzer and discusses issues involved in conducting effective cholesterol screening programs from start to finish. (SM)

  16. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia. (United States)

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H


    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux.

  17. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam


    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  18. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage (United States)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.


    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  19. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials (United States)

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  20. Biliary cholesterol secretion : More than a simple ABC

    NARCIS (Netherlands)

    Dikkers, Arne; Tietge, Uwe J. F.


    Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol originat

  1. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Schonewille, Marleen; Boesjes, Marije; Wolters, Henk; Bloks, Vincent W; Bos, Trijnie; van Dijk, Theo H; Jurdzinski, Angelika; Boverhof, Renze; Wolters, Justina C; Kuivenhoven, Jan A; van Deursen, Jan M; Oude Elferink, Ronald P J; Moschetta, Antonio; Kremoser, Claus; Verkade, Henkjan J; Kuipers, Folkert; Groen, Albert K


    BACKGROUND & AIMS: The role of the intestine in the maintenance of cholesterol homeostasis is increasingly recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE) cont

  2. Epididymis cholesterol homeostasis and sperm fertilizing ability

    Institute of Scientific and Technical Information of China (English)

    Fabrice Saez; Aurélia Ouvrier; Jo(e)l R Drevet


    Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.

  3. Analysis of Cholesterol Trafficking with Fluorescent Probes

    DEFF Research Database (Denmark)

    Maxfield, Frederick R.; Wustner, Daniel


    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport...... that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy...... and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly....

  4. Peptide mediators of cholesterol efflux (United States)

    Bielicki, John K.; Johansson, Jan


    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  5. Evaluating computational models of cholesterol metabolism. (United States)

    Paalvast, Yared; Kuivenhoven, Jan Albert; Groen, Albert K


    Regulation of cholesterol homeostasis has been studied extensively during the last decades. Many of the metabolic pathways involved have been discovered. Yet important gaps in our knowledge remain. For example, knowledge on intracellular cholesterol traffic and its relation to the regulation of cholesterol synthesis and plasma cholesterol levels is incomplete. One way of addressing the remaining questions is by making use of computational models. Here, we critically evaluate existing computational models of cholesterol metabolism making use of ordinary differential equations and addressed whether they used assumptions and make predictions in line with current knowledge on cholesterol homeostasis. Having studied the results described by the authors, we have also tested their models. This was done primarily by testing the effect of statin treatment in each model. Ten out of eleven models tested have made assumptions in line with current knowledge of cholesterol metabolism. Three out of the ten remaining models made correct predictions, i.e. predicting a decrease in plasma total and LDL cholesterol or increased uptake of LDL upon treatment upon the use of statins. In conclusion, few models on cholesterol metabolism are able to pass a functional test. Apparently most models have not undergone the critical iterative systems biology cycle of validation. We expect modeling of cholesterol metabolism to go through many more model topologies and iterative cycles and welcome the increased understanding of cholesterol metabolism these are likely to bring.

  6. Intracellular transport of cholesterol in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Brasaemle, D.L.


    The erythrocyte was selected as a simple cell for the study of transbilayer movement of cholesterol. Cholesterol oxidase was used to measure the distribution of ({sup 3}H)cholesterol across the erythrocyte membrane. Cholesterol oxidase was also used to estimate the rate of transport of low density lipoprotein (LDL) cholesterol to the plasma membrane of cultured Chinese hamster ovary (CHO) fibroblasts; the half-time of this process was 42 minutes. The rate of transport of LDL cholesterol to the plasma membrane was confirmed by a second procedure using amphotericin B. Amphotericin B was also used to estimate the rate of transport of endogenously synthesized cholesterol to the plasma membrane of CHO cells. New methodology was developed including improvements of the previously published cholesterol oxidase assay for plasma membrane cholesterol. A new method for detecting transport of cholesterol to the plasma membrane in cultured cells was developed using amphotericin B. Preliminary studies investigated the use of fluorescent polyenes, pimaricin and etruscomycin, as probes for plasma membrane cholesterol in transport studies. Finally, a modification of a previously published cell staining protocol yielded a simple, quantitative assay for cell growth.

  7. Cholesterol metabolism and homeostasis in the brain. (United States)

    Zhang, Juan; Liu, Qiang


    Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.

  8. Imbalanced cholesterol metabolism in Alzheimer's disease. (United States)

    Xue-shan, Zhao; Juan, Peng; Qi, Wu; Zhong, Ren; Li-hong, Pan; Zhi-han, Tang; Zhi-sheng, Jiang; Gui-xue, Wang; Lu-shan, Liu


    Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease that is mainly caused by β-amyloid accumulation. A large number of studies have shown that elevated cholesterol levels may perform a function in AD pathology, and several cholesterol-related gene polymorphisms are associated with this disease. Although numerous studies have shown the important function of cholesterol in AD pathogenesis and development, the underlying mechanism remains unclear. To further elucidate cholesterol metabolism disorder and AD, we first, review metabolism and regulation of the cholesterol in the brain. Second, we summarize the literature stating that hypercholesterolemia is one of the risk factors of AD. Third, we discuss the main mechanisms of abnormal cholesterol metabolism that increase the risk of AD. Finally, the relationships between AD and apolipoprotein E, PCSK9, and LRP1 are discussed in this article.

  9. Biophysical studies of cholesterol effects on chromatin. (United States)

    Silva, Isabel T G; Fernandes, Vinicius; Souza, Caio; Treptow, Werner; Santos, Guilherme Martins


    Changes in chromatin structure regulate gene expression and genome maintenance. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Previous work indicated that cholesterol, a ubiquitous cellular lipid, may bind to chromatin in vivo, suggesting a potential function for lipids in modulating chromatin architecture. However, the molecular mechanisms of cholesterol action on chromatin structure have remained unclear. Here, we explored the biophysical impact of cholesterol on nucleosome and chromatin fibers reconstituted in vitro and characterized in silico the cholesterol binding to nucleosome. Our findings support that cholesterol assists 10nm and 30nm chromatin formation and induces folding of long chromatin fibers as a result of direct interaction of the cholesterol to six nucleosomal binding sites.

  10. Biliary cholesterol secretion: More than a simple ABC

    Institute of Scientific and Technical Information of China (English)

    Arne; Dikkers; Uwe; JF; Tietge


    Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease. With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the f inal step for the elimination of cholesterol originating from cholesterol-laden macrophage foam cells in the vessel wall in a pathway named reverse cholesterol transport. On the other hand, cholesterol hypersecretion into the bile is considered the main pathophys...

  11. Biliary cholesterol secretion: More than a simple ABC


    Dikkers, Arne; Tietge, Uwe JF


    Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease. With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol originating from cholesterol-laden macrophage foam cells in the vessel wall in a pathway named reverse cholesterol transport. On the other hand, cholesterol hypersecretion into the bile is considered the ...

  12. Raising HDL cholesterol in women

    Directory of Open Access Journals (Sweden)

    Danny J Eapen


    Full Text Available Danny J Eapen1, Girish L Kalra1, Luay Rifai1, Christina A Eapen2, Nadya Merchant1, Bobby V Khan11Emory University School of Medicine, Atlanta, GA, USA; 2University of South Florida School of Medicine, Tampa, FL, USAAbstract: High-density lipoprotein cholesterol (HDL-C concentration is essential in the determination of coronary heart disease (CHD risk in women. This is especially true in the postmenopausal state, where lipid profiles and CHD risk mimic that of age-matched men. Thus, interventions designed to reduce CHD risk by raising HDL-C levels may have particular significance during the transition to menopause. This review discusses HDL-C-raising therapies and the role of HDL in the primary prevention of CHD in women. Lifestyle-based interventions such as dietary change, aerobic exercise regimens, and smoking cessation are initial steps that are effective in raising HDL-C, and available data suggest women respond similarly to men with these interventions. When combined with pharmacotherapy, the effects of these lifestyle alterations are further amplified. Though studies demonstrating gender-specific differences in therapy are limited, niacin continues to be the most effective agent in raising HDL-C levels, especially when used in combination with fibrate or statin therapy. Emerging treatments such as HDL mimetic therapy show much promise in further raising HDL-C levels and improving cardiovascular outcomes.Keywords: high-density lipoprotein, HDL, women, cholesterol, heart disease

  13. Cholesterol oxidation products and their biological importance

    DEFF Research Database (Denmark)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr


    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low...... and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have...

  14. Structure of Cholesterol in Lipid Rafts (United States)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.


    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  15. Cholesterol and late-life cognitive decline. (United States)

    van Vliet, Peter


    High cholesterol levels are a major risk factor for cardiovascular disease, but their role in dementia and cognitive decline is less clear. This review highlights current knowledge on the role of cholesterol in late-life cognitive function, cognitive decline, and dementia. When measured in midlife, high cholesterol levels associate with an increased risk of late-life dementia and cognitive decline. However, when measured in late-life, high cholesterol levels show no association with cognitive function, or even show an inverse relation. Although statin treatment has been shown to associate with a lower risk of dementia and cognitive decline in observational studies, randomized controlled trials show no beneficial effect of statin treatment on late-life cognitive function. Lowering cholesterol levels may impair brain function, since cholesterol is essential for synapse formation and maturation and plays an important role in the regulation of signal transduction through its function as a component of the cell membrane. However, membrane cholesterol also plays a role in the formation and aggregation of amyloid-β. Factors that influence cholesterol metabolism, such as dietary intake, are shown to play a role in late-life cognitive function and the risk of dementia. In conclusion, cholesterol associates with late-life cognitive function, but the association is strongly age-dependent. There is no evidence that treatment with statins in late-life has a beneficial effect on cognitive function.

  16. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Lund, Frederik Wendelboe; Röhrl, Clemens


    Cholesterol is an abundant and important lipid component of cellular membranes. Analysis of cholesterol transport and diffusion in living cells is hampered by the technical challenge of designing suitable cholesterol probes which can be detected for example by optical microscopy. One strategy...... is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol......), whose synthesis and initial characterization was pioneered by Robert Bittman. Here, we give a general overview of the properties and applications but also limitations of BODIPY-tagged cholesterol probes for analyzing intracellular cholesterol trafficking. We describe our own experiences...

  17. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins. (United States)

    Duangjai, Acharaporn; Ingkaninan, Kornkanok; Praputbut, Sakonwun; Limpeanchob, Nanteetip


    Black pepper (Piper nigrum L.) lowers blood lipids in vivo and inhibits cholesterol uptake in vitro, and piperine may mediate these effects. To test this, the present study aimed to compare actions of black pepper extract and piperine on (1) cholesterol uptake and efflux in Caco-2 cells, (2) the membrane/cytosol distribution of cholesterol transport proteins in these cells, and (3) the physicochemical properties of cholesterol micelles. Piperine or black pepper extract (containing the same amount of piperine) dose-dependently reduced cholesterol uptake into Caco-2 cells in a similar manner. Both preparations reduced the membrane levels of NPC1L1 and SR-BI proteins but not their overall cellular expression. Micellar cholesterol solubility of lipid micelles was unaffected except by 1 mg/mL concentration of black pepper extract. These data suggest that piperine is the active compound in black pepper and reduces cholesterol uptake by internalizing the cholesterol transporter proteins.

  18. [Is there a relationship between cholesterol reduction, low levels of cholesterol and mortality?]. (United States)

    LaRosa, J C


    Cholesterol lowering in both primary and secondary prevention has been clearly demonstrated to lower coronary morbidity and, in secondary prevention, to lower coronary mortality as well. Putative dangers of cholesterol lowering remain unproven. Population studies linking low cholesterol to noncoronary mortalities do not demonstrate cause-and-effect relations. In fact, based on current studies, the opposite is more likely to be the case. Neither gender nor age should automatically exclude persons from cholesterol screening. Drug intervention, however, should be used conservatively, particularly in young adults and the elderly. Drugs should be used only after diet and lifestyle interventions have failed. The evidence linking high blood cholesterol to coronary atherosclerosis and cholesterol lowering to its prevention is broad-based and definitive. Concerns about cholesterol lowering and spontaneously low cholesterols should be pursued but should not interfere with the implementation of current public policies to reduce the still heavy burden of atherosclerosis in Western society.

  19. From blood to gut : Direct secretion of cholesterol via transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.


    The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol lowering therapies By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body For a long time this removal via

  20. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.


    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we

  1. Dietary cholesterol and fats at a young age : do they influence cholesterol metabolism in adult life?

    NARCIS (Netherlands)

    Temmerman, A M; Vonk, R J; Niezen-Koning, K; Berger, R.; Fernandes, J


    The effects of dietary cholesterol and fats on cholesterol metabolism later in life were studied in Mongolian gerbils. Three groups were given a basic diet with soybean oil, palm kernel oil amounting to 8.75% (w/w), or the basic diet only. In three other groups, cholesterol (0.05%) was added to the

  2. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan Albert; Tietge, Uwe J.F.; Brufau Dones, Gemma; Groen, Albert K


    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins we

  3. Cholesterol orientation and tilt modulus in DMPC bilayers


    Khelashvili, George; Pabst, Georg; Harries, Daniel


    We performed molecular dynamics (MD) simulations of hydrated bilayers containing mixtures of dimyristoylphosphatidylcholine (DMPC) and Cholesterol at various ratios, to study the effect of cholesterol concentration on its orientation, and to characterize the link between cholesterol tilt and overall phospholipid membrane organization. The simulations show a substantial probability for cholesterol molecules to transiently orient perpendicular to the bilayer normal, and suggest that cholesterol...

  4. Cholesterol, the central lipid of mammalian cells

    NARCIS (Netherlands)

    Maxfield, F. R.; van Meer, G.


    Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, invo

  5. Evaluating computational models of cholesterol metabolism

    NARCIS (Netherlands)

    Paalvast, Yared; Kuivenhoven, Jan Albert; Groen, Albert K.


    Regulation of cholesterol homeostasis has been studied extensively during the last decades. Many of the metabolic pathways involved have been discovered. Yet important gaps in our knowledge remain. For example, knowledge on intracellular cholesterol traffic and its relation to the regulation of chol

  6. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus). (United States)

    Omidi, Arash; Ansari nik, Hossein; Ghazaghi, Mahmood


    Ten blue-neck male ostriches (Struthio camelus) were fed Prosopis farcta beans throughout a 30-day experiment. Blood samples were collected from ostriches on days 0 and 30 to measure levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, total serum protein, albumin, globulin, cholesterol, calcium, inorganic phosphorus, the activity of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transferase (γ-GT). From days 0 to 30, HDL cholesterol, total protein, and globulins levels increased significantly whereas LDL cholesterol, inorganic phosphorus, and γ-GT activity decreased significantly.

  7. Trapping crystal nucleation of cholesterol monohydrate

    DEFF Research Database (Denmark)

    Solomonov, I.; Weygand, M.J.; Kjær, K.


    Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers...... in a monoclinic cholesterol . H2O phase, has been monitored and their structures characterized to near atomic resolution. Crystallographic evidence is presented that this multilayer phase is similar to that of a reported metastable cholesterol phase of undetermined structure obtained from bile before...... transformation to the triclinic phase of cholesterol . H2O, the thermodynamically stable macroscopic form. According to grazing incidence x-ray diffraction measurements and crystallographic data, a transformation from the monoclinic film structure to a multilayer of the stable monohydrate phase involves...

  8. The Structure of Cholesterol in Lipid Rafts

    CERN Document Server

    Toppozini, Laura; Armstrong, Clare L; Yamani, Zahra; Kucerka, Norbert; Schmid, Friederike; Rheinstaedter, Maikel C


    Rafts, or functional domains, are transient nano- or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking and lipid/protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short-lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules we observe raft-like structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to orderin...

  9. Cholesterol in myelin biogenesis and hypomyelinating disorders. (United States)

    Saher, Gesine; Stumpf, Sina Kristin


    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.

  10. Major Risk Factors for Heart Disease: High Blood Cholesterol (United States)

    ... Major Risk Factors for Heart Disease High Blood Cholesterol High blood cholesterol is another major risk factor for heart disease ... can do something about. The higher your blood cholesterol level, the greater your risk for developing heart ...

  11. High Blood Cholesterol: What You Need to Know (United States)

    ... Audiences Contact The Health Information Center High Blood Cholesterol: What You Need To Know Table of Contents ... Lifestyle Changes (TLC) Drug Treatment Resources Why Is Cholesterol Important? Your blood cholesterol level has a lot ...

  12. Cholesterol: Top Five Foods to Lower Your Numbers (United States)

    Cholesterol: Top foods to improve your numbers Diet can play an important role in lowering your cholesterol. Here are the top foods to lower your cholesterol and protect your heart. By Mayo Clinic Staff ...

  13. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.; Gent, van C.M.


    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and b

  14. Physiological and pathological implications of cholesterol. (United States)

    Cortes, Victor A; Busso, Dolores; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio


    Cholesterol has evolved to fulfill sophisticated biophysical, cell signaling and endocrine requirements of animal systems. At a cellular level, cholesterol is found in membranes, where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signaling functions. At an organismal level, cholesterol is the precursor for all steroid hormones, including gluco- and mineralo-corticoids, sex hormones and vitamin D, all of which regulate carbohydrate, sodium, reproductive and bone homeostasis, respectively. This sterol is also the precursor for bile acids, which are important for intestinal absorption of dietary lipids as well as energy and glucose metabolic regulation. Importantly, complex mechanisms maintain cholesterol within physiological ranges and the disregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these diseases has been demonstrated by diverse genetic and pharmacologic animal models that are commented in this review.

  15. A church-based cholesterol education program. (United States)

    Wiist, W H; Flack, J M


    The leading cause of death among black people in the United States is coronary heart disease, accounting for about 25 percent of the deaths. The Task Force on Black and Minority Health formed by the Secretary of Health and Human Services in 1985 subsequently recommended increased efforts to reduce risk factors for coronary heart disease in the black population. A stated focus of the National Heart, Lung, and Blood Institute's National Cholesterol Education Program has been that of reaching minority groups. This report describes a pilot cholesterol education program conducted in black churches by trained members of those churches. Cholesterol screening, using a Reflotron, and other coronary heart disease risk factor screening was conducted in six churches with predominantly black members and at a neighborhood library. A total of 348 persons with cholesterol levels of 200 milligrams per deciliter (mg per dl) or higher were identified. At the time of screening, all were provided brief counseling on lowering their cholesterol and were given a copy of the screening results. Half of those identified, all members of one church, were invited to attend a 6-week nutrition education class of 1 hour each week about techniques to lower blood cholesterol. Information about cholesterol was also mailed to them. They were designated as the education group. Persons in the church were trained to teach the classes. A report of the screening results was sent to the personal physicians of the remaining 174 people in other churches who had cholesterol levels of 200 mg per dl or higher. This group served as a usual care comparison group.Six months after the initial screening, members of both groups were invited for followup screening.Among the 75 percent of the education group who returned for followup screening there was a 23.4 mg per dl (10 percent) decrease in the mean cholesterol level. Thirty-six percent of the usual care group returned for followup screening; their mean cholesterol

  16. Acyl-coenzyme A:cholesterol acyltransferases


    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C.Y.; Urano, Yasuomi


    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as...

  17. Genetic therapies to lower cholesterol. (United States)

    Khoo, Bernard


    This review surveys the state-of-the-art in genetic therapies for familial hypercholesterolaemia (FH), caused most commonly by mutations in the LDL receptor (LDLR) gene. FH manifests as highly elevated low density lipoprotein (LDL) cholesterol levels and consequently accelerated atherosclerosis. Modern pharmacological therapies for FH are insufficiently efficacious to prevent premature cardiovascular disease, can cause significant adverse effects and can be expensive. Genetic therapies for FH have been mooted since the mid 1990s but gene replacement strategies using viral vectors have so far been unsuccessful. Other strategies involve knocking down the expression of Apolipoprotein B100 (APOB100) and the protease PCSK9 which designates LDLR for degradation. The antisense oligonucleotide mipomersen, which knocks down APOB100, is currently marketed (with restrictions) in the USA, but is not approved in Europe due to its adverse effects. To address this problem, we have devised a novel therapeutic concept, APO-skip, which is based on modulation of APOB splicing, and which has the potential to deliver a cost-effective, efficacious and safe therapy for FH.

  18. [Cholesterol and atherosclerosis. Historical considerations and treatment]. (United States)

    Zárate, Arturo; Manuel-Apolinar, Leticia; Basurto, Lourdes; De la Chesnaye, Elsa; Saldívar, Iván


    Cholesterol is a precursor of steroid hormones and an essential component of the cell membrane, however, altered regulation of the synthesis, absorption and excretion of cholesterol predispose to cardiovascular diseases of atherosclerotic origin. Despite, the recognition of historical events for 200 years, starting with Michel Chevreul naming «cholesterol»; later on, Lobstein coining the term atherosclerosis and Marchand introducing it, Anichkov identifying cholesterol in atheromatous plaque, and Brown and Goldstein discovering LDL receptor; as well as the emerging of different drugs, such as fibrates, statins and cetrapibs this decade, promising to increase HDL and the most recent ezetimibe and anti-PCSK9 to inhibit the degradation of LDL receptor, however morbidity has not been reduced in cardiovascular disease.

  19. A new framework for reverse cholesterol transport: Non-biliary contributions to reverse cholesterol transport

    Institute of Scientific and Technical Information of China (English)

    Ryan; E; Temel; J; Mark; Brown


    Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Major efforts are now focused on therapies that augment high-density lipoprotein (HDL)-mediated reverse cholesterol transport (RCT), and ultimately increase the fecal disposal of cholesterol. The process of RCT has long been thought to simply involve HDL-media...

  20. From blood to gut: Direct secretion of cholesterol via transintestinal cholesterol efflux

    Institute of Scientific and Technical Information of China (English)

    Carlos; LJ; Vrins


    The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol-lowering therapies. By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body. For a long time this removal via the hepatobiliary secretion was considered to be the sole route involved in the RCT. However, observations from early studies in animals and humans already pointed towards the possibility of another route. In t...

  1. Assessing possible hazards of reducing serum cholesterol.


    Law, M. R.; Thompson, S. G.; Wald, N J


    OBJECTIVE--To assess whether low serum cholesterol concentration increases mortality from any cause. DESIGN--Systematic review of published data on mortality from causes other than ischaemic heart disease derived from the 10 largest cohort studies, two international studies, and 28 randomised trials, supplemented by unpublished data on causes of death obtained when necessary. MAIN OUTCOME MEASURES--Excess cause specific mortality associated with low or lowered serum cholesterol concentration....

  2. Cholesterol treatment practices of primary care physicians.


    Hyman, D J; Maibach, E W; Flora, J A; Fortmann, S.P.


    The active involvement of primary care physicians is necessary in the diagnosis and treatment of elevated blood cholesterol. Empirical evidence suggests that primary care physicians generally initiate dietary and pharmacological treatment at threshold values higher than is currently recommended. To determine current treatment thresholds and establish factors that distinguish physicians who are more likely to initiate therapy at lower cholesterol values, 119 primary care physicians in four nor...

  3. Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites. (United States)

    Prasanna, Xavier; Chattopadhyay, Amitabha; Sengupta, Durba


    The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.

  4. Dietary cholesterol modulates pathogen blocking by Wolbachia.

    Directory of Open Access Journals (Sweden)

    Eric P Caragata

    Full Text Available The bacterial endosymbiont Wolbachia pipientis protects its hosts from a range of pathogens by limiting their ability to form infections inside the insect. This "pathogen blocking" could be explained by innate immune priming by the symbiont, competition for host-derived resources between pathogens and Wolbachia, or the direct modification of the cell or cellular environment by Wolbachia. Recent comparative work in Drosophila and the mosquito Aedes aegypti has shown that an immune response is not required for pathogen blocking, implying that there must be an additional component to the mechanism. Here we have examined the involvement of cholesterol in pathogen blocking using a system of dietary manipulation in Drosophila melanogaster in combination with challenge by Drosophila C virus (DCV, a common fly pathogen. We observed that flies reared on cholesterol-enriched diets infected with the Wolbachia strains wMelPop and wMelCS exhibited reduced pathogen blocking, with viral-induced mortality occurring 2-5 days earlier than flies reared on Standard diet. This shift toward greater virulence in the presence of cholesterol also corresponded to higher viral copy numbers in the host. Interestingly, an increase in dietary cholesterol did not have an effect on Wolbachia density except in one case, but this did not directly affect the strength of pathogen blocking. Our results indicate that host cholesterol levels are involved with the ability of Wolbachia-infected flies to resist DCV infections, suggesting that cholesterol contributes to the underlying mechanism of pathogen blocking.

  5. Obesity, Cholesterol Metabolism and Breast Cancer Pathogenesis (United States)

    McDonnell, Donald P.; Park, Sunghee; Goulet, Matthew T.; Jasper, Jeff; Wardell, Suzanne E.; Chang, Ching-yi; Norris, John D.; Guyton, John R.; Nelson, Erik R.


    Obesity and altered lipid metabolism are risk factors for breast cancer in pre- and post-menopausal women. These pathologic relationships have been attributed in part to the impact of cholesterol on the biophysical properties of cell membranes and to the influence of these changes on signaling events initiated at the membrane. However, more recent studies have indicated that the oxysterol 27-hydroxycholesterol (27HC), and not cholesterol per se, may be the primary biochemical link between lipid metabolism and cancer. The enzyme responsible for production of 27HC from cholesterol, CYP27A1, is expressed primarily in the liver and in macrophages. In addition significantly elevated expression of this enzyme within breast tumors has also been observed. It is believed that 27HC, acting through the liver X receptor (LXR) in macrophages and possibly other cells is involved in maintaining organismal cholesterol homeostasis. It has also been shown recently that 27HC is an estrogen receptor (ER) agonist in breast cancer cells and that it stimulates the growth and metastasis of tumors in several models of breast cancer. These findings provide the rationale for the clinical evaluation of pharmaceutical approaches that interfere with cholesterol/27HC synthesis as a means to mitigate the impact of cholesterol on breast cancer pathogenesis. PMID:25060521

  6. Cholesterol content in meat of some Cyprinidae

    Directory of Open Access Journals (Sweden)

    Živković Dragić L.


    Full Text Available The aim of this paper was to examine cholesterol content in meat of five Cyprinidae species: white bream (Bllica bjoerkna L, carp bream (Abramis brama L, baltic vimba (Vimba vimba carinata Pallas, zope (Abramis balerus L and crucian carp (Carassius carassius gibelio Bloch from the river Danube. Cholesterol content was examined in the function of season factor and individual weight. Cholesterol concentration in meat of white bream carp bream, baltic vimba, zope and crucian carp is on average level below 20 mg/100 g of meat, which makes meat of these fish species nutritively very valuable. Cholesterol content is variable during the season. Its concentration in meat and in lipids is lowest during spring, during summer it increases and during autumn decreases, except in meat of white bream. Body weight has influence on cholesterol content when its concentration is expressed as % of cholesterol in lipids. Its content in lipids decreases with increasing of individual weight, except in meat of carp bream.

  7. Cholesterol suppresses antimicrobial effect of statins

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haeri


    Full Text Available Objective(s:Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. Materials and Methods: To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli bacteria using gel diffusion assay. Results: Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. Conclusion: It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol.


    Directory of Open Access Journals (Sweden)

    Małgorzata Ziarno


    Full Text Available The ability to in vitro cholesterol level reduction in laboratory media has been shown for numerous strains of lactic acid bacteria, but not for all strains of lactic bacteria used in the dairy industry. The aim of this work was the determination of the ability of selected thermophilic lactic acid bacteria to cholesterol assimilation during 24 h culture in MRS broth. Commercial starter cultures showed various ability to cholesterol assimilation from laboratory medium. In case of starter cultures used for production of traditional yoghurt, consisting of Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, the quantity of assimilated cholesterol did not exceed 27% of its initial contents (0.7 g in 1 dm3. Starter cultures used for bioyoghurt production, containing also probiotic strains (came from Lactobacillus acidophilus species or Bifidobacterium genus assimilated from almost 18% to over 38% of cholesterol. For one monoculture of Lb. acidophilus, cholesterol assimilation ability of 49-55% was observed, despite that the number of bacterial cells in this culture was not different from number of bacteria in other cultures.

  9. The Structural Basis of Cholesterol Activity in Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.


    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  10. Dairy products and plasma cholesterol levels

    Directory of Open Access Journals (Sweden)

    Lena Ohlsson


    Full Text Available Cholesterol synthesized in the body or ingested is an essential lipid component for human survival from our earliest life. Newborns ingest about 3–4 times the amount per body weight through mother's milk compared to the dietary intake of adults. A birth level of 1.7 mmol/L plasma total cholesterol will increase to 4–4.5 mmol/L during the nursing period and continue to increase from adulthood around 40% throughout life. Coronary artery disease and other metabolic disorders are strongly associated with low-density lipoprotein (LDL and high-density lipoprotein (HDL cholesterol as well as triacylglycerol concentration. Milk fat contains a broad range of fatty acids and some have a negative impact on the cholesterol rich lipoproteins. The saturated fatty acids (SFAs, such as palmitic acid (C16:0, myristic acid (C14:0, and lauric acid (C12:0, increase total plasma cholesterol, especially LDL, and constitute 11.3 g/L of bovine milk, which is 44.8% of total fatty acid in milk fat. Replacement of dairy SFA and trans-fatty acids with polyunsaturated fatty acids decreases plasma cholesterol, especially LDL cholesterol, and is associated with a reduced risk of cardiovascular disease. Available data shows different effects on lipoproteins for different dairy products and there is uncertainty as to the impact a reasonable intake amount of dairy items has on cardiovascular risk. The aim of this review is to elucidate the effect of milk components and dairy products on total cholesterol, LDL, HDL, and the LDL/HDL quotients. Based on eight recent randomized controlled trials of parallel or cross-over design and recent reviews it can be concluded that replacement of saturated fat mainly (but not exclusively derived from high-fat dairy products with low-fat dairy products lowers LDL/HDL cholesterol and total/HDL cholesterol ratios. Whey, dairy fractions enriched in polar lipids, and techniques such as fermentation, or fortification of cows feeding can be used

  11. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes. (United States)

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm


    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together

  12. Cholesterol and ocular pathologies: focus on the role of cholesterol-24S-hydroxylase in cholesterol homeostasis

    Directory of Open Access Journals (Sweden)

    Fourgeux Cynthia


    Full Text Available The retina is responsible for coding the light stimulus into a nervous signal that is transferred to the brain via the optic nerve. The retina is formed by the association of the neurosensory retina and the retinal pigment epithelium that is supported by Bruch’s membrane. Both the physical and metabolic associations between these partners are crucial for the functioning of the retina, by means of nutrient intake and removal of the cell and metabolic debris from the retina. Dysequilibrium are involved in the aging processes and pathologies such as age-related macular degeneration, the leading cause of visual loss after the age of 50 years in Western countries. The retina is composed of several populations of cells including glia that is involved in cholesterol biosynthesis. Cholesterol is the main sterol in the retina. It is present as free form in cells and as esters in Bruch’s membrane. Accumulation of cholesteryl esters has been associated with aging of the retina and impairment of the retinal function. Under dietary influence and in situ synthesized, the metabolism of cholesterol is regulated by cell interactions, including neurons and glia via cholesterol-24S-hydroxylase. Several pathophysiological associations with cholesterol and its metabolism can be suggested, especially in relation to glaucoma and age-related macular degeneration.

  13. Aspirin prevention of cholesterol gallstone formation in prairie dogs. (United States)

    Lee, S P; Carey, M C; LaMont, J T


    When prairie dogs (Cynomys ludovicianus) are fed a diet containing cholesterol, a marked increase in gallbladder mucin secretion parallels the evolution of cholesterol supersaturated bile. Gelation of mucin precedes the precipitation of cholesterol liquid and solid crystals and the development of gallstones. Aspirin given to prairie dogs inhibited mucin hypersecretion and gel accumulation and prevented gallstone formation without influencing the cholesterol content of supersaturated bile. This suggests that gallbladder mucin is a nucleation matrix for cholesterol gallstones.

  14. Metabolism of adrenal cholesterol in man (United States)

    Borkowski, Abraham; Delcroix, Claude; Levin, Sam


    The synthesis of adrenal cholesterol, its esterification and the synthesis of the glucocorticosteroid hormones were studied in vitro on human adrenal tissue. It was found that the synthesis of adrenal cholesterol may normally be small in the zona “fasciculata,” particularly when compared with the synthesis of the glucocorticosteroid hormones, that it is several times higher in the zona “reticularis” where esterified cholesterol is less abundant, and that under ACTH stimulation it increases strikingly and proportionally to the degree of esterified adrenal cholesterol depletion. On the other hand, the relative rate of esterification as well as the concentration of free adrenal cholesterol are remarkably stable: they do not differ according to the adrenal zonation and are unaffected by ACTH. Furthermore, from a qualitative point of view, the relative proportions of Δ1 and Δ2 cholesteryl esters formed in situ are similar to those anticipated from their relative concentrations, suggesting that the characteristic fatty acid distribution of the adrenal cholesteryl esters results from an in situ esterification rather than from a selective uptake of the plasma cholesteryl esters. Besides, the in vitro esterification reveals a propensity to the formation of the most unsaturated cholesteryl esters. Regarding hydrocortisone and corticosterone, their synthesis tends to be more elevated in the zona “fasciculata.” Despite its higher cholesterol concentration the zona “fasciculata” should not therefore be viewed as a quiescent functional complement to the zona “reticularis” and the cortical distribution of glucocorticosteroid hormone synthesis is quite distinct from that of adrenal cholesterol synthesis. PMID:4338120

  15. Cholesterol content and methods for cholesterol determination in meat and poultry (United States)

    Available data for cholesterol content of beef, pork, poultry, and processed meat products were reported. Although the cholesterol concentration in meat and poultry can be influenced by various factors, effects of animal species, muscle fiber type, and muscle fat content are focused on in this revi...

  16. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice

    NARCIS (Netherlands)

    Bura, Kanwardeep S.; Lord, Caleb; Marshall, Stephanie; McDaniel, Allison; Thomas, Gwyn; Warrier, Manya; Zhang, Jun; Davis, Matthew A.; Sawyer, Janet K.; Shah, Ramesh; Wilson, Martha D.; Dikkers, Arne; Tietge, Uwe J. F.; Collet, Xavier; Rudel, Lawrence L.; Temel, Ryan E.; Brown, J. Mark


    Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the non-biliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI

  17. Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats

    NARCIS (Netherlands)

    de Boer, Jan Freark; Schonewille, Marleen; Dikkers, Arne; Koehorst, Martijn; Havinga, Rick; Kuipers, Folkert; Tietge, Uwe J F; Groen, Albert K


    OBJECTIVE: Reverse cholesterol transport comprises efflux of cholesterol from macrophages and its subsequent removal from the body with the feces and thereby protects against formation of atherosclerotic plaques. Because of lack of suitable animal models that allow for evaluation of the respective c

  18. Emerging roles of the intestine in control of cholesterol metabolism

    Institute of Scientific and Technical Information of China (English)

    Janine K Kruit; Albert K Groen; Theo J van Berkel; Folkert Kuipers


    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis,clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor to high density lipoprotein (HDL; good cholesterol) formation. The liver has a central position in the classical definition of the reverse cholesterol transport pathway by taking up peripheryderived cholesterol from lipoprotein particles followed by conversion into bile acids or its direct secretion into bile for eventual removal via the feces. During the past couple of years, however, an additional important role of the intestine in maintenance of cholesterol homeostasis and regulation of plasma cholesterol levels has become apparent. Firstly, molecular mechanisms of cholesterol absorption have been elucidated and novel pharmacological compounds have been identified that interfere with the process and positively impact plasma cholesterol levels. Secondly, it is now evident that the intestine itself contributes to fecal neutral sterol loss as a cholesterol-secreting organ. Finally, very recent work has unequivocally demonstrated that the intestine contributes significantly to plasma HDL cholesterol levels.Thus, the intestine is a potential target for novel antiatherosclerotic treatment strategies that, in addition to interference with cholesterol absorption, modulate direct cholesterol excretion and plasma HDL cholesterol levels.

  19. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion]. (United States)

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric


    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases.

  20. Lipoproteins, cholesterol homeostasis and cardiac health

    Directory of Open Access Journals (Sweden)

    Tyler F. Daniels, Karen M. Killinger, Jennifer J. Michal, Raymond W. Wright Jr., Zhihua Jiang


    Full Text Available Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.

  1. LDL cholesterol: controversies and future therapeutic directions. (United States)

    Ridker, Paul M


    Lifelong exposure to raised concentrations of LDL cholesterol increases cardiovascular event rates, and the use of statin therapy as an adjunct to diet, exercise, and smoking cessation has proven highly effective in reducing the population burden associated with hyperlipidaemia. Yet, despite consistent biological, genetic, and epidemiological data, and evidence from randomised trials, there is controversy among national guidelines and clinical practice with regard to LDL cholesterol, its measurement, the usefulness of population-based screening, the net benefit-to-risk ratio for different LDL-lowering drugs, the benefit of treatment targets, and whether aggressive lowering of LDL is safe. Several novel therapies have been introduced for the treatment of people with genetic defects that result in loss of function within the LDL receptor, a major determinant of inherited hyperlipidaemias. Moreover, the usefulness of monoclonal antibodies that extend the LDL-receptor lifecycle (and thus result in substantial lowering of LDL cholesterol below the levels achieved with statins alone) is being assessed in phase 3 trials that will enrol more than 60,000 at-risk patients worldwide. These trials represent an exceptionally rapid translation of genetic observations into clinical practice and will address core questions of how low LDL cholesterol can be safely reduced, whether the mechanism of LDL-cholesterol lowering matters, and whether ever more aggressive lipid-lowering provides a safe, long-term mechanism to prevent atherothrombotic complications.

  2. Elevated Remnant Cholesterol Causes Both Low-Grade Inflammation and Ischemic Heart Disease, Whereas Elevated Low-Density Lipoprotein Cholesterol Causes Ischemic Heart Disease Without Inflammation

    DEFF Research Database (Denmark)

    Varbo, Anette; Tybjærg-Hansen, Anne; Nordestgaard, Børge G


    Elevated nonfasting remnant cholesterol and low-density lipoprotein (LDL) cholesterol are causally associated with ischemic heart disease (IHD), but whether elevated nonfasting remnant cholesterol and LDL cholesterol both cause low-grade inflammation is currently unknown....

  3. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans : a meta-analysis

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Katan, M.B.


