WorldWideScience

Sample records for cholera toxin subunit

  1. Cholera toxin B subunit induces local curvature on lipid bilayers

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Nåbo, Lina J.; Ipsen, John H.

    2017-01-01

    The B subunit of the bacterial cholera toxin (CTxB) is responsible for the toxin binding to the cell membrane and its intracellular trafficking. CTxB binds to the monosialotetrahexosyl ganglioside at the plasma membrane of the target cell and mediates toxin internalization by endocytosis. CTx...

  2. Cholera Toxin B: One Subunit with Many Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Keegan J. Baldauf

    2015-03-01

    Full Text Available Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT, which consists of two subunits: the A subunit (CTA and the B subunit (CTB. CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.

  3. Cholera toxin subunit B detection in microfluidic devices.

    Science.gov (United States)

    Bunyakul, Natinan; Edwards, Katie A; Promptmas, Chamras; Baeumner, Antje J

    2009-01-01

    Fluorescence and electrochemical microfluidic biosensors were developed for the detection of cholera toxin subunit B (CTB) as a model analyte. The microfluidic devices were made from polydimethylsiloxane (PDMS) using soft lithography from silicon templates. The polymer channels were sealed with a glass plate and packaged in a polymethylmethacrylate housing that provided leakproof sealing and a connection to a syringe pump. In the electrochemical format, an interdigitated ultramicroelectrode array (IDUA) was patterned onto the glass slide using photolithography, gold evaporation and lift-off processes. For CTB recognition, CTB-specific antibodies were immobilized onto superparamagnetic beads and ganglioside GM(1) was incorporated into liposomes. The fluorescence dye sulforhodamine B (SRB) and the electroactive compounds potassium hexacyanoferrate (II)/hexacyanoferrate (III) were used as detection markers that were encapsulated inside the liposomes for the fluorescence and electrochemical detection formats, respectively. Initial optimization experiments were carried out by applying the superparamagnetic beads in microtiter plate assays and SRB liposomes before they were transferred to the microfluidic systems. The limits of detection (LoD) of both assay formats for CTB were found to be 6.6 and 1.0 ng mL(-1) for the fluorescence and electrochemical formats, respectively. Changing the detection system was very easy, requiring only the synthesis of different marker-encapsulating liposomes, as well as the exchange of the detection unit. It was found that, in addition to a lower LoD, the electrochemical format assay showed advantages over the fluorescence format in terms of flexibility and reliability of signal recording.

  4. Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development.

    OpenAIRE

    J Sanchez; Holmgren, J

    1989-01-01

    We have constructed an overexpression system in which the gene encoding the B subunit of cholera toxin (CTB) was placed under the control of the strong tacP promoter in a wide host range plasmid. Recombinant nontoxigenic classical and E1 Tor Vibrio cholerae strains of different serotypes harboring this plasmid excreted 10- to 100-fold higher amounts of CTB than any other wild-type or recombinant strain tested and may therefore be useful killed oral vaccine strains. The manipulations to place ...

  5. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L. [Argonne National Lab., IL (United States); Maulik, P.R.; Reed, R.A.; Shipley, G. [Boston Univ., MA (United States). School of Medicine; Westbrook, E.M. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States); Scott, D.L.; Otwinowski, Z. [Yale Univ., New Haven, CT (United States)

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  6. Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development.

    Science.gov (United States)

    Sanchez, J; Holmgren, J

    1989-01-01

    We have constructed an overexpression system in which the gene encoding the B subunit of cholera toxin (CTB) was placed under the control of the strong tacP promoter in a wide host range plasmid. Recombinant nontoxigenic classical and E1 Tor Vibrio cholerae strains of different serotypes harboring this plasmid excreted 10- to 100-fold higher amounts of CTB than any other wild-type or recombinant strain tested and may therefore be useful killed oral vaccine strains. The manipulations to place the CTB gene under tacP also included, by design, the introduction of single enzyme restriction sites for gene fusions to the CTB amino terminus. Cloning into these sites allows construction of CTB-derived hybrid proteins carrying various putative vaccine peptide antigens.

  7. Therapeutic Potential of Cholera Toxin B Subunit for the Treatment of Inflammatory Diseases of the Mucosa

    Directory of Open Access Journals (Sweden)

    Joshua M. Royal

    2017-11-01

    Full Text Available Cholera toxin B subunit (CTB is a mucosal immunomodulatory protein that induces robust mucosal and systemic antibody responses. This well-known biological activity has been exploited in cholera prevention (as a component of Dukoral® vaccine and vaccine development for decades. On the other hand, several studies have investigated CTB’s immunotherapeutic potential in the treatment of inflammatory diseases such as Crohn’s disease and asthma. Furthermore, we recently found that a variant of CTB could induce colon epithelial wound healing in mouse colitis models. This review summarizes the possible mechanisms behind CTB’s anti-inflammatory activity and discuss how the protein could impact mucosal inflammatory disease treatment.

  8. Cholera toxin B subunit modulation of mucosal vaccines for infectious and autoimmune diseases.

    Science.gov (United States)

    Langridge, William; Dénes, Béla; Fodor, István

    2010-08-01

    Parenteral vaccination is generally considered to be the most effective form of therapy for protection against infectious diseases. In recent years, vaccination at mucosal surfaces and combinatorial vaccination strategies that link immunostimulatory molecules to antigens have been developed to enhance vaccine efficacy. Prominent among immunological enhancement strategies are the bacterial A and B toxins, which include the cholera toxin (CT)A and CTB subunits. In contrast to the toxic CTA subunit, the non-toxic CTB subunit displays both carrier and immunostimulatory properties. When linked to pathogen antigens, CTB can impart immunostimulatory properties that are characteristic of the linked antigen. Vaccination strategies have also been broadened to include 'self' proteins applied for the immunological suppression of autoimmunity. When CTB is linked to an autoantigen, the outcome might be considered paradoxical. In type 1 diabetes, self proteins become strongly immunosuppressive, while cancer CTB-autoantigen fusion proteins may exert a strong inflammatory response. This review discusses the immunostimulatory and immunosuppressive roles played by the CTB subunit in vaccine protection and therapy against infectious and autoimmune diseases.

  9. Recombinant cholera toxin B subunit and gene fusion proteins for oral vaccination.

    Science.gov (United States)

    Sanchez, J; Johansson, S; Löwenadler, B; Svennerholm, A M; Holmgren, J

    1990-01-01

    The B subunit portion of cholera toxin (CTB) is a safe and effective oral immunizing agent in humans, affording protection against both cholera and diarrhoea caused by enterotoxigenic Escherichia coli producing heat-labile toxin (LT) (Clemens et al., 1986; 1988). CTB may also be used as a carrier of various "foreign" antigens suitable for oral administration. To facilitate large-scale production of CTB for vaccine development purposes, we have constructed recombinant overexpression systems for CTB proteins in which the CTB gene is under the control of strong foreign (non-cholera) promoters and in which it is also possible to fuse oligonucleotides to the CTB gene and thereby achieve overexpression of hybrid proteins (Sanchez and Holmgren, 1989; Sanchez et al., 1988). We here expand these findings by describing overexpression of CTB by a constitutive tacP promoter as well as by the T7 RNA-polymerase promoter, and also by describing gene fusions leading to overexpression of several hybrid proteins between heat-stable E. coli enterotoxin (STa)-related peptides to either the amino or carboxy ends of CTB. Each of the hybrid proteins, when tested as immunogens in rabbits, stimulated significant anti-STa as well as anti-CTB antibody formation, although the anti-STa antibody levels attained (c.a. 1-15 micrograms/ml specific anti-STa immunoglobulin) were too low to give more than partial neutralization of STa intestinal challenge in baby mice. The hybrid proteins also had a near-native conformation, as apparent from their oligomeric nature and their strong reactivity with both a neutralizing antibody against the B subunit and a neutralizing monoclonal antibody (mAb) against STa.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. N-Glycosylation of cholera toxin B subunit: serendipity for novel plant-made vaccines?

    Directory of Open Access Journals (Sweden)

    Nobuyuki eMatoba

    2015-12-01

    Full Text Available The non-toxic B subunit of cholera toxin (CTB has attracted considerable interests from vaccinologists due to strong mucosal immunomodulatory effects and potential utility as a vaccine scaffold for heterologous antigens. Along with other conventional protein expression systems, various plant species have been used as recombinant production hosts for CTB and its fusion proteins. However, it has recently become clear that the protein is N-glycosylated within the endoplasmic reticulum of plant cells – a eukaryotic post-translational modification that is not present in native CTB. While functionally active aglycosylated variants have been successfully engineered to circumvent potential safety and regulatory issues related to glycosylation, this modification may actually provide advantageous characteristics to the protein as a vaccine platform. Based on data from our recent studies, I discuss the unique features of N-glycosylated CTB produced in plants for the development of novel vaccines.

  11. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    Science.gov (United States)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  12. Fusion of Cholera toxin B subunit (ctxB with Shigella dysenteriae type I toxin B subunit (stxB, Cloning and Expression that in E. coli

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Background and Objective: Shiga toxin (STx is the main virulence factor in Shigella Dysenteriae type I and is composed of an enzymatic subunit STxA monomer and a receptor-binding STxB homopentamer. Shigella toxin B subunit (STxB is a non-toxic homopentameric protein responsible for toxin binding and internalization into target cells by interacting with glycolipid (Gb3. Cholera toxin B subunit (CTB has been known as a mucosal adjuvant for vaccines and genetic fusions of CTB with several hetroantigens such as stxB and can increase humoral and mucosal immunity response.Materials and Methods: In this study, after primer designing, the ctxB and stxB genes were amplified by PCR and cloned into the pGEM-T vector. The stxB gene with a nonfurin linker was fused to the ctB gene in the pGEM vector via the restriction enzyme method and thereafter the fused genes of ctB-stxB were subcloned in the pET28a(+ as an expression vector. The expressed chimeric protein was induced with IPTG and evaluated via the SDS.PAGE and Western blot techniques. Result: The pET28a (+/ctxB-stxB expression vector was confirmed by endonuclease digestion, PCR, and sequence analysis. The CTB-STB fusion protein was confirmed by the SDS-PAGE and Western-blot. Conclusion: The CTB-STB recombinant protein can be used as a new and desirable mucosal vaccine for Shigella Dysenteriae type I.

  13. Binding of fluorescently labeled cholera toxin subunit B to glycolipids in the human submandibular gland and inhibition of binding by periodate oxidation and by galactose

    DEFF Research Database (Denmark)

    Kirkeby, S

    2016-01-01

    FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini...... to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human...

  14. Cholera toxin B subunit-binding and ganglioside GM1 immuno-expression are not necessarily correlated in human salivary glands.

    Science.gov (United States)

    Kirkeby, Svend

    2014-11-01

    To determine and compare the presence and in situ localization of the glycosphingolipid ganglioside GM1 in human salivary glands using the biomarkers for GM1: cholera toxin and antibodies against GM1. Immunohistochemical analyses were performed on sections of adult human submandibular, parotid and palatinal glands using cholera toxin sub-unit B and two polyclonal antibodies against ganglioside GM1 as biomarkers. Immunofluorescence microscopy showed that the toxin and antibodies were co-localized in some acini but not in others. The cholera toxin mainly reacted with the cell membranes of the mucous acini in the submandibular gland, while incubation with the antibody against GM1 gave rise to a staining of the cytoplasm. The cytoplasm in some secretory acinar cells in the parotid gland was stained by the cholera toxin, whereas only small spots on the plasma membranes reacted with anti-GM1. The plasma membranes in the parotid excretory ducts appeared to react to anti-GM1, but not to cholera toxin. Cholera toxin induces the expression of ion channels and carriers in the small intestine and increases the production of secretory mucins. Although their mutual immunohistochemical localization may differ, both cholera toxin and ganglioside GM1 are present in the mucin-producing acini from salivary glands. This could point to a relationship between ganglioside expression and production of salivary mucins.

  15. Cholera toxin B subunit-binding and ganglioside GM1 immuno-expression are not necessarily correlated in human salivary glands

    DEFF Research Database (Denmark)

    Kirkeby, Svend

    2014-01-01

    OBJECTIVE: To determine and compare the presence and in situ localization of the glycosphingolipid ganglioside GM1 in human salivary glands using the biomarkers for GM1: cholera toxin and antibodies against GM1. MATERIALS AND METHODS: Immunohistochemical analyses were performed on sections of adult...... human submandibular, parotid and palatinal glands using cholera toxin sub-unit B and two polyclonal antibodies against ganglioside GM1 as biomarkers. RESULTS: Immunofluorescence microscopy showed that the toxin and antibodies were co-localized in some acini but not in others. The cholera toxin mainly...... reacted with the cell membranes of the mucous acini in the submandibular gland, while incubation with the antibody against GM1 gave rise to a staining of the cytoplasm. The cytoplasm in some secretory acinar cells in the parotid gland was stained by the cholera toxin, whereas only small spots...

  16. Cholera Toxin B Subunit Shows Transneuronal Tracing after Injection in an Injured Sciatic Nerve.

    Directory of Open Access Journals (Sweden)

    Bi-Qin Lai

    Full Text Available Cholera toxin B subunit (CTB has been extensively used in the past for monosynaptic mapping. For decades, it was thought to lack the ability of transneuronal tracing. In order to investigate whether biotin conjugates of CTB (b-CTB would pass through transneurons in the rat spinal cord, it was injected into the crushed left sciatic nerve. For experimental control, the first order afferent neuronal projections were defined by retrograde transport of fluorogold (FG, a non-transneuronal labeling marker as an experimental control injected into the crushed right sciatic nerve in the same rat. Neurons containing b-CTB or FG were observed in the dorsal root ganglia (DRG at the L4-L6 levels ipsilateral to the tracer injection. In the spinal cord, b-CTB labeled neurons were distributed in all laminae ipsilaterally between C7 and S1 segments, but labeling of neurons at the cervical segment was abolished when the T10 segment was transected completely. The interneurons, distributed in the intermediate gray matter and identified as gamma-aminobutyric acid-ergic (GABAergic, were labeled by b-CTB. In contrast, FG labeling was confined to the ventral horn neurons at L4-L6 spinal segments ipsilateral to the injection. b-CTB immunoreactivity remained to be restricted to the soma of neurons and often appeared as irregular patches detected by light and electron microscopy. Detection of monosialoganglioside (GM1 in b-CTB labeled neurons suggests that GM1 ganglioside may specifically enhance the uptake and transneuronal passage of b-CTB, thus supporting the notion that it may be used as a novel transneuronal tracer.

  17. Tetra- versus Pentavalent Inhibitors of Cholera Toxin

    NARCIS (Netherlands)

    Fu, Ou; Pukin, Aliaksei V.; Quarles Van Ufford, Linda; Branson, Thomas R.; Thies-Weesie, Dominique M E; Turnbull, W. Bruce; Visser, Gerben M.; Pieters, Roland J.

    2015-01-01

    The five B-subunits (CTB5) of the Vibrio cholerae (cholera) toxin can bind to the intestinal cell surface so the entire AB5 toxin can enter the cell. Simultaneous binding can occur on more than one of the monosialotetrahexosylganglioside (GM1) units present on the cell surface.

  18. Cholera toxin B subunits assemble into pentamers--proposition of a fly-casting mechanism.

    Directory of Open Access Journals (Sweden)

    Jihad Zrimi

    Full Text Available The cholera toxin B pentamer (CtxB(5, which belongs to the AB(5 toxin family, is used as a model study for protein assembly. The effect of the pH on the reassembly of the toxin was investigated using immunochemical, electrophoretic and spectroscopic methods. Three pH-dependent steps were identified during the toxin reassembly: (i acquisition of a fully assembly-competent fold by the CtxB monomer, (ii association of CtxB monomer into oligomers, (iii acquisition of the native fold by the CtxB pentamer. The results show that CtxB(5 and the related heat labile enterotoxin LTB(5 have distinct mechanisms of assembly despite sharing high sequence identity (84% and almost identical atomic structures. The difference can be pinpointed to four histidines which are spread along the protein sequence and may act together. Thus, most of the toxin B amino acids appear negligible for the assembly, raising the possibility that assembly is driven by a small network of amino acids instead of involving all of them.

  19. Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats.

    Science.gov (United States)

    Conte, William L; Kamishina, Hiroaki; Reep, Roger L

    2009-01-01

    Cholera toxin subunit B (CTB) is a highly sensitive retrograde neuroanatomical tracer. With the new availability of fluorescent Alexa Fluor (AF) conjugates of CTB, multiple neuroanatomical connections can be reliably studied and compared in the same animal. Here we provide a protocol that describes the use of AF-CTB for studying connections in the central nervous system of rats. The viscous properties of CTB allow small and discreet injection sites yet still show robust retrograde labeling. Furthermore, the AF conjugates are extremely bright and photostable, compared with other conventional fluorescent tracers. This protocol can also be adapted for use with other neuroanatomical tracers. Including a 7-d survival period, this protocol takes approximately 11 to 12 d to complete in its entirety.

  20. Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks.

    Directory of Open Access Journals (Sweden)

    Krystal Teasley Hamorsky

    Full Text Available INTRODUCTION: Cholera toxin B subunit (CTB is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; however, challenges in CTB biomanufacturing (i.e., cost and scale hamper its implementation to mass vaccination in developing countries. To provide a potential solution to this issue, we developed a rapid, robust, and scalable CTB production system in plants. METHODOLOGY/PRINCIPAL FINDINGS: In a preliminary study of expressing original CTB in transgenic Nicotiana benthamiana, the protein was N-glycosylated with plant-specific glycans. Thus, an aglycosylated CTB variant (pCTB was created and overexpressed via a plant virus vector. Upon additional transgene engineering for retention in the endoplasmic reticulum and optimization of a secretory signal, the yield of pCTB was dramatically improved, reaching >1 g per kg of fresh leaf material. The protein was efficiently purified by simple two-step chromatography. The GM1-ganglioside binding capacity and conformational stability of pCTB were virtually identical to the bacteria-derived original B subunit, as demonstrated in competitive enzyme-linked immunosorbent assay, surface plasmon resonance, and fluorescence-based thermal shift assay. Mammalian cell surface-binding was corroborated by immunofluorescence and flow cytometry. pCTB exhibited strong oral immunogenicity in mice, inducing significant levels of CTB-specific intestinal antibodies that persisted over 6 months. Moreover, these antibodies effectively neutralized the cholera holotoxin in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrated that pCTB has robust producibility in Nicotiana plants and retains most, if not all, of major

  1. Measuring Positive Cooperativity Using the Direct ESI-MS Assay. Cholera Toxin B Subunit Homopentamer Binding to GM1 Pentasaccharide

    Science.gov (United States)

    Lin, Hong; Kitova, Elena N.; Klassen, John S.

    2014-01-01

    Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β- D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β- D-Gal p-(1→4)-β-D-Glc p (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M-1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M-1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.

  2. Dorsal lateral geniculate substructure in the Long-Evans rat: A cholera toxin B-subunit study

    Directory of Open Access Journals (Sweden)

    Claire B. Discenza

    2012-09-01

    Full Text Available The pigmented rat is an increasingly important model in visual neuroscience research, yet the lamination of retinal projections in the dLGN has not been examined in sufficient detail. From previous studies it was known that most of the rat dLGN receives monocular input from the contralateral eye, with a small island receiving predominantly ipsilateral projections. Here we revisit the question using cholera toxin B subunit (CTB, a tracer that efficiently fills retinal terminals after intra-ocular injection. We imaged retinal termini throughout the dLGN at 0.5 um resolution and traced areas of ipsilateral and contralateral terminals to obtain a high resolution 3D reconstruction of the projection pattern. Retinal termini in the dLGN are well segregated by eye of origin, as expected. We find, however, that the ipsilateral projections form multiple discrete projection zones in three dimensions, not the single island previously described. It remains to be determined whether these subdomains represent distinct functional sublaminae, as is the case in other mammals.

  3. Cholera toxin A1 residues single alanine substitutional mutation and effect on activity with stimulatory G protein

    OpenAIRE

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    Cholera is a well-known gastrointestinal infection. The cholera toxin is an important pathological substance in pathogenesis of cholera diarrhea. Cholera toxin is composed of catalytic A1 subunit, an A2 linker, and a homopentameric cell-binding B subunit. In enterocyte, cholera toxin will attach to GM1 ganglioside receptors on the apical membrane and causes retrograde vesicular trafficking to endoplasmic reticulum. At endoplasmic reticulum, cholera toxin A1 is released from the rest of the to...

  4. Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin B subunit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in primary afferent neurons innervating the rat urinary bladder.

    Science.gov (United States)

    Wang, H F; Shortland, P; Park, M J; Grant, G

    1998-11-01

    In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with

  5. Immune response of broiler chickens immunized orally with the recombinant proteins flagellin and the subunit B of cholera toxin associated with Lactobacillus spp.

    Science.gov (United States)

    Baptista, A A S; Donato, T C; Garcia, K C O D; Gonçalves, G A M; Coppola, M P; Okamoto, A S; Sequeira, J L; Andreatti Filho, R L

    2014-01-01

    This study investigated the immune response of broiler chickens with oral treatment of a Lactobacillus spp. pool (PL) associated with microencapsulated recombinant proteins flagellin (FliC) and the subunit B of cholera toxin (CTB). Immune responses were evaluated by measuring IgA from intestinal fluid, serum IgY, and immunostaining of CD8(+) T lymphocytes present in the cecum. The evaluations were performed on d 0, 7, 14, 21, and 28 posttreatment. A significant increase (P chickens are capable of stimulating humoral and cellular immune response, and the combinations of these antigens with Lactobacillus spp. can influence the population of CD8(+) T cells residing in the cecum.

  6. Fucosylation and protein glycosylation create functional receptors for cholera toxin

    DEFF Research Database (Denmark)

    Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E

    2015-01-01

    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we...... in normal human intestinal epithelia and could play a role in cholera....

  7. Stable expression of foot-and-mouth disease virus protein VP1 fused with cholera toxin B subunit in the potato (Solanum tuberosum).

    Science.gov (United States)

    He, Dong-Mei; Qian, Kai-Xian; Shen, Gui-Fang; Li, Yi-Nü; Zhang, Zhi-Fang; Su, Zhong-Liang; Shao, Hong-Bo

    2007-04-01

    The expression vector, pBI121CTBVP1, containing the fusion of the foot and mouth disease virus (FMDV) VP1 gene and the cholera toxin B subunit (CTB) gene was constructed by fused PCR and transferred into potato (Solanum tuberosum L.) by Agrobacterium-mediated transformation. Transformed plants were obtained by selecting on kanamycin-resistant medium strictly and regenerated. The transgenic plantlets were identified by PCR, Southern-blot and the production of fused protein was confirmed and quantified by Western-blot and ELISA assays. The results showed that the fused genes were expressed stablely under the control of specific-tuber patatin promoter. The expressed fused proteins have a certain degree of immunogenicity.

  8. Inhibition of cholera toxin by human milk fractions and sialyllactose.

    Science.gov (United States)

    Idota, T; Kawakami, H; Murakami, Y; Sugawara, M

    1995-03-01

    The effects of human milk fractions on clolera toxin B subunit binding to monosialoganglioside 1 (GM1) were investigated. Human milk, human defatted milk, whey, and a low-molecular-weight fraction of human milk inhibited the binding, but casein did not inhibit it. The inhibitory activity of whey from bovine-milk-based infant formula was less than that of whey from human milk. Differences in composition between human and bovine whey seemed to influence the extent of the inhibitory activity. Sialylated oligosaccharides were considered to be the possible components that inhibited cholera toxin. The effects of sialyllactose, a predominant sialylated component of human milk, on cholera toxin-induced diarrhea were investigated by the rabbit intestinal loop method. Sialyllactose inhibited the cholera toxin inducing fluid accumulation, although neither sialic acid nor lactose had an effect on it. The results suggest that sialyllactose is responsible for the inhibitory activity of milk on cholera toxin.

  9. Retinal projections in the short-tailed fruit bat, Carollia perspicillata, as studied using the axonal transport of cholera toxin B subunit: Comparison with mouse.

    Science.gov (United States)

    Scalia, Frank; Rasweiler, John J; Danias, John

    2015-08-15

    To provide a modern description of the Chiropteran visual system, the subcortical retinal projections were studied in the short-tailed fruit bat, Carollia perspicillata, using the anterograde transport of eye-injected cholera toxin B subunit, supplemented by the silver-impregnation of anterograde degeneration following eye removal, and compared with the retinal projections of the mouse. The retinal projections were heavily labeled by the transported toxin in both species. Almost all components of the murine retinal projection are present in Carollia in varying degrees of prominence and laterality. The projections: to the superior colliculus, accessory optic nuclei, and nucleus of the optic tract are predominantly or exclusively contralateral; to the dorsal lateral geniculate nucleus and posterior pretectal nucleus are predominantly contralateral; to the ventral lateral geniculate nucleus, intergeniculate leaflet, and olivary pretectal nucleus have a substantial ipsilateral component; and to the suprachiasmatic nucleus are symmetrically bilateral. The retinal projection in Carollia is surprisingly reduced at the anterior end of the dorsal lateral geniculate and superior colliculus, suggestive of a paucity of the relevant ganglion cells in the ventrotemporal retina. In the superior colliculus, in which the superficial gray layer is very thin, the projection is patchy in places where the layer is locally absent. Except for a posteriorly located lateral terminal nucleus, the other accessory optic nuclei are diminutive in Carollia, as is the nucleus of the optic tract. In both species the cholera toxin labeled sparse groups of apparently terminating axons in numerous regions not listed above. A question of their significance is discussed. © 2015 Wiley Periodicals, Inc.

  10. Genetic fusion of a non-toxic heat-stable enterotoxin-related decapeptide antigen to cholera toxin B-subunit.

    Science.gov (United States)

    Sanchez, J; Svennerholm, A M; Holmgren, J

    1988-12-05

    A decapeptide highly homologous to the STa Escherichia coli heat-stable enterotoxin and to several other heat-stable enterotoxins was fused genetically to the amino-end of the B-subunit of cholera toxin (CTB) and the hybrid protein gene expressed from a tacP overexpression system. The STa-related decapeptide used, which was encoded by a synthetic oligodeoxynucleotide, contained a single mutation which substituted a disulfide-linked cysteine by alanine. After its fusion to CTB the decapeptide was able to both react with and to give rise to anti-STa antibodies. Expression of the decapeptide-CTB hybrid by non-toxigenic Vibrio cholerae resulted in its full secretion into the extracellular milieu from where it could then be readily purified by single-step affinity chromatography using immobilized GM1 ganglioside. Bacteria producing this non-toxic, immunogenic decapeptide-CTB toxoid might be useful for the development of oral vaccines against diarrhea caused by E. coli and other bacteria producing immunologically related heat-stable enterotoxins, and as a source of immunoreagents for methods used to diagnose disease caused by these bacteria.

  11. Evaluation of Cholera Toxin Expression in Different Populations of Vibrio cholera

    OpenAIRE

    Sedigheh Ebrahimi Kasgari; Mahnaz Nourani; Yousef Yahyapour; Seyed Ehsanollah Mousavi; Enayatollah Kalantar; Hami Kaboosi; Seyed Mahmoud Amin Marashi

    2015-01-01

    Background: Cholera is one of the most diseases of human. Cholera toxin is the most important pathogenic factor in humans that causes diarrhea. The cholera toxin is produced by V. cholerae and CTXфPhage. Objectives: In this study, we have investigated the production cholera toxin with different density of Vibrio cholerae. Materials and Methods: With this propose we inoculated classical strain O1 of Vibrio cholerae ATCC 14035 and Vibrio cholerae O1biovar El Tor N16961 into th...

  12. Recombinant Bacillus subtilis spores expressing cholera toxin B subunit and Helicobacter pylori urease B confer protection against H. pylori in mice.

    Science.gov (United States)

    Zhou, Zhenwen; Dong, Hui; Huang, Yanmei; Yao, Shuwen; Liang, Bingshao; Xie, Yongqiang; Long, Yan; Mai, Jialiang; Gong, Sitang

    2017-01-01

    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma. The limitations of current therapies for H. pylori infection include poor compliance and antibiotic resistance. Therefore, an effective anti-H. pylori vaccine would be an alternative or complement to antibiotic treatment. Urease B (UreB) is considered an ideal vaccine antigen against H. pylori infection. In this study, cholera toxin B subunit (CTB), a mucosal adjuvant, was used to enhance the immunogenicity of a novel Bacillus subtilis spore vaccine expressing CTB-UreB, along with the B. subtilis spore coat protein CotC as a fusion protein. Oral administration of B. subtilis spores expressing CotC-UreB or CotC-CTB-UreB led to increased levels of UreB-specific IgG in serum and UreB-specific IgA in faeces, as well as elevated levels of IL-10 and IFN-γ in splenocytes. In addition, oral administration of CotC-UreB or CotC-CTB-UreB spores induced significant reductions (80.0 and 90.5 %, respectively) in gastric H. pylori bacterial load (1.11±0.36×105 and 0.53±0.21×105 c.f.u., respectively) compared to that of the CotC control group (5.56±1.64×105 c.f.u., PH. pylori infection.

  13. Immunogenicity and virulence of attenuated vaccinia virus Tian Tan encoding HIV-1 muti-epitope genes, p24 and cholera toxin B subunit in mice.

    Science.gov (United States)

    Du, Shouwen; Wang, Yuhang; Liu, Cunxia; Wang, Maopeng; Zhu, Yilong; Tan, Peng; Ren, Dayong; Li, Xiao; Tian, Mingyao; Yin, Ronglan; Li, Chang; Jin, Ningyi

    2015-07-01

    No effective prophylactic or therapeutic vaccine against HIV-1 in humans is currently available. This study analyzes the immunogenicity and safety of a recombinant attenuated vaccinia virus. A chimeric gene of HIV-1 multi-epitope genes containing CpG ODN and cholera toxin B subunit (CTB) was inserted into Chinese vaccinia virus Tian Tan strain (VTT) mutant strain. The recombinant virus rddVTT(-CCMp24) was assessed for immunogenicity and safety in mice. Results showed that the protein CCMp24 was expressed stably in BHK-21 infected with rddVTT(-CCMp24). And the recombinant virus induced the production of HIV-1 p24 specific immunoglobulin G (IgG), IL-2 and IL-4. The recombinant vaccine induced γ-interferon secretion against HIV peptides, and elicited a certain levels of immunological memory. Results indicated that the recombinant virus had certain immunogenicity to HIV-1. Additionally, the virulence of the recombinant virus was been attenuated in vivo of mice compared with wild type VTT (wtVTT), and the introduction of CTB and HIV Mp24 did not alter the infectivity and virulence of defective vaccinia virus. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Safety of the recombinant cholera toxin B subunit, killed whole-cell (rBS-WC oral cholera vaccine in pregnancy.

    Directory of Open Access Journals (Sweden)

    Ramadhan Hashim

    Full Text Available Mass vaccinations are a main strategy in the deployment of oral cholera vaccines. Campaigns avoid giving vaccine to pregnant women because of the absence of safety data of the killed whole-cell oral cholera (rBS-WC vaccine. Balancing this concern is the known higher risk of cholera and of complications of pregnancy should cholera occur in these women, as well as the lack of expected adverse events from a killed oral bacterial vaccine.From January to February 2009, a mass rBS-WC vaccination campaign of persons over two years of age was conducted in an urban and a rural area (population 51,151 in Zanzibar. Pregnant women were advised not to participate in the campaign. More than nine months after the last dose of the vaccine was administered, we visited all women between 15 and 50 years of age living in the study area. The outcome of pregnancies that were inadvertently exposed to at least one oral cholera vaccine dose and those that were not exposed was evaluated. 13,736 (94% of the target women in the study site were interviewed. 1,151 (79% of the 1,453 deliveries in 2009 occurred during the period when foetal exposure to the vaccine could have occurred. 955 (83% out of these 1,151 mothers had not been vaccinated; the remaining 196 (17% mothers had received at least one dose of the oral cholera vaccine. There were no statistically significant differences in the odds ratios for birth outcomes among the exposed and unexposed pregnancies.We found no statistically significant evidence of a harmful effect of gestational exposure to the rBS-WC vaccine. These findings, along with the absence of a rational basis for expecting a risk from this killed oral bacterial vaccine, are reassuring but the study had insufficient power to detect infrequent events.ClinicalTrials.gov NCT00709410.

  15. Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism

    DEFF Research Database (Denmark)

    Hansen, Gert H; Dalskov, Stine-Mathilde; Rasmussen, Christina Rehné

    2005-01-01

    The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its...

  16. Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice.

    Science.gov (United States)

    Lei, Han; Peng, Xiaojue; Jiao, Huifeng; Zhao, Daxian; Ouyang, Jiexiu

    2015-08-05

    Current influenza vaccines need to be annually reformulated to well match the predicated circulating strains. Thus, it is critical for developing a novel universal influenza vaccine that would be able to confer cross-protection against constantly emerging divergent influenza virus strains. Influenza virus A is a genus of the Orthomyxoviridae family of viruses. Influenza virus nucleoprotein (NP) is a structural protein which encapsidates the negative strand viral RNA, and anti-NP antibodies play role in cross-protective immunity. Lactococcus lactis (L. lactis) is an ideal vaccine delivery vehicle via oral administration route. However, L. lactis vectored vaccine exhibits poor immunogenicity without the use of mucosal adjuvant. To enhance the immunogenicity of L. lactis vectored vaccine, cholera toxin B (CTB) subunit, one of mucosal adjuvants, is a safe adjuvant for oral route, when combined with L. lactis vectored vaccine. In this study, we hypothesized that pNZ8008, a L. lactis expression plasmid, encoding NP antigen, would be able to elicit cross-protection with the use of CTB via oral administration route. To construct L. lactis vectored vaccine, nucleoprotein (NP) gene of A/California/04/2009(H1N1) was sub-cloned into a L. lactis expression plasmid, pNZ8008. The expression of recombinant L. lactis/pNZ8008-NP was confirmed by Western blot, immunofluorescence assay and flow cytometric analysis. Further, immunogenicity of L. lactis/pNZ8008-NP alone or adjuvanted with cholera toxin B (CTB) subunit was evaluated in a mouse model via oral administration route. Antibodies responses were detected by ELISA. The result indicated that oral administration of L. lactis/pNZ8008-NP adjuvanted with CTB could elicit significant humoral and mucosal immune responses, as well as cellular immune response, compared with L. lactis/pNZ8008-NP alone. To further assess the cross-protective immunity of L. lactis/pNZ8008-NP adjuvanted with CTB, we used L. lactis/pNZ8110-pgsA-HA1 alone or

  17. Characterization of cholera toxin B subunit-induced Ca(2+) influx in neuroblastoma cells: evidence for a voltage-independent GM1 ganglioside-associated Ca(2+) channel.

    Science.gov (United States)

    Fang, Yu; Xie, Xin; Ledeen, Robert W; Wu, Gusheng

    2002-09-01

    The role of endogenous GM1 ganglioside in neurite outgrowth has been studied in N18 and NG108-15 neuroblastoma cells with the GM1-specific ligand cholera toxin B subunit (Ctx B), which stimulates Ca(2+) influx together with neuritogenesis. Our primary goal has been to identify the nature of the calcium channel that is modulated by GM1. An L-type voltage-operated Ca(2+) channel (VOCC) was previously proposed as the mediator of this phenomenon. This investigation, employing fura-2 fluorescent measurements and specific channel blockers and other agents, revealed that GM1 modulates a hitherto unidentified Ca(2+) channel not of the L type. It was opened by Ctx B; was permeable to Ca(2+) and Ba(2+) but not Mn(2+); and was blocked by Ni(2+), Cd(2+), and La(3+). Although most dihydropyridines inhibited Ctx B-induced Ca(2+) influx as well as neurite outgrowth at higher concentrations, they and other VOCC blockers at normally employed concentrations failed to do so, suggesting uninvolvement of VOCC. In addition, Ca(2+) influx induced by Ctx B was not mediated by cGMP-dependent or G-protein-coupled nonselective cation channels, as demonstrated by the cGMP antagonist Rp-cGMPS or the G-protein/receptor uncoupling agent suramin, respectively. Finally, Ca(2+) influx was unlikely to be due to inhibition or reversal of Na(+)-Ca(2+) exchanger via Ctx B induction of Na(+) uptake, insofar as no effect was seen on blocking Na(+) channels, inhibiting Na(+)-K(+)-ATPase, or eliminating extracellular Na(+). The results suggest that this novel channel is gated by interaction with GM1, which, when associated with the channel and bound by appropriate ligand, promotes Ca(2+) influx. This in turn induces signaling for the onset of neuritogenesis. Copyright 2002 Wiley-Liss, Inc.

  18. [Neuroanatomical characteristics of acupoint "Chengshan" (BL 57) in the rat: a cholera toxin subunit B conjugated with Alexa Fluor 488 method study].

    Science.gov (United States)

    Zhu, Xin-long; Bai, Wan-zhu; Wu, Fu-dong; Jiang, Jin; Jing, Xiang-hong

    2010-12-01

    To investigate neuroanatomical characteristics of the primary sensory afferent and the motor neurons coming from and innervating acupoint "Chengshan" (BL 57) area in the rat by using cholera toxin subunit B conjugated with Alexa Fluor 488 (CTB-Alexa 488), a new generation of fluorescent neural tracing reagent. Four male SD rats were used in the present study. Under anesthesia, 0.05% CTB-Alexa 488 (5 ML) was injected into the central part of the rear of the hind leg, a corresponding site of "Chengshan" (BL 57) in the human body. After 40-48 surviving hours, the rat's brain, spinal cord and dorsal root ganglia (DRGs) of the lumbar segments (L1-L6) were dissected following perfusion with 4% paraformaldehyde, cut into sections and observed under fluorescent microscope equipped with a digital camera. The neurons labeled by CTB-Alexa 488 were counted. All CTB-Alexa 488 labeled neurons appeared in green under fluorescent filters of 450-490 and were located ipsilaterally on the injection side. The labeled primary sensory neurons were found in the DRGs at L4 (11 neurons) and L5 (35 neurons). Among them, 29 neurons (63.04%) were bigger, with their cell body diameters being 35-50 microm and 17 (36.96%) smaller, with their body diameters being lower than 35 microm. The labeled motor neurons were found to distribute in the mediolateral portion of lamina IX, forming a longitudinal column from L4 to L5. Of the observed 316 motor neurons, 259 (81.96%) belong to alpha type with their body diameters being 25-40 microm and 57 (18.04%) to gamma type with their body diameters being lower than 25 microm. The CTB-Alexa 488-labeled primary sensory and motor neurons innervating acupoint "Cheng-shan" (BL 57) distribute in the DRGs of L4-L5. The present fluorescent tracing technique may be quite useful for investigating the neural characteristics of acupoints.

  19. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette.

    OpenAIRE

    Trucksis, M; Galen, J E; Michalski, J; Fasano, A; Kaper, J B

    1993-01-01

    Vibrio cholerae causes the potentially lethal disease cholera through the elaboration of the intestinal secretogen cholera toxin. A second toxin of V. cholerae, Zot, decreases intestinal tissue resistance by modifying intercellular tight junctions. In this report, a third toxin of V. cholerae, Ace (accessory cholera enterotoxin), is described. Ace increases short-circuit current in Ussing chambers and causes fluid secretion in ligated rabbit ileal loops. The predicted protein sequence of Ace ...

  20. Cholera toxin A1 residues single alanine substitutional mutation and effect on activity with stimulatory G protein

    Directory of Open Access Journals (Sweden)

    Somsri Wiwanitkit

    2017-06-01

    Full Text Available Cholera is a well-known gastrointestinal infection. The cholera toxin is an important pathological substance in pathogenesis of cholera diarrhea. Cholera toxin is composed of catalytic A1 subunit, an A2 linker, and a homopentameric cell-binding B subunit. In enterocyte, cholera toxin will attach to GM1 ganglioside receptors on the apical membrane and causes retrograde vesicular trafficking to endoplasmic reticulum. At endoplasmic reticulum, cholera toxin A1 is released from the rest of the toxin into cytoplasm. The cholera toxin A1 interacts will catalyze ADP ribosylation of subunits of stimulatory G protein resulting a persistent activation of adenylate cyclase and an elevation of intracellular cAMP which further result in diarrhea. The single alanine substitutional mutation can result in the reduction of the interaction activity between cholera toxin A1 and stimulatory G protein. In this study, the four well-known mutations, H55, R67, L71, S78, or D109, of cholera toxin A1 is focused. The author hereby calculates for the reaction energy for the reaction between cholera toxin A1 and stimulatory G protein in naïve case and mutated case. To calculate, the standard bonding energy calculation technique in mutation analysis was used. It can be seen that aberrant in reaction energy in each studied mutation is different and can imply the different effect on activity with stimulatory G protein.

  1. Evaluation of Cholera Toxin Expression in Different Populations of Vibrio cholera

    Directory of Open Access Journals (Sweden)

    Sedigheh Ebrahimi Kasgari

    2015-02-01

    Full Text Available Background: Cholera is one of the most diseases of human. Cholera toxin is the most important pathogenic factor in humans that causes diarrhea. The cholera toxin is produced by V. cholerae and CTXфPhage. Objectives: In this study, we have investigated the production cholera toxin with different density of Vibrio cholerae. Materials and Methods: With this propose we inoculated classical strain O1 of Vibrio cholerae ATCC 14035 and Vibrio cholerae O1biovar El Tor N16961 into the AKI medium. Then, the total mRNA was determined by standard procedure which was converted into total cDNA. Results: Cholra toxin production was determined by qPCR and maximum production of cholera toxin was at 1010 cfu/mL. Conclusions: In conclusion, production of cholera toxin was minimized almost up to zero at 1010.5 cfu/mL; which could be due to presence of high level concentration of autoinducer.

  2. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.

    Science.gov (United States)

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Kim, Hwa Young; Kim, Hye Jin; Yoon, Sang Sun

    2016-03-01

    The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions.

  3. Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction

    Science.gov (United States)

    Petr, T.; Šmíd, V.; Šmídová, J.; Hůlková, H.; Jirkovská, M.; Elleder, M.; Muchová, L.; Vítek, L.; Šmíd, F.

    2010-01-01

    A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at −20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier. PMID:20558344

  4. Impact of solar irradiation on cholera toxin secretion by different strains of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Cornelius C. Ssemakalu

    2013-09-01

    Full Text Available Cholera toxin is the aetiological agent of cholera – a deadly waterborne disease acquired through the consumption of untreated water contaminated with CTXФ bacteriophage harbouring strains of V. cholerae. Solar disinfection is a re-emerging technique that relies on the ultraviolet component of sunlight to inactivate the growth of Vibrio cholerae in water, rendering the water microbiologically safe for consumption. However, studies have shown that DNA damaging agents, such as ultraviolet light, induce the replication of the CTXФ bacteriophage with subsequent expression of the cholera toxin. In this study we investigated the impact of solar irradiation on the secretion of cholera toxin by toxigenic strains of V. cholerae in water. The cholera toxin ELISA assay, qualitative and quantitative real-time PCR as well as growth on solid media were used to determine cholera toxin secretion, DNA integrity and growth of the bacteria after 7 h and 31 h of solar irradiation. Solar irradiation in water reduced the integrity of DNA, inactivated the growth of V. cholerae and, most importantly, prevented the secretion of detectable levels of cholera toxin. This finding is encouraging for resource-poor communities that may rely on solar disinfection to alleviate the burden of cholera-related fatalities.

  5. Antitoxic immunity to cholera in dogs immunized orally with cholera toxin.

    Science.gov (United States)

    Pierce, N F; Cray, W C; Engel, P F

    1980-02-01

    Colera toxin was evaluated as an oral immunogen against experimental canine cholera. Dogs were immunized orally with 100-microgram doses of purified cholera toxin or comparable doses of crude toxin. Both doses caused moderate diarrhea in most nonimmune dogs. Repeated oral doses (12 doses in 54 days) gave marked protection against the diarrheal effect of oral toxin, provoked a vigorous antitoxic response in jejunal mucosa, and gave nearly complete protection against subsequent oral challenge with living virulent Vibrio cholerae. Protection appeared to be due largely to the antitoxic response in intestinal mucosa. The effectiveness of cholera toxin as an oral vaccine contrasts with the previously described ineffectiveness of toxoid given orally. This study provides an example of mucosal immunity due to a nonreplicating vaccine given orally and suggests that cholera toxin may be useful as a component of an oral vaccine for cholera.

  6. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø

    1997-01-01

    The potential of the major structural protein of type 1 fimbriae as a display system for heterologous sequences was tested. As a reporter-epitope, a heterologous sequence mimicking a neutralizing epitope of the cholera toxin B chain was inserted, in one or two copies, into four different positions...... in the fimA gene. This was carried out by introduction of new restriction sites by PCR-mediated site-directed mutagenesis of fimA in positions predicted to correspond to optimally surface-located regions of the subunit protein. Subsequently, the synthetic cholera-toxin-encoding DNA segment was inserted....... Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  7. Cholera

    Science.gov (United States)

    ... that causes a large amount of watery diarrhea. Causes Cholera is caused by the bacterium Vibrio cholerae . These bacteria release a toxin that causes an increased amount of water to be released ...

  8. Mannitol and the Mannitol-Specific Enzyme IIB Subunit Activate Vibrio cholerae Biofilm Formation

    Science.gov (United States)

    Ymele-Leki, Patrick; Houot, Laetitia

    2013-01-01

    Vibrio cholerae is a halophilic, Gram-negative rod found in marine environments. Strains that produce cholera toxin cause the diarrheal disease cholera. V. cholerae use a highly conserved, multicomponent signal transduction cascade known as the phosphoenolpyruvate phosphotransferase system (PTS) to regulate carbohydrate uptake and biofilm formation. Regulation of biofilm formation by the PTS is complex, involving many different regulatory pathways that incorporate distinct PTS components. The PTS consists of the general components enzyme I (EI) and histidine protein (HPr) and carbohydrate-specific enzymes II. Mannitol transport by V. cholerae requires the mannitol-specific EII (EIIMtl), which is expressed only in the presence of mannitol. Here we show that mannitol activates V. cholerae biofilm formation and transcription of the vps biofilm matrix exopolysaccharide synthesis genes. This regulation is dependent on mannitol transport. However, we show that, in the absence of mannitol, ectopic expression of the B subunit of EIIMtl is sufficient to activate biofilm accumulation. Mannitol, a common compatible solute and osmoprotectant of marine organisms, is a main photosynthetic product of many algae and is secreted by algal mats. We propose that the ability of V. cholerae to respond to environmental mannitol by forming a biofilm may play an important role in habitat selection. PMID:23728818

  9. RNAi-mediated suppression of endogenous storage proteins leads to a change in localization of overexpressed cholera toxin B-subunit and the allergen protein RAG2 in rice seeds.

    Science.gov (United States)

    Kurokawa, Shiho; Kuroda, Masaharu; Mejima, Mio; Nakamura, Rika; Takahashi, Yuko; Sagara, Hiroshi; Takeyama, Natsumi; Satoh, Shigeru; Kiyono, Hiroshi; Teshima, Reiko; Masumura, Takehiro; Yuki, Yoshikazu

    2014-01-01

    RNAi-mediated suppression of the endogenous storage proteins in MucoRice-CTB-RNAi seeds affects not only the levels of overexpressed CTB and RAG2 allergen, but also the localization of CTB and RAG2. A purification-free rice-based oral cholera vaccine (MucoRice-CTB) was previously developed by our laboratories using a cholera toxin B-subunit (CTB) overexpression system. Recently, an advanced version of MucoRice-CTB was developed (MucoRice-CTB-RNAi) through the use of RNAi to suppress the production of the endogenous storage proteins 13-kDa prolamin and glutelin, so as to increase CTB expression. The level of the α-amylase/trypsin inhibitor-like protein RAG2 (a major rice allergen) was reduced in MucoRice-CTB-RNAi seeds in comparison with wild-type (WT) rice. To investigate whether RNAi-mediated suppression of storage proteins affects the localization of overexpressed CTB and major rice allergens, we generated an RNAi line without CTB (MucoRice-RNAi) and investigated gene expression, and protein production and localization of two storage proteins, CTB, and five major allergens in MucoRice-CTB, MucoRice-CTB-RNAi, MucoRice-RNAi, and WT rice. In all lines, glyoxalase I was detected in the cytoplasm, and 52- and 63-kDa globulin-like proteins were found in the aleurone particles. In WT, RAG2 and 19-kDa globulin were localized mainly in protein bodies II (PB-II) of the endosperm cells. Knockdown of glutelin A led to a partial destruction of PB-II and was accompanied by RAG2 relocation to the plasma membrane/cell wall and cytoplasm. In MucoRice-CTB, CTB was localized in the cytoplasm and PB-II. In MucoRice-CTB-RNAi, CTB was produced at a level six times that in MucoRice-CTB and was localized, similar to RAG2, in the plasma membrane/cell wall and cytoplasm. Our findings indicate that the relocation of CTB in MucoRice-CTB-RNAi may contribute to down-regulation of RAG2.

  10. Removal of Cholera Toxin from Aqueous Solution by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-06-01

    Full Text Available Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103 and Bifidobacterium longum 46 (DSM 14583, to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacterium longum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.

  11. Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus cholera toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity.

    Science.gov (United States)

    Maeto, Cynthia; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, María Magdalena

    2014-01-01

    Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.

  12. Mucosal vaccination of conserved sM2, HA2 and cholera toxin subunit A1 (CTA1) fusion protein with poly gamma-glutamate/chitosan nanoparticles (PC NPs) induces protection against divergent influenza subtypes.

    Science.gov (United States)

    Chowdhury, Mohammed Y E; Kim, Tae-Hwan; Uddin, Md Bashir; Kim, Jae-Hoon; Hewawaduge, C Y; Ferdowshi, Zannatul; Sung, Moon-Hee; Kim, Chul-Joong; Lee, Jong-Soo

    2017-03-01

    To develop a safe and effective mucosal vaccine that broad cross protection against seasonal or emerging influenza A viruses, we generated a mucosal influenza vaccine system combining the highly conserved matrix protein-2 (sM2), fusion peptide of hemagglutinin (HA 2 ), the well-known mucosal adjuvant cholera toxin subunit A1 (CTA1) and poly-γ-glutamic acid (γ-PGA)-chitosan nanoparticles (PC NPs), which are safe, natural materials that are able to target the mucosal membrane as a mucosal adjuvant. The mucosal administration of sM2HA2CTA1/PC NPs could induce a high degree of systemic immunity (IgG and IgA) at the site of inoculation as well as at remote locations and also significantly increase the levels of sM2- or HA2-specific cell-mediated immune response. In challenge tests in BALB/c mice with 10 MLD 50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird/Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005 (H7N3) or A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant sM2HA2CTA1/PC NPs provided cross protection against divergent lethal influenza subtypes and also the protection was maintained up to six months after vaccination. Thus, sM2HA2CTA1/PC NPs could be a promising strategy for a universal influenza vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism.

    Science.gov (United States)

    O'Neal, Claire J; Amaya, Edward I; Jobling, Michael G; Holmes, Randall K; Hol, Wim G J

    2004-04-06

    Cholera toxin (CT) is a heterohexameric bacterial protein toxin belonging to a larger family of A/B ADP-ribosylating toxins. Each of these toxins undergoes limited proteolysis and/or disulfide bond reduction to form the enzymatically active toxic fragment. Nicking and reduction render both CT and the closely related heat-labile enterotoxin from Escherichia coli (LT) unstable in solution, thus far preventing a full structural understanding of the conformational changes resulting from toxin activation. We present the first structural glimpse of an active CT in structures from three crystal forms of a single-site A-subunit CT variant, Y30S, which requires no activational modifications for full activity. We also redetermined the structure of the wild-type, proenzyme CT from two crystal forms, both of which exhibit (i) better geometry and (ii) a different A2 "tail" conformation than the previously determined structure [Zhang et al. (1995) J. Mol. Biol. 251, 563-573]. Differences between wild-type CT and active CTY30S are observed in A-subunit loop regions that had been previously implicated in activation by analysis of the structure of an LT A-subunit R7K variant [van den Akker et al. (1995) Biochemistry 34, 10996-11004]. The 25-36 activation loop is disordered in CTY30S, while the 47-56 active site loop displays varying degrees of order in the three CTY30S structures, suggesting that disorder in the activation loop predisposes the active site loop to a greater degree of flexibility than that found in unactivated wild-type CT. On the basis of these six new views of the CT holotoxin, we propose a model for how the activational modifications experienced by wild-type CT are communicated to the active site.

  14. Mechanisms of inflammasome activation by Vibrio cholerae secreted toxins vary with strain biotype.

    Science.gov (United States)

    Queen, Jessica; Agarwal, Shivani; Dolores, Jazel S; Stehlik, Christian; Satchell, Karla J F

    2015-06-01

    Activation of inflammasomes is an important aspect of innate immune responses to bacterial infection. Recent studies have linked Vibrio cholerae secreted toxins to inflammasome activation by using murine macrophages. To increase relevance to human infection, studies of inflammasome-dependent cytokine secretion were conducted with the human THP-1 monocytic cell line and corroborated in primary human peripheral blood mononuclear cells (PBMCs). Both El Tor and classical strains of V. cholerae activated ASC (apoptosis-associated speck-like protein-containing a CARD domain)-dependent release of interleukin-1β (IL-1β) when cultured with human THP-1 cells, but the pattern of induction was distinct, depending on the repertoire of toxins the strains produced. El Tor biotype strains induced release of IL-1β dependent on NOD-like receptor family pyrin domain-containing 3 (NLRP3) and ASC due to the secreted pore-forming toxin hemolysin. Unlike in studies with mouse macrophages, the MARTX toxin did not contribute to IL-1β release from human monocytic cells. Classical biotype strains, which do not produce either hemolysin or the MARTX toxin, activated low-level IL-1β release that was induced by cholera toxin (CT) and dependent on ASC but independent of NLRP3 and pyroptosis. El Tor strains likewise showed increased IL-1β production dependent on CT when the hemolysin gene was deleted. In contrast to studies with murine macrophages, this phenotype was dependent on a catalytically active CT A subunit capable of inducing production of cyclic AMP and not on the B subunit. These studies demonstrate that the induction of the inflammasome in human THP-1 monocytes and in PBMCs by V. cholerae varies with the biotype and is mediated by both NLRP3-dependent and -independent pathways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus casei inhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells.

    Science.gov (United States)

    Hiramatsu, Yukihiro; Yamamoto, Masatatsu; Satho, Tomomitsu; Irie, Keiichi; Kai, Akiko; Uyeda, Saori; Fukumitsu, Yuki; Toda, Akihisa; Miyata, Takeshi; Miake, Fumio; Arakawa, Takeshi; Kashige, Nobuhiro

    2014-05-10

    Lactobacillus species are used as bacterial vectors to deliver functional peptides to the intestine because they are delivered live to the intestine, colonize the mucosal surface, and continue to produce the desired protein. Previously, we generated a recombinant Lactobacillus casei secreting the cholera toxin B subunit (CTB), which can translocate into intestinal epithelial cells (IECs) through GM1 ganglioside. Recombinant fusion proteins of CTB with functional peptides have been used as carriers for the delivery of these peptides to IECs because of the high cell permeation capacity of recombinant CTB (rCTB). However, there have been no reports of rCTB fused with peptides expressed or secreted by Lactobacillus species. In this study, we constructed L. casei secreting a recombinant fusion protein of CTB with YVAD (rCTB-YVAD). YVAD is a tetrapeptide (tyrosine-valine-alanine-aspartic acid) that specifically inhibits caspase-1, which catalyzes the production of interleukin (IL)-1β, an inflammatory cytokine, from its inactive precursor. Here, we examined whether rCTB-YVAD secreted by L. casei binds to GM1 ganglioside and inhibits caspase-1 activation in Caco-2 cells used as a model of IECs. We constructed the rCTB-YVAD secretion vector pSCTB-YVAD by modifying the rCTB secretion vector pSCTB. L. casei secreting rCTB-YVAD was generated by transformation with pSCTB-YVAD. Both the culture supernatant of pSCTB-YVAD-transformed L. casei and purified rCTB-YVAD bound to GM1 ganglioside, as did the culture supernatant of pSCTB-transformed L. casei and purified rCTB. Interestingly, although both purified rCTB-YVAD and rCTB translocated into Caco-2 cells, regardless of lipopolysaccharide (LPS), only purified rCTB-YVAD but not rCTB inhibited LPS-induced caspase-1 activation and subsequent IL-1β secretion in Caco-2 cells, without affecting cell viability. The rCTB protein fused to a functional peptide secreted by L. casei can bind to GM1 ganglioside, like rCTB, and recombinant

  16. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor

    DEFF Research Database (Denmark)

    Borch, Jonas; Torta, Federico; Sligar, Stephen G

    2008-01-01

    nanodiscs and their incorporated membrane receptors can be attached to surface plasmon resonance sensorchips and used to measure the kinetics of the interaction between soluble molecules and membrane receptors inserted in the bilayer of nanodiscs. Cholera toxin and its glycolipid receptor G(M1) constitute...... partner cholera toxin B subunit to the receptor with the sensorchip-based surface plasmon resonance (SPR) technology. The measured stoichiometric and kinetic values of the interaction are in agreement with those reported by previous studies, thus providing proof-of-principle that nanodiscs can be employed...

  17. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae: effects of insert position and host background

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, B; Pallesen, L; Jensen, LB

    1997-01-01

    The potential of the major structural protein of type 1 fimbriae as a display system for heterologous sequences was tested. As a reporter-epitope, a heterologous sequence mimicking a neutralizing epitope of the cholera toxin B chain was inserted, in one or two copies, into four different positions...... in the fimA gene. This was carried out by introduction of new restriction sites by PCR-mediated site-directed mutagenesis of fimA in positions predicted to correspond to optimally surface-located regions of the subunit protein. Subsequently, the synthetic cholera-toxin-encoding DNA segment was inserted....... Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  18. Functional characterization of cholera toxin inhibitors using human intestinal organoids

    NARCIS (Netherlands)

    Zomer-van Ommen, Domenique D.; Pukin, Aliaksei V.; Fu, Ou; Quarles Van Ufford, Linda H C; Janssens, Hettie M.; Beekman, Jeffrey M.|info:eu-repo/dai/nl/27160378X; Pieters, Roland J.

    2016-01-01

    Preclinical drug testing in primary human cell models that recapitulate disease can significantly reduce animal experimentation and time-to-the-clinic. We used intestinal organoids to quantitatively study the potency of multivalent cholera toxin inhibitors. The method enabled the determination of

  19. Specific antibodies to cholera toxin in rabbit milk are protective against Vibrio cholerae-induced intestinal secretion.

    Science.gov (United States)

    Yoshiyama, Y; Brown, W R

    1987-08-01

    Breast feeding helps to protect the nursing infant against infectious diarrhoeas, but the relative importance of antibodies compared with other components present in milk is unsettled. In order to aid in resolving this issue we evaluated the ability of milk, collected from rabbits not immunized or immunized enterally during pregnancy with toxinogenic, live Vibrio cholerae, to inhibit water secretion induced by V. cholerae in rat ileal loops. Non-immune milk was not inhibitory, whereas immune milk was. The inhibitory component of the immune milk was immunoglobulin by virtue of its molecular weight and absorption by an anti-rat immunoglobulin immunosorbent. In addition, the inhibitory antibodies were principally antibodies to cholera toxin because they could be removed from the milk by a cholera toxin immunosorbent but were only partially removed by incubation with whole V. cholerae. Thus, in rabbit milk, we could implicate specific antibodies in protection against intestinal water secretion induced by V. cholerae.

  20. Activation of Cholera Toxin Production by Anaerobic Respiration of Trimethylamine N-oxide in Vibrio cholerae*

    Science.gov (United States)

    Lee, Kang-Mu; Park, Yongjin; Bari, Wasimul; Yoon, Mi Young; Go, Junhyeok; Kim, Sang Cheol; Lee, Hyung-il; Yoon, Sang Sun

    2012-01-01

    Vibrio cholerae is a Gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2′,7′-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor. PMID:23019319

  1. Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae.

    Science.gov (United States)

    Lee, Kang-Mu; Park, Yongjin; Bari, Wasimul; Yoon, Mi Young; Go, Junhyeok; Kim, Sang Cheol; Lee, Hyung-Il; Yoon, Sang Sun

    2012-11-16

    Vibrio cholerae is a gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2',7'-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.

  2. Hybrid microarray based on double biomolecular markers of DNA and carbohydrate for simultaneous genotypic and phenotypic detection of cholera toxin-producing Vibrio cholerae.

    Science.gov (United States)

    Shin, Hwa Hui; Seo, Jeong Hyun; Kim, Chang Sup; Hwang, Byeong Hee; Cha, Hyung Joon

    2016-05-15

    Life-threatening diarrheal cholera is usually caused by water or food contaminated with cholera toxin-producing Vibrio cholerae. For the prevention and surveillance of cholera, it is crucial to rapidly and precisely detect and identify the etiological causes, such as V. cholerae and/or its toxin. In the present work, we propose the use of a hybrid double biomolecular marker (DBM) microarray containing 16S rRNA-based DNA capture probe to genotypically identify V. cholerae and GM1 pentasaccharide capture probe to phenotypically detect cholera toxin. We employed a simple sample preparation method to directly obtain genomic DNA and secreted cholera toxin as target materials from bacterial cells. By utilizing the constructed DBM microarray and prepared samples, V. cholerae and cholera toxin were detected successfully, selectively, and simultaneously; the DBM microarray was able to analyze the pathogenicity of the identified V. cholerae regardless of whether the bacteria produces toxin. Therefore, our proposed DBM microarray is a new effective platform for identifying bacteria and analyzing bacterial pathogenicity simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cholera toxin but not pertussis toxin inhibits angiotensin II-enhanced contractions in the rat portal vein

    NARCIS (Netherlands)

    Zhang, J.; van Meel, J. C.; Pfaffendorf, M.; van Zwieten, P. A.

    1993-01-01

    Angiotensin II (Ang II)-enhanced phasic contractions in the rat portal vein were concentration dependently inhibited by cholera toxin (0.1-10 micrograms/ml) and dibutyryl cyclic AMP (0.1-1 mM), but not by pertussis toxin (1 micrograms/ml), which suggests that Gi is not involved in the Ang II signal

  4. In Vitro Inhibition of Cholera Toxin Production in Vibrio cholerae by Methanol Extract of Sweet Fennel Seeds and Its Components.

    Science.gov (United States)

    Chatterjee, Shruti; Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Chowdhury, Nityananda; Asakura, Masahiro; Hinenoya, Atsushi; Ramamurthy, T; Iwaoka, Emiko; Aoki, Shunji; Yamasaki, Shinji

    2016-09-21

    A newly emerged Vibrio cholerae O1 El Tor variant strain with multidrug resistance is considered a threat to public health. Recent strategies to suppress virulence factors production instead of bacterial growth may lead to less selective pressure for the emergence of resistant strains. The use of spices and their active constituents as the inhibitory agents against cholera toxin (CT) production in V. cholerae may be an alternative approach to treat cholera. In this study, we examined the potential of sweet fennel seed (Foeniculum vulgare Miller var. dulce) methanol extract to inhibit CT production in V. cholerae without affecting viability. The methanol extract of sweet fennel seeds significantly inhibited CT production in various V. cholerae strains, regardless of serogroup or biotype. Interestingly, trans-anethole and 4-allylanisole, essential oil components of sweet fennel seeds, also demonstrated similar effects. Here, we report that sub-bactericidal concentrations of sweet fennel seed methanol extract and its major components can drastically inhibit CT production in various V. cholerae strains.

  5. Bovine lactoferrin decreases cholera-toxin-induced intestinal fluid accumulation in mice by ganglioside interaction.

    Directory of Open Access Journals (Sweden)

    Fulton P Rivera

    Full Text Available Secretory diarrhea caused by cholera toxin (CT is initiated by binding of CT's B subunit (CTB to GM1-ganglioside on the surface of intestinal cells. Lactoferrin, a breast milk glycoprotein, has shown protective effect against several enteropathogens. The aims of this study were to determine the effect of bovine-lactoferrin (bLF on CT-induced intestinal fluid accumulation in mice, and the interaction between bLF and CT/CTB with the GM1-ganglioside receptor. Fluid accumulation induced by CT was evaluated in the mouse ileal loop model using 56 BALB/c mice, with and without bLF added before, after or at the same time of CT administration. The effect of bLF in the interaction of CT and CTB with GM1-ganglioside was evaluated by a GM1-enzyme-linked immunosorbent assay. bLF decreased CT-induced fluid accumulation in the ileal loop of mice. The greatest effect was when bLF was added before CT (median, 0.066 vs. 0.166 g/cm, with and without bLF respectively, p<0.01. We conclude that bLF decreases binding of CT and CTB to GM1-ganglioside, suggesting that bLF suppresses CT-induced fluid accumulation by blocking the binding of CTB to GM1-ganglioside. bLF may be effective as adjunctive therapy for treatment of cholera diarrhea.

  6. Bovine Lactoferrin Decreases Cholera-Toxin-Induced Intestinal Fluid Accumulation in Mice by Ganglioside Interaction

    Science.gov (United States)

    Rivera, Fulton P.; Medina, Anicia M.; Bezada, Sandra; Valencia, Roberto; Bernal, María; Meza, Rina; Maves, Ryan C.; Ochoa, Theresa J.

    2013-01-01

    Secretory diarrhea caused by cholera toxin (CT) is initiated by binding of CT’s B subunit (CTB) to GM1-ganglioside on the surface of intestinal cells. Lactoferrin, a breast milk glycoprotein, has shown protective effect against several enteropathogens. The aims of this study were to determine the effect of bovine-lactoferrin (bLF) on CT-induced intestinal fluid accumulation in mice, and the interaction between bLF and CT/CTB with the GM1-ganglioside receptor. Fluid accumulation induced by CT was evaluated in the mouse ileal loop model using 56 BALB/c mice, with and without bLF added before, after or at the same time of CT administration. The effect of bLF in the interaction of CT and CTB with GM1-ganglioside was evaluated by a GM1-enzyme-linked immunosorbent assay. bLF decreased CT-induced fluid accumulation in the ileal loop of mice. The greatest effect was when bLF was added before CT (median, 0.066 vs. 0.166 g/cm, with and without bLF respectively, p<0.01). We conclude that bLF decreases binding of CT and CTB to GM1-ganglioside, suggesting that bLF suppresses CT-induced fluid accumulation by blocking the binding of CTB to GM1-ganglioside. bLF may be effective as adjunctive therapy for treatment of cholera diarrhea. PMID:23580005

  7. Membrane invagination induced by Shiga toxin B-subunit

    DEFF Research Database (Denmark)

    Pezeshkian, W.; Hansen, Allan Grønhøj; Johannes, Ludger

    2016-01-01

    The bacterial Shiga toxin is composed of an enzymatically active A-subunit, and a receptor-binding homopentameric B-subunit (STxB) that mediates intracellular toxin trafficking. Upon STxB-mediated binding to the glycolipid globotriaosylceramide (Gb3) at the plasma membrane of target cells, Shiga...... toxin is internalized by clathrin-dependent and independent endocytosis. The formation of tubular membrane invaginations is an essential step in the clathrin-independent STxB uptake process. However, the mechanism by which STxB induces these invaginations has remained unclear. Using a combination of all...... toxin molecules then creates a tubular membrane invagination that drives toxin entry into the cell. This mechanism requires: (1) a precise molecular architecture of the STxB binding sites; (2) a fluid bilayer in order for the tubular invagination to form. Although, STxB binding to the membrane requires...

  8. Structure of the cholera toxin secretion channel in its closed state

    Science.gov (United States)

    Reichow, Steve L.; Korotkov, Konstantin V.; Hol, Wim G. J.; Gonen, Tamir

    2010-01-01

    The type II secretion system (T2SS) is a macromolecular complex spanning the inner and outer membranes of Gram-negative bacteria. Remarkably, the T2SS secretes folded proteins including multimeric assemblies like cholera toxin and heat-labile enterotoxin from Vibrio cholerae and enterotoxigenic Escherichia coli, respectively. The major outer membrane T2SS protein is the “secretin” GspD. Electron cryomicroscopy reconstruction of the V. cholerae secretin at 19 Å resolution reveals a dodecameric structure reminiscent of a barrel with a large channel at its center that appears to contain a closed periplasmic gate. The GspD periplasmic domain forms a vestibule with a conserved constriction, and binds to a pentameric exoprotein and to the trimeric tip of the T2SS pseudopilus. By combining our results with structures of the cholera toxin and T2SS pseudopilus, we provide a structural basis for a possible secretion mechanism of the T2SS. PMID:20852644

  9. Role of platelet activating factor in the intestinal epithelial secretory and Chinese hamster ovary cell cytoskeletal responses to cholera toxin.

    OpenAIRE

    Guerrant, R L; Fang, G D; Thielman, N M; Fonteles, M C

    1994-01-01

    With the recent heightened concern about cholera around the world come new questions about the mechanism by which cholera toxin causes diarrhea. Peterson and Ochoa have suggested that prostaglandin synthesis is key to both the intestinal epithelial secretory and the CHO cell responses to cholera toxin [Peterson, J. W. and Ochoa, G. (1989) Science 245, 857-859]. Because platelet activating factor (PAF) can be a potent stimulus for prostaglandin synthesis, we examined its role in the intestinal...

  10. Nanomechanical detection of cholera toxin using microcantilevers functionalized with ganglioside nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Tark, Soo-Hyun; Dravid, Vinayak P [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Das, Aditi; Sligar, Stephen, E-mail: s-sligar@illinois.edu, E-mail: v-dravid@northwestern.edu [Department of Biochemistry and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2010-10-29

    The label-free detection of cholera toxin is demonstrated using microcantilevers functionalized with ganglioside nanodiscs. The cholera toxin molecules bind specifically to the active membrane protein encased in nanodiscs, nanoscale lipid bilayers surrounded by an amphipathic protein belt, immobilized on the cantilever surface. The specific molecular binding results in cantilever deflection via the formation of a surface stress-induced bending moment. The nanomechanical cantilever response is quantitatively monitored by optical interference. The consistent and reproducible nanomechanical detection of cholera toxin in nanomolar range concentrations is demonstrated. The results validated with such a model system suggest that the combination of a microcantilever platform with receptor nanodiscs is a promising approach for monitoring invasive pathogens and other types of biomolecular detection relevant to drug discovery.

  11. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  12. Alga-Produced Cholera Toxin-Pfs25 Fusion Proteins as Oral Vaccines

    Science.gov (United States)

    Gregory, James A.; Topol, Aaron B.; Doerner, David Z.

    2013-01-01

    Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy. PMID:23603678

  13. Cholera- and anthrax-like toxins are among several new ADP-ribosyltransferases.

    Directory of Open Access Journals (Sweden)

    Robert J Fieldhouse

    Full Text Available Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences--including a primary sequence pattern--to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data--and we need high-throughput validation--our approach provides insight into the newest toxin ADP-ribosyltransferases.

  14. [Neuroanatomical basis of clinical joint application of "Jinggu" (BL 64, a source-acupoint) and "Dazhong" (KI 4, a Luo-acupoint) in the rat: a double-labeling study of cholera toxin subunit B conjugated with Alexa Fluor 488 and 594].

    Science.gov (United States)

    Cui, Jing-jing; Zhu, Xin-long; Ji, Chang-fu; Jing, Xiang-hong; Bai, Wan-zhu

    2011-08-01

    To study the specific correlation between "Jinggu" (BL 64) and "Dazhong" (KI 4) in the nervous system by using a double-labeling of cholera toxin subunit B conjugated with Alexa Fluor 488 and 594 (CTB-Alexa 488, 594) in rats, so as to investigate its neuroanatomical basis for clinical joint-application of Yuan-Source and Luo acupoints. Three male SD rats were used in the present study. Under anesthesia (10% urethane), 0.1% CTB-Alexa 488 (5 microL) and CTB-Alexa 594 (5 microL) were respectively injected into the border area between the red and white flesh, distal to the tuberosity of the fifth metatarsal bone, and the depression anterior to the medial attachment of the calcaneal tendon, the corresponding sites of the acupoints Jinggu (BL 64) and Dazhong (KI 4) in the human body. After 3 surviving days, the rat's brain, spinal cord and dorsal root ganglia (DRGs) of L3-L6 were dissected following perfusion with 4% paraformaldehyde, cut into sections and observed under fluorescent microscope equipped with a digital camera. The labeled neurons were recorded and counted. It was found under fluorescent microscope that the single-labeled neurons and the dual-labeled neurons were ipsilaterally located on the injected side. Among the single-labeled neurons, the labeled sensory neurons related to "Jinggu" (BL 64) and "Dazhong" (KI 4) were found to be in the DRGs of L3-L6, with a higher concentration in the DRGs of L.4 (27/162, 102/332) and L5 (130/162, 204/332). The dual-labeled 7 neurons were found to be in DRGs of L4 and L5. In addition, the labeled motoneurons related to "Jinggu" (BL 64) and "Dazhong" (KI 4) distributed in the dorsolateral portion of lamina IX, forming a longitudianal column from L3-L6 with a higher concentration at L4 and L5. The labeled sensory and motor neurons innervating Yuan-acupoint "Jinggu" (BL 64) and Luo-acupoint "Dazhong" (KI 4) distribute in DRGs of the same spinal segments and spinal ventral horns from L3-L6.

  15. Intranasal delivery of cholera toxin induces th17-dominated T-cell response to bystander antigens.

    Directory of Open Access Journals (Sweden)

    Jee-Boong Lee

    Full Text Available Cholera toxin (CT is a potent vaccine adjuvant, which promotes mucosal immunity to protein antigen given by nasal route. It has been suggested that CT promotes T helper type 2 (Th2 response and suppresses Th1 response. We here report the induction of Th17-dominated responses in mice by intranasal delivery of CT. This dramatic Th17-driving effect of CT, which was dependent on the B subunit, was observed even in Th1 or Th2-favored conditions of respiratory virus infection. These dominating Th17 responses resulted in the significant neutrophil accumulation in the lungs of mice given CT. Both in vitro and in vivo treatment of CT induced strongly augmented IL-6 production, and Th17-driving ability of CT was completely abolished in IL-6 knockout mice, indicating a role of this cytokine in the Th17-dominated T-cell responses by CT. These data demonstrate a novel Th17-driving activity of CT, and help understand the mechanisms of CT adjuvanticity to demarcate T helper responses.

  16. Effect of cholera toxin on glucose absorption and net movements of water and electrolytes in the intestinal loop of sheep.

    Science.gov (United States)

    Hyun, H S; Onaga, T; Mineo, H; Kim, J T; Kato, S

    1996-12-01

    This study was designed to evaluate the effect of cholera toxin on glucose absorption and net movement of water and electrolytes in the jejunal loop of sheep. Intraluminal perfusion was performed at the rate of 1 ml/min with isotonic 10 mM glucose solution. Osmolality was adjusted by adding NaCl, and the outflow solution was collected every 10 min. After a 30 min control period, cholera toxin was applied intraluminally for 30 min at doses of 30, 60, and 120 micrograms/loop. In the control period, water, sodium and chloride were absorbed, while potassium and bicarbonate were secreted. Cholera toxin reversed the net absorption of water, sodium and chloride to net secretions, and this secretory response to cholera toxin was dose-dependent. Bicarbonate secretion was stimulated dose-dependently by cholera toxin. Potassium secretion was also increased at all doses, though this response was not dose-dependent. The net glucose absorption was decreased dose-dependently by cholera toxin. In conclusion, these results indicate that cholera toxin stimulates water and electrolyte secretion, and inhibits glucose absorption in the jejunal loop of sheep.

  17. Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice.

    Science.gov (United States)

    Tejada-Simon, M V; Lee, J H; Ustunol, Z; Pestka, J J

    1999-04-01

    Lactic acid bacteria have been reported to have benefits for the prevention and treatment of some forms of diarrhea and related conditions. To determine whether these effects might involve direct stimulation of the gastrointestinal immune response, we administered yogurt to try to enhance mucosal and systemic antibodies against an orally presented immunogen, cholera toxin. Yogurts were manufactured with starter cultures containing different species and strains of lactic acid bacteria. Mice were fed these yogurts for 3 wk, during which they were also orally immunized twice with 10 micrograms of cholera toxin. Blood was collected on d 0 and 21, and fecal pellets were collected weekly. Mice that were immunized orally with cholera toxin responded by producing specific intestinal and serum immunoglobulin (Ig)A anti-cholera toxin. Antibody responses of the IgA isotype were significantly increased in mice fed yogurts made with starters containing the conventional yogurt bacteria Lactobacillus bulgaricus and Streptococcus thermophilus supplemented with Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium infantis. Yogurt that was manufactured with starters containing only conventional yogurt bacteria produced less IgA anti-cholera toxin than did the control group fed nonfat dry milk. Although strong responses were also observed for IgG anti-cholera toxin in serum, the responses did not differ among groups. Thus, administration of yogurt supplemented with L. acidophilus and Bifidobacterium spp. enhanced mucosal and systemic IgA responses to the cholera toxin immunogen.

  18. OBTAINING OF MONOCLONAL ANTIBODIES AGAINST CHOLERA TOXIN AND HEAT LABILE ENTEROTOXIN OF E. coli FOR DEVELOPMENT OF THE TOXINS DIPLEX ANALYSIS IN ENVIRONMENTAL SPECIMENS

    Directory of Open Access Journals (Sweden)

    Eu. V. Grishin

    2013-08-01

    Full Text Available The present study focuses on development of monoclonal antibodies (MAbs which specifically interact with cholera toxin or heat labile enterotoxin of E. coli. Such monoclonal antibodies MAbs are possessed of ability to identify cholera toxin or heat labile enterotoxin in different immunochemical assays. We obtained hybridoma clones which produced monoclonal antibodies of IgG isotypes to cholera toxin and heat labile enterotoxin. On application of the method of serial dilutions we selected the clones which produced monoclonal antibodies with specific activity against only one of the toxins. We found the 16 pairs of monoclonal antibodies to cholera toxin and 28 ones to heat labile enterotoxin. By means of these monoclonal antibodies it was possible to realize the quantitative analysis of theses toxins in sandwich immunoassay ELISA and diplex sandwich xMAP-assay. The limits of detection of cholera toxin and heat labile enterotoxin in ELISA in control buffer were 0.2 and 0.4 ng/ml, respectively, and in xMAP assay — 0.01 and 0.08 ng/ml, respectively. In probes of cow milk, meat soup, pond water and nasopharyngeal washes cholera toxin was detected in the both assays with the same limits of detections, but heat labile enterotoxin limits of detections were above the ones in control buffers.

  19. Crystallization of the HigBA2 toxin-antitoxin complex from Vibrio cholerae

    DEFF Research Database (Denmark)

    Hadǽi, San; Garcia-Pino, Abel; Martinez-Rodriguez, Sergio

    2013-01-01

    The genome of Vibrio cholerae encodes two higBA toxin-antitoxin (TA) modules that are activated by amino-acid starvation. Here, the TA complex of the second module, higBA2, as well as the C-terminal domain of the corresponding HigA2 antitoxin, have been purified and crystallized. The HigBA2 complex...

  20. Cholera Toxin Production during Anaerobic Trimethylamine N-Oxide Respiration Is Mediated by Stringent Response in Vibrio cholerae*

    Science.gov (United States)

    Oh, Young Taek; Park, Yongjin; Yoon, Mi Young; Bari, Wasimul; Go, Junhyeok; Min, Kyung Bae; Raskin, David M.; Lee, Kang-Mu; Yoon, Sang Sun

    2014-01-01

    As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae. PMID:24648517

  1. Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in Vibrio cholerae.

    Science.gov (United States)

    Oh, Young Taek; Park, Yongjin; Yoon, Mi Young; Bari, Wasimul; Go, Junhyeok; Min, Kyung Bae; Raskin, David M; Lee, Kang-Mu; Yoon, Sang Sun

    2014-05-09

    As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae.

  2. Role of 6-Gingerol in Reduction of Cholera Toxin Activity In Vitro and In Vivo

    Science.gov (United States)

    Saha, Pallashri; Das, Bornita

    2013-01-01

    Vibrio cholerae is one of the major bacterial pathogens responsible for the devastating diarrheal disease called cholera. Chemotherapy is often used against V. cholerae infections; however, the emergence of V. cholerae with multidrug resistance (MDR) toward the chemotherapeutic agents is a serious clinical problem. This scenario has provided us with the impetus to look into herbal remediation, especially toward blocking the action of cholera toxin (CT). Our studies were undertaken to determine the antidiarrheal potential of 6-gingerol (6G) on the basis of its effect on CT, the virulence factor secreted by V. cholerae. We report here that 6G binds to CT, hindering its interaction with the GM1 receptor present on the intestinal epithelial cells. The 50% inhibitory concentration (IC50) was determined to be 10 μg/ml. The detailed mechanistic study was conducted by enzyme-linked immunosorbent assay (ELISA), fluorescence spectroscopy, and isoelectric focusing. These results were validated with in vitro studies performed with the CHO, HeLa, and HT-29 cell lines, whereas a rabbit ileal loop assay was done to estimate the in vivo action, which confirms the efficacy of 6G in remediation of the choleragenic effects of CT. Thus, 6G can be an effective adjunctive therapy with oral rehydration solution for severe CT-mediated diarrhea. PMID:23817372

  3. Immunization with the Recombinant Cholera Toxin B Fused to Fimbria 2 Protein Protects against Bordetella pertussis Infection

    Directory of Open Access Journals (Sweden)

    Noelia Olivera

    2014-01-01

    Full Text Available This study examined the immunogenic properties of the fusion protein fimbria 2 of Bordetella pertussis (Fim2—cholera toxin B subunit (CTB in the intranasal murine model of infection. To this end B. pertussis Fim2 coding sequence was cloned downstream of the cholera toxin B subunit coding sequence. The expression and assembly of the fusion protein into pentameric structures (CTB-Fim2 were evaluated by SDS-PAGE and monosialotetrahexosylgaglioside (GM1-ganglioside enzyme-linked immunosorbent assay (ELISA. To evaluate the protective capacity of CTB-Fim2, an intraperitoneal or intranasal mouse immunization schedule was performed with 50 μg of CTB-Fim2. Recombinant (rFim2 or purified (BpFim2 Fim2, CTB, and phosphate-buffered saline (PBS were used as controls. The results showed that mice immunized with BpFim2 or CTB-Fim2 intraperitoneally or intranasally presented a significant reduction in bacterial lung counts compared to control groups (P<0.01 or P<0.001, resp.. Moreover, intranasal immunization with CTB-Fim2 induced significant levels of Fim2-specific IgG in serum and bronchoalveolar lavage (BAL and Fim2-specific IgA in BAL. Analysis of IgG isotypes and cytokines mRNA levels showed that CTB-Fim2 results in a mixed Th1/Th2 (T-helper response. The data presented here provide support for CTB-Fim2 as a promising recombinant antigen against Bordetella pertussis infection.