    Several epidemiologic studies found no effect of egg consumption on the risk of coronary heart disease. It is possible that the adverse effect of eggs on LDL-cholesterol is offset by their favorable effect on HDL cholesterol. Objective: The objective was to review the effect of dietary cholesterol o

  4. CHOBIMALT: a cholesterol-based detergent. (United States)

    Howell, Stanley C; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M; Sanders, Charles R


    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems, a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3−4 μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210±30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1.

  5. Ordering effects of cholesterol and its analogues

    DEFF Research Database (Denmark)

    Róg, Tomasz; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo


    Without any exaggeration, cholesterol is one of the most important lipid species in eukaryotic cells. Its effects on cellular membranes and functions range from purely mechanistic to complex metabolic ones, besides which it is also a precursor of the sex hormones (steroids) and several vitamins....... In this review, we discuss the biophysical effects of cholesterol on the lipid bilayer, in particular the ordering and condensing effects, concentrating on the molecular level or inter-atomic interactions perspective, starting from two-component systems and proceeding to many-component ones e.g., modeling lipid...... rafts. Particular attention is paid to the roles of the methyl groups in the cholesterol ring system, and their possible biological function. Although our main research methodology is computer modeling, in this review we make extensive comparisons between experiments and different modeling approaches....

  6. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes (United States)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel


    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  7. [Basic mechanisms: absorption and excretion of cholesterol and other sterols]. (United States)

    Cofan Pujol, Montserrat


    Cholesterol is of vital importance for vertebrate cell membrane structure and function. It is obvious that adequate regulation of cholesterol homeostasis is essential. Hypercholesterolemia promotes atherosclerosis and thereby represents a major risk factor for cardiovascular disease. The liver has been considered the major site of control in maintenance of cholesterol homeostasis. The liver facilitates clearance of (very) low density lipoprotein particles and cholesterol-containing chylomicron remnants, synthesizes cholesterol, synthesizes and secretes (nascent) high density lipoprotein particles, secretes cholesterol and bile salts to bile, and is involved in reverse cholesterol transport. In recent years, however, the importance of the intestine in many aspects of cholesterol physiology is increasingly recognized. It has become apparent that direct secretion of cholesterol from the blood compartment into the intestine, or transintestinal cholesterol excretion, plays a major role in disposal of cholesterol via the feces. This review will discuss current knowledge on the physiology of cholesterol homeostasis, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and therapeutic options for hypercholesterolemia.

  8. Cholesterol homeostasis: How do cells sense sterol excess? (United States)

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J


    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis.

  9. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. (United States)

    Bura, Kanwardeep S; Lord, Caleb; Marshall, Stephanie; McDaniel, Allison; Thomas, Gwyn; Warrier, Manya; Zhang, Jun; Davis, Matthew A; Sawyer, Janet K; Shah, Ramesh; Wilson, Martha D; Dikkers, Arne; Tietge, Uwe J F; Collet, Xavier; Rudel, Lawrence L; Temel, Ryan E; Brown, J Mark


    Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.

  10. MCPIP is induced by cholesterol and participated in cholesterol-caused DNA damage in HUVEC. (United States)

    Da, Jingjing; Zhuo, Ming; Qian, Minzhang


    Hypercholesterolemia is an important risk factor for atherosclerosis and cholesterol treatment would cause multiple damages, including DNA damage, on endothelial cells. In this work, we have used human umbilical vein endothelial cell line (HUVEC) to explore the mechanism of cholesterol induced damage. We have found that cholesterol treatment on HUVEC could induce the expression of MCPIP1. When given 12.5 mg/L cholesterol on HUVEC, the expression of MCPIP1 starts to increase since 4 hr after treatment and at 24 hr after treatment it could reach to 10 fold of base line level. We hypothesis this induction of MCPIP1 may contribute to the damaging process and we have used siRNA of MCPIP1 in further research. This MCPIP1 siRNA (siMCPIP) could down regulate MCPIP1 by 73.4% and when using this siRNA on HUVECs, we could see the cholesterol induced DNA damage have been reduced. We have detected DNA damage by γH2AX foci formation in nuclear, γH2AX protein level and COMET assay. Compare to cholesterol alone group, siMCPIP group shows much less γH2AX foci formation in nuclear after cholesterol treatment, less γH2AX protein level in cell and also less tail moment detected in COMET assay. We have also seen that using siMCPIP1 could result in less reactive oxygen species (ROS) in cell after cholesterol treatment. We have also seen that using siMCPIP could reduce the protein level of Nox4 and p47(phox), two major regulators in ROS production. These results suggest that MCPIP1 may play an important role in cholesterol induced damage.

  11. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux.

    Directory of Open Access Journals (Sweden)

    Maria João Nunes

    Full Text Available Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi such as trichostatin A (TSA are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.

  12. Transport of maternal cholesterol to the fetus is affected by maternal plasma cholesterol concentrations in the golden Syrian hamster. (United States)

    Burke, Katie T; Colvin, Perry L; Myatt, Leslie; Graf, Gregory A; Schroeder, Friedhelm; Woollett, Laura A


    The fetus has a high requirement for cholesterol and synthesizes cholesterol at elevated rates. Recent studies suggest that fetal cholesterol also can be obtained from exogenous sources. The purpose of the current study was to examine the transport of maternal cholesterol to the fetus and determine the mechanism responsible for any cholesterol-driven changes in transport. Studies were completed in pregnant hamsters with normal and elevated plasma cholesterol concentrations. Cholesterol feeding resulted in a 3.1-fold increase in the amount of LDL-cholesterol taken up by the fetus and a 2.4-fold increase in the amount of HDL-cholesterol taken up. LDL-cholesterol was transported to the fetus primarily by the placenta, and HDL-cholesterol was transported by the yolk sac and placenta. Several proteins associated with sterol transport and efflux, including those induced by activated liver X receptor, were expressed in hamster and human placentas: NPC1, NPC1L1, ABCA2, SCP-x, and ABCG1, but not ABCG8. NPC1L1 was the only protein increased in hypercholesterolemic placentas. Thus, increasing maternal lipoprotein-cholesterol concentrations can enhance transport of maternal cholesterol to the fetus, leading to 1) increased movement of cholesterol down a concentration gradient in the placenta, 2) increased lipoprotein secretion from the yolk sac (shown previously), and possibly 3) increased placental NPC1L1 expression.

  13. Reduction in Bile Acid Pool Causes Delayed Liver Regeneration Accompanied by Down-regulated Expression of FXR and C-Jun mRNA in Rats

    Institute of Scientific and Technical Information of China (English)

    董秀山; 赵浩亮; 马晓明; 王世明


    The present study attempted to examine the effects of bile acid pool size on liver regeneration after hepatectomy.The rats were fed on 0.2% cholic acid(CA)or 2% cholestyramine for 7 days to induce a change in the bile acid size,and then a partial hepatectomy(PH)was performed.Rats fed on the normal diet served as the controls.Measurements were made on the rate of liver regeneration,the labeling indices of PCNA,the plasma total bile acids(TBA),and the mRNA expression of cholesterol 7alpha-hydroxylase(CYP7A1),...

  14. Cholesterol levels in fragile X syndrome. (United States)

    Berry-Kravis, Elizabeth; Levin, Rebecca; Shah, Haroon; Mathur, Shaguna; Darnell, Jennifer C; Ouyang, Bichun


    Fragile X syndrome (FXS) is associated with intellectual disability and behavioral dysfunction, including anxiety, ADHD symptoms, and autistic features. Although individuals with FXS are largely considered healthy and lifespan is not thought to be reduced, very little is known about the long-term medical health of adults with FXS and no systematically collected information is available on standard laboratory measures from metabolic screens. During the course of follow up of a large cohort of patients with FXS we noted that many patients had low cholesterol and high density lipoprotein (HDL) values and thus initiated a systematic chart review of all cholesterol values present in charts from a clinic cohort of over 500 patients with FXS. Total cholesterol (TC), low density lipoprotein (LDL) and HDL were all significantly reduced in males from the FXS cohort relative to age-adjusted population normative data. This finding has relevance for health monitoring in individuals with FXS, for treatments with cholesterol-lowering agents that have been proposed to target the underlying CNS disorder in FXS based on work in animal models, and for potential biomarker development in FXS.

  15. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.


    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two...

  16. Blood cholesterol, a public health perspective.

    NARCIS (Netherlands)

    Verschuren, W.M.M.


    Changes in total cholesterol levels (TC) were studied using data from three epidemiological studies: about 30,000 men and women aged 37-43 were examined between 1974 and 1980 (CB Project), about 80,000 men aged 33-37 between 1981 and 1986 (RIFOH Project) and 42,000 men and women aged 20-59 from 1987

  17. Garbanzo diet lowers cholesterol in hamsters (United States)

    Cholesterol-lowering potential of diets with 22% protein from Chickpea (Cicer arietinum, European variety of Garbanzo, Kabuli Chana), Bengal gram (Cicer arietinum, Asian variety of Garbanzo, Desi Chana, smaller in size, yellow to black color), lentils, soy protein isolate, hydrolyzed salmon protein...

  18. Trans Fat Now Listed With Saturated Fat and Cholesterol (United States)

    ... Trans Fat Now Listed With Saturated Fat and Cholesterol Share Tweet Linkedin Pin it More sharing options ... I Do About Saturated Fat, Trans Fat, and Cholesterol? When comparing foods, look at the Nutrition Facts ...

  19. Remnant cholesterol as a cause of ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Nordestgaard, Børge G


    This review focuses on remnant cholesterol as a causal risk factor for ischemic heart disease (IHD), on its definition, measurement, atherogenicity, and levels in high risk patient groups; in addition, present and future pharmacological approaches to lowering remnant cholesterol levels...... are considered. Observational studies show association between elevated levels of remnant cholesterol and increased risk of cardiovascular disease, even when remnant cholesterol levels are defined, measured, or calculated in different ways. In-vitro and animal studies also support the contention that elevated...... levels of remnant cholesterol may cause atherosclerosis same way as elevated levels of low-density lipoprotein (LDL) cholesterol, by cholesterol accumulation in the arterial wall. Genetic studies of variants associated with elevated remnant cholesterol levels show that an increment of 1mmol/L (39mg...

  20. Are You Taking the Right Treatment for Your High Cholesterol? (United States)

    ... you taking the right treatment for your high cholesterol? Our analysis and new guidelines could change your ... people consider a moderate-intensity statin (reduces LDL cholesterol by 30 percent to 50 percent) • People 40 ...

  1. Plasma Ubiquinone, Alpha-Tocopherol and Cholesterol in Man

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Edlund, Per Olof


    Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle......Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle...

  2. CDC Vital Signs: High Blood Pressure and Cholesterol (United States)

    ... the MMWR Science Clips High Blood Pressure and Cholesterol Out of Control Recommend on Facebook Tweet Share ... High Blood Pressure and High Cholesterol Among US Adults SOURCES: National Health and Nutrition ...

  3. 1 in 7 Obese People Has Normal Blood Pressure, Cholesterol (United States)

    ... in 7 Obese People Has Normal Blood Pressure, Cholesterol But that doesn't mean the excess weight ... people studied, 14 percent had normal blood sugar, cholesterol and blood pressure readings, the study found. Doctors ...

  4. Nonfasting triglycerides, cholesterol, and ischemic stroke in the general population

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne


    Current guidelines on stroke prevention have recommendations on desirable cholesterol levels, but not on nonfasting triglycerides. We compared stepwise increasing levels of nonfasting triglycerides and cholesterol for their association with risk of ischemic stroke in the general population....

  5. Cholesterol paradox: a correlate does not a surrogate make. (United States)

    DuBroff, Robert


    The global campaign to lower cholesterol by diet and drugs has failed to thwart the developing pandemic of coronary heart disease around the world. Some experts believe this failure is due to the explosive rise in obesity and diabetes, but it is equally plausible that the cholesterol hypothesis, which posits that lowering cholesterol prevents cardiovascular disease, is incorrect. The recently presented ACCELERATE trial dumbfounded many experts by failing to demonstrate any cardiovascular benefit of evacetrapib despite dramatically lowering low-density lipoprotein cholesterol and raising high-density lipoprotein cholesterol in high-risk patients with coronary disease. This clinical trial adds to a growing volume of knowledge that challenges the validity of the cholesterol hypothesis and the utility of cholesterol as a surrogate end point. Inadvertently, the cholesterol hypothesis may have even contributed to this pandemic. This perspective critically reviews this evidence and our reluctance to acknowledge contradictory information.

  6. Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic (United States)

    Mulye, Minal; Samanta, Dhritiman; Winfree, Seth; Heinzen, Robert A.


    ABSTRACT Coxiella burnetii is an intracellular bacterial pathogen and a significant cause of culture-negative endocarditis in the United States. Upon infection, the nascent Coxiella phagosome fuses with the host endocytic pathway to form a large lysosome-like vacuole called the parasitophorous vacuole (PV). The PV membrane is rich in sterols, and drugs perturbing host cell cholesterol homeostasis inhibit PV formation and bacterial growth. Using cholesterol supplementation of a cholesterol-free cell model system, we found smaller PVs and reduced Coxiella growth as cellular cholesterol concentration increased. Further, we observed in cells with cholesterol a significant number of nonfusogenic PVs that contained degraded bacteria, a phenotype not observed in cholesterol-free cells. Cholesterol had no effect on axenic Coxiella cultures, indicating that only intracellular bacteria are sensitive to cholesterol. Live-cell microscopy revealed that both plasma membrane-derived cholesterol and the exogenous cholesterol carrier protein low-density lipoprotein (LDL) traffic to the PV. To test the possibility that increasing PV cholesterol levels affects bacterial survival, infected cells were treated with U18666A, a drug that traps cholesterol in lysosomes and PVs. U18666A treatment led to PVs containing degraded bacteria and a significant loss in bacterial viability. The PV pH was significantly more acidic in cells with cholesterol or cells treated with U18666A, and the vacuolar ATPase inhibitor bafilomycin blocked cholesterol-induced PV acidification and bacterial death. Additionally, treatment of infected HeLa cells with several FDA-approved cholesterol-altering drugs led to a loss of bacterial viability, a phenotype also rescued by bafilomycin. Collectively, these data suggest that increasing PV cholesterol further acidifies the PV, leading to Coxiella death. PMID:28246364

  7. Polymer sorbent with the properties of an artificial cholesterol receptor (United States)

    Polyakova, I. V.; Ezhova, N. M.; Osipenko, A. A.; Pisarev, O. A.


    A cholesterol-imprinted polymer sorbent and the corresponding reticular control copolymer were synthesized from hydroxyethyl methacrylate and ethyleneglycol dimethacrylate. The sorption isotherms of cholesterol were analyzed using the generalized Langmuir and Freundlich equations. In the case of the imprinted reticular polymer, cholesterol sorption occurred on the energetically homogeneous binding centers, forming one monolayer, while the nonspecific sorption of cholesterol on the control copolymer occurred with energetically nonhomogeneous binding of the sorbate and depended on the physicochemical conditions of sorption.

  8. Sex Differences in the Hepatic Cholesterol Sensing Mechanisms in Mice

    Directory of Open Access Journals (Sweden)

    Ingemar Björkhem


    Full Text Available Cholesterol is linked to many multifactorial disorders, including different forms of liver disease where development and severity depend on the sex. We performed a detailed analysis of cholesterol and bile acid synthesis pathways at the level of genes and metabolites combined with the expression studies of hepatic cholesterol uptake and transport in female and male mice fed with a high-fat diet with or without cholesterol. Lack of dietary cholesterol led to a stronger response of the sterol sensing mechanism in females, resulting in higher expression of cholesterogenic genes compared to males. With cholesterol in the diet, the genes were down-regulated in both sexes; however, males maintained a more efficient hepatic metabolic flux through the pathway. Females had higher content of hepatic cholesterol but this was likely not due to diminished excretion but rather due to increased synthesis and absorption. Dietary cholesterol and sex were not important for gallbladder bile acids composition. Neither sex up-regulated Cyp7a1 upon cholesterol loading and there was no compensatory up-regulation of Abcg5 or Abcg8 transporters. On the other hand, females had higher expression of the Ldlr and Cd36 genes. These findings explain sexual dimorphism of cholesterol metabolism in response to dietary cholesterol in a high-fat diet in mice, which contributes to understanding the sex-basis of cholesterol-associated liver diseases.

  9. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert


    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor t

  10. Greased hedgehogs : new links between hedgehog signaling and cholesterol metabolism

    NARCIS (Netherlands)

    Breitling, Rainer


    The close link between signaling by the developmental regulators of the Hedgehog family and cholesterol biochemistry has been known for some time. The morphogen is covalently attached to cholesterol in a peculiar autocatalytic reaction and embryonal disruption of cholesterol synthesis leads to malfo

  11. Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection. (United States)

    Zhong, Qifeng; Xie, Zhuoying; Ding, Haibo; Zhu, Cun; Yang, Zixue; Gu, Zhongze


    Carbon inverse opal rods made from silica photonic crystal rods are used for nonenzymatic cholesterol sensing. The characteristic reflection peak originating from the physical periodic structure works as sensing signals for quantitatively estimating cholesterol concentrations. Carbon inverse opal rods work both in cholesterol standard solutions and human serum. They are suitable for practical use in clinical diagnose.

  12. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids (United States)

    Biggerstaff, Kyle D.; Wooten, Joshua S.


    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  13. Regulation of direct transintestinal cholesterol excretion in mice

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Vrins, Carlos L. J.; van den Oever, Karin; Seemann, Ingar; Elferink, Ronald P. J. Oude; van Eck, Miranda; Kuipers, Folkert; Groen, Albert K.


    Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux ( TICE) contributes significantly to cholesterol removal in mice. Our aim

  14. Moderate alcohol consumption increases cholesterol efflux mediated by ABCA1

    NARCIS (Netherlands)

    Beulens, J.W.J.; Sierksma, A.; Tol, van A.; Fournier, C.


    Moderate alcohol consumption increases HDL cholesterol, which is involved in reverse cholesterol transport (RCT). The aim of this study was to investigate the effect of moderate alcohol consumption on cholesterol efflux, using J774 mouse macrophages and Fu5AH cells, and on other parameters in the RC

  15. Cholesterol biosynthesis and homeostasis in regulation of the cell cycle.

    Directory of Open Access Journals (Sweden)

    Pushpendra Singh

    Full Text Available The cell cycle is a ubiquitous, multi-step process that is essential for growth and proliferation of cells. The role of membrane lipids in cell cycle regulation is not explored well, although a large number of cytoplasmic and nuclear regulators have been identified. We focus in this work on the role of membrane cholesterol in cell cycle regulation. In particular, we have explored the stringency of the requirement of cholesterol in the regulation of cell cycle progression. For this purpose, we utilized distal and proximal inhibitors of cholesterol biosynthesis, and monitored their effect on cell cycle progression. We show that cholesterol content increases in S phase and inhibition of cholesterol biosynthesis results in cell cycle arrest in G1 phase under certain conditions. Interestingly, G1 arrest mediated by cholesterol biosynthesis inhibitors could be reversed upon metabolic replenishment of cholesterol. Importantly, our results show that the requirement of cholesterol for G1 to S transition is absolute, and even immediate biosynthetic precursors of cholesterol, differing with cholesterol merely in a double bond, could not replace cholesterol for reversing the cell cycle arrest. These results are useful in the context of diseases, such as cancer and Alzheimer's disease, that are associated with impaired cholesterol biosynthesis and homeostasis.


    NARCIS (Netherlands)



    Methods using thin-layer chromatography, solid-phase extraction, gas chromatography, high-performance liquid chromatography and supercritical fluid chromatography are described for the analysis of single cholesterol, esterified and sulfated cholesterol, and for cholesterol in the context of other li

  17. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas) (United States)

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  18. Understanding Cholesterol and Heart Health | NIH MedlinePlus the Magazine (United States)

    ... this page please turn Javascript on. Feature: High Cholesterol Understanding Cholesterol and Heart Health Past Issues / Summer 2012 Table ... both types of lipoproteins is important. High Blood Cholesterol and Triglycerides High blood cholesterol is a condition ...

  19. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine

    NARCIS (Netherlands)

    Bosch, van den H.M.; Wit, de N.J.W.; Hooiveld, G.J.E.J.; Vermeulen, H.; Veen, van der J.N.; Houten, S.M.; Kuipers, F.; Müller, M.R.; Meer, van der R.


    Transporters present in the epithelium of the small intestine determine the efficiency by which dietary and biliary cholesterol are taken up into the body and thus control whole-body cholesterol balance. Niemann-Pick C1 Like Protein 1 (Npc1l1) transports cholesterol into the enterocyte, whereas ATP-

  20. Effects of saturated and unsaturated fats given with and without dietary cholesterol on hepatic cholesterol synthesis and hepatic lipid metabolism. (United States)

    Bochenek, W; Rodgers, J B


    Hepatic cholesterol synthesis was studied in rats after consuming diets of varying neutral lipid and cholesterol content. Cholesterol synthesis was evaluated by measuring 3-hydroxy-3-methylglutaryl-CoA reductase and by determining the rate of 3H-labeled sterol production from [3H]mevalonate. Results were correlated with sterol balance data and hepatic lipid content. Hepatic cholesterol synthesis was relatively great when cholesterol was excluded from the diet. The source of neutral dietary lipids, saturated vs. unsaturated, produced no change in hepatic sterol synthesis. Values for fecal sterol outputs and hepatic cholesterol levels were also similar in rats consuming either saturated or unsaturated fats. When 1% cholesterol was added to the diet, hepatic cholesterol synthesis was suppressed but the degree of suppression was greater in rats consuming unsaturated vs. saturated fats. This was associated with greater accumulation of cholesterol in livers from rats consuming unsaturates and a reduction in fecal neutral sterol output in this group as opposed to results from rats on saturated fats. Cholesterol consumption also altered the fatty acid composition of hepatic phospholipids producing decreases in the percentages of essential polyunsaturated fatty acids. It is concluded that dietary cholesterol alters cholesterol and fatty acid metabolism in the liver and that this effect is enhanced by dietary unsaturated fats.

  1. Fibroblast cholesterol efflux to plasma from metabolic syndrome subjects is not defective despite low high-density lipoprotein cholesterol

    NARCIS (Netherlands)

    R.P.F. Dullaart (Robin); A. Groen (Albert); G.M. Dallinga-Thie (Geesje); R. de Vries (Rindert); W. Sluiter (Wim); A. van Tol (Arie)


    textabstractObjective: We tested whether in metabolic syndrome (MetS) subjects the ability of plasma to stimulate cellular cholesterol efflux, an early step in the anti-atherogenic reverse cholesterol transport pathway, is maintained despite low high-density lipoprotein (HDL) cholesterol. Design: In

  2. Biochemical and Bioimaging Evidence of Cholesterol in Acquired Cholesteatoma

    DEFF Research Database (Denmark)

    Thorsted, Bjarne; Bloksgaard, Maria; Groza, Alexandra


    : The results show that the total lipid content of the cholesteatoma matrix is similar to that of stratum corneum from skin and that the cholesteatoma matrix unquestionably contains cholesterol. The cholesterol content in the cholesteatoma matrix is increased by over 30% (w/w dry weight) compared to the control....... The cholesterol sulfate content is below 1% of the total lipids in both the cholesteatoma and the control. Cholesterol ester was reduced by over 30% when compared to the control. CONCLUSIONS: The content of cholesterol in the cholesteatoma matrix is significantly different from that in stratum corneum from skin...

  3. Cholesterol: a novel regulatory role in myelin formation. (United States)

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin


    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.

  4. Potent and selective mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K; Johansson, Jan


    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  5. Parvovirus capsid disorders cholesterol-rich membranes. (United States)

    Pakkanen, Kirsi; Kirjavainen, Sanna; Mäkelä, Anna R; Rintanen, Nina; Oker-Blom, Christian; Jalonen, Tuula O; Vuento, Matti


    In this study canine parvovirus, CPV, was found to induce disorder in DPPC:cholesterol membranes in acidic conditions. This acidicity-induced fluidizing effect is suggested to originate from the N-terminus of the viral capsid protein VP1. In accordance with the model membrane studies, a fluidizing effect was seen also in the endosomal membranes during CPV infection implying an important functional role of the fluidization in the endocytic entry of the virus.


    Directory of Open Access Journals (Sweden)

    Anantha Babu


    Full Text Available BACKGROUND AND AIMS The purpose of this study was to determine the efficacy of red yeast rice (Monascus purpureus-fermented rice in lowering cholesterol in the blood. At the same time, alanine aminotranferase (ALT, aspartate aminotransferase (AST and gamma-glutamyl transferase (γ-GT were measured for notable side effects in the liver. Possible muscle damage was determined by measuring creatine kinase (CK. METHODS The cholesterol lowering effect in serum of red yeast rice-fed rats were studied over a 42-day feeding period. A total of 16 male Sprague-Dawley rats were randomised into 8 per group: control and treated. Treated rats were administered 1.35g/kg/day. Control rats were maintained on ordinary rat chow. RESULTS Serum cholesterol levels were significantly decreased by 19.13% in treated group compared to controls. This treatment also showed increase in serum ALT and AST activities by 41.90% and 21.53%, respectively. Mean CK activity in treated rats showed an increase by 32.32% when compared with control rats. γ-GT is the only enzyme that showed a decrease of 15.16% in sera of treated rats. Body weights of control and treated rats increased significantly by 10% end of feeding period but were not due to treatment. CONCLUSION Red yeast rice significantly decreased serum cholesterol level at a dosage of 1.35g/kg/day. However, the differences in serum enzyme activities between control and treated rats were not significant.

  7. Cholesterol impairment contributes to neuroserpin aggregation (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.


    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  8. Cholesterol impairment contributes to neuroserpin aggregation (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.


    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation. PMID:28255164

  9. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins.

    Directory of Open Access Journals (Sweden)

    Yunjiu Cheng

    Full Text Available To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25 g/kg/d on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins.

  10. LXR driven induction of HDL-cholesterol is independent of intestinal cholesterol absorption and ABCA1 protein expression. (United States)

    Kannisto, Kristina; Gåfvels, Mats; Jiang, Zhao-Yan; Slätis, Katharina; Hu, Xiaoli; Jorns, Carl; Steffensen, Knut R; Eggertsen, Gösta


    We investigated whether: (1) liver X receptor (LXR)-driven induction of high-density lipoprotein cholesterol (HDL-C) and other LXR-mediated effects on cholesterol metabolism depend on intestinal cholesterol absorption; and (2) combined treatment with the LXR agonist GW3965 and the cholesterol absorption inhibitor ezetimibe results in synergistic effects on cholesterol metabolism that could be beneficial for treatment of atherosclerosis. Mice were fed 0.2 % cholesterol and treated with GW3965+ezetimibe, GW3965 or ezetimibe. GW3965+ezetimibe treatment elevated serum HDL-C and Apolipoprotein (Apo) AI, effectively reduced the intestinal cholesterol absorption and increased the excretion of faecal neutral sterols. No changes in intestinal ATP-binding cassette (ABC) A1 or ABCG5 protein expression were observed, despite increased mRNA expression, while hepatic ABCA1 was slightly reduced. The combined treatment caused a pronounced down-regulation of intestinal Niemann-Pick C1-like 1 (NPC1L1) and reduced hepatic and intestinal cholesterol levels. GW3965 did not affect the intestinal cholesterol absorption, but increased serum HDL-C and ApoAI levels. GW3965 also increased Apoa1 mRNA levels in primary mouse hepatocytes and HEPA1-6 cells. Ezetimibe reduced the intestinal cholesterol absorption, ABCA1 and ABCG5, but did not affect the serum HDL-C or ApoAI levels. Thus, the LXR-driven induction of HDL-C and ApoAI was independent of the intestinal cholesterol absorption and increased expression of intestinal or hepatic ABCA1 was not required. Inhibited influx of cholesterol via NPC1L1 and/or low levels of intracellular cholesterol prevented post-transcriptional expression of intestinal ABCA1 and ABCG5, despite increased mRNA levels. Combined LXR activation and blocked intestinal cholesterol absorption induced effective faecal elimination of cholesterol.

  11. HDL Cholesterol and Risk of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Nordestgaard, Børge G


    Observationally, low levels of HDL cholesterol are consistently associated with increased risk of type 2 diabetes. Therefore, plasma HDL cholesterol increasing has been suggested as a novel therapeutic option to reduce the risk of type 2 diabetes. Whether levels of HDL cholesterol are causally...... associated with type 2 diabetes is unknown. In a prospective study of the general population (n = 47,627), we tested whether HDL cholesterol-related genetic variants were associated with low HDL cholesterol levels and, in turn, with an increased risk of type 2 diabetes. HDL cholesterol-decreasing gene scores...... and allele numbers associated with up to -13 and -20% reductions in HDL cholesterol levels. The corresponding theoretically predicted hazard ratios for type 2 diabetes were 1.44 (95% CI 1.38-1.52) and 1.77 (1.61-1.95), whereas the genetic estimates were nonsignificant. Genetic risk ratios for type 2 diabetes...

  12. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. (United States)

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara


    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.

  13. When cholesterol is not cholesterol: a note on the enzymatic determination of its concentration in model systems containing vegetable extracts

    Directory of Open Access Journals (Sweden)

    Pamplona Reinald


    Full Text Available Abstract Background Experimental evidences demonstrate that vegetable derived extracts inhibit cholesterol absorption in the gastrointestinal tract. To further explore the mechanisms behind, we modeled duodenal contents with several vegetable extracts. Results By employing a widely used cholesterol quantification method based on a cholesterol oxidase-peroxidase coupled reaction we analyzed the effects on cholesterol partition. Evidenced interferences were analyzed by studying specific and unspecific inhibitors of cholesterol oxidase-peroxidase coupled reaction. Cholesterol was also quantified by LC/MS. We found a significant interference of diverse (cocoa and tea-derived extracts over this method. The interference was strongly dependent on model matrix: while as in phosphate buffered saline, the development of unspecific fluorescence was inhibitable by catalase (but not by heat denaturation, suggesting vegetable extract derived H2O2 production, in bile-containing model systems, this interference also comprised cholesterol-oxidase inhibition. Several strategies, such as cholesterol standard addition and use of suitable blanks containing vegetable extracts were tested. When those failed, the use of a mass-spectrometry based chromatographic assay allowed quantification of cholesterol in models of duodenal contents in the presence of vegetable extracts. Conclusions We propose that the use of cholesterol-oxidase and/or peroxidase based systems for cholesterol analyses in foodstuffs should be accurately monitored, as important interferences in all the components of the enzymatic chain were evident. The use of adequate controls, standard addition and finally, chromatographic analyses solve these issues.

  14. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. (United States)

    Temel, Ryan E; Brown, J Mark


    Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.

  15. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux (United States)

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.


    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  16. Phytosterol ester constituents affect micellar cholesterol solubility in model bile. (United States)

    Brown, Andrew W; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P


    Plant sterols and stanols (phytosterols) and their esters are nutraceuticals that lower LDL cholesterol, but the mechanisms of action are not fully understood. We hypothesized that intact esters and simulated hydrolysis products of esters (phytosterols and fatty acids in equal ratios) would differentially affect the solubility of cholesterol in model bile mixed micelles in vitro. Sodium salts of glycine- and taurine-conjugated bile acids were sonicated with phosphatidylcholine and either sterol esters or combinations of sterols and fatty acids to determine the amount of cholesterol solubilized into micelles. Intact sterol esters did not solubilize into micelles, nor did they alter cholesterol solubility. However, free sterols and fatty acids altered cholesterol solubility independently (no interaction effect). Equal contents of cholesterol and either campesterol, stigmasterol, sitosterol, or stigmastanol (sitostanol) decreased cholesterol solubility in micelles by approximately 50% compared to no phytosterol present, with stigmasterol performing slightly better than sitosterol. Phytosterols competed with cholesterol in a dose-dependent manner, demonstrating a 1:1 M substitution of phytosterol for cholesterol in micelle preparations. Unsaturated fatty acids increased the micelle solubility of sterols as compared with saturated or no fatty acids. No differences were detected in the size of the model micelles. Together, these data indicate that stigmasterol combined with saturated fatty acids may be more effective at lowering cholesterol micelle solubility in vivo.

  17. ACAT1 deficiency increases cholesterol synthesis in mouse peritoneal macrophages. (United States)

    Dove, Dwayne E; Su, Yan Ru; Swift, Larry L; Linton, MacRae F; Fazio, Sergio


    Acyl-coenzyme A:cholesterol acyltransferase (ACAT) esterifies free cholesterol and stores cholesteryl esters in lipid droplets. Macrophage ACAT1 deficiency results in increased atherosclerotic lesion area in hyperlipidemic mice via disrupted cholesterol efflux, increased lipoprotein uptake, accumulation of intracellular vesicles, and accelerated apoptosis. The objective of this study was to determine whether lipid synthesis is affected by ACAT1. The synthesis, esterification, and efflux of new cholesterol were measured in peritoneal macrophages from ACAT1(-/-) mice. Cholesterol synthesis was increased by 134% (p=0.001) in ACAT1(-/-) macrophages compared to wildtype macrophages. Increased synthesis resulted in a proportional increase in the efflux of newly synthesized cholesterol. Although the esterification of new cholesterol was reduced by 93% (pSREBP1a mRNA was increased 6-fold in ACAT1(-/-) macrophages compared to wildtype macrophages, suggesting an up-regulation of cholesterol and fatty acid synthesis in ACAT1(-/-) macrophages. Increased cholesterol synthesis and up-regulation of SREBP in ACAT1(-/-) macrophages suggests that ACAT1 affects the regulation of lipid metabolism in macrophages. This change in cholesterol homeostasis may contribute to the atherogenic potential of ACAT1(-/-) macrophages.

  18. Mathematically modelling the dynamics of cholesterol metabolism and ageing. (United States)

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T


    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the UK. This condition becomes increasingly prevalent during ageing; 34.1% and 29.8% of males and females respectively, over 75 years of age have an underlying cardiovascular problem. The dysregulation of cholesterol metabolism is inextricably correlated with cardiovascular health and for this reason low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) are routinely used as biomarkers of CVD risk. The aim of this work was to use mathematical modelling to explore how cholesterol metabolism is affected by the ageing process. To do this we updated a previously published whole-body mathematical model of cholesterol metabolism to include an additional 96 mechanisms that are fundamental to this biological system. Additional mechanisms were added to cholesterol absorption, cholesterol synthesis, reverse cholesterol transport (RCT), bile acid synthesis, and their enterohepatic circulation. The sensitivity of the model was explored by the use of both local and global parameter scans. In addition, acute cholesterol feeding was used to explore the effectiveness of the regulatory mechanisms which are responsible for maintaining whole-body cholesterol balance. It was found that our model behaves as a hypo-responder to cholesterol feeding, while both the hepatic and intestinal pools of cholesterol increased significantly. The model was also used to explore the effects of ageing in tandem with three different cholesterol ester transfer protein (CETP) genotypes. Ageing in the presence of an atheroprotective CETP genotype, conferring low CETP activity, resulted in a 0.6% increase in LDL-C. In comparison, ageing with a genotype reflective of high CETP activity, resulted in a 1.6% increase in LDL-C. Thus, the model has illustrated the importance of CETP genotypes such as I405V, and their potential role in healthy ageing.

  19. Cholesterol Metabolism and Prostate Cancer Lethality. (United States)

    Stopsack, Konrad H; Gerke, Travis A; Sinnott, Jennifer A; Penney, Kathryn L; Tyekucheva, Svitlana; Sesso, Howard D; Andersson, Swen-Olof; Andrén, Ove; Cerhan, James R; Giovannucci, Edward L; Mucci, Lorelei A; Rider, Jennifer R


    Cholesterol metabolism has been implicated in prostate cancer pathogenesis. Here, we assessed the association of intratumoral mRNA expression of cholesterol synthesis enzymes, transporters, and regulators in tumor specimen at diagnosis and lethal prostate cancer, defined as mortality or metastases from prostate cancer in contrast to nonlethal disease without evidence of metastases after at least 8 years of follow-up. We analyzed the prospective prostate cancer cohorts within the Health Professionals Follow-up Study (n = 249) and the Physicians' Health Study (n = 153) as well as expectantly managed patients in the Swedish Watchful Waiting Study (n = 338). The expression of squalene monooxygenase (SQLE) was associated with lethal cancer in all three cohorts. Men with high SQLE expression (>1 standard deviation above the mean) were 8.3 times (95% confidence interval, 3.5 to 19.7) more likely to have lethal cancer despite therapy compared with men with the mean level of SQLE expression. Absolute SQLE expression was associated with lethal cancer independently from Gleason grade and stage, as was a SQLE expression ratio in tumor versus surrounding benign prostate tissue. Higher SQLE expression was tightly associated with increased histologic markers of angiogenesis. Collectively, this study establishes the prognostic value of intratumoral cholesterol synthesis as measured via SQLE, its second rate-limiting enzyme. SQLE expression at cancer diagnosis is prognostic for lethal prostate cancer both after curative-intent prostatectomy and in a watchful waiting setting, possibly by facilitating micrometastatic disease. Cancer Res; 76(16); 4785-90. ©2016 AACR.

  20. Influence of infant and juvenile diets on serum cholesterol, lipoprotein cholesterol, and apolipoprotein concentrations in juvenile baboons (Papio sp.). (United States)

    Mott, G E; McMahan, C A; Kelley, J L; Farley, C M; McGill, H C


    The long-term effects of infant diet (breast milk or formula containing 2, 30, or 60 mg/dl cholesterol) and subsequent dietary cholesterol (1 mg/kcal) and fat (saturated or unsaturated) on serum lipid and apolipoprotein concentrations were estimated using 82 juvenile baboons 4-6 years of age. A significant interaction of infant diet (breast vs formula) with type of fat (saturated vs unsaturated) at 4-6 years of age was observed on HDL cholesterol and apolipoprotein A-I (apoA-I) concentrations. That is, animals breast-fed as infants had higher HDL cholesterol and apoA-I concentrations when fed unsaturated fat from weaning to 4-6 years of age than those fed saturated fat (77 vs 68 mg/dl). In contrast, animals fed formulas in infancy followed by a diet containing unsaturated fat had lower HDL cholesterol and apoA-I concentrations at 4-6 years of age than did those fed saturated fat (67 vs 78 mg/dl). However, breast feeding or feeding formulas containing various levels of cholesterol for 3 months during infancy did not result in statistically significant differences in total serum cholesterol, VLDL + LDL cholesterol and apolipoprotein B (apoB) concentrations. Dietary cholesterol after infancy significantly increased serum total cholesterol, VLDL + LDL and HDL cholesterol, apoA-I and apoB concentrations. All of these response variables also were higher in animals fed saturated fat compared to those fed unsaturated fat on the same level of cholesterol. At 4-6 years of age, regardless of diet, females had significantly higher serum VLDL + LDL cholesterol (57 vs 43 mg/dl) and apoB concentrations (39 vs 30 mg/dl) than did males.