  4. GALACTOSE-BINDING SITE IN ESCHERICHIA-COLI HEAT-LABILE ENTEROTOXIN (LT) AND CHOLERA-TOXIN (CT)

    NARCIS (Netherlands)

    MERRITT, EA; SIXMA, TK; KALK, KH; VANZANTEN, BAM; HOL, WGJ

    The galactose-binding site in cholera toxin and the closely related heat-labile enterotoxin (LT) from Escherichia coil is an attractive target for the rational design of potential anti-cholera drugs. In this paper we analyse the molecular structure of this binding site as seen in several crystal

  5. Cholera

    OpenAIRE

    Harris, Jason B.; LaRocque, Regina C.; Qadri, Firdausi; Ryan, Edward T.; Calderwood, Stephen B.

    2012-01-01

    Cholera is an acute, secretory diarrhea caused by infection with Vibrio cholerae of the O1 and O139 serogroups. Cholera is endemic in over 50 countries and also causes large epidemics. Since 1817, seven cholera pandemics have spread from Asia to much of the world. The 7th pandemic began in 1961 and affects 3–5 million people each year, killing 120,000. Although mild cholera may be indistinguishable from other diarrheal illnesses, the presentation of severe cholera is distinct, with dramatic d...

  6. Comparative analysis of theophylline and cholera toxin in rat colon reveals an induction of sealing tight junction proteins.

    Science.gov (United States)

    Markov, Alexander G; Falchuk, Evgeny L; Kruglova, Natalia M; Rybalchenko, Oksana V; Fromm, Michael; Amasheh, Salah

    2014-11-01

    Claudin tight junction proteins have been identified to primarily determine intestinal epithelial barrier properties. While functional contribution of single claudins has been characterized in detail, information on the interplay with secretory mechanisms in native intestinal epithelium is scarce. Therefore, effects of cholera toxin and theophylline on rat colon were analyzed, including detection of sealing claudins. Tissue specimens were stripped off submucosal tissue layers and mounted in Ussing chambers, and short-circuit current (ISC) and transepithelial resistance (TER) were recorded. In parallel, expression and localization of claudins was analyzed and histological studies were performed employing hematoxylin-eosin staining and light and electron microscopy. Theophylline induced a strong increase of ISC in colon tissue specimens. In parallel, a decrease of TER was observed. In contrast, cholera toxin did not induce a significant increase of ISC, whereas an increase of TER was detected after 120 min. Western blots of membrane fractions revealed an increase of claudin-3 and -4 after incubation with cholera toxin, and theophylline induced an increase of claudin-4. In accordance, confocal laser-scanning microscopy exhibited increased signals of claudin-3 and -4 after incubation with cholera toxin, and increased signals of claudin-4 after incubation with theophylline, within tight junction complexes. Morphological analyses revealed no general changes of tight junction complexes, but intercellular spaces were markedly widened after incubation with cholera toxin and theophylline. We conclude that cholera toxin and theophylline have different effects on sealing tight junction proteins in native colon preparations, which may synergistically contribute to transport functions, in vitro.

  7. The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus.

    Directory of Open Access Journals (Sweden)

    Dixon Ng

    2016-12-01

    Full Text Available Type IV pilus (T4P systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system.

  8. The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus.

    Science.gov (United States)

    Ng, Dixon; Harn, Tony; Altindal, Tuba; Kolappan, Subramania; Marles, Jarrad M; Lala, Rajan; Spielman, Ingrid; Gao, Yang; Hauke, Caitlyn A; Kovacikova, Gabriela; Verjee, Zia; Taylor, Ronald K; Biais, Nicolas; Craig, Lisa

    2016-12-01

    Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system.

  9. Oral immunization with cholera toxin provides protection against Campylobacter jejuni in an adult mouse intestinal colonization model.

    Science.gov (United States)

    Albert, M John; Mustafa, Abu Salim; Islam, Anjum; Haridas, Shilpa

    2013-05-07

    Immunity to Campylobacter jejuni, a major diarrheal pathogen, is largely Penner serotype specific. For broad protection, a vaccine should be based on a common antigen(s) present in all strains. In our previous study (M. J. Albert, S. Haridas, D. Steer, G. S. Dhaunsi, A. I. Smith, and B. Adler, Infect. Immun. 75:3070-3073, 2007), we demonstrated that antibody to cholera toxin (CT) cross-reacted with the major outer membrane proteins (MOMPs) of all Campylobacter jejuni strains tested. In the current study, we investigated whether immunization with CT protects against intestinal colonization by C. jejuni in an adult mouse model and whether the nontoxic subunit of CT (CT-B) is the portion mediating cross-reaction. Mice were orally immunized with CT and later challenged with C. jejuni strains (48, 75, and 111) of different serotypes. Control animals were immunized with phosphate-buffered saline. Fecal shedding of challenge organisms was studied daily for 9 days. Serum and fecal antibody responses were studied by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. The cross-reactivity of rabbit CT-B antibody to MOMP was studied by immunoblotting. The reactivity of 21 overlapping 30-mer oligopeptides (based on MOMP's sequence) against rabbit CT antibody was tested by ELISA. Test animals produced antibodies to CT and MMP in serum and feces and showed resistance to colonization, the vaccine efficacies being 49% (for strain 48), 37% (for strain 75), and 34% (for strain 111) (P, ≤0.05 to ≤0.001). One peptide corresponding to a variable region of MOMP showed significant reactivity. CT-B antibody cross-reacted with MOMP. Since CT-B is a component of oral cholera vaccines, it might be possible to control C. jejuni diarrhea with these vaccines. Campylobacter jejuni is a major cause of diarrhea worldwide. Patients who recover from C. jejuni diarrhea develop immunity to the infecting serotype and remain susceptible to infection with other serotypes. A vaccine based on

  10. Effect of in vivo injection of cholera and pertussis toxin on glucose transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Han, X; Petersen, L N

    1997-01-01

    Cholera toxin (CTX) and pertussis toxin (PTX) were examined for their ability to inhibit glucose transport in perfused skeletal muscle. Twenty-five hours after an intravenous injection of CTX, basal transport was decreased approximately 30%, and insulin- and contraction-stimulated transport...

  11. Inhibition of cholera toxin and other AB toxins by polyphenolic compounds

    Science.gov (United States)

    All AB-type protein toxins have intracellular targets despite an initial extracellular location. These toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against AB toxins are therefore hard to develop because the toxins use dif...

  12. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins.

    Directory of Open Access Journals (Sweden)

    Verena Olivier

    Full Text Available Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX, and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.

  13. CHOLERA

    African Journals Online (AJOL)

    diarrhoeal disease surveillance. The first case of cholera was diagnosed clinically on 20 August and ... vigilance and an active laboratory surveillance of diar- rhoeal diseases are the main safeguards against wide- ... In terms of the International Sanitary Regulations all travellers from a notified cholera-infected area should.

  14. Immunohistochemical study of cell proliferation and differentiation in epidermis of mice after administration of cholera toxin.

    Science.gov (United States)

    Rahman, S A; Tsuyama, S

    1993-01-01

    Cholera toxin causes reversible epidermal hyperplasia. We observed maximal thickness of the epidermis on the fourth day after treatment and a return to pretreatment values by day 7. The increase in thickness occurred in the basal and intermediate layers, with these layers becoming two to three times thicker than those of normal epidermis. The time sequence of epidermal proliferation was studied using bromodeoxyuridine (BrdU) labelling. We observed a maximum number of labelled basal cells within the first 24 h. Only a few cells were labelled 7 days after toxin injection. Griffonia simplicifolia-IB4 (GSA-IB4), Ulex europaeus-I (UEA-I) and Griffonia simplicifolia-II (GSA-II) lectins were used for the analysis of epidermal cell differentiation in the tissue sections. To study keratinocyte differentiation, further immunological staining was performed using two anticytokeratin antibodies, PKK2 and PKK3 mouse monoclonal antibodies. From the immunocytochemical results, we conclude that synchronous differentiation of the epidermis occurs after cholera toxin administration.

  15. [COMPARATIVE ANALYSIS OF TIGHT JUNCTIONS OF EPITHELIUM OF RATS JEJUNUM UNDER THE EFFECT OF LIPOPOLYSACCHARIDE AND CHOLERA TOXIN].

    Science.gov (United States)

    Vishnevskaya, O N; Rybalchenko, O V; Larionov, I V; Orlova, O G; Markov, A G

    2016-01-01

    Comparative study of tight junctions and ultrastructure alterations of enterocytes of mucous membranes of jejunum of rats under the effect of lipopolysaccharides and cholera toxin. Lipopolysaccharides (Sigma-Aldrich, Germany) and cholera toxin (Sigma-Aldrich, Germany) were used. The study was carried out in Wistar line rats. Effect of lipopolysaccharides and cholera toxin on epitheliocytes was carried out by a method of withdrawal of segments of rat jejunum and their incubation with the specified substances. Comparative analysis of ultrathin sections of enterocytes of jejunum of rats and tight junctions between them was carried out in control and under the effect of lipopolysaccharides and cholera toxin. Effect of lipopolysaccharides on ultrastructure of enterocytes of rat jejunum manifested in the change of cell form as a result of increase of intercellular space without destruction of tight junctions. Disappearance of desmosomes, increase of nuclei and more pronounced ER were noted in some epitheliocytes. Effect of cholerogen on epitheliocytes of mucous membrane of rat jejunum by a number of signs is similar to the effect of lipopolysaccharides, that manifested in an alteration of ultrastructure of cell, the form of those also transformed as a result of an increase of intercellular space, this process was not accompanied by destruction of tight junctions. Disappearance of folding of the lateral region of plasmatic membrane of cells and a reduction of a number of microvilli was observed under the effect of cholera toxin. A similar character of effect of lipopolysaccharides and cholera toxins on ultrastructure of cells and region of tight junctions of enterocytes of rat jejunum was detected, both substances caused an increase of intercellular space without the destruction of tight junctions.

  16. Fighting Cholera One-on-One: The Development and Efficacy of Multivalent Cholera-Toxin-Binding Molecules.

    Science.gov (United States)

    Zuilhof, Han

    2016-02-16

    A series of diseases, ranging from cholera via travelers' diarrhea to hamburger disease, are caused by bacterially produced toxic proteins. In particular, a toxic protein unit is brought into the host cell upon binding to specific membrane-bound oligosaccharides on the host cell membrane. For example, the protein that causes cholera, cholera toxin (CT), has five identical, symmetrically placed binding pockets (B proteins), on top of which the toxic A protein resides. A promising strategy to counteract the devastating biological effects of this AB5 protein involves the development of inhibitors that can act as mimics of membrane-bound GM1 molecules, i.e., that can bind CT strongly and selectively. To reach this goal, two features are essential: First of all, the inhibitor should display oligosaccharides that resemble as much as possible the naturally occurring cell-surface pentasaccharide onto which CT normally binds, the so-called GM1 sugar (the oligosaccharide part of which is then labeled GM1os). Second, the inhibitor should be able to bind CT via multivalent interactions so as to bind CT as strongly as possible to allow for a real competition with the cell-membrane-bound GM1 molecules. In this Account, we present elements of the path that leads to strong CT inhibition by outlining the roles of multivalency and the development and use of GM1 mimics. First, multivalency effects were investigated using "sugar-coated" platforms, ranging from dendritic structures with up to eight oligosaccharides to platforms that mimicked the fivefold symmetry of CT itself. The latter goal was reached either via synthetic scaffolds like corannulene or calix[5]arene or via the development of a neolectin CT mimic that itself carries five GM1os groups. Second, the effect of the nature of the oligosaccharide appended to this platform was investigated via the use of oligosaccharides of increasing complexity, from galactose and lactose to the tetrasaccharide GM2os and eventually to GM1os

  17. Cholera

    Science.gov (United States)

    ... by feces (poop). Cholera is rare in the US. You may get it if you travel to parts of the world with poor water and sewage treatment. Outbreaks can also happen after disasters. The disease is not likely to ...

  18. Phase Partitioning of GM1 and Its Bodipy-Labeled Analog Determine Their Different Binding to Cholera Toxin

    DEFF Research Database (Denmark)

    Rissanen, Sami; Grzybek, Michal; Orłowski, Adam

    2017-01-01

    membrane vesicles and giant unilamellar vesicles, specific binding of Cholera Toxin (CTxB) to GM1 glycolipids is a commonly used strategy to label raft domains or Lo membrane environments. However, these studies often use acyl-chain labeled bodipy-GM1 (bdGM1), whose headgroup accessibility and membrane...

  19. Effect of bismuth salts on systemic and mucosal immune responses to orally administered cholera toxin.

    Science.gov (United States)

    Horowitz, N S; Staats, H F; Palker, T J

    1995-11-01

    While the antimicrobial and antisecretory effects of bismuth salts are well documented, little is known regarding their effects on immune responses to enterotoxins such as that of V. cholerae or to orally administered vaccine antigens. To evaluate the effects of Pepto Bismol (PB) on the induction of systemic and mucosal immune responses to cholera toxin (CT), C57BL/6 mice were orally administered 10 micrograms CT and PB, or mice were pretreated with PB 30 min prior to CT administration. When co-administered with CT, PB attenuated serum IgG1, IgG2a, IgG2b and IgG3 anti-CT responses in a dose-dependent manner and also reduced levels of circulating anti-CT IgA and total serum IgE. Similarly, anti-CT intestinal IgA responses were also decreased. However, when administered 30 min prior to CT, PB had little to no effect on serum or intestinal anti-CT immunoglobulin responses. Administration of bismuth subsalicylate (BSS), the active component of PB, or sodium salicylate did not reduce immune responses to CT, suggesting that the combination of BSS plus other constituents contained within PB contributed to the decreased immune response to CT. Moreover, bismuth subgallate alone inhibited antibody responses to CT. Our data are consistent with the hypothesis that, when administered orally with CT, PB and bismuth subgallate create a physical barrier to antigen uptake.

  20. Inhibition of Binding of the AB5-Type Enterotoxins LT-I and Cholera Toxin to Ganglioside GM1 by Galactose-Rich Dietary Components

    NARCIS (Netherlands)

    Becker, P.M.; Widjaja-Greefkes, H.C.A.; Wikselaar, van P.G.

    2010-01-01

    Cholera, travelers' diarrhea, or colibacillosis in pigs can possibly be prevented or attenuated by dietary provision of competitive inhibitors that react with the GM1-binding sites of the enterotoxins cholera toxin (CT), human Escherichia coli heat-labile enterotoxin of serogroup I (LTh-I), and

  1. NADP/sup +/ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-05-01

    Cholera or pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD/sup +/, by endogenous enzymes such as NAD/sup +/-glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed (/sup 32/P)ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP/sup +/. The effect is concentration dependent; with 20 ..mu..M (/sup 32/P)NAD/sup +/ as substrate maximal enhancement is obtained at 0.5-1.0 mM NADP/sup +/. The enhancement of (/sup 32/P)ADP-ribosylation by NADP/sup +/ was much greater than that by other known effectors such as Mg/sup 2 +/, phosphate or isoniazid. The effect of NADP/sup +/ on ADP-ribosylation may occur by inhibition of the degradation of NAD/sup +/ probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP/sup +/, isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl/sub 2/) to suppress NADase activity, NADP/sup +/ was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP/sup +/ in the assay is necessary to obtain maximal ADP-ribosylation.

  2. Methods to assess the impact of mass oral cholera vaccination campaigns under real field conditions.

    Science.gov (United States)

    Deen, Jacqueline; Ali, Mohammad; Sack, David

    2014-01-01

    There is increasing interest to use oral cholera vaccination as an additional strategy to water and sanitation interventions against endemic and epidemic cholera. There are two internationally-available and WHO-prequalified oral cholera vaccines: an inactivated vaccine containing killed whole-cells of V. cholerae O1 with recombinant cholera toxin B-subunit (WC/rBS) and a bivalent inactivated vaccine containing killed whole cells of V. cholerae O1 and V. cholerae O139 (BivWC). The efficacy, effectiveness, direct and indirect (herd) protection conferred by WC/rBS and BivWC are well established. Yet governments may need local evidence of vaccine impact to justify and scale-up mass oral cholera vaccination campaigns. We discuss various approaches to assess oral cholera vaccine protection, which may be useful to policymakers and public health workers considering deployment and evaluation of the vaccine.

  3. Methods to assess the impact of mass oral cholera vaccination campaigns under real field conditions.

    Directory of Open Access Journals (Sweden)

    Jacqueline Deen

    Full Text Available There is increasing interest to use oral cholera vaccination as an additional strategy to water and sanitation interventions against endemic and epidemic cholera. There are two internationally-available and WHO-prequalified oral cholera vaccines: an inactivated vaccine containing killed whole-cells of V. cholerae O1 with recombinant cholera toxin B-subunit (WC/rBS and a bivalent inactivated vaccine containing killed whole cells of V. cholerae O1 and V. cholerae O139 (BivWC. The efficacy, effectiveness, direct and indirect (herd protection conferred by WC/rBS and BivWC are well established. Yet governments may need local evidence of vaccine impact to justify and scale-up mass oral cholera vaccination campaigns. We discuss various approaches to assess oral cholera vaccine protection, which may be useful to policymakers and public health workers considering deployment and evaluation of the vaccine.

  4. A Nanocoaxial-Based Electrochemical Sensor for the Detection of Cholera Toxin

    Science.gov (United States)

    Archibald, Michelle; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.; Biology; Physics Collaboration

    We report a nanocoax-based electrochemical sensor for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). The device architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. Proof-of-concept was demonstrated for the detection of cholera toxin (CT), with a linear dynamic range of detection was 10 ng/ml - 1 µg/ml, and a limit of detection (LOD) of 2 ng/ml. This level of sensitivity is comparable to the standard optical ELISA used widely in clinical applications. The nanocoax array thus matches the detection profile of the standard ELISA while providing a simple electrochemical readout and a miniaturized platform with multiplexing capabilities, toward point-of-care (POC) implementation. In addition, next generation nanocoax devices with extended cores are currently under development, which would provide a POC platform amenable for biofunctionalization of ELISA receptor proteins directly onto the device. This work was supported by the National Institutes of Health (National Cancer Institute Award No. CA137681 and National Institute of Allergy and Infectious Diseases Award No. AI100216).

  5. A Mutational Analysis of Residues in Cholera Toxin A1 Necessary for Interaction with Its Substrate, the Stimulatory G Protein Gsα

    Directory of Open Access Journals (Sweden)

    Michael G. Jobling

    2015-03-01

    Full Text Available Pathogenesis of cholera diarrhea requires cholera toxin (CT-mediated adenosine diphosphate (ADP-ribosylation of stimulatory G protein (Gsα in enterocytes. CT is an AB5 toxin with an inactive CTA1 domain linked via CTA2 to a pentameric receptor-binding B subunit. Allosterically activated CTA1 fragment in complex with NAD+ and GTP-bound ADP-ribosylation factor 6 (ARF6-GTP differs conformationally from the CTA1 domain in holotoxin. A surface-exposed knob and a short α-helix (formed, respectively, by rearranging “active-site” and “activation” loops in inactive CTA1 and an ADP ribosylating turn-turn (ARTT motif, all located near the CTA1 catalytic site, were evaluated for possible roles in recognizing Gsα. CT variants with one, two or three alanine substitutions at surface-exposed residues within these CTA1 motifs were tested for assembly into holotoxin and ADP-ribosylating activity against Gsα and diethylamino-(benzylidineamino-guanidine (DEABAG, a small substrate predicted to fit into the CTA1 active site. Variants with single alanine substitutions at H55, R67, L71, S78, or D109 had nearly wild-type activity with DEABAG but significantly decreased activity with Gsα, suggesting that the corresponding residues in native CTA1 participate in recognizing Gsα. As several variants with multiple substitutions at these positions retained partial activity against Gsα, other residues in CTA1 likely also participate in recognizing Gsα.

  6. Fighting Cholera One-on-One: The Development and Efficacy of Multivalent Cholera-Toxin-Binding Molecules

    NARCIS (Netherlands)

    Zuilhof, H.

    2016-01-01

    A series of diseases, ranging from cholera via travelers’ diarrhea to hamburger disease, are caused by bacterially produced toxic proteins. In particular, a toxic protein unit is brought into the host cell upon binding to specific membrane-bound oligosaccharides on the host cell membrane. For

  7. Plasma and Mucosal Immunoglobulin M, Immunoglobulin A, and Immunoglobulin G Responses to the Vibrio cholerae O1 Protein Immunome in Adults With Cholera in Bangladesh.

    Science.gov (United States)

    Charles, Richelle C; Nakajima, Rie; Liang, Li; Jasinskas, Al; Berger, Amanda; Leung, Daniel T; Kelly, Meagan; Xu, Peng; Kovác, Pavol; Giffen, Samantha R; Harbison, James D; Chowdhury, Fahima; Khan, Ashraful I; Calderwood, Stephen B; Bhuiyan, Taufiqur Rahman; Harris, Jason B; Felgner, Philip L; Qadri, Firdausi; Ryan, Edward T

    2017-07-01

    Cholera is a severe dehydrating illness of humans caused by toxigenic strains of Vibrio cholerae O1 or O139. Identification of immunogenic V. cholerae antigens could lead to a better understanding of protective immunity in human cholera. We probed microarrays containing 3652 V. cholerae antigens with plasma and antibody-in-lymphocyte supernatant (ALS, a surrogate marker of mucosal immune responses) from patients with severe cholera caused by V. cholerae O1 in Bangladesh and age-, sex-, and ABO-matched Bangladeshi controls. We validated a subset of identified antigens using enzyme-linked immunosorbent assay. Overall, we identified 608 immunoreactive V. cholerae antigens in our screening, 59 of which had higher immunoreactivity in convalescent compared with acute-stage or healthy control samples (34 in plasma, 39 in mucosal ALS; 13 in both sample sets). Identified antigens included cholera toxin B and A subunits, V. cholerae O-specific polysaccharide and lipopolysaccharide, toxin coregulated pilus A, sialidase, hemolysin A, flagellins (FlaB, FlaC, and FlaD), phosphoenolpyruvate-protein phosphotransferase, and diaminobutyrate-2-oxoglutarate aminotransferase. This study is the first antibody profiling of the mucosal and systemic antibody responses to the nearly complete V. cholerae O1 protein immunome; it has identified antigens that may aid in the development of an improved cholera vaccine.

  8. Cholera toxin inhibits human hepatocarcinoma cell proliferation in vitro via suppressing ATX/LPA axis.

    Science.gov (United States)

    Xia, Qi; Deng, An-mei; Wu, Shan-shan; Zheng, Min

    2011-08-01

    To investigate the antitumor effect of cholera toxin (CT) in hepatocellular carcinoma (HCC) in vitro and the mechanisms underlying the effect. Human hepatocellular carcinoma cell lines Hep3B and Huh7, which expressed moderate and high level of autotaxin (ATX), respectively, were used. Cytokine level in the cells was evaluated using ELISA assay, and cell proliferation was investigated using MTT assay. ATX expression was determined using Western blot. ATX/lyso-PLD activity in the conditioned medium was measured using FS-3, a fluorescent lysophosphatidylcholine (LPC) analogue, as substrate. Exposure to CT (7.5 and 10 ng/mL) significantly inhibited the cell growth, decreased secretion of proinflammatory cytokine TNF-α and promoted secretion of anti-inflammatory cytokines IL-4 and IL-10. CT at 10 ng/mL markedly suppressed ATX expression in Hep3B and Huh7 cells. Furthermore, ATX and lysophosphatidic acid (LPA) were found to be crucial for growth of the cancer cells. CT could inhibit TNF-α-induced expression and secretion of ATX that led to decreased activity of lysophospholipase D, thus decreasing the conversion of LPC to LPA. CT inhibits hepatocellular carcinoma cell growth in vitro via regulating the ATX-LPA pathway.

  9. Repeatability of ellipsometric data in cholera toxin G M1-ELISA structures

    Science.gov (United States)

    Castro, Leon G.; Thompson, Daniel W.; Tiwald, Thomas; Berberov, Emil M.; Woollam, John A.

    2007-04-01

    The need for repeated measurements in a wide range of biological testing due to statistical variations is well known. In this paper, we discuss a specific example in which the measurement probe is a spectroscopic ellipsometer. Repeatable results are needed in a wide range of applications such as drug testing, immunoassays and other tests for disease, and fundamental biomaterial research. The present paper seeks to help reduce the non-meaningful causes of lack of repeatability by identifying a large number of externally controllable factors. Another goal of this work was to quantify the effects of many of these factors on ellipsometric measurements. By exploiting the sensitivity of spectroscopic ellipsometry to ultrathin layers, improved ways to detect and quantitatively differentiate biological events can be explored. This initial work was motivated from an interest to distinguish one disease from another or discern effects of one drug from another using the high surface sensitivity of spectroscopic ellipsometry. In this paper, we investigate the example biological system of cholera toxin (CT) in an ELISA structure with monosialoganglioside (G M1).

  10. Antiproliferative effect of brief exposure to cholera toxin in vascular smooth muscle cells: role of cAMP and protein kinase A.

    Science.gov (United States)

    Thorin-Trescases, N; Orlov, S N; Taurin, S; Dulin, N O; Allen, B G; deBlois, D; Tremblay, J; Pshezhetsky, A V; Hamet, P

    2001-06-01

    The effect of cholera toxin (CTX), an activator of the adenylate cyclase-coupled G protein alpha(s) subunit, was studied on cultured vascular smooth muscle cell (VSMC) proliferation. Continuous exposure (48 h) to CTX as well as 2-min pretreatment of VSMC with CTX led to the same level of cAMP production, inhibition of DNA synthesis, and arrest in the G1 phase without induction of necrosis or apoptosis in VSMC. Protein kinase A (PKA) activity in CTX-pretreated cells was transiently elevated by 3-fold after 3 h of incubation, whereas after 48 h it was reduced by 2-fold compared with baseline values without modulation of the expression of its catalytic alpha subunit. The PKA inhibitors H89 and KT 5720 did not protect VSMC from the antiproliferative effect of CTX. Two-dimensional electrophoresis was used to analyze the influence of CTX on protein phosphorylation. After 3 h of incubation of CTX-pretreated cells, we observed both newly-phosphorylated and dephosphorylated proteins (77 and 50 protein species, respectively). After 24 h of incubation, the number of phosphorylated proteins in CTX-treated cells was decreased to 39, whereas the number of dephosphorylated proteins was increased to 106. In conclusion, brief exposure to CTX leads to full-scale activation of cAMP signaling and evokes VSMC arrest in the G1 phase.

  11. Comparative analysis of factors promoting optimal production of cholera toxin by Vibrio cholerae O1 (classical & E1Tor biotypes) & O139.

    Science.gov (United States)

    Mukhopadhyay, A K; Garg, S; Saha, P K; Takeda, Y; Bhattacharya, S K; Nair, G B

    1996-07-01

    Various culture media [AKI, Brain heart infusion broth (BHI), Casamino acid-yeast extract broth (CAYE), Casamino acid-yeast extract broth supplemented with 90 micrograms/ml of lincomycin (CAYE-L), Tryptic soy broth (TSB) and Yeast extract peptone (YEP)], cultural conditions (stationary and shaking) and incubation temperatures (30 degrees C and 37 degrees C) were evaluated to determine optimal conditions for production of cholera toxin (CT) by different biotypes (classical and E1Tor) and serogroups (O1 and O139) of V. cholerae. It was found that V. cholerae O1 E1Tor grown in CAYE-L and incubated at 30 degrees C with constant shaking was optimal for production of CT, while for the classical biotype and for the O139 serogroup, CT was maximally produced when grown in YEP and incubated at 30 degrees C in a shaker. Temperature appeared to be a prominent factor affecting the production of CT by the O1 E1Tor biotype when the media used were AKI, CAYE-L and YEP and also for the classical biotype when the media used were the AKI, BHI, CAYE and YEP. In the case of the O1 E1Tor biotype, CAYE-L was the best medium for CT production whereas for the classical biotype, CAYE-L was a poor medium as far as CT production was concerned. Irrespective of the media used, 30 degrees C shake culture condition seemed to be more favourable for supporting CT production except in CAYE medium for the O1 E1Tor biotype where incubation at 37 degrees C in a shaker was as good as incubation at 30 degrees C.

  12. [Study on the immunogenicity and safety of recombinant B-subunit/whole cell cholera vaccine infused with antacids in healthy population at ages of 2-6 years].

    Science.gov (United States)

    Huang, T; Li, R C; Liu, D P

    2017-09-06

    Objective: To assess the immunogenicity and safety of recombinant B-subunit/whole cell cholera vaccine (rBS/WC) oral cholera vaccine (Ora Vacs) infused with antacids in healthy population at ages of 2-6 years. Methods: Between December 2009 and January 2010, we recruited 900 volunteers aged 2-6 years od through giving out recruitment notice for the eligible children's parents from different vaccination clinics of Chongzuo city in Guangxi Zhuang Autonomous Region. This study was a randomized, double-blind, placebo-controlled trial, and subjects were randomly (2∶1) assigned to receive Cholera vaccine infused with antacids or placebo, and observed for safety. Serum samples of 300 subjects in immunogenicity subgroups (200 for vaccine groups, 100 for control groups) before the 1st dose and 49 d (±3 d) after immunization were collected, and determined for antibody levels against the cholera toxin (anti-CT) and cholera vibriocidal (anti-Vab) with Enzyme-linked immunosorbent assays (ELISA), based on which the GMT was calculated. There were 266 cases paired with the serum samples before and after immunization (177 for vaccine groups, 89 for control groups). The comparison of subjects' age at enrollment and the level of GMT before and after immunization between groups were analyzed by t test. The superiority test for the difference between seroconversion rates of vaccine groups and control groups were analyzed by χ(2) test. Results: Of 900 subjects enrolled, the number of males and females were 503 and 397 respectively (vaccine groups 335 vs. 265, control groups 168 vs. 132), the average ages of vaccine groups and control groups at enrollment were (4.8±1.2) years and (4.9±1.2) years respectively. There were no significant differences between groups in terms of gender and age (χ(2)=0.00, P=1.000; t=0.55, P=0.585). The 2 times increase rates of anti-CT and anti-Vab in vaccine groups after inoculation were 90.96% and 57.63% respectively, which were superiority to those

  13. Cholera toxin inhibits signal transduction by several mitogens and the in vitro growth of human small-cell lung cancer.

    OpenAIRE

    Viallet, J.; Sharoni, Y; Frucht, H; Jensen, R. T.; Minna, J D; Sausville, E A

    1990-01-01

    Cholera toxin (CT) inhibited the in vitro growth of three of four human small-cell lung carcinoma (SCLC) cell lines with a 50% inhibitory concentration of 27-242 ng/ml. Loss of surface membrane ruffling and the capacity of [Tyr4]-bombesin, vasopressin, and fetal calf serum to stimulate increases in intracellular free calcium clearly preceded effects on cellular metabolic activity and cell growth. 125I-[Tyr4]-bombesin binding was unaffected by CT treatment but [Tyr4]-bombesin stimulated phosph...

  14. Molecular simulation of N-acetylneuraminic acid analogs and molecular dynamics studies of cholera toxin-Neu5Gc complex.

    Science.gov (United States)

    Blessy, J Jino; Sharmila, D Jeya Sundara

    2015-01-01

    Cholera toxin (CT) is an AB5 protein complex secreted by the pathogen Vibrio cholera, which is responsible for cholera infection. N-acetylneuraminic acid (NeuNAc) is a derivative of neuraminic acid with nine-carbon backbone. NeuNAc is distributed on the cell surface mainly located in the terminal components of glycoconjugates, and also plays an important role in cell-cell interaction. In our current study, molecular docking and molecular dynamic (MD) simulations were implemented to identify the potent NeuNAc analogs with high-inhibitory activity against CT protein. Thirty-four NeuNAc analogs, modified in different positions C-1/C-2/C-4/C-5/C-7/C-8/C-9, were modeled and docked against the active site of CT protein. Among the 34 NeuNAc analogs, the analog Neu5Gc shows the least extra precision glide score of -9.52 and glide energy of -44.71 kcal/mol. NeuNAc analogs block the CT active site residues HIS:13, ASN:90, LYS:91, GLN:56, GLN:61, and TRP:88 through intermolecular hydrogen bonding. The MD simulation for CT-Neu5Gc docking complex was performed using Desmond. MD simulation of CT-Neu5Gc complex reveals the stable nature of docking interaction.

  15. Serine 26 in the PomB subunit of the flagellar motor is essential for hypermotility of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Petra Halang

    Full Text Available Vibrio cholerae is motile by means of its single polar flagellum which is driven by the sodium-motive force. In the motor driving rotation of the flagellar filament, a stator complex consisting of subunits PomA and PomB converts the electrochemical sodium ion gradient into torque. Charged or polar residues within the membrane part of PomB could act as ligands for Na+, or stabilize a hydrogen bond network by interacting with water within the putative channel between PomA and PomB. By analyzing a large data set of individual tracks of swimming cells, we show that S26 located within the transmembrane helix of PomB is required to promote very fast swimming of V. cholerae. Loss of hypermotility was observed with the S26T variant of PomB at pH 7.0, but fast swimming was restored by decreasing the H+ concentration of the external medium. Our study identifies S26 as a second important residue besides D23 in the PomB channel. It is proposed that S26, together with D23 located in close proximity, is important to perturb the hydration shell of Na+ before its passage through a constriction within the stator channel.

  16. Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, J.T.; Mende-Mueller, L.M.; Rappuoli, R.; Collier, R.J. (Medical College of Wisconsin, Milwaukee (USA))

    1989-11-01

    UV irradiation was shown to induce efficient transfer of radiolabel from nicotinamide-labeled NAD to a recombinant protein (C180 peptide) containing the catalytic region of the S-1 subunit of pertussis toxin. Incorporation of label from (3H-nicotinamide)NAD was efficient (0.5 to 0.6 mol/mol of protein) relative to incorporation from (32P-adenylate)NAD (0.2 mol/mol of protein). Label from (3H-nicotinamide)NAD was specifically associated with Glu-129. Replacement of Glu-129 with glycine or aspartic acid made the protein refractory to photolabeling with (3H-nicotinamide)NAD, whereas replacement of a nearby glutamic acid, Glu-139, with serine did not. Photolabeling of the C180 peptide with NAD is similar to that observed with diphtheria toxin and exotoxin A of Pseudomonas aeruginosa, in which the nicotinamide portion of NAD is transferred to Glu-148 and Glu-553, respectively, in the two toxins. These results implicate Glu-129 of the S-1 subunit as an active-site residue and a potentially important site for genetic modification of pertussis toxin for development of an acellular vaccine against Bordetella pertussis.

  17. Differential requirements for protection against mucosal challenge with Francisella tularensis in the presence versus absence of Cholera Toxin B and inactivated F. tularensis

    Science.gov (United States)

    Bitsaktsis, Constantine; Rawool, Deepak B.; Li, Ying; Kurkure, Nitin V.; Iglesias, Bibiana; Gosselin, Edmund J.

    2009-01-01

    Francisella tularensis is a Category A biothreat agent for which there is no approved vaccine and the correlates of protection are not well understood. In particular, the relationship between the humoral and cellular immune response to F. tularensis, and the relative importance of each in protection, is controversial. Yet, understanding this relationship will be crucial to the development of an effective vaccine against this organism. We demonstrate, for the first time, a differential requirement for humoral versus cellular immunity in vaccine-induced protection against F. tularensis infection, and that the requirement for Ab observed in some protection studies, may be overcome through the induction of enhanced cellular immunity. Specifically, following intranasal/mucosal immunization of mice with inactivated F. tularensis organisms (iFt) plus Cholera Toxin B subunit (CTB), we observe increased production of IgG2a/2c versus IgG1 Ab, as well as IFN-γ, indicating induction of a Th1 response. In addition, the requirement for F. tularensis-specific IgA Ab production, observed in studies following immunization with iFt alone, is eliminated. Thus, these data indicate that enhanced Th1 responses can supersede the requirement for anti-F. tularensis-specific IgA. This observation also has important ramifications for vaccine development against this organism. PMID:19342669

  18. The Live Attenuated Cholera Vaccine CVD 103-HgR Primes Responses to the Toxin-Coregulated Pilus Antigen TcpA in Subjects Challenged with Wild-Type Vibrio cholerae

    Science.gov (United States)

    Mayo-Smith, Leslie M.; Simon, Jakub K.; Haney, Douglas; Lock, Michael; Lyon, Caroline E.; Calderwood, Stephen B.; Kirkpatrick, Beth D.; Cohen, Mitchell; Levine, Myron M.; Gurwith, Marc

    2016-01-01

    ABSTRACT One potential advantage of live attenuated bacterial vaccines is the ability to stimulate responses to antigens which are only expressed during the course of infection. To determine whether the live attenuated cholera vaccine CVD 103-HgR (Vaxchora) results in antibody responses to the in vivo-induced toxin-coregulated pilus antigen TcpA, we measured IgA and IgG responses to Vibrio cholerae O1 El Tor TcpA in a subset of participants in a recently reported experimental challenge study. Participants were challenged with V. cholerae O1 El Tor Inaba N16961 either 10 days or 90 days after receiving the vaccine or a placebo. Neither vaccination nor experimental infection with V. cholerae alone resulted in a robust TcpA IgG or IgA response, but each did elicit a strong response to cholera toxin. However, compared to placebo recipients, vaccinees had a marked increase in IgG TcpA antibodies following the 90-day challenge, suggesting that vaccination with CVD 103-HgR resulted in priming for a subsequent response to TcpA. No such difference between vaccine and placebo recipients was observed for volunteers challenged 10 days after vaccination, indicating that this was insufficient time for vaccine-induced priming of the TcpA response. The priming of the response to TcpA and potentially other antigens expressed in vivo by attenuated V. cholerae may have relevance to the maintenance of immunity in areas where cholera is endemic. PMID:27847368

  19. Live attenuated Shigella dysenteriae type 1 vaccine strains overexpressing shiga toxin B subunit.

    Science.gov (United States)

    Wu, Tao; Grassel, Christen; Levine, Myron M; Barry, Eileen M

    2011-12-01

    Shigella dysenteriae serotype 1 (S. dysenteriae 1) is unique among the Shigella species and serotypes in the expression of Shiga toxin which contributes to more severe disease sequelae and the ability to cause explosive outbreaks and pandemics. S. dysenteriae 1 shares characteristics with other Shigella species, including the capability of causing clinical illness with a very low inoculum (10 to 100 CFU) and resistance to multiple antibiotics, underscoring the need for efficacious vaccines and therapeutics. Following the demonstration of the successful attenuating capacity of deletion mutations in the guaBA operon in S. flexneri 2a vaccine strains in clinical studies, we developed a series of S. dysenteriae 1 vaccine candidates containing the fundamental attenuating mutation in guaBA. All strains are devoid of Shiga toxin activity by specific deletion of the gene encoding the StxA subunit, which encodes enzymatic activity. The StxB subunit was overexpressed in several derivatives by either plasmid-based constructs or chromosomal manipulation to include a strong promoter. All strains are attenuated for growth in vitro in the HeLa cell assay and for plaque formation and were safe in the Serény test and immunogenic in the guinea pigs. Each strain induced robust serum and mucosal anti-S. dysenteriae 1 lipopolysaccharide (LPS) responses and protected against wild-type challenge. Two strains engineered to overexpress StxB induced high titers of Shiga toxin neutralizing antibodies. These candidates demonstrate the potential for a live attenuated vaccine to protect against disease caused by S. dysenteriae 1 and potentially to protect against the toxic effects of other Shiga toxin 1-expressing pathogens.

  20. Live Attenuated Shigella dysenteriae Type 1 Vaccine Strains Overexpressing Shiga Toxin B Subunit

    Science.gov (United States)

    Wu, Tao; Grassel, Christen; Levine, Myron M.; Barry, Eileen M.