  1. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka


    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  2. Membrane cholesterol access into a G-protein-coupled receptor (United States)

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana


    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs.

  3. Cholesterol monohydrate nucleation in ultrathin films on water

    DEFF Research Database (Denmark)

    Rapaport, H.; Kuzmenko, I.; Lafont, S.


    The growth of a cholesterol crystalline phase, three molecular layers thick at the air-water interface, was monitored by grazing incidence x-ray diffraction and x-ray reflectivity. Upon compression, a cholesterol film transforms from a monolayer of trigonal symmetry and low crystallinity...... to a trilayer, composed of a highly crystalline bilayer in a rectangular lattice and a disordered top cholesterol layer. This system undergoes a phase transition into a crystalline trilayer incorporating ordered water between the hydroxyl groups of the top and middle sterol layers in an arrangement akin...... to the triclinic 3-D crystal structure of cholesterol . H(2)O. By comparison, the cholesterol derivative stigmasterol transforms, upon compression, directly into a crystalline trilayer in the rectangular lattice. These results may contribute to an understanding of the onset of cholesterol crystallization...

  4. Membrane cholesterol access into a G-protein-coupled receptor (United States)

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana


    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs. PMID:28220900

  5. Preparation of intravenous cholesterol tracer using current good manufacturing practices. (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E


    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies.

  6. Apoprotein E genotype and the response of serum cholesterol to dietary fat, cholesterol and cafestol

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Ordovas, J.M.; Pedro-Botet, J.; Katan, M.B.


    Previous studies on the effect of apoprotein E (APOE) polymorphism on the response of serum lipids to diet showed inconsistent results. We therefore studied the effect of apoprotein E polymorphism on responses of serum cholesterol and lipoproteins to various dietary treatments. We combined data on r

  7. Development of alimentary cholesterol in the plasma and the plasmatic lipoproteins in man, after ingestion of a meal containing octa-deuterated cholesterol; Devenir du cholesterol alimentaire dans le plasma et les lipoproteines plasmatiques chez l`homme, apres ingestion d`un repas contenant du cholesterol octa-deutere

    Energy Technology Data Exchange (ETDEWEB)

    Becue, T.; Ferezou, J.; Simon, G. [Paris-11 Univ., 91 - Orsay (France); Bernard, P.M.; Portugal, H. [Hopital Sainte-Marguerite, 13 - Marseille (France); Dubois, C.; Lairon, D.


    Cholesterol absorbed after a test-meal has two origins with man: the biliary cholesterol and the alimentary cholesterol. In order to understand the mechanism of the modification of cholesterol intestinal absorption by oat bran, the alimentary cholesterol has been labelled with octa-deuterated cholesterol, in test-diets. The kinetics of D-cholesterol in plasma and chylomicrons is described. 1 fig., 6 refs.

  8. Interaction of G protein coupled receptors and cholesterol. (United States)

    Gimpl, Gerald


    G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs.

  9. Sesamin Enhances Cholesterol Efflux in RAW264.7 Macrophages


    Nan Liu; Chongming Wu; Lizhong Sun; Jun Zheng; Peng Guo


    Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicit...

  10. [Prostate cancer dependance upon cholesterol, statins and diet]. (United States)

    Pilch, Paweł; Radziszewski, Piotr; Maciukiewicz, Piotr


    The aim of the work is to analyze the influence of higher cholesterol and LDL level on risk of prostate cancer. The work is based on the available literature in that field. The metabolism of cholesterol is mainly regulated by the statins, which may thus inhibit prostate cancer growth. Keeping the appropriate body mass and level of cholesterol by proper diet and physical exercises may be the prophylaxis of prostate cancer.

  11. [Plant sterols, cholesterol precursors and oxysterols: small amounts, big effects]. (United States)

    Olkkonen, Vesa M; Gylling, Helena; Ikonen, Elina


    Noncholesterol sterols are present in the body in very low concentrations compared with cholesterol. Minor structural changes in sterols give them completely individual biological activities. Steroid hormones are the best known example of this. The knowledge of other relatives of cholesterol, particularly plant sterols, cholesterol precursors and oxysterols, their properties, physiological effects, significance in disease processes and diagnostic applications has recently undergone a rapid increase.

  12. Studies on PCSK9 in the regulation of cholesterol metabolism


    Persson, Lena


    Elevated levels of plasma cholesterol, mainly in low density lipoproteins (LDL), are a major risk factor for coronary heart disease. The level of plasma LDL cholesterol (LDL-C) is largely dependent on the number of hepatic LDL receptors (LDLRs). Increased number of LDLRs leads to higher uptake of LDL particles and lower concentration of plasma LDL-C. Proprotein convertase subtilisin Kexin Type 9 (PCSK9) is a novel key regulator in cholesterol metabolism. PCSK9 reduces the numbe...

  13. Cholesterol granuloma of the paratesticular tissue: A case report (United States)

    Unal, Dursun; Kilic, Metin; Oner, Sedat; Erkinuresin, Taskın; Demirbas, Murat; Coban, Soner; Aydos, Mustafa Murat


    A 38-year-old man was admitted to our clinic with an enlarging right scrotal mass that had been present for 7 years. Right radical inguinal orchiectomy was performed and a histopathological diagnosis confirmed a very rare case of cholesterol granuloma of the paratesticular tissue. It can be very difficult to preoperatively distinguish testicular tumours from cholesterol granulomas of the testis or epididymis. Cholesterol granuloma should be kept in mind in patients with large and non-tender scrotal masses. PMID:26225185

  14. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella


    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  15. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal


    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  16. Crystallogeny fundamentals of the cholesterol gallstone

    Institute of Scientific and Technical Information of China (English)

    Wu Jie; Zhou Jianli; He Lijun; Qu Xingang; Gu Lin; Yang Haimin


    The nucleation mechanism and crystal growth process of the cholesterol gallstone are studied and a systematic theory expounded by crystallogeny is proposed. Normal feed and stone-forming feed were used to raise guinea pigs in the control and stone-causing groups respectively. The state and transformation of liquid crystal vesicles, the appearance of crystal nuclei, and the formation of microcrystal grains were observed under a polarizing microscope during the experimental period. It was found that the liquid crystal vesicles in the bile of the control group were small, scattered, and always existed as single forms, and no shaped gallstone crystals were formed.While in the stone-causing group, liquid crystal vesicles grew to larger ones, and then aggregated to form large liquid crystal cells. Solid crystal growth along the edge of these liquid crystal cells formed microcrystal grains. These demonstrated that bile liquid crystal vesicles form the basic nuclei of cholesterol gallstone. Heterogeneous nucleation is the common process in the formation of crystal nuclei and crystal growth.

  17. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    Directory of Open Access Journals (Sweden)

    Catherine Tomaro-Duchesneau


    Full Text Available Excess cholesterol is associated with cardiovascular diseases (CVD, an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18 ± 0.55 mg/1010 cfu in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70 ± 63.33 mg/1010 cfu of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic.

  18. Quantity of cholesterol in butter from Zagreb market

    Directory of Open Access Journals (Sweden)

    Željka Cvrtila


    Full Text Available In this article the quantity of cholesterol in butter - a representative of dairy products with known high quantity of milk fat, is determined. The results show that the quantity of milk fats for the butter samples from domestic production (n=17 was 83.9 %, and from the industrial production (n=5 85.2 %. Average cholesterol quantities, in before mentioned samples, were 227 mg/100g or 22 mg of cholesterol per 100 g of sample. The results show that the increase of milk fats does not strictly influence cholesterol increase in the individual butter sample.

  19. Determination of cholesterol in human biliary calculus by TLC scanning

    Institute of Scientific and Technical Information of China (English)

    Yin Kang Yang; Kai Xiong Qiu; Yu Zhu Zhan; Er Yi Zhan; Hai Ming Yang; Ping Zheng


    AIM To study the physico-chemical properties of biliary calculus and the relationship between the calculusformation and the phase change of liquid crystal, providing the best evidence for the biliary calculusprevention and treatment.METHODS The cholesterol contents in thirty one cases of biliary calculus in Kunming were determined bydouble-wave-length TLC scanning with high efficiency silica gel films.RESULTS Under magnifiers, the granular biliary calculus from 31 patients were classified according totheir section structures and colours, as cholesterol cholelith, 25 cases; bilirubin cholelith, 4 cases andcompound cholelith, 2 cases. By TLC scanning, it was found that the content of cholesterol in human biliarycalculus was 71%- 100%, about 80% cholesterol bilestones whose cholesterol content was more than 90%being pure cholesterol bilestones.CONCLUSION Cholesterol bilestone is the main human biliary calculus in Kunming, which was inaccordance with X-ray analysis. Compared with the related reports, it is proved that the proportion ofcholesterol bilestones to biliary calculus is increasing because of the improved life standard and the decreaseof bilirubin bilestones resulted from bile duct ascariasis or bacteria infection in China since 90s, and that theincrease of cholesterol in-take leads to the increase of cholesterol metabolism disorder

  20. Retracted: Advances in the physiological and pathological implications of cholesterol. (United States)

    Cortes, Victor A; Busso, Dolores; Mardones, Pablo; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio


    Cholesterol has evolved to fulfill sophisticated biophysical, cell signalling, and endocrine functions in animal systems. At the cellular level, cholesterol is found in membranes where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signalling functions. At the organismal level, cholesterol is the precursor of all steroid hormones, including gluco- and mineralo-corticoids, sex hormones, and vitamin D, which regulate carbohydrate, sodium, reproductive, and bone homeostasis, respectively. This sterol is also the immediate precursor of bile acids, which are important for intestinal absorption of dietary lipids as well as energy homeostasis and glucose regulation. Complex mechanisms maintain cholesterol within physiological ranges and the dysregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these conditions has been demonstrated by genetic and pharmacological manipulations in animal models of human disease that are discussed herein. Importantly, the understanding of basic aspects of cholesterol biology has led to the development of high-impact pharmaceutical therapies during the past century. The continuing effort to offer successful treatments for prevalent cholesterol-related diseases, such as atherosclerosis and neurodegenerative disorders, warrants further interdisciplinary research in the coming decades.

  1. Cholesterol and Copper Affect Learning and Memory in the Rabbit

    Directory of Open Access Journals (Sweden)

    Bernard G. Schreurs


    Full Text Available A rabbit model of Alzheimer’s disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease including beta amyloid accumulation and learning and memory changes. Although we have shown that feeding 2% cholesterol and adding copper to the drinking water can retard learning, other studies have shown that feeding dietary cholesterol before learning can improve acquisition and feeding cholesterol after learning can degrade long-term memory. We explore the development of this model, the issues surrounding the role of copper, and the particular contributions of the late D. Larry Sparks.

  2. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes. (United States)

    Alsop, Richard J; Toppozini, Laura; Marquardt, Drew; Kučerka, Norbert; Harroun, Thad A; Rheinstädter, Maikel C


    Aspirin and other non-steroidal anti-inflammatory drugs have a high affinity for phospholipid membranes, altering their structure and biophysical properties. Aspirin has been shown to partition into the lipid head groups, thereby increasing membrane fluidity. Cholesterol is another well known mediator of membrane fluidity, in turn increasing membrane stiffness. As well, cholesterol is believed to distribute unevenly within lipid membranes leading to the formation of lipid rafts or plaques. In many studies, aspirin has increased positive outcomes for patients with high cholesterol. We are interested if these effects may be, at least partially, the result of a non-specific interaction between aspirin and cholesterol in lipid membranes. We have studied the effect of aspirin on the organization of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membranes containing cholesterol. Through Langmuir-Blodgett experiments we show that aspirin increases the area per lipid and decreases compressibility at 32.5 mol% cholesterol, leading to a significant increase of fluidity of the membranes. Differential scanning calorimetry provides evidence for the formation of meta-stable structures in the presence of aspirin. The molecular organization of lipids, cholesterol and aspirin was studied using neutron diffraction. While the formation of rafts has been reported in binary DPPC/cholesterol membranes, aspirin was found to locally disrupt membrane organization and lead to the frustration of raft formation. Our results suggest that aspirin is able to directly oppose the formation of cholesterol structures through non-specific interactions with lipid membranes.

  3. Cholesterol granuloma of the petrous apex: CT diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.; Gruskin, P.


    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  4. Transfer of cholesterol from macrophages to lymphocytes in culture. (United States)

    de Bittencourt Júnior, P I; Curi, R


    A major feature of macrophage metabolism is its capacity to produce and export cholesterol. Several reports have shown that the manipulation of lymphocyte cholesterol content elicits important changes in lymphocyte proliferation. These findings lead to an inquiry as to whether macrophage-derived cholesterol released into the lymphocyte surroundings may be transferred to the latter thus affecting lymphocyte function. In this study, cholesterol transfer from macrophages to lymphocytes was examined in vitro using rat cells in culture. The findings indicate that there may be a significant transfer of cholesterol from [4-14C]cholesterol labeled resident peritoneal macrophages to mesenteric lymph node resting lymphocytes (up to 173.9 +/- 2.7 pmol/10(7) lymphocytes/10(7) macrophages when co-cultivated for 48 h), in a lipoprotein-dependent manner. This represents the mass transfer of ca. 17 nmoles of cholesterol molecules per 10(7) lymphocytes from 10(7) macrophages (calculated on the basis of specific radioactivity incorporated into macrophages after the pre-labelling period), which suggests that macrophages are capable of replacing the whole lymphocyte cholesterol pool every 21 h. Moreover, an 111%-increase in the total cholesterol content of lymphocytes was found after co-cultivation with macrophages for 48 h. When compared to peritoneal cells, monocytes/macrophages obtained from circulating blood leukocytes presented a much higher cholesterol transfer capacity to lymphocytes (3.06 +/- 0.10 nmol/10(7) lymphocytes/10(7) macrophages co-cultivated for 24 h). Interestingly, inflammatory macrophages dramatically reduced their cholesterol transfer ability (by up to 91%, as compared to resident macrophages). Cholesterol transfer may involve a humoral influence, since it is not only observed when cells are co-cultivated in a single-well chamber system (cells in direct contact), but also in a two-compartment system (where cells can communicate but not by direct contact). Co

  5. Effect of doxazosin on cholesterol synthesis in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    D' Eletto, R.D.; Javitt, N.B.


    The effect of doxazosin on cholesterol synthesis was determined by measuring the content of deuterium-enriched cholesterol in rabbit fibroblasts with and without receptors for low-density lipoproteins (LDL) and in hepatoma (Hep G2 cells). Doxazosin, at concentrations of 5-20 mumol/L, increased LDL binding to hepatic cells in a dose-related manner. Also, in these hepatic cells, doxazosin produced dose-related decreases in both newly synthesized cholesterol and cholesterol ester. In rabbit fibroblasts that were LDL receptor negative, de novo cholesterol synthesis was markedly reduced by increasing concentrations of doxazosin. Taken together, these results suggest that doxazosin may have a direct inhibitory effect on cholesterol synthesis independent of the LDL receptor. The inhibition of cholesterol synthesis by doxazosin may cause cells to compensate by upregulating the LDL receptor, thereby increasing the importation of lipoprotein cholesterol and reducing LDL cholesterol in the medium. This hypothesis supports findings in the clinical setting whereby doxazosin has a beneficial effect on the lipid profile, and suggests a useful additional property for this antihypertensive agent.

  6. Recovery and purification of cholesterol from cholesterol-β-cyclodextrin inclusion complex using ultrasound-assisted extraction. (United States)

    Li, Yong; Chen, Youliang; Li, Hua


    Response surface methodology was used to optimize ultrasound-assisted ethanol extraction (UAE) of cholesterol from cholesterol-β-cyclodextrin (C-β-CD) inclusion complex prepared from duck yolk oil. The best extraction conditions were solvent-solid ratio 10mL/g, ultrasonic power 251W, extraction temperature 56°C and sonication time 36min. Under these conditions, the highest cholesterol extraction yield and cholesterol content obtained 98.12±0.25% and 43.38±0.61mg/g inclusion complex, respectively. As compared with Reflux extraction and Soxhlet extraction, the UAE was more efficient and economical. To increase the purity of crude cholesterol extraction, silica gel column chromatography and crystallization were carried out. Finally, cholesterol was obtained at 95.1% purity, 71.7% recovery and 22.0% yield.

  7. Saturated fatty acid (SFA) status and SFA intake exhibit different relations with serum total cholesterol and lipoprotein cholesterol : a mechanistic explanation centered around lifestyle-induced low-grade inflammation

    NARCIS (Netherlands)

    Ruiz Nunez, Begona; Kuipers, Remko S.; Luxwolda, Martine F.; De Graaf, Deti J.; Breeuwsma, Benjamin B.; Dijck-Brouwer, Janneke; Muskiet, Frits A. J.


    We investigated the relations between fatty acid status and serum total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein (HDL) cholesterol and total cholesterol/HDL cholesterol ratio in five Tanzanian ethnic groups and one Dutch group. Total cholesterol/HDL cholesterol rati

  8. Apoprotein E phenotype determines serum cholesterol in infants during both high-cholesterol breast feeding and low-cholesterol formula feeding. (United States)

    Kallio, M J; Salmenperä, L; Siimes, M A; Perheentupa, J; Gylling, H; Miettinen, T A


    Our objective was to establish the role of the apoprotein (apo) E phenotype in determining serum cholesterol levels in infants fed exclusively on high-fat, high-cholesterol human milk and in those fed a low-cholesterol, high-unsaturated fat formula. The total and lipoprotein cholesterol, apoB, and triglyceride concentrations in serum were quantified and related to the apoE phenotype in 151 infants at birth and at 2, 6, 9, and 12 months of age. Forty-four had the E3/4 or 4/4 phenotype (E4 group), 94 had the E3/3 phenotype (E3 group), and 13 had the E2/3 or 2/4 phenotype (E2 group). In cord blood, cholesterol concentrations tended to be higher in the E4 than in the E2 group. With exclusive breast-feeding, the concentrations rose significantly faster and higher in the E4 group than in the E3 group or, especially, the E2 group. The values (mmol/L, mean +/- SEM) were 1.6 +/- 0.15, 1.5 +/- 0.05, 1.4 +/- 0.1 (P = n.s.) at birth; 4.2 +/- 0.1, 3.8 +/- 0.08, 3.4 +/- 0.2 (P HDL, HDL2, and HDL3 cholesterol concentrations did not depend on the apoE phenotype. Among infants fed high-fat, high-cholesterol human milk, the total and LDL-cholesterol concentrations and the LDL apoB concentration of those with the apoE phenotype 4/4 or 3/4 rose faster and to higher levels than in other infants. Among formula-fed infants, receiving a low-cholesterol, high-unsaturated fat diet, the differences between the apoE groups were smaller.

  9. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice

    NARCIS (Netherlands)

    Kruit, J. K.; Kremer, P. H. C.; Dai, L.; Tang, R.; Ruddle, P.; de Haan, W.; Brunham, L. R.; Verchere, C. B.; Hayden, M. R.


    Cellular cholesterol accumulation is an emerging mechanism for beta cell dysfunction in type 2 diabetes. Absence of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) results in increased islet cholesterol and impaired insulin secretion, indicating that impaired cholesterol effl

  10. Assessment of modes of action and efficacy of plasma cholesterol-lowering drugs : measurement of cholesterol absorption, cholesterol synthesis and bile acid synthesis and turnover using novel stable isotope techniques

    NARCIS (Netherlands)

    Stellaard, Frans; Kuipers, Folkert


    Several processes are involved in control of plasma cholesterol levels, e.g., intestinal cholesterol absorption, endogenous cholesterol synthesis and transport and bile acid synthesis. Adaptation of either of these processes allows the body to adapt to changes in dietary cholesterol intake. Disturba

  11. Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1. (United States)

    Yu, Cuijuan; Alterman, Michail; Dobrowsky, Rick T


    Addition of exogenous ceramide causes a significant displacement of cholesterol in lipid raft model membranes. However, whether ceramide-induced cholesterol displacement is sufficient to alter the protein composition of caveolin-enriched lipid raft membranes is unknown. Therefore, we examined whether increasing endogenous ceramide levels with bacterial sphingomyelinase (bSMase) depleted cholesterol and changed the protein composition of caveolin-enriched membranes (CEMs) isolated from immortalized Schwann cells. bSMase increased ceramide levels severalfold and decreased the cholesterol content of detergent-insoluble CEMs by 25-50% within 2 h. To examine the effect of ceramide on the protein composition of the CEMs, we performed a quantitative proteomic analysis using stable isotope labeling of cells in culture and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Although ceramide rapidly depleted lipid raft cholesterol, the levels of the cholesterol binding protein caveolin-1 (Cav-1) decreased by 25% only after 8 h. Importantly, replenishing the cells with cholesterol rapidly reversed the loss of Cav-1 from the CEMs. Ceramide-induced cholesterol depletion increased the association of 5'-nucleotidase and ATP synthase beta-subunit with the CEMs but had a minimal effect on changing the abundance of other lipid raft proteins, such as flotillin-1 and G-proteins. These results suggest that the ceramide-induced loss of cholesterol from CEMs may contribute to altering the lipid raft proteome.

  12. Regulation of cholesterol synthesis in four colonic adenocarcinoma cell lines. (United States)

    Cerda, S R; Wilkinson, J; Broitman, S A


    Colon tumor cells, unlike normal human fibroblasts, exhibited an uncoupling of low density lipoprotein (LDL)-derived cholesterol from cellular growth, when endogenous cholesterol synthesis was inhibited by mevinolin, a hydroxymethylglutaryl-CoA reductase (HMG-CoAR) competitive inhibitor [Fabricant, M., and Broitman, S.A. (1990) Cancer Res. 50, 632-636]. Further evaluation of cholesterol metabolism was conducted in two undifferentiated (SW480, SW1417) and two differentiated (HT29, CACO2) colonic adenocarcinoma (adeno-CA) cell lines and an untransformed human fibroblast, AG1519A. Cells grown in monolayer culture to near subconfluency were used to assess endogenous cholesterol synthesis by 14C-acetate incorporation, in response to the following treatments in lipoprotein-deficient serum (LPDS)-supplemented minimum essential medium (MEM): LPDS alone, LDL, mevinolin, mevinolin with LDL, and 25-hydroxy-cholesterol (25-OH-CH). Complete fetal bovine serum (FBS)-supplemented MEM was used as control. All colon tumor lines exhibited similarly high endogenous cholesterol synthesis in both FBS and LPDS relative to the fibroblasts which demonstrated low basal levels in FBS and maximal synthesis in LPDS. LDL treatment did not inhibit cholesterol synthesis in colon tumor cells, but suppressed that in the fibroblast by 70%. Sterol repression of cholesterol synthesis mediated by 25-OH-CH occurred in all cells. Mevinolin caused a reduction in cholesterol synthesis in the colonic cancer cell lines, which was not further decreased by concurrent addition of LDL. In contrast, in mevinolin-treated fibroblasts, LDL further inhibited cholesterol synthesis. When the effect of cell density on cholesterol synthesis regulation was evaluated under conditions of sparse density in SW480 and SW147, results indicated that (i) basal rates of cholesterol synthesis were higher, (ii) LDL inhibited cholesterol synthesis more effectively, and (iii) mevinolin or 25-OH-CH had a more pronounced effect than in

  13. The hedgehog receptor patched is involved in cholesterol transport.

    Directory of Open Access Journals (Sweden)

    Michel Bidet

    Full Text Available BACKGROUND: Sonic hedgehog (Shh signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened. METHODOLOGY/PRINCIPAL FINDINGS: Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol. CONCLUSION/SIGNIFICANCE: Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway

  14. 油脂来源及使用量对小鼠生长、健康、血脂和肝脏胆固醇代谢指标的影响%Effect of Dietary Fat Sources and Dosages on Growth, Health, Serum Lipid and Liver Cholesterol Metabolism of Mice

    Institute of Scientific and Technical Information of China (English)

    黄阳; 李平华; 贺丽春; 汪涵; 牛清; 石磊; 周波; 黄瑞华


    Objective]This experiment was conducted to investigate the effect of dietary fat source and dosages on growth performance, health status, serum lipid indicators and liver cholesterol metabolism-related gene mRNA expression level and to explore the mechanism of dietary fats source and dosage on hepatic cholesterol metabolism of mice. Results will contribute to select a suitable amount and type of oil for mammal.[Method] Forty eight 3-week-old healthy KM mice whose body weights were 16-19 g were randomly assigned into four groups with 4 replicates per group and 3 mice each. Mice were fed: normal diet (control group); 4% bean oil diet (group B); 4% emulsified coconut powder diet (group L); 8% emulsified coconut powder diet (group H)for fourteen days, respectively. During the whole experiment, daily feeding times, feed quantity and remaining amount of feed of each time were recorded. All animals were fed and wateredad libitum. According to the recorded data, body weight and average daily feed intake (ADFI), the average daily gain (ADG), feed gain ratio (F/G) were calculated. Blood distribution, health index and liver weight of mice were measured. The concentrations of triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C) in serum were determined. The expression of mRNA of 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), cholesterol 7 alpha-hydroxylase (CYP7A1) and low density lipoprotein-receptor (LDLR) in liver were determined by real time PCR.[Result]Supplementation of 4% bean oil significantly increased body weight, ADFI and liver index of mice compared with the control group (P0.05). Supplementation of 4% emulsified coconut powder failed to significantly change growth performance of mice compared with the control group (P>0.05). Supplementation of 8% emulsified coconut powder significantly increased ADFI of mice compared with the control group (P0.05). Healthy status: Fat had

  15. LDL Cholesterol, Statins And PCSK 9 Inhibitors (United States)

    Gupta, Sanjiv


    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  16. 腧穴“降脂方”对高脂血症大鼠肝脏胆固醇代谢相关基因表达的影响%Effects of electric acupuncture acupoint recipes “lipid-lowering” on cholesterol metabolism related ;gene expression in hyperlipidemia rats

    Institute of Scientific and Technical Information of China (English)

    张中原; 王海军; 苗晋玲; 张国鑫; 冀来喜


    Objective To observe the effect of electric acupuncture acupoint recipes“lipid-lowering”on hydroxymethylglutaryl-coenzyme A (HMG-CoA), low density lipoprotein receptor (LDL-R) and cholesterol 7 alpha hydroxylase (CYP7A1) in fatty liver rat model with hyperlipidemia, and the mechanisms thereof. Methods Forty-four SD rats were randomly divided into two groups: control group (n=17) and model group (n=27). The rats of control group were fed standard diet and rats in model group were given high fat diet. Blood samples were collected from 7 rats of each group after 3-week treatment. Changes of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) were detected and compared between two groups. The model group was randomly subdivided into control group and lipid-lowering group. Changes of TC, TG, LDL-C and HDL-C were observed after 4-week treatment in four groups. RT-PCR method was used to detect the values of HMG-CoA, LDL-R and CYP7A1 mRNA expression in liver tissue. SPSS13.0 statistical software was used for data analysis. The t-test was used in the comparison between the two groups, and single factor analysis of variance was used for data analyses of three groups. Statistically significance was considered when P<0.05. Results After three weeks, compared with control group, serum levels of TC, TG and LDL-C were significantly increased in model group but HDL-C were significantly decreased(t=4.09, 3.32, 5.22 and 14.57,P<0.01 or P<0.05). The model rats were hyperlipidemia status. The expression of HMG-CoA was significantly higher in model group than that of control group(P<0.01), and expression levels of LDL-R and CYP7A1 were significantly lower in model group than those of control group (t=54.52, 11.78 and 6.02, P<0.01). After 4-week acupuncture treatment, the serum levels of TC, TG and LDL-C were significantly decreased, the level of HDL-C was significantly increased, in lipid

  17. Thermo-induced vesicular dynamics of membranes containing cholesterol derivatives. (United States)

    Yoda, Tsuyoshi; Vestergaard, Mun'delanji C; Hamada, Tsutomu; Le, Phuc Thi Minh; Takagi, Masahiro


    Membrane structural organization is an intrinsic property of a cell membrane. Any changes in lipid composition, and/or any stimuli that affect molecular packing induce structural re-organization. It membrane dynamics provide a means by which changes in structure organization can be determined, upon a change in the membrane internal or external environment. Here, we report on the effect of thermo-stress on membranes containing cholesterol liquid crystal (LC) compounds cholesterol benzoate (BENZO) and oxidized cholesterols. We have (1) revealed that lipid vesicles containing this artificial cholesterol derivative (BENZO) is thermo-responsive, and that this thermo-sensitivity is significantly similar to naturally oxy-cholesterols (2) elucidated the mechanism behind the membrane perturbation. Using Langmuir monolayer experiments, we have demonstrated that membrane perturbation was due to an increase in the molecular surface area, (3) discussed the similarities between cholesterol benzoate in the cholesterol LC state and in lipid bilayer membranes. Last, (4) drawing from previously reported findings, our new data on membrane dynamics, and the discussion above, we propose that artificial cholesterol derivatives such as BENZO, open new possibilities for controlled and tailored design using model membrane systems. Examples could include the development of membrane technology and provide a trigger for progress in thermo-tropical liquid crystal engineering.

  18. LDL cholesterol still a problem in old age?

    DEFF Research Database (Denmark)

    Postmus, Iris; Deelen, Joris; Sedaghat, Sanaz


    BACKGROUND: Observational studies in older subjects have shown no or inverse associations between cholesterol levels and mortality. However, in old age plasma low-density lipoprotein cholesterol (LDL-C) may not reflect the lifetime level due to reverse causality, and hence the risk may...

  19. Assimilation (in vitro) of cholesterol by yogurt bacteria. (United States)

    Dilmi-Bouras, Abdelkader


    A considerable variation is noticed between the different species studied and even between the strains of the same species, in the assimilation of cholesterol in synthetic media, in presence of different concentrations of bile salts and under anaerobiosis conditions. The obtained results show that certain strains of Streptococcus thermophilus and Lactobacillus bulgaricus resist bile salts and assimilate appreciable cholesterol quantities in their presence. The study of associations shows that only strains assimilating cholesterol in a pure state remain active when they are put in associations, but there is no additional effect. However, the symbiotic effect between Streptococcus thermophilus and Lactobacillus bulgaricus of yogurt, with regard to bile salts, is confirmed. The lactic fermenters of yogurt (Y2) reduce the levels of total cholesterol, HDL-cholesterol and LDL-cholesterol, in a well-balanced way. In all cases, the assimilated quantity of HDL-cholesterol is lower than that of LDL-cholesterol. Moreover, yogurt Y2 keeps a significant number of bacteria, superior to 10(8) cells ml(-1), and has a good taste 10 days after its production.

  20. Serum cholesterol decline and depression in the postpartum period

    NARCIS (Netherlands)

    Dam, van R.M.; Schuit, A.J.; Schouten, E.G.; Vader, H.L.; Pop, V.J.M.


    We examined the relation between total serum cholesterol decline and depression in the postpartum period in a prospective study of 266 Dutch women, who were followed until 34 weeks after delivery. The decline in serum cholesterol between week 32 of pregnancy and week 10 postpartum was similar for wo

  1. Low serum cholesterol, serotonin metabolism, and violent death

    NARCIS (Netherlands)

    P.H.A. Steegmans


    textabstractA high serum cholesterol level is a well documented risk factor for atherosclerotic cardiovascular disease. Consequently, a low serum cholesterol has in general been viewed as beneficial. However, since the early 70s, results from several cohort studies and randomized trials have suggest

  2. Cholesterol Check (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts


    High blood cholesterol is a risk factor for cardiovascular disease. This podcast discusses the importance of a healthy diet and regular cholesterol screening.  Created: 9/10/2015 by MMWR.   Date Released: 9/10/2015.

  3. High serum total cholesterol--an indicator for monitoring cholesterol lowering efforts: U.S. adults, 2005-2006. (United States)

    Schober, Susan E; Carroll, Margaret D; Lacher, David A; Hirsch, Rosemarie


    Elevated serum total cholesterol is a major and modifiable risk factor for heart disease, the lead-ing cause of death in the United States (1,2). Reducing mean total serum cholesterol levels among adults to less than 200 mg/dL and reducing the proportion who have levels of 240 mg/dL or higher to less than 17% are national Healthy People 2010 objectives (3). Age-adjusted mean serum cholesterol levels among adults aged 20-74 years declined from 222 mg/dL in 1960-1962 to 203 mg/dL in 1999-2002 (4). Among adults aged 20 years and older, the percent of the population with high serum total cholesterol levels (240 mg/dL or higher) declined from 20% during 1988-1994 to 17% during 1999-2002 (4). In individual patients, a high serum total cholesterol level indicates a potential increased risk for heart disease, but further evaluation of other risk factors and the specific components of cholesterol provide the basis for determining the need for initiating therapeutic lifestyle changes or treatment with medication (5). Low-density-lipoprotein (LDL) is the cholesterol component associated with arterial blockage, and it is the primary clinical target for cholesterol management. High-density-lipoprotein (HDL) may help to protect individuals from developing heart disease. In populations, comparisons of total cholesterol levels over time can show if population groups are experiencing improvement in cholesterol levels, and knowledge of trends in levels of total cholesterol can help identify subgroups where additional prevention efforts may be needed.

  4. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. (United States)

    York, Autumn G; Williams, Kevin J; Argus, Joseph P; Zhou, Quan D; Brar, Gurpreet; Vergnes, Laurent; Gray, Elizabeth E; Zhen, Anjie; Wu, Nicholas C; Yamada, Douglas H; Cunningham, Cameron R; Tarling, Elizabeth J; Wilks, Moses Q; Casero, David; Gray, David H; Yu, Amy K; Wang, Eric S; Brooks, David G; Sun, Ren; Kitchen, Scott G; Wu, Ting-Ting; Reue, Karen; Stetson, Daniel B; Bensinger, Steven J


    Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.

  5. Enzymatic-fluorometric quantification of cholesterol in bovine milk

    DEFF Research Database (Denmark)

    Larsen, Torben


    The present paper describes an enzymatic–fluorometric method for the determination of cholesterol in milk and other opaque matrices. The initial step of the method is to liberate chemically and physically bound cholesterol from the milk fat globule membrane by enzymatic action. The method is able...... to discriminate between esterified and free cholesterol in milk. The analysis is cost effective and is developed to work directly on whole, fresh milk thereby eliminating time consuming and tedious pre-treatment procedures of the sample. More than 1000 milk samples were analysed on the day of sampling. The total...... concentration of milk cholesterol ranged from 80 to 756 μM (n = 1068; mean 351 μM). Milk cholesterol was significantly correlated to milk fat concentration as analysed by mid-infra red spectrometry (r = 0.630; n = 853) and by an enzymatic–fluorometric method (triacylglycerol) (r = 0.611; n = 842)....

  6. Bad cholesterol and good mood: exploring the link

    Directory of Open Access Journals (Sweden)

    Yashaswi Gupta


    Full Text Available It is a well-known fact that high cholesterol increases the risks of heart disease. Hence, physicians actively encourage cholesterol-lowering interventions using medications and lifestyle modifications. However, there is considerable evidence that aggressive lowering of cholesterol is associated with depression, bipolar disorders, violent behaviour, and suicidal ideation. It has been hypothesised that low cholesterol leads to low levels of serotonin, a chemical that is responsible for maintaining mood balance. South Korea and India have highest number of suicides in Asia. It is a significant challenge for physicians to search an alternative that will not only maintain healthy level of cholesterol, but also contribute to psychological well-being of the patient. Generally, the role of diet and physical activity is considered secondary to medications. However, dietary supplements like coenzyme Q10 (CoQ10, omega-3 fatty acids, niacin, and physical activity like Yoga are extremely beneficial for improving lipid profile and symptoms of depression.

  7. Regulation of cerebral cholesterol metabolism in Alzheimer disease. (United States)

    Reiss, Allison B; Voloshyna, Iryna


    Alzheimer disease (AD) is an age-related neurodegenerative disorder that manifests as a progressive loss of memory and deterioration of higher cognitive functions. Alzheimer disease is characterized by accumulation in the brain of the β-amyloid peptide generated by β- and γ-secretase processing of amyloid precursor protein. Epidemiological studies have linked elevated plasma cholesterol and lipoprotein levels in midlife with AD development. Cholesterol-fed animal models exhibit neuropathologic features of AD including accumulation of β-amyloid peptide. Specific isoforms of the cholesterol transporter apolipoprotein E are associated with susceptibility to AD. Although multiple lines of evidence indicate a role for cholesterol in AD, the exact impact and mechanisms involved remain largely unknown. This review summarizes the current state of our knowledge of the influence of cholesterol and lipid pathways in AD pathogenesis in vitro and in vivo.

  8. Paraganglioma presenting as cholesterol granuloma of the petrous apex. (United States)

    Heman-Ackah, Selena E; Huang, Tina C


    We report the unique finding of a petrous apex cholesterol granuloma associated with a paraganglioma, also known as a glomus jugulare tumor, in a 52-year-old woman who presented to our department with pulsatile tinnitus, hearing loss, aural fullness, and disequilibrium. She had been treated for a petrous apex cholesterol granuloma 20 years earlier, at which time she had undergone drainage of the granuloma via subtotal petrous apicectomy. When she came to our facility approximately 20 years later, she had signs and symptoms consistent with a jugular paraganglioma, which was likely to have been present at the time of her initial presentation for the cholesterol granuloma. In fact, microscopic bleeding from the paraganglioma might have led to the formation of the cholesterol granuloma. The metachronous presentation of these two entities, which to our knowledge has not been reported previously in the literature, indicates the potential association of paragangliomas with the formation of cholesterol granulomas of the petrous apex.

  9. Cholesterol-induced protein sorting: an analysis of energetic feasibility

    DEFF Research Database (Denmark)

    Lundbaek, J A; Andersen, O S; Werge, T;


    transmembrane domain (TMD). M. S. Bretscher and S. Munro (SCIENCE: 261:1280-1281, 1993) therefore proposed a physical sorting mechanism based on the hydrophobic match between the proteins' TMD and the bilayer thickness, in which cholesterol would regulate protein sorting by increasing the lipid bilayer...... thickness. In this model, Golgi proteins with short TMDs would be excluded from cholesterol-enriched domains (lipid rafts) that are incorporated into transport vesicles destined for the plasma membrane. Although attractive, this model remains unproven. We therefore evaluated the energetic feasibility...... thickness per se, however, have only a modest effect on sorting; the major effect arises because cholesterol changes also the bilayer material properties, which augments the energetic penalty for incorporating short TMDs into cholesterol-enriched domains. We conclude that cholesterol-induced changes...

  10. Resveratrol Protects Rabbits Against Cholesterol Diet-Induced Hyperlipidaemia. (United States)

    Tanko, Y; Jimoh, A; Ahmed, A; Mohammed, A; Ayo, J O


    The excessive consumption of high cholesterol diet has been associated with an increased incidence oflipidaemia. Lipidaemia is enhanced by formation of oxidative stress, lipid peroxidation and hyperglycaemia. The aim ofthese experiments was to investigate the protective effect of resveratrol co-administered with cholesterol diet inducedhyperlipidaemia in rabbits. Thirty rabbits divided into six groups of five animal (group= 5) each: group 1 = normal control,group 2 = cholesterol diet/high fat diet group only (HFD), group 3 = resveratrol 200 mg/kg (R200), group 4 = resveratrol400 mg/kg (R400), group 5 = HFD + R200 and group 6 = HFD + R400. The normal group was fed with standard animalfeeds only; while the HFD groups were fed with standard animal feeds + cholesterol diet (10% Groundnut oil, 20%Groundnut mill and 2% cholesterol). Resveratrol-treated rabbits received resveratrol suspended in 10 g/Lcarboxymethylcellulose (CMC) and the control group received the vehicle only, CMC. The preparations were administeredfor 8 weeks of experimental protocol. At the end of the study period, the animals were sacrificed. Blood and plasma sampleswere collected. Serum evaluation of lipid profile such as total cholesterol (TC), triacylglycerol (Tg), low density lipoproteincholesterol (LDP-c) and high density lipoprotein cholesterol (HDL-c) were also assessed. The results obtained showsignificant (P < 0.05) decrease in total cholesterol (TC), Low density lipoprotein cholesterol (LDP-c), total triacylglyceroland an increase in high density lipoprotein cholesterol (HDL-c) in resveratrol treated groups compared to HFD group only.In conclusion, the findings indicated that Resveratrol may contain polar products able to lower plasma lipid concentrationsand might be beneficial in treatment of hyperlipidemia and atherosclerosis.

  11. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid. (United States)

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C


    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies.

  12. Bacterial colonization of host cells in the absence of cholesterol.

    Directory of Open Access Journals (Sweden)

    Stacey D Gilk


    Full Text Available Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24(-/- mouse embryonic fibroblasts (MEFs. DHCR24(-/- MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24(-/- MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24(-/- MEFs. In contrast, C. burnetii entry was significantly decreased in -cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated α(Vβ(3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24(-/- MEFs lacked the CD63-positive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions.

  13. The Role of Dietary Cholesterol in Lipoprotein Metabolism and Related Metabolic Abnormalities: A Mini-review. (United States)

    Kapourchali, Fatemeh Ramezani; Surendiran, Gangadaran; Goulet, Amy; Moghadasian, Mohammed H


    Cholesterol plays a vital role in cell biology. Dietary cholesterol or "exogenous" cholesterol accounts for approximately one-third of the pooled body cholesterol, and the remaining 70% is synthesized in the body (endogenous cholesterol). Increased dietary cholesterol intake may result in increased serum cholesterol in some individuals, while other subjects may not respond to dietary cholesterol. However, diet-increased serum cholesterol levels do not increase the low-density lipoprotein/high-density lipoprotein (LDL/HDL) cholesterol ratio, nor do they decrease the size of LDL particles or HDL cholesterol levels. Elevated levels of LDL cholesterol, reduced HDL cholesterol levels, and small, dense LDL particles are independent risk factors for coronary artery disease. Dietary cholesterol is the primary approach for treatment of conditions such as the Smith-Lemli-Opitz syndrome. Recent studies have highlighted mechanisms for absorption of dietary cholesterol. These studies have help understand how dietary and/or pharmaceutical agents inhibit cholesterol absorption and thereby reduce LDL cholesterol concentrations. In this article, various aspects of cholesterol metabolism, including dietary sources, absorption, and abnormalities in cholesterol metabolism, have been summarized and discussed.

  14. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine

    NARCIS (Netherlands)

    den Bosch, Heleen M. de Vogel-van; de Wit, Nicole J. W.; Hooiveld, Guido J. E. J.; Vermeulen, Hanneke; van der Veen, Jelske N.; Houten, Sander M.; Kuipers, Folkert; Mueller, Michael; van der Meer, Roelof


    A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine. Am J Physiol Gastrointest Liver Physiol 294: G1171-G1180, 2008. First published March 20, 2008; doi:10.1152/ajpgi.00360.2007.-Transporters present in the epithelium of the small intest

  15. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC and tilted domains

    Directory of Open Access Journals (Sweden)

    Jacques eFantini


    Full Text Available The plasma membrane of eukaryotic cells contains several types of lipids displaying high biochemical variability in both their apolar moiety (e.g. the acyl chain of glycerolipids and their polar head (e.g. the sugar structure of glycosphingolipids. Among these lipids, cholesterol is unique because its biochemical variability is almost exclusively restricted to the oxidation of its polar -OH group. Although generally considered the most rigid membrane lipid, cholesterol can adopt a broad range of conformations due to the flexibility of its isooctyl chain linked to the polycyclic sterane backbone. Moreover, cholesterol is an asymmetric molecule displaying a planar face and a rough  face. Overall, these structural features open up a number of possible interactions between cholesterol and membrane lipids and proteins, consistent with the prominent regulatory functions that this unique lipid exerts on membrane components. The aim of this review is to describe how cholesterol interacts with membrane lipids and proteins at the molecular/atomic scale, with special emphasis on transmembrane domains of proteins containing either the consensus cholesterol-binding motifs CRAC and CARC or a tilted peptide. Despite their broad structural diversity, all these domains bind cholesterol through common molecular mechanisms, leading to the identification of a subset of amino acid residues that are overrepresented in both linear and three-dimensional membrane cholesterol-binding sites.

  16. Enhancing reverse cholesterol transport/raising HDL cholesterol : new options for prevention and treatment of cardiovascular disease

    NARCIS (Netherlands)

    Jukema, J W; Lenselink, M; de Grooth, G J; Boekholdt, S M; Liem, A H; Kuivenhoven, J-A; Kastelein, J J P


    High-density lipoprotein cholesterol (HDL-c) plays a crucial role in the concept of reverse cholesterol transport and has many other beneficial properties which may interfere with atherogenesis and plaque rupture. Low HDL-c levels are currently considered to be an important risk factor for the devel

  17. Cholesterol transport by the placenta : Placental liver X receptor activity as a modulator of fetal cholesterol metabolism?

    NARCIS (Netherlands)

    Plosch, T.; van Straten, E. M. E.; Kuipers, F.


    Cholesterol is an important sterol in mammals. Defects in cholesterol synthesis or intracellular routing have devastating consequences already in utero: the Smith-Lemli-Opitz syndrome, desmosterolosis and Niemann-Pick C I disease provide examples of severe human inherited diseases caused by mutation

  18. The influence of cholesterol and biomass concentration on the uptake of cholesterol by Lactobacillus from MRS broth

    Directory of Open Access Journals (Sweden)

    Małgorzata Ziarno


    Full Text Available The aim of this study was the determination of some factors influence (i.e. the vitality of bacteria cells and the cholesterol concentration on the ability of selected Lactobacillus sp. to cholesterol uptake during culture in MRS broth. Three Lactobacillus strains (Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei isolated from commercial single species lyophilized dairy starter cultures and three Lactobacillus strains (Lb. plantarum, Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus originated from commercial pharmaceuticals were used in this study. The uptake of cholesterol from MRS broth during the growth of Lactobacillus sp., expressed as the difference between the final and the initial concentrations of cholesterol, ranged from 0.053 to 0.153 g/dm³, apart from the initial cholesterol content and the origin of Lactobacillus sp. The results confirmed that biomass concentration have a statistically significant effect on uptake of cholesterol. The ten-fold increase of the amount of intact cells biomass caused about 1.5-2-fold increase of the amount of cholesterol removed. The influence of the concentration of biomass of alive cells on the removal of cholesterol was bigger than in case of the heat-sterilized cells.

  19. Function of MRP1/ABCC1 is not dependent on cholesterol or cholesterol-stabilized lipid rafts

    NARCIS (Netherlands)

    Meszaros, Peter; Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem


    MRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly comple

  20. Molecular interactions between bile salts, phospholipids and cholesterol : relevance to bile formation, cholesterol crystallization and bile salt toxicity

    NARCIS (Netherlands)

    Moschetta, Antonio


    Cholesterol is a nonpolar lipid dietary constituent, absorbed from the small intestine, transported in blood and taken up by the liver. In bile, the sterol is solubilized in mixed micelles by bile salts and phospholipids. In case of supersaturation, cholesterol is kept in vesicles with phospholipid

  1. Cholesterol Levels: What You Need to Know | NIH MedlinePlus the Magazine (United States)

    ... this page please turn Javascript on. Feature: High Cholesterol Cholesterol Levels: What You Need to Know Past Issues / Summer 2012 Table of Contents Measuring Cholesterol Levels Learn more at MedlinePlus: ...

  2. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.


    Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). T

  3. LCAT, HDL Cholesterol and Ischemic Cardiovascular Disease: A Mendelian Randomization Study of HDL Cholesterol in 54,500 Individuals

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Ali Qayyum, Abbas


    Background:Epidemiologically, high-density lipoprotein (HDL) cholesterol levels associate inversely with risk of ischemic cardiovascular disease. Whether this is a causal relation is unclear.Methods:We studied 10,281 participants in the Copenhagen City Heart Study (CCHS) and 50,523 participants...... in the Copenhagen General Population Study (CGPS), of which 991 and 1,693 participants, respectively, had developed myocardial infarction (MI) by August 2010. Participants in the CCHS were genotyped for all six variants identified by resequencing lecithin-cholesterol acyltransferase in 380 individuals. One variant......, S208T (rs4986970, allele frequency 4%), associated with HDL cholesterol levels in both the CCHS and the CGPS was used to study causality of HDL cholesterol using instrumental variable analysis.Results:Epidemiologically, in the CCHS, a 13% (0.21 mmol/liter) decrease in plasma HDL cholesterol levels...


    Directory of Open Access Journals (Sweden)



    Full Text Available BACKGROUND: In modern psychiatry, there is a movement to understand mental health, not solely based on behaviors and subjective report, but also based on objective markers of illness. Several studies have focused on a relationship between serum cholesterol levels and aggressive behaviors including suicide. AIM: To identify a potential link between cholesterol and suicidal behavior. MATERIAL AND METHODS: 150 patients with psychiatry diagnosis were divided into three equal groups (50 each: those who had a recent suicidal attempt, those who had suicidal ideations but no attempts and those with psychiatry diagnosis but no suicidal ideations and attempts. Blood sample for total cholesterol level was on IPD or OPD basis. The study was started after taking approval from institute ethical committee. Analysis was done using Chi square test. OBSERVATIONS AND RESULTS: It was found that maximum patients who attempted suicide belonged to major depression and schizophrenia followed by substance dependence and bipolar affective disorder (BPAD with major depression and there was statistical difference in cholesterol levels of patients with suicide attempt, with suicidal ideations and control group. 42% and 44% of major depression and schizophrenia cases respectively had low total serum cholesterol levels (below 160 mg%. CONCLUSION: There is a potential link between serum total cholesterol levels and suicidal behavior. Taking the literature as a whole there is substantial evidence that low cholesterol levels are found in suicidal behaviors of various psychiatric illnesses especially major depressive disorder, schizophrenia, substance dependence and bipolar depressive disorder

  5. Sesamin Enhances Cholesterol Efflux in RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Nan Liu


    Full Text Available Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicited by oxidized low-density lipoprotein cholesterol (oxLDL in RAW264.7 cells. Treatment with sesamin (10 μM significantly enhanced cholesterol efflux mediated by high-density lipoprotein (HDL. Realtime quantitative PCR and luciferase assays showed that sesamin significantly increased the mRNA levels of PPARγ, LXRα, and ABCG1, and increased the transcriptional activity of PPARγ. The stimulating effect of sesamin on cholesterol efflux was substantially inhibited by the co-treatment with GW9662, a potent inhibitor of PPARγ. These results suggest that sesamin is a new inhibitor of foam cell formation that may stimulate cholesterol efflux through upregulation of the PPARγ-LXRα-ABCG1 pathway.

  6. Sesamin enhances cholesterol efflux in RAW264.7 macrophages. (United States)

    Liu, Nan; Wu, Chongming; Sun, Lizhong; Zheng, Jun; Guo, Peng


    Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicited by oxidized low-density lipoprotein cholesterol (oxLDL) in RAW264.7 cells. Treatment with sesamin (10 μM) significantly enhanced cholesterol efflux mediated by high-density lipoprotein (HDL). Realtime quantitative PCR and luciferase assays showed that sesamin significantly increased the mRNA levels of PPARγ, LXRα, and ABCG1, and increased the transcriptional activity of PPARγ. The stimulating effect of sesamin on cholesterol efflux was substantially inhibited by the co-treatment with GW9662, a potent inhibitor of PPARγ. These results suggest that sesamin is a new inhibitor of foam cell formation that may stimulate cholesterol efflux through upregulation of the PPARγ-LXRα-ABCG1 pathway.

  7. Cholesterol sulfate in human physiology: what's it all about? (United States)

    Strott, Charles A; Higashi, Yuko


    Cholesterol sulfate is quantitatively the most important known sterol sulfate in human plasma, where it is present in a concentration that overlaps that of the other abundant circulating steroid sulfate, dehydroepiandrosterone (DHEA) sulfate. Although these sulfolipids have similar production and metabolic clearance rates, they arise from distinct sources and are metabolized by different pathways. While the function of DHEA sulfate remains an enigma, cholesterol sulfate has emerged as an important regulatory molecule. Cholesterol sulfate is a component of cell membranes where it has a stabilizing role, e.g., protecting erythrocytes from osmotic lysis and regulating sperm capacitation. It is present in platelet membranes where it supports platelet adhesion. Cholesterol sulfate can regulate the activity of serine proteases, e.g., those involved in blood clotting, fibrinolysis, and epidermal cell adhesion. As a result of its ability to regulate the activity of selective protein kinase C isoforms and modulate the specificity of phosphatidylinositol 3-kinase, cholesterol sulfate is involved in signal transduction. Cholesterol sulfate functions in keratinocyte differentiation, inducing genes that encode for key components involved in development of the barrier. The accumulating evidence demonstrating a regulatory function for cholesterol sulfate appears solid; the challenge now is to work out the molecular mechanisms whereby this interesting molecule carries out its various roles.

  8. Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis. (United States)

    Wipperman, Matthew F; Sampson, Nicole S; Thomas, Suzanne T


    The ability of science and medicine to control the pathogen Mycobacterium tuberculosis (Mtb) requires an understanding of the complex host environment within which it resides. Pathological and biological evidence overwhelmingly demonstrate how the mammalian steroid cholesterol is present throughout the course of infection. Better understanding Mtb requires a more complete understanding of how it utilizes molecules like cholesterol in this environment to sustain the infection of the host. Cholesterol uptake, catabolism and broader utilization are important for maintenance of the pathogen in the host and it has been experimentally validated to contribute to virulence and pathogenesis. Cholesterol is catabolized by at least three distinct sub-pathways, two for the ring system and one for the side chain, yielding dozens of steroid intermediates with varying biochemical properties. Our ability to control this worldwide infectious agent requires a greater knowledge of how Mtb uses cholesterol to its advantage throughout the course of infection. Herein, the current state of knowledge of cholesterol metabolism by Mtb is reviewed from a biochemical perspective with a focus on the metabolic genes and pathways responsible for cholesterol steroid catabolism.

  9. Cholesterol transport and regulation in the mammary gland. (United States)

    Ontsouka, Edgar C; Albrecht, Christiane


    The milk-producing alveolar epithelial cells secrete milk that remains after birth the principal source of nutrients for neonates. Milk secretion and composition are highly regulated processes via integrated actions of hormones and local factors which involve specific receptors and downstream signal transduction pathways. Overall milk composition is similar among mammalian species, although the content of individual constituents such as lipids may significantly differ from one species to another. The milk lipid fraction is essentially composed of triglycerides, which represent more than 95 % of the total lipids in human and commercialized bovine milk. Though sterols, including cholesterol, which is the major milk sterol, represent less than 0.5 % of the total milk lipid fraction, they are of key importance for several biological processes. Cholesterol is required for the formation of biological membranes especially in rapidly growing organisms, and for the synthesis of sterol-based compounds. Cholesterol found in milk originates predominantly from blood uptake and, to a certain extent, from local synthesis in the mammary tissue. The present review summarizes current knowledge on cellular mechanisms and regulatory processes determining intra- and transcellular cholesterol transport in the mammary gland. Cholesterol exchanges between the blood, the mammary alveolar cells and the milk, and the likely role of active cholesterol transporters in these processes are discussed. In this context, the hormonal regulation and signal transduction pathways promoting active cholesterol transport as well as potential regulatory crosstalks are highlighted.

  10. Cholesterol-Lowering Effect of Allicin on Hypercholesterolemic ICR Mice

    Directory of Open Access Journals (Sweden)

    Yin Lu


    Full Text Available Allicin was discussed as an active compound with regard to the beneficial effects of garlic in atherosclerosis. The aim of this study was to investigate the cholesterol-lowering properties of allicin. In order to examine its effects on hypercholesterolemia in male ICR mice, this compound with doses of 5, 10, or 20 mg/kg body weight was given orally daily for 12 weeks. Changes in body weight and daily food intake were measured regularly during the experimental period. Final contents of serum cholesterol, triglyceride, glucose, and hepatic cholesterol storage were determined. Following a 12-week experimental period, the body weights of allicin-fed mice were less than those of control mice on a high-cholesterol diet by 38.24±7.94% (P<0.0001 with 5 mg/kg allicin, 39.28±5.03% (P<0.0001 with 10 mg/kg allicin, and 41.18±5.00% (P<0.0001 with 20 mg/kg allicin, respectively. A decrease in daily food consumption was also noted in most of the treated animals. Meanwhile, allicin showed a favorable effect in reducing blood cholesterol, triglycerides, and glucose levels and caused a significant decrease in lowering the hepatic cholesterol storage. Accordingly, both in vivo and in vitro results demonstrated a potential value of allicin as a pronounced cholesterol-lowering candidate, providing protection against the onset of atherosclerosis.

  11. Low HDL cholesterol, aggression and altered central serotonergic activity. (United States)

    Buydens-Branchey, L; Branchey, M; Hudson, J; Fergeson, P


    Many studies support a significant relation between low cholesterol levels and poor impulse, aggression and mood control. Evidence exists also for a causal link between low brain serotonin (5-HT) activity and these behaviors. Mechanisms linking cholesterol and hostile or self-destructive behavior are unknown, but it has been suggested that low cholesterol influences 5-HT function. This study was designed to explore the relationship between plasma cholesterol, measures of impulsivity and aggression, and indices of 5-HT function in personality disordered cocaine addicts. Thirty-eight hospitalized male patients (age 36.8+/-7.1) were assessed with the DSM-III-R, the Buss-Durkee Hostility Inventory (BDHI), the Barratt Impulsiveness Scale (BIS) and the Brown-Goodwin Assessment for Life History of Aggression. Fasting basal cholesterol (total, LDL and HDL) was determined 2 weeks after cocaine discontinuation. On the same day 5-HT function was assessed by neuroendocrine (cortisol and prolactin) and psychological (NIMH and 'high' self-rating scales) responses following meta-chlorophenylpiperazine (m-CPP) challenges. Reduced neuroendocrine responses, 'high' feelings and increased 'activation-euphoria' following m-CPP have been interpreted as indicating 5-HT alterations in a variety of psychiatric conditions. Significantly lower levels of HDL cholesterol were found in patients who had a history of aggression (P=0.005). Lower levels of HDL cholesterol were also found to be significantly associated with more intense 'high' and 'activation-euphoria' responses as well as with blunted cortisol responses to m-CPP (P=0.033, P=0.025 and P=0.018, respectively). This study gives further support to existing evidence indicating that in some individuals, the probability of exhibiting impulsive and violent behaviors may be increased when cholesterol is low. It also suggests that low cholesterol and alterations in 5-HT activity may be causally related.

  12. Serum cholesterol and nigrostriatal R2* values in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Guangwei Du

    Full Text Available BACKGROUND: The occurrence of Parkinson's disease (PD is known to be associated both with increased nigrostriatal iron content and with low serum cholesterol and PD, but there has been no study to determine a potential relationship between these two factors. METHODS: High-resolution MRI (T1-, T2, and multiple echo T2*-weighted imaging and fasting lipid levels were obtained from 40 patients with PD and 29 healthy controls. Iron content was estimated from mean R2* values (R2* = 1/T2* calculated for each nigrostriatal structure including substantia nigra, caudate, putamen, and globus pallidus. This was correlated with serum cholesterol levels after controlling for age, gender, and statin use. RESULTS: In patients with PD, higher serum cholesterol levels were associated with lower iron content in the substantia nigra (R = -0.43, p = 0.011 for total-cholesterol, R = -0.31, p = 0.080 for low-density lipoprotein and globus pallidus (R = -0.38, p = 0.028 for total-cholesterol, R = -0.27, p = 0.127 for low-density lipoprotein, but only a trend toward significant association of higher total-cholesterol with lower iron content in the striatum (R = -0.34, p = 0.052 for caudate; R = -0.32, p = 0.061 for putamen. After adjusting for clinical measures, the cholesterol-iron relationships held or became even stronger in the substantia nigra and globus pallidus, but weaker in the caudate and putamen. There was no significant association between serum cholesterol levels and nigrostriatal iron content for controls. CONCLUSIONS: The data show that higher serum total-cholesterol concentration is associated with lower iron content in substantia nigra and globus pallidus in Parkinson's disease patients. Further studies should investigate whether this is mechanistic or epiphenomenological relationship.

  13. Cholesterol induces fetal rat enterocyte death in culture

    Directory of Open Access Journals (Sweden)

    Gazzola J.


    Full Text Available The effect of cholesterol on fetal rat enterocytes and IEC-6 cells (line originated from normal rat small intestine was examined. Both cells were cultured in the presence of 20 to 80 µM cholesterol for up to 72 h. Apoptosis was determined by flow cytometric analysis and fluorescence microscopy. The expression of HMG-CoA reductase and peroxisome proliferator-activated receptor gamma (PPARgamma was measured by RT-PCR. The addition of 20 µM cholesterol reduced enterocyte proliferation as early as 6 h of culture. Reduction of enterocyte proliferation by 28 and 41% was observed after 24 h of culture in the presence and absence of 10% fetal calf serum, respectively, with the effect lasting up to 72 h. Treatment of IEC-6 cells with cholesterol for 24 h raised the proportion of cells with fragmented DNA by 9.7% at 40 µM and by 20.8% at 80 µM. When the culture period was extended to 48 h, the effect of cholesterol was still more pronounced, with the percent of cells with fragmented DNA reaching 53.5% for 40 µM and 84.3% for 80 µM. Chromatin condensation of IEC-6 cells was observed after treatment with cholesterol even at 20 µM. Cholesterol did not affect HMG-CoA reductase expression. A dose-dependent increase in PPARgamma expression in fetal rat enterocytes was observed. The expression of PPAR-gamma was raised by 7- and 40-fold, in the presence and absence of fetal calf serum, respectively, with cholesterol at 80 mM. The apoptotic effect of cholesterol on enterocytes was possibly due to an increase in PPARgamma expression.

  14. Does fat in milk, butter and and cholesterol differently?

    DEFF Research Database (Denmark)

    Tholstrup, T,; Høy, Carl-Erik; Andersen, L.N.


    and 8 hours following intake of the meals. Results: Fasting LDL cholesterol concentration was significantly higher after butter than cheese diet (p 0.037), with a borderline significant difference in total cholesterol (p = 0.054) after the experimental periods of three weeks. Postprandial glucose showed...... a higher response after cheese diet than after milk diet (p = 0.010, diet X time interaction). Conclusions: A different effect of fat in milk and butter could not be confirmed in this study. The moderately lower LDL cholesterol after cheese diet compared to butter diet should be investigated further....

  15. Reverse cholesterol transport: From classical view to new insights

    Institute of Scientific and Technical Information of China (English)

    Astrid; E; van; der; Velde


    Cholesterol is of vital importance for the human body. It is a constituent for most biological membranes, it is needed for the formation of bile salts, and it is the pre- cursor for steroid hormones and vitamin D. However, the presence of excess cholesterol in cells, and in particular in macrophages in the arterial vessel wall, might be harmful. The accumulation of cholesterol in arteries can lead to atherosclerosis, and in turn, to other cardiovascular diseases. The route that is primarily thought to be re...

  16. Cholesterol-lowering drugs: science and marketing. (United States)

    Garattini, Livio; Padula, Anna


    Long-term use of statin therapy is essential to obtain clinical benefits, but adherence is often suboptimal and some patients are also reported to fail because of 'statin resistance'. The identification of PCSK9 as a key factor in the LDL clearance pathway has led to the development of new monoclonal antibodies. Here we critically review the economic evaluations published in Europe and focused on statins. We searched the PubMed database to select the studies published from July 2006 to June 2016 and finally selected 19 articles. Overall, the majority of studies were conducted from a third-party payer's viewpoint and recurred to modelling. Most studies were sponsored by industry and funding seemed to play a pivotal role in the study design. Patients resistant to LDL-C level reduction were considered only in a few studies. The place in therapy of the new class of biologic should be considered a kind of 'third line' for cholesterol-lowering, after patients have failed with restricted dietary regimens and then with current drug therapies. Otherwise they could result in hardly sustainable expenses even for developed countries.

  17. Statins: Cholesterol guidelines and Indian perspective

    Directory of Open Access Journals (Sweden)

    Anil S Menon


    Full Text Available Statins have become an important drug in preventing the occurrence of atherosclerotic cardiovascular disease (ASCVD. The effectiveness of statins in reducing ASCVD has been established in large-scale clinical trials. The lipid management guidelines have been periodically modified due to accumulating evidence about the proportionate benefit achieved with a progressive reduction in cholesterol levels with higher doses of statins and even in those at low risk of development of ASCVD. The current American College of Cardiology/American Heart Association guidelines have based its recommendations from data gathered exclusively from randomized controlled trials. It has simplified the use of statins, but also raised questions regarding the validity of its cardiovascular event risk prediction tool. Epidemiology of cardiovascular disease in India differs from the western population; there is an increased the prevalence of metabolic syndrome and atherogenic dyslipidemia phenotype a group not addressed in the current guidelines. The guidelines are based on trials, which do not have a representative South Asian population. This article reviews the relevant literature, and examines the issues involved in adopting the guidelines to the Indian population.

  18. Regulation of neutral cholesterol esterase and acyl-CoA : cholesterol acyltransferase in the rat adrenal gland. (United States)

    Beins, D M; Vining, R; Balasubramaniam, S


    The activities of neutral cholesterol esterase and acyl-CoA : cholesterol acyltransferase in rat adrenal gland were measured at various time intervals over 24 h. The activity of cholesterol esterase displayed diurnal rhythm, with a major peak at the onset of darkness coinciding with the peak in the diurnal rhythm of plasma corticosterone concentration. The activity of acyl-CoA : cholesterol acyltransferase also exhibited a characteristic diurnal rhythm, with the minimum activity occurring 3 h after the onset of darkness. The profile of the rhythm exhibited by the activity of the esterifying enzyme was similar to the mirror image of the pattern of diurnal rhythm in the activity of 3-hydroxy-3-methylglutaryl-CoA reductase. Microsomal non-esterified cholesterol showed a gradual decline with a significant decrease in concentration at the onset of darkness, thus suggesting that diurnal removal of cholesterol in the environment of the esterifying enzyme and hydroxymethylglutaryl-CoA reductase leads to such diurnal decrease or increase in the activities of these two enzymes. Acute administration of corticotropin led to a 3-fold increase in the activity of cholesterol esterase, a 50% decrease in the activity of acyl-CoA : cholesterol acyltransferase and a 2-fold increase in the activity of hydroxymethylglutaryl-CoA reductase. Corticotropin administration also resulted in a significant decrease in microsomal non-esterified cholesterol and increase in plasma corticosterone concentration. These observations suggest that corticotropin plays an important part in generating the diurnal rhythm in the activities of the three enzymes.

  19. The origin of cholesterol in chyle demonstrated by nuclear indicator methods; Origines du cholesterol du chyle mises en evidence par la methode des indicateurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, M


    In order to obtain information about the mechanism of the intestinal absorption of cholesterol, rats having a lymphatic abdominal fistula are used. The animals receive either 4-{sup 14}C- cholesterol subcutaneously or orally, or the 1-{sup 14}C acetate. The study of the specific radio-activities of the cholesterol in chyle, in serum, in the lining, and in the intestinal contents makes it possible to define the roles played by the transfer cholesterol from the serum, by the cholesterol synthesised intestinally, and by the absorption cholesterol, in the formations of the lymph and of the chylomicrons. A new theory is proposed for the mechanism of cholesterol absorption. (author) [French] Pour obtenir des renseignements concernant le mecanisme de l'absorption intestinale du cholesterol, on utilise des rats porteurs d'une fistule lymphatique abdominale. Les animaux recoivent soit du cholesterol 4-{sup 14}C par voie sous-cutanee ou par voie orale, soit de l'acetate 1-{sup 14}C. L'etude des radioactivites specifiques du cholesterol du chyle, du serum, de la paroi et du contenu intestinal permet de preciser les roles joues par le cholesterol de transfert d'origine serique, par le cholesterol de synthese intestinale et par le cholesterol d'absorption, dans la formation de la lymphe et des chylomicrons. Une theorie nouvelle concernant le mecanisme de l'absorption du cholesterol est proposee. (auteur)

  20. Significance of the percentage of cholesterol efflux capacity and total cholesterol efflux capacity in patients with or without coronary artery disease. (United States)

    Norimatsu, Kenji; Kuwano, Takashi; Miura, Shin-Ichiro; Shimizu, Tomohiko; Shiga, Yuhei; Suematsu, Yasunori; Miyase, Yuiko; Adachi, Sen; Nakamura, Ayumi; Imaizumi, Satoshi; Iwata, Atsushi; Nishikawa, Hiroaki; Uehara, Yoshinari; Saku, Keijiro


    We hypothesized that cholesterol efflux capacity is more useful than the lipid profile as a marker of the presence and the severity of coronary artery disease (CAD). Therefore, we investigated the associations between the presence and the severity of CAD and both the percentage of cholesterol efflux capacity and total cholesterol efflux capacity and the lipid profile including the high-density lipoprotein cholesterol (HDL-C) level in patients who underwent coronary computed tomography angiography (CTA). The subjects consisted of 204 patients who were clinically suspected to have CAD and underwent CTA. We isolated HDL from plasma by ultracentrifugation and measured the percentage of cholesterol efflux capacity using (3)H-cholesterol-labeled J774 macrophage cells and calculated total cholesterol efflux capacity as follows: the percentage of cholesterol efflux capacity/100× HDL-C levels. While the percentage of cholesterol efflux capacity was not associated with the presence or the severity of CAD, total cholesterol efflux capacity and HDL-C in patients with CAD were significantly lower than those in patients without CAD. In addition, total cholesterol efflux capacity and HDL-C, but not the percentage of cholesterol efflux capacity, significantly decreased as the number of coronary arteries with significant stenosis increased. Total cholesterol efflux capacity was positively correlated with HDL-C, whereas the percentage of cholesterol efflux capacity showed only weak association. In a logistic regression analysis, the presence of CAD was independently associated with total cholesterol efflux capacity, in addition to age and gender. Finally, a receiver-operating characteristic curve analysis indicated that the areas under the curves for total cholesterol efflux capacity and HDL-C were similar. In conclusion, the percentage of cholesterol efflux capacity using the fixed amount of isolated HDL was not associated with CAD. On the other hand, the calculated total

  1. On the Interaction between Digitonin and Cholesterol in Langmuir Monolayers. (United States)

    Wojciechowski, Kamil; Orczyk, Marta; Gutberlet, Thomas; Brezesinski, Gerald; Geue, Thomas; Fontaine, Philippe


    In this article, we describe the effect of a highly hemolytic saponin, digitonin, on model lipids cholesterol and dipalmitoylphosphatidylcholine (DPPC) using a combination of tensiometric (surface pressure and dilatational surface elasticity), spectroscopic (infrared reflection absorption spectroscopy, IRRAS), microscopic (fluorescence microscopy), and scattering techniques (neutron reflectivity, NR, and grazing incidence X-ray diffraction, GIXD). The monolayers of individual lipids and their 10:9 (mol/mol) mixture were exposed to an aqueous solution of digitonin (10(-4) M) by subphase exchange using a setup developed recently in our laboratory. The results confirm that digitonin can adsorb onto both bare and lipid-covered water-air interfaces. In the case of DPPC, a relatively weak interaction can be observed, but the presence of cholesterol drastically enhances the effect of digitonin. The latter is shown to dissociate the weak cholesterol-DPPC complexes and to bind cholesterol in an additional layer attached to the original lipid monolayer.

  2. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian


    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  3. Greased hedgehogs: new links between hedgehog signaling and cholesterol metabolism

    NARCIS (Netherlands)

    Breitling, R.


    Greased hedgehogs: New links between hedgehog signaling and cholesterol metabolism Rainer Breitling * Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands email: Rainer Breitling ( *Co

  4. Three cases of cholesterol granuloma in the mandible

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Min Jung; Huh, Kyung Hoe; Yi, Won Jin; Moon, Je Woon; Choi, Soon Chul [Seoul National Univ. School of Dentitry, Seoul (Korea, Republic of); Shin, Jae Myung [Inje Univ. College of Medicine, Kimhae (Korea, Republic of)


    Cholesterol granuloma is an unusual clinical entity described as an inflammatory granulation in response to the deposit of cholesterol crystals. It can develop in any portion of air cells within the temporal bone as a result of a lack of aeration and inadequate drainage, especially in the middle ear cavity. Here, we report very unusual three cases of cholesterol granuloma developed in mandible. In the first case a 68-year-old male with a large mass arising from the mandible was observed. Panoramic radiograph and computed tomography scans revealed a huge expanding lesion in the mandible. In the second case a 47-years-old female with a cystic lesion in the mandible was observed. And in the third case a 19-year-old male complaining atypical facial pain had a large lesion in the mandibular ramous. The histopathologic examinations of the cases showed numerous cholesterol crystal surrounded by multinucleated foreign body giant cells.

  5. Nutrition and Nonalcoholic Fatty Liver Disease: The Significance of Cholesterol

    Directory of Open Access Journals (Sweden)

    Munechika Enjoji


    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a common chronic liver disease that ranges in severity from simple steatosis to cirrhosis. NAFLD is considered to be associated with hepatic metabolic disorders, resulting in overaccumulation of fatty acids/triglycerides and cholesterol. The pathogenesis and progression of NAFLD are generally explained by the “two-hit theory.” Most studies of lipid metabolism in the NAFLD liver have focused on the metabolism of fatty acids/triglycerides; therefore, the impact of cholesterol metabolism is still ambiguous. In this paper, we review recent studies on NAFLD from the viewpoint of hepatic lipid metabolism-associated factors and discuss the impact of disordered cholesterol metabolism in the etiology of NAFLD. The clinical significance of managing cholesterol metabolism, an option for the treatment of NAFLD, is also discussed.

  6. Alternative to decrease cholesterol in sheep milk cheeses. (United States)

    Gómez-Cortés, P; Viturro, E; Juárez, M; de la Fuente, M A


    The presence of cholesterol in foods is of nutritional interest because high levels of this molecule in human plasma are associated with an increasing risk of cardiovascular disease and nowadays consumers are demanding healthier products. The goal of this experiment was to diminish the cholesterol content of Manchego, the most popular Spanish cheese manufactured from ewes milk. For this purpose three bulk milks coming from dairy ewe fed with 0 (Control), 3 and 6% of linseed supplement on their diet were used. Nine cheeses (3 per bulk milk) were manufactured and ripened for 3 months. Cholesterol of ewes milk cheese from 6% to 12% linseed supplemented diets decreased by 9.6% and 16.1% respectively, therefore supplying a healthier profile. In a second experiment, different sources of unsaturated fatty acids (rich in oleic, linoleic and α-linolenic acids) were supplemented to dairy ewes and no significant differences were found on cheese cholesterol levels.

  7. Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases

    Directory of Open Access Journals (Sweden)

    Manoj Kumar


    Full Text Available Cardiovascular diseases are one of the major causes of deaths in adults in the western world. Elevated levels of certain blood lipids have been reported to be the principal cause of cardiovascular disease and other disabilities in developed countries. Several animal and clinical trials have shown a positive association between cholesterol levels and the risks of coronary heart disease. Current dietary strategies for the prevention of cardiovascular disease advocate adherence to low-fat/low-saturated-fat diets. Although there is no doubt that, in experimental conditions, low-fat diets offer an effective means of reducing blood cholesterol concentrations on a population basis, these appear to be less effective, largely due to poor compliance, attributed to low palatability and acceptability of these diets to the consumers. Due to the low consumer compliance, attempts have been made to identify other dietary components that can reduce blood cholesterol levels. Supplementation of diet with fermented dairy products or lactic acid bacteria containing dairy products has shown the potential to reduce serum cholesterol levels. Various approaches have been used to alleviate this issue, including the use of probiotics, especially Bifidobacterium spp. and Lactobacillus spp.. Probiotics, the living microorganisms that confer health benefits on the host when administered in adequate amounts, have received much attention on their proclaimed health benefits which include improvement in lactose intolerance, increase in natural resistance to infectious disease in gastrointestinal tract, suppression of cancer, antidiabetic, reduction in serum cholesterol level, and improved digestion. In addition, there are numerous reports on cholesterol removal ability of probiotics and their hypocholesterolemic effects. Several possible mechanisms for cholesterol removal by probiotics are assimilation of cholesterol by growing cells, binding of cholesterol to cellular surface

  8. An activation-collision mechanism for cholesterol transfer between membranes. (United States)

    Steck, T L; Kezdy, F J; Lange, Y


    We report the results of experiments which show that cholesterol transfer between membranes cannot proceed by aqueous diffusion, as widely held, but must involve a more complex mechanism. (a) The rate of transfer of [3H]cholesterol from red blood cells was found to vary inversely with the size of the acceptor particle (ghosts, vesicles of ghosts, liposomes, and plasma lipoproteins). (b) The transfer of [3H]cholesterol from red blood cells to ghosts was accelerated by the presence of plasma, even though the plasma competed with the ghosts as an acceptor. (c) The rate of transfer of [3H]cholesterol from red blood cells to ghosts decreased to zero with increasing dilution but was not simply second-order. (d) The cholesterol in retinal rod disc membranes is not at equilibrium with plasma lipoproteins in that disc cholesterol increased when the homogenates were incubated in vitro with plasma. (e) The kinetics of cholesterol transfer cannot be limited by unstirred layer effects since the transfer of lysolecithin in the same system was faster than that of cholesterol by 3 orders of magnitude. The simplest model compatible with all the data suggests a two-step pathway involving a first-order followed by a second-order process. The first step could be a unimolecular activation event, perhaps the movement of the sterol in the donor particle to a more exposed (hydrated) position. In the second step, the activated sterol would be transferred during transient collisions between donor and acceptor particles. When collision is not rate-limiting, the overall process would appear to be simply first-order, hence kinetically indistinguishable from the aqueous diffusion mechanism. The activation-collision model thus not only rationalizes our data but is also consistent with the simpler kinetics previously reported for the transfer of both membrane phospholipids and sterols.