    2011-01-01

    Shigella dysenteriae serotype 1 (S. dysenteriae 1) is unique among the Shigella species and serotypes in the expression of Shiga toxin which contributes to more severe disease sequelae and the ability to cause explosive outbreaks and pandemics. S. dysenteriae 1 shares characteristics with other Shigella species, including the capability of causing clinical illness with a very low inoculum (10 to 100 CFU) and resistance to multiple antibiotics, underscoring the need for efficacious vaccines and therapeutics. Following the demonstration of the successful attenuating capacity of deletion mutations in the guaBA operon in S. flexneri 2a vaccine strains in clinical studies, we developed a series of S. dysenteriae 1 vaccine candidates containing the fundamental attenuating mutation in guaBA. All strains are devoid of Shiga toxin activity by specific deletion of the gene encoding the StxA subunit, which encodes enzymatic activity. The StxB subunit was overexpressed in several derivatives by either plasmid-based constructs or chromosomal manipulation to include a strong promoter. All strains are attenuated for growth in vitro in the HeLa cell assay and for plaque formation and were safe in the Serény test and immunogenic in the guinea pigs. Each strain induced robust serum and mucosal anti-S. dysenteriae 1 lipopolysaccharide (LPS) responses and protected against wild-type challenge. Two strains engineered to overexpress StxB induced high titers of Shiga toxin neutralizing antibodies. These candidates demonstrate the potential for a live attenuated vaccine to protect against disease caused by S. dysenteriae 1 and potentially to protect against the toxic effects of other Shiga toxin 1-expressing pathogens. PMID:21969003

  1. Production and purification of immunologically active core protein p24 from HIV-1 fused to ricin toxin B subunit in E. coli

    Directory of Open Access Journals (Sweden)

    Gómez-Lim Miguel A

    2009-02-01

    Full Text Available Abstract Background Gag protein from HIV-1 is a polyprotein of 55 kDa, which, during viral maturation, is cleaved to release matrix p17, core p24 and nucleocapsid proteins. The p24 antigen contains epitopes that prime helper CD4 T-cells, which have been demonstrated to be protective and it can elicit lymphocyte proliferation. Thus, p24 is likely to be an integral part of any multicomponent HIV vaccine. The availability of an optimal adjuvant and carrier to enhance antiviral responses may accelerate the development of a vaccine candidate against HIV. The aim of this study was to investigate the adjuvant-carrier properties of the B ricin subunit (RTB when fused to p24. Results A fusion between ricin toxin B subunit and p24 HIV (RTB/p24 was expressed in E. coli. Affinity chromatography was used for purification of p24 alone and RTB/p24 from cytosolic fractions. Biological activity of RTB/p24 was determined by ELISA and affinity chromatography using the artificial receptor glycoprotein asialofetuin. Both assays have demonstrated that RTB/p24 is able to interact with complex sugars, suggesting that the chimeric protein retains lectin activity. Also, RTB/p24 was demonstrated to be immunologically active in mice. Two weeks after intraperitoneal inoculation with RTB/p24 without an adjuvant, a strong anti-p24 immune response was detected. The levels of the antibodies were comparable to those found in mice immunized with p24 alone in the presence of Freund adjuvant. RTB/p24 inoculated intranasally in mice, also elicited significant immune responses to p24, although the response was not as strong as that obtained in mice immunized with p24 in the presence of the mucosal adjuvant cholera toxin. Conclusion In this work, we report the expression in E. coli of HIV-1 p24 fused to the subunit B of ricin toxin. The high levels of antibodies obtained after intranasal and intraperitoneal immunization of mice demonstrate the adjuvant-carrier properties of RTB when

  2. Experimental parameters differentially affect the humoral response of the cholera-toxin-based murine model of food allergy

    DEFF Research Database (Denmark)

    Kroghsbo, S.; Christensen, Hanne Risager; Frøkiær, Hanne

    2003-01-01

    of the antibody response depended on the type of antigen and number of immunizations. Conclusions: The critical parameters of the CT-based murine allergy model differentially control the intensity and kinetics of the developing immune response. Adjustment of these parameters could be a key tool for tailoring......Background: Recent studies have developed a murine model of IgE-mediated food allergy based on oral coadministration of antigen and cholera toxin (CT) to establish a maximal response for studying immunopathogenic mechanisms and immunotherapeutic strategies. However, for studying subtle...... immunomodulating factors or factors effective during response initiation, this maximal response-based model is less suitable due to a lack of sensitivity. Therefore, in attempts to identify essential parameters to fine-tune the immune response towards a submaximal level, potentially more sensitive, we were...

  3. Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA as a Candidate Subunit Cholera Vaccine

    Directory of Open Access Journals (Sweden)

    Neda Molaee

    2017-01-01

    Full Text Available Vibrio cholerae is the causative agent of cholera and annually leads to death of thousands of people around the globe. Two factors in the pathogenesis of this bacterium are its pili and flagella. The main subunits of pili TcpA, TcpB, and FlaA are the constituent subunit of flagella. In this study, we studied the ability of pili and flagella subunits to stimulate immune responses in mice. After amplification of TcpA, TcpB, and FlaA genes using PCR, they were cloned in expression plasmids. After production of the above-mentioned proteins by using IPTG, the proteins were purified and then approved using immunoblot method. After injection of the purified proteins to a mice model, immune response stimulation was evaluated by measuring the levels of IgG1 and IgG2a antibody titers, IL5 and IFN-γ. Immune response stimulation against pili and flagella antigens was adequate. Given the high levels of IL5 titer and IgG1 antibody, the stimulated immune response was toward Th1. Humoral immune response stimulation is of key importance in prevention of cholera. Our immunological analysis shows the appropriate immune response in mice model after vaccination with recombinant proteins. The high level of IL5 and low level of IFN-γ show the activation of Th2 cell response.

  4. Single Amino Acid Polymorphisms of Pertussis Toxin Subunit S2 (PtxB Affect Protein Function.

    Directory of Open Access Journals (Sweden)

    Scott H Millen

    Full Text Available Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005 were examined. While the ptxA and prn genotypes were variable, all 48 strains had the ptxB2 genotype; ptxB1 encodes glycine at amino acid 18 of the S2 subunit of pertussis toxin, while ptxB2 encodes serine. We investigated antigenic and functional differences of PtxB1 and PtxB2. The S2 protein was not very immunogenic. Only a few vaccinated or individuals infected with B. pertussis developed antibody responses to the S2 subunit, and these sera recognized both polymorphic forms equally well. Amino acid 18 of S2 is in a glycan binding domain, and the PtxB forms displayed differences in receptor recognition and toxicity. PtxB1 bound better to the glycoprotein, fetuin, and Jurkat T cells in vitro, but the two forms were equally effective at promoting CHO cell clustering. To investigate in vivo activity of Ptx, one μg of Ptx was administered to DDY mice and blood was collected on 4 days after injection. PtxB2 was more effective at promoting lymphocytosis in mice.

  5. Antigen-Independent Restriction of Pneumococcal Density by Mucosal Adjuvant Cholera Toxin Subunit B

    NARCIS (Netherlands)

    Kuipers, Kirsten; Diavatopoulos, Dimitri A.; van Opzeeland, Fred; Simonetti, Elles; van den Kieboom, Corne H.; Kerstholt, Mariska; Borczyk, Malgorzata; van IngenSchenau, D.; Brandsma, Eelke T.; Netea, Mihai G.; de Jonge, Marien I.

    2016-01-01

    For many bacterial respiratory infections, development of (severe) disease is preceded by asymptomatic colonization of the upper airways. For Streptococcus pneumoniae, the transition to severe lower respiratory tract infection is associated with an increase in nasopharyngeal colonization density.

  6. Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization.

    Science.gov (United States)

    Hassett, Kimberly J; Cousins, Megan C; Rabia, Lilia A; Chadwick, Chrystal M; O'Hara, Joanne M; Nandi, Pradyot; Brey, Robert N; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2013-10-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Vibrio cholerae Infection of Drosophilamelanogaster Mimics the Human Disease Cholera.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii flies harboring mutant alleles of either adenylyl cyclase, Gsalpha, or the Gardos K channel homolog SK are resistant to V. cholerae infection; and (iii ingestion of a K channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 mug of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera.

  8. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  9. Antibody Production and Th1-biased Response Induced by an Epitope Vaccine Composed of Cholera Toxin B Unit and Helicobacter pylori Lpp20 Epitopes.

    Science.gov (United States)

    Li, Yan; Chen, Zhongbiao; Ye, Jianbin; Ning, Lijun; Luo, Jun; Zhang, Lili; Jiang, Yin; Xi, Yue; Ning, Yunshan

    2016-06-01

    The epitope vaccine is an attractive potential for prophylactic and therapeutic vaccination against Helicobacter pylori (H. pylori) infection. Lpp20 is one of major protective antigens which trigger immune response after H. pylori invades host and has been considered as an excellent vaccine candidate for the control of H. pylori infection. In our previous study, one B-cell epitope and two CD4(+) T-cell epitopes of Lpp20 were identified. In this study, an epitope vaccine composed of mucosal adjuvant cholera toxin B subunit (CTB) and these three identified Lpp20 epitopes were constructed to investigate the efficacy of this epitope vaccine in mice. The epitope vaccine including CTB, one B-cell, and two CD4(+) T-cell epitopes of Lpp20 was constructed and named CTB-Lpp20, which was then expressed in Escherichia coli and used for intraperitoneal immunization in BALB/c mice. The immunogenicity, specificity, and ability to induce antibodies against Lpp20 and cytokine secretion were evaluated. After that, CTB-Lpp20 was intragastrically immunized to investigate the prophylactic and therapeutic efficacy in infected mice. The results indicated that the epitope vaccine CTB-Lpp20 possessed good immunogenicity and immunoreactivity and could elicit specific high level of antibodies against Lpp20 and the cytokine of IFN-γ and IL-17. Additionally, CTB-Lpp20 significantly decreased H. pylori colonization in H. pylori challenging mice, and the protection was correlated with IgG, IgA, and sIgA antibody and Th1-type cytokines. This study will be better for understanding the protective immunity of epitope vaccine, and CTB-Lpp20 may be an alternative strategy for combating H. pylori invasion. © 2015 John Wiley & Sons Ltd.

  10. Cholera toxin regulates a signaling pathway critical for the expansion of neural stem cell cultures from the fetal and adult rodent brains.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: New mechanisms that regulate neural stem cell (NSC expansion will contribute to improved assay systems and the emerging regenerative approach that targets endogenous stem cells. Expanding knowledge on the control of stem cell self renewal will also lead to new approaches for targeting the stem cell population of cancers. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that Cholera toxin regulates two recently characterized NSC markers, the Tie2 receptor and the transcription factor Hes3, and promotes the expansion of NSCs in culture. Cholera toxin increases immunoreactivity for the Tie2 receptor and rapidly induces the nuclear localization of Hes3. This is followed by powerful cultured NSC expansion and induction of proliferation both in the presence and absence of mitogen. CONCLUSIONS/SIGNIFICANCE: Our data suggest a new cell biological mechanism that regulates the self renewal and differentiation properties of stem cells, providing a new logic to manipulate NSCs in the context of regenerative disease and cancer.

  11. Cholera outbreaks (2012) in three districts of Nepal reveal clonal transmission of multi-drug resistant Vibrio cholerae O1.

    Science.gov (United States)

    Dixit, Sameer M; Johura, Fatema-Tuz; Manandhar, Sulochana; Sadique, Abdus; Rajbhandari, Rajesh M; Mannan, Shahnewaj B; Rashid, Mahamud-Ur; Islam, Saiful; Karmacharya, Dibesh; Watanabe, Haruo; Sack, R Bradley; Cravioto, Alejandro; Alam, Munirul

    2014-07-15

    Although endemic cholera causes significant morbidity and mortality each year in Nepal, lack of information about the causal bacterium often hinders cholera intervention and prevention. In 2012, diarrheal outbreaks affected three districts of Nepal with confirmed cases of mortality. This study was designed to understand the drug response patterns, source, and transmission of Vibrio cholerae associated with 2012 cholera outbreaks in Nepal. V. cholerae (n = 28) isolated from 2012 diarrhea outbreaks {n = 22; Kathmandu (n = 12), Doti (n = 9), Bajhang (n = 1)}, and surface water (n = 6; Kathmandu) were tested for antimicrobial response. Virulence properties and DNA fingerprinting of the strains were determined by multi-locus genetic screening employing polymerase chain reaction, DNA sequencing, and pulsed-field gel electrophoresis (PFGE). All V. cholerae strains isolated from patients and surface water were confirmed to be toxigenic, belonging to serogroup O1, Ogawa serotype, biotype El Tor, and possessed classical biotype cholera toxin (CTX). Double-mismatch amplification mutation assay (DMAMA)-PCR revealed the V. cholerae strains to possess the B-7 allele of ctx subunit B. DNA sequencing of tcpA revealed a point mutation at amino acid position 64 (N → S) while the ctxAB promoter revealed four copies of the tandem heptamer repeat sequence 5'-TTTTGAT-3'. V. cholerae possessed all the ORFs of the Vibrio seventh pandemic island (VSP)-I but lacked the ORFs 498-511 of VSP-II. All strains were multidrug resistant with resistance to trimethoprim-sulfamethoxazole (SXT), nalidixic acid (NA), and streptomycin (S); all carried the SXT genetic element. DNA sequencing and deduced amino acid sequence of gyrA and parC of the NAR strains (n = 4) revealed point mutations at amino acid positions 83 (S → I), and 85 (S → L), respectively. Similar PFGE (NotI) pattern revealed the Nepalese V. cholerae to be clonal, and related closely with V. cholerae associated with cholera in

  12. Molecular Epidemiology of Cholera Outbreaks during the Rainy Season in Mandalay, Myanmar.

    Science.gov (United States)

    Roobthaisong, Amonrattana; Okada, Kazuhisa; Htun, Nilar; Aung, Wah Wah; Wongboot, Warawan; Kamjumphol, Watcharaporn; Han, Aye Aye; Yi, Yi; Hamada, Shigeyuki

    2017-11-01

    Cholera, caused by Vibrio cholerae , remains a global threat to public health. In Myanmar, the availability of published information on the occurrence of the disease is scarce. We report here that cholera incidence in Mandalay generally exhibited a single annual peak, with an annual average of 312 patients with severe dehydration over the past 5 years (since 2011) and was closely associated with the rainy season. We analyzed cholera outbreaks, characterized 67 isolates of V. cholerae serogroup O1 in 2015 from patients from Mandalay, and compared them with 22 V. cholerae O1 isolates (12 from Mandalay and 10 from Yangon) in 2014. The isolates carried the classical cholera toxin B subunit ( ctxB ), the toxin-coregulated pilus A ( tcpA ) of Haitian type, and repeat sequence transcriptional regulator ( rstR ) of El Tor type. Two molecular typing methods, pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analysis (MLVA), differentiated the 89 isolates into seven pulsotypes and 15 MLVA profiles. Pulsotype Y15 and one MLVA profile (11, 7, 7, 16, 7) were predominantly found in the isolates from cholera outbreaks in Mandalay, 2015. Pulsotypes Y11, Y12, and Y15 with some MLVA profiles were detected in the isolates from two remote areas, Mandalay and Yangon, with temporal changes. These data suggested that cholera spread from the seaside to the inland area in Myanmar.

  13. Gangliosides in human, cow and goat milk, and their abilities as to neutralization of cholera toxin and botulinum type A neurotoxin.

    Science.gov (United States)

    Iwamori, Masao; Takamizawa, Kotarou; Momoeda, Mikio; Iwamori, Yuriko; Taketani, Yuji

    2008-10-01

    To elucidate the potential of mammalian milk as to protection of infants from infections, we determined the ganglioside compositions of human, cow and goat milk in relation with cholera toxin and botulinum type A neurotoxin-receptors. Gangliosides accounted for 1 to 2 micromol of lipid-bound sialic acid (LSA) in 100 ml of milk, and GD3 comprised about 69% of LSA in all milk samples. Among the milk samples examined, goat milk was found to contain an amount of gangliosides belonging to the b-pathway representing 15.8% of the total LSA. Accordingly, botulinum neurotoxin bound to GT1b and GQ1b in goat milk, but not to any gangliosides in human or cow milk. On the other hand, GM1, the cholera toxin receptor, was found to be present in all milk samples at concentrations of 0.02% to 0.77% of the total LSA and to be maintained at a relatively constant level in human milk during the postpartum period. Gangliosides from 1 ml of pooled human milk exhibited the ability to attenuate the binding of cholera toxin (30 ng) to GM1 by 93%, and those from 500 microl of goat milk completely inhibited the binding of botulinum type A neurotoxin 1.5 microg to GT1b.

  14. Effectiveness and economic analysis of the whole cell/recombinant B subunit (WC/rbs inactivated oral cholera vaccine in the prevention of traveller's diarrhoea

    Directory of Open Access Journals (Sweden)

    Diez-Diaz Rosa

    2009-05-01

    Full Text Available Abstract Background Nowadays there is a debate about the indication of the oral whole-cell/recombinant B-subunit cholera vaccine (WC/rBS in traveller's diarrhoea. However, a cost-benefit analysis based on real data has not been published. Methods A cost-effectiveness and cost-benefit study of the oral cholera vaccine (WC/rBS, Dukoral® for the prevention of traveller's diarrhoea (TD was performed in subjects travelling to cholera risk areas. The effectiveness of WC/rBS vaccine in the prevention of TD was analyzed in 362 travellers attending two International Vaccination Centres in Spain between May and September 2005. Results The overall vaccine efficacy against TD was 42,6%. Direct healthcare-related costs as well as indirect costs (lost vacation days subsequent to the disease were considered. Preventive vaccination against TD resulted in a mean saving of 79.26 € per traveller. Conclusion According to the cost-benefit analysis performed, the recommendation for WC/rBS vaccination in subjects travelling to zones at risk of TD is beneficial for the traveller, regardless of trip duration and visited continent.

  15. Toxigenic Vibrio cholerae identified in estuaries of Tanzania using PCR techniques.

    Science.gov (United States)

    Dalusi, Lucy; Lyimo, Thomas J; Lugomela, Charles; Hosea, Ken M M; Sjöling, Sara

    2015-03-01

    The current study assessed the occurrence of the Vibrio cholerae serogroups O1 and O139 in environmental samples along salinity gradients in three selected estuaries of Tanzania both through culture independent methods and by cultured bacteria. Occurrence of V. cholerae was determined by PCR targeting the V. cholerae outer membrane protein gene ompW. Furthermore, the presence of toxigenic strains and serogroups O1 and O139 was determined using multiplex PCR with specific primers targeting the cholera toxin gene subunit A, ctxA, and serotype specific primers, O1-rfb and O139-rfb, respectively. Results showed that V. cholerae occurred in approximately 10% (n = 185) of both the environmental samples and isolated bacteria. Eight of the bacteria isolates (n = 43) were confirmed as serogroup O1 while one belonged to serogroup O139, the first reported identification of this epidemic strain in East African coastal waters. All samples identified as serogroup O1 or O139 and a number of non-O1/O139 strains were ctxA positive. This study provides in situ evidence of the presence of pathogenic V. cholerae O1 and O139 and a number of V. cholerae non-O1/O139 that carry the cholera toxin gene in estuaries along the coast of Tanzania. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Helicobacter pylori VacA toxin/subunit p34: targeting of an anion channel to the inner mitochondrial membrane.

    Directory of Open Access Journals (Sweden)

    Grazyna Domańska

    2010-04-01

    Full Text Available The vacuolating toxin VacA, released by Helicobacter pylori, is an important virulence factor in the pathogenesis of gastritis and gastroduodenal ulcers. VacA contains two subunits: The p58 subunit mediates entry into target cells, and the p34 subunit mediates targeting to mitochondria and is essential for toxicity. In this study we found that targeting to mitochondria is dependent on a unique signal sequence of 32 uncharged amino acid residues at the p34 N-terminus. Mitochondrial import of p34 is mediated by the import receptor Tom20 and the import channel of the outer membrane TOM complex, leading to insertion of p34 into the mitochondrial inner membrane. p34 assembles in homo-hexamers of extraordinary high stability. CD spectra of the purified protein indicate a content of >40% beta-strands, similar to pore-forming beta-barrel proteins. p34 forms an anion channel with a conductivity of about 12 pS in 1.5 M KCl buffer. Oligomerization and channel formation are independent both of the 32 uncharged N-terminal residues and of the p58 subunit of the toxin. The conductivity is efficiently blocked by 5-nitro-2-(3-phenylpropylaminobenzoic acid (NPPB, a reagent known to inhibit VacA-mediated apoptosis. We conclude that p34 essentially acts as a small pore-forming toxin, targeted to the mitochondrial inner membrane by a special hydrophobic N-terminal signal.

  17. Cholera in pregnancy: Clinical and immunological aspects.

    Science.gov (United States)

    Khan, Ashraful I; Chowdhury, Fahima; Leung, Daniel T; Larocque, Regina C; Harris, Jason B; Ryan, Edward T; Calderwood, Stephen B; Qadri, Firdausi

    2015-10-01

    The objective of this study was to examine the clinical and immunological features of cholera in pregnancy. Women of reproductive age presenting to the icddr,b Dhaka hospital with cholera, and enrolled as part of a larger cohort study, were tested for pregnancy on admission. We compared initial clinical features and immune responses of pregnant patients with non-pregnant female patients at days 2, 7 and 21 after infection. Among reproductive age women enrolled between January 2001 and May 2006, 9.7% (14/144) were pregnant. The duration of diarrhoea prior to admission tended to be higher in pregnant compared to non-pregnant patients (p=0.08), but other clinical characteristics did not differ. Antibody responses to cholera toxin B subunit (CtxB), toxin-coregulated pilus A (TcpA), Vibrio cholerae lipopolysaccharide (LPS), and serum vibriocidal antibody responses, were comparable between pregnant and non-pregnant patients. There were no deaths among the pregnant cases or non-pregnant controls, and no adverse foetal outcomes, including stillbirths, during 21 days of follow up of pregnant cases. To our knowledge, this is the first report of immune responses in pregnant women with cholera. We found that pregnant woman early in pregnancy has comparable clinical illness and subsequent immune responses compared to non-pregnant women. These findings suggest that the evaluation of safety and immunogenicity of oral cholera vaccines in pregnancy should be an area of future investigations. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Immunogenicity of a West Nile Virus DIII-Cholera Toxin A2/B Chimera after Intranasal Delivery

    Directory of Open Access Journals (Sweden)

    Juliette K. Tinker

    2014-04-01

    Full Text Available West Nile virus (WNV causes potentially fatal neuroinvasive disease and persists at endemic levels in many parts of the world. Despite advances in our understanding of WNV pathogenesis, there remains a significant need for a human vaccine. The domain III (DIII region of the WNV envelope protein contains epitopes that are the target of neutralizing antibodies. We have constructed a chimeric fusion of the non-toxic cholera toxin (CT CTA2/B domains to DIII for investigation as a novel mucosally-delivered WNV vaccine. Purification and assembly of the chimera, as well as receptor-binding and antigen delivery, were verified by western blot, GM1 ELISA and confocal microscopy. Groups of BALB/c mice were immunized intranasally with DIII-CTA2/B, DIII, DIII mixed with CTA2/B, or CTA2/B control, and boosted at 10 days. Analysis of serum IgG after 14 and 45 days revealed that mucosal immunization with DIII-CTA2/B induced significant DIII-specific humoral immunity and drove isotype switching to IgG2a. The DIII-CTA2/B chimera also induced antigen-specific IgM and IgA responses. Bactericidal assays indicate that the DIII-CTA2/B immunized mice produced DIII-specific antibodies that can trigger complement-mediated killing. A dose escalation resulted in increased DIII-specific serum IgG titers on day 45. DIII antigen alone, in the absence of adjuvant, also induced significant systemic responses after intranasal delivery. Our results indicate that the DIII-CTA2/B chimera is immunogenic after intranasal delivery and merits further investigation as a novel WNV vaccine candidate.

  19. Characterization of the GM1 pentasaccharide-Vibrio cholera toxin interaction using a carbohydrate-based electrochemical system.

    Science.gov (United States)

    Seo, Jeong Hyun; Lee, Hea Yeon; Cha, Hyung Joon

    2012-06-21

    Antibody- or DNA-based electrochemical systems have been developed widely for several decades, while carbohydrate-based electrochemical systems have been rarely reported. Herein, we used an electrochemical detection system to understand the molecular relationships in carbohydrate-protein interactions that can provide useful information about biological processes in living organisms. This system was also helpful for the development of potent biomedical agents. Electrochemical detection was achieved through the observation of electrochemical response changes of ferrocyanide solution that resulted from the interaction of carbohydrate and protein using a modified GM1 pentasaccharide containing an anchoring thiol group that was directly immobilized on a gold electrode. As the concentration of the GM1 pentasaccharide increased, the current decreased gradually and saturated after 2 nM. We also found that the drop in current depended on the size of the carbohydrate (larger size of the carbohydrate denoted a higher slope of the current reduction), indicating that the current could be modulated by the molecular size of the carbohydrate as well as its concentration. This system was able to detect very low concentrations of carbohydrate (down to 20 fM), which highlighted the advantage of the electrochemical system. Interestingly, we found that a potential shift at the maximum current occurred upon interaction with cholera toxin proteins. By comparing results for different sizes of GM1 analogues, we surmise that the potential shift is closely associated with the specificity for the carbohydrate-protein interaction. Collectively, a carbohydrate-based electrochemical system can be leveraged for the facile and rapid analysis of carbohydrate-protein interactions.

  20. Identification of a TcpC-TcpQ Outer Membrane Complex Involved in the Biogenesis of the Toxin-Coregulated Pilus of Vibrio cholerae

    OpenAIRE

    Bose, Niranjan; Taylor, Ronald K.

    2005-01-01

    The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis p...

  1. In vitro evaluation of capsaicin inhibitory effects on zonula occludens toxin in vibrio cholerae ATCC14035 strain

    Directory of Open Access Journals (Sweden)

    Soroor Erfanimanesh

    2014-10-01

    Conclusion: Capsaicin is one of the active compounds of red chili that can drastically suppress zot gene expression and shows promising inhibitory effect against V. cholerae zot production. Thus, routine intake of red chilli, which is easily available and inexpensive, may be an alternative approach to prevent and control symptoms of cholera.

  2. A distinct three-helix centipede toxin SSD609 inhibits Iks channels by interacting with the KCNE1 auxiliary subunit

    Science.gov (United States)

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-01-01

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (Iks) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed Iks current inhibition. Here, chemically synthesized SSD609 was shown to exert Iks inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K+ current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes. PMID:26307551

  3. Deficiency in Calcium-Binding Protein S100A4 Impairs the Adjuvant Action of Cholera Toxin

    Directory of Open Access Journals (Sweden)

    Jia-Bin Sun

    2017-09-01

    Full Text Available The calcium-binding protein S100A4 has been described to promote pathological inflammation in experimental autoimmune and inflammatory disorders and in allergy and to contribute to antigen presentation and antibody response after parenteral immunization with an alum-adjuvanted antigen. In this study, we extend these findings by demonstrating that mice lacking S100A4 have a defective humoral and cellular immune response to mucosal (sublingual immunization with a model protein antigen [ovalbumin (OVA] given together with the strong mucosal adjuvant cholera toxin (CT, and that this impairment is due to defective adjuvant-stimulated antigen presentation by antigen-presenting cells. In comparison to wild-type (WT mice, mice genetically lacking S100A4 had reduced humoral and cellular immune responses after immunization with OVA plus CT, including a complete lack of detectable germinal center reaction. Further, when stimulated in vitro with OVA plus CT, S100A4−/− dendritic cells (DCs showed impaired responses in several CT-stimulated immune regulatory molecules including the co-stimulatory molecule CD86, inflammasome-associated caspase-1 and IL-1β. Coculture of OVA-specific OT-II T cells with S100A4−/− DCs that had been pulse incubated with OVA plus CT resulted in impaired OT-II T cell proliferation and reduced production of Th1, Th2, and Th17 cytokines compared to similar cocultures with WT DCs. In accordance with these findings, transfection of WT DCs with S100A4-targeting small interfering RNA (siRNA but not mock-siRNA resulted in significant reductions in the expression of caspase-1 and IL-1β as well as CD86 in response to CT. Importantly, also engraftment of WT DCs into S100A4−/− mice effectively restored the immune response to immunization in the recipients. In conclusion, our results demonstrate that deficiency in S100A4 has a strong impact on the development of both humoral and cellular immunity after mucosal immunization using CT

  4. Low-dose oral tolerance due to antigen in the diet suppresses differentially the cholera toxin-adjuvantized IgE, IgA and IgG response

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Kjær, Tanja; Frøkiær, Hanne

    2003-01-01

    Background: Cholera toxin (CT) is used as a mucosal adjuvant amongst other applications for studying food allergy because oral administration of antigen with CT induces an antigen-specific type 2 response, including IgE and IgA production. Priorly established oral tolerance due to antigen...

  5. Vibrio cholerae Infection of Drosophila melanogaster Mimics the Human Disease Cholera

    OpenAIRE

    Blow, Nathan S.; Salomon, Robert N.; Kerry Garrity; Isabelle Reveillaud; Alan Kopin; F Rob Jackson; Watnick, Paula I.

    2005-01-01

    Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report...

  6. Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera.

    Directory of Open Access Journals (Sweden)

    Nathan S Blow

    2005-09-01

    Full Text Available Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii flies harboring mutant alleles of either adenylyl cyclase, Gsalpha, or the Gardos K channel homolog SK are resistant to V. cholerae infection; and (iii ingestion of a K channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 mug of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera.

  7. Structure, biological functions and applications of the AB5 toxins.

    Science.gov (United States)

    Beddoe, Travis; Paton, Adrienne W; Le Nours, Jérôme; Rossjohn, Jamie; Paton, James C

    2010-07-01

    AB(5) toxins are important virulence factors for several major bacterial pathogens, including Bordetella pertussis, Vibrio cholerae, Shigella dysenteriae and at least two distinct pathotypes of Escherichia coli. The AB(5) toxins are so named because they comprise a catalytic A-subunit, which is responsible for disruption of essential host functions, and a pentameric B-subunit that binds to specific glycan receptors on the target cell surface. The molecular mechanisms by which the AB(5) toxins cause disease have been largely unravelled, including recent insights into a novel AB(5) toxin family, subtilase cytotoxin (SubAB). Furthermore, AB(5) toxins have become a valuable tool for studying fundamental cellular functions, and are now being investigated for potential applications in the clinical treatment of human diseases. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Fowl cholera.

    Science.gov (United States)

    Christensen, J P; Bisgaard, M

    2000-08-01

    Pasteurella multocida subspecies multocida is the most common cause of fowl cholera, although P. multocida subspecies septica and gallicida may also cause fowl cholera-like disease to some extent. However, the virulence properties of the different subspecies for various hosts have not been elucidated. The severity and incidence of P. multocida infections may vary considerably depending on several factors associated with the host (including species and age of infected birds), the environment and the bacterial strain. No single virulence factor has been associated with the observed variation in virulence among strains. Possible virulence factors include the following: the capsule, endotoxin, outer membrane proteins, iron binding systems, heat shock proteins, neuraminidase production and antibody cleaving enzymes. No RTX toxins (repeats in toxin) appear to be produced by P. multocida, but P. multocida exotoxin (PMT) could contribute to virulence in some avian infections. The epidemiology of fowl cholera appears complex. Traditional serotyping systems are only of limited use in epidemiological studies. In recent years, molecular typing methods have been applied to avian strains of P. multocida of different origin. The results obtained using these newer methods indicate that wild birds may be a source of infection to commercial poultry. Documentation suggesting that mammals play a similar role is not as comprehensive, but the possibility cannot be excluded. Carrier birds seem to play a major role in the transmission of cholera. Surviving birds from diseased flocks appear to represent a risk, but more recent investigations indicate that carriers of P. multocida may exist within poultry flocks with no history of previous outbreaks of fowl cholera. The significance of this awaits further investigation. The site of infection for P. multocida is generally believed to be the respiratory tract. The outcome of infections may range from peracute/acute infections to chronic

  9. Immunogenicity and efficacy of three recombinant subunit Pasteurella multocida toxin vaccines against progressive atrophic rhinitis in pigs

    Science.gov (United States)

    Liao, Chih-Ming; Huang, Chienjin; Hsuan, Shih-Ling; Chen, Zeng-Weng; Lee, Wei-Cheng; Liu, Cheng-I; Winton, James R.; Chien, Maw-Sheng

    2006-01-01

    Three short fragments of recombinant subunit Pasteurella multocida toxin (rsPMT) were constructed for evaluation as candidate vaccines against progressive atrophic rhinitis (PAR) of swine. PMT-specific antibody secreting cells and evidence of cellular immunity were detected in rsPMT-immunized pigs following authentic PMT challenge or homologous antigen booster. Piglets immunized with rsPMT fragments containing either the N-terminal or the C-terminal portions of PMT developed high titers of neutralizing antibodies. Pregnant sows immunized with rsPMT had higher levels of maternal antibodies in their colostrum than did those immunized with a conventional PAR-toxoid vaccine. Offspring from rsPMT vaccinated sows had better survival after challenge with a five-fold lethal dose of authentic PMT and had better growth performance after challenge with a sublethal dose of toxin. Our findings indicate these non-toxic rsPMT proteins are attractive candidates for development of a subunit vaccine against PAR in pigs.

  10. Differential neutralizing activities of a single domain camelid antibody (VHH specific for ricin toxin's binding subunit (RTB.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    Full Text Available Ricin, a member of the A-B family of ribosome-inactivating proteins, is classified as a Select Toxin by the Centers for Disease Control and Prevention because of its potential use as a biothreat agent. In an effort to engineer therapeutics for ricin, we recently produced a collection of alpaca-derived, heavy-chain only antibody VH domains (VHH or "nanobody" specific for ricin's enzymatic (RTA and binding (RTB subunits. We reported that one particular RTB-specific VHH, RTB-B7, when covalently linked via a peptide spacer to different RTA-specific VHHs, resulted in heterodimers like VHH D10/B7 that were capable of passively protecting mice against a lethal dose challenge with ricin. However, RTB-B7 itself, when mixed with ricin at a 1 ∶ 10 toxin:antibody ratio did not afford any protection in vivo, even though it had demonstrable toxin-neutralizing activity in vitro. To better define the specific attributes of antibodies associated with ricin neutralization in vitro and in vivo, we undertook a more thorough characterization of RTB-B7. We report that RTB-B7, even at 100-fold molar excess (toxin:antibody was unable to alter the toxicity of ricin in a mouse model. On the other hand, in two well-established cytotoxicity assays, RTB-B7 neutralized ricin with a 50% inhibitory concentration (IC50 that was equivalent to that of 24B11, a well-characterized and potent RTB-specific murine monoclonal antibody. In fact, RTB-B7 and 24B11 were virtually identical when compared across a series of in vitro assays, including adherence to and neutralization of ricin after the toxin was pre-bound to cell surface receptors. RTB-B7 differed from both 24B11 and VHH D10/B7 in that it was relatively less effective at blocking ricin attachment to receptors on host cells and was not able to form high molecular weight toxin:antibody complexes in solution. Whether either of these activities is important in ricin toxin neutralizing activity in vivo remains to be determined.

  11. Design, synthesis and determination of physical and chemical characteristics of glycoconjugates as model for oligosaccharide vaccines against vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Aleksandra Grozdanova

    2003-08-01

    Full Text Available Cholera is toxin-mediated enteroinfection, with epidemic character and there are approximately 120000 death cases per year worldwide. Protection against cholera has not been accomplished due to deficiencies in the licensed vaccines. Serum vibriocidal activity mediated by LPS antibodies is the only immune segment correlated with the resistance of cholera. On the basis of literature data (Robbins JB, 1990; Ogawa Y, 1996 we synthesized glucoconjugates, composed of detoxified LPS from Vibrio cholerae and protein carriers. Conjugate vaccines were prepared by binding acetic acid and hydrazine-treated lipopolysaccharide (LPS from Vibrio cholerae O1, serotype Inaba, to cholera toxin B-subunit (CT-B and bovine serum albumin (cBSA. Adipic acid dihydrazide was used for derivatization of oligosaccharides and 1-ethyl-3-(3-dimethylaminopropyl carbodiimide (EDC as conjugating agent. SDS-PAGE, glycoprotein detection and TLC dot-blot were used for physical and chemical analysis of the prepared four types of conjugates. Safe level of endotoxins, measured by LAL assay was detected in all conjugates. The synthesized conjugates can be used for monitoring immunization schemes on experimental animals. It is to be expected that conjugated vaccines are safe and efficient and that will have high immunogenic and T-dependant characteristics with long immune protection against cholera.

  12. Spatial location of neutralizing and non-neutralizing B cell epitopes on domain 1 of ricin toxin's binding subunit.

    Directory of Open Access Journals (Sweden)

    Yinghui Rong

    Full Text Available Ricin toxin's binding subunit (RTB is a galactose-/N-acetylgalactosamine (Gal/GalNac-specific lectin that mediates uptake and intracellular trafficking of ricin within mammalian cells. Structurally, RTB consists of two globular domains, each divided into three homologous sub-domains (α, β, γ. In this report, we describe five new murine IgG monoclonal antibodies (mAbs against RTB: MH3, 8A1, 8B3, LF1, and LC5. The mAbs have similar binding affinities (KD for ricin holotoxin, but displayed a wide range of in vitro toxin-neutralizing activities. Competition ELISAs indicate that the two most potent toxin-neutralizing mAbs (MH3, 8A1, as well as one of the moderate toxin-neutralizing mAbs (LF1, recognize distinct epitopes near the low affinity Gal recognition domain in RTB subdomain 1α. Evaluated in a mouse model of systemic ricin challenge, all five mAbs afforded some benefit against intoxication, but only MH3 was protective. However, neither MH3 nor 24B11, another well-characterized mAb against RTB subdomain 1α, could passively protect mice against a mucosal (intranasal ricin challenge. This is in contrast to SylH3, a previously characterized mAb directed against an epitope near RTB's high affinity Gal/GalNac recognition element in sub-domain 2γ, which protected animals against systemic and mucosal ricin exposure. SylH3 was significantly more effective than MH3 and 24B11 at blocking ricin attachment to host cell receptors, suggesting that mucosal immunity to ricin is best imparted by antibodies that target RTB's high affinity Gal/GalNac recognition element in subdomain 2γ, not the low affinity Gal recognition domain in subdomain 1α.

  13. A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP) of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice.

    Science.gov (United States)

    Sayeed, Md Abu; Bufano, Meagan Kelly; Xu, Peng; Eckhoff, Grace; Charles, Richelle C; Alam, Mohammad Murshid; Sultana, Tania; Rashu, Md Rasheduzzaman; Berger, Amanda; Gonzalez-Escobedo, Geoffrey; Mandlik, Anjali; Bhuiyan, Taufiqur Rahman; Leung, Daniel T; LaRocque, Regina C; Harris, Jason B; Calderwood, Stephen B; Qadri, Firdausi; Vann, W F; Kováč, Pavol; Ryan, Edward T

    2015-01-01

    Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization. Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model. We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.

  14. A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice.

    Directory of Open Access Journals (Sweden)

    Md Abu Sayeed

    Full Text Available Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP component of lipopolysaccharide (LPS.Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc. We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg, vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1, effect of an adjuvant, and route of immunization.Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg. We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model.We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.

  15. Cholera-Like Enterotoxins and Regulatory T cells

    Science.gov (United States)

    Basset, Christelle; Thiam, Fatou; Martino, Cyrille Di; Holton, John; Clements, John D.; Kohli, Evelyne

    2010-01-01

    Cholera toxin (CT) and the heat-labile enterotoxin of E. coli (LT), as well as their non toxic mutants, are potent mucosal adjuvants of immunization eliciting mucosal and systemic responses against unrelated co-administered antigens in experimental models and in humans (non toxic mutants). These enterotoxins are composed of two subunits, the A subunit, responsible for an ADP-ribosyl transferase activity and the B subunit, responsible for cell binding. Paradoxically, whereas the whole toxins have adjuvant properties, the B subunits of CT (CTB) and of LT (LTB) have been shown to induce antigen specific tolerance when administered mucosally with antigens in experimental models as well as, recently, in humans, making them an attractive strategy to prevent or treat autoimmune or allergic disorders. Immunomodulation is a complex process involving many cell types notably antigen presenting cells and regulatory T cells (Tregs). In this review, we focus on Treg cells and cholera-like enterotoxins and their non toxic derivates, with regard to subtype, in vivo/in vitro effects and possible role in the modulation of immune responses to coadministered antigens. PMID:22069660

  16. Cholera-Like Enterotoxins and Regulatory T cells

    Directory of Open Access Journals (Sweden)

    Evelyne Kohli

    2010-07-01

    Full Text Available Cholera toxin (CT and the heat-labile enterotoxin of E. coli (LT, as well as their non toxic mutants, are potent mucosal adjuvants of immunization eliciting mucosal and systemic responses against unrelated co-administered antigens in experimental models and in humans (non toxic mutants. These enterotoxins are composed of two subunits, the A subunit, responsible for an ADP-ribosyl transferase activity and the B subunit, responsible for cell binding. Paradoxically, whereas the whole toxins have adjuvant properties, the B subunits of CT (CTB and of LT (LTB have been shown to induce antigen specific tolerance when administered mucosally with antigens in experimental models as well as, recently, in humans, making them an attractive strategy to prevent or treat autoimmune or allergic disorders. Immunomodulation is a complex process involving many cell types notably antigen presenting cells and regulatory T cells (Tregs. In this review, we focus on Treg cells and cholera-like enterotoxins and their non toxic derivates, with regard to subtype, in vivo/in vitro effects and possible role in the modulation of immune responses to coadministered antigens.