  9. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1 a decrease of the fertilization rate and index; and (2 a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol.

  10. Tissue cholesterol content alterations in streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xin-ting WANG; Jia LI; Li LIU; Nan HU; Shi JIN; Can LIU; Dan MEI; Xiao-dong LIU


    Aim:Diabetes is associated with elevated serum total cholesterol level and disrupted lipoprotein subfractions.The aim of this study was to examine alterations in the tissue cholesterol contents closely related to diabetic complications.Methods:Intraperitoneal injection of streptozotocin was used to induce type 1 diabetes in adult male Sprague-Dawley rats.On d 35 after the injection,liver,heart,intestine,kidney,pancreas,cerebral cortex and hippocampus were isolated from the rats.The content of total and free cholesterol in the tissues was determined using HPLC.The ATP-binding cassette protein A1 (ABCA1) protein and ApoE mRNA were measured using Western blot and QT-PCR analyses,respectively.Results:In diabetic rats,the level of free cholesterol was significantly decreased in the peripheral tissues,but significantly elevated in hippocampus,as compared with those in the control rats.Diabetic rats showed a trend of decreasing the total cholesterol level in the peripheral tissues,but significant change was only found in kidney and liver.In diabetic rats,the level of the ABCA1 protein was significantly increased in the peripheral tissues and cerebral cortex; the expression of ApoE mRNA was slightly decreased in hippocampus and cerebral cortex,but the change had no statistical significance.Conclusion:Type 1 diabetes decreases the free cholesterol content in the peripheral tissues and increases the free cholesterol content in hippocampus.The decreased free cholesterol level in the peripheral tissues may be partly due to the increased expression of the ABCA1 protein.

  11. Apolipoprotein M promotes mobilization of cellular cholesterol in vivo

    DEFF Research Database (Denmark)

    Elsøe, Sara; Christoffersen, Christina; Luchoomun, Jayraz


    The HDL associated apolipoprotein M (apoM) protects against experimental atherosclerosis but the mechanism is unknown. ApoM increases prebeta-HDL formation. We explored whether plasma apoM affects mobilization of cholesterol from peripheral cells in mice.......The HDL associated apolipoprotein M (apoM) protects against experimental atherosclerosis but the mechanism is unknown. ApoM increases prebeta-HDL formation. We explored whether plasma apoM affects mobilization of cholesterol from peripheral cells in mice....

  12. Cholesterol granuloma of the right epididymis mimicking an acute scrotum

    Institute of Scientific and Technical Information of China (English)

    Borislav Spajic; Hrvoje Cupic; Goran Stimac; Ivica Brigic; Bozo Kruslin; Ognjen Kraus


    @@ Dear Sir, I am B. Spajic, the urologist from Clinical Department of Urology, Sestre Milosrdnice University Hospital,Zagreb, Croatia. Recently, we had a rare case of a cholesterol granuloma of the right epididymis at our department, showing clinical signs of acute scrotum. The case described here appears to be the second reporting cholesterol granuloma in the epididymis and the first one presenting with clinical signs of acute scrotum.

  13. A Cholesterol-Sensitive Regulator of the Androgen Receptor (United States)


    statin drugs do not lower circulating cholesterol in mice and rats , as they do in humans. Choles- terol lowering in rodent tumors will thus depend on...cholesterol synthesis (these drugs are generically termed ‘ statins ’), have been reported to inhibit cancer incidence or progres- sion in some studies. Although...there is much controversy, buttressed by claims and counterclaims, in the various population-based reports of the effects of statins on cancer, recent

  14. Regulation of Cerebral Cholesterol Metabolism in Alzheimer’s Disease


    Reiss, Allison B; Voloshyna, Iryna


    Alzheimer’s disease (AD) is an age-related neurodegenerative disorder that manifests as a progressive loss of memory and deterioration of higher cognitive functions. AD is characterized by accumulation in the brain of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of amyloid precursor protein (APP). Epidemiological studies have linked elevated plasma cholesterol and lipoprotein levels in mid-life with AD development. Cholesterol-fed animal models exhibit neuropathologic...

  15. Cholesterol Check (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts


    Heart disease and stroke are among the leading causes of death in the U.S. One of the main risk factors is high blood cholesterol. In this podcast, Dr. Carla Mercado discusses the importance of a healthy diet and regular screening to prevent high blood cholesterol.  Created: 9/10/2015 by MMWR.   Date Released: 9/10/2015.

  16. Regulation of neuronal APL-1 expression by cholesterol starvation.

    Directory of Open Access Journals (Sweden)

    Mary Wiese

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP. While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD, sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1, and lrp-1 (lipoprotein receptor-related protein 1, suggesting a potential interaction between apl-1 and cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. CONCLUSIONS: Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.

  17. Cholesterol granuloma in thyroglossal cysts: a clinicopathological study. (United States)

    Shvili, Itzhak; Hadar, Tuvia; Sadov, Rima; Koren, Rumelia; Shvero, Jacob


    Thyroglossal duct cyst (TDC) is a congenital anomaly caused by retention of epithelial remnants from the descent of the thyroid gland during embryological development. Cholesterol granuloma represents a granulomatous reaction to precipitates of cholesterol crystals in tissue, usually related to middle-ear disease. The association of TDC with cholesterol granuloma has hardly been reported. This study describes five patients with TDC and cholesterol granuloma over a 16-year-period. The treatment consisted of excision of the TDC and the mid-portion of the hyoid bone and excision of a core of tissue between the hyoid bone and the foramen cecum (Sistrunk procedure). We speculate that the pathogenesis of cholesterol granuloma in TDC resembles that in the paranasal sinuses, as both sites provide a closed, poorly ventilated hollow structure with slow drainage. Our five patients accounted for 13% of all patients with TDC treated in our center during the same period, indicating that cholesterol granuloma in TDC may not be as rare as previously thought.

  18. Europium tetracycline biosensor for the determination of cholesterol (United States)

    Courrol, Lilia Coronato; Silva, Flávia Rodrigues de Oliveira; Samad, Ricardo Elgul; Mansano, Ronaldo Domingues; Vieira, Nilson Dias, Jr.


    Development of cholesterol biosensors is of great importance in clinical analysis because the concentration of cholesterol in blood is a fundamental parameter for the prevention and diagnosis of a number of clinical disorders such as heart disease, hypertension and arteriosclerosis. In general, determination of cholesterol is based on spectrophotometry; but this method involves complicated procedures and the cost is high because expensive enzyme must be used in each assay. We report here the observation, for the first time, of the enhancement of Europium-Tetracycline complex emission in cholesterol solutions. This enhancement was initially observed with the addition of the enzyme cholesterol oxidase, which produces H IIO II, the agent driver of the Europium tetracycline complex, to the solution. However, it was found that the enzyme is not needed to enhance the luminescence. A calibration curve was determined, resulting in an easy-handling immobilization method with a cheap stable material. This method shows that the complex can be used as a sensor to determine cholesterol in biological systems with good selectivity, fast response, miniature size, and reproducible results.

  19. Composition and functional properties of cholesterol reduced egg yolk. (United States)

    Awad, A C; Bennink, M R; Smith, D M


    The composition and functional properties of cholesterol reduced egg yolk (CREY) were compared to those of control egg yolk (EY). The CREY was prepared by absorbing cholesterol with beta-cyclodextrin after dilution and dissociation of granules at pH 10.5. The CREY contained less lipid and protein and more carbohydrate and ash than EY. Egg lipids were fractionated into triglycerides, cholesterol esters, free cholesterol, phosphatidyl choline, and phosphatidyl ethanolamine. Free and esterified cholesterol in CREY were reduced by 91.6 and 94.4%, respectively. Triglycerides were the major lipid class in CREY. The CREY contained more oleic acid and less linoleic acid than the control. Protein solubility in 0.1 and 0.6 M NaCl and sponge cake volume did not differ. The composition of proteins soluble in 0.6 M NaCl in both egg preparations were similar as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The electrophoretic profiles of proteins soluble in 0.1 M NaCl were similar, except that lipovitellin form EY was insoluble under these conditions. The CREY was less yellow than EY, as indicated by beta-carotene concentrations and Hunter b values. These results suggest that beta-cyclodextrin can be used to produce a low cholesterol egg product with compositional and functional properties similar to EY.

  20. Cholesterol-dependent hemolytic activity of Passiflora quadrangularis leaves

    Directory of Open Access Journals (Sweden)

    L.N. Yuldasheva


    Full Text Available Plants used in traditional medicine are rich sources of hemolysins and cytolysins, which are potential bactericidal and anticancer drugs. The present study demonstrates for the first time the presence of a hemolysin in the leaves of Passiflora quadrangularis L. This hemolysin is heat stable, resistant to trypsin treatment, has the capacity to froth, and acts very rapidly. The hemolysin activity is dose-dependent, with a slope greater than 1 in a double-logarithmic plot. Polyethylene glycols of high molecular weight were able to reduce the rate of hemolysis, while liposomes containing cholesterol completely inhibited it. In contrast, liposomes containing phosphatidylcholine were ineffective. The Passiflora hemolysin markedly increased the conductance of planar lipid bilayers containing cholesterol but was ineffective in cholesterol-free bilayers. Successive extraction of the crude hemolysin with n-hexane, chloroform, ethyl acetate, and n-butanol resulted in a 10-fold purification, with the hemolytic activity being recovered in the n-butanol fraction. The data suggest that membrane cholesterol is the primary target for this hemolysin and that several hemolysin molecules form a large transmembrane water pore. The properties of the Passiflora hemolysin, such as its frothing ability, positive color reaction with vanillin, selective extraction with n-butanol, HPLC profile, cholesterol-dependent membrane susceptibility, formation of a stable complex with cholesterol, and rapid erythrocyte lysis kinetics indicate that it is probably a saponin.

  1. Current Views on Genetics and Epigenetics of Cholesterol Gallstone Disease

    Directory of Open Access Journals (Sweden)

    Agostino Di Ciaula


    Full Text Available Cholesterol gallstone disease, one of the commonest digestive diseases in western countries, is induced by an imbalance in cholesterol metabolism, which involves intestinal absorption, hepatic biosynthesis, and biliary output of cholesterol, and its conversion to bile acids. Several components of the metabolic syndrome (e.g., obesity, type 2 diabetes, dyslipidemia, and hyperinsulinemia are also well-known risk factors for gallstones, suggesting the existence of interplay between common pathophysiological pathways influenced by insulin resistance, genetic, epigenetic, and environmental factors. Cholesterol gallstones may be enhanced, at least in part, by the abnormal expression of a set of the genes that affect cholesterol homeostasis and lead to insulin resistance. Additionally, epigenetic mechanisms (mainly DNA methylation, histone acetylation/deacetylation, and noncoding microRNAs may modify gene expression in the absence of an altered DNA sequence, in response to different lithogenic environmental stimuli, such as diet, lifestyle, pollutants, also occurring in utero before birth. In this review, we will comment on various steps of the pathogenesis of cholesterol gallstones and interaction between environmental and genetic factors. The epigenomic approach may offer new options for therapy of gallstones and better possibilities for primary prevention in subjects at risk.

  2. Lipid domains in bicelles containing unsaturated lipids and cholesterol. (United States)

    Cho, Hyo Soon; Dominick, Johnna L; Spence, Megan M


    We have created a stable bicelle system capable of forming micrometer-scale lipid domains that orient in a magnetic field, suitable for structural biology determination in solid-state NMR. The bicelles consisted of a mixture of cholesterol, saturated lipid (DMPC), and unsaturated lipid (POPC), a mixture commonly used to create domains in model membranes, along with a short chain lipid (DHPC) that allows formation of the bicelle phase. While maintaining a constant molar ratio of long to short chain lipids, q = ([POPC]+[DMPC])/[DHPC] = 3, we varied the concentrations of the unsaturated lipid, POPC, and cholesterol to observe the effects of the components on bicelle stability. Using (31)P solid-state NMR, we observed that unsaturated lipids (POPC) greatly destabilized the alignment of the membranes in the magnetic field, while cholesterol stabilized their alignment. By combining cholesterol and unsaturated lipids in the bicelles, we created membranes aligning uniformly in the magnetic field, despite very high concentrations of unsaturated lipids. These bicelles, with high concentrations of both cholesterol and unsaturated lipid, showed similar phase behavior to bicelles commonly used in structural biology, but aligned over a wider temperature range (291-314 K). Domains were observed by measuring time-dependent diffusion constants reflecting restricted diffusion of the lipids within micrometer-scale regions of the bicelles. Micron-scale domains have never been observed in POPC/DMPC/cholesterol vesicles, implying that bilayers in bicelles show different phase behavior than their counterparts in vesicles, and that bilayers in bicelles favor domain formation.

  3. Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Blood Pressure as Mediators From Obesity to Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Smith, George Davey


    RATIONALE: Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. OBJECTIVE: To test the hypothesis that the increased IHD risk because of obesity is mediated through...... variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood...... obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. CONCLUSIONS: The increased IHD risk because...

  4. Effect of Moderate Alcohol Consumption on Parameters of Reverse Cholesterol Transport in Postmenopausal Women

    NARCIS (Netherlands)

    Sierksma, A.; Vermunt, S.H.F.; Lankhuizen, I.M.; Gaag, M.S. van der; Scheek, L.M.; Grobbee, D.E.; Tol, A. van; Hendriks, H.F.J.


    Background: Alcohol consumption is associated with increased high-density lipoprotein (HDL) cholesterol levels. One of the main antiatherogenic functions of HDL is reverse cholesterol transport. Three early steps of reverse cholesterol transport are (1) cellular cholesterol efflux, (2) plasma choles

  5. Cholesterol in mouse retina originates primarily from in situ de novo biosynthesis. (United States)

    Lin, Joseph B; Mast, Natalia; Bederman, Ilya R; Li, Yong; Brunengraber, Henri; Björkhem, Ingemar; Pikuleva, Irina A


    The retina, a thin tissue in the back of the eye, has two apparent sources of cholesterol: in situ biosynthesis and cholesterol available from the systemic circulation. The quantitative contributions of these two cholesterol sources to the retinal cholesterol pool are unknown and have been determined in the present work. A new methodology was used. Mice were given separately deuterium-labeled drinking water and chow containing 0.3% deuterium-labeled cholesterol. In the retina, the rate of total cholesterol input was 21 μg of cholesterol/g retina • day, of which 15 μg of cholesterol/g retina • day was provided by local biosynthesis and 6 μg of cholesterol/g retina • day was uptaken from the systemic circulation. Thus, local cholesterol biosynthesis accounts for the majority (72%) of retinal cholesterol input. We also quantified cholesterol input to mouse brain, the organ sharing important similarities with the retina. The rate of total cerebral cholesterol input was 121 μg of cholesterol/g brain • day with local biosynthesis providing 97% of total cholesterol input. Our work addresses a long-standing question in eye research and adds new knowledge to the potential use of statins (drugs that inhibit cholesterol biosynthesis) as therapeutics for age-related macular degeneration, a common blinding disease.

  6. Trans-intestinal cholesterol effl ux is not mediated through high density lipoprotein

    NARCIS (Netherlands)

    Vrins, C.L.; Ottenhoff, R.; Oever, K. van den; Waart, D.R. de; Kruyt, J.K.; Zhao, Y.; Berkel, T.J. van; Havekes, L.M.; Aerts, J.M.; Eck, M. van; Rensen, P.C.; Groen, A.K.


    Transintestinal cholesterol efflux (TICE) provides an attractive target to increase body cholesterol excretion. At present, the cholesterol donor responsible for direct delivery of plasma cholesterol to the intestine is unknown. In this study, we investigated the role of HDL in TICE. ATP-binding cas

  7. Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; Ottenhoff, Roelof; van den Oever, Karin; de Waart, Dirk R.; Kruyt, J. Kar; Zhao, Ying; van Berkel, Theo J. C.; Havekes, Louis M.; Aerts, Johannes M.; van Eck, Miranda; Rensen, Patrick C. N.; Groen, Albert K.


    Transintestinal cholesterol efflux (TICE) provides an attractive target to increase body cholesterol excretion. At present, the cholesterol donor responsible for direct delivery of plasma cholesterol to the intestine is unknown. In this study, we investigated the role of HDL in TICE. ATP-binding cas

  8. Amelioration of cholesterol induced atherosclerosis by normalizing gene expression, cholesterol profile and antioxidant enzymes by Vigna unguiculata. (United States)

    Janeesh, P A; Abraham, Annie


    Cardiovascular diseases, especially atherosclerosis, have found to be the dreadful diseases worldwide and therapeutic interventions using plant sources have wide therapeutic value. Vigna unguiculata (VU) leaves have been used as food and therapeutics. Hence, our study was designed to evaluate the hypolipidemic as well as anti-atherogenic potential of VU leaves in normalizing atherogenic gene expression, cholesterol profile, generation of reactive oxygen species (ROS) and antioxidant enzyme system on cholesterol fed rabbit model. For the study New Zealand white rabbits were randomly divided into four groups of six animals each and experimental period was three months; group -i - ND [normal diet (40 g feed)], group-ii- ND (normal diet) +EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)], group -iii- ND [normal diet ]+ CFD [cholesterol fed diet (cholesterol 1 % of 40 g feed and cholic acid 0.5 % of 40 g feed)] and group-iv - ND [normal diet] +CFD [cholesterol fed diet ]+EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)]. Atherosclerosis was induced by feeding the rabbit with cholesterol (1 % of 40 g feed) and cholic acid (0.5 % of 40 g feed). Supplementation of EAVU normalized cholesterol profile, generation of reactive oxygen species (ROS), lipid peroxidation products like thiobarbituric acid reactive substance (TBARS), antioxidant system and important genes of cardiovascular diseases like interleukin-10 (IL 10), paraoxanase-1 (PON I), interleukin-6 (IL 6), and cyclooxygenase-2 (Cox 2) to near normal level as compared with normal diet. The result obtained showed the antioxidant as well as anti-atherogenic potential of Vigna unguiculata leaves in ameliorating cholesterol induced atherosclerosis, and thus it is good task to include VU leaves in daily diet for the prevention of cardiovascular diseases especially atherosclerosis.

  9. Atorvastatin treatment lowers fasting remnant-like particle cholesterol and LDL subfraction cholesterol without affecting LDL size in type 2 diabetes mellitus : Relevance for non-HDL cholesterol and apolipoprotein B guideline targets

    NARCIS (Netherlands)

    Kappelle, Paul J.W.H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.


    The extent to which atorvastatin treatment affects LDL size, LDL subfraction levels and remnant-like particle cholesterol (RLP-C) was determined in type 2 diabetes. We also compared LDL size and RLP-C in relation to guideline cut-off values for LDL cholesterol, non-HDL cholesterol and apolipoprotein

  10. Atorvastatin treatment lowers fasting remnant-like particle cholesterol and LDL subfraction cholesterol without affecting LDL size in type 2 diabetes mellitus: Relevance for non-HDL cholesterol and apolipoprotein B guideline targets

    NARCIS (Netherlands)

    P.J.W.H. Kappelle; G.M. Dallinga-Thie; R.P.F. Dullaart


    The extent to which atorvastatin treatment affects LDL size, LDL subfraction levels and remnant-like particle cholesterol (RLP-C) was determined in type 2 diabetes. We also compared LDL size and RLP-C in relation to guideline cut-off values for LDL cholesterol, non-HDL cholesterol and apolipoprotein

  11. Phytosterol ester processing in the small intestine: impact on cholesterol availability for absorption and chylomicron cholesterol incorporation in healthy humans. (United States)

    Amiot, Marie Josèphe; Knol, Diny; Cardinault, Nicolas; Nowicki, Marion; Bott, Romain; Antona, Claudine; Borel, Patrick; Bernard, Jean-Paul; Duchateau, Guus; Lairon, Denis


    Phytosterols (plant sterols and stanols) can lower intestinal cholesterol absorption, but the complex dynamics of the lipid digestion process in the presence of phytosterol esters (PEs) are not fully understood. We performed a clinical experiment in intubated healthy subjects to study the time course of changes in the distribution of all lipid moieties present in duodenal phases during 4 h of digestion of meals with 3.2 g PE (PE meal) or without (control meal) PE. In vitro experiments under simulated gastrointestinal conditions were also performed. The addition of PE did not alter triglyceride (TG) hydrolysis in the duodenum or subsequent chylomicron TG occurrence in the circulation. In contrast, cholesterol accumulation in the duodenum aqueous phase was markedly reduced in the presence of PE (-32%, P < 0.10). In vitro experiments confirmed that PE reduces cholesterol transfer into the aqueous phase. The addition of PE resulted in a markedly reduced presence of meal-derived hepta-deuterated cholesterol in the circulation, i.e., in chylomicrons (-43%, PE meal vs. control; P < 0.0001) and plasma (-54%, PE meal vs. control; P < 0.0001). The present data show that addition of PE to a meal does not alter TG hydrolysis but displaces cholesterol from the intestinal aqueous phase and lowers chylomicron cholesterol occurrence in humans.

  12. Patterns of cholesterol metabolism: pathophysiological and therapeutic implications for dyslipidemias and the metabolic syndrome. (United States)

    Lupattelli, G; De Vuono, S; Mannarino, E


    Investigating cholesterol metabolism, which derives from balancing cholesterol synthesis and absorption, opens new perspectives in the pathogenesis of dyslipidemias and the metabolic syndrome (MS). Cholesterol metabolism is studied by measuring plasma levels of campesterol, sitosterol and cholestanol, that is, plant sterols which are recognised as surrogate cholesterol-absorption markers and lathosterol or squalene, that is, cholesterol precursors, which are considered surrogate cholesterol-synthesis markers. This article presents current knowledge on cholesterol synthesis and absorption, as evaluated by means of cholesterol precursors and plant sterols, and discusses patterns of cholesterol balance in the main forms of primary hyperlipidaemia and MS. Understanding the mechanism(s) underlying these patterns of cholesterol synthesis and absorption will help to predict the response to hypolipidemic treatment, which can then be tailored to ensure the maximum clinical benefit for patients.

  13. Lack of Cholesterol Awareness among Physicians Who Smoke

    Directory of Open Access Journals (Sweden)

    Richard E. Scranton


    Full Text Available Cigarette use is a known risk factor for the development of coronary artery disease (CAD as it adversely affects HDL cholesterol levels and promotes thrombogenesis. Smoking may also be associated with behavioral characteristics that potentiate the risk of CAD. A lack of cholesterol knowledge would indicate an aversion to a prevention-oriented lifestyle. Thus, our goal was to determine the association between tobacco use and knowledge of self-reported cholesterol among male physicians. Using the 1982 and follow-up questionnaires from the physician health study, we report the changes in the frequencies of awareness of self-reported total cholesterol and cardiovascular risk factors among the 22,067 participants. We classified physicians as being aware of their cholesterol if they reported a cholesterol level and unaware if the question was left unanswered. In 1997, 207 physicians were excluded, as the recorded cholesterol was not interpretable, leaving 21,860 for our follow up analyses. Using unadjusted logistic models, we determined the odds ratios (OR and 95% confidence intervals (CI of not reporting a cholesterol level in either 1982 or 1997 for each specified risk factor. We then evaluated whether the lack of cholesterol awareness at both time points was associated with the use of tobacco throughout the study. After 14-years of follow up, cholesterol awareness increased from 35.9 to 58.6 percent. During this period, the frequency of hypertension and hyperlipidemia treatment increased (13.5 to 40.5% and 0.57% to 19.6% respectively, as did the diagnosis of diabetes (2.40 to 7.79%. Behavioral characteristics such as a sedentary lifestyle and obesity also increased (27.8 to 42% and 43.5 to 53.5%, respectively, however the proportion of current smokers deceased from 11.1 to 4.05%. The percentages of individuals being unaware of their cholesterol decreased in all risk factor groups. However, individuals were likely to be unaware of their cholesterol

  14. Ionic channels and nerve membrane lipids. Cholesterol-tetrodotoxin interaction. (United States)

    Villegas, R; Barnola, F V; Camejo, G


    Experiments were carried out to investigate possible interactions of tetrodotoxin (TTX) with lipid molecules isolated from nerve fiber plasma membranes of the squid Dosidicus gigas. TTX has a highly selective ability to block the channel normally used by Na(+) to cross the axolemma during nervous impulse conduction. In order to investigate the interaction each lipid sample was spread on 5 x 10(-7)M TTX and TTX-free 0.15 M NaCl solutions adjusted to pH 7.4 with 7 x 10(-3)M phosphate buffer. The surface pressure-area diagrams of the lipid monolayers revealed that TTX interacts only with cholesterol. The expansion of the cholesterol monolayers at 5 x 10(-7)M TTX was 2 A(2)/molecule at zero pressure for the experiments at 20 degrees C and 2.5 A(2)/molecule for those at 25 degrees C. Similar results were obtained in KCl subphases. The apparent dissociation constant of the cholesterol-TTX complex calculated from dose-response experiments is 2.6 x 10(-7)M. Experiments at pH 10.1 revealed that the zwitter ionic form of TTX is less active. Experiments with cholesterol derivatives (cholesteryl acetate, cholesterol methyl ether, cholestanol, and cholestanyl acetate) indicate that for the interaction with TTX a partial negatively charged group at C-3 and a double bond between C-5 and C-6 on the steroid nucleus are required. Tetrodonic acid, a biologically inactive derivative of TTX, does not interact with cholesterol. The results lead us to propose that cholesterol is part of the Na(+) channel.

  15. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)


    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  16. Treatment of young rats with cholestyramine or a hypercholesterolemic diet does not influence the response of serum cholesterol to dietary cholesterol in later life

    NARCIS (Netherlands)

    Beynen, A.C.; Bruijne, J.J. de; Katan, M.B.


    Groups of 10 female Wistar rats (aged 4 weeks) were fed for 29 days either a low-cholesterol commercial diet, a commercial diet containing 2% (w/w) cholesterol, 0.5% cholate and 5% olive oil or a diet containing 2% cholestyramine. The rats were then fed the low-cholesterol commercial diet for the ne

  17. Insoluble fraction of buckwheat (Fagopyrum esculentum Moench) protein possessing cholesterol-binding properties that reduce micelle cholesterol solubility and uptake by Caco-2 cells. (United States)

    Metzger, Brandon T; Barnes, David M; Reed, Jess D


    Buckwheat (Fagopyrum esculentum Moench) protein (BWP) exhibits hypocholesterolemic activity in several animal models by increasing fecal excretion of neutral and acidic sterols. In the current study, the ability of BWP to disrupt micelle cholesterol solubility by sequestration of cholesterol was investigated. When BWP (0.2%) was incubated with cholesterol and micelle lipid components prior to micelle formation, cholesterol solubility was reduced 40%. In contrast, cholesterol solubility was not decreased when BWP (0.2%) was incubated after micelle formation and incorporation of soluble cholesterol. Buckwheat flour, from which BWP was derived, had no significant effect on cholesterol solubility. Cholesterol uptake in Caco-2 cells from micelles made in the presence of BWP (0.2%) was reduced by 47, 36, 35, and 33% when compared with buckwheat flour, bovine serum albumin, casein, and gelatin, respectively. Reduction in cholesterol uptake in Caco-2 cells was dose-dependent, with maximum reductions at 0.1-0.4% BWP. In cholesterol-binding experiments, 83% of the cholesterol was associated with an insoluble BWP fraction, indicating strong cholesterol-binding capacity that disrupts solubility and uptake by Caco-2 cells.

  18. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar


    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  19. Iatrogenic severe depression of high-density lipoprotein cholesterol. (United States)

    Mymin, D; Dembinski, T; Friesen, M H


    The authors present 5 cases of paradoxical depression of high-density lipoprotein (HDL) cholesterol induced by fibrate drugs. In a 24-month review of all cases seen in one physician's practice at the Winnipeg Health Sciences Centre Lipid Clinic, 492 patients made a total of 1187 visits. Sixty-eight of them were given a fibrate drug (14%). Ten patients had HDL cholesterol levels that were less than 0.5 mmol/L (2%), and of these, 5 cases were due to exposure to fenofibrate (1%). These 5 cases comprised 7.4% of the 68 patients who were given any fibrate drug during that period. Mean levels were as follows: HDL cholesterol on fenofibrate 0.27, off fenofibrate 1.0 mmol/L and apo A1 on fenofibrate 0.41, off fenofibrate 1.17 g/L. A literature review revealed documented cases in 37 patients involving fibrates alone or in combination with other drugs known to cause decreased HDL cholesterol levels. In 13 patients, exposure was to fibrate therapy alone; in those exposed to combinations, the effect was clearly attributable to fibrates in 9; in 14, the nonfibrates (mostly rosiglitazone) were the attributable drugs; and in 1, it was impossible to tell. Thus, fibrate therapy should always be suspected as a cause of profoundly depressed HDL cholesterol.

  20. The micromethod for determination of cholesterol, cholesteryl esters and phospholipids

    Directory of Open Access Journals (Sweden)



    Full Text Available We examined the method for determining microquantities of lipids, including cholesterol, cholesteryl esters and phospholipids. A standard colorimetric procedure of cholesteryl esters was modified to accommodate a quantitative thin-layer chromatography. This method involved the following steps. (1 Separation of lipids by a thin-layer chromatography: Lipids were applied to Silica gel G plates. Plates were developed with petroleum ether-diethyl etheracetic acid (82: 18: 2, vIvIv. (2 Elution of cholesterol and its esters from scraped silica gel: After scraping the silica gel with adhered cholesterol and its esters, they were eluted with chloroform-methanol (4: 1, v,tv. In the case of phspholipids, the silica gel was calcified. (3 Colorimetric determination of the lipids: Cholesterol and its esters eluted from the silica gel were determined by the method of ZAK with ROSENTHAL'S color reagent directly and after saponification, respectively. Phospholipids were calculated from the phosphorous content determined by the method of KATES. On the basis of examination of recovery and analyses of lipids extracted from tissue, it was concluded that this method permitted a reliable estimation of microquantities of cholesterol, its esters and phospholipids from small amounts of biological materials.

  1. Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate. (United States)

    Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B


    Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.

  2. Acrolein impairs the cholesterol transport functions of high density lipoproteins. (United States)

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy


    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  3. Physician and patient barriers to adherence with cholesterol guidelines. (United States)

    Goebel, Lynne J; Bailony, Fadi; Khattak, Asim J; Gress, Todd W


    Several national studies have shown poor compliance with National Cholesterol Education Program II (NCEP) goals. A study we conducted of patients in the General Internal Medicine Clinic at the Marshall University Joan C. Edwards School of Medicine in Huntington showed that 46% of them were not at NCEP goals. We hypothesized that both patient and physician barriers were responsible for these findings so we administered two surveys about barriers to cholesterol management to 261 random patients identified with hypercholesterolemia and to all 50 residents and faculty at the clinic. We identified insufficient knowledge of low cholesterol foods as a patient barrier (31.6% of patients), and inadequate time to review NCEP guidelines as a physician barrier (45.5% of physicians). We conclude that many patients in our practice lack the knowledge of what foods are low in cholesterol and that our physicians may not use the NCEP guidelines because they are inconvenient to access in our clinic. Future research should explore ways to improve patient knowledge of low cholesterol foods and accessibility of guidelines for use during patient visits.

  4. Effect of cellular cholesterol depletion on rabies virus infection. (United States)

    Hotta, Kozue; Bazartseren, Boldbarrtar; Kaku, Yoshihiro; Noguchi, Akira; Okutani, Akiko; Inoue, Satoshi; Yamada, Akio


    Although there are several reports on candidates for rabies virus (RABV) receptor, possible roles played by these receptor candidates in determination of highly neurotropic nature of RABV have not been well understood. Since these candidate receptors for RABV were reported to be frequently associated with cholesterol-rich microdomains characterized by lipid rafts and caveolae structures, we attempted to determine whether the disturbance of microdomains caused by the cholesterol depletion showed any effects on RABV infection. When the cellular cholesterol was depleted by methyl-beta-cyclodextrin (MBCD) treatment, increase in RABV adsorption and infection, but not multiplication rather than suppression was observed in both BHK-21 and HEp-2 cells. These effects exerted by MBCD treatment on RABV infection could be reversed by cholesterol reconstitution. These results suggest that RABV enters BHK-21 or HEp-2 cells through ports of entry other than those located on cholesterol-rich microdomains and raise the possibility that RABV uses different mechanisms to enter the non-neuronal cells.

  5. Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents. (United States)

    Martin, Mauricio G; Ahmed, Tariq; Korovaichuk, Alejandra; Venero, Cesar; Menchón, Silvia A; Salas, Isabel; Munck, Sebastian; Herreras, Oscar; Balschun, Detlef; Dotti, Carlos G


    Cognitive decline is one of the many characteristics of aging. Reduced long-term potentiation (LTP) and long-term depression (LTD) are thought to be responsible for this decline, although the precise mechanisms underlying LTP and LTD dampening in the old remain unclear. We previously showed that aging is accompanied by the loss of cholesterol from the hippocampus, which leads to PI3K/Akt phosphorylation. Given that Akt de-phosphorylation is required for glutamate receptor internalization and LTD, we hypothesized that the decrease in cholesterol in neuronal membranes may contribute to the deficits in LTD typical of aging. Here, we show that cholesterol loss triggers p-Akt accumulation, which in turn perturbs the normal cellular and molecular responses induced by LTD, such as impaired AMPA receptor internalization and its reduced lateral diffusion. Electrophysiology recordings in brain slices of old mice and in anesthetized elderly rats demonstrate that the reduced hippocampal LTD associated with age can be rescued by cholesterol perfusion. Accordingly, cholesterol replenishment in aging animals improves hippocampal-dependent learning and memory in the water maze test.

  6. Effects of Lowering LDL Cholesterol on Progression of Kidney Disease

    DEFF Research Database (Denmark)

    Haynes, Richard; Lewis, David; Emberson, Jonathan


    Lowering LDL cholesterol reduces the risk of developing atherosclerotic events in CKD, but the effects of such treatment on progression of kidney disease remain uncertain. Here, 6245 participants with CKD (not on dialysis) were randomly assigned to simvastatin (20 mg) plus ezetimibe (10 mg) daily...... or matching placebo. The main prespecified renal outcome was ESRD (defined as the initiation of maintenance dialysis or kidney transplantation). During 4.8 years of follow-up, allocation to simvastatin plus ezetimibe resulted in an average LDL cholesterol difference (SEM) of 0.96 (0.02) mmol/L compared...... with placebo; rate ratio, 0.93; 95% CI, 0.86 to 1.01; P=0.09). Exploratory analyses also showed no significant effect on the rate of change in eGFR. Lowering LDL cholesterol by 1 mmol/L did not slow kidney disease progression within 5 years in a wide range of patients with CKD....

  7. The Observation of Highly Ordered Domains in Membranes with Cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Clare L [McMaster University; Marquardt, Drew [Brock University, St. Catharines, ON, Canada; Dies, Hannah [McMaster University; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Yamani, Zahra [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratorie; Harroun, Thad [Brock University, St. Catharines, ON, Canada; Katsaras, John [ORNL; Shi, A-C [McMaster University; Rheinstadter, Maikel C [McMaster University


    Rafts, or functional domains, are transient nano- or mesoscopic structures in the exoplasmic leaflet of the plasma membrane, and are thought to be essential for many cellular processes. Using neutron diffraction and computer modelling, we present evidence for the existence of highly ordered lipid domains in the cholesterol-rich (32.5 mol%) liquid-ordered (lo) phase of dipalmitoylphosphatidylcholine membranes. The liquid ordered phase in one-component lipid membranes has previously been thought to be a homogeneous phase. The presence of highly ordered lipid domains embedded in a disordered lipid matrix implies non-uniform distribution of cholesterol between the two phases. The experimental results are in excellent agreement with recent computer simulations of DPPC/cholesterol complexes [Meinhardt, Vink and Schmid (2013). Proc Natl Acad Sci USA 110(12): 4476 4481], which reported the existence of nanometer size lo domains in a liquid disordered lipid environment.

  8. Catabolism and biotechnological applications of cholesterol degrading bacteria. (United States)

    García, J L; Uhía, I; Galán, B


    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.

  9. [Thoracic aortic dissection revealed by systemic cholesterol embolism]. (United States)

    Braem, L; Paule, P; Héno, P; Morand, J J; Mafart, B; La Folie, T; Varlet, P; Mioulet, D; Fourcade, L


    Systemic cholesterol embolism is a rare complication of atherosclerosis, and has various presentations. Arterial catheterisms are a common cause. However, the association with an aortic dissection has been exceptionally reported. We report the observation of a 70 year-old man, with coronary artery disease, hypertension, diabetes and dyslipidemia. Six months before hospitalization, a coronary angioplasty was performed due to recurrent angina. The association of purpuric lesions on the feet, with acute renal failure confirmed cholesterol embolism syndrome. Transoesophageal echocardiography showed a dissection of the descending thoracic aorta associated with complex atheroma. The evolution was marked by the pulpar necrosis of a toe and by a worsening of the renal failure, requiring definitive hemodialysis. Further echographic control highlighted the rupture of the intimal veil of the dissection. Cholesterol embolism syndrome may reveal an aortic dissection in patients without thoracic symptoms. In such cases, transoesophageal echocardiography is a useful and non-invasive examination.

  10. Reduction in intestinal cholesterol absorption by various food components: mechanisms and implications. (United States)

    Cohn, Jeffrey S; Kamili, Alvin; Wat, Elaine; Chung, Rosanna W S; Tandy, Sally


    A number of different food components are known to reduce plasma and LDL-cholesterol levels by affecting intestinal cholesterol absorption. They include: soluble fibers, phytosterols, saponins, phospholipids, soy protein and stearic acid. These compounds inhibit cholesterol absorption by affecting cholesterol solubilization in the intestinal lumen, interfering with diffusion of luminal cholesterol to the gut epithelium and/or inhibiting molecular mechanisms responsible for cholesterol uptake by the enterocyte. Cholesterol content of intestinal chylomicrons is subsequently reduced, less cholesterol is transported to the liver within chylomicron remnants, hepatic LDL-receptor activity is increased and plasma levels of LDL-cholesterol are decreased. Reduced hepatic VLDL production and less conversion of VLDL to LDL also contribute to lower LDL levels. Certain food components may also affect intestinal bile acid metabolism. Further investigation of the way in which these functional ingredients affect intestinal lipid metabolism will facilitate their use and application as cardiovascular nutraceuticals.

  11. Measurement of Intestinal and Peripheral Cholesterol Fluxes by a Dual-Tracer Balance Method. (United States)

    Ronda, Onne A H O; van Dijk, Theo H; Verkade, H J; Groen, Albert K


    Long-term elevated plasma cholesterol levels put individuals at risk for developing atherosclerosis. Plasma cholesterol levels are determined by the balance between cholesterol input and output fluxes. Here we describe in detail the methodology to determine the different cholesterol fluxes in mice. The percentage of absorbed cholesterol is calculated from a stable isotope-based double-label method. Cholesterol synthesis is calculated from MIDA after (13) C-acetate enrichment. Cholesterol is removed from the body via the feces. The fecal excretion route is either biliary or non-biliary. The non-biliary route is dominated by trans-intestinal cholesterol efflux, or TICE. Biliary excretion of cholesterol is measured by collecting bile. Non-biliary excretion is calculated by computational modeling. In this article, we describe methods and procedures to measure and calculate dietary intake of cholesterol, fractional cholesterol absorption, fecal neutral sterol output, biliary cholesterol excretion, TICE, cholesterol synthesis, peripheral fluxes, and whole-body cholesterol balance. © 2016 by John Wiley & Sons, Inc.

  12. Acute sterol o-acyltransferase 2 (SOAT2 knockdown rapidly mobilizes hepatic cholesterol for fecal excretion.

    Directory of Open Access Journals (Sweden)

    Stephanie M Marshall

    Full Text Available The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE. We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2 increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD, the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.

  13. The biosynthesis, absorption, and origin of cholesterol and plant sterols in the Florida land crab. (United States)

    Douglass, T S; Connor, W E; Lin, D S


    In order to study the biosynthesis, composition, and origin of sterols in the Florida land crabs, Cardisoma guanhumi (Latreille), we fed 17 male crabs either a cholesterol-free or a high cholesterol diet for 2 to 7 weeks. The origin of sterols in these crabs, whether from biosynthesis or from the diet, was determined by tahree procedures: the incorporation of isotopic mevalonate into the cholesterol when the diet was cholesterol-free; the absorption of isotopic cholesterol and sitosterol from the diet; the cholesterol and plant sterol concentrations of hepatopancreas, plasma, and muscle under conditions of cholesterol-free and high cholesterol diets. In addition, the interconversion of cholesterol and sitosterol was investigated. Dietary sterols of plant and animal sources were readily absorbed and provided the major source of sterols for this species of crab. The biosynthesis of cholesterol from mevalonate in this crab was minimal. However, cholesterol was synthesized from dietary sitosterol by dealkylation. Cholesterol and the three plant sterols (24 epsilon-methyl cholesterol, stigmasterol, and sitosterol) were found in the hepatopancreas, plasma, and muscle of the crab. Plant sterols contributed from 9 to 37% of the total sterols in the hepatopancreas, plasma, and muscle of the crabs fed a cholesterol-free diet.

  14. Complement activation by cholesterol crystals triggers a subsequent cytokine response

    DEFF Research Database (Denmark)

    Niyonzima, Nathalie; Halvorsen, Bente; Sporsheim, Bjørnar


    may under certain circumstances drive processes leading to adverse inflammation. One example is cholesterol crystals (CC) that accumulate in the vessel wall during early phases of atherogenesis and represent an important endogenous danger signal promoting inflammation. CC is recognized by the lectin...... of inflammation processes before downstream release of cytokines including IL-1β. Another therapeutic candidate can be broad-acting 2-hydroxypropyl-β-cyclodextrin, a compound that targets several mechanisms such as cholesterol efflux, complement gene expression, and the NLRP3 pathway. In summary, emerging...

  15. Cholesterol Granuloma of the Frontal Sinus: A Case Report (United States)

    Marco, Manola; Ida, Casorelli; Francesco Luigi, Pietrafesa; Giampiero, Mottola; Domenico, Lacerenza; Giuseppe, Battiloro; Giuseppe, Patitucci; Giulia Anna Carmen, Vita


    Cholesterol granulomas are common in the mastoid antrum and air cells of the temporal bone. In the paranasal sinuses, especially in the frontal sinus, they have occasionally been mentioned in the literature. The pathogenesis is unknown, but the majority of the authors support the concept of airway obstruction in the cells well pneumatised of temporal bone and paranasal sinuses. The authors report a case of cholesterol granuloma of the frontal sinus treated with radical surgical techniques, and they also recommend an endoscopic approach to frontal sinus to restore or enlarge the nose-frontal canal and promote drainage and ventilation of the frontal sinus. PMID:23150840

  16. Cholesterol Granuloma of the Frontal Sinus: A Case Report

    Directory of Open Access Journals (Sweden)

    Manola Marco


    Full Text Available Cholesterol granulomas are common in the mastoid antrum and air cells of the temporal bone. In the paranasal sinuses, especially in the frontal sinus, they have occasionally been mentioned in the literature. The pathogenesis is unknown, but the majority of the authors support the concept of airway obstruction in the cells well pneumatised of temporal bone and paranasal sinuses. The authors report a case of cholesterol granuloma of the frontal sinus treated with radical surgical techniques, and they also recommend an endoscopic approach to frontal sinus to restore or enlarge the nose-frontal canal and promote drainage and ventilation of the frontal sinus.

  17. Cholesterol Granuloma in Odontogenic Cyst: An Enigmatic Lesion (United States)

    Devi, Anju; Gupta, Shruti


    Cholesterol granuloma (CG) is the outcome of the foreign body type of response to the accumulation of cholesterol crystals and is frequently present in conjunction with chronic middle ear diseases. Recently, cases of CG in jaws have been reported, but still, very few cases have been found of CG in dental literature. This article presents three rare cases of CG in the wall of odontogenic cysts emphasizing on its possible role in expansion of the associated lesion and bone erosion. It also lays stress on the fact that more cases of CG should be reported so that its nature and pathogenesis in the oral cavity become more perceivable. PMID:28070428

  18. Air Force Members’ Guide for Reducing Cholesterol Ratio, (United States)


    two factors you cannot control, but should be aware of, are diabetes and heredity. The following guide tells you how to positively affect the...0.4 Buttermilk (1% fat) 2.2 Nonfat dry milk powder(l/4 cup) 0.2 Condensed, sweetened 26.6 Evaporated milk, whole 19.1 Evaporated milk, skim 0.5...cholesterol ratio. Diabetes Diabetes can Increase the risk of heart disease. A diabetic tends to have above normal levels of blood cholesterol 12 .~~tr~~rr

  19. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine. (United States)

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki


    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  20. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice

    Directory of Open Access Journals (Sweden)

    Beppu Fumiaki


    Full Text Available Abstract Background Fucoxanthin is a xanthophyll present in brown seaweeds and has several beneficial effects, including anti-obesity and anti-diabetic effects. However, we and another group previously observed that fucoxanthin increases serum cholesterol levels in rodents. Cholesterol is an important component of cell membranes and biosynthesis of bile acids. Serum cholesterol levels are also closely associated with atherosclerosis. Therefore, we sought to identify the mechanism underlying the increase in serum cholesterol levels by fucoxanthin. Methods Diabetic/obese KK-Ay mice were fed a diet containing 0.2% fucoxanthin for 4 weeks. The mice were sacrificed, and total blood samples were collected for the measurement of serum total cholesterol, HDL-cholesterol and non-HDL-cholesterol levels. Cholesterol content in tissues was also analyzed. Real-time PCR and Western blotting were performed to determine hepatic mRNA and protein expression of genes involved in cholesterol metabolism, respectively. Results Dietary fucoxanthin significantly increased serum HDL and non-HDL cholesterol levels, and reduced hepatic cholesterol content. In liver, the expression of SREBP1, SREBP2 and their target genes involved in cholesterol biosynthesis significantly increased and tended to increase in the fucoxanthin-fed mice, respectively. In contrast, hepatic levels of LDLR and SR-B1 proteins which is important factors for LDL-cholesterol and HDL-cholesterol uptake in the liver from serum, decreased to 60% and 80% in the fucoxanthin-fed mice, respectively, compared with the control mice. Further, we found that dietary fucoxanthin significantly increased the mRNA expression of proprotein convertase subtilisin/kexin type 9 (PCSK9, which enhances intracellular degradation of LDLR in lysosomes. Conclusions Fucoxanthin increased HDL-cholesterol and non-HDL-cholesterol levels in KK-Ay mice by inducing SREBP expression and reduced cholesterol uptake in the liver via

  1. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    Directory of Open Access Journals (Sweden)

    Takanari Nakano

    Full Text Available Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1, an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to

  2. Hepatic accumulation of intestinal cholesterol is decreased and fecal cholesterol excretion is increased in mice fed a high-fat diet supplemented with milk phospholipids

    Directory of Open Access Journals (Sweden)

    Weir Jacquelyn M


    Full Text Available Abstract Background Milk phospholipids (PLs reduce liver lipid levels when given as a dietary supplement to mice fed a high-fat diet. We have speculated that this might be due to reduced intestinal cholesterol uptake. Methods Mice were given a high-fat diet for 3 or 5 weeks that had no added PL or that were supplemented with 1.2% by wt PL from cow's milk. Two milk PL preparations were investigated: a a PL-rich dairy milk extract (PLRDME, and b a commercially-available milk PL concentrate (PC-700. Intestinal cholesterol uptake was assessed by measuring fecal and hepatic radioactivity after intragastric administration of [14C]cholesterol and [3H]sitostanol. Fecal and hepatic lipids were measured enzymatically and by ESI-MS/MS. Results Both PL preparations led to significant decreases in total liver cholesterol and triglyceride (-20% to -60%, P 14C]cholesterol was significantly less (-30% to -60%, P 14C]cholesterol and unlabeled cholesterol was significantly higher in PL-supplemented mice (+15% to +30%, P 14C]cholesterol (P 14C]cholesterol (P P P Conclusion These results indicate that milk PL extracts reduce hepatic accumulation of intestinal cholesterol and increase fecal cholesterol excretion when given to mice fed a high-fat diet.

  3. The response of the prostate to circulating cholesterol: activating transcription factor 3 (ATF3 as a prominent node in a cholesterol-sensing network.

    Directory of Open Access Journals (Sweden)

    Jayoung Kim

    Full Text Available Elevated circulating cholesterol is a systemic risk factor for cardiovascular disease and metabolic syndrome, however the manner in which the normal prostate responds to variations in cholesterol levels is poorly understood. In this study we addressed the molecular and cellular effects of elevated and suppressed levels of circulating cholesterol on the normal prostate. Integrated bioinformatic analysis was performed using DNA microarray data from two experimental formats: (1 ventral prostate from male mice with chronically elevated circulating cholesterol and (2 human prostate cells exposed acutely to cholesterol depletion. A cholesterol-sensitive gene expression network was constructed from these data and the transcription factor ATF3 was identified as a prominent node in the network. Validation experiments confirmed that elevated cholesterol reduced ATF3 expression and enhanced proliferation of prostate cells, while cholesterol depletion increased ATF3 levels and inhibited proliferation. Cholesterol reduction in vivo alleviated dense lymphomononuclear infiltrates in the periprostatic adipose tissue, which were closely associated with nerve tracts and blood vessels. These findings open new perspectives on the role of cholesterol in prostate health, and provide a novel role for ATF3, and associated proteins within a large signaling network, as a cholesterol-sensing mechanism.

  4. A Population-Based Study of Cholesterol Measurements in the Oldest Old

    DEFF Research Database (Denmark)

    Gils, Charlotte; Christensen, Kaare; Nybo, Mads


    BACKGROUND: Effect of lipid-lowering treatment in the oldest old is a matter of debate as there is no unequivocal evidence of statins being beneficial among the oldest. The need for cholesterol measurements is therefore also questionable, but the frequency of cholesterol measurements in the oldest......+ living on the Island of Funen. The development in trends for cholesterol measurements was analysed in age groups of 5-years interval using linear regression analysis. RESULTS: A total of 30,424 persons with a cholesterol measurement entered the study. The total number of cholesterol measurements...... increased by 246% during the observation period. The percentage of people having a cholesterol measurement increased significantly (p

  5. Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. (United States)

    Ratliff, Eric P; Gutierrez, Alejandra; Davis, Roger A


    Constitutive expression of a cholesterol-7alpha-hydroxylase (CYP7A1) transgene in LDL receptor-deficient mice blocked the ability of a cholesterol-enriched diet to increase plasma levels of apolipoprotein B-containing lipoproteins. LDL receptor-deficient mice expressing the CYP7A1 transgene exhibited complete resistance to diet-induced hypercholesterolemia and to the accumulation of cholesterol in the liver. Hepatic mRNA expression of liver X receptor-inducible ABCG5 and ABCG8 was decreased in CYP7A1 transgenic, LDL receptor-deficient mice fed a cholesterol-enriched diet. Thus, increased biliary cholesterol excretion could not account for the maintenance of cholesterol homeostasis. CYP7A1 transgenic, LDL receptor-deficient mice fed the cholesterol-enriched diet exhibited decreased jejunal Niemann-Pick C1-Like 1 protein (NPC1L1) mRNA expression, an important mediator of intestinal cholesterol absorption. A taurocholate-enriched diet also decreased NPC1L1 mRNA expression in a farnesoid X receptor-independent manner. Reduced expression of NPC1L1 mRNA was associated with decreased cholesterol absorption ( approximately 20%; P CYP7A1 transgenic LDL receptor-deficient mice fed the cholesterol-enriched diet. The combined data show that enhanced expression of CYP7A1 is an effective means to prevent the accumulation of cholesterol in the liver and of atherogenic apolipoprotein B-containing lipoproteins in plasma.

  6. Impact of heme oxygenase-1 on cholesterol synthesis, cholesterol efflux and oxysterol formation in cultured astroglia. (United States)

    Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M


    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders.

  7. Putative cholesterol-binding sites in human immunodeficiency virus (HIV) coreceptors CXCR4 and CCR5. (United States)

    Zhukovsky, Mikhail A; Lee, Po-Hsien; Ott, Albrecht; Helms, Volkhard


    Using molecular docking, we identified a cholesterol-binding site in the groove between transmembrane helices 1 and 7 near the inner membrane-water interface of the G protein-coupled receptor CXCR4, a coreceptor for HIV entry into cells. In this docking pose, the amino group of lysine K67 establishes a hydrogen bond with the hydroxyl group of cholesterol, whereas tyrosine Y302 stacks with cholesterol by its aromatic side chain, and a number of residues form hydrophobic contacts with cholesterol. Sequence alignment showed that a similar putative cholesterol-binding site is also present in CCR5, another HIV coreceptor. We suggest that the interaction of cholesterol with these putative cholesterol-binding sites in CXCR4 and CCR5 is responsible for the presence of these receptors in lipid rafts, for the effect of cholesterol on their conformational stability and function, and for the role that cell cholesterol plays in the cell entry of HIV strains that use these membrane proteins as coreceptors. We propose that mutations of residues that are involved in cholesterol binding will make CXCR4 and CCR5 insensitive to membrane cholesterol content. Cholesterol-binding sites in HIV coreceptors are potential targets for steroid drugs that bind to CXCR4 and CCR5 with higher binding affinity than cholesterol, but do not stabilize the native conformation of these proteins.

  8. Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective. (United States)

    Krycer, James Robert; Brown, Andrew John


    Prostate cancer (PCa) is the most common cancer in men in developed countries. Epidemiological studies have associated high blood-cholesterol levels with an increased risk of PCa, whilst cholesterol-lowering drugs (statins) reduce the risk of advanced PCa. Furthermore, normal prostate epithelial cells have an abnormally high cholesterol content, with cholesterol levels increasing further during progression to PCa. In this review, we explore why and how this occurs. Concurrent to this observation, intense efforts have been expended in cardiovascular research to better understand the regulators of cholesterol homeostasis. Here, we apply this knowledge to elucidate the molecular mechanisms driving the accumulation of cholesterol in PCa. For instance, recent evidence from our group and others shows that major signalling players in prostate growth and differentiation, such as androgens and Akt, modulate the key transcriptional regulators of cholesterol homeostasis to enhance cholesterol levels. This includes adjusting central carbon metabolism to sustain greater lipid synthesis. Perturbations in cholesterol homeostasis appear to be maintained even when PCa approaches the advanced, 'castration-resistant' state. Overall, this provides a link between cholesterol accumulation and PCa cell growth. Given there is currently no cure for castration-resistant PCa, could cholesterol metabolism be a novel target for PCa therapy? Overall, this review presents a picture that cholesterol metabolism is important for PCa development: growth-promoting factors stimulate cholesterol accumulation, which in turn presents a possible target for chemotherapy. Consequently, we recommend future investigations, both to better elucidate the mechanisms driving this accumulation and applying it in novel chemotherapeutic strategies.

  9. Longitudinal Trajectories of Cholesterol from Midlife through Late Life according to Apolipoprotein E Allele Status

    Directory of Open Access Journals (Sweden)

    Brian Downer


    Full Text Available Background: Previous research indicates that total cholesterol levels increase with age during young adulthood and middle age and decline with age later in life. This is attributed to changes in diet, body composition, medication use, physical activity, and hormone levels. In the current study we utilized data from the Framingham Heart Study Original Cohort to determine if variations in apolipoprotein E (APOE, a gene involved in regulating cholesterol homeostasis, influence trajectories of total cholesterol, HDL cholesterol, and total: HDL cholesterol ratio from midlife through late life. Methods: Cholesterol trajectories from midlife through late life were modeled using generalized additive mixed models and mixed-effects regression models. Results: APOE e2+ subjects had lower total cholesterol levels, higher HDL cholesterol levels, and lower total: HDL cholesterol ratios from midlife to late life compared to APOE e3 and APOE e4+ subjects. Statistically significant differences in life span cholesterol trajectories according to gender and use of cholesterol-lowering medications were also detected. Conclusion: The findings from this research provide evidence that variations in APOE modify trajectories of serum cholesterol from midlife to late life. In order to efficiently modify cholesterol through the life span, it is important to take into account APOE allele status.

  10. Alginic acid cell entrapment: a novel method for measuring in vivo macrophage cholesterol homeostasis (United States)

    Sontag, Timothy J.; Chellan, Bijoy; Bhanvadia, Clarissa V.; Getz, Godfrey S.; Reardon, Catherine A.


    Macrophage conversion to atherosclerotic foam cells is partly due to the balance of uptake and efflux of cholesterol. Cholesterol efflux from cells by HDL and its apoproteins for subsequent hepatic elimination is known as reverse cholesterol transport. Numerous methods have been developed to measure in vivo macrophage cholesterol efflux. Most methods do not allow for macrophage recovery for analysis of changes in cellular cholesterol status. We describe a novel method for measuring cellular cholesterol balance using the in vivo entrapment of macrophages in alginate, which retains incorporated cells while being permeable to lipoproteins. Recipient mice were injected subcutaneously with CaCl2 forming a bubble into which a macrophage/alginate suspension was injected, entrapping the macrophages. Cells were recovered after 24 h. Cellular free and esterified cholesterol mass were determined enzymatically and normalized to cellular protein. Both normal and cholesterol loaded macrophages undergo measureable changes in cell cholesterol when injected into WT and apoA-I-, LDL-receptor-, or apoE-deficient mice. Cellular cholesterol balance is dependent on initial cellular cholesterol status, macrophage cholesterol transporter expression, and apolipoprotein deficiency. Alginate entrapment allows for the in vivo measurement of macrophage cholesterol homeostasis and is a novel platform for investigating the role of genetics and therapeutic interventions in atherogenesis. PMID:25465389

  11. Two-compartment model as a teaching tool for cholesterol homeostasis. (United States)

    Wrona, Artur; Balbus, Joanna; Hrydziuszko, Olga; Kubica, Krystian


    Cholesterol is a vital structural and functional molecule in the human body that is only slightly soluble in water and therefore does not easily travels by itself in the bloodstream. To enable cholesterol's targeted delivery to cells and tissues, it is encapsulated by different fractions of lipoproteins, complex particles containing both proteins and lipids. Maintaining cholesterol homeostasis is a highly regulated process with multiple factors acting at both molecular and tissue levels. Furthermore, to regulate the circulatory transport of cholesterol in lipoproteins, the amount of cholesterol present depends on and is controlled by cholesterol dietary intake, de novo synthesis, usage, and excretion; abnormal and/or unbalanced cholesterol levels have been shown to lead to severe outcomes, e.g., cardiovascular diseases. To investigate cholesterol transport in the circulatory system, we have previously developed a two-compartment mathematical model. Here, we show how this model can be used as a teaching tool for cholesterol homeostasis. Using the model and a hands-on approach, students can familiarize themselves with the basic components and mechanisms behind balanced cholesterol circulatory transport as well as investigate the consequences of and countermeasures to abnormal cholesterol levels. Among others, various treatments of high blood cholesterol levels can be simulated, e.g., with commonly prescribed de novo cholesterol synthesis inhibitors.

  12. Making Aggressive Prostate Cancer Quiescent by Abrogating Cholesterol Esterification (United States)


    using combination of cutting edge spectroscopic imaging and other technologies, including biochemistry assays and preclinical testing. The innovation of...research team has been assembled, with expertise in spectroscopic imaging & nanomedicine (Dr. J. X. Cheng, PI), biochemistry (Dr. X. Liu, co-PI), and...of cholesterol ester accumulation significantly suppressed prostate cancer aggressiveness without affecting normal cell viability. Based on these

  13. 21 CFR 862.1175 - Cholesterol (total) test system. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cholesterol (total) test system. 862.1175 Section 862.1175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... lipoprotein metabolism disorders. (b) Classification. Class I (general controls). The device is exempt...

  14. Cholesterol and Alzheimer Type Dementia among Adults with Down Syndrome (United States)

    Buckley, Frank


    This article reports a summary of research by Warren Zigman and colleagues investigating the link between cholesterol levels and Alzheimer type dementia among adults with Down syndrome. Warren Zigman and colleagues followed 123 adults with Down syndrome between May 1998 and April 2006. The participants were aged between 41 and 78 years at the…

  15. Low-density lipoprotein cholesterol and risk of gallstone disease

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Benn, Marianne


    Drugs which reduce plasma low-density lipoprotein cholesterol (LDL-C) may protect against gallstone disease. Whether plasma levels of LDL-C per se predict risk of gallstone disease remains unclear. We tested the hypothesis that elevated LDL-C is a causal risk factor for symptomatic gallstone...

  16. New cholesterol esterase inhibitors based on rhodanine and thiazolidinedione scaffolds

    DEFF Research Database (Denmark)

    Heng, Sabrina; Tieu, William; Hautmann, Stephanie


    We present a new class of inhibitors of pancreatic cholesterol esterase (CEase) based on 'priviledged' 5-benzylidenerhodanine and 5-benzylidene-2,4-thiazolidinedione structural scaffolds. The lead structures (5-benzylidenerhodanine 4a and 5-benzylidene-2,4-thiazolidinedione 4b) were identified...

  17. The effect of lowering LDL cholesterol on vascular access patency

    DEFF Research Database (Denmark)

    Herrington, William; Emberson, Jonathan; Staplin, Natalie


    BACKGROUND AND OBJECTIVES: Reducing LDL cholesterol (LDL-C) with statin-based therapy reduces the risk of major atherosclerotic events among patients with CKD, including dialysis patients, but the effect of lowering LDL-C on vascular access patency is unclear. DESIGN, SETTING, PARTICIPANTS...

  18. Endosomal cholesterol trafficking: protein factors at a glance

    Institute of Scientific and Technical Information of China (English)

    Ximing Du; Hongyuan Yang


    The delivery of low-density lipoprotein-derived cholesterol (LDL-C) from endosomal compartments to the plasma membrane and the endoplasmic reticulum (ER) is an important yet poorly understood cellular process.NiemannPick C1 (NPC1),a multi-pass integral membrane protein on the limiting membranes of late endosomes (LE)/lysosomes (Ly),is known to insert lumenal LDL-C to the limiting membrane of LE/Ly.Recent progress has identified novel cytoplasmic proteins that regulate the exit of LDL-C from LE/Ly,such as ORP5,a member of the oxysterolbinding protein-related protein (ORPs) family,and Hrs/VPS27,a well-established regulator of the endosomal sorting complex required for transport pathway.Whereas ORP5/ORPs may serve as cytosolic cholesterol carriers and deliver cholesterol in a non-vesicular manner,how Hrs/VPS27 regulate endosomal cholesterol sorting remains enigmatic.We discuss the functional relationship between NPC1,Hrs,and ORP5,and formulate possible schemes on how LDL-C may be moved from endosomal compartments to other cellular organelles.

  19. Plasma HDL cholesterol and risk of myocardial infarction

    DEFF Research Database (Denmark)

    Voight, Benjamin F; Peloso, Gina M; Orho-Melander, Marju


    High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes...

  20. LDL cholesterol goals and cardiovascular risk during statin treatment

    DEFF Research Database (Denmark)

    Olsson, Anders G; Lindahl, Christina; Holme, Ingar


    We assessed the proportion of patients treated with either simvastatin 20 or 40 mg or atorvastatin 80 mg who achieved low-density lipoprotein cholesterol (LDL-C) goals of 2.5 or 2.0 mmol/l in the Incremental Decrease in End Points Through Aggressive Lipid Lowering (IDEAL) study. We explored how...

  1. The 2013 cholesterol guideline controversy: Would better evidence prevent pharmaceuticalization? (United States)

    Unruh, Lynn; Rice, Thomas; Rosenau, Pauline Vaillancourt; Barnes, Andrew J


    Cardiovascular disease (CVD) remains the leading cause of death globally. A class of medications, known as statins, lowers low-density lipoprotein cholesterol levels, which are associated with CVD. The newest 2013 U.S. cholesterol guideline contains an assessment of risk that greatly expands the number of individuals without CVD for whom statins are recommended. Other countries are also moving in this direction. This article examines the controversy surrounding these guidelines using the 2013 cholesterol guidelines as a case study of broader trends in clinical guidelines to use a narrow evidence base, expand the boundaries of disease and overemphasize pharmaceutical treatment. We find that the recommendation in the 2013 cholesterol guidelines to initiate statins in individuals with a lower risk of CVD is controversial and there is much disagreement on whether there is evidence for the guideline change. We note that, in general, clinical guidelines may use evidence that has a number of biases, are subject to conflicts of interest at multiple levels, and often do not include unpublished research. Further, guidelines may contribute to the "medicalization" or "pharmaceuticalization" of healthcare. Specific policy recommendations to improve clinical guidelines are indicated: these include improving the evidence base, establishing a public registry of all results, including unpublished ones, and freeing the research process from pharmaceutical sector control.

  2. Phosphatidylcholesterol bilayers. A model for phospholipid-cholesterol interaction

    NARCIS (Netherlands)

    Jain, M.K.; Ramirez, F.; McCaffrey, T.M.; Ioannou, P.V.; Marecek, J.F.; Leunissen-Bijvelt, J.


    Aqueous dispersions of monovalent and divalent cation salts of O-(1,2-dipalmitoyl-sn-glycero-3-phosphoryl) cholesterol form multilamellar vesicles as shown by freeze-fracture electron microscopy, by electron micrographs of the negatively stained liposomes, and by swelling curves of liposomes in hypo

  3. Community-wide survey of physicians' knowledge of cholesterol management

    Institute of Scientific and Technical Information of China (English)

    GUAN Fei; XIE Jiang; WANG Gui-lian; WANG Jia-hong; WANG Jin-song; YU Jin-ming; HU Da-yi


    Background An elevated serum lipid is one of the major risk factors for coronary heart disease (CHD). Physicians' awareness contributes to successful adoption of practice guidelines. Community medical centers are the primary defense against chronic disease. This study aimed to investigate community physicians' awareness of cholesterol guidelines and their utilization.Methods Six hundred and one community physicians were randomly selected from four different regions, and completed a confidential and semi-structured questionnaire. Four hundred and ninety-one completed the questionnaire, and 486 valid questionnaires were available.Results The physicians' fundamental knowledge of lipids was astonishingly poor, while the awareness of cholesterol guidelines was low. Only 24% and 14% of the physicians reported the right optimal low-density lipoprotein cholesterol (LDL-C) level for CHD and diabetes patients respectively. More than half of the physicians (55.8%) mistakenly considered elevated transaminases to be the lethal side effect of statins. More than half of the physicians (51.9%) would give up statin treatment in the case of transaminase elevation.Conclusion Educational interventions to improve cholesterol knowledge and to publicize standard treatment are needed among Chinese community physicians.

  4. Effect of phosphatidylcholine-cholesterol liposomes on Entamoeba histolytica virulence. (United States)

    Serrano-Luna, Jesús; Gutiérrez-Meza, Manuel; Mejía-Zepeda, Ricardo; Galindo-Gómez, Silvia; Tsutsumi, Víctor; Shibayama, Mineko


    Trophozoites of Entamoeba histolytica HM-1:IMSS become less virulent after long-term maintenance in axenic cultures. The factors responsible for the loss of virulence during in vitro cultivation remain unclear. However, it is known that in vitro cultivation of amoeba in culture medium supplemented with cholesterol restores their virulence. In this study, we analyzed the effect of adding phosphatidylcholine-cholesterol (PC-Chol) liposomes to the culture medium and evaluated the effect of this lipid on various biochemical and biological functions of E. histolytica HM-1:IMSS in terms of its virulence. The addition of PC-Chol liposomes to the culture medium maintained the virulence of these parasites against hamster liver at the same level as the original virulent E. histolytica strain, even though these amoebae were maintained without passage through hamster liver for 18 months. The trophozoites also showed increased endocytosis, erythrophagocytosis, and carbohydrate residue expression on the amoebic surface. Protease activities were also modified by the presence of cholesterol in the culture medium. These findings indicate the capacity of cholesterol to preserve amoeba virulence and provide an alternative method for the maintenance of virulent E. histolytica trophozoites without the need for in vivo procedures.

  5. The effect of cellular cholesterol on membrane-cytoskeleton adhesion. (United States)

    Sun, Mingzhai; Northup, Nathan; Marga, Francoise; Huber, Tamas; Byfield, Fitzroy J; Levitan, Irena; Forgacs, Gabor


    Whereas recent studies suggest that cholesterol plays important role in the regulation of membrane proteins, its effect on the interaction of the cell membrane with the underlying cytoskeleton is not well understood. Here, we investigated this by measuring the forces needed to extract nanotubes (tethers) from the plasma membrane, using atomic force microscopy. The magnitude of these forces provided a direct measure of cell stiffness, cell membrane effective surface viscosity and association with the underlying cytoskeleton. Furthermore, we measured the lateral diffusion constant of a lipid analog DiIC12, using fluorescence recovery after photobleaching, which offers additional information on the organization of the membrane. We found that cholesterol depletion significantly increased the adhesion energy between the membrane and the cytoskeleton and decreased the membrane diffusion constant. An increase in cellular cholesterol to a level higher than that in control cells led to a decrease in the adhesion energy and the membrane surface viscosity. Disassembly of the actin network abrogated all the observed effects, suggesting that cholesterol affects the mechanical properties of a cell through the underlying cytoskeleton. The results of these quantitative studies may help to better understand the biomechanical processes accompanying the development of atherosclerosis.

  6. Microstructural analysis of bile: relevance to cholesterol gallstone pathogenesis. (United States)

    Rubin, M; Pakula, R; Konikoff, F M


    The study of physical-chemical factors and pathways leading to cholesterol crystallization in bile has important clinical relevance. The major processes in cholesterol gallstone formation can be subdivided into nucleation, formation and precipitation of solid crystals (crystallization), crystal growth, crystal agglomeration and stone growth. A clear understanding of the microstructural events occurring during the earliest stages of these processes in bile is crucial for the identification of factors possibly delaying or preventing precipitation of cholesterol crystals and, therefore, gallstone formation in bile. Detection and characterization of microstructures in native and model biles can be achieved by both direct and indirect techniques. Direct imaging techniques provide more readily interpretable information, but sample preparation problems, particularly for electron microscopy, are a source of artifacts. Moreover, microscopic techniques provide only qualitative data without the possibility to quantitate or to analyse the composition of microstructures. Several indirect techniques have been used to obtain additional microstructural information about nucleating bile. These techniques have the disadvantage of often being model dependent in addition to constraints specific for each method. The systematic, judicious use of a combination of complementary direct and indirect techniques have led to a comprehensive understanding of the various microstructural processes and interactions occurring during bile secretion, flow in the biliary tract and storage in the gallbladder. This forms the basis for our current understanding of cholesterol nucleation, crystallization and gallstone formation.

  7. The cholesterol-raising factor from coffee beans.

    NARCIS (Netherlands)

    Urgert, R.; Katan, M.B.


    Coffee beans and some types of coffee brew - not the regular types of coffee prepared with a paper filter or with soluble coffee granules - contain the diterpenes cafestol and kahweol. Cafestol and kahweol raise the serum concentration of cholesterol and triglycerides in humans, and they also appear

  8. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion (United States)

    Tian, Yu; He, Lei; Shao, Yang; Li, Na


    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion. PMID:27642591

  9. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion. (United States)

    Chen, Ting; Yuan, Fahu; Wang, Hualin; Tian, Yu; He, Lei; Shao, Yang; Li, Na; Liu, Zhiguo


    Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD). The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA) against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD) supplement with perilla oil (POH) for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  10. New conception concerning the dynamical state of cholesterol in rat; Conception nouvelle concernant l'etat dynamyque du cholesterol chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    It presents the study of the cholesterol metabolism in rats. This thesis has been divided in three chapters. In a first part, it will discuss about the dynamic state of biological constituents in organism and in particular the dynamic state of cholesterol. This matter will be considered, firstly under its theoretical aspect and secondly under an experimental point of view with isotopic techniques. The current data on the dynamic state of cholesterol will allow to identify the essential points which are the subject of this research. In particular, the full understanding of the different cholesterol origins (diet, biosynthesis or formation of cholesterol from degradation or transformation of precursors as acetate or butyric acid for example) and the different cholesterol disappearance way (excretion, destruction, transformation or esters formation) is necessary to further research. In a second part, the experimental techniques and methods are described. A brief presentation of the methods for the study of the cholesterol transport and synthesis will be given as well as the experimental conditions and in particular the animal diet and cholesterol ingestion, the administration of acetate and {gamma}-phenyl {alpha}-aminobutyric. The different preparations of the {sup 14}C labelled cholesterol are also described as well as the extraction and measuring of the specific {sup 14}C radioactivity in the animal tissues extract, carbon dioxide gas and sodium acetate. Finally, the results will be given and discussed according to the way of intake: a radioactive cholesterol ingestion or an acetate intraperitoneal injection. (M.P.)

  11. Many Americans Don't Know How to Handle High Cholesterol (United States)

    ... Americans Don't Know How to Handle High Cholesterol Survey found they know it raises heart risks, ... April 11, 2017 (HealthDay News) -- Americans with high cholesterol are well aware of its heart dangers, but ...

  12. Many Young Adults with High Cholesterol Not on Statins as Recommended (United States)

    ... Many Young Adults With High Cholesterol Not on Statins as Recommended ... News) -- Too few Americans who need them -- especially young adults -- are getting cholesterol-lowering statin medications, a new ...

  13. A physiologically based in silico kinetic model predicting plasma cholesterol concentrations in humans

    NARCIS (Netherlands)

    Pas, van de N.C.A.; Woutersen, R.A.; Ommen, van B.; Rietjens, I.M.C.M.; Graaf, de A.A.


    Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was dire

  14. Alterations in plasma lecithin : cholesterol acyltransferase and myeloperoxidase in acute myocardial infarction: Implications for cardiac outcome

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; Tietge, Uwe J. F.; Kwakernaak, Arjan J.; Dikkeschei, Bert D.; Perton, Frank; Tio, Rene A.


    Background: The cholesterol esterifying enzyme, lecithin: cholesterol acyltransferase (LCAT), plays a key role in HDL maturation and remodeling. Myeloperoxidase (MPO) may compromise LCAT enzymatic activity. We tested the extent to which plasma LCAT activity is altered in acute myocardial infarction

  15. Cholesterol and synaptic compensatory mechanisms in Alzheimer's disease mice brain during aging.

    NARCIS (Netherlands)

    Jansen, D.; Janssen, C.I.F.; Vanmierlo, T.; Dederen, P.J.; Rooij, D. van; Zinnhardt, B.; Nobelen, C.L.; Janssen, A.L.; Hafkemeijer, A.; Mutsaers, M.P.; Doedee, A.M.; Kuipers, A.A.; Broersen, L.M.; Mulder, M.; Kiliaan, A.J.


    Research into the development of Alzheimer's disease (AD) provides increasing evidence that vascular risk factors, including high serum cholesterol, might influence the progression of cognitive impairment and neural degeneration. In this study, we investigated the effects of high dietary cholesterol

  16. Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments

    NARCIS (Netherlands)

    Bennett, W. F. Drew; MacCallum, Justin L.; Hinner, Marlon J.; Marrink, Siewert J.; Tieleman, D. Peter


    The relative stability of cholesterol in cellular membranes and the thermodynamics of fluctuations from equilibrium have important consequences for sterol trafficking and lateral domain formation. We used molecular dynamics computer simulations to investigate the partitioning of cholesterol in a sys

  17. Characteristics of mRNA levels of hepatic key enzymes in cholesterol metabolism of genetically gallstone-susceptible mice

    Institute of Scientific and Technical Information of China (English)

    许国强; 赵力


    @@ Our previous study1 indicated that biliary cholesterol hypersecretion was the key pathophysiological defect of gallstone formation. Lith genes determine biliary cholesterol hypersecretion and susceptibility to cholesterol gallstone formation in C57L mice.