  17. Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion.

    Directory of Open Access Journals (Sweden)

    Cinthia Silva-Vilches

    Full Text Available Immature or semi-mature dendritic cells (DCs represent tolerogenic maturation stages that can convert naive T cells into Foxp3+ induced regulatory T cells (iTreg. Here we found that murine bone marrow-derived DCs (BM-DCs treated with cholera toxin (CT matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CThi, CTlo or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β. Only DCs matured under CThi conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CTlo- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3+ iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CTlo- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE by inducing Foxp3+ Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae.

  18. Comparisons of Native and Chimeric Shiga Toxins Indicate that the Binding Subunit Dictates Degree of Toxicity

    Science.gov (United States)

    2014-03-17

    proteinuria , chronic kidney disease, and decreased glomerular filtration rate (GFR). Cerebral endothelial involvement is a serious HUS sequela...Stx2a cell (HK-2) Differential induction of ER stress response High membrane Gb3 ( 150 ) Stx 1 a B subunit to ER and lysosome Human renal glomerular... 150 ; 165; 287) of Stxla and Stx2a holotoxins. As stated previously, Stxla and Stx2a preferentially bind Gb3 FA chains of different lengths; Stx 1 a

  19. The Shiga toxin 2 B subunit inhibits net fluid absorption in human colon and elicits fluid accumulation in rat colon loops

    Directory of Open Access Journals (Sweden)

    V. Pistone Creydt

    2004-06-01

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis, and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.

  20. Cost-effectiveness of oral cholera vaccine in a stable refugee population at risk for epidemic cholera and in a population with endemic cholera.

    OpenAIRE

    Murray, J.; McFarland, D. A.; Waldman, R. J.

    1998-01-01

    Recent large epidemics of cholera with high incidence and associated mortality among refugees have raised the question of whether oral cholera vaccines should be considered as an additional preventive measure in high-risk populations. The potential impact of oral cholera vaccines on populations prone to seasonal endemic cholera has also been questioned. This article reviews the potential cost-effectiveness of B-subunit, killed whole-cell (BS-WC) oral cholera vaccine in a stable refugee popula...

  1. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    Directory of Open Access Journals (Sweden)

    Xianliang Ji

    2016-04-01

    Full Text Available Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs composed of the hemagglutinin (HA, neuraminidase (NA and matrix protein (M1 of A/Changchun/01/2009 (H1N1 with or without either membrane-anchored cholera toxin B (CTB or ricin toxin B (RTB as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival. Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.

  2. Immunological and protective effects of Bordetella bronchiseptica subunit vaccines based on the recombinant N-terminal domain of dermonecrotic toxin.

    Science.gov (United States)

    Wang, Chuanwen; Liu, Liping; Zhang, Zhen; Yan, Zhengui; Yu, Cuilian; Shao, Mingxu; Jiang, Xiaodong; Chi, Shanshan; Wei, Kai; Zhu, Ruiliang

    2015-10-01

    Dermonecrotic toxin (DNT) produced by Bordetella bronchiseptica (B. bronchiseptica) can cause clinical turbinate atrophy in swine and induce dermonecrotic lesions in model mice. We know that the N-terminal of DNT molecule contains the receptor-binding domain, which facilitates binding to the target cells. However, we do not know whether this domain has sufficient immunogenicity to resist B. bronchiseptica damage and thereby to develop a subunit vaccine for the swine industry. In this study, we prokaryotically expressed the recombinant N-terminal of DNT from B. bronchiseptica (named DNT-N) and prepared it for the subunit vaccine to evaluate its immunogenicity. Taishan Pinus massoniana pollen polysaccharide (TPPPS), a known immunomodulator, was used as the adjuvant to examine its immune-conditioning effects. At 49 d after inoculation, 10 mice from each group were challenged with B. bronchiseptica, and another 10 mice were intradermally challenged with native DNT, to examine the protection imparted by the vaccines. The immune parameters (T-lymphocyte counts, cytokine secretions, serum antibody titers, and survival rates) and skin lesions were determined. The results showed that pure DNT-N vaccine significantly induced immune responses and had limited ability to resist the B. bronchiseptica and DNT challenge, whereas the mice administered with TPPPS or Freund's incomplete adjuvant vaccine could induce higher levels of the above immune parameters. Remarkably, the DNT-N vaccine combined with TPPPS adjuvant protected the mice effectively to prevent B. bronchiseptica infection. Our findings indicated that DNT-N has potential for development as an effective subunit vaccine to counteract the damage of B. bronchiseptica infection, especially when used conjointly with TPPPS. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Single Amino Acid Polymorphisms of Pertussis Toxin Subunit S2 (PtxB) Affect Protein Function

    OpenAIRE

    Millen, Scott H.; Mineo Watanabe; Eiji Komatsu; Fuminori Yamaguchi; Yuki Nagasawa; Eri Suzuki; Haleigh Monaco; Weiss, Alison A.

    2015-01-01

    Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005 were examined. While the ptxA and prn genotypes were variable, all 48 strains had the ptxB2 genotype; ptxB1 encodes glycine at amino acid ...

  4. Genotypic and PFGE/MLVA analyses of Vibrio cholerae O1: geographical spread and temporal changes during the 2007-2010 cholera outbreaks in Thailand.

    Directory of Open Access Journals (Sweden)

    Kazuhisa Okada

    Full Text Available BACKGROUND: Vibrio cholerae O1 El Tor dominated the seventh cholera pandemic which occurred in the 1960s. For two decades, variants of V. cholerae O1 El Tor that produce classical cholera toxin have emerged and spread globally, replacing the prototypic El Tor biotype. This study aims to characterize V. cholerae O1 isolates from outbreaks in Thailand with special reference to genotypic variations over time. METHODS/FINDINGS: A total of 343 isolates of V. cholerae O1 from cholera outbreaks from 2007 to 2010 were investigated, and 99.4% were found to carry the classical cholera toxin B subunit (ctxB and El Tor rstR genes. Pulsed-field gel electrophoresis (PFGE differentiated the isolates into 10 distinct pulsotypes, clustered into two major groups, A and B, with an overall similarity of 88%. Ribotyping, multiple-locus variable-number tandem-repeat analysis (MLVA, and PCR to detect Vibrio seventh pandemic island II (VSP-II related genes of randomly selected isolates from each pulsotype corresponded to the results obtained by PFGE. Epidemiological investigations revealed that MLVA type 2 was strongly associated with a cholera outbreak in northeastern Thailand in 2007, while MLVA type 7 dominated the outbreaks of the southern Gulf areas in 2009 and MLVA type 4 dominated the outbreaks of the central Gulf areas during 2009-2010. Only MLVA type 16 isolates were found in a Thai-Myanmar border area in 2010, whereas those of MLVA types 26, 39, and 41 predominated this border area in 2008. Type 39 then disappeared 1-2 years later as MLVA type 41 became prevalent. Type 41 was also found to infect an outbreak area. CONCLUSIONS: MLVA provided a high-throughput genetic typing tool for understanding the in-depth epidemiology of cholera outbreaks. Our epidemiological surveys suggest that some clones of V. cholerae O1 with similar but distinctive genetic traits circulate in outbreak sites, while others disappear over time.

  5. Critical Analysis of Compositions and Protective Efficacies of Oral Killed Cholera Vaccines

    Science.gov (United States)

    2014-01-01

    Two cholera vaccines, sold as Shanchol and Dukoral, are currently available. This review presents a critical analysis of the protective efficacies of these vaccines. Children under 5 years of age are very vulnerable to cholera and account for the highest incidence of cholera cases and more than half of the resulting deaths. Both Shanchol and Dukoral are two-spaced-dose oral vaccines comprising large numbers of killed cholera bacteria. The former contains Vibrio cholerae O1 and O139 cells, and the latter contains V. cholerae O1 cells with the recombinant B subunit of cholera toxin. In a field trial in Kolkata (India), Shanchol, the preferred vaccine, protected 45% of the test subjects in all of the age groups and only 17% of the children under 5 years of age during the first year of surveillance. In a field trial in Peru, two spaced doses of Dukoral offered negative protection in children under 5 years of age and little protection (15%) in vaccinees over 6 years of age during the first year of surveillance. Little is known about Dukoral's long-term protective efficacy. Both of these vaccines have questionable compositions, using V. cholerae O1 strains isolated in 1947 that have been inactivated by heat and formalin treatments that may denature protein. Immunological studies revealed Dukoral's reduced and short-lived efficacy, as measured by several immunological endpoints. Various factors, such as the necessity for multiple doses, poor protection of children under 5 years of age, the requirement of a cold supply chain, production costs, and complex logistics of vaccine delivery, greatly reduce the suitability of either of these vaccines for endemic or epidemic cholera control in resource-poor settings. PMID:25056361

  6. Construction of supported lipid membrane modified piezoelectric biosensor for sensitive assay of cholera toxin based on surface-agglutination of ganglioside-bearing liposomes.

    Science.gov (United States)

    Chen, Huan; Hu, Qing-Yuan; Yue-Zheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2010-01-11

    A novel piezoelelctric biosensor has been developed for cholera toxin (CT) detection based on the analyte-mediated surface-agglutination of ganglioside (GM1)-functionalized liposomes. To achieve a CT-specific agglutination at the surface, the gold electrode is modified by a GM1-functionalized supported lipid membrane via spontaneous spread of the liposomes on a self-assembled monolayer of a long-chain alkanethiol. In the presence of CT, the GM1-incorporated liposomes in assay medium will rapidly specifically agglutinate at the electrode surface through the binding of CT to GM1 on the electrode surface and the liposome interface. This results in an enormous mass loading on the piezoelelctric crystal as well as a significant increase of density and viscosity at the interface, thereby generating a decrease in frequency of the piezoelelctric crystal. The combination of mass loading with interfacial change in the surface-agglutination reaction allows the developed piezoelelctric biosensor to show substantial signal amplification in response to the analyte CT. The detection limit can be achieved as low as 25 ng mL(-1) CT. This is the first demonstration on CT detection based on specific surface-agglutination of GM1-modified liposomes. The supported lipid layer based sensing interface can be prepared readily and renewably, making the developed technique especially useful for simple, reusable and sensitive determination of proteins.

  7. [Establishment of a triplex real-time PCR for the detection of cholera toxin gene ctx and heat labile enterotoxin gene elt].

    Science.gov (United States)

    Li, Jie; Kan, Biao; Zhang, Jingyun

    2014-06-01

    To establish a triplex TaqMan real-time PCR system containing internal amplification control (IAC) to detect cholera toxin gene ctxA and enterotoxigenic Escherichia coli (ETEC)heat-labile enterotoxin gene elt. Primers and probes were designed based on the sequences of ctxA, elt and IAC. Both sensitivity and specificity were analyzed and interactions between different reactions were evaluated. This system showed that the sensitivity of ctxA was 94 copies/reaction while the elt 79 copies/reaction and the amplification efficiency were 94.7% and 98.1%, respectively. Under the ratio of copy numbers on gene ctxA to elt as between 1 : 1-1 : 10, when both targets were detected, with impact was less on each other. However, when the amount of elt or ctxA was 100 times of IAC, the amplification of IAC was significantly inhibited. This system showed both satisfactory sensitivity and specificity, thus could be used to detect pathogenic bacteria in diarrhea stools. The detection of IAC could prompt the presence of PCR inhibitors in samples being tested.

  8. Use of flagellin and cholera toxin as adjuvants in intranasal vaccination of mice to enhance protective immune responses against uropathogenic Escherichia coli antigens.

    Science.gov (United States)

    Asadi Karam, Mohammad Reza; Habibi, Mehri; Bouzari, Saeid

    2016-09-01

    Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) are among the most common infections in human. Antibiotics are common therapy for UTIs, but increase in antibiotic resistance will complicate future treatment of the infections, making the development of an efficacious UTI vaccine more urgent. In this study, we have evaluated intranasally the efficacy of FliC and FimH antigens of UPEC in different vaccine formulations with and without cholera toxin (CT) adjuvant. Immunization of mice with FliC in fusion form or admixed with FimH elicited higher levels of serum, mucosal and cell-mediated responses than FimH alone. Furthermore, the use of CT in synergism with FliC resulted in the stimulation of a mixed Th1 and Th2 responses against FimH and FliC as antigen and maintained the antibody responses for at least 24 weeks following the last vaccine dose. Of the vaccine preparations, Fusion, Fusion + CT, and FimH admixed with FliC and CT showed the best protection against UPEC. These data indicated that intranasal administration of a FliC and CT adjuvant-based vaccine has the potential to provide protective responses against UPEC strains. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  9. Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines.

    Science.gov (United States)

    Kabaso, Doron; Lokar, Maruša; Kralj-Iglič, Veronika; Veranič, Peter; Iglič, Aleš

    2011-01-01

    The growth of membrane nanotubes is crucial for intercellular communication in both normal development and pathological conditions. Therefore, identifying factors that influence their stability and formation are important for both basic research and in development of potential treatments of pathological states. Here we investigate the effect of cholera toxin B (CTB) and temperature on two pathological model systems: urothelial cell line RT4, as a model system of a benign tumor, and urothelial cell line T24, as a model system of a metastatic tumor. In particular, the number of intercellular membrane nanotubes (ICNs; ie, membrane nanotubes that bridge neighboring cells) was counted. In comparison with RT4 cells, we reveal a significantly higher number in the density of ICNs in T24 cells not derived from RT4 without treatments (P = 0.005), after 20 minutes at room temperature (P = 0.0007), and following CTB treatment (P = 0.000025). The binding of CTB to GM1-lipid complexes in membrane exvaginations or tips of membrane nanotubes may reduce the positive spontaneous (intrinsic) curvature of GM1-lipid complexes, which may lead to lipid mediated attractive interactions between CTB-GM1-lipid complexes, their aggregation and consequent formation of enlarged spherical tips of nanotubes. The binding of CTB to GM1 molecules in the outer membrane leaflet of membrane exvaginations and tips of membrane nanotubes may also increase the area difference between the two leaflets and in this way facilitate the growth of membrane nanotubes.

  10. A DNA Vaccine Encoding the Enterohemorragic Escherichia coli Shiga-Like Toxin 2 A2 and B Subunits Confers Protective Immunity to Shiga Toxin Challenge in the Murine Model▿

    Science.gov (United States)

    Bentancor, Leticia V.; Bilen, Marcos; Brando, Romina J. Fernández; Ramos, María Victoria; Ferreira, Luis C. S.; Ghiringhelli, Pablo D.; Palermo, Marina S.

    2009-01-01

    Production of verocytotoxin or Shiga-like toxin (Stx), particularly Stx2, is the basis of hemolytic uremic syndrome, a frequently lethal outcome for subjects infected with Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains. The toxin is formed by a single A subunit, which promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells. Host enzymes cleave the A subunit into the A1 peptide, endowed with N-glycosidase activity to the 28S rRNA, and the A2 peptide, which confers stability to the B pentamer. We report the construction of a DNA vaccine (pStx2ΔAB) that expresses a nontoxic Stx2 mutated form consisting of the last 32 amino acids of the A2 sequence and the complete B subunit as two nonfused polypeptides. Immunization trials carried out with the DNA vaccine in BALB/c mice, alone or in combination with another DNA vaccine encoding granulocyte-macrophage colony-stimulating factor, resulted in systemic Stx-specific antibody responses targeting both A and B subunits of the native Stx2. Moreover, anti-Stx2 antibodies raised in mice immunized with pStx2ΔAB showed toxin neutralization activity in vitro and, more importantly, conferred partial protection to Stx2 challenge in vivo. The present vector represents the second DNA vaccine so far reported to induce protective immunity to Stx2 and may contribute, either alone or in combination with other procedures, to the development of prophylactic or therapeutic interventions aiming to ameliorate EHEC infection-associated sequelae. PMID:19176691

  11. Cholera toxin enhances IL-17A production in both CD4+and CD8+cells via a cAMP/PKA-mediated IL-17A promoter activation.

    Science.gov (United States)

    Tsa, Hsing-Chuan; Velichko, Sharlene; Lee, Shanshan; Wu, Reen

    2018-01-27

    Cholera toxin (CT) is a bacterial component that increases intracellular cAMP levels in host cells and suppresses T cell activation. Recently, CT was reported to induce Th17-skewing dendritic cells and activate IL-17A production in CD4 + T cells via a cAMP-dependent pathway. However, the underlying mechanism by which cAMP regulates IL-17A production in T cells is not completely defined. In this study, we took advantage of a small molecule PKA inhibitor (H89) and different cAMP analogs: a PKA-specific activator (N6-Benzoyl-adenosine-cAMP), a EPAC-specific activator (Rp-8-Chlorophenylthio-2'-O-methyl cAMP), and a PKA inhibitor (Rp-8-Bromo-cAMP), to elucidate the signaling cascade of cAMP in IL-17A regulation in T cells. We found that CT induces IL-17A production and IL-17A promoter activity in activated CD4 + T cells via a cAMP/PKA pathway. Moreover, this regulation was via CREB-meidated transcriptional activation by utilizing the transfection of IL-17A promoter-luciferase reporter construct and CREB siRNA in Jurkat cells. Also, we also showed that CREB binded to the CRE motif located at -183 of the IL-17A promoter in vitro. Most interestingly, not only in CD4 + T cells, CT also enhanced cAMP/PKA dependent IL-17A production and CREB phosphorylation in CD8 + T cells. In conclusion, our data suggest that CT induces an IL-17A-dominated immune microenvironment via cAMP/PKA/CREB signaling pathway. Our study also highlights the potentials of CT and cAMP in modulating Th17 responses in vivo. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. A unique role of the cholera toxin A1-DD adjuvant for long-term plasma and memory B cell development.

    Science.gov (United States)

    Bemark, Mats; Bergqvist, Peter; Stensson, Anneli; Holmberg, Anna; Mattsson, Johan; Lycke, Nils Y

    2011-02-01

    Adjuvants have traditionally been appreciated for their immunoenhancing effects, whereas their impact on immunological memory has largely been neglected. In this paper, we have compared three mechanistically distinct adjuvants: aluminum salts (Alum), Ribi (monophosphoryl lipid A), and the cholera toxin A1 fusion protein CTA1-DD. Their influence on long-term memory development was dramatically different. Whereas a single immunization i.p. with 4-hydroxy-3-nitrophenyl acetyl (NP)-chicken γ-globulin and adjuvant stimulated serum anti-NP IgG titers that were comparable at 5 wk, CTA1-DD-adjuvanted responses were maintained for >16 mo with a half-life of anti-NP IgG ∼36 wk, but DD dose-dependent increase in germinal center (GC) size and numbers was found, with >60% of splenic B cell follicles hosting GC at an optimal CTA1-DD dose. Roughly 7% of these GC were NP specific. This GC-promoting effect correlated well with the persistence of long-term plasma cells in the bone marrow and memory B cells in the spleen. CTA1-DD also facilitated increased somatic hypermutation and affinity maturation of NP-specific IgG Abs in a dose-dependent fashion, hence arguing that large GC not only promotes higher Ab titers but also high-quality Ab production. Adoptive transfer of splenic CD80(+), but not CD80(-), B cells, at 1 y after immunization demonstrated functional long-term anti-NP IgG and IgM memory cells. To our knowledge, this is the first report to specifically compare and document that adjuvants can differ considerably in their support of long-term immune responses. Differential effects on the GC reaction appear to be the basis for these differences.

  13. Single-Cell Analysis of the Plasmablast Response to Vibrio cholerae Demonstrates Expansion of Cross-Reactive Memory B Cells

    Directory of Open Access Journals (Sweden)

    Robert C. Kauffman

    2016-12-01

    Full Text Available We characterized the acute B cell response in adults with cholera by analyzing the repertoire, specificity, and functional characteristics of 138 monoclonal antibodies (MAbs generated from single-cell-sorted plasmablasts. We found that the cholera-induced responses were characterized by high levels of somatic hypermutation and large clonal expansions. A majority of the expansions targeted cholera toxin (CT or lipopolysaccharide (LPS. Using a novel proteomics approach, we were able to identify sialidase as another major antigen targeted by the antibody response to Vibrio cholerae infection. Antitoxin MAbs targeted both the A and B subunits, and most were also potent neutralizers of enterotoxigenic Escherichia coli heat-labile toxin. LPS-specific MAbs uniformly targeted the O-specific polysaccharide, with no detectable responses to either the core or the lipid moiety of LPS. Interestingly, the LPS-specific antibodies varied widely in serotype specificity and functional characteristics. One participant infected with the Ogawa serotype produced highly mutated LPS-specific antibodies that preferentially bound the previously circulating Inaba serotype. This demonstrates durable memory against a polysaccharide antigen presented at the mucosal surface and provides a mechanism for the long-term, partial heterotypic immunity seen following cholera.

  14. Sub-domains of ricin's B subunit as targets of toxin neutralizing and non-neutralizing monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Anastasiya Yermakova

    Full Text Available The B subunit (RTB of ricin toxin is a galactose (Gal-/N-acetylgalactosamine (GalNac-specific lectin that mediates attachment, entry, and intracellular trafficking of ricin in host cells. Structurally, RTB consists of two globular domains with identical folding topologies. Domains 1 and 2 are each comprised of three homologous sub-domains (α, β, γ that likely arose by gene duplication from a primordial carbohydrate recognition domain (CRD, although only sub-domains 1α and 2γ retain functional lectin activity. As part of our ongoing effort to generate a comprehensive B cell epitope map of ricin, we report the characterization of three new RTB-specific monoclonal antibodies (mAbs. All three mAbs, JB4, B/J F9 and C/M A2, were initially identified based on their abilities to neutralize ricin in a Vero cell cytotoxicity assay and to partially (or completely block ricin attachment to cell surfaces. However, only JB4 proved capable of neutralizing ricin in a macrophage apoptosis assay and in imparting passive immunity to mice in a model of systemic intoxication. Using a combination of techniques, including competitive ELISAs, pepscan analysis, differential reactivity by Western blot, as well as affinity enrichment of phage displayed peptides, we tentatively localized the epitopes recognized by the non-neutralizing mAbs B/J F9 and C/M A2 to sub-domains 2α and 2β, respectively. Furthermore, we propose that the epitope recognized by JB4 is within sub-domain 2γ, adjacent to RTB's high affinity Gal/GalNAc CRD. These data suggest that recognition of RTB's sub-domains 1α and 2γ are critical determinants of antibody neutralizing activity and protective immunity to ricin.

  15. Comparison of Intranasal Outer Membrane Vesicles with Cholera Toxin and Injected MF59C.1 as Adjuvants for Malaria Transmission Blocking Antigens AnAPN1 and Pfs48/45

    Directory of Open Access Journals (Sweden)

    Michael Pritsch

    2016-01-01

    Full Text Available Purified protein vaccines often require adjuvants for efficient stimulation of immune responses. There is no licensed mucosal adjuvant on the market to adequately boost the immune response to purified antigens for intranasal applications in humans. Bacterial outer membrane vesicles (OMV are attractive candidates potentially combining antigenic and adjuvant properties in one substance. To more precisely characterize the potential of Escherichia coli OMV for intranasal vaccination with heterologous antigens, immune responses for AnAPN1 and Pfs48/45 as well as ovalbumin as a reference antigen were assessed in mice. The intranasal adjuvant cholera toxin (CT and parenteral adjuvant MF59C.1 were used in comparison. Vaccinations were administered intranasally or subcutaneously. Antibodies (total IgG and IgM as well as subclasses IgG1, IgG2a, IgG2b, and IgG3 were measured by ELISA. T cell responses (cytotoxic T cells, Th1, Th17, and regulatory T cells were determined by flow cytometry. When OMV were used as adjuvant for intranasal immunization, antibody and cellular responses against all three antigens could be induced, comparable to cholera toxin and MF59C.1. Antigen-specific IgG titres above 1 : 105 could be detected in all groups. This study provides the rationale for further development of OMV as a vaccination strategy in malaria and other diseases.

  16. Syntheses and Immunologic Properties of Escherichia coli O157 O-Specific Polysaccharide and Shiga Toxin 1 B Subunit Conjugates in Mice

    Science.gov (United States)

    Konadu, Edward; Donohue-Rolfe, Arthur; Calderwood, Stephen B.; Pozsgay, Vince; Shiloach, Joseph; Robbins, John B.; Szu, Shousun C.

    1999-01-01

    Escherichia coli O157 is the major cause of diarrhea-associated hemolytic uremic syndrome (HUS). Strains causing HUS contain either Shiga toxin 1 (Stx1) or Stx2, or both. In adult volunteers, conjugate vaccines of detoxified lipopolysaccharide (LPS) elicited bactericidal antibodies to E. coli O157. Here, the detoxified LPS was conjugated with improved schemes to the nontoxic B subunit of Stx1. Mice injected with these bivalent conjugates elicited both bactericidal antibodies to E. coli O157 and neutralization antibodies to Stx1. PMID:10531288

  17. The N-terminal third of the BinB subunit from the Bacillus sphaericus binary toxin is sufficient for its interaction with midgut receptors in Culex quinquefasciatus.

    Science.gov (United States)

    Romão, Tatiany Patrícia; de-Melo-Neto, Osvaldo Pompílio; Silva-Filha, Maria Helena Neves Lobo

    2011-08-01

    Heterodimeric binary (Bin) toxin, the major insecticidal protein from Bacillus sphaericus, acts on Culex quinquefasciatus larvae through specific binding to the midgut receptor Cqm1, a role mediated by its 448-amino-acid-long BinB subunit. The molecular basis for receptor recognition is not well understood and this study attempted to identify protein segments and amino acid motifs within BinB that are required for this event. First, N- and C-terminally truncated constructs were evaluated for their capacity to bind to native Cqm1 through pull-down assays. These showed that residues N33 to L158 of the subunit are required for Cqm1 binding. Nine different full-length mutants were then generated in which selected blocks of three amino acids were replaced by alanines. In new pull-down assays, two mutants, in which residues (85) IRF(87) and (147) FQF(149) were targeted, failed to bind the receptor. Competition binding assays confirmed the requirements for the N-terminal 158 residues, and the (147) FQF(149) epitope, for the mutant proteins to compete with native Bin toxin when binding to membrane fractions from the insect midgut. The data from this work rule out the involvement of C-terminal segments in receptor binding, highlighting the need for multiple elements within the protein's N-terminal third for it to occur. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Safety and Immunogenicity of an Inactivated Whole Cell Plus Recombinant B Subunit (WC/RBS) Cholera Vaccine in Healthy Adult Peruvian Military Volunteers.

    Science.gov (United States)

    1992-11-30

    AD-A260 586 IFB0 919931 MIPR NO: 92MM2532W TITLE: SAFETY AND IMMUNOGENICITY OF AN INACTIVATED WHOLE CELL PLUS RECOMBINANT B SUBUNIT (WCIRBS) COLERA ...NUMBERS Safety and Immunogenicity of an Inactivated Whole MIPR No. Cell Plus Recombinant B Subunit (WC/RBS) Colera 92MM2532 Vaccine in Healthy Adult

  19. Drinking cholera

    DEFF Research Database (Denmark)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin

    2015-01-01

    Objectives: To measure the salinity levels of common water sources in coastal Bangladesh andexplore perceptions of water palatability among the local population to investigate the plausibility oflinking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water...... beconducive to V. cholerae survival. Furthermore, salinity levels of participant’s drinking water sourceswere all well below the levels required for optimal survival of V. cholerae. Respondents explainedthat they preferred less salty and more aesthetically pleasing drinking water. Conclusion: Theoretically, V....... cholerae can survive in the river systems in Bangladesh; however,water sources which have been contaminated with river water are avoided as potential drinkingwater sources. Furthermore, there are no physical connecting points between the river system anddrinking water sources among the study population...

  20. Transmission of Infectious Vibrio cholerae Through Drinking Water among the Household Contacts of Cholera Patients (CHoBI7 Trial

    Directory of Open Access Journals (Sweden)

    Raisa Rafique

    2016-10-01

    Full Text Available Recurrent cholera causes significant morbidity and mortality among the growing population of Dhaka, the capital city of Bangladesh. Previous studies have demonstrated that household contacts of cholera patients are at >100 times higher risk of cholera during the week after the presentation of the index patient. Our prospective study investigated the mode of transmission of Vibrio cholerae, the cause of cholera, in the households of cholera patients in Dhaka city. Of total 420 rectal swab samples analyzed from 84 household contacts and 330 water samples collected from 33 households, V. cholerae was isolated from 20%(17/84 of household contacts, 18%(6/33 of stored drinking water, and 27%(9/33 of source water samples. Phenotypic and molecular analyses results confirmed the V. cholerae isolates to be toxigenic and belonging to serogroup O1 biotype El Tor (ET possessing cholera toxin of classical biotype (altered ET. Phylogenetic analysis by pulsed-field gel electrophoresis (PFGE showed the V. cholerae isolates to be clonally linked, as >95% similarity was confirmed by sub-clustering patterns in the PFGE (NotI-based dendrogram. Mapping results showed cholera patients to be widely distributed across 25 police stations with the highest incidence in households near the major rivers and polluted water bodies. The data presented on the transmission of infectious V. cholerae within the household contacts of cholera patients through drinking water underscores the need for safe water to prevent spread of cholera and related deaths in Dhaka city.

  1. Novel Structure and Function of Typhoid Toxin

    Science.gov (United States)

    ... Matters NIH Research Matters July 29, 2013 Novel Structure and Function of Typhoid Toxin Structure of typhoid toxin, showing the 2 A subunits ( ... to cultured cells. The scientists next determined the structure of the typhoid toxin. The toxin was already ...

  2. Cholera Fact Sheet

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Cholera Fact sheet Updated December 2017 Key facts Cholera ... behaviour and to the control of cholera. Oral cholera vaccines Currently there are three WHO pre-qualified ...

  3. Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease.

    Science.gov (United States)

    Matsui, Takeshi; Takita, Eiji; Sato, Toshio; Aizawa, Michie; Ki, Misa; Kadoyama, Yumiko; Hirano, Kenji; Kinjo, Satoko; Asao, Hiroshi; Kawamoto, Keiko; Kariya, Haruko; Makino, Sou-Ichi; Hamabata, Takashi; Sawada, Kazutoshi; Kato, Ko

    2011-08-01

    Pig edema disease is a bacterial disease caused by enterohemorrhagic Escherichia coli. E. coli produces Shiga toxin 2e (Stx2e), which is composed of one A subunit (Stx2eA) and five B subunits (Stx2eB). We previously reported production of Stx2eB in lettuce plants as a potential edible vaccine (Matsui et al. in Biosci Biotechnol Biochem 73:1628-1634, 2009). However, the accumulation level was very low, and it was necessary to improve expression of Stx2eB for potential use of this plant-based vaccine. Therefore, in this study, we optimized the Stx2eB expression cassette and found that a double repeated Stx2eB (2× Stx2eB) accumulates to higher levels than a single Stx2eB in cultured tobacco cells. Furthermore, a linker peptide between the two Stx2eB moieties played an important role in maximizing the effects of the double repeat. Finally, we generated transgenic lettuce plants expressing 2× Stx2eB with a suitable linker peptide that accumulate as much as 80 mg per 100 g fresh weight, a level that will allow us to use these transgenic lettuce plants practically to generate vaccine material.

  4. Protection of mice against Shiga toxin 2 (Stx2)-associated damage by maternal immunization with a Brucella lumazine synthase-Stx2 B subunit chimera.

    Science.gov (United States)

    Mejias, María Pilar; Cabrera, Gabriel; Fernández-Brando, Romina Jimena; Baschkier, Ariela; Ghersi, Giselle; Abrey-Recalde, Maria Jimena; Miliwebsky, Elizabeth; Meiss, Roberto; Goldbaum, Fernando; Zylberman, Vanesa; Rivas, Marta; Palermo, Marina Sandra

    2014-04-01

    Hemolytic-uremic syndrome (HUS) is defined as the triad of anemia, thrombocytopenia, and acute kidney injury. Enterohemorrhagic Shiga toxin (Stx)-producing Escherichia coli (EHEC), which causes a prodromal hemorrhagic enteritis, remains the most common etiology of the typical or epidemic form of HUS. Because no licensed vaccine or effective therapy is presently available for human use, we recently developed a novel immunogen based on the B subunit of Shiga toxin 2 (Stx2B) and the enzyme lumazine synthase from Brucella spp. (BLS) (BLS-Stx2B). The aim of this study was to analyze maternal immunization with BLS-Stx2B as a possible approach for transferring anti-Stx2 protection to the offspring. BALB/c female mice were immunized with BLS-Stx2B before mating. Both dams and pups presented comparable titers of anti-Stx2B antibodies in sera and fecal extracts. Moreover, pups were totally protected against a lethal dose of systemic Stx2 injection up to 2 to 3 months postpartum. In addition, pups were resistant to an oral challenge with an Stx2-producing EHEC strain at weaning and did not develop any symptomatology associated with Stx2 toxicity. Fostering experiments demonstrated that anti-Stx2B neutralizing IgG antibodies were transmitted through breast-feeding. Pups that survived the EHEC infection due to maternally transferred immunity prolonged an active and specific immune response that protected them against a subsequent challenge with intravenous Stx2. Our study shows that maternal immunization with BLS-Stx2B was very effective at promoting the transfer of specific antibodies, and suggests that preexposure of adult females to this immunogen could protect their offspring during the early phase of life.

  5. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches.

    Science.gov (United States)

    Nezafat, Navid; Karimi, Zeinab; Eslami, Mahboobeh; Mohkam, Milad; Zandian, Sanam; Ghasemi, Younes

    2016-06-01

    Cholera continues to be a major global health concern. Among different Vibrio cholerae strains, only O1 and O139 cause acute diarrheal diseases that are related to epidemic and pandemic outbreaks. The currently available cholera vaccines are mainly lived and attenuated vaccines consisting of V. cholerae virulence factors such as toxin-coregulated pili (TCP), outer membrane proteins (Omps), and nontoxic cholera toxin B subunit (CTB). Nowadays, there is a great interest in designing an efficient epitope vaccine against cholera. Epitope vaccines consisting of immunodominant epitopes and adjuvant molecules enhance the possibility of inciting potent protective immunity. In this study, V. cholerae protective antigens (OmpW, OmpU, TcpA and TcpF) and the CTB, which is broadly used as an immunostimulatory adjuvant, were analyzed using different bioinformatics and immunoinformatics tools. The common regions between promiscuous epitopes, binding to various HLA-II supertype alleles, and B-cell epitopes were defined based upon the aforementioned protective antigens. The ultimately selected epitopes and CTB adjuvant were fused together using proper GPGPG linkers to enhance vaccine immunogenicity. A three-dimensional model of the thus constructed vaccine was generated using I-TASSER. The model was structurally validated using the ProSA-web error-detection software and the Ramachandran plot. The validation results indicated that the initial 3D model needed refinement. Subsequently, a high-quality model obtained after various refinement cycles was used for defining conformational B-cell epitopes. Several linear and conformational B-cell epitopes were determined within the epitope vaccine, suggesting likely antibody triggering features of our designed vaccine. Next, molecular docking was performed between the 3D vaccine model and the tertiary structure of the toll like receptor 2 (TLR2). To gain further insight into the interaction between vaccine and TLR2, molecular dynamics

  6. Biomarkers of Environmental Enteropathy are Positively Associated with Immune Responses to an Oral Cholera Vaccine in Bangladeshi Children.

    Directory of Open Access Journals (Sweden)

    Muhammad Ikhtear Uddin

    2016-11-01

    Full Text Available Environmental enteropathy (EE is a poorly understood condition that refers to chronic alterations in intestinal permeability, absorption, and inflammation, which mainly affects young children in resource-limited settings. Recently, EE has been linked to suboptimal oral vaccine responses in children, although immunological mechanisms are poorly defined. The objective of this study was to determine host factors associated with immune responses to an oral cholera vaccine (OCV. We measured antibody and memory T cell immune responses to cholera antigens, micronutrient markers in blood, and EE markers in blood and stool from 40 Bangladeshi children aged 3-14 years who received two doses of OCV given 14 days apart. EE markers included stool myeloperoxidase (MPO and alpha anti-trypsin (AAT, and plasma endotoxin core antibody (EndoCab, intestinal fatty acid binding protein (i-FABP, and soluble CD14 (sCD14. We used multiple linear regression analysis with LASSO regularization to identify host factors, including EE markers, micronutrient (nutritional status, age, and HAZ score, predictive for each response of interest. We found stool MPO to be positively associated with IgG antibody responses to the B subunit of cholera toxin (P = 0.03 and IgA responses to LPS (P = 0.02; plasma sCD14 to be positively associated with LPS IgG responses (P = 0.07; plasma i-FABP to be positively associated with LPS IgG responses (P = 0.01 and with memory T cell responses specific to cholera toxin (P = 0.01; stool AAT to be negatively associated with IL-10 (regulatory T cell responses specific to cholera toxin (P = 0.02, and plasma EndoCab to be negatively associated with cholera toxin-specific memory T cell responses (P = 0.02. In summary, in a cohort of children 3-14 years old, we demonstrated that the majority of biomarkers of environmental enteropathy were positively associated with immune responses after vaccination with an OCV.

  7. Cholera Prevention and Control

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Cholera - Vibrio cholerae infection Note: Javascript is disabled or ... message, please visit this page: About CDC.gov . Cholera General Information Illness & Symptoms Sources of Infection & Risk ...

  8. Cholera Illness and Symptoms

    Science.gov (United States)

    ... Search The CDC Cancel Submit Search The CDC Cholera - Vibrio cholerae infection Note: Javascript is disabled or ... message, please visit this page: About CDC.gov . Cholera General Information Illness & Symptoms Sources of Infection & Risk ...

  9. The Cytolethal Distending Toxin Subunit CdtB of Helicobacter hepaticus Promotes Senescence and Endoreplication in Xenograft Mouse Models of Hepatic and Intestinal Cell Lines

    Directory of Open Access Journals (Sweden)

    Christelle Péré-Védrenne

    2017-06-01

    Full Text Available Cytolethal distending toxins (CDTs are common among pathogenic bacteria of the human and animal microbiota. CDTs exert cytopathic effets, via their active CdtB subunit. No clear description of those cytopathic effects has been reported at the cellular level in the target organs in vivo. In the present study, xenograft mouse models of colon and liver cell lines were set up to study the effects of the CdtB subunit of Helicobacter hepaticus. Conditional transgenic cell lines were established, validated in vitro and then engrafted into immunodeficient mice. After successful engraftment, mice were treated with doxycyclin to induce the expression of transgenes (red fluorescent protein, CdtB, and mutated CdtB. For both engrafted cell lines, results revealed a delayed tumor growth and a reduced tumor weight in CdtB-expressing tumors compared to controls. CdtB-derived tumors showed γ-H2AX foci formation, an increase in apoptosis, senescence, p21 and Ki-67 nuclear antigen expression. No difference in proliferating cells undergoing mitosis (phospho-histone H3 was observed. CdtB intoxication was also associated with an overexpression of cytokeratins in cells at the invasive front of the tumor as well as an increase in ploidy. All these features are hallmarks of endoreplication, as well as aggressiveness in cancer. These effects were dependent on the histidine residue at position 265 of the CdtB, underlying the importance of this residue in CdtB catalytic activity. Taken together, these data indicate that the CdtB triggers senescence and cell endoreplication leading to giant polyploid cells in these xenograft mouse models.

  10. Direct link from the suprachiasmatic nucleus to hypothalamic neurons projecting to the spinal cord: a combined tracing study using cholera toxin subunit B and Phaseolus vulgaris-leucoagglutinin

    DEFF Research Database (Denmark)

    Vrang, Niels; Mikkelsen, Jens D.; Larsen, Philip J.

    1997-01-01

    Neuroanatomi, circadian rhythms, sympathetic nervous system, pineal gland, double immunocytochemistry, rat......Neuroanatomi, circadian rhythms, sympathetic nervous system, pineal gland, double immunocytochemistry, rat...

  11. Characterization of Aeromonas trota strains that cross-react with Vibrio cholerae O139 Bengal.

    Science.gov (United States)

    Albert, M J; Ansaruzzaman, M; Shimada, T; Rahman, A; Bhuiyan, N A; Nahar, S; Qadri, F; Islam, M S

    1995-12-01

    It has previously been shown that Vibrio cholerae O139 Bengal shares antigens with V. cholerae serogroups O22 and O155. We detected six surface water isolates of Aeromonas trota that agglutinated in polyclonal antisera to V. cholerae O139 and V. cholerae O22 but not in antiserum to V. cholerae O155. On the basis of agglutinin-absorption studies, the antigenic relationship between the cross-reacting bacteria were found to be in an a,b-a,c fashion, where a is the common antigenic epitope and b and c are unique epitopes. The antigen sharing between A. trota strains and V. cholerae O139 was confirmed in immunoblot studies. However, A. trota strains did not react with two monoclonal antibodies specific for V. cholerae O139 and, consequently, tested negative in the Bengal SMART rapid diagnostic test for V. cholerae O139 which uses one of the monoclonal antibodies. A polyclonal antiserum to a cross-reacting A. trota strain cross-protected infant mice against cholera on challenge with virulent V. cholerae O139. All A. trota strains were cytotoxic for HeLa cells, positive for adherence to HEp-2 cells, and weakly invasive for HEp-2 cells; one strain was heat-stable toxin positive in the suckling mouse assay; however, all strains were negative for cholera toxin-like enterotoxin. Studies on bacteria that share somatic antigen with V. cholerae O139 may shed further light on the genesis of V. cholerae O139.

  12. OmpU as a biomarker for rapid discrimination between toxigenic and epidemic Vibrio cholerae O1/O139 and non-epidemic Vibrio cholerae in a modified MALDI-TOF MS assay

    NARCIS (Netherlands)

    Paauw, A.; Trip, H.; Niemcewicz, M.; Sellek, R.; Heng, J.M.E.; Mars-Groenendijk, R.H.; Jong, A.L. de; Majchrzykiewicz-Koehorst, J.A.; Olsen, J.S.; Tsivtsivadze, E.

    2014-01-01

    Background Cholera is an acute diarrheal disease caused by Vibrio cholerae. Outbreaks are caused by a genetically homogenous group of strains from serogroup O1 or O139 that are able to produce the cholera toxin. Rapid detection and identification of these epidemic strains is essential for an

  13. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine.

    Directory of Open Access Journals (Sweden)

    Alex T Nielsen

    2010-09-01

    Full Text Available A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP and cholera toxin (CT were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a

  14. Genome assortment, not serogroup, defines Vibrio cholerae pandemic strains

    Energy Technology Data Exchange (ETDEWEB)

    Brettin, Thomas S [Los Alamos National Laboratory; Bruce, David C [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Detter, John C [Los Alamos National Laboratory; Han, Cliff S [Los Alamos National Laboratory; Munik, A C [Los Alamos National Laboratory; Chertkov, Olga [Los Alamos National Laboratory; Meincke, Linda [Los Alamos National Laboratory; Saunders, Elizabeth [Los Alamos National Laboratory; Choi, Seon Y [SEOUL NATL. UNIV.; Haley, Bradd J [U. MARYLAND; Taviani, Elisa [U. MARYLAND; Jeon, Yoon - Seong [INTL. VACCINE INST. SEOUL; Kim, Dong Wook [INTL. VACCINE INST. SEOUL; Lee, Jae - Hak [SEOUL NATL. UNIV.; Walters, Ronald A [PNNL; Hug, Anwar [NATL. INST. CHOLERIC ENTERIC DIS.; Colwell, Rita R [U. MARYLAND

    2009-01-01

    Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the 6th and the current 7th pandemics, respectively. Cholera researchers continually face newly emerging and re-emerging pathogenic clones carrying combinations of new serogroups as well as of phenotypic and genotypic properties. These genotype and phenotype changes have hampered control of the disease. Here we compare the complete genome sequences of 23 strains of V. cholerae isolated from a variety of sources and geographical locations over the past 98 years in an effort to elucidate the evolutionary mechanisms governing genetic diversity and genesis of new pathogenic clones. The genome-based phylogeny revealed 12 distinct V. cholerae phyletic lineages, of which one, designated the V. cholerae core genome (CG), comprises both O1 classical and EI Tor biotypes. All 7th pandemic clones share nearly identical gene content, i.e., the same genome backbone. The transition from 6th to 7th pandemic strains is defined here as a 'shift' between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages within the CG clade. In contrast, transition among clones during the present 7th pandemic period can be characterized as a 'drift' between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V.cholerae serogroup O139 and V.cholerae O1 El Tor hybrid clones that produce cholera toxin of classical biotype. Based on the comprehensive comparative genomics presented in this study it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to

  15. Cholera vaccine candidate 638: intranasal immunogenicity and expression of a foreign antigen from the pulmonary pathogen Coccidioides immitis.

    Science.gov (United States)

    Silva, Anisia J; Mohan, Archana; Benitez, Jorge A

    2003-12-01

    Vibrio cholerae strain 638 is a live genetically attenuated candidate cholera vaccine in which the CTXPhi prophage encoding cholera toxin has been deleted and hapA, encoding an extracellular Zn-dependent metalloprotease, was insertionally inactivated. Strain 638 was highly immunogenic when inoculated to adult Swiss mice by the intranasal route as judged by the induction of a strong serum vibriocidal antibody response. A side-by-side comparison of strain 638 with its isogenic hapA(+) precursor (strain 81) in the above model indicated that inactivation of hapA does not affect immunogenicity. The spherule-associated antigen 2/proline-rich antigen (Ag2/PRA) of Coccidioides immitis has been shown to protect mice against coccidioidomycosis to an extent dependent on the modes of antigen presentation and challenge with C. immitis arthrospores. In this work, we demonstrate the use of a live genetically attenuated V. cholerae strain to deliver Ag2/PRA. Ag2/PRA was expressed in 638 as a fusion protein with the Escherichia coli heat labile toxin B subunit leader peptide using the strong Tac promoter. The recombinant Ag2/PRA was efficiently expressed, processed and secreted to the periplasmic space. Intranasal immunizations of adult mice with strain 638 expressing Ag2/PRA induced serum vibriocidal antibody response to the vector strain and serum total IgG response to Ag2/PRA. Strain 638 expressing PRA could be recovered from trachea and lung up to 20h after immunization but was effectively cleared 72h post-inoculation.

  16. Phenotypic and Genetic Heterogeneity in Vibrio cholerae O139 Isolated from Cholera Cases in Delhi, India during 2001-2006

    Directory of Open Access Journals (Sweden)

    Raikamal Ghosh

    2016-08-01

    Full Text Available Incidence of epidemic Vibrio cholerae serogroup O139 has declined in cholera endemic countries. However, sporadic cholera caused by V. cholerae O139 with notable genetic changes is still reported from many regions. In the present study, 42 V. cholerae O139 strains isolated from 2001 to 2006 in Delhi, India, were retrospectively analyzed to understand their phenotype and molecular characteristics. The majority of isolates were resistant to ampicillin, furazolidone and nalidixic acid. Though the integrative conjugative element was detected in all the O139 isolates, the 2004-2006 isolates remained susceptible to co-trimoxazole, chloramphenicol, and streptomycin. Cholera toxin genotype 1 was present in the majority of the O139 isolates while few had type 3 or a novel type 4. In the cholera toxin encoding gene (ctx restriction fragment length polymorphism, the majority of the isolates harbored three copies of CTX element, of which one was truncated. In this study, the ctx was detected for the first time in the small chromosome of V. cholerae O139 and one isolate harbored 5 copies of CTX element, of which 3 were truncated. The ribotype BII pattern was found in most of the O139 isolates. Three V. cholerae O139 isolated in 2001 had a new ribotype BVIII. Pulsed-field gel electrophoresis analysis revealed clonal variation in 2001 isolates compared to the 2004-2006 isolates. Molecular changes in V. cholerae O139 have to be closely monitored as this information may help in understanding the changing genetic features of this pathogen in relation to the epidemiology of cholera.

  17. Cholera: something old, something new.

    Science.gov (United States)

    Sigman, Michael; Luchette, Fred A

    2012-08-01

    In the aftermath of a devastating earthquake in early 2011, Haiti fell victim to an outbreak of cholera that claimed thousands of lives and affected populations in nearby Dominican Republic, Venezuela, and even the United States. This was the first time cholera had been reported in Haiti in more than 100 years. The sudden appearance of cholera, a pathogen with no known non-human host, raised the question of how it was introduced to an island that has long been spared this disease. The purpose of this review is to provide an overview of the history of cholera, its pathophysiology and virulence factors, and current recommendations for treatment. Articles published in the past 10 years were identified by a search of the medical literature using PUBMED and reviewed. Bibliographies of each article also were reviewed for additional pertinent articles. The recent epidemic was caused by a strain that has been responsible for disease in South Asia since 1961, the seventh and most recent strain identified since 1900. It is transmitted by the fecal-oral route. Once infected, the patient develops a rapidly dehydrating diarrheal illness caused by the cholera toxin, which activates cytoplasmic adenylate cyclase of the intestinal epithelial cells by adenosine diphosphate (ADP)-ribosylation of the stimulatory G protein. The high cyclic adenosine monophosphate (cAMP) concentrations activate the cystic fibrosis transmembrane conductance regulator, causing a dramatic efflux of ions and water from infected enterocytes and leading to watery diarrhea. The first line of therapy is oral hydration with intravenous fluids; antibiotics are reserved for patients with severe dehydration. Spread of cholera is preventable with simple modifications of hygiene and water preparation. Cholera has re-emerged as a major infectious disease in the recent past, with a global increase in its incidence. Vaccination should be considered as an adjunct for controlling the epidemics and also for volunteer

  18. Immunizing adult female mice with a TcpA-A2-CTB chimera provides a high level of protection for their pups in the infant mouse model of cholera.

    Directory of Open Access Journals (Sweden)

    Gregory A Price

    2014-12-01

    Full Text Available Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT and the toxin-coregulated pilus (TCP. CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an

  19. Immunizing adult female mice with a TcpA-A2-CTB chimera provides a high level of protection for their pups in the infant mouse model of cholera.

    Science.gov (United States)

    Price, Gregory A; Holmes, Randall K

    2014-12-01

    Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent

  20. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae-contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N-acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms.IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  1. Application and Development of Biological AFM for the Study of Bacterial Toxins

    National Research Council Canada - National Science Library

    Yang, Jie

    1999-01-01

    ... with other conventional methods. These studies have also established a solid foundation for our structural elucidation of molecular level conformation of membranous bacterial toxins, such as cholera toxin and alpha-hemolysin...

  2. What is cholera?

    DEFF Research Database (Denmark)

    Tamason, Charlotte Crim; Tulsiani, Suhella; Siddique, A.

    2016-01-01

    Background: Cholera has afflicted the Indian sub-continent for centuries, predominantly in West Bengal and modern-day Bangladesh. This preliminary study aims to understand the current level of knowledge of cholera in female Bangladeshi caretakers, which is important in the outcome of the disease...... and its spread. A pilot study was conducted among 85 women in Bangladesh using qualitative questionnaires to explore the ability of female caretakers in identifying cholera and its transmission. Findings: The survey revealed that though all the female caretakers were aware of the term “cholera,” nearly...... a third ofthe respondents did not associate diarrhea with cholera or mentioned symptoms that could not be caused by cholera (29%). Approximately half of the respondents associated water with the cause of cholera (56%) and only 8% associated cholera with sanitation or hygiene. Shame and stigma (54%) were...

  3. Cholera in Zimbabwe

    NARCIS (Netherlands)

    Pruyt, E.

    2009-01-01

    By the end of December 2008, alarming reports and articles concerning the cholera outbreak in Zimbabwe received plenty of international media coverage. By that time nearly 30000 cases of cholera infections and 1600 cholera deaths had been reported. In the first week of January 2009, a System

  4. Cholera in Children

    Science.gov (United States)

    ... Issues Listen Español Text Size Email Print Share Cholera Page Content Article Body Cholera is an infection of the intestines caused by ... that can range from mild to extremely severe. Cholera is rare in the United States but if ...

  5. Increased jejunal prostaglandin E2 concentrations in patients with acute cholera

    NARCIS (Netherlands)

    Speelman, P.; Rabbani, G. H.; Bukhave, K.; Rask-Madsen, J.

    1985-01-01

    Supraphysiologic doses of prostaglandins (PGs) mimic the effect of cholera toxin and cAMP in the small intestine, but not all observations are explicable in terms of the theory that links PGs to cAMP. Because no data exist on endogenous PGs in human cholera we measured PGE2 concentrations in jejunal

  6. Optimasi Duplex PCR untuk Deteksi Simultan Gen Penyandi Faktor Virulensi ompW dan ctxA Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Rian Ka Praja

    2016-10-01

    Full Text Available Vibrio cholerae merupakan salah satu agen foodborne disease yang dapat ditularkan melalui seafood. Penelitian ini bertujuan untuk optimasi gen penyandi faktor virulensi outer membrane protein W (ompW dan cholerae toxin subunit A (ctxA menggunakan teknik Duplex Polymerase Chain Reaction (dPCR. Dua bakteri V. cholerae O1 serotipe Ogawa dan Inaba digunakan pada penelitian ini. Proses isolasi DNA dilakukan menggunakan metode Boil Cell Extraction (BCE. dPCR dilakukan menggunakan dua pasang primer (forward dan reverse ompW-F, ompW-R dan ctxA-F, ctxA-R dengan panjang produk masing-masing 588 bp dan 302 bp. Tahap optimasi yang dilakukan dalam proses dPCR ini meliputi variasi suhu annealing, variasi konsentrasi primer serta variasi volume DNA template kemudian deteksi produk dPCR dilakukan dengan elektroforesis pada gel agarosa 1,5% dan divisualisasi menggunakan alat Gel DocTM XR (Bio-Rad. Hasil penelitian menunjukkan komposisi reaksi dPCR yang terbaik untuk mendeteksi gen ompW dan ctxA secara simultan terdiri dari PCR mix (Promega 12,5 ?L, primer ompW-F, ompW-R 0,5 ?M, primer ctxA-F, ctxA-R 0,3 ?M, nuclease free water 6,5 ?L dan DNA template 2 ?L sehingga volume total menjadi 25 ?L. Kondisi mesin PCR terdiri dari pre-denaturasi 95oC selama 2 menit (1 siklus diikuti oleh denaturasi 95oC selama 1 menit, annealing 53oC selama 1 menit, extension 72oC selama 1 menit (35 siklus, dan post-extension 72oC selama 5 menit (1 siklus. Dapat disimpulkan bahwa dPCR dapat digunakan untuk deteksi simultan gen penyandi faktor virulensi ompW dan ctxA V. cholerae.

  7. Vibrio cholerae Biofilms and Cholera Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Anisia J Silva

    2016-02-01

    Full Text Available Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i the evidence for biofilm formation during infection, (ii the coordinate regulation of biofilm and virulence gene expression, and (iii the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv we discuss a model for the role of V. cholerae biofilms in pathogenicity.

  8. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine

    Czech Academy of Sciences Publication Activity Database

    Moravec, Tomáš; Schmidt, M.A.; Herman, E.M.; Woodford-Thomas, T.

    2007-01-01

    Roč. 25, - (2007), s. 1647-1657 ISSN 0264-410X Grant - others:Marie Curie Fellowship(XE) MOIF CT 2005-008692 Institutional research plan: CEZ:AV0Z50380511 Keywords : Microbial toxin * Plant-based vaccine s * Transgenic soybean seed Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.377, year: 2007

  9. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria; Chiorazzo, Michael G.; Taylor, Ronald K.; Kull, F. Jon (Dartmouth)

    2010-03-04

    Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.

  10. Modeling cholera outbreaks

    Science.gov (United States)

    Longini, Ira M.; Morris, J. Glenn

    2014-01-01

    Mathematical modeling can be a valuable tool for studying infectious disease outbreak dynamics and simulating the effects of possible interventions. Here, we describe approaches to modeling cholera outbreaks and how models have been applied to explore intervention strategies, particularly in Haiti. Mathematical models can play an important role in formulating and evaluating complex cholera outbreak response options. Major challenges to cholera modeling are insufficient data for calibrating models and the need to tailor models for different outbreak scenarios. PMID:23412687

  11. Cholera on Guam, 1974: epidemiologic findings and isolation of non-toxinogenic strains.

    Science.gov (United States)

    Merson, M H; Martin, W T; Craig, J P; Morris, G K; Blake, P A; Craun, G F; Feeley, J C; Camacho, J C; Gangarosa, E J

    1977-04-01

    In August 1974, six cases of cholera occurred on Guam. The index case had severe diarrhea and metabolic acidosis and died from pneumonia on the ninth day of illness; the other five cases had only mild to moderate diarrhea. Fish caught in Agana Bay and home-preserved was found to be the vehicle most likely responsible for the cases. Vibrio cholerae, El Tor Ogawa, was isolated from two patients, the Guam sewerage system, and a river emptying into Agana Bay. V. cholerae, El Tor Inaba, was isolated from the sewerage system, three storm drains imptying into Agana Bay, and Agana Bay. The Ogawa and Inaba isolates differed in their sucrose fermentation and hemolysis reactions, phage type and ability to produce toxin. Although this was the first reported cholera outbreak on Guam, the isolation of differentV. cholerae strains suggested that multiple introductions of V. cholerae had occurred on the island.

  12. Modulation of toxin stability by 4-phenylbutyric acid and negatively charged phospholipids.

    Directory of Open Access Journals (Sweden)

    Supriyo Ray

    Full Text Available AB toxins such as ricin and cholera toxin (CT consist of an enzymatic A domain and a receptor-binding B domain. After endocytosis of the surface-bound toxin, both ricin and CT are transported by vesicle carriers to the endoplasmic reticulum (ER. The A subunit then dissociates from its holotoxin, unfolds, and crosses the ER membrane to reach its cytosolic target. Since protein unfolding at physiological temperature and neutral pH allows the dissociated A chain to attain a translocation-competent state for export to the cytosol, the underlying regulatory mechanisms of toxin unfolding are of paramount biological interest. Here we report a biophysical analysis of the effects of anionic phospholipid membranes and two chemical chaperones, 4-phenylbutyric acid (PBA and glycerol, on the thermal stabilities and the toxic potencies of ricin toxin A chain (RTA and CT A1 chain (CTA1. Phospholipid vesicles that mimic the ER membrane dramatically decreased the thermal stability of RTA but not CTA1. PBA and glycerol both inhibited the thermal disordering of RTA, but only glycerol could reverse the destabilizing effect of anionic phospholipids. In contrast, PBA was able to increase the thermal stability of CTA1 in the presence of anionic phospholipids. PBA inhibits cellular intoxication by CT but not ricin, which is explained by its ability to stabilize CTA1 and its inability to reverse the destabilizing effect of membranes on RTA. Our data highlight the toxin-specific intracellular events underlying ER-to-cytosol translocation of the toxin A chain and identify a potential means to supplement the long-term stabilization of toxin vaccines.

  13. The population structure of Vibrio cholerae from the Chandigarh Region of Northern India.

    Directory of Open Access Journals (Sweden)

    Moataz Abd El Ghany

    2014-07-01

    Full Text Available Cholera infection continues to be a threat to global public health. The current cholera pandemic associated with Vibrio cholerae El Tor has now been ongoing for over half a century.Thirty-eight V. cholerae El Tor isolates associated with a cholera outbreak in 2009 from the Chandigarh region of India were characterised by a combination of microbiology, molecular typing and whole-genome sequencing. The genomic analysis indicated that two clones of V. cholera circulated in the region and caused disease during this time. These clones fell into two distinct sub-clades that map independently onto wave 3 of the phylogenetic tree of seventh pandemic V. cholerae El Tor. Sequence analyses of the cholera toxin gene, the Vibrio seventh Pandemic Island II (VSPII and SXT element correlated with this phylogenetic position of the two clades on the El Tor tree. The clade 2 isolates, characterized by a drug-resistant profile and the expression of a distinct cholera toxin, are closely related to the recent V. cholerae isolated elsewhere, including Haiti, but fell on a distinct branch of the tree, showing they were independent outbreaks. Multi-Locus Sequence Typing (MLST distinguishes two sequence types among the 38 isolates, that did not correspond to the clades defined by whole-genome sequencing. Multi-Locus Variable-length tandem-nucleotide repeat Analysis (MLVA identified 16 distinct clusters.The use of whole-genome sequencing enabled the identification of two clones of V. cholerae that circulated during the 2009 Chandigarh outbreak. These clones harboured a similar structure of ICEVchHai1 but differed mainly in the structure of CTX phage and VSPII. The limited capacity of MLST and MLVA to discriminate between the clones that circulated in the 2009 Chandigarh outbreak highlights the value of whole-genome sequencing as a route to the identification of further genetic markers to subtype V. cholerae isolates.

  14. The Population Structure of Vibrio cholerae from the Chandigarh Region of Northern India

    KAUST Repository

    Abd El Ghany, Moataz

    2014-07-24

    Background:Cholera infection continues to be a threat to global public health. The current cholera pandemic associated with Vibrio cholerae El Tor has now been ongoing for over half a century.Methodology/Principal Findings:Thirty-eight V. cholerae El Tor isolates associated with a cholera outbreak in 2009 from the Chandigarh region of India were characterised by a combination of microbiology, molecular typing and whole-genome sequencing. The genomic analysis indicated that two clones of V. cholera circulated in the region and caused disease during this time. These clones fell into two distinct sub-clades that map independently onto wave 3 of the phylogenetic tree of seventh pandemic V. cholerae El Tor. Sequence analyses of the cholera toxin gene, the Vibrio seventh Pandemic Island II (VSPII) and SXT element correlated with this phylogenetic position of the two clades on the El Tor tree. The clade 2 isolates, characterized by a drug-resistant profile and the expression of a distinct cholera toxin, are closely related to the recent V. cholerae isolated elsewhere, including Haiti, but fell on a distinct branch of the tree, showing they were independent outbreaks. Multi-Locus Sequence Typing (MLST) distinguishes two sequence types among the 38 isolates, that did not correspond to the clades defined by whole-genome sequencing. Multi-Locus Variable-length tandem-nucleotide repeat Analysis (MLVA) identified 16 distinct clusters.Conclusions/Significance:The use of whole-genome sequencing enabled the identification of two clones of V. cholerae that circulated during the 2009 Chandigarh outbreak. These clones harboured a similar structure of ICEVchHai1 but differed mainly in the structure of CTX phage and VSPII. The limited capacity of MLST and MLVA to discriminate between the clones that circulated in the 2009 Chandigarh outbreak highlights the value of whole-genome sequencing as a route to the identification of further genetic markers to subtype V. cholerae isolates.

  15. Cholera Information for Adults

    Science.gov (United States)

    ... found in water or food contaminated by feces. Cholera causes profuse watery diarrhea and can lead to death by sudden dehydration because of the tremendous output of liquid stool. You can contract cholera by eating or drinking food or water contaminated ...

  16. LT-IIb(T13I, a non-toxic type II heat-labile enterotoxin, augments the capacity of a ricin toxin subunit vaccine to evoke neutralizing antibodies and protective immunity.

    Directory of Open Access Journals (Sweden)

    Christopher J Greene

    Full Text Available Currently, there is a shortage of adjuvants that can be employed with protein subunit vaccines to enhance protection against biological threats. LT-IIb(T13I is an engineered nontoxic derivative of LT-IIb, a member of the type II subfamily of heat labile enterotoxins expressed by Escherichia coli, that possesses potent mucosal adjuvant properties. In this study we evaluated the capacity of LT-IIb(T13I to augment the potency of RiVax, a recombinant ricin toxin A subunit vaccine, when co-administered to mice via the intradermal (i.d. and intranasal (i.n. routes. We report that co-administration of RiVax with LT-IIb(T13I by the i.d. route enhanced the levels of RiVax-specific serum IgG antibodies (Ab and elevated the ratio of ricin-neutralizing to non-neutralizing Ab, as compared to RiVax alone. Protection against a lethal ricin challenge was also augmented by LT-IIb(T13I. While local inflammatory responses elicited by LT-IIb(T13I were comparable to those elicited by aluminum salts (Imject®, LT-IIb(T13I was more effective than aluminum salts at augmenting production of RiVax-specific serum IgG. Finally, i.n. administration of RiVax with LT-IIb(T13I also increased levels of RiVax-specific serum and mucosal Ab and enhanced protection against ricin challenge. Collectively, these data highlight the potential of LT-IIb(T13I as an effective next-generation i.d., or possibly i.n. adjuvant for enhancing the immunogenicity of subunit vaccines for biodefense.

  17. Toxigenic Vibrio cholerae O1 in vegetables and fish raised in wastewater irrigated fields and stabilization ponds during a non-cholera outbreak period in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Hounmanou, Yaovi M G; Mdegela, Robinson H; Dougnon, Tamègnon V

    2016-01-01

    BACKGROUND: Cholera, one of the world's deadliest infectious diseases, remains rampant and frequent in Tanzania and thus hinders existing control measures. The present study was undertaken to evaluate the occurrence of toxigenic Vibrio cholerae O1 in wastewater, fish and vegetables during a non......-outbreak period in Morogoro, Tanzania. METHODS: From October 2014 to February 2015, 60 wastewater samples, 60 fish samples from sewage stabilization ponds and 60 wastewater irrigated vegetable samples were collected. Samples were cultured for identification of V. cholerae using conventional bacteriological...... methods. Isolates were confirmed as V. cholerae by detection of the outer membrane protein gene (ompW) using polymerase chain reaction (PCR). Isolates were further tested for antibiotic susceptibility and presence of virulence genes including, cholera enterotoxin gene (ctx), the toxin co-regulated pilus...

  18. Genetic diversity of environmental Vibrio cholerae O1 strains isolated in Northern Vietnam.

    Science.gov (United States)

    Takemura, Taichiro; Murase, Kazunori; Maruyama, Fumito; Tran, Thi Luong; Ota, Atsushi; Nakagawa, Ichiro; Nguyen, Dong Tu; Ngo, Tu Cuong; Nguyen, Thi Hang; Tokizawa, Asako; Morita, Masatomo; Ohnishi, Makoto; Nguyen, Binh Minh; Yamashiro, Tetsu

    2017-10-01

    Cholera epidemics have been recorded periodically in Vietnam during the seventh cholera pandemic. Since cholera is a water-borne disease, systematic monitoring of environmental waters for Vibrio cholerae presence is important for predicting and preventing cholera epidemics. We conducted monitoring, isolation, and genetic characterization of V. cholerae strains in Nam Dinh province of Northern Vietnam from Jul 2013 to Feb 2015. In this study, four V. cholerae O1 strains were detected and isolated from 110 analyzed water samples (3.6%); however, none of them carried the cholera toxin gene, ctxA, in their genomes. Whole genome sequencing and phylogenetic analysis revealed that the four O1 isolates were separated into two independent clusters, and one of them diverged from a common ancestor with pandemic strains. The analysis of pathogenicity islands (CTX prophage, VPI-I, VPI-II, VSP-I, and VSP-II) indicated that one strain (VNND_2014Jun_6SS) harbored an unknown prophage-like sequence with high homology to vibriophage KSF-1 phi and VCY phi, identified from Bangladesh and the USA, respectively, while the other three strains carried tcpA gene with a distinct sequence demonstrating a separate clonal lineage. These results suggest that the aquatic environment can harbor highly divergent V. cholera strains and serve as a reservoir for multiple V. cholerae virulence-associated genes which may be exchanged via mobile genetic elements. Therefore, continuous monitoring and genetic characterization of V. cholerae strains in the environment should contribute to the early detection of the sources of infection and prevention of cholera outbreaks as well as to understanding the natural ecology and evolution of V. cholerae. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Cholera - management and prevention.

    Science.gov (United States)

    Davies, Hannah G; Bowman, Conor; Luby, Stephen P

    2017-06-01

    Cholera is an acute secretory diarrhoeal infection caused by the bacterium Vibrio cholerae. It is likely to have originated in the Indian sub-continent; however, it spread to cause six worldwide pandemics between 1817-1923. The ongoing seventh worldwide pandemic of cholera began in 1961. The intensity, duration and severity of cholera epidemics have been increasing, signaling the need for more effective control and prevention measures. The response to the cholera pandemics of the 19th century led to the development of safe and effective sanitation and water systems which have effectively removed the risk of cholera in many settings. However, such systems are not in place to protect billions of people worldwide. Although some progress has been made in expanding access to water in recent years, achieving optimal infrastructure will, in the most optimistic scenario, take decades. Climate change, extreme weather events and rapid urbanisation suggests that alternatives to the current paradigm of providing large centralised water and sanitation systems should be considered, including smaller decentralised systems. The aim of this review paper is to provide an overview of current knowledge regarding management of cholera with a focus on prevention measures including vaccination and water and sanitation interventions. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. The repertoire of glycosphingolipids recognized by Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    John Benktander

    Full Text Available The binding of cholera toxin to the ganglioside GM1 as the initial step in the process leading to diarrhea is nowadays textbook knowledge. In contrast, the knowledge about the mechanisms for attachment of Vibrio cholerae bacterial cells to the intestinal epithelium is limited. In order to clarify this issue, a large number of glycosphingolipid mixtures were screened for binding of El Tor V. cholerae. Several specific interactions with minor complex non-acid glycosphingolipids were thereby detected. After isolation of binding-active glycosphingolipids, characterization by mass spectrometry and proton NMR, and comparative binding studies, three distinct glycosphingolipid binding patterns were defined. Firstly, V. cholerae bound to complex lacto/neolacto glycosphingolipids with the GlcNAcβ3Galβ4GlcNAc sequence as the minimal binding epitope. Secondly, glycosphingolipids with a terminal Galα3Galα3Gal moiety were recognized, and the third specificity was the binding to lactosylceramide and related compounds. V. cholerae binding to lacto/neolacto glycosphingolipids, and to the other classes of binding-active compounds, remained after deletion of the chitin binding protein GbpA. Thus, the binding of V. cholerae to chitin and to lacto/neolacto containing glycosphingolipids represents two separate binding specificities.

  1. Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladeshi children.

    Science.gov (United States)

    Saha, Amit; Chowdhury, Mohiul I; Nazim, Mohammad; Alam, Mohammad Murshid; Ahmed, Tanvir; Hossain, Mohammad Bakhtiar; Hore, Samar Kumar; Sultana, Gazi Nurun Nahar; Svennerholm, Ann-Mari; Qadri, Firdausi

    2013-01-11

    Immune responses to the inactivated oral whole cell cholera toxin B (CTB) subunit cholera vaccine, Dukoral(®), as well as three childhood vaccines in the national immunization system were compared in children living in high and low arsenic contaminated areas in Bangladesh. In addition, serum complement factors C3 and C4 levels were evaluated among children in the two areas. VACCINATIONS: Toddlers (2-5 years) were orally immunized with two doses of Dukoral 14 days apart. Study participants had also received diphtheria, tetanus and measles vaccines according to the Expanded Program on Immunization (EPI) in Bangladesh. The mean level of arsenic in the urine specimens in the children of the high arsenic area (HAA, Shahrasti, Chandpur) was 291.8μg/L while the level was 6.60μg/L in the low arsenic area (LAA, Mirpur, Dhaka). Cholera specific vibriocidal antibody responses were significantly increased in the HAA (87%, Pchildren after vaccination with Dukoral, but no differences were found between the two groups. Levels of CTB specific IgA and IgG antibodies were comparable between the two groups, whereas LPS specific IgA and IgG were higher in the LAA group, although response rates were comparable. Diphtheria and tetanus vaccine specific IgG responses were significantly higher in the HAA compared to the LAA group (Pvaccine as well as the EPI vaccines studied are immunogenic in children in high and low arsenic areas in Bangladesh. The results are encouraging for the potential use of cholera vaccines as well as the EPI vaccines in arsenic endemic areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Regional cholera response discussion

    CSIR Research Space (South Africa)

    Funke, Nicola S

    2009-09-30

    Full Text Available research questions identified by the CSIR on cholera as a trans- or cross-border communicable disease that requires complex interventions in terms of preparedness and response, management, prevention and mitigation. The workshop commenced with a...

  3. What is Cholera?

    Indian Academy of Sciences (India)

    Cholera is a rapidly dehydrating watery diarrheal disease that can lead to death in less than 24 hours if untreated, making it, according to WHO, “one of the most rapidly fatal infectious illnesses known” ...

  4. Cholera outbreaks in Africa.

    Science.gov (United States)

    Mengel, Martin A; Delrieu, Isabelle; Heyerdahl, Leonard; Gessner, Bradford D

    2014-01-01

    During the current seventh cholera pandemic, Africa bore the major brunt of global disease burden. More than 40 years after its resurgence in Africa in 1970, cholera remains a grave public health problem, characterized by large disease burden, frequent outbreaks, persistent endemicity, and high CFRs, particularly in the region of the central African Great Lakes which might act as reservoirs for cholera. There, cases occur year round with a rise in incidence during the rainy season. Elsewhere in sub-Saharan Africa, cholera occurs mostly in outbreaks of varying size with a constant threat of widespread epidemics. Between 1970 and 2011, African countries reported 3,221,050 suspected cholera cases to the World Health Organization, representing 46 % of all cases reported globally. Excluding the Haitian epidemic, sub-Saharan Africa accounted for 86 % of reported cases and 99 % of deaths worldwide in 2011. The number of cholera cases is possibly much higher than what is reported to the WHO due to the variation in modalities, completeness, and case definition of national cholera data. One source on country specific incidence rates for Africa, adjusting for underreporting, estimates 1,341,080 cases and 160,930 deaths (52.6 % of 2,548,227 estimated cases and 79.6 % of 209,216 estimated deaths worldwide). Another estimates 1,411,453 cases and 53,632 deaths per year, respectively (50 % of 2,836,669 estimated cases and 58.6 % of 91,490 estimated deaths worldwide). Within Africa, half of all cases between 1970 and 2011 were notified from only seven countries: Angola, Democratic Republic of the Congo, Mozambique, Nigeria, Somalia, Tanzania, and South Africa. In contrast to a global trend of decreasing case fatality ratios (CFRs), CFRs have remained stable in Africa at approximately 2 %. Early propagation of cholera outbreaks depends largely on the extent of individual bacterial shedding, host and organism characteristics, the likelihood of people coming into contact with

  5. Retrograde transport of protein toxins through the Golgi apparatus

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Skotland, Tore; van Deurs, Bo

    2013-01-01

    A number of protein toxins from plants and bacteria take advantage of transport through the Golgi apparatus to gain entry into the cytosol where they exert their action. These toxins include the plant toxin ricin, the bacterial Shiga toxins, and cholera toxin. Such toxins bind to lipids or proteins...... at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER......, the enzymatically active part is released and then transported into the cytosol, exploiting components of the ER-associated degradation system. In this review, we will discuss transport of different protein toxins, but we will focus on factors involved in entry and sorting of ricin and Shiga toxin into and through...

  6. Cholera in the Americas.

    Science.gov (United States)

    1991-01-01

    The cholera epidemic 1st hit South America in January 1991 in the coastal town of Chancay, Peru. In 2 weeks, it spread over 2000 km of the Pacific coast. By the end of the 1st month, it had already reached the mountains and tropical forests. By August 1991, cholera cases were reported in order of appearances in Ecuador, Colombia, Chile, Brazil, the US, Mexico, Guatemala, Bolivia, and El Salvador. Health authorities still do not know how it was introduced into South America. The case fatality rate has remained at a low of 1%, probably due to the prompt actions of health authorities in informing the public of the epidemic and what preventive cautions should be taken. This epidemic is part of the 7th pandemic which originated in Celebes, Indonesia in 1961. Cholera can spread relatively unchecked in Latin America because sewage in urban areas is not treated even though they do have sewage collection systems. The untreated wastewater enters rivers and the ocean. Consumption of raw seafood is not unusual and has been responsible for cholera infection in some cases. In fact, many countries placed import restrictions on marine products from Peru following the outbreak at a loss of $US10-$US40 million. Municipal sewage treatment facilities, especially stabilization ponds, would prevent the spread of cholera and other pathogens. In rural areas, pit latrines located away from wells can effectively dispose of human wastes. Most water supplies in Latin America are not disinfected. Disinfection drinking water with adequate levels of chlorine would effectively destroy V. cholera. If this is not possible, boiling the water for 2-3 minutes would destroy the pathogen. Any cases of cholera must be reported to PAHO. PAHO has responded to the outbreak by forming a Cholera Task Force and arranged transport of oral rehydration salts, intravenous fluids, antibiotics, and other essential medical supplies.

  7. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Science.gov (United States)

    2010-04-01

    ... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera. Cholera is an acute infectious disease characterized by severe diarrhea with extreme fluid and electrolyte...

  8. Conserved Arginines at the P-Protein Stalk Binding Site and the Active Site Are Critical for Ribosome Interactions of Shiga Toxins but Do Not Contribute to Differences in the Affinity of the A1 Subunits for the Ribosome.

    Science.gov (United States)

    Basu, Debaleena; Kahn, Jennifer N; Li, Xiao-Ping; Tumer, Nilgun E

    2016-12-01

    The A1 subunits of Shiga toxin 1 (Stx1A1) and Shiga toxin 2 (Stx2A1) interact with the conserved C termini of ribosomal-stalk P-proteins to remove a specific adenine from the sarcin/ricin loop. We previously showed that Stx2A1 has higher affinity for the ribosome and higher catalytic activity than Stx1A1. To determine if conserved arginines at the distal face of the active site contribute to the higher affinity of Stx2A1 for the ribosome, we mutated Arg172, Arg176, and Arg179 in both toxins. We show that Arg172 and Arg176 are more important than Arg179 for the depurination activity and toxicity of Stx1A1 and Stx2A1. Mutation of a single arginine reduced the depurination activity of Stx1A1 more than that of Stx2A1. In contrast, mutation of at least two arginines was necessary to reduce depurination by Stx2A1 to a level similar to that of Stx1A1. R176A and R172A/R176A mutations eliminated interaction of Stx1A1 and Stx2A1 with ribosomes and with the stalk, while mutation of Arg170 at the active site reduced the binding affinity of Stx1A1 and Stx2A1 for the ribosome, but not for the stalk. These results demonstrate that conserved arginines at the distal face of the active site are critical for interactions of Stx1A1 and Stx2A1 with the stalk, while a conserved arginine at the active site is critical for non-stalk-specific interactions with the ribosome. Arginine mutations at either site reduced ribosome interactions of Stx1A1 and Stx2A1 similarly, indicating that conserved arginines are critical for ribosome interactions but do not contribute to the higher affinity of Stx2A1 for the ribosome. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Seroepidemiologic survey of epidemic cholera in Haiti to assess spectrum of illness and risk factors for severe disease.

    Science.gov (United States)

    Jackson, Brendan R; Talkington, Deborah F; Pruckler, James M; Fouché, M D Bernadette; Lafosse, Elsie; Nygren, Benjamin; Gómez, Gerardo A; Dahourou, Georges A; Archer, W Roodly; Payne, Amanda B; Hooper, W Craig; Tappero, Jordan W; Derado, Gordana; Magloire, Roc; Gerner-Smidt, Peter; Freeman, Nicole; Boncy, Jacques; Mintz, Eric D

    2013-10-01

    To assess the spectrum of illness from toxigenic Vibrio cholerae O1 and risk factors for severe cholera in Haiti, we conducted a cross-sectional survey in a rural commune with more than 21,000 residents. During March 22-April 6, 2011, we interviewed 2,622 residents ≥ 2 years of age and tested serum specimens from 2,527 (96%) participants for vibriocidal and antibodies against cholera toxin; 18% of participants reported a cholera diagnosis, 39% had vibriocidal titers ≥ 320, and 64% had vibriocidal titers ≥ 80, suggesting widespread infection. Among seropositive participants (vibriocidal titers ≥ 320), 74.5% reported no diarrhea and 9.0% had severe cholera (reported receiving intravenous fluids and overnight hospitalization). This high burden of severe cholera is likely explained by the lack of pre-existing immunity in this population, although the virulence of the atypical El Tor strain causing the epidemic and other factors might also play a role.

  10. Genomic analysis of immune response against Vibrio cholerae hemolysin in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Surasri N Sahu

    Full Text Available Vibrio cholerae cytolysin (VCC is among the accessory V. cholerae virulence factors that may contribute to disease pathogenesis in humans. VCC, encoded by hlyA gene, belongs to the most common class of bacterial toxins, known as pore-forming toxins (PFTs. V. cholerae infects and kills Caenorhabditis elegans via cholerae toxin independent manner. VCC is required for the lethality, growth retardation and intestinal cell vacuolation during the infection. However, little is known about the host gene expression responses against VCC. To address this question we performed a microarray study in C. elegans exposed to V. cholerae strains with intact and deleted hlyA genes.Many of the VCC regulated genes identified, including C-type lectins, Prion-like (glutamine [Q]/asparagine [N]-rich-domain containing genes, genes regulated by insulin/IGF-1-mediated signaling (IIS pathway, were previously reported as mediators of innate immune response against other bacteria in C. elegans. Protective function of the subset of the genes up-regulated by VCC was confirmed using RNAi. By means of a machine learning algorithm called FastMEDUSA, we identified several putative VCC induced immune regulatory transcriptional factors and transcription factor binding motifs. Our results suggest that VCC is a major virulence factor, which induces a wide variety of immune response- related genes during V. cholerae infection in C. elegans.