  18. Animal model of high cholesterol atherosclerotic erectile dysfunction and mechanism of atherosclerotic erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Guo-ShengYang; Zhao-DianChen; Hong-JuWang


    Aim: To establish the animal model of atherosclerotic erectile dysfunction (ED) induced by high cholesterol diet and explore the mechanism of atherosclerotic ED. Methods: Thirty male rabbits were divided at random into two groups: the normal diet (ND)group (n=10) and the high cholesterol (HCH) group fed with 1.5% cholesterol diet (n=20). Serum total cholesterol, plaque areas of the ascending aorta,

  19. Early extracellular and cellular lipid deposits in aorta of cholesterol-fed rabbits.


    Guyton, J. R.; Klemp, K. F.


    Subendothelial accumulation of extracellular liposomes rich in unesterified cholesterol has been described as an early feature of atherosclerosis induced by cholesterol feeding in rabbits. Beta-very-low-density lipoproteins, however, the presumed source of atherogenic lipid in this animal model, contain mostly esterified cholesterol. The purpose of this study was to test for the presence of extracellular neutral lipid deposits consistent with esterified cholesterol, by employing new electron ...

  20. 17 beta-estradiol but not the phytoestrogen naringenin attenuates aortic cholesterol accumulation in WHHL rabbits

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Breinholt, V.; Dalsgaard, T.;


    .20% naringenin, for 16 weeks. The uterine weight was increased (P cholesterol and triglycerides were not different from those in the controls, In lipoproteins, HDL...... cholesterol was increased (P cholesterol accumulation was decreased (P ... but the ratio of intima to media and area of intima in ascending, thoracic, and abdominal aorta were not significantly different. In the naringenin group the only differences, compared with the control group, were increased LDL cholesterol (P

  1. Remnant cholesterol as a causal risk factor for ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Tybjærg-Hansen, Anne


    The aim of this study was to test the hypothesis that elevated nonfasting remnant cholesterol is a causal risk factor for ischemic heart disease independent of reduced high-density lipoprotein (HDL) cholesterol.......The aim of this study was to test the hypothesis that elevated nonfasting remnant cholesterol is a causal risk factor for ischemic heart disease independent of reduced high-density lipoprotein (HDL) cholesterol....

  2. Hypocholesterolemic Effects of Lactic Acid-Fermented Soymilk on Rats Fed a High Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Mitsuru Fukuda


    Full Text Available The effect of fermented soymilk on rats fed a high cholesterol diet was investigated to clarify the cholesterol-lowering function. Male Sprague-Dawley rats aged 7 weeks were fed a control diet (1% cholesterol, high cholesterol diet, high cholesterol diet containing 11.7% fermented soymilk diet (5% soy protein as final concentration, F-5, or high cholesterol diet containing 23.4% fermented soymilk diet (10% soy protein as final concentration, F-10 for 5 weeks. The liver weight and fat mass were decreased by the ingestion of fermented soymilk. The hepatic triglyceride and cholesterol levels in the F-5 and F-10 groups were significantly lowered compared to those in the control group. The plasma total cholesterol level of the F-10 group was significantly decreased. The expression of SREBP-2, a cholesterol synthesis-related gene, was significantly decreased in liver of the F-5 group, but the expression of CYP7a1, a cholesterol catabolism-related gene, was significantly increased. These results suggest that fermented soymilk can modulate the cholesterol metabolism in rats fed a high cholesterol diet.

  3. A physiologically based kinetic model for the prediction of plasma cholesterol concentrations in mice and man

    NARCIS (Netherlands)

    Pas, van de N.


    An increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. However, individuals vary largely in their response to cholesterol lowering drugs and 40% of them, do not reach their cholesterol-lowering target. Development of novel therapies, for example co

  4. Association between blood cholesterol level with periodontal status of coronary heart disease patients (United States)

    Valensia, Rosy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni


    Coronary heart disease (CHD) is an abnormal narrowing of heart arteries associated with local accumulation of lipids, in the form of cholesterol and triglycerides. Periodontal disease is a chronic inflammatory that suggests link to the development of CHD. In periodontitis have been reported changes in lipid profile, include increased of cholesterol levels of blood. Objective: to analyse correlation between blood cholesterol level with periodontal status of CHD and non CHD subjects. Methods: Periodontal status and blood cholesterol level of 60 CHD and 40 non CHD subjects was measured. Result: Blood cholesterol level in CHD subjects differs from non CHD subjects (p=0.032). Blood cholesterol level correlates with pocket depth (p=0.003) and clinical attachment loss (CAL) (p=0.000) in CHD subjects. Blood cholesterol level correlates with pocket depth (p=0.010) in non CHD subjects. There is no significant correlation between blood cholesterol level and bleeding on probing (BOP) in CHD subjects. There is no significant correlation between blood cholesterol level with BOP and CAL in non CHD subjects. Conclusion: Blood cholesterol level in control group is higher than CHD patients. Blood cholesterol level positively associated with pocket depth (r=0.375) and CAL (r=0.450) in CHD patients. Blood cholesterol level is positively associated with pocket depth (r=0.404) in control group.

  5. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study. (United States)

    Saito, Hiroaki; Shinoda, Wataru


    Water permeability of two different lipid bilayers of dipalmitoylphosphatidylcholine (DPPC) and palmitoylsphingomyelin (PSM) in the absence and presence of cholesterol (0-50 mol %) have been studied by molecular dynamics simulations to elucidate the molecular mechanism of the reduction in water leakage across the membranes by the addition of cholesterol. An enhanced free energy barrier was observed in these membranes with increased cholesterol concentration, and this was explained by the reduced cavity density around the cholesterol in the hydrophobic membrane core. There was an increase of trans conformers in the hydrophobic lipid chains adjacent to the cholesterol, which reduced the cavity density. The enhanced free energy barrier was found to be the main reason to reduce the water permeability with increased cholesterol concentration. At low cholesterol concentrations the PSM bilayer exhibited a higher free energy barrier than the DPPC bilayer for water permeation, while at greater than 30 mol % of cholesterol the difference became minor. This tendency for the PSM and DPPC bilayers to resemble each other at higher cholesterol concentrations was similar to commonly observed trends in several structural properties, such as order parameters, cross-sectional area per molecule, and cavity density profiles in the hydrophobic regions of bilayer membranes. These results demonstrate that DPPC and PSM bilayers with high cholesterol contents possess similar physical properties, which suggests that the solubility of cholesterol in these lipid bilayers has importance for an understanding of multicomponent lipid membranes with cholesterol.

  6. The Role of Maternal-Fetal Cholesterol Transport in Early Fetal Life : Current Insights

    NARCIS (Netherlands)

    Baardman, Maria E.; Kerstjens-Frederikse, Wilhelmina S.; Berger, Rolf M. F.; Bakker, Marian K.; Hofstra, Robert M. W.; Plosch, Torsten


    The importance of maternal cholesterol as an exogenous cholesterol source for the growing embryo was first reported in studies of Smith-Lemli-Opitz syndrome. Although most of the fetus's cholesterol is synthesized by the fetus itself, there is now growing evidence that during the first weeks of life

  7. The role of maternal-fetal cholesterol transport in early fetal life: Current insights

    NARCIS (Netherlands)

    T. Baardman (Taco); W.S. Kerstjens-Frederikse (Wilhelmina); R.M.F. Berger (Rolf); M.K. Bakker (Marian); R.M.W. Hofstra (Robert); T. Plösch (Torsten)


    textabstractThe importance of maternal cholesterol as an exogenous cholesterol source for the growing embryo was first reported in studies of Smith-Lemli-Opitz syndrome. Although most of the fetus's cholesterol is synthesized by the fetus itself, there is now growing evidence that during the first w

  8. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development. (United States)

    Suzuki, Shingo; Kiyosue, Kazuyuki; Hazama, Shunsuke; Ogura, Akihiko; Kashihara, Megumi; Hara, Tomoko; Koshimizu, Hisatsugu; Kojima, Masami


    Brain-derived neurotrophic factor (BDNF) exerts multiple biological functions in the CNS. Although BDNF can control transcription and protein synthesis, it still remains open to question whether BDNF regulates lipid biosynthesis. Here we show that BDNF elicits cholesterol biosynthesis in cultured cortical and hippocampal neurons. Importantly, BDNF elicited cholesterol synthesis in neurons, but not in glial cells. Quantitative reverse transcriptase-PCR revealed that BDNF stimulated the transcription of enzymes in the cholesterol biosynthetic pathway. BDNF-induced cholesterol increases were blocked by specific inhibitors of cholesterol synthesis, mevastatin and zaragozic acid, suggesting that BDNF stimulates de novo synthesis of cholesterol rather than the incorporation of extracellular cholesterol. Because cholesterol is a major component of lipid rafts, we investigated whether BDNF would increase the cholesterol content in lipid rafts or nonraft membrane domains. Interestingly, the BDNF-mediated increase in cholesterol occurred in rafts, but not in nonrafts, suggesting that BDNF promotes the development of neuronal lipid rafts. Consistent with this notion, BDNF raised the level of the lipid raft marker protein caveolin-2 in rafts. Remarkably, BDNF increased the levels of presynaptic proteins in lipid rafts, but not in nonrafts. An electrophysiological study revealed that BDNF-dependent cholesterol biosynthesis plays an important role for the development of a readily releasable pool of synaptic vesicles. Together, these results suggest a novel role for BDNF in cholesterol metabolism and synapse development.

  9. Comparison of stereochemical structures of cholesterol from different sources by HPLC

    Directory of Open Access Journals (Sweden)

    Basri Satılmış


    Full Text Available It is known that only one stereoisomeric form, nat-cholesterol, naturally occurs. Nat-cholesterol and its enantiomer, ent-cholesterol, sometimes show enantiospecific interactions with biological molecules. If cholesterol is naturally found only one form, then the question of “why does cholesterol show an enantiomeric selectivity?” arises. For this purpose, stereoisomer analysis of cholesterol obtained from porcine liver and wool wax were carried out with three different high performance liquid chromatography (HPLC systems including reversed-phase, reversed-phase with different cyclodextrins as a mobile phase modifier, and chiral. Results from HPLC analysis of both cholesterol samples by permethylated γ-cyclodextrin and amylose tris-(3,5-dimethylphenylcarbamate chiral columns showed that there was no stereoisomer of cholesterol present. However reversed-phase HPLC analysis of cholesterol samples from porcine liver carried out with various cyclodextrins as mobile phase modifiers presented a peak which was not observed in the analysis of cholesterol samples from wool wax. On the other hand, different storage conditions of cholesterol samples and addition of cyclodextrins as mobile phase modifiers produced almost identical alterations in chromatograms of fresh samples by reversed-phase HPLC. This could be attributed to catalytic properties of cyclodextrins. Cyclodextrins may not be suitable as a mobile phase modifier in the stereoisomer analysis of cholesterol with high performance liquid chromatography.

  10. Detecting Elevated Cholesterol Levels: Part 1: How accurate is the Reflotron? (United States)

    Reimer, H L; Elford, R W; Shumak, S


    To assess accuracy of blood cholesterol measurements in the office, fingerprick blood cholesterol assays by a dry reagent chemistry analyzer were compared in 151 patients with simultaneous venipuncture cholesterol assays by standard laboratory methods. Compared with the laboratory assay, seven of eight analyzers had total absolute biases less than 5%. Variability in results was comparable to that of community laboratories.

  11. Patients’ Perceptions of Cholesterol, Cardiovascular Disease Risk, and Risk Communication Strategies


    Goldman, Roberta E.; Parker, Donna R.; Eaton, Charles B.; Borkan, Jeffrey M.; Gramling, Robert; Cover, Rebecca T.; Ahern, David K.


    PURPOSE Despite some recent improvement in knowledge about cholesterol in the United States, patient adherence to cholesterol treatment recommendations remains suboptimal. We undertook a qualitative study that explored patients’ perceptions of cholesterol and cardiovascular disease (CVD) risk and their reactions to 3 strategies for communicating CVD risk.

  12. Should we change our lipid management strategies to focus on non-high-density lipoprotein cholesterol?

    NARCIS (Netherlands)

    J.S. Rana; S.M. Boekholdt


    Purpose of review Despite aggressive low-density lipoprotein cholesterol lowering, patients continue to be at significant risk of cardiovascular events. Assessment of non-high-density lipoprotein cholesterol (non-HDL-C) provides a measure of cholesterol contained in all atherogenic particles. In the

  13. The Effect of Biliary Sphincterotomy on Serum Cholesterol Levels in Postcholecystectomy Patients: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Waleed M Alazmi


    Full Text Available BACKGROUND: Cholesterol, in the form of bile salts, is reabsorbed from the small intestine via the enterohepatic circulation. Biliary sphincterotomy increases the delivery of bile to the terminal ileum. If the absorptive capacity is exceeded, cholesterol excretion may increase, resulting in a decrease in serum cholesterol levels and improvement in serum lipid profiles.

  14. Detecting Elevated Cholesterol Levels: Part 1: How accurate is the Reflotron?


    Reimer, H.L.; Elford, R.W.; Shumak, S.


    To assess accuracy of blood cholesterol measurements in the office, fingerprick blood cholesterol assays by a dry reagent chemistry analyzer were compared in 151 patients with simultaneous venipuncture cholesterol assays by standard laboratory methods. Compared with the laboratory assay, seven of eight analyzers had total absolute biases less than 5%. Variability in results was comparable to that of community laboratories.

  15. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population

    DEFF Research Database (Denmark)

    Varbo, Anette; Freiberg, Jacob J; Nordestgaard, Børge G


    BACKGROUND: Increased nonfasting remnant cholesterol, like increased LDL cholesterol, is causally associated with increased risk for ischemic heart disease (IHD). We tested the hypothesis that extreme concentrations of nonfasting remnant and LDL cholesterol are equal contributors to the risk of IHD......, myocardial infarction (MI), and all-cause mortality. METHODS: We compared stepwise increasing concentrations of nonfasting remnant and LDL cholesterol for association with risk of IHD, MI, and all-cause mortality in approximately 90 000 individuals from the Danish general population. During up to 22 years...... of complete follow-up, 4435 participants developed IHD, 1722 developed MI, and 8121 died. RESULTS: Compared with participants with nonfasting remnant cholesterol cholesterol of 0.5-0.99 mmol/L (19.3-38.2 mg/dL) to 2...

  16. Iridoid enriched fraction from Ajuga iva reduce cholesterolemia, triacylglycerolemia and increase the lecithin:cholesterol acyltransferase activity of rats fed a cholesterol-rich diet


    Marie A. Lacaille-Dubois; Josiane Prost; Sherazede Bouderbala; Malika Bouchenak


    Objective: In this study, we examined the effect of iridoid (I) derived from lyophilized aqueous extract of Ajuga iva on serum HDL2 and HDL3 compositions and lecithin:cholesterol acyltransferase (LCAT) activity, enzyme responsible for reverse cholesterol transport. Methods: Male Wistar rats (n=24) weighing 120±5 g were fed a diet containing 1% cholesterol-rich diet for 15 days. After this phase, the hypercholesterolemic (HC) rats were divided into groups fed the same diet and received or...

  17. The effect of dietary rape-seed oil on cholesterol-ester metabolism and cholesterol-ester-hydrolase activity in the rat adrenal. (United States)

    Beckett, G J; Boyd, G S


    The effects of stock diet and stock diet supplemented by olive oil and rape seed on rat adrenal cholesterol ester metabolism have been studied. Rats fed rape seed oil failed to gain weight at the same rate as rats fed olive oil. A prominent feature of the rats fed rape seed oil was an accumulation of high concentrations of cholesterol erucate in the adrenal lipid droplets. When these rats were subjected to an ether stress no percentage decrease in the amount of cholesterol erucate was observed. Adrenal cholesterol ester hydrolase activity was higher in rats fed the olive oil and rape seed oil diets than rats fed the stock diet. In rats fed stock or olive oil diets, a ten-minute ether anaesthesia stress resulted in a two-fold increase in activity of adrenal cholesterol ester hydrolase. Cofactor addition of ATP, cyclic AMP and MgCl-2 in vitro resulted in a stimulation of cholesterol ester hydrolase to a similar activity in both quiescent and ether-stressed rats. By contrast rats fed the rape seed oil diet gave no significant stimulation of cholesterol ester hydrolase activity when given an ether stress or when cofactors were added in vitro. Cholesterol erucate was hydrolysed at only 25% to 30% of the rate of cholesterol oleate in vitro in all groups of animals. Oleic acid added in vitro gave an inhibition of cholesterol ester hydrolase activity in rats fed stock diet while erucic acid activated the enzyme. The accumulation of cholesterol erucate in the adrenal when rats are fed rape seed oil could be due to the reduced ability of cholesterol ester hydrolase to hydrolyse this ester.

  18. Reasons for the upsetting cholesterol level during the community investigation from residents, physicians, and social aspects: The China Cholesterol Education Program (CCEP)

    Institute of Scientific and Technical Information of China (English)

    XIE Jiang; GUAN Fei; WANG Jia-hong; HU Da-yi


    Background The community medical center is the first barrier for lipid control. We aimed to survey the residents' cholesterol condition in the community, and pursue the reasons for the upsetting results from various aspects.Methods Residents and physicians were recruited from four community centers. Residents completed questionnaires and a physical examination as well as biochemical analysis. Physicians were also asked to complete a questionnaire,some of which were about basic knowledge of lipids.Results About 37.0% male and 48.1% female had elevated cholesterol levels. Residents' blood pressure (BP), fasting glucose (FG), body mass index (BMI), and waist circumference (WC) were positively associated with their low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). Framingham risk scoring (FRS) was strongly related to cholesterol (P <0.001 for LDL-C and TC). Residents' higher education grade was positively related to a normal cholesterol condition (P<0.001), while personal income was negatively related to it. Rural residents had higher percent of population with normal cholesterol level (normal cholesterol rate) than their city counterpart (P <0.001). Although physicians with college education had a much higher lipid knowledge level themselves, the physicians' factors had almost no relationship with the residents' cholesterol levels.Conclusions Management of hypercholesterolemia should be an important component of health strategy in Beijing.Education is imperative for residents as well as for physicians.

  19. Cholesterol in preteen children of parents with premature coronary disease. (United States)

    Gross, H; Caplan, C


    A pediatric population at high risk for the development of coronary artery disease has been identified. Using a simple and inexpensive protocol, serum cholesterol determinations were performed on 50 children 12 years old and younger. These children were taken from 28 families in which one parent had suffered a myocardial infarction before the age of 50. Eight of the 50 children were found to have significant elevation of serum cholesterol. This was an incidence of 16%--twice that of the general pediatric population. Subjects with both adverse genetic and metabolic backgrounds need to be identified in this simple way. Preventive and therapeutic measures in such children may alter in the future the serious morbidity and mortality of coronary artery disease.

  20. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. (United States)

    Papadopoulos, Vassilios; Aghazadeh, Yasaman; Fan, Jinjiang; Campioli, Enrico; Zirkin, Barry; Midzak, Andrew


    Steroidogenesis begins with cholesterol transfer into mitochondria through the transduceosome, a complex composed of cytosolic proteins that include steroidogenesis acute regulatory protein (STAR), 14-3-3 adaptor proteins, and the outer mitochondrial membrane proteins Translocator Protein (TSPO) and Voltage-Dependent Anion Channel (VDAC). TSPO is a drug- and cholesterol-binding protein found at particularly high levels in steroid synthesizing cells. Its aberrant expression has been linked to cancer, neurodegeneration, neuropsychiatric disorders and primary hypogonadism. Brain steroids serve as local regulators of neural development and excitability. Reduced levels of these steroids have been linked to depression, anxiety and neurodegeneration. Reduced serum testosterone is common among subfertile young men and aging men, and is associated with depression, metabolic syndrome and reduced sexual function. Although testosterone-replacement therapy is available, there are undesired side-effects. TSPO drug ligands have been proposed as therapeutic agents to regulate steroid levels in the brain and testis.

  1. TOF-SIMS study of cystine and cholesterol stones. (United States)

    Ghumman, C A A; Moutinho, A M C; Santos, A; Tolstogouzov, A; Teodoro, O M N D


    Two different human stones, cystine and cholesterol from the kidney and gall bladder, were examined by time-of-flight secondary ion mass spectrometry using Ga(+) primary ions as bombarding particles. The mass spectra of kidney stone were compared with those measured for the standard compounds, cystine and cysteine. Similar spectra were obtained for the stone and cystine. The most important identification was based on the existence of the protonated molecules [M + H](+) and deprotonated molecules [M-H](-). The presence of cystine salt was also revealed in the stone through the sodiated cystine [M + Na](+) and the associated fragments, which might be due to the patient treatment history. In the gallstone, the deprotonated molecules [M-H](+) of cholesterol along with relatively intense characteristic fragments [M-OH](+) were detected.

  2. [PCSK9 inhibitors: new treatment to lower cholesterol]. (United States)

    Gencer, Baris; Rodondi, Nicolas; Mach, François


    The proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors appear to represent an important development in the management of hypercholesterolemia. US Food and Drug Administration and European Medicines Agency approved alirocumab and evolocumab, injected drugs administered subcutaneously every 2 or 4 weeks, for patients with hypercholesterolemia, such as those who not reached the cholesterol targets or those with intolerance to statin, especially in secondary prevention or familial hypercholesterolemia. This decision is based on several clinical trials suggesting that these drugs have a powerful effect on levels of LDL-cholesterol with an acceptable safety compared to placebo. Large clinical studies are currently performed to assess the impact of PCSK9 inhibitors on major adverse cardiovascular events in secondary prevention.

  3. Ileus caused by cholesterol crystal embolization: A case report. (United States)

    Azuma, Shunjiro; Ikenouchi, Maiko; Akamatsu, Takuji; Seta, Takeshi; Urai, Shunji; Uenoyama, Yoshito; Yamashita, Yukitaka


    Cholesterol crystal embolization (CCE) is a rare systemic embolism caused by formation of cholesterol crystals from atherosclerotic plaques. CCE usually occurs during vascular manipulation, such as vascular surgery or endovascular catheter manipulation, or due to anticoagulation or thrombolytic therapy. We report a rare case of intestinal obstruction caused by spontaneous CCE. An 81-year-old man with a history of hypertension was admitted for complaints of abdominal pain, bloating, and anorexia persisting for 4 mo. An abdominal computed tomography revealed intestinal ileus. His symptoms were immediately relieved by an ileus tube insertion, and he was discharged 6 d later. However, these symptoms immediately reappeared and persisted, and partial resection of the small intestine was performed. A histopathological examination indicated that small intestine obstruction was caused by CCE. At the 12-mo follow-up, the patient showed no evidence of CCE recurrence. Thus, in cases of intestinal obstruction, CCE should also be considered.

  4. Cholesterol and male fertility: what about orphans and adopted? (United States)

    Maqdasy, Salwan; Baptissart, Marine; Vega, Aurélie; Baron, Silvère; Lobaccaro, Jean-Marc A; Volle, David H


    The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.

  5. Cholesterol homeostasis failure in the brain: implications for synaptic dysfunction and cognitive decline. (United States)

    Segatto, Marco; Leboffe, Loris; Trapani, Laura; Pallottini, Valentina


    Cholesterol is one of the most important molecules in cell physiology because of its involvement in several biological processes: for instance, it determines both physical and biochemical properties of cell membranes and proteins. Disruption to cholesterol homeostasis leads to coronary heart disease, atherosclerosis and metabolic syndrome. Strong evidence suggests that cholesterol also has a crucial role in the brain as various neurological and neurodegenerative disorders, including Alzheimer's, Huntington's and Parkinson diseases are associated with disruptions to cholesterol homeostasis. Here, we summarize the current knowledge about the role cholesterol plays at synaptic junctions and the pathological consequences caused by disruptions in the homeostatic maintenance of this compound.

  6. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl


    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  7. Phase equilibria in DOPC/DPPC-d62/cholesterol mixtures. (United States)

    Davis, James H; Clair, Jesse James; Juhasz, Janos


    There is broad interest in the question of fluid-fluid phase coexistence in membranes, in particular, whether evidence for liquid-disordered (l(d))-liquid-ordered (l(o)) two-phase regions or membrane "rafts" can be found in natural membranes. In model membrane systems, such phase behavior is observed, and we have used deuterium nuclear magnetic resonance spectroscopy to map the phase boundaries of ternary mixtures containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), chain-perdeuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC-d(62)), and cholesterol. For both this ternary model system and the binary DPPC-d(62)/cholesterol system, we present clear evidence for l(d)-l(o) two-phase coexistence. We have selected sample compositions to focus on this region of fluid-fluid phase coexistence and to determine its temperature and composition ranges. The deuterium nuclear magnetic resonance spectra for compositions near the l(d)-l(o) phase boundary at high cholesterol concentrations show evidence of exchange broadening or critical fluctuations in composition, similar to that reported by Vist and Davis. There appears to be a line of critical compositions ranging from 48 degrees C for a DOPC/DPPC-d(62)/cholesterol composition of 0:75:25, to approximately -8 degrees C for the composition 57:14:29. At temperatures below this two-phase region, there is a region of three-phase coexistence (l(d)-l(o)-gel). These results are collected and presented in terms of a partial ternary phase diagram that is consistent with previously reported results of Vist and Davis.

  8. Cholesterol oxidation products. Their occurrence and detection in our foodstuffs. (United States)

    Yan, P S


    The structural similarity of cholesterol oxidation products (COP) to native cholesterol and their xenobiotic effects prompt researchers to study the long-term effects of the assimilation of these compounds into our tissues. COP are present in our food system. The level of exposure changes as our food products and our food choices alter. Therefore, the presence of COP in our food system has to be carefully monitored and their presence in processed foods minimized by optimizing processing and storage conditions. This review will briefly discuss the chemistry of some commonly-occurring COP and their biological significance. A more in-depth survey of the literature on the pitfalls of COP determination is included. It is the intention of the author to impress the readers that 'exogenous' COP can easily form during sample preparation. These artifacts will hinder our understanding of factors that promote COP formation in foods. The effects of heating, dehydrating, packaging and the presence of highly unsaturated lipids on the levels of COP in cholesterol-containing foods are evaluated to gauge the levels of exposure to different consumer groups.

  9. Monomolecular films of cholesterol oxidase and S-Layer proteins (United States)

    Ferraz, Helen Conceição; Guimarães, Juliana Aguilar; Alves, Tito Livio Moitinho; Constantino, Carlos José Leopoldo


    Cholesterol oxidase (ChOx) is a flavoenzyme that catalyzes the oxidation of cholesterol to cholest-5-en-3-one and subsequently the isomerization to cholest-4-en-3-one. ChOx has been very commonly studied as the detection element in cholesterol biosensors. In the biosensor development field, a relatively new approach is the use of crystalline bacterial cell surface layers, known as S-Layer proteins. These proteins exhibit the ability of self-assembling at surfaces, opening a vast spectrum of applications, both in basic and applied researches. In our study, monomolecular films of ChOx and mixed films of ChOx/S-Layer proteins and DPPC/S-Layer proteins were produced using the Langmuir technique. Characterization of the films was performed by means of surface pressure-molecular area ( π- A) isotherms. Stable monolayers were obtained, which means that they can be transferred to solid substrates by Langmuir-Blodgett technique. Mixed monolayers showed an ideal like behavior.

  10. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Philippe Gérard


    Full Text Available The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host’s enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.

  11. Soluble fiber polysaccharides: effects on plasma cholesterol and colonic fermentation. (United States)

    Topping, D L


    Many soluble-fiber polysaccharides, used as stabilizers and thickeners by the food industry, lower plasma cholesterol and slow small intestinal transit and nutrient absorption. Although nondigestible by human enzymes, these polysaccharides are fermented by the large-bowel microflora, yielding short-chain fatty acids that are absorbed and contribute to energy. The caloric yield from fiber polysaccharides needs to be quantified. Short-chain fatty acid production from soluble fibers is modified by the presence of insoluble fibers but, in total, is probably less than from other carbohydrates, e.g., resistant starch. Short-chain fatty acids do not seem to mediate effects of fiber on plasma cholesterol, but in the large bowel they exert the trophic and antineoplastic effects of dietary fiber. The mechanism for cholesterol reduction by soluble fibers relates to enhanced steroid excretion and altered fat absorption and may be a function of the viscosity of these fibers in solution. The relationships between the chemical structure of soluble polysaccharides and their documented physiologic effects are not yet clear. By using polysaccharides of defined structure and properties, it should be possible to identify those characteristics that predict physiologic actions.

  12. Cholesterol induces proliferation of chicken primordial germ cells. (United States)

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing


    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells.

  13. Cholesterol granuloma of the lateral ventricle. Case report. (United States)

    Grossi, Peter M; Ellis, Michael J; Cummings, Thomas J; Gray, Linda L; Fukushima, Takanori; Sampson, John H


    Cholesterol granulomas (CGs) are benign lesions resulting from an inflammatory reaction to cholesterol and hemosiderin. These masses most often arise within the temporal bone or nasal sinuses; intracerebral CGs are extremely rare. In this report the authors present an unusual case of a CG arising within the lateral ventricle. The patient presented with transient hemiparesis and numbness. Computed tomography and magnetic resonance imaging demonstrated a cystic partially enhancing midline mass within the right lateral ventricle, expanding the ventricle and displacing the septum pellucidum. The patient underwent an interhemispheric, transcallosal resection of the lesion. Microscopic examination revealed a granulomatous inflammatory lesion containing cholesterol clefts, macrophages, and hemosiderin. Embedded within the granulomatous response were foci of tiny cystlike structures lined by nonciliated flattened cuboidal epithelium, consistent with the diagnosis of CG. To the authors' knowledge this is the first reported case of CG presenting as an intraventricular mass. The origin of this lesion is unclear, but it may relate to prior traumatic brain injury. The authors describe the presentation, imaging findings, histopathological characteristics, and surgical treatment of this rare lesion and related pathological entities.

  14. Stabilization of distearoylphosphatidylcholine lamellar phases in propylene glycol using cholesterol. (United States)

    Harvey, Richard D; Ara, Nargis; Heenan, Richard K; Barlow, David J; Quinn, Peter J; Lawrence, M Jayne


    Phospholipid vesicles (liposomes) formed in pharmaceutically acceptable nonaqueous polar solvents such as propylene glycol are of interest in drug delivery because of their ability to improve the bioavailability of drugs with poor aqueous solubility. We have demonstrated a stabilizing effect of cholesterol on lamellar phases formed by dispersion of distearoylphosphatidylcholine (DSPC) in water/propylene glycol (PG) solutions with glycol concentrations ranging from 0 to 100%. The stability of the dispersions was assessed by determining the effect of propylene glycol concentration on structural parameters of the lamellar phases using a complementary combination of X-ray and neutron scattering techniques at 25 °C and in the case of X-ray scattering at 65 °C. Significantly, although stable lamellar phases (and liposomes) were formed in all PG solutions at 25 °C, the association of the glycol with the liposomes' lamellar structures led to the formation of interdigitated phases, which were not thermostable at 65 °C. With the addition of equimolar quantities of cholesterol to the dispersions of DSPC, stable lamellar dispersions (and indeed liposomes) were formed in all propylene glycol solutions at 25 °C, with the significant lateral phase separation of the bilayer components only detectable in propylene glycol concentrations above 60% (w/w). We propose that the stability of lamellar phases of the cholesterol-containing liposomes formed in propylene glycol concentrations of up to 60% (w/w) represent potentially very valuable drug delivery vehicles for a variety of routes of administration.

  15. [A simple test for quantitative determination of LDL-cholesterol]. (United States)

    Mertz, D P; Thuilot, G


    The subject of the report is a novel precipitation test for the quantitative recording of LDL cholesterol based on the precipitation of LDL by dextran sulphate. Parallel assays of LDL cholesterol according to the new method and using quantitative lipoprotein electrophoresis as reference showed the results, in terms of the individual values and collectively, to be practically identical for a wide concentration range of various lipids and lipoproteins in the serum. The concentration ratio of the means obtained according to the two methods is 1.014 +/- 0.102 (standard deviation). The regression function displays a correlation coefficient of 0.9470. Double assays with the new technique yield a variation coefficient of 1.7 +/- 0.4%. Limitations of the method, which are insignificant for application in practice, are pointed out. The new precipitation method is simple, safe and useful for the quantitative estimation of the LDL cholesterol concentration in freshly obtained human serum. The method requires only little time and equipment.

  16. High-density lipoproteincholesterol, reverse cholesterol transport, and cardiovascular risk: a tale of genetics?

    Directory of Open Access Journals (Sweden)

    Giovanni Cimmino


    Full Text Available Cholesterol deposition plays a central role in atherogenesis. The accumulation of lipid material is the result of an imbalance between the influx and efflux of cholesterol within the arterial wall. High levels of plasma low-density lipoprotein-cholesterol are considered the major mechanism responsible for the influx and accumulation of cholesterol in the arterial wall, while high-density lipoprotein (HDL- cholesterol seems responsible for its efflux. The mechanism by which cholesterol is removed from extra-hepatic organs and delivered to the liver for its catabolism and excretion is called reverse cholesterol transport (RCT. Epidemiological evidence has associated high levels of HDL-cholesterol/ApoA-I with protection against atherosclerotic disease, but the ultimate mechanism(s responsible for the beneficial effect is not well established. HDLs are synthesized by the liver and small intestine and released to the circulation as a lipid-poor HDL (nascent HDL, mostly formed by ApoA-I and phospholipids. Through their metabolic maturation, HDLs interact with the ABCA1 receptor in the macrophage surface increasing their lipid content by taking phospholipids and cholesterol from macrophages becoming mature HDL. The cholesterol of the HDLs is transported to the liver, via the scavenger receptor class B, type I, for further metabolization and excretion to the intestines in the form of bile acids and cholesterol, completing the process of RCT. It is clear that an inherited mutation or acquired abnormality in any of the key players in RCT mat affect the atherosclerotic process.

  17. Ionic channels and nerve membrane constituents. Tetrodotoxin-like interaction of saxitoxin with cholesterol monolayers. (United States)

    Villegas, R; Barnola, F V


    Saxitoxin (STX) and tetrodotoxin (TTX) have the same striking property of blocking the Na(+) channels in the axolemma. Experiments with nerve plasma membrane components of the squid Dosidicus gigas have shown that TTX interacts with cholesterol monolayers. Similar experiments were carried out with STX. The effect of STX on the surface pressure-area diagrams of lipid monolayers and on the fluorescence emission spectra of sonicated nerve membranes was studied. The results indicate a TTX-like interaction of STX with cholesterol monolayers. The expansion of the monolayers caused by 10(-6)M STX was 2.2 A(2)/cholesterol molecule at 25 degrees C. From surface pressure measurements at constant cholesterol area (39 A(2)/molecule) in media with various STX concentrations, it was calculated that the STX/cholesterol surface concentration ratio is 0.54. The apparent dissociation constant of the STX-cholesterol monolayer complex is 4.0 x 10(-7)M. The STX/cholesterol ratio and the apparent dissociation constant are similar to those determined for TTX. The presence of other lipids in the monolayers affects the STX-cholesterol association. The interactions of STX and TTX with cholesterol monolayers suggest (a) that cholesterol molecules may be part of the nerve membrane Na(+) channels, or (b) that the toxin receptor at the nerve membrane shares similar chemical features with the cholesterol monolayers.

  18. Pathways of cholesterol homeostasis in mouse retina responsive to dietary and pharmacologic treatments. (United States)

    Zheng, Wenchao; Mast, Natalia; Saadane, Aicha; Pikuleva, Irina A


    Effects of serum cholesterol on cholesterol content in the retina are currently unknown. It is also unclear how cholesterol levels are controlled in the retina. High-cholesterol diet and oral administrations of simvastatin were used to modulate serum cholesterol in mice. These treatments only modestly affected cholesterol content in the retina and had no significant effect on retinal expression of the major cholesterol- and vision-related genes; the sterol-regulatory element binding protein pathway of transcriptional regulation does not seem to be operative in the retina under the experimental conditions used. Evidence is obtained that posttranslational mechanisms play a role in the control of retinal cholesterol. Retinal genes were only upregulated by oral administrations of TO901317 activating liver X receptors. Three of the upregulated genes could be of particular importance (apoD, Idol, and Rpe65) and have not yet been considered in the context of cholesterol homeostasis in the retina. Collectively, the data obtained identify specific features of retinal cholesterol maintenance and suggest additional therapies for age-related macular degeneration, a blinding disease characterized by cholesterol and lipid accumulations in chorioretinal tissues.


    Directory of Open Access Journals (Sweden)



    Full Text Available Introduction: High plasma cholesterol levels, mainly LDL are a widely recognized major risk factor for Coronary Heart Disease (CHD. According to the epidemiologic studies findings, people from the Mediterranean countries, have lower CHD rats than other countries, in these countries usual diet is high in olive oil. The present study compares the effects of cholesterol enriched diet with or without adding olive oil on serum Lipoproteins, lipid per oxidation, and atherosclerosis development. Method: Twenty Dutch male rabbits were Categorized to four groups (one group as Control, and others as Experimental. They received one of standard, cholesterol - rich, olive oil rich and combined (cholesterol + olive oil diet for Twelve weeks. Fasting blood samples from heart were collected at the beginning, and the end of Experimental period. Means of total cholesterol, HDL-Ctriglycerides, MDA and antioxidant caperimental period, significant differences were showed in total cholesterol, HDL-C, triglyceride and MDA between groups. Results: The comparison of cholesterol rich diet with cholesterol + olive oil showed a higher mean of MDA in cholesterol rich group (P < 0.001. Biochemical factors and aortic lesion degree showed no significant difference between standard and olive oil group. Aortic lesions in cholesterol + olive oil showed nonsignificant lower degree than cholesterol group. Discussion: This findings showed preventive effect of olive oil against atherosclerosis which is independent of plasma lipoprotein effect, and suggested that probably olive oil acts on arteries directly.