  11. Vibrio cholerae hemolysin is required for lethality, developmental delay, and intestinal vacuolation in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hediye Nese Cinar

    Full Text Available BACKGROUND: Cholera toxin (CT and toxin-co-regulated pili (TCP are the major virulence factors of Vibrio cholerae O1 and O139 strains that contribute to the pathogenesis of disease during devastating cholera pandemics. However, CT and TCP negative V. cholerae strains are still able to cause severe diarrheal disease in humans through mechanisms that are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: To determine the role of other virulence factors in V. cholerae pathogenesis, we used a CT and TCP independent infection model in the nematode Caenorhabditis elegans and identified the hemolysin A (hlyA gene as a factor responsible for animal death and developmental delay. We demonstrated a correlation between the severity of infection in the nematode and the level of hemolytic activity in the V. cholerae biotypes. At the cellular level, V. cholerae infection induces formation of vacuoles in the intestinal cells in a hlyA dependent manner, consistent with the previous in vitro observations. CONCLUSIONS/SIGNIFICANCE: Our data strongly suggest that HlyA is a virulence factor in C. elegans infection leading to lethality and developmental delay presumably through intestinal cytopathic changes.

  12. Detection of toxigenic vibrio cholera from environmental water samples by an enrichment broth cultivation-pit-stop semi-nested PCR procedure

    CSIR Research Space (South Africa)

    Theron, J

    2000-09-01

    Full Text Available A pit-stop semi-nested PCR assay for the detection of toxigenic Vibrio cholerae in environmental water samples was developed and its performance evaluated. The PCR technique amplifies sequences within the cholera toxin operon specific for toxigenic...

  13. Prophylactic immunisation against traveller's diarrhoea caused by enterotoxin-forming strains of Escherichia coli and against cholera: does it make sense and for whom?

    NARCIS (Netherlands)

    Weinke, T.; Liebold, I.; Burchard, G. D.; Frühwein, N.; Grobusch, M. P.; Hatz, C.; Kollaritsch, H.; Nothdurft, H. D.; Reisinger, E.; Rieke, B.; Schönfeld, Ch; Steffen, R.; Stich, A.

    2008-01-01

    Traveller's diarrhoea (TD) constitutes the most common disease relevant to travel medicine with ETEC as the leading causative pathogen. Cholera is the most serious, but very rare form of TD. ETEC and cholera share pathogenic mechanisms by producing a toxin that has an 80% amino acid homology. A

  14. Light-induced c-Fos expression in suprachiasmatic nuclei neurons targeting the paracentricular nucleus of the hamster hypothalamus: phase dependence and immunochemical identification

    DEFF Research Database (Denmark)

    Munch, Inger Christine; Møller, Morten; Larsen, Philip Just

    2002-01-01

    Neurobiology, circadian retrograde tracing, cholera toxin subunit B, vasopressin, gastrin releasing peptide, vasoactive intestinal peptide......Neurobiology, circadian retrograde tracing, cholera toxin subunit B, vasopressin, gastrin releasing peptide, vasoactive intestinal peptide...

  15. The global burden of cholera.

    Science.gov (United States)

    Ali, Mohammad; Lopez, Anna Lena; You, Young Ae; Kim, Young Eun; Sah, Binod; Maskery, Brian; Clemens, John

    2012-03-01

    To estimate the global burden of cholera using population-based incidence data and reports. Countries with a recent history of cholera were classified as endemic or non-endemic, depending on whether they had reported cholera cases in at least three of the five most recent years. The percentages of the population in each country that lacked access to improved sanitation were used to compute the populations at risk for cholera, and incidence rates from published studies were applied to groups of countries to estimate the annual number of cholera cases in endemic countries. The estimates of cholera cases in non-endemic countries were based on the average numbers of cases reported from 2000 to 2008. Literature-based estimates of cholera case-fatality rates (CFRs) were used to compute the variance-weighted average cholera CFRs for estimating the number of cholera deaths. About 1.4 billion people are at risk for cholera in endemic countries. An estimated 2.8 million cholera cases occur annually in such countries (uncertainty range: 1.4-4.3) and an estimated 87,000 cholera cases occur in non-endemic countries. The incidence is estimated to be greatest in children less than 5 years of age. Every year about 91,000 people (uncertainty range: 28,000 to 142,000) die of cholera in endemic countries and 2500 people die of the disease in non-endemic countries. The global burden of cholera, as determined through a systematic review with clearly stated assumptions, is high. The findings of this study provide a contemporary basis for planning public health interventions to control cholera.

  16. The global burden of cholera

    Science.gov (United States)

    Lopez, Anna Lena; You, Young Ae; Kim, Young Eun; Sah, Binod; Maskery, Brian; Clemens, John

    2012-01-01

    Abstract Objective To estimate the global burden of cholera using population-based incidence data and reports. Methods Countries with a recent history of cholera were classified as endemic or non-endemic, depending on whether they had reported cholera cases in at least three of the five most recent years. The percentages of the population in each country that lacked access to improved sanitation were used to compute the populations at risk for cholera, and incidence rates from published studies were applied to groups of countries to estimate the annual number of cholera cases in endemic countries. The estimates of cholera cases in non-endemic countries were based on the average numbers of cases reported from 2000 to 2008. Literature-based estimates of cholera case-fatality rates (CFRs) were used to compute the variance-weighted average cholera CFRs for estimating the number of cholera deaths. Findings About 1.4 billion people are at risk for cholera in endemic countries. An estimated 2.8 million cholera cases occur annually in such countries (uncertainty range: 1.4–4.3) and an estimated 87 000 cholera cases occur in non-endemic countries. The incidence is estimated to be greatest in children less than 5 years of age. Every year about 91 000 people (uncertainty range: 28 000 to 142 000) die of cholera in endemic countries and 2500 people die of the disease in non-endemic countries. Conclusion The global burden of cholera, as determined through a systematic review with clearly stated assumptions, is high. The findings of this study provide a contemporary basis for planning public health interventions to control cholera. PMID:22461716

  17. Pasteurella multocida toxin: Targeting mast cell secretory granules during kiss-and-run secretion.

    Science.gov (United States)

    Danielsen, Elisabeth M; Christiansen, Nina; Danielsen, E Michael

    2016-02-01

    Pasteurella multocida toxin (PMT), a virulence factor of the pathogenic Gram-negative bacterium P. multocida, is a 146 kDa protein belonging to the A-B class of toxins. Once inside a target cell, the A domain deamidates the α-subunit of heterotrimeric G-proteins, thereby activating downstream signaling cascades. However, little is known about how PMT selects and enters its cellular targets. We therefore studied PMT binding and uptake in porcine cultured intestinal mucosal explants to identify susceptible cells in the epithelium and underlying lamina propria. In comparison with Vibrio cholera B-subunit, a well-known enterotoxin taken up by receptor-mediated endocytosis, PMT binding to the epithelial brush border was scarce, and no uptake into enterocytes was detected by 2h, implying that none of the glycolipids in the brush border are a functional receptor for PMT. However, in the lamina propria, PMT distinctly accumulated in the secretory granules of mast cells. This also occurred at 4 °C, ruling out endocytosis, but suggestive of uptake via pores that connect the granules to the cell surface. Mast cell granules are known to secrete their contents by a "kiss-and-run" mechanism, and we propose that PMT may exploit this secretory mechanism to gain entry into this particular cell type. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Vibrio cholerae O1 secretes an extracellular matrix in response to antibody-mediated agglutination

    Science.gov (United States)

    Baranova, Danielle E.; Levinson, Kara J.

    2018-01-01

    Vibrio cholerae O1 is one of two serogroups responsible for epidemic cholera, a severe watery diarrhea that occurs after the bacterium colonizes the human small intestine and secretes a potent ADP-ribosylating toxin. Immunity to cholera is associated with intestinal anti-lipopolysaccharide (LPS) antibodies, which are known to inhibit V. cholerae motility and promote bacterial cell-cell crosslinking and aggregation. Here we report that V. cholerae O1 classical and El Tor biotypes produce an extracellular matrix (ECM) when forcibly immobilized and agglutinated by ZAC-3 IgG, an intestinally-derived monoclonal antibody (MAb) against the core/lipid A region of LPS. ECM secretion, as demonstrated by crystal violet staining and scanning electron microscopy, occurred within 30 minutes of antibody exposure and peaked by 3 hours. Non-motile mutants of V. cholerae did not secrete ECM following ZAC-3 IgG exposure, even though they were susceptible to agglutination. The ECM was enriched in O-specific polysaccharide (OSP) but not Vibrio polysaccharide (VPS). Finally, we demonstrate that ECM production by V. cholerae in response to ZAC-3 IgG was associated with bacterial resistant to a secondary complement-mediated attack. In summary, we propose that V. cholerae O1, upon encountering anti-LPS antibodies in the intestinal lumen, secretes an ECM (or O-antigen capsule) possibly as a strategy to shield itself from additional host immune factors and to exit an otherwise inhospitable host environment. PMID:29293563

  19. Vibrio cholerae O1 secretes an extracellular matrix in response to antibody-mediated agglutination.

    Directory of Open Access Journals (Sweden)

    Danielle E Baranova

    Full Text Available Vibrio cholerae O1 is one of two serogroups responsible for epidemic cholera, a severe watery diarrhea that occurs after the bacterium colonizes the human small intestine and secretes a potent ADP-ribosylating toxin. Immunity to cholera is associated with intestinal anti-lipopolysaccharide (LPS antibodies, which are known to inhibit V. cholerae motility and promote bacterial cell-cell crosslinking and aggregation. Here we report that V. cholerae O1 classical and El Tor biotypes produce an extracellular matrix (ECM when forcibly immobilized and agglutinated by ZAC-3 IgG, an intestinally-derived monoclonal antibody (MAb against the core/lipid A region of LPS. ECM secretion, as demonstrated by crystal violet staining and scanning electron microscopy, occurred within 30 minutes of antibody exposure and peaked by 3 hours. Non-motile mutants of V. cholerae did not secrete ECM following ZAC-3 IgG exposure, even though they were susceptible to agglutination. The ECM was enriched in O-specific polysaccharide (OSP but not Vibrio polysaccharide (VPS. Finally, we demonstrate that ECM production by V. cholerae in response to ZAC-3 IgG was associated with bacterial resistant to a secondary complement-mediated attack. In summary, we propose that V. cholerae O1, upon encountering anti-LPS antibodies in the intestinal lumen, secretes an ECM (or O-antigen capsule possibly as a strategy to shield itself from additional host immune factors and to exit an otherwise inhospitable host environment.

  20. The Vibrio cholerae cytolysin promotes chloride secretion from intact human intestinal mucosa.

    Directory of Open Access Journals (Sweden)

    Lucantonio Debellis

    Full Text Available BACKGROUND: The pathogenicity of the Vibrio cholerae strains belonging to serogroup O1 and O139 is due to the production of virulence factors such as cholera toxin (CT and the toxin-coregulated pilus (TCP. The remaining serogroups, which mostly lack CT and TCP, are more frequently isolated from aquatic environmental sources than from clinical samples; nevertheless, these strains have been reported to cause human disease, such as sporadic outbreaks of watery diarrhoea and inflammatory enterocolitis. This evidence suggested the possibility that other virulence factor(s than cholera toxin might be crucial in the pathogenesis of Vibrio cholerae-induced diarrhoea, but their nature remains unknown. VCC, the hemolysin produced by virtually all Vibrio cholerae strains, has been proposed as a possible candidate, though a clear-cut demonstration attesting VCC as crucial in the pathogenesis of Vibrio cholerae-induced diarrhoea is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: Electrophysiological parameters and paracellular permeability of stripped human healthy colon tissues, obtained at subtotal colectomy, mounted in Ussing chamber were studied in the presence or absence of VCC purified from culture supernatants of V. cholerae O1 El Tor strain. Short circuit current (I(SC and transepithelial resistance (R(T were measured by a computerized voltage clamp system. The exposure of sigmoid colon specimens to 1 nM VCC resulted in an increase of I(SC by 20.7%, with respect to the basal values, while R(T was reduced by 12.3%. Moreover, increase in I(SC was abolished by bilateral Cl(- reduction. CONCLUSION/SIGNIFICANCE: Our results demonstrate that VCC, by forming anion channels on the apical membrane of enterocytes, triggers an outward transcellular flux of chloride. Such an ion movement, associated with the outward movement of Na(+ and water, might be responsible for the diarrhoea caused by the non-toxigenic strains of Vibrio cholerae.

  1. Genome sequencing reveals unique mutations in characteristic metabolic pathways and the transfer of virulence genes between V. mimicus and V. cholerae.

    Directory of Open Access Journals (Sweden)

    Duochun Wang

    Full Text Available Vibrio mimicus, the species most similar to V. cholerae, is a microbe present in the natural environmental and sometimes causes diarrhea and internal infections in humans. It shows similar phenotypes to V. cholerae but differs in some biochemical characteristics. The molecular mechanisms underlying the differences in biochemical metabolism between V. mimicus and V. cholerae are currently unclear. Several V. mimicus isolates have been found that carry cholera toxin genes (ctxAB and cause cholera-like diarrhea in humans. Here, the genome of the V. mimicus isolate SX-4, which carries an intact CTX element, was sequenced and annotated. Analysis of its genome, together with those of other Vibrio species, revealed extensive differences within the Vibrionaceae. Common mutations in gene clusters involved in three biochemical metabolism pathways that are used for discrimination between V. mimicus and V. cholerae were found in V. mimicus strains. We also constructed detailed genomic structures and evolution maps for the general types of genomic drift associated with pathogenic characters in polysaccharides, CTX elements and toxin co-regulated pilus (TCP gene clusters. Overall, the whole-genome sequencing of the V. mimicus strain carrying the cholera toxin gene provides detailed information for understanding genomic differences among Vibrio spp. V. mimicus has a large number of diverse gene and nucleotide differences from its nearest neighbor, V. cholerae. The observed mutations in the characteristic metabolism pathways may indicate different adaptations to different niches for these species and may be caused by ancient events in evolution before the divergence of V. cholerae and V. mimicus. Horizontal transfers of virulence-related genes from an uncommon clone of V. cholerae, rather than the seventh pandemic strains, have generated the pathogenic V. mimicus strain carrying cholera toxin genes.

  2. Neuronal sensitivity to tetanus toxin requires gangliosides.

    Science.gov (United States)

    Williamson, L C; Bateman, K E; Clifford, J C; Neale, E A

    1999-08-27

    Tetanus toxin produces spastic paralysis in situ by blocking inhibitory neurotransmitter release in the spinal cord. Although di- and trisialogangliosides bind tetanus toxin, their role as productive toxin receptors remains unclear. We examined toxin binding and action in spinal cord cell cultures grown in the presence of fumonisin B(1), an inhibitor of ganglioside synthesis. Mouse spinal cord neurons grown for 3 weeks in culture in 20 microM fumonisin B(1) develop dendrites, axons, and synaptic terminals similar to untreated neurons, even though thin layer chromatography shows a greater than 90% inhibition of ganglioside synthesis. Absence of tetanus and cholera toxin binding by toxin-horseradish peroxidase conjugates or immunofluorescence further indicates loss of mono- and polysialogangliosides. In contrast to control cultures, tetanus toxin added to fumonisin B(1)-treated cultures does not block potassium-stimulated glycine release, inhibit activity-dependent uptake of FM1-43, or abolish immunoreactivity for vesicle-associated membrane protein, the toxin substrate. Supplementing fumonisin B(1)-treated cultures with mixed brain gangliosides completely restores the ability of tetanus toxin to bind to the neuronal surface and to block neurotransmitter release. These data demonstrate that fumonisin B(1) protects against toxin-induced synaptic blockade and that gangliosides are a necessary component of the receptor mechanism for tetanus toxin.

  3. Activation of RAW264.7 mouse macrophage cells in vitro through treatment with recombinant ricin toxin-binding subunit B: involvement of protein tyrosine, NF-κB and JAK-STAT kinase signaling pathways.

    Science.gov (United States)

    Xu, Na; Yuan, Hongyan; Liu, Wensen; Li, Songyan; Liu, Yang; Wan, Jiayu; Li, Xiaoyan; Zhang, Rui; Chang, Yaping

    2013-09-01

    Ricin toxin-binding subunit B (RTB) is a galactose-binding lectin protein. In the present study, we investigated the effects of RTB on inducible nitric oxide (NO) synthase (iNOS), interleukin (IL)-6 and tumor necrosis factor (TNF)-α, as well as the signal transduction mechanisms involved in recombinant RTB-induced macrophage activation. RAW264.7 macrophages were treated with RTB. The results revealed that the mRNA and protein expression of iNOS was increased in the recombinant RTB-treated macrophages. TNF-α production was observed to peak at 20 h, whereas the production of IL-6 peaked at 24 h. In another set of cultures, the cells were co-incubated with RTB and the tyrosine kinase inhibitor, genistein, the phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, the p42/44 inhibitor, PD98059, the p38 inhibitor, SB203580, the JNK inhibitor, SP600125, the protein kinase C (PKC) inhibitor, staurosporine, the JAK2 inhibitor, tyrphostin (AG490), or the NOS inhibitor, L-NMMA. The recombinant RTB-induced production of NO, TNF-α and IL-6 was inhibited in the macrophages treated with the pharmacological inhibitors genistein, LY294002, staurosporine, AG490, SB203580 and BAY 11-7082, indicating the possible involvement of protein tyrosine kinases, PI3K, PKC, JAK2, p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB in the above processes. A phosphoprotein analysis identified tyrosine phosphorylation targets that were uniquely induced by recombinant RTB and inhibited following treatment with genistein; some of these proteins are associated with the downstream cascades of activated JAK-STAT and NF-κB receptors. Our data may help to identify the most important target molecules for the development of novel drug therapies.

  4. Increased severity in patients presenting to hospital with diarrhea in Dhaka, Bangladesh Since emergence of the hybrid strain of Vibrio cholerae O1 is not unique to cholera patients

    Science.gov (United States)

    Chowdhury, Fahima; Kuchta, Alison; Khan, Ashraful Islam; Faruque, ASG; Calderwood, Stephen B.; Ryan, Edward T.; Qadri, Firdausi

    2015-01-01

    In 2001, a hybrid strain of Vibrio cholerae O1 El Tor that expresses a classical cholera toxin (CT) emerged and this hybrid variant rapidly replaced the previous El Tor strain around the world. The global emergence of this variant coincided with anecdotal reports that cholera patients were presenting with more severe dehydration and disease in many locations. We compared severity of disease in cholera patients from before and after emergence of the hybrid strain at a diarrheal hospital in Dhaka, Bangladesh. We did indeed find that cholera patients presented with more severe dehydration and severe disease in the latter period; however, this was also true for “all non-cholera patients” as well. In addition, in sub-analyses of patients who presented with rotavirus and enterotoxigenic E. coli (ETEC), we found similar results. Comparing the two periods for differences in patient characteristics, nutritional status, vaccination status and income, we were unable to detect a plausible cause for patients presenting with more severe disease in the latter period. Because we observed a shift in severity for both cholera and non-cholera, our results indicate that the altered El Tor strain cannot fully explain the differences in cholera severity before and after 2001 PMID:26409202

  5. The increased severity in patients presenting to hospital with diarrhea in Dhaka, Bangladesh since the emergence of the hybrid strain of Vibrio cholerae O1 is not unique to cholera patients.

    Science.gov (United States)

    Chowdhury, Fahima; Kuchta, Alison; Khan, Ashraful Islam; Faruque, A S G; Calderwood, Stephen B; Ryan, Edward T; Qadri, Firdausi

    2015-11-01

    A hybrid strain of Vibrio cholerae O1 El Tor that expresses a classical cholera toxin (CT) emerged in 2001. This hybrid variant rapidly replaced the previous El Tor strain around the world. The global emergence of this variant coincided with anecdotal reports that cholera patients were presenting with more severe dehydration and disease in many locations. A comparison was made of the severity of disease before and after the emergence of the hybrid strain in cholera patients attending an icddr,b hospital in Dhaka, Bangladesh. It was found that cholera patients presented with more severe dehydration and severe disease in the later period. However, this was also true for all non-cholera patients as well. In addition, in sub-analyses of patients who presented with rotavirus and enterotoxigenic Escherichia coli (ETEC), similar results were found. Comparing the two periods for differences in patient characteristics, nutritional status, vaccination status, and income, no plausible cause for patients presenting with more severe disease was identified in the later period. As a shift in severity for both cholera and non-cholera was observed, these results indicate that the altered El Tor strain cannot fully explain the difference in cholera severity before and after 2001. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Improving immunization approaches to cholera.

    Science.gov (United States)

    Saha, Amit; Rosewell, Alexander; Hayen, Andrew; MacIntyre, C Raina; Qadri, Firdausi

    2017-03-01

    Cholera's impact is greatest in resource-limited countries. In the last decade several large epidemics have led to a global push to improve and implement the tools for cholera prevention and control. Areas covered: PubMed, Google Scholar and the WHO website were searched to review the literature and summarize the current status of cholera vaccines to make recommendations on improving immunization approaches to cholera. Oral cholera vaccines (OCVs) have demonstrated their effectiveness in endemic, outbreak response and emergency settings, highlighting their potential for wider adoption. While two doses of the currently available OCVs are recommended by manufacturers, a single dose would be easier to implement. Encouragingly, recent studies have shown that cold chain requirements may no longer be essential. The establishment of the global OCV stockpile in 2013 has been a major advance in cholera preparedness. New killed and live-attenuated vaccines are being actively explored as candidate vaccines for endemic settings and/or as a traveller's vaccine. The recent advances in cholera vaccination approaches should be considered in the global cholera control strategy. Expert commentary: The development of affordable cholera vaccines is a major success to improve cholera control. New vaccines and country specific interventions will further reduce the burden of this disease globally.

  7. Retrograde trafficking of AB₅ toxins: mechanisms to therapeutics.

    Science.gov (United States)

    Mukhopadhyay, Somshuvra; Linstedt, Adam D

    2013-10-01

    Bacterial AB5 toxins are a clinically relevant class of exotoxins that include several well-known members such as Shiga, cholera, and pertussis toxins. Infections with toxin-producing bacteria cause devastating human diseases that affect millions of individuals each year and have no definitive medical treatment. The molecular targets of AB5 toxins reside in the cytosol of infected cells, and the toxins reach the cytosol by trafficking through the retrograde membrane transport pathway that avoids degradative late endosomes and lysosomes. Focusing on Shiga toxin as the archetype member, we review recent advances in understanding the molecular mechanisms involved in the retrograde trafficking of AB5 toxins and highlight how these basic science advances are leading to the development of a promising new therapeutic approach based on inhibiting toxin transport.

  8. Stool C difficile toxin

    Science.gov (United States)

    Antibiotic associated colitis - toxin; Colitis - toxin; Pseudomembranous - toxin; Necrotizing colitis - toxin; C difficile - toxin ... not recently taken antibiotics. This condition is called pseudomembranous colitis .

  9. RpoS controls the Vibrio cholerae mucosal escape response.

    Directory of Open Access Journals (Sweden)

    Alex Toftgaard Nielsen

    2006-10-01

    Full Text Available Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of V. cholerae O1-infected rabbit ileal loops captured a distinctive stage in the infectious process: 12 h post-inoculation, bacteria detach from the epithelial surface and move into the fluid-filled lumen. Designated the "mucosal escape response," this phenomenon requires RpoS, the stationary phase alternative sigma factor. Quantitative in vivo localization assays corroborated the rpoS phenotype and showed that it also requires HapR. Expression profiling of bacteria isolated from ileal loop fluid and mucus demonstrated a significant RpoS-dependent upregulation of many chemotaxis and motility genes coincident with the emigration of bacteria from the epithelial surface. In stationary phase cultures, RpoS was also required for upregulation of chemotaxis and motility genes, for production of flagella, and for movement of bacteria across low nutrient swarm plates. The hapR mutant produced near-normal numbers of flagellated cells, but was significantly less motile than the wild-type parent. During in vitro growth under virulence-inducing conditions, the rpoS mutant produced 10- to 100-fold more cholera toxin than the wild-type parent. Although the rpoS mutant caused only a small over-expression of the genes encoding cholera toxin in the ileal loop, it resulted in a 30% increase in fluid accumulation compared to the wild-type. Together, these results show that the mucosal escape response is orchestrated by an RpoS-dependent genetic program that activates chemotaxis and motility functions. This may furthermore coincide with reduced virulence gene expression, thus preparing the organism for the next stage in its life cycle.

  10. Occurrence of a stonefish toxin-like toxin in the venom of the rabbitfish Siganus fuscescens.

    Science.gov (United States)

    Kiriake, Aya; Ishizaki, Shoichiro; Nagashima, Yuji; Shiomi, Kazuo

    2017-12-15

    Rabbitfish belonging to the order Perciformes are well-known venomous fish that are frequently involved in human accidents. However little research has been done into either the whole venom toxicities or the structures and properties of their venom toxins. In this study, we first examined biological activities of the crude venom extract prepared from dorsal spines of Siganus fuscescens, a rabbitfish most commonly found along the coasts of Japan. As a result, the crude venom extract was shown to have mouse-lethal activity, hemolytic activity against rabbit erythrocytes, edema-forming activity and nociceptive activity, similar to the known scorpaeniform fish toxins (stonefish toxins and their analogues). Then, the primary structure of the S. fuscescens toxin was successfully elucidated by the same cDNA cloning strategy as previously employed for the toxins of some scorpaeniform fish (lionfish, devil stinger and waspfish). The S. fuscescens toxin is obviously an analogue of stonefish toxins, being composed of two kinds of subunits, an α-subunit of 703 amino acid residues and a β-subunit of 699 amino acid residues. Furthermore, the genes encoding both subunits were cloned from genomic DNA and shown to have an architecture of three exons and two introns, as reported for those of the scorpaeniform fish toxins. This study is the first to demonstrate the occurrence of stonefish toxin-like toxins in perciform fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.

    2015-12-08

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  12. 3-Amino 1,8-naphthalimide, a structural analog of the anti-cholera drug virstatin inhibits chemically-biased swimming and swarming motility in vibrios.

    Science.gov (United States)

    Wang, Hongxia; Silva, Anisia J; Benitez, Jorge A

    2017-06-01

    A screen for inhibitors of Vibrio cholerae motility identified the compound 3-amino 1,8-naphthalimide (3-A18NI), a structural analog of the cholera drug virstatin. Similar to virstatin, 3-A18NI diminished cholera toxin production. In contrast, 3-A18NI impeded swimming and/or swarming motility of V. cholerae and V. parahemolyticus suggesting that it could target the chemotaxis pathway shared by the polar and lateral flagellar system of vibrios. 3-A18NI did not inhibit the expression of V. cholerae major flagellin FlaA or the assembly of its polar flagellum. Finally, 3-A18NI enhanced V. cholerae colonization mimicking the phenotype of chemotaxis mutants that exhibit counterclockwise-biased flagellum rotation. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Cholera in Turkana.

    Science.gov (United States)

    1998-11-01

    An outbreak of cholera which killed 17 people at Kalokol on the shores of Lake Turkana has been brought under control. Rift Valley provincial medical officer, Dr. Kenneth Chebet, said 369 cases had been attended to within 1 month but no new cases were now being seen. AMFEF airlifted medical supplies to augment government efforts in the affected areas. Chiefs meetings were held at which clinical officers advised residents on how to curb the spread of the disease. full text

  14. Factors associated with virulence and survival in environmental and clinical isolates of Vibrio cholerae O1 and non O1 in Romania.

    Science.gov (United States)

    Israil, Anca; Balotescu, Carmen; Bucurenci, Nadia; Năcescu, Nadia; Cedru, Claudia; Popa, Cornelia; Ciufecu, C

    2003-01-01

    Four hundred ninety seven strains of Vibrio cholerae selected from isolates in Romania in the last decade 1990-1999 were investigated for antibiotic resistance and for classical and putative virulence factors. V. cholerae O1 strains predominated in clinical cases and non O1 strains in the environment, excepting in 1992 when non O1 strains were frequent in clinical and environmental sources. V. cholerae O1 strains previously susceptible to tetracycline acquired clinically significant resistance to this drug during 1993-1994, but this trend was reversed in 1995, following the introduction of nalidixic acid in cholera treatment in 1994. V. cholerae O1 and non O1 clinical isolates acquired simultaneous resistance to the vibriostatic agent O/129 and cotrimoxazole during 1994-1995. High levels of intrinsic resistance to multiple antibiotics were exhibited by all strains examined. The presence of cholera toxin (CT) was concentrated in clinical V. cholerae O1 strains and was substituted in clinical non O1 strains by four putative virulence markers (Kanagawa haemolysin, slime, lipase, and colonial opacity). Colonial opacity (30%) was present only in clinical isolates of V. cholerae non O1. Pigmentogenesis (11.7%) has present only in environmental sources. Antibioresistance profiles differ for V. cholerae O1 and non O1 strains with respect to their source of isolation. This aspect may imply a role in virulence and survival of V. cholerae in the natural environment where they may serve as a reservoir of virulence and multiple drug resistance genes.

  15. Colonic dysfunction during cholera infection

    NARCIS (Netherlands)

    Speelman, P.; Butler, T.; Kabir, I.; Ali, A.; Banwell, J.

    1986-01-01

    To study the function of the colon in cholera, 12 patients with acute cholera diarrhea were subjected to measurements of ileocecal flow rates, fecal flow rates, and ionic compositions of stool and ileocecal fluid. Subtraction of fecal flow rates from ileocecal flow rates was taken as a measure of

  16. Environmental Monitoring of Endemic Cholera

    Science.gov (United States)

    ElNemr, W.; Jutla, A. S.; Constantin de Magny, G.; Hasan, N. A.; Islam, M.; Sack, R.; Huq, A.; Hashem, F.; Colwell, R.

    2012-12-01

    Cholera remains a major public health threat. Since Vibrio cholerae, the causative agent of the disease, is autochthonous to riverine, estuarine, and coastal waters, it is unlikely the bacteria can be eradicated from its natural habitat. Prediction of disease, in conjunction with preventive vaccination can reduce the prevalence rate of a disease. Understanding the influence of environmental parameters on growth and proliferation of bacteria is an essential first step in developing prediction methods for outbreaks. Large scale geophysical variables, such as SST and coastal chlorophyll, are often associated with conditions favoring growth of V. cholerae. However, local environmental factors, meaning biological activity in ponds from where the bulk of populations in endemic regions derive water for daily usage, are either neglected or oversimplified. Using data collected from several sites in two geographically distinct locations in South Asia, we have identified critical local environmental factors associated with cholera outbreak. Of 18 environmental variables monitored for water sources in Mathbaria (a coastal site near the Bay of Bengal) and Bakergonj (an inland site) of Bangladesh, water depth and chlorophyll were found to be important factors associated with initiation of cholera outbreaks. Cholera in coastal regions appears to be related to intrusion. However, monsoonal flooding creates conditions for cholera epidemics in inland regions. This may be one of the first attempts to relate in-situ environmental observations with cholera. We anticipate that it will be useful for further development of prediction models in the resource constrained regions.

  17. Toxigenic Vibrio cholerae O1 in vegetables and fish raised in wastewater irrigated fields and stabilization ponds during a non-cholera outbreak period in Morogoro, Tanzania: an environmental health study.

    Science.gov (United States)

    Hounmanou, Yaovi M G; Mdegela, Robinson H; Dougnon, Tamègnon V; Mhongole, Ofred J; Mayila, Edward S; Malakalinga, Joseph; Makingi, George; Dalsgaard, Anders

    2016-10-18

    Cholera, one of the world's deadliest infectious diseases, remains rampant and frequent in Tanzania and thus hinders existing control measures. The present study was undertaken to evaluate the occurrence of toxigenic Vibrio cholerae O1 in wastewater, fish and vegetables during a non-outbreak period in Morogoro, Tanzania. From October 2014 to February 2015, 60 wastewater samples, 60 fish samples from sewage stabilization ponds and 60 wastewater irrigated vegetable samples were collected. Samples were cultured for identification of V. cholerae using conventional bacteriological methods. Isolates were confirmed as V. cholerae by detection of the outer membrane protein gene (ompW) using polymerase chain reaction (PCR). Isolates were further tested for antibiotic susceptibility and presence of virulence genes including, cholera enterotoxin gene (ctx), the toxin co-regulated pilus gene (tcpA) and the haemolysin gene (hlyA). The prevalence of V. cholerae in wastewater, vegetables and fish was 36.7, 21.7 and 23.3 %, respectively. Two isolates from fish gills were V. cholerae O1 and tested positive for ctx and tcpA. One of these contained in addition the hlyA gene while five isolates from fish intestines tested positive for tcpA. All V. cholerae isolates were resistant to ampicillin, amoxicillin and some to tetracycline, but sensitive to gentamicin, chloramphenicol, and ciprofloxacin. Our results show that toxigenic and drug-resistant V. cholerae O1 species are present and persist in aquatic environments during a non-cholera outbreak period. This is of public health importance and shows that such environments may be important as reservoirs and in the transmission of V. cholerae O1.

  18. Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways.

    Science.gov (United States)

    Bourque, Daniel L; Bhuiyan, Taufiqur Rahman; Genereux, Diane P; Rashu, Rasheduzzaman; Ellis, Crystal N; Chowdhury, Fahima; Khan, Ashraful I; Haq Alam, Nur; Lazina Hossain, Anik Paul; Mayo-Smith, Leslie M; Charles, Richelle C; Weil, Ana A; LaRocque, Regina C; Calderwood, Stephen B; Ryan, Edward T; Karlsson, Elinor K; Qadri, Firdausi; Harris, Jason B

    2017-11-13

    To better understand the innate immune response to Vibrio cholerae infection, we tracked gene expression in the duodenal mucosa of eleven Bangladeshi adults with cholera, using biopsies obtained immediately after rehydration and at 30 and 180 days later. We identified differentially expressed genes and performed an analysis to predict differentially regulated pathways and upstream regulators. During acute cholera, there was a broad increase in the expression of genes associated with innate immunity, including activation of the NF-κB, MAPK, and TLR-mediated signaling pathways, which unexpectedly persisted even 30 days after infection. Focusing on early differences in gene expression, we identified 37 genes that were differentially expressed on days 2 and 30 across eleven participants. These genes included the endosomal toll like receptor, TLR8, which was expressed in lamina propria cells. Underscoring a potential role for endosomal TLR-mediated signaling in vivo, our pathway analysis found that IRF7 and interferons β1 and α2 were among the top upstream regulators activated during cholera. Among innate immune effectors, we found that DUOX2, an NADPH-oxidase involved in the maintenance of intestinal homeostasis, was upregulated in intestinal epithelial cells during cholera. Notably, the observed increases in DUOX2 and TLR8 expression were also modeled in vitro when stimulating Caco-2 or THP-1 cells, respectively, with live V. cholerae but not with heat killed organisms or cholera toxin alone. These previously unidentified features of the innate immune response to V. cholerae extend our understanding mucosal immune signaling pathways and effectors activated in vivo following cholera. Copyright © 2017 American Society for Microbiology.

  19. Genome engineering in Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Skovgaard, Ole; Ducos-Galand, Magaly

    2012-01-01

    importance in public health, Vibrio cholerae, the causative agent of cholera, has become a preferred model to study bacteria with multipartite genomes. However, most in vivo studies in V. cholerae have been hampered by its genome architecture, as it is difficult to give phenotypes to a specific chromosome....... This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae...... in V. cholerae and the general question concerning bacteria carrying circular chromosomes--by looking at the effect of chromosome size on topological issues. In this article, we show that Dam, RctB, and ParA2/ParB2 are strictly essential for chrII origin maintenance, and we formally demonstrate...

  20. Environmental Factors Influencing Epidemic Cholera

    Science.gov (United States)

    Jutla, Antarpreet; Whitcombe, Elizabeth; Hasan, Nur; Haley, Bradd; Akanda, Ali; Huq, Anwar; Alam, Munir; Sack, R. Bradley; Colwell, Rita

    2013-01-01

    Cholera outbreak following the earthquake of 2010 in Haiti has reaffirmed that the disease is a major public health threat. Vibrio cholerae is autochthonous to aquatic environment, hence, it cannot be eradicated but hydroclimatology-based prediction and prevention is an achievable goal. Using data from the 1800s, we describe uniqueness in seasonality and mechanism of occurrence of cholera in the epidemic regions of Asia and Latin America. Epidemic regions are located near regional rivers and are characterized by sporadic outbreaks, which are likely to be initiated during episodes of prevailing warm air temperature with low river flows, creating favorable environmental conditions for growth of cholera bacteria. Heavy rainfall, through inundation or breakdown of sanitary infrastructure, accelerates interaction between contaminated water and human activities, resulting in an epidemic. This causal mechanism is markedly different from endemic cholera where tidal intrusion of seawater carrying bacteria from estuary to inland regions, results in outbreaks. PMID:23897993

  1. Epidemic cholera spreads like wildfire

    Science.gov (United States)

    Roy, Manojit; Zinck, Richard D.; Bouma, Menno J.; Pascual, Mercedes

    2014-01-01

    Cholera is on the rise globally, especially epidemic cholera which is characterized by intermittent and unpredictable outbreaks that punctuate periods of regional disease fade-out. These epidemic dynamics remain however poorly understood. Here we examine records for epidemic cholera over both contemporary and historical timelines, from Africa (1990-2006) and former British India (1882-1939). We find that the frequency distribution of outbreak size is fat-tailed, scaling approximately as a power-law. This pattern which shows strong parallels with wildfires is incompatible with existing cholera models developed for endemic regions, as it implies a fundamental role for stochastic transmission and local depletion of susceptible hosts. Application of a recently developed forest-fire model indicates that epidemic cholera dynamics are located above a critical phase transition and propagate in similar ways to aggressive wildfires. These findings have implications for the effectiveness of control measures and the mechanisms that ultimately limit the size of outbreaks.

  2. In a time of cholera.

    Science.gov (United States)

    Grace, P A

    2014-03-01

    Dr. Nathaniel Alcock in his book A treatise on cholera described 22 cases of cholera that he treated in 1832. Blood-letting, either by leeches or venesection, was an essential part of the treatment. The belief was that reducing the blood volume would relieve stress on the heart and lungs allowing for better function. The receipts of the Townsend Street Cholera Hospital where Dr. Alcock worked show how extensive the practice was. Outside Dublin, local Boards of Health dealt with the cholera epidemic. Various public measures such as street cleaning and removal of patients to temporary hospitals were undertaken and various cures were tried. The overall mortality rate from cholera in Ireland during the epidemic was 38 %, but in some areas much higher. Even as cholera was spreading in the 1830s, a number of doctors were showing that intravenous fluids could dramatically alter the course of the disease. Unfortunately, their work was ignored and blood-letting continued to be a major component of the treatment of cholera for another 55 years.

  3. [Prophage CTXphi genome variability and its role in alteration of Vibrio cholerae El Tor virulence characteristics].

    Science.gov (United States)

    Smirnova, N I; Osin, A V; Nefedov, K S; Kul'shan', T A; Zadnova, S P; Livanova, L F; Toporkov, A V; Kutyrev, V V

    2007-01-01

    Comparative analysis of CTXphi prophage genome of 366 V. cholerae El Tor strains isolated from infected people and water was carried out using the polymerase chain reaction. Four groups of vibrios, which carry different combinations of ctxA, zot, and ace genes from core region of CTXphi prophage coding key (cholera enterotoxin) and accessory (Zot and Ace toxins) pathogenicity factors, were determined: ctxA(+) zot(-) ace(+), ctxA(-) zot(+) ace(+), ctxA(-) zot(+) ace(-), ctxA(-) zot(-) ace(+). Vibrios that had lost all tested genes were also revealed. Genomic rearrangements occurring in water environment in virulent V. cholerae strains, which acquired foreign pathogenicity genes necessary for their existence in human organism, were proposed as one of the mechanisms of formation of clones with an incomplete or no prophage. Infection process in model animals challenged with wild and isogenic strains of V. cholerae differing in the set of the phage genes (ctxA, zot, and ace) was comparatively analyzed. It was shown that variability of CTXphi prophage genome was an important factor of modification of cholera vibrios virulent characteristics. Obtained data point to usefulness of ctxA, zot, and ace phage genes detection in wild V. cholerae isolates as it could permit evaluation of their virulent potential determining the severity of the infection.