  20. Dietary regulation of maternal and fetal cholesterol metabolism in the guinea pig. (United States)

    Yount, N Y; McNamara, D J


    Studies to determine the effects of pre-natal interventions on maternal and fetal cholesterol homeostasis were carried out in the guinea pig. Guinea pig dams were fed either non-purified guinea pig diet or diet supplemented with either 1.1% of the bile acid binding resin cholestyramine or 0.25% cholesterol. Whole body rates of endogenous cholesterol synthesis were determined by quantitation of [3H]water incorporation into digitonin precipitable sterols in non-pregnant animals and at 40 and 60 days of gestation in the dam and fetus. Maternal hepatic cholesterol synthesis was reduced 87% by dietary cholesterol and was increased 3.5-fold with cholestyramine feeding. Fetal hepatic and peripheral tissue cholesterol synthesis rates peaked at 40 days gestation when peripheral tissue cholesterol synthesis was 5.7-fold higher and hepatic synthesis 6.2-fold greater than the near adult levels observed at 60 days. Cholesterol synthesis in the fetus was relatively insensitive to dietary manipulations; however, maternal cholestyramine treatment did result in a 1.4-fold increase in fetal carcass cholesterol synthesis at 60 days gestation. These data demonstrate that maternal cholesterogenic systems maintain responsiveness to dietary regulation during pregnancy; whereas fetal cholesterol homeostasis is relatively insensitive to dietary cholesterol throughout gestation yet may respond to induction by maternal cholestyramine treatment during the late gestation period.

  1. RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion. (United States)

    Calleros, Laura; Lasa, Marina; Rodríguez-Alvarez, Francisco J; Toro, María J; Chiloeches, Antonio


    Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.

  2. Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans. (United States)

    Lin, Ching-Wen; Wang, Po-Hsiang; Ismail, Wael; Tsai, Yu-Wen; El Nayal, Ashraf; Yang, Chia-Ying; Yang, Fu-Chun; Wang, Chia-Hsiang; Chiang, Yin-Ru


    Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. (13)C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a β-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions.

  3. Cholesterol-lowering activity of soy-derived glyceollins in the golden Syrian hamster model. (United States)

    Huang, Haiqiu; Xie, Zhuohong; Boue, Stephen M; Bhatnagar, Deepak; Yokoyama, Wallace; Yu, Liangli Lucy; Wang, Thomas T Y


    Hypercholesterolemia is one of the major factors contributing to the risk of cardiovascular disease (CVD), which is the leading cause of death in developed countries. Consumption of soy foods has been recognized to lower the risk of CVD, and phytochemicals in soy are believed to contribute to the health benefits. Glyceollin is one of the candidate phytochemicals synthesized in stressed soy that may account for many unique biological activities. In this study, the in vivo cholesterol-lowering effect of glyceollins was investigated. Male golden Syrian hamsters were fed diets including (1) 36 kcal% fat diet, (2) 36 kcal% fat diet containing 250 mg/kg diet glyceollins, or (3) chow for 28 days. Hepatic cholesterol esters and free cholesterol, hepatic total lipid content, plasma lipoproteins, fecal bile acid, fecal total cholesterol, and cholesterol metabolism related gene expressions were measured. Glyceollin supplementation led to significant reduction of plasma VLDL, hepatic cholesterol esters, and total lipid content. Consistent with changes in circulating cholesterol, glyceollin supplementation also altered expression of the genes related to cholesterol metabolism in the liver. In contrast, no change in plasma LDL and HDL, fecal bile acid, or cholesterol content was observed. The cholesterol-lowering effect of glyceollins appeared not to go through the increase of bile excretion. These results supported glyceollins' role as novel soy-derived cholesterol-lowering phytochemicals that may contribute to soy's health effects.

  4. In vitro determination of the solubility limit of cholesterol in phospholipid bilayers. (United States)

    Epand, Richard M; Bach, Diana; Wachtel, Ellen


    Cholesterol has limited solubility in phospholipid bilayers. The solubility limit is strongly dependent on the nature of the lipid with which the cholesterol is mixed while properties of the crystals formed can be modified by phospholipid-cholesterol interactions. In this review we summarize the various methods that have been developed to prepare hydrated mixtures of cholesterol and phospholipid. We point out some of the factors that determine the form adopted when cholesterol crystallizes in such mixtures, i.e. two- or three-dimensional, monohydrate or anhydrous. These differences can greatly affect the ability to experimentally detect the presence of these crystals in a membrane. Several methods for detecting cholesterol crystals are discussed and compared including DSC, X-ray and GIXRD diffraction methods, NMR and EPR spectroscopy. The importance of the history of the sample in determining the amount and nature of the cholesterol crystals formed is emphasized.

  5. Stanol esters attenuate the aggravating effect of dietary cholesterol on atherosclerosis in homozygous Watanabe rabbits

    DEFF Research Database (Denmark)

    Schrøder, Malene; Husche, Constanze; Pilegaard, Kirsten


    Plant stanols are marketed as natural means to lower blood cholesterol in humans; hence the effect on combined familial hyperlipidemia is not known. The objective was to investigate the effect of stanol esters on blood lipids and aortic atherosclerosis in homozygous WHHL rabbits challenged...... with dietary cholesterol. A total of 36 rabbits, 6 weeks of age, with initial plasma cholesterol of 22.5 mmol/L were assigned to two treatment groups fed a standard rabbit chow with 1 g/kg cholesterol or this diet added 34 g/kg stanol ester, respectively, for 16 weeks. Plasma cholesterol was measured initially...... and at termination, also in lipoproteins. Aortic atherosclerosis was evaluated as cholesterol content and area covered by plaque. Plasma cholesterol was not significantly different between the groups at termination (35.7 mmol/L vs. 35.5 mmol/L). A significant increase in LDL was seen (13.1 mmol/L vs. 16.5 mmol...

  6. N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes

    DEFF Research Database (Denmark)

    Térová, B.; Slotte, J.P.; Petersen, G.


    -acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel ¿ liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains...... in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak...... interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also...

  7. HDL Cholesterol Efflux Capacity: Cardiovascular Risk Factor and Potential Therapeutic Target. (United States)

    Bhatt, Anish; Rohatgi, Anand


    Low high-density lipoprotein cholesterol (HDL-C) levels are associated with incident cardiovascular events; however, many therapies targeting increases in HDL-C have failed to show consistent clinical benefit. Thus, focus has recently shifted toward measuring high-density lipoprotein (HDL) function. HDL is the key mediator of reverse cholesterol transport, the process of cholesterol extraction from foam cells, and eventual excretion into the biliary system. Cholesterol efflux from peripheral macrophages to HDL particles has been associated with atherosclerosis in both animals and humans. We review the mechanism of cholesterol efflux and the emerging evidence on the association between cholesterol efflux capacity and cardiovascular disease in human studies. We also focus on the completed and ongoing trials of novel therapies targeting different aspects of HDL cholesterol efflux.

  8. Noninvasive neutron scattering measurements reveal slower cholesterol transport in model lipid membranes. (United States)

    Garg, S; Porcar, L; Woodka, A C; Butler, P D; Perez-Salas, U


    Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date.

  9. Trypanosoma cruzi Epimastigotes Are Able to Manage Internal Cholesterol Levels under Nutritional Lipid Stress Conditions (United States)

    Pereira, Miria Gomes; Visbal, Gonzalo; Salgado, Leonardo T.; Vidal, Juliana Cunha; Godinho, Joseane L. P.; De Cicco, Nuccia N. T.; Atella, Geórgia C.; de Souza, Wanderley; Cunha-e-Silva, Narcisa


    Trypanosoma cruzi epimastigotes store high amounts of cholesterol and cholesteryl esters in reservosomes. These unique organelles are responsible for cellular digestion by providing substrates for homeostasis and parasite differentiation. Here we demonstrate that under nutritional lipid stress, epimastigotes preferentially mobilized reservosome lipid stocks, instead of lipid bodies, leading to the consumption of parasite cholesterol reservoirs and production of ergosterol. Starved epimastigotes acquired more LDL-NBD-cholesterol by endocytosis and distributed the exogenous cholesterol to their membranes faster than control parasites. Moreover, the parasites were able to manage internal cholesterol levels, alternating between consumption and accumulation. With normal lipid availability, parasites esterified cholesterol exhibiting an ACAT-like activity that was sensitive to Avasimibe in a dose-dependent manner. This result also implies that exogenous cholesterol has a role in lipid reservoirs in epimastigotes. PMID:26068009

  10. Trust Your Gut: Galvanizing Nutritional Interest in Intestinal Cholesterol Metabolism for Protection Against Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Jiyoung Lee


    Full Text Available Recent studies have demonstrated that the intestine is a key target organ for overall health and longevity. Complementing these studies is the discovery of the trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism in the intestine provides an attractive platform for intestine-specific nutritional intervention strategies to lower blood cholesterol levels for protection against cardiovascular diseases. Notably, there is mounting evidence that stimulation of pathways associated with calorie restriction may have a large effect on the regulation of cholesterol removal by the intestine. However, intestinal energy metabolism, specifically the idiosyncrasies surrounding intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to review recent insights into cholesterol regulation by the intestine and to discuss the potential for positive regulation of intestine-driven cholesterol removal through the nutritional induction of pathways associated with calorie restriction.

  11. The cholesterol lowering property of coriander seeds (Coriandrum sativum): mechanism of action. (United States)

    Dhanapakiam, P; Joseph, J Mini; Ramaswamy, V K; Moorthi, M; Kumar, A Senthil


    Coriandrum sativum (Coriander) has been documented as a traditional treatment for cholesterol and diabetes patients. In the present study, coriander seeds incorporated into diet and the effect of the administration of coriander seeds on the metabolism of lipids was studied in rats, fed with high fat diet and added cholesterol. The seeds had a significant hypolipidemic action. In the experimental group of rats (tissue) the level of total cholesterol and triglycerides increased significantly There was significant increase in beta-hydroxy, beta-methyl glutaryl CoA reductase and plasma lecithin cholesterol acyl transferase activity were noted in the experimental group. The level of low density lipoprotein (LDL) + very low density lipoprotein (VLDL) cholesterol decreased while that of high density lipoprotein (HDL) cholesterol increased in the experimental group compared to the control group. The increased activity of plasma LCAT enhanced degradation of cholesterol to fecal bile acids and neutral sterols appeared to account for its hypocholesterolemic effect.

  12. [Comparison of calculated LDL cholesterol (LDL-C) versus measured LDL cholesterol (LDL-M) and potential impact in terms of therapeutic management]. (United States)

    Reignier, Arnaud; Sacchetto, Emilie; Hardouin, Jean-Benoît; Orsonneau, Jean-Luc; Le Carrer, Didier; Delaroche, Odile; Bigot-Corbel, Edith


    LDL-cholesterol value is one of the criteria used by the Haute autorité de santé (HAS) in the management of patients in primary and secondary prevention with the aim to reduce cardiovascular mortality. In this respect, the recommendations have been established based on target to achieve LDL-cholesterol. Currently in France, the determination of LDL-cholesterol is mainly carried out by the Friedewald formula whose limits are well known. However, reliable methods for the determination of LDL-cholesterol exist. We compared the results of calculated and measured LDL-cholesterol obtained from 444 patients presenting normal triglyceridemia values in terms of ranking relative to the thresholds of the HAS. The correlation between the two methods is quite good, but a significant difference (p <0.0001) was observed between the calculated and measured values of LDL-cholesterol. On the other hand in 17% of cases the classification of subjects will be different, with a majority so overestimation of calculated LDL-cholesterol with respect to measured LDL-cholesterol. This overestimation is not proportional, in fact most values measured LDL-cholesterol, the higher the calculate-measured difference is important. The rating difference is particularly important when subjects have between 1 and 3 factors of cardiovascular risk where the target LDL-cholesterol to achieve is between 1.3 and 1.9 g/L. The management of patients with lipid lowering may potentially be dependent on the method used for the determination of LDL-cholesterol.

  13. Cholesterol in the rod outer segment: A complex role in a "simple" system. (United States)

    Albert, Arlene; Alexander, Desiree; Boesze-Battaglia, Kathleen


    The rod outer segment (ROS) of retinal photoreceptor cells consists of disk membranes surrounded by the plasma membrane. It is a relatively uncomplicated system in which to investigate cholesterol distribution and its functional consequences in biologically relevant membranes. The light sensitive protein, rhodopsin is the major protein in both membranes, but the lipid compositions are significantly different in the disk and plasma membranes. Cholesterol is high in the ROS plasma membrane. Disk membranes are synthesized at the base of the ROS and are also high in cholesterol. However, cholesterol is rapidly depleted as the disks are apically displaced. During this apical displacement the disk phospholipid fatty acyl chains become progressively more unsaturated, which creates an environment unfavorable to cholesterol. Membrane cholesterol has functional consequences. The high cholesterol found in the plasma membrane and in newly synthesized disks inhibits the activation of rhodopsin. As disks are apically displaced and cholesterol is depleted rhodopsin becomes more responsive to light. This effect of cholesterol on rhodopsin activation has been shown in both native and reconstituted membranes. The modulation of activity can be at least partially explained by the effect of cholesterol on bulk lipid properties. Cholesterol decreases the partial free volume of the hydrocarbon region of the bilayer and thereby inhibits rhodopsin conformational changes required for activation. However, cholesterol binds to rhodopsin and may directly affect the protein also. Furthermore, cholesterol stabilizes rhodopsin to thermal denaturation. The membrane must provide an environment that allows rhodopsin conformational changes required for activation while also stabilizing the protein to thermal denaturation. Cholesterol thus plays a complex role in modulating the activity and stability of rhodopsin, which have implications for other G-protein coupled receptors.

  14. Perspective on plasma membrane cholesterol efflux and spermatozoal function

    Directory of Open Access Journals (Sweden)

    Dhastagir Sultan Sheriff


    techniques for enhancing fertility, identifying and treating certain forms of male infertility, and preventing conception. One remarkable insight is the importance of membrane cholesterol efflux in initiating transmembrane signaling events that confer fertilization competence. The identity of the physiologically relevant cholesterol acceptors and modulators of cholesterol efflux is therefore of great interest. Still, it is clear that cholesterol efflux represents only a part of this story. The involvement of phospholipid translocation in mediating dynamic changes in the membrane, rendering it conducive to transmembrane signaling, and the modulation of membrane components of signal transduction cascades by cholesterol or phospholipids will yield important insights into the links between environmental sensing and transmembrane signaling in the sperm. Understanding the membrane molecular events will ultimately provide new and exciting areas of investigation for the future.

  15. Lathosterol to cholesterol ratio in serum predicts cholesterol lowering response to plant sterol consumption in a dual center, randomized, single-blind placebo controlled trial (United States)

    Benefits of plant sterols (PS) for cholesterol lowering are compromised by large variability in efficacy across individuals. High fractional cholesterol synthesis measured by deuterium incorporation has been associated with non-response to PS consumption; however, prospective studies showing this as...

  16. High pre-beta1 HDL concentrations and low lecithin: cholesterol acyltransferase activities are strong positive risk markers for ischemic heart disease and independent of HDL-cholesterol

    DEFF Research Database (Denmark)

    Sethi, Amar A; Sampson, Maureen; Warnick, Russell;


    We hypothesized that patients with high HDL-cholesterol (HDL-C) and ischemic heart disease (IHD) may have dysfunctional HDL or unrecognized nonconventional risk factors.......We hypothesized that patients with high HDL-cholesterol (HDL-C) and ischemic heart disease (IHD) may have dysfunctional HDL or unrecognized nonconventional risk factors....

  17. HDL cholesterol, LDL receptor activity and response to dietary cholesterol *1 A reply to the letter of Cortese, Miller, Marenah and Lewis [2

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.


    Variation in the concentration of cholesterol in blood plasma is partly accounted for by differences in diet, age, sex and genetic constitution. No correlation between plasma low density lipoprotein (LDL) cholesterol concentration and the activity of the LDL receptor in white blood cells could be fo

  18. Antiproteinuric therapy decreases LDL-cholesterol as well as HDL-cholesterol in non-diabetic proteinuric patients: relationships with cholesteryl ester transfer protein mass and adiponectin

    NARCIS (Netherlands)

    J.A. Krikken; F. Waanders; G.M. Dallinga-Thie; L.D. Dikkeschei; L. Vogt; G.J. Navis; R.P.F. Dullaart


    Objective: Dyslipidemia contributes to increased cardiovascular risk in nephrotic syndrome. We questioned whether reduction in proteinuria not only lowers low-density lipoprotein cholesterol (LDL-C), but also high-density lipoprotein cholesterol (HDL-C) and cholesteryl ester transfer protein (CETP)

  19. Antiproteinuric therapy decreases LDL-cholesterol as well as HDL-cholesterol in non-diabetic proteinuric patients : relationships with cholesteryl ester transfer protein mass and adiponectin

    NARCIS (Netherlands)

    Krikken, J. A.; Waanders, F.; Dallinga-Thie, G. M.; Dikkeschei, L. D.; Vogt, L.; Navis, G. J.; Dullaart, R. P. F.


    Objective: Dyslipidemia contributes to increased cardiovascular risk in nephrotic syndrome. We questioned whether reduction in proteinuria not only lowers low-density lipoprotein cholesterol (LDL-C), but also high-density lipoprotein cholesterol (HDL-C) and cholesteryl ester transfer protein (CETP)

  20. Smith-Lemli-Opitz syndrome produced in rats with AY 9944 treated by intravenous injection of lipoprotein cholesterol. (United States)

    Chambers, C M; McLean, M P; Ness, G C


    A limitation to treating Smith-Lemli-Opitz infants by giving dietary cholesterol is their impaired ability to absorb cholesterol due to a deficiency of bile acids. Since intravenously administered lipoprotein cholesterol should not require bile acids for uptake into tissues, we tested the effects of this form of cholesterol on tissue cholesterol and 7-dehydrocholesterol levels in an animal model of SLO, created by feeding rats 0.02% AY 9944. Intravenous administration of 15 mg of bovine cholesterol supertrate twice daily increased serum cholesterol levels from 11 to over 250 mg/dl. This treatment increased liver cholesterol levels from 309 to over 900 micrograms/g and lowered hepatic 7-dehydrocholesterol levels from 1546 to 909 micrograms/g. A combination of iv cholesterol and 2% dietary cholesterol was most effective as it raised hepatic cholesterol levels to 1950 micrograms/g, which is 50% above normal. 7-Dehydrocholesterol levels were decreased to 760 micrograms/g. Similar responses were seen for heart, lung, kidney, and testes. Brain sterol levels were not significantly affected. AY 9944 caused a modest increase in hepatic HMG-CoA reductase activity. Administration of dietary cholesterol together with iv cholesterol lowered hepatic HMG-CoA reductase activity to barely detectable levels. The data indicate that the combination of iv and dietary cholesterol was most effective in raising cholesterol levels, lowering 7-dehydrocholesterol levels, and inhibiting de novo cholesterol biosynthesis.

  1. Association between increased arterial-wall thickness and impairment in ABCA1-driven cholesterol efflux : an observational study

    NARCIS (Netherlands)

    van Dam, MJ; de Groot, E; Clee, SM; Hovingh, GK; Roelants, R; Brooks-Wilson, A; Zwinderman, AH; Smit, AJ; Smelt, A.H.; Groen, AK; Hayden, MR; Kastelein, JJP


    Background Decreased concentrations of HDL cholesterol are associated with increased cardiovascular risk. These concentrations are directly related to cholesterol efflux from cells-the first step and a key process in reverse cholesterol transport. Cholesterol efflux is mediated by the ATP-binding ca

  2. Cholesterol loaded cyclodextrin increases freezability of buffalo bull (Bubalus bubalis spermatozoa by increasing cholesterol to phospholipid ratio

    Directory of Open Access Journals (Sweden)

    J. S. Rajoriya


    Full Text Available Aim: The study was conducted to investigate the effect of cholesterol loaded cyclodextrin (CLC on freezability of buffalo spermatozoa. Materials and Methods: Murrah buffalo bull semen samples with progressive motility of 70% and greater were used. After the evaluation of motility and livability, four equal fractions of semen samples were made. Group I was kept as control and diluted with Tris, whereas Group II, III and IV were treated with CLC solution at the rate of 2.0, 3.0 and 4.0 mg/ml respectively to obtain 120 × 106 sperm/ml as final spermatozoa concentration. The aliquots of all the groups were incubated for action of CLC, followed by dilution and freezing. Evaluation at pre-freeze and post-thaw stage of progressive motility, viability and level of cholesterol and phospholipid was done. Results: The mean cholesterol content (μg/100 × 106 spermatozoa of Group I, II, III and IV at pre-freeze stage was 21.55±0.63, 49.56±1.38, 55.67±0.45 and 47.79±1.01 and at post-thaw stage were 13.18±0.45, 34.27±0.71, 36.21±0.48 and 33.68±0.56, respectively. At pre-freeze stage, cholesterol content was significantly (p<0.01 higher in Group III in comparison to other groups. The mean cholesterol and phospholipids content of fresh sperm was 24.14±0.58 and 51.13±0.66 μg/100 × 106 sperm cells, respectively, and C/P ratio of spermatozoa at fresh stage was 0.47±0.067. Conclusion: CLC treatment maintains the C/P ratio and plays an important role in maintaining membrane architecture of spermatozoa. Hence, addition of CLC may be helpful in increasing freezability of buffalo spermatozoa by increasing the C/P ratio of spermatozoa.

  3. Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet

    DEFF Research Database (Denmark)

    Engel, Sara; Tholstrup, Tine


    BACKGROUND: Butter is known to have a cholesterol-raising effect and, therefore, has often been included as a negative control in dietary studies, whereas the effect of moderate butter intake has not been elucidated to our knowledge. OBJECTIVE: We compared the effects of moderate butter intake...... their habitual diets. The study included 47 healthy men and women (mean ± SD total cholesterol: 5.22 ± 0.90 mmol/L) who substituted a part of their habitual diets with 4.5% of energy from butter or refined olive oil. RESULTS: Study subjects were 70% women with a mean age and body mass index (in kg/m(2)) of 40.......4 y and 23.5, respectively. Butter intake increased total cholesterol and LDL cholesterol more than did olive oil intake (P cholesterol compared with the run-in period (P

  4. Domain 4 (D4 of Perfringolysin O to Visualize Cholesterol in Cellular Membranes—The Update

    Directory of Open Access Journals (Sweden)

    Masashi Maekawa


    Full Text Available The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine. Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4 of Perfringolysin O (PFO, theta toxin, a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  5. Combined effect of Lactobacillus acidophilus and β-cyclodextrin on serum cholesterol in pigs. (United States)

    Alonso, L; Fontecha, J; Cuesta, P


    A total of twenty-four Yorkshire gilt pigs of 6-7 weeks of age were used in a 2×2 factorial experiment to determine the individual and combined effects of the inclusion of two dietary factors (cholesterol rich, 3% β-cyclodextrin (BCD) and Lactobacillus acidophilus cultures) on total cholesterol and LDL-cholesterol levels in blood serum. Pigs were assigned randomly to treatment groups (n 6). Total serum cholesterol concentrations decreased after 3 weeks in all the experimental treatment groups, including diets with BCD, L. acidophilus or both. Similar trends were observed for serum LDL-cholesterol concentrations among the experimental treatments. No statistically significant differences from the control group were observed in either total serum cholesterol or LDL-cholesterol concentrations (Pacidophilus. However, significant differences in total serum cholesterol concentrations were observed when comparing the combined treatment group (BCD and L. acidophilus) with the control group, which consisted of a basal diet and sterile milk. The combined treatment group exhibited 17·9% lower total serum cholesterol concentration after 3 weeks. Similar significant differences were observed when comparing the combined effect experimental group with the control group after 3 weeks. The combined treatment group exhibited 27·9% lower serum LDL-cholesterol concentrations.

  6. How cholesterol interacts with proteins and lipids during its intracellular transport. (United States)

    Wüstner, Daniel; Solanko, Katarzyna


    Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions. Similarly, membrane lipids and their physico-chemical properties directly affect cholesterol partitioning and thereby contribute to the highly heterogeneous intracellular cholesterol distribution. Movement of cholesterol in cells is mediated by vesicle trafficking along the endocytic and secretory pathways as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics in membranes and explain how such models are related to sterol flux between organelles. An overview of various sterol-transfer proteins is given, and the physico-chemical principles of their function in non-vesicular sterol transport are explained. We also discuss selected experimental approaches for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how specific protein-lipid and protein-protein interactions help overcoming the extremely low water solubility of cholesterol, thereby controlling intracellular cholesterol movement. This article is part of a Special Issue entitled: Lipid-protein interactions.

  7. An enzyme thermistor-based assay for total and free cholesterol. (United States)

    Raghavan, V; Ramanathan, K; Sundaram, P V; Danielsson, B


    A method to evaluate the free (FC) and total cholesterol (TC) in human serum, bile and gallstone extract using an enzyme thermistor (ET)-based flow injection analysis (FIA) is presented. The cholesterol in high-density (HDL-C) and low density lipoprotein (LDL-C) have also been evaluated. A heparin functionalized Sepharose column was employed for the isolation of HDL and LDL fractions from serum. The estimation of cholesterol and its esters was based on their reaction with cholesterol oxidase (CO), cholesterol esterase (CE) and catalase (CAT). Three different enzyme columns, i.e. co-immobilized CO/CAT (column A), only CE (column B) and co-immobilized CO/CE/CAT (column C) were prepared by cross-linking the enzymes on glass beads using glutaraldehyde. Column A was used for estimating FC and column C was used for estimating total cholesterol (cholesterol plus esterified cholesterol). Column B was used as a pre-column which could be switched 'in' or 'out' in conjunction with column A for the estimation of TC or FC, respectively. A calibration between 1.0 and 8.0 mmol/l for FC and 0. 25 and 4.0 mmol/l for TC was obtained. For more than 2000 assays with the ET device a C.V. of less than 4% was obtained. The assay time was approximately 4 min per assay. The cholesterol estimations on the ET correlated well with similar estimations using a commercially available cholesterol diagnostic kit.

  8. Cholesterol acceptor capacity is preserved by different mechanisms in preterm and term fetuses. (United States)

    Pecks, Ulrich; Mohaupt, Markus G; Hütten, Matthias C; Maass, Nicolai; Rath, Werner; Escher, Geneviève


    Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.

  9. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes—The Update (United States)

    Maekawa, Masashi


    The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes. PMID:28273804

  10. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation. (United States)

    Fernández, Carlos; Lobo Md, María del Val T; Gómez-Coronado, Diego; Lasunción, Miguel A


    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14alpha-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells.

  11. Study of Lipid Profile in Obese Individuals and the Effect of Cholesterol Lowering Agents on Them

    Directory of Open Access Journals (Sweden)

    Surajit Kumar Mukhopadhyay


    Full Text Available Objectives: To study the effect of cholesterol lowering agents on lipid profile in obese patients. Background: Obesity leads to morbidity as well as mortality. There is usually increased level of total cholesterol, LDL- cholesterol, VLDL- cholesterol, triglycerides and decreased level of HDL- cholesterol in obesity. These are the risk factors for cardiovascular disease, hypertension, diabetes mellitus, pulmonary disorder and gall stones. Method: Thirty obese patients received treatment with Lovastatin along with dietary measures, compared with age and sex matched controls- before and after 6 weeks of therapy, presented in a table and results were analysed using student's "t" test (both paired and unpaired. Result: There was significant reduction in total cholesterol as well as LDL- cholesterol; HDL- cholesterol was also increased significantly. But triglycerides and VLDL- cholesterol showed small but significant increase. Conclusion: Cholesterol lowering agents like Lovastatin was quite effective when used long-term in dyslipidaemia in obesity towards reduction of risk factors for cardiovascular diseases, strokes, etc. Hypertriglyceridaemia should also be treated adequately

  12. Cholesterol affects gene expression of the Jun family in colon carcinoma cells using different signaling pathways. (United States)

    Scheinman, Eyal J; Rostoker, Ran; Leroith, Derek


    Hyperlipidemia and hypercholesterolemia have been found to be important factors in cancer development and metastasis. However, the metabolic mechanism and downstream cellular processes following cholesterol stimulation are still unknown. Here we tested the effect of cholesterol on MC-38 colon cancer cells. Using Illumina gene array technology we found a number of genes that were differentially expressed following short term (20-40 min) and longer term (between 2 and 5h) cholesterol stimulation. Three genes were consistently increased at these time points; c-Jun, Jun-B and the chemokine CXCL-1. We have previously shown that cholesterol stimulation leads to PI3K/Akt phosphorylation, and now demonstrated that cholesterol inhibits ERK1/2 phosphorylation; both effects reversed when cholesterol is depleted from lipid rafts using methyl-β-cyclodextrin (MBCD). In addition, vanadate, an inhibitor of phosphatases, reversed the cholesterol inhibition of ERK1/2 phosphorylation. Specific inhibition of p-Akt by wortmannin did not affect cholesterol's stimulation of the expression of c-Jun and Jun-B, however the vanadate effect of increasing p-ERK1/2, inhibited c-Jun expression, specifically, and the MBCD effect of increasing p-ERK and inhibiting p-Akt reduced c-Jun expression. In contrast MBCD and vanadate both enhanced Jun-B gene expression in the presence of cholesterol and elevation of ERK phosphorylation. Thus there is apparently, a differential signaling pathway whereby cholesterol enhances gene expression of the Jun family members.

  13. Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats. (United States)

    Lapphanichayakool, Phakhamon; Sutheerawattananonda, Manote; Limpeanchob, Nanteetip


    The beneficial effect of cholesterol-lowering proteins and/or peptides derived from various dietary sources is continuously reported. A non-dietary protein from silk cocoon, sericin, has also demonstrated cholesterol-lowering activity. A sericin hydrolysate prepared by enzymatic hydrolysis was also expected to posses this effect. The present study was aimed at investigating the cholesterol-lowering effect of sericin peptides, so called "sericin-derived oligopeptides" (SDO) both in vivo and in vitro. The results showed that SDO at all three doses tested (10 mg kg(-1) day(-1), 50 mg kg(-1) day(-1), and 200 mg kg(-1) day(-1)) suppressed serum total and non-HDL cholesterol levels in rats fed a high-cholesterol diet. Triglyceride and HDL-cholesterol levels were not significantly changed among all groups. The fecal contents of bile acids and cholesterol did not differ among high-cholesterol fed rats. SDO dose-dependently reduced cholesterol solubility in lipid micelles, and inhibited cholesterol uptake in monolayer Caco-2 cells. SDO also effectively bound to all three types of bile salts including taurocholate, deoxytaurocholate, and glycodeoxycholate. Direct interaction with bile acids of SDO may disrupt micellar cholesterol solubility, and subsequently reduce the absorption of dietary cholesterol in intestines. Taking all data together, SDO or sericin peptides exhibit a beneficial effect on blood cholesterol levels and could be potentially used as a health-promoting dietary supplement or nutraceutical product.

  14. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.). (United States)

    Kortner, Trond M; Björkhem, Ingemar; Krasnov, Aleksei; Timmerhaus, Gerrit; Krogdahl, Åshild


    Plants now supply more than 50 % of protein in Norwegian salmon aquafeeds. The inclusion of plant protein in aquafeeds may be associated with decreased lipid digestibility and cholesterol and bile salt levels, indicating that the replacement of fishmeal with plant protein could result in inadequate supplies of cholesterol in fish. A reduction in feed efficiency, fish growth and pathogen resistance is often observed in parallel to alterations in sterol metabolism. Previous studies have indicated that the negative effects induced by plant components can be attenuated when diets are supplemented with cholesterol. The present study evaluated the effects of dietary cholesterol supplementation (1·5 %) in Atlantic salmon fed a plant-based diet for 77 d. The weights of body, intestines and liver were recorded and blood, tissues, faeces, chyme and bile were sampled for the evaluation of effects on growth, nutrient utilisation and metabolism, and transcriptome and metabolite levels, with particular emphasis on sterol metabolism and organ structure and function. Cholesterol supplementation did not affect the growth or organ weights of Atlantic salmon, but seemed to promote the induction of cholesterol and plant sterol efflux in the intestine while suppressing sterol uptake. Cholesterol biosynthesis decreased correspondingly and conversion into bile acids increased. The marked effect of cholesterol supplementation on bile acid synthesis suggests that dietary cholesterol can be used to increase bile acid synthesis in fish. The present study clearly demonstrated how Atlantic salmon adjusted their metabolic functions in response to the dietary load of cholesterol. It has also expanded our understanding of sterol metabolism and turnover, adding to the existing, rather sparse, knowledge of these processes in fish.

  15. Pharmacogenomics and pharmacogenetics of cholesterol-lowering therapy. (United States)

    Schmitz, Gerd; Drobnik, Wolfgang


    Cholesterol-lowering therapy is the central approach in the primary and secondary prevention of cardiovascular disease, the leading cause of death in industrialized countries. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are currently the most potent and widely used cholesterol-lowering drugs. Large-scale clinical trials unequivocally demonstrated the efficacy of statin treatment in reducing the risk of cardiovascular events. In general, HMG-CoA reductase inhibitors are well tolerated, although in a minority of patients severe adverse effects like myopathy or rhabdomyolysis may develop. The incidence of this potentially life-threatening side effects increases with co-adminstration of drugs that are metabolized via the same pharmacokinetic pathways or at high-dose statin therapy. The recent focus on the pleiotropic effects of statins that are more frequently observed at higher doses and the conclusion drawn from the large statin trials that low-density lipoprotein (LDL)-cholesterol is "the lower the better", may need careful consideration in individuals at risk of adverse drug reactions. On the other hand, not all patients respond to statin therapy with a reduction in coronary heart disease (CHD) risk. It is therefore of interest to develop diagnostic test systems, which would allow to identify patients at increased risk of adverse drug reactions or patients with a lack of therapeutic effect. Beside exogenous factors, genetic variability determines the response of an individual to drug therapy and the analysis of genetic variants affecting pharmacokinetic or pharmacodynamic aspects of drug therapy is the subject of pharmacogenomics. This review summarizes current knowledge of the pharmacology and the pharmacogenomics of statin therapy.

  16. Niacin and cholesterol: role in cardiovascular disease (review). (United States)

    Ganji, Shobha H; Kamanna, Vaijinath S; Kashyap, Moti L


    Niacin has been widely used as a pharmacologic agent to regulate abnormalities in plasma lipid and lipoprotein metabolism and in the treatment of atherosclerotic cardiovascular disease. Although the use of niacin in the treatment of dyslipidemia has been reported as early as 1955, only recent studies have yielded an understanding about the cellular and molecular mechanism of action of niacin on lipid and lipoprotein metabolism. In brief, the beneficial effect of niacin to reduce triglycerides and apolipoprotein-B containing lipoproteins (e.g., VLDL and LDL) are mainly through: a) decreasing fatty acid mobilization from adipose tissue triglyceride stores, and b) inhibiting hepatocyte diacylglycerol acyltransferase and triglyceride synthesis leading to increased intracellular apo B degradation and subsequent decreased secretion of VLDL and LDL particles. The mechanism of action of niacin to raise HDL is by decreasing the fractional catabolic rate of HDL-apo AI without affecting the synthetic rates. Additionally, niacin selectively increases the plasma levels of Lp-AI (HDL subfraction without apo AII), a cardioprotective subfraction of HDL in patients with low HDL. Using human hepatocytes (Hep G2 cells) as an in vitro model system, recent studies indicate that niacin selectively inhibits the uptake/removal of HDL-apo AI (but not HDL-cholesterol ester) by hepatocytes, thereby increasing the capacity of retained HDL-apo AI to augment cholesterol efflux through reverse cholesterol transport pathway. The studies discussed in this review provide evidence to extend the role of niacin as a lipid-lowering drug beyond its role as a vitamin.

  17. Cholesterol-induced protein sorting: an analysis of energetic feasibility

    DEFF Research Database (Denmark)

    Lundbaek, J A; Andersen, O S; Werge, T


    The mechanism(s) underlying the sorting of integral membrane proteins between the Golgi complex and the plasma membrane remain uncertain because no specific Golgi retention signal has been found. Moreover one can alter a protein's eventual localization simply by altering the length of its...... thickness. In this model, Golgi proteins with short TMDs would be excluded from cholesterol-enriched domains (lipid rafts) that are incorporated into transport vesicles destined for the plasma membrane. Although attractive, this model remains unproven. We therefore evaluated the energetic feasibility...

  18. Synthesis, antimicrobial and cytotoxicity evaluation of new cholesterol congeners

    Directory of Open Access Journals (Sweden)

    Mohamed Ramadan El Sayed Aly


    Full Text Available 3β-Azidocholest-5-ene (3 and (3β-3-(prop-2-yn-1-yloxycholest-5-ene (10 were prepared as substrates to synthesize a variety of three-motif pharmacophoric conjugates through CuAAC. Basically, these conjugates included cholesterol and 1,2,3-triazole moieties, while the third, the pharmacophore, was either a chalcone, a lipophilic residue or a carbohydrate tag. These compounds were successfully prepared in good yields and characterized by NMR, MS and IR spectroscopic techniques. Chalcone conjugate 6c showed the best antimicrobial activity, while the lactoside conjugate 27 showed the best cytotoxic effect in vitro.

  19. Atherosclerosis, cholesterol, nutrition, and statins – a critical review

    Directory of Open Access Journals (Sweden)

    Gebbers, Jan-Olaf


    Full Text Available Atherosclerosis, which causes approximately half of all deaths of adults over age 60 in industrialized nations, is a pandemic among inappropriately nourished and/or physically hypoactive children, adolescents, and adults world wide. Although nowadays statins are widely prescribed to middle age and elderly adults with high blood lipid levels as pharmacological prevention for the late complications of atherosclerosis, from a critical point of view statins seem not to solve the problem, especially when compared with certain natural ingredients of our nutrition like micronutrients as alternative strategy. Statin ingestion is associated with lowering of serum cholesterol and low-density lipoprotein concentrations; some prospective studies have shown statistical associations with subsequent modest reduction of mortality from cardiovascular disease. However, specific biochemical pathways and pharmacological roles of statins in prevention of atherosclerosis, if any, are unknown. Moreover, there have been no systematic cost-benefit analyses of life-style prophylaxis versus statin prophylaxis versus combined life-style plus statin prophylaxis versus neither life-style nor statin prophylaxis for clinically significant complications of cardiovascular diseases in the elderly. Further, in the trials of effectiveness statins were not compared with management of nutrition, which is the most appropriate alternative intervention. Such studies seem to be important, as the ever increasing world population, especially in developing countries, now demand expensive statins, which may be unaffordable for mitigating the pandemic. Studies of this kind are necessary to identify more precisely those patients for whom cardiovascular benefits will outweigh the risks and costs of the statin treatment in comparison with nutritional interventions. Against the background of the current pathogenetic concept of atherogenesis some of its possible risk factors, particularly the

  20. Peptides having reduced toxicity that stimulate cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K.; Johansson, Jan; Danho, Waleed


    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABCA1 that parallels that of full-length apolipoproteins. Further, the peptides of the invention have little or no toxicity when administered at therapeutic and higher doses. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.