  4. Molecular characterisation of Vibrio cholerae O1 strains carrying an SXT/R391-like element from cholera outbreaks in Kenya: 1994-2007

    Directory of Open Access Journals (Sweden)

    Goddeeris Bruno M

    2009-12-01

    Full Text Available Abstract Background Over the last decade, cholera outbreaks in parts of Kenya have become common. Although a number of recent studies describe the epidemiology of cholera in Kenya, there is paucity of information concerning the diversity and occurrence of mobile genetic elements in Vibrio cholerae strains implicated in these outbreaks. A total of 65 Vibrio cholerae O1 El Tor serotype Inaba isolated between 1994 and 2007 from various outbreaks in Kenya were investigated for mobile genetic elements including integrons, transposons, the integrating conjugative elements (ICEs, conjugative plasmids and for their genotypic relatedness. Results All the strains were haemolytic on 5% sheep blood and positive for the Vibrio cholerae El Tor-specific haemolysin toxin gene (hylA by PCR. They all contained strB, sulII, floR and the dfrA1 genes encoding resistance to streptomycin, sulfamethoxazole, chloramphenicol and trimethoprim respectively. These genes, together with an ICE belonging to the SXT/R391 family were transferable to the rifampicin-resistant E. coli C600 en bloc. All the strains were negative for integron class 1, 2 and 3 and for transposase gene of transposon Tn7 but were positive for integron class 4 and the trpM gene of transposon Tn21. No plasmids were isolated from any of the 65 strains. All the strains were also positive for all V. cholera El Tor pathogenic genes except the NAG- specific heat-stable toxin (st gene. None of the strains were positive for virulence genes associated with the V. cholerae classical biotype. All the strains were positive for El Tor-specific CTXphi bacteriophage rstrR repressor gene (CTXETΦ but negative for the Classical, Calcutta, and the Environmental repressor types. Pulse Field Gel Electrophoresis (PFGE showed that regardless of the year of isolation, all the strains bearing the SXT element were clonally related. Conclusions This study demonstrates that the V. cholerae O1 strains carrying an SXT/R391-like

  5. Cholera vaccination in urban Haiti

    National Research Council Canada - National Science Library

    Rouzier, Vanessa; Severe, Karine; Juste, Marc Antoine Jean; Peck, Mireille; Perodin, Christian; Severe, Patrice; Deschamps, Marie Marcelle; Verdier, Rose Irene; Prince, Sabine; Francois, Jeannot; Cadet, Jean Ronald; Guillaume, Florence D; Wright, Peter F; Pape, Jean W

    2013-01-01

    Successful and sustained efforts have been made to curtail the major cholera epidemic that occurred in Haiti in 2010 with the promotion of hygiene and sanitation measures, training of health personnel...

  6. Intranasal coadministration of Cholera toxin with amoeba lysates modulates the secretion of IgA and IgG antibodies, production of cytokines and expression of pIgR in the nasal cavity of mice in the model of Naegleria fowleri meningoencephalitis.

    Science.gov (United States)

    Carrasco-Yepez, Maricela; Campos-Rodriguez, Rafael; Lopez-Reyes, Israel; Bonilla-Lemus, Patricia; Rodriguez-Cortes, Antonio Yahve; Contis-Montes de Oca, Arturo; Jarillo-Luna, Adriana; Miliar-Garcia, Angel; Rojas-Hernandez, Saul

    2014-11-01

    The nasal mucosa is the first contact with antigens to induce IgA response. The role of this site has rarely been studied. We have shown than intranasal administration with Naegleria fowleri lysates plus Cholera toxin (CT) increased the protection (survival up to 100%) against N. fowleri infection in mice and apparently antibodies IgA and IgG together with polymorphonuclear (PMN) cells avoid the attachment of N. fowleri to apical side of the nasal epithelium. We also observed that nasal immunization resulted in the induction of antigen-specific IgG subclasses (IgG1 and IgG2a) in nasal washes at days 3 and 9 after the challenge and IgA and IgG in the nasal cavity, compared to healthy and infected mice. We found that immunization with both treatments, N. fowleri lysates plus CT or CT alone, increased the expression of the genes for alpha chain, its receptor (pIgR), and it also increased the expression of the corresponding proteins evidenced by the ∼65 and ∼74kDa bands, respectively. Since the production of pIgR, IgA and IgG antibodies, is up-regulated by some factors, we analyzed the expression of genes for IL-10, IL-6, IFN-γ, TNF-α and IL-1β by using RT-PCR of nasal passages. Immunization resulted in an increased expression of IL-10, IL-6, and IFN-γ cytokines. We also aimed to examine the possible influences of immunization and challenge on the production of inflammatory cytokines (TNF-α and IL-1β). We observed that the stimulus of immunization inhibits the production of TNF-α compared to the infected group where the infection without immunization causes an increase in it. Thus, it is possible that the coexistence of selected cytokines produced by our immunization model may provide a highly effective immunological environment for the production of IgA, IgG and pIgR as well as a strong activation of the PMN in mucosal effector tissue such as nasal passages. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Development and Validation of a Novel Real-time Assay for the Detection and Quantification of Vibrio cholerae

    DEFF Research Database (Denmark)

    Rashid, Ridwan Bin; Ferdous, Jannataul; Tulsiani, Suhella

    2017-01-01

    Vibrio cholerae O1 and O139 has been known for its ability to cause epidemics. These strains produce cholera toxin which is the main cause of secretory diarrhea. V. cholerae non-O1 and non-O139 strains are also capable of causing gastroenteritis as well as septicemia and peritonitis. It has been...... proven that virulence factors such as T6SS, hapA, rtxA, and hlyA are present in almost all V. cholerae strains. It is imperative that viable but non-culturable cells of V. cholerae are also detected since they are also known to cause diarrhea. Thus, the aim of this study was to develop an assay...... that detects all V. cholerae regardless of their serotype, culturable state, and virulence genes present, by targeting the species specific conserved ompW sequence. The developed assay meets these goals with 100% specificity and is capable of detecting as low as 5.46 copy number of V. cholerae. Detection...

  8. Pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Sekura, R.D.; Moss, J.; Vaughan, M.

    1985-01-01

    This book contains 13 selections. Some of the titles are: Genetic and Functional Studies of Pertussis Toxin Substrates; Effect of Pertussis Toxin on the Hormonal Responsiveness of Different Tissues; Extracellular Adenylate Cyclase of Bordetella pertussis; and GTP-Regulatory Proteins are Introcellular Messagers: A Model for Hormone Action.

  9. Polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Jensen, Lars S; Vogensen, Stine B

    2005-01-01

    Polyamine toxins, isolated from spiders and wasps, have been used as pharmacological tools for the study of ionotropic receptors, but their use have so far been hampered by their lack of selectivity. In this mini-review, we describe how careful synthetic modification of native polyamine toxins have...

  10. Botulinum toxin.

    Science.gov (United States)

    The National Institutes of Health Consensus Development Conference on Clinical Use of Botulinum Toxin brought together neurologists, ophthalmologists, otolaryngologists, speech pathologists, and other health care professionals as well as the public to address: the mechanisms of action of botulinum toxin, the indications and contraindications for botulinum toxin treatment, the general principles of technique of injection and handling for its safe and effective use, and the short-term and long-term side effects and complications of therapy. Following 2 days of presentations by experts and discussion by the audience, a consensus panel weighed the evidence and prepared their consensus statement. Among their findings, the panel recommended that (1) botulinum toxin therapy is safe and effective for treating strabismus, blepharospasm, hemifacial spasm, adductor spasmodic dysphonia, jaw-closing oromandibular dystonia, and cervical dystonia; (2) botulinum toxin is not curative in chronic neurological disorders; (3) the safety of botulinum toxin therapy during pregnancy, breast feeding, and chronic use during childhood is unknown; (4) the long-term effects of chronic treatment with botulinum toxin remain unknown; and (5) botulinum toxin should be administered by committed interdisciplinary teams of physicians and related health care professionals with appropriate instrumentation. The full text of the consensus panel's statement follows.

  11. ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Valeru Soni P

    2012-01-01

    Full Text Available Abstract Background Vibrio cholerae causes the diarrheal disease cholera and utilizes different survival strategies in aquatic environments. V. cholerae can survive as free-living or in association with zooplankton and can build biofilm and rugose colonies. The bacterium expresses cholera toxin (CT and toxin-coregulated pilus (TCP as the main virulence factors. These factors are co-regulated by a transcriptional regulator ToxR, which modulates expression of outer membrane proteins (OmpU and (OmpT. The aims of this study were to disclose the role of ToxR in expression of OmpU and OmpT, biofilm and rugose colony formation as well as in association with the free-living amoeba Acanthamoeba castellanii at different temperatures. Results The toxR mutant V. cholerae produced OmpT, significant biofilm and rugose colonies compared to the wild type that produced OmpU, decreased biofilm and did not form rugoes colonies at 30°C. Interestingly, neither the wild type nor toxR mutant strain could form rugose colonies in association with the amoebae. However, during the association with the amoebae it was observed that A. castellanii enhanced survival of V. cholerae wild type compared to toxR mutant strain at 37°C. Conclusions ToxR does seem to play some regulatory role in the OmpT/OmpU expression shift, the changes in biofilm, rugosity and survival with A. castellanii, suggesting a new role for this regulatory protein in the environments.

  12. 9 CFR 311.3 - Hog cholera.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Hog cholera. 311.3 Section 311.3... CERTIFICATION DISPOSAL OF DISEASED OR OTHERWISE ADULTERATED CARCASSES AND PARTS § 311.3 Hog cholera. (a) The carcasses of all hogs affected with hog cholera shall be condemned. (b) Inconclusive but suspicious symptoms...

  13. Agent-based modelling of cholera diffusion

    NARCIS (Netherlands)

    Augustijn-Beckers, Petronella; Doldersum, Tom; Useya, Juliana; Augustijn, Dionysius C.M.

    2016-01-01

    This paper introduces a spatially explicit agent-based simulation model for micro-scale cholera diffusion. The model simulates both an environmental reservoir of naturally occurring V.cholerae bacteria and hyperinfectious V. cholerae. Objective of the research is to test if runoff from open refuse

  14. Molecular Subtyping in Cholera Outbreak, Laos, 2010

    Science.gov (United States)

    Sithivong, Noikaseumsy; Morita-Ishihara, Tomoko; Vongdouangchanh, Arounnapha; Phouthavane, Traykhouane; Chomlasak, Khampheng; Sisavath, Lay; Khamphaphongphane, Bouaphanh; Sengkeopraseuth, Bounthanom; Vongprachanh, Phengta; Keosavanh, Onechanh; Southalack, Kongmany; Jiyoung, Lee; Tsuyuoka, Reiko; Ohnishi, Makoto

    2011-01-01

    A cholera outbreak in Laos in July 2010 involved 237 cases, including 4 deaths. Molecular subtyping indicated relatedness between the Vibrio cholerae isolates in this and in a 2007 outbreak, uncovering a clonal group of V. cholerae circulating in the Mekong basin. Our finding suggests the subtyping methods will affect this relatedness. PMID:22099098

  15. Signaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin

    Directory of Open Access Journals (Sweden)

    Barkha Khilwani

    2015-08-01

    Full Text Available Pore-forming toxins (PFTs are a distinct class of membrane-damaging cytolytic proteins that contribute significantly towards the virulence processes employed by various pathogenic bacteria. Vibrio cholerae cytolysin (VCC is a prominent member of the beta-barrel PFT (beta-PFT family. It is secreted by most of the pathogenic strains of the intestinal pathogen V. cholerae. Owing to its potent membrane-damaging cell-killing activity, VCC is believed to play critical roles in V. cholerae pathogenesis, particularly in those strains that lack the cholera toxin. Large numbers of studies have explored the mechanistic basis of the cell-killing activity of VCC. Consistent with the beta-PFT mode of action, VCC has been shown to act on the target cells by forming transmembrane oligomeric beta-barrel pores, thereby leading to permeabilization of the target cell membranes. Apart from the pore-formation-induced direct cell-killing action, VCC exhibits the potential to initiate a plethora of signal transduction pathways that may lead to apoptosis, or may act to enhance the cell survival/activation responses, depending on the type of target cells. In this review, we will present a concise view of our current understanding regarding the multiple aspects of these cellular responses, and their underlying signaling mechanisms, evoked by VCC.

  16. Inhibition of enterotoxin from Escherichia coli and Vibrio cholerae by gangliosides from human milk.

    Science.gov (United States)

    Otnaess, A B; Laegreid, A; Ertresvåg, K

    1983-05-01

    Inhibitory activity of enterotoxin from Escherichia coli and Vibrio cholerae was associated with the ganglioside fraction of human milk. Both the milk fat and skim milk contained gangliosides that inhibited the toxins. The most purified milk fraction contained three glycolipid components, of which two migrated close to ganglioside GM1 on thin-layer chromatography plates. A component with a slightly different mobility from GM1 appeared to be associated with the inhibitory activity. Milk ganglioside fraction, derived from 2 ml of human milk, contained 1 to 4 micrograms of lipid-bound sialic acid and completely inhibited 0.1 micrograms of cholera toxin in rabbit intestinal loop experiments. It is suggested that human milk gangliosides, although present only in trace amounts, may be important in protecting infants against enterotoxin-induced diarrhea.

  17. Glucose- but not rice-based oral rehydration therapy enhances the production of virulence determinants in the human pathogen Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Juliane Kühn

    2014-12-01

    Full Text Available Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT, whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings.

  18. Glucose- but not rice-based oral rehydration therapy enhances the production of virulence determinants in the human pathogen Vibrio cholerae.

    Science.gov (United States)

    Kühn, Juliane; Finger, Flavio; Bertuzzo, Enrico; Borgeaud, Sandrine; Gatto, Marino; Rinaldo, Andrea; Blokesch, Melanie

    2014-12-01

    Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT), whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings.

  19. Inhibition of enterotoxin from Escherichia coli and Vibrio cholerae by gangliosides from human milk.

    OpenAIRE

    Otnaess, A B; Laegreid, A; Ertresvåg, K

    1983-01-01

    Inhibitory activity of enterotoxin from Escherichia coli and Vibrio cholerae was associated with the ganglioside fraction of human milk. Both the milk fat and skim milk contained gangliosides that inhibited the toxins. The most purified milk fraction contained three glycolipid components, of which two migrated close to ganglioside GM1 on thin-layer chromatography plates. A component with a slightly different mobility from GM1 appeared to be associated with the inhibitory activity. Milk gangli...

  20. Cholera Vaccination in Urban Haiti

    Science.gov (United States)

    Rouzier, Vanessa; Severe, Karine; Juste, Marc Antoine Jean; Peck, Mireille; Perodin, Christian; Severe, Patrice; Deschamps, Marie Marcelle; Verdier, Rose Irene; Prince, Sabine; Francois, Jeannot; Cadet, Jean Ronald; Guillaume, Florence D.; Wright, Peter F.; Pape, Jean W.

    2013-01-01

    Successful and sustained efforts have been made to curtail the major cholera epidemic that occurred in Haiti in 2010 with the promotion of hygiene and sanitation measures, training of health personnel and establishment of treatment centers nationwide. Oral cholera vaccine (OCV) was introduced by the Haitian Ministry of Health as a pilot project in urban and rural areas. This paper reports the successful OCV pilot project led by GHESKIO Centers in the urban slums of Port-au-Prince where 52,357 persons received dose 1 and 90.8% received dose 2; estimated coverage of the at-risk community was 75%. This pilot study demonstrated the effort, community mobilization, and organizational capacity necessary to achieve these results in a challenging setting. The OCV intervention paved the way for the recent launching of a national cholera vaccination program integrated in a long-term ambitious and comprehensive plan to address Haiti's critical need in water security and sanitation. PMID:24106194

  1. Environmental signatures associated with cholera epidemics.

    Science.gov (United States)

    Constantin de Magny, Guillaume; Murtugudde, Raghu; Sapiano, Mathew R P; Nizam, Azhar; Brown, Christopher W; Busalacchi, Antonio J; Yunus, Mohammad; Nair, G Balakrish; Gil, Ana I; Lanata, Claudio F; Calkins, John; Manna, Byomkesh; Rajendran, Krishnan; Bhattacharya, Mihir Kumar; Huq, Anwar; Sack, R Bradley; Colwell, Rita R

    2008-11-18

    The causative agent of cholera, Vibrio cholerae, has been shown to be autochthonous to riverine, estuarine, and coastal waters along with its host, the copepod, a significant member of the zooplankton community. Temperature, salinity, rainfall and plankton have proven to be important factors in the ecology of V. cholerae, influencing the transmission of the disease in those regions of the world where the human population relies on untreated water as a source of drinking water. In this study, the pattern of cholera outbreaks during 1998-2006 in Kolkata, India, and Matlab, Bangladesh, and the earth observation data were analyzed with the objective of developing a prediction model for cholera. Satellite sensors were used to measure chlorophyll a concentration (CHL) and sea surface temperature (SST). In addition, rainfall data were obtained from both satellite and in situ gauge measurements. From the analyses, a statistically significant relationship between the time series for cholera in Kolkata, India, and CHL and rainfall anomalies was determined. A statistically significant one month lag was observed between CHL anomaly and number of cholera cases in Matlab, Bangladesh. From the results of the study, it is concluded that ocean and climate patterns are useful predictors of cholera epidemics, with the dynamics of endemic cholera being related to climate and/or changes in the aquatic ecosystem. When the ecology of V. cholerae is considered in predictive models, a robust early warning system for cholera in endemic regions of the world can be developed for public health planning and decision making.

  2. Epidemiology of Cholera in the Philippines

    Science.gov (United States)

    Lopez, Anna Lena; Macasaet, Lino Y.; Ylade, Michelle; Tayag, Enrique A.; Ali, Mohammad

    2015-01-01

    Background Despite being a cholera-endemic country, data on cholera in the Philippines remain sparse. Knowing the areas where cholera is known to occur and the factors that lead to its occurrence will assist in planning preventive measures and disaster mitigation. Methods Using sentinel surveillance data, PubMed and ProMED searches covering information from 2008–2013 and event-based surveillance reports from 2010–2013, we assessed the epidemiology of cholera in the Philippines. Using spatial log regression, we assessed the role of water, sanitation and population density on the incidence of cholera. Results and Discussion We identified 12 articles from ProMED and none from PubMed that reported on cholera in the Philippines from 2008 to 2013. Data from ProMed and surveillance revealed 42,071 suspected and confirmed cholera cases reported from 2008 to 2013, among which only 5,006 were confirmed. 38 (47%) of 81 provinces and metropolitan regions reported at least one confirmed case of cholera and 32 (40%) reported at least one suspected case. The overall case fatality ratio in sentinel sites was 0.62%, but was 2% in outbreaks. All age groups were affected. Using both confirmed and suspected cholera cases, the average annual incidence in 2010–2013 was 9.1 per 100,000 population. Poor access to improved sanitation was consistently associated with higher cholera incidence. Paradoxically, access to improved water sources was associated with higher cholera incidence using both suspected and confirmed cholera data sources. This finding may have been due to the breakdown in the infrastructure and non-chlorination of water supplies, emphasizing the need to maintain public water systems. Conclusion Our findings confirm that cholera affects a large proportion of the provinces in the country. Identifying areas most at risk for cholera will support the development and implementation of policies to minimize the morbidity and mortality due to this disease. PMID:25569505

  3. Epidemiology of cholera in the Philippines.

    Directory of Open Access Journals (Sweden)

    Anna Lena Lopez

    2015-01-01

    Full Text Available Despite being a cholera-endemic country, data on cholera in the Philippines remain sparse. Knowing the areas where cholera is known to occur and the factors that lead to its occurrence will assist in planning preventive measures and disaster mitigation.Using sentinel surveillance data, PubMed and ProMED searches covering information from 2008-2013 and event-based surveillance reports from 2010-2013, we assessed the epidemiology of cholera in the Philippines. Using spatial log regression, we assessed the role of water, sanitation and population density on the incidence of cholera.We identified 12 articles from ProMED and none from PubMed that reported on cholera in the Philippines from 2008 to 2013. Data from ProMed and surveillance revealed 42,071 suspected and confirmed cholera cases reported from 2008 to 2013, among which only 5,006 were confirmed. 38 (47% of 81 provinces and metropolitan regions reported at least one confirmed case of cholera and 32 (40% reported at least one suspected case. The overall case fatality ratio in sentinel sites was 0.62%, but was 2% in outbreaks. All age groups were affected. Using both confirmed and suspected cholera cases, the average annual incidence in 2010-2013 was 9.1 per 100,000 population. Poor access to improved sanitation was consistently associated with higher cholera incidence. Paradoxically, access to improved water sources was associated with higher cholera incidence using both suspected and confirmed cholera data sources. This finding may have been due to the breakdown in the infrastructure and non-chlorination of water supplies, emphasizing the need to maintain public water systems.Our findings confirm that cholera affects a large proportion of the provinces in the country. Identifying areas most at risk for cholera will support the development and implementation of policies to minimize the morbidity and mortality due to this disease.

  4. [Comparative genomic analysis of vibrio cholerae El Tor preseventh and seventh pandemic strains isolated in various periods].

    Science.gov (United States)

    Osin, A V; Nefedov, K S; Eroshenko, G A; Smirnova, N I

    2005-01-01

    Genetic organization of 52 Vibrio cholerae El Tor biotype preseventh and seventh pandemic strains isolated in various periods was studied by PCR assay and DNA-DNA hybridization. It was established that the genome of most ancient of analyzed strains isolated from a diarrhea patient in 1910 was devoid of CTX and RS1 prophages, vibrio pathogenicity islands (VPI and VPI-2), and pandemic islands (VSP-1 and VSP-2) that contain key virulence genes. The appearance of pathogenic properties in cholera vibrios for the first time causing a local outbreak of cholera in 1937 is connected with the acquisition of VPI and CTX that carried genes tcpA and ctx-AB, respectively, which are responsible for the colonization of small intestine and encode the production of cholera toxin. The appearance of seventh pandemic agent for cholera was shown to correlate with the acquisition by its precursor of two additional blocks of genes VSP-1 and VSP-2. This finding strongly supports the involvement of these genes in formation of the pandemic potential in strains. Molecular typing methods allowed elucidation of differences in the genetic organization between prepandemic and pandemic strains. The detected variability of the genome of contemporary virulent strains may be a reason for the occurrence of etiological agent for cholera with new properties.

  5. Transmission and Toxigenic Potential of Vibrio cholerae in Hilsha Fish (Tenualosa ilisha) for Human Consumption in Bangladesh

    DEFF Research Database (Denmark)

    Hossain, Zenat Z.; Farhana, Israt; Tulsiani, Suhella M.

    2018-01-01

    potential of V. cholerae in Hilsha (Tenualosa ilisha), a commonly caught and consumed fish that exhibits a life cycle in both freshwater and marine environments in Bangladesh. During the period from October 2014 to October 2015, samples from the gills, recta, intestines, and scale swabs of a total of 48...... for the cholera toxin gene. Other pathogenic genes such as stn/sto, hlyA, chxA, SXT, rtxC, and HA-P were detected. The type three secretion system gene cluster (TTSS) was present in 18% (24 of 133) of non-O1/O139 isolates. The antibiotic susceptibility test revealed that the isolates conferred high resistance...

  6. Cholera in the United States

    Centers for Disease Control (CDC) Podcasts

    2011-11-08

    Anna Newton, Surveillance Epidemiologist at CDC, discusses cholera that was brought to the United States during an outbreak in Haiti and the Dominican Republic (Hispaniola).  Created: 11/8/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 11/8/2011.

  7. Maladi Kolera PSA (:60) (Cholera)

    Centers for Disease Control (CDC) Podcasts

    2010-02-18

    This is an important public health announcement about ways you can prevent the spread of cholera. Language: Haitian Creole.  Created: 2/18/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 2/18/2010.

  8. BOTULINUM TOXIN

    Science.gov (United States)

    Nigam, P K; Nigam, Anjana

    2010-01-01

    Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C1, C2, D, E, F and G). All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice. PMID:20418969

  9. Botulinum toxin

    Directory of Open Access Journals (Sweden)

    Nigam P

    2010-01-01

    Full Text Available Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G. All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice.

  10. Antibiotic Susceptibility Patterns of Vibrio cholerae isolates

    Directory of Open Access Journals (Sweden)

    S D Shrestha

    2010-09-01

    Full Text Available INTRODUCTION: Cholera is one of the most common diarrhoeal diseases in Nepal. Etiological agent of cholera is Vibrio cholerae which removes essential body fluids, salts and vital nutrients, which are necessary for life causing dehydration and malnutrition. Emerging antimicrobial resistant is common. The aim of the present study was to determine the antibiotic susceptibility pattern of cholera patients in Nepal. METHODS: All the laboratory works were conducted in the bacteriology section of National Public Health Laboratory, Teku from March to September 2005. During this period a total of 340 stool samples from diarrhoeal patients were collected and processed according to the standard laboratory methods. Each patient suffering from diarrhoea was directly interviewed for his or her clinical history during sample collection. RESULTS: A total of 340 stool samples were processed and studied from both sex including all ages of patients. Among the processed sample 53 Vibrio cholerae cases were found. All isolated Vibrio cholerae O1 were El Tor, Inaba. All isolated (100% Vibrio cholerae O1 were sensitive to Ampicillin, Ciprofloxacin, Erythromycin and Tetracycline whereas all were resistant to Nalidixic acid and Cotrimoxazole. Only 15.1% cases were sensitive to Furazolidone whereas 84.9% were resistant. CONCLUSION: All V. cholerae strains isolated in this study were found resistant to Multi Drug Resistant (resistant to at least two antibiotics of different group. Ampicillin, Ciprofloxacin, Erythromycin and Tetracycline were found still more potent antibiotics against Vibrio cholerae isolated during the study. Keywords: antibiotics, susceptibility, Vibrio cholera.

  11. How Will Climate Change Impact Cholera Outbreaks?

    Science.gov (United States)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  12. combating cholera epidemics by targeting reservoirs of infection

    African Journals Online (AJOL)

    2002-03-03

    home of cholera", hence the name. "Asiatic cholera". The disease had largely been confined to the two countries up to the second decade of the twentieth century(3). Between 1817 and 1961, cholera spread by sea routes causing ...

  13. Shiga toxin induces membrane reorganization and formation of long range lipid order

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Johannes, Ludger; Simonsen, Adam Cohen

    2015-01-01

    microscopy. A content of 1% of glycosphingolipid globotriaosylceramide (Gb3) receptor lipids in a bilayer was used to bind the Shiga toxin B-subunit to the surface of gel domains. Binding of the Shiga toxin B-subunit to lipids led to the modulation of orientational membrane texture in gel domains and induced...... membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids...

  14. Impact of solar irradiation on cholera toxin secretion by different strains of Vibrio cholerae

    CSIR Research Space (South Africa)

    Ssemakalu, CC

    2013-09-01

    Full Text Available -14 thereby reducing the risk associated with the acquisition of deadly water-related infections.15,16 The mechanisms through which solar ultraviolet radiation (SUVR) inactivates the growth of water contaminating microorganisms are quite complex... to natural sunlight by placing them horizontally on the roof of a building at an elevation of 1400 m in Pretoria, South Africa (25o44’50.40”S, 28o16’50.50”E). Control samples were prepared in a similar manner and placed next to the experimental ones...

  15. Evaluation of a Novel Inaba Cholera Conjugate Vaccine in Mice

    OpenAIRE

    Eckhoff, Grace

    2015-01-01

    Vibrio cholerae is a non-invasive Gram-negative enteric pathogen that causes cholera, a severe dehydrating diarrheal illness of humans. Cholera is responsible for substantial morbidity and mortality in both endemic and epidemic settings. Current oral killed vaccines do not provide protection that lasts as long as natural cholera infection, and current cholera vaccines have greatly reduced efficacy in children, the population most affected by cholera in endemic areas. Protection against choler...

  16. Controlling endemic cholera with oral vaccines.

    Directory of Open Access Journals (Sweden)

    Ira M Longini

    2007-11-01

    Full Text Available Although advances in rehydration therapy have made cholera a treatable disease with low case-fatality in settings with appropriate medical care, cholera continues to impose considerable mortality in the world's most impoverished populations. Internationally licensed, killed whole-cell based oral cholera vaccines (OCVs have been available for over a decade, but have not been used for the control of cholera. Recently, these vaccines were shown to confer significant levels of herd protection, suggesting that the protective potential of these vaccines has been underestimated and that these vaccines may be highly effective in cholera control when deployed in mass immunization programs. We used a large-scale stochastic simulation model to investigate the possibility of controlling endemic cholera with OCVs.We construct a large-scale, stochastic cholera transmission model of Matlab, Bangladesh. We find that cholera transmission could be controlled in endemic areas with 50% coverage with OCVs. At this level of coverage, the model predicts that there would be an 89% (95% confidence interval [CI] 72%-98% reduction in cholera cases among the unvaccinated, and a 93% (95% CI 82%-99% reduction overall in the entire population. Even a more modest coverage of 30% would result in a 76% (95% CI 44%-95% reduction in cholera incidence for the population area covered. For populations that have less natural immunity than the population of Matlab, 70% coverage would probably be necessary for cholera control, i.e., an annual incidence rate of < or = 1 case per 1,000 people in the population.Endemic cholera could be reduced to an annual incidence rate of < or = 1 case per 1,000 people in endemic areas with biennial vaccination with OCVs if coverage could reach 50%-70% depending on the level of prior immunity in the population. These vaccination efforts could be targeted with careful use of ecological data.

  17. Cholera: a new homeland in Africa?

    Science.gov (United States)

    Gaffga, Nicholas H; Tauxe, Robert V; Mintz, Eric D

    2007-10-01

    Cholera was largely eliminated from industrialized countries by water and sewage treatment over a century ago. Today it remains a significant cause of morbidity and mortality in developing countries, where it is a marker for inadequate drinking water and sanitation infrastructure. Death from cholera can be prevented through simple treatment-oral, or in severe cases, intravenous rehydration. The cholera case-fatality rate therefore reflects access to basic health care. We reviewed World Health Organization (WHO) data on cholera cases and deaths reported between 1960 and 2005. In the 1960s, at the beginning of the seventh and current cholera pandemic, cholera had an exclusively Asian focus. In 1970, the pandemic reached sub-Saharan Africa, where it has remained entrenched. In 1991, the seventh pandemic reached Latin America, resulting in nearly 1 million reported cases from the region within 3 years. In contrast to the persisting situation in Africa, cholera was largely eliminated from Latin America within a decade. In 2005, 31 (78%) of the 40 countries that reported indigenous cases of cholera to WHO were in sub-Saharan Africa. The reported incidence of indigenous cholera in sub-Saharan Africa in 2005 (166 cases/million population) was 95 times higher than the reported incidence in Asia (1.74 cases/million population) and 16,600 times higher than the reported incidence in Latin America (0.01 cases/million population). In that same year, the cholera case fatality rate in sub-Saharan Africa (1.8%) was 3 times higher than that in Asia (0.6%); no cholera deaths were reported in Latin America. The persistence or control of cholera in Africa will be a key indicator of global efforts to reach the Millennium Development Goals and of recent commitments by leaders of the G-8 countries to increase development aid to the region.

  18. Retrograde transport pathways utilised by viruses and protein toxins

    Directory of Open Access Journals (Sweden)

    Roberts Lynne M

    2006-04-01

    Full Text Available Abstract A model has been presented for retrograde transport of certain toxins and viruses from the cell surface to the ER that suggests an obligatory interaction with a glycolipid receptor at the cell surface. Here we review studies on the ER trafficking cholera toxin, Shiga and Shiga-like toxins, Pseudomonas exotoxin A and ricin, and compare the retrograde routes followed by these protein toxins to those of the ER trafficking SV40 and polyoma viruses. We conclude that there is in fact no obligatory requirement for a glycolipid receptor, nor even with a protein receptor in a lipid-rich environment. Emerging data suggests instead that there is no common pathway utilised for retrograde transport by all of these pathogens, the choice of route being determined by the particular receptor utilised.

  19. Household Transmission of Vibrio cholerae in Bangladesh.

    Science.gov (United States)

    Sugimoto, Jonathan D; Koepke, Amanda A; Kenah, Eben E; Halloran, M Elizabeth; Chowdhury, Fahima; Khan, Ashraful I; LaRocque, Regina C; Yang, Yang; Ryan, Edward T; Qadri, Firdausi; Calderwood, Stephen B; Harris, Jason B; Longini, Ira M

    2014-11-01

    Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces) to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures. Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001-2006. We estimated the probabilities of cholera transmission through 1) direct exposure within the household and 2) contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-valuelevels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered. Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of the transmissibility of endemic cholera within prospectively-followed members of households. The role of direct transmission must be considered when planning cholera control activities.

  20. [A comparative analysis of genomes of virulent and avirulent strains of Vibrio cholerae O139].

    Science.gov (United States)

    Eroshenko, G A; Osin, A V; Shchelkanova, E Iu; Smirnova, N I

    2004-01-01

    A comparative analysis of the genome of V. cholerae O139 strains isolated in Russia's territory from patients with cholera and from the environment showed essential differences in their structures. The genome of clinical strains possessed all tested genes associated with virulence (ctxAB, zot, ace, rstC, rtxA, hap, toxR and toxT) and the at-tRS site for the CTXp phage DNA integration. As for the O139 V. cholerae chromosome strains isolated from water, 70% of the studied genes (ctxAB, zot, ace, rstC, tcpA, and toxT) and the attRS sequence were not detected in them. A lack of the key virulence genes in O139-serogroup "water" vibrios, including genes of toxin-coregulated adhesion pili. (that are receptors for the CTXp phage), and of the attachment site of the above phage are indicative of that the O139 V. cholerae strains isolated from open water sources located in different Russia's regions are epidemically negligible.

  1. Bicarbonate Increases Binding Affinity of Vibrio cholerae ToxT to Virulence Gene Promoters

    Science.gov (United States)

    Thomson, Joshua J.

    2014-01-01

    The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription. PMID:25182489

  2. [Phalloidian toxins].

    Science.gov (United States)

    Larcan, A; Lamarche, M; Lambert, H

    1979-01-01

    The phalloidian toxins are very complex. The classification proposed by Wieland distinguishes between the various amatoxins and phallotoxins. The authors study successively: Methods of isolation, the general structure and chemical composition, their localization and concentration in mushrooms. This is an analytical study of the phallotoxins and amadoxins. Various experimental intoxication protocols using total extracts of the toxins purified with different doses and different animals have revealed the main signs of experimental intoxication with phallotoxins. This is characterized especially by hepatic and renal lesions. The phallotoxins have a more specific action on the cell membrane and metabolism. The amatoxins have a more specific action on the cell nucleus and protein synthesis. The action on DNA dependent RNA polymerases is particularly characteristic.

  3. Memory B Cell Responses to Vibrio cholerae O1 Lipopolysaccharide Are Associated with Protection against Infection from Household Contacts of Patients with Cholera in Bangladesh

    OpenAIRE

    Patel, Sweta M.; Rahman, Mohammad Arif; Mohasin, M.; Riyadh, M. Asrafuzzaman; Leung, Daniel T.; Alam, Mohammad Murshid; Chowdhury, Fahima; Ashraful I Khan; Weil, Ana A.; Aktar, Amena; Nazim, Mohammad; Regina C LaRocque; Edward T Ryan; Calderwood, Stephen B.; Qadri, Firdausi

    2012-01-01

    Vibrio cholerae O1 causes cholera, a dehydrating diarrheal disease. We have previously shown that V. cholerae-specific memory B cell responses develop after cholera infection, and we hypothesize that these mediate long-term protective immunity against cholera. We prospectively followed household contacts of cholera patients to determine whether the presence of circulating V. cholerae O1 antigen-specific memory B cells on enrollment was associated with protection against V. cholerae infection ...

  4. Widespread epidemic cholera caused by a restricted subset of Vibrio cholerae clones.

    Science.gov (United States)

    Moore, S; Thomson, N; Mutreja, A; Piarroux, R

    2014-05-01

    Since 1817, seven cholera pandemics have plagued humankind. As the causative agent, Vibrio cholerae, is autochthonous in the aquatic ecosystem and some studies have revealed links between outbreaks and fluctuations in climatic and aquatic conditions, it has been widely assumed that cholera epidemics are triggered by environmental factors that promote the growth of local bacterial reservoirs. However, mounting epidemiological findings and genome sequence analysis of clinical isolates have indicated that epidemics are largely unassociated with most of the V. cholerae strains in aquatic ecosystems. Instead, only a specific subset of V. cholerae El Tor 'types' appears to be responsible for current epidemics. A recent report examining the evolution of a variety of V. cholerae strains indicates that the current pandemic is monophyletic and originated from a single ancestral clone that has spread globally in successive waves. In this review, we examine the clonal nature of the disease, with the example of the recent history of cholera in the Americas. Epidemiological data and genome sequence-based analysis of V. cholerae isolates demonstrate that the cholera epidemics of the 1990s in South America were triggered by the importation of a pathogenic V. cholerae strain that gradually spread throughout the region until local outbreaks ceased in 2001. Latin America remained almost unaffected by the disease until a new toxigenic V. cholerae clone was imported into Haiti in 2010. Overall, cholera appears to be largely caused by a subset of specific V. cholerae clones rather than by the vast diversity of V. cholerae strains in the environment. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  5. Botulinum Toxin

    Science.gov (United States)

    2009-01-01

    intercostal muscle (Hilmas, unpublished data). All serotypes showed a similar ability to produce complete muscular paralysis in ex vivo human intercostal...routes of exposure include, in order of descending frequency: dysphagia, xerostomia, diplopia, dysarthria, fatigue , ptosis of the eyelids...Medical and Public Health Manage- ment. JAMA 285: 1059-70. Bakry, N., Kamata, Y., Simpson, L. (1997). Expression of botu- linum toxin binding sites in

  6. Identifying cholera "hotspots" in Uganda: An analysis of cholera surveillance data from 2011 to 2016.

    Science.gov (United States)

    Bwire, Godfrey; Ali, Mohammad; Sack, David A; Nakinsige, Anne; Naigaga, Martha; Debes, Amanda K; Ngwa, Moise C; Brooks, W Abdullah; Garimoi Orach, Christopher

    2017-12-01

    Despite advance in science and technology for prevention, detection and treatment of cholera, this infectious disease remains a major public health problem in many countries in sub-Saharan Africa, Uganda inclusive. The aim of this study was to identify cholera hotspots in Uganda to guide the development of a roadmap for prevention, control and elimination of cholera in the country. We obtained district level confirmed cholera outbreak data from 2011 to 2016 from the Ministry of Health, Uganda. Population and rainfall data were obtained from the Uganda Bureau of Statistics, and water, sanitation and hygiene data from the Ministry of Water and Environment. A spatial scan test was performed to identify the significantly high risk clusters. Cholera hotspots were defined as districts whose center fell within a significantly high risk cluster or where a significantly high risk cluster was completely superimposed onto a district. A zero-inflated negative binomial regression model was employed to identify the district level risk factors for cholera. In total 11,030 cases of cholera were reported during the 6-year period. 37(33%) of 112 districts reported cholera outbreaks in one of the six years, and 20 (18%) districts experienced cholera at least twice in those years. We identified 22 districts as high risk for cholera, of which 13 were near a border of Democratic Republic of Congo (DRC), while 9 districts were near a border of Kenya. The relative risk of having cholera inside the high-risk districts (hotspots) were 2 to 22 times higher than elsewhere in the country. In total, 7 million people were within cholera hotspots. The negative binomial component of the ZINB model shows people living near a lake or the Nile river were at increased risk for cholera (incidence rate ratio, IRR = 0.98, 95% CI: 0.97 to 0.99, p cholera in a district (IRR = 0.99, 95% CI: 0.98 to 1.00, p = .02 and IRR = 1.02, 95% CI: 1.01 to 1.03, p cholera in the district. The study identified cholera

  7. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  8. EPIDEMIOLOGY OF CHOLERA OUTBREAK IN KAMPALA ...

    African Journals Online (AJOL)

    hi-tech

    In Uganda, sanitation was recognised as a major concern during a national forum convened in ... two factors, with the poor sanitary conditions prevailing in the city slums, undoubtedly favoured development of the ... Surveillance system implementation for cholera: Cases and deaths of cholera were reported daily from all the ...

  9. Twee Nederlandse reizigers uit Thailand met cholera

    NARCIS (Netherlands)

    Smit, A. A.; Kuijper, E. J.; Schultz, M. J.; Wieling, W.; Speelman, P.

    1994-01-01

    Cholera is a disease rarely imported in the Netherlands. Recently a 34-year-old woman who had returned from a trip through Thailand was admitted to our hospital with complaints of vomiting, watery stools and moderate dehydration. Vibrio cholerae OI serotype Ogawa biotype El Tor was isolated from the

  10. Competitive growth advantage of nontoxigenic mutants in the stationary phase in archival cultures of pathogenic Vibrio cholerae strains.

    Science.gov (United States)

    Paul, Kalidas; Ghosh, Amalendu; Sengupta, Nilanjan; Chowdhury, Rukhsana

    2004-09-01

    Spontaneous nontoxigenic mutants of highly pathogenic Vibrio cholerae O1 strains accumulate in large numbers during long-term storage of the cultures in agar stabs. In these mutants, production of the transcriptional regulator ToxR was reduced due to the presence of a mutation in the ribosome-binding site immediately upstream of the toxR open reading frame. Consequently, the ToxR-dependent virulence regulon was turned off, with concomitant reduction in the expression of cholera toxin and toxin-coregulated pilus. An intriguing feature of these mutants is that they have a competitive fitness advantage when grown in competition with the parent strains in stationary-phase cocultures which is independent of RpoS, the only locus known to be primarily associated with acquisition of a growth advantage phenotype in bacteria.

  11. Cholera in United States Associated with Epidemic in Hispaniola

    Science.gov (United States)

    Heiman, Katherine E.; Schmitz, Ann; Török, Tom; Apostolou, Andria; Hanson, Heather; Gounder, Prabhu; Bohm, Susan; Kurkjian, Katie; Parsons, Michele; Talkington, Deborah; Stroika, Steven; Madoff, Lawrence C.; Elson, Franny; Sweat, David; Cantu, Venessa; Akwari, Okey; Mahon, Barbara E.; Mintz, Eric D.

    2011-01-01

    Cholera is rare in the United States (annual average 6 cases). Since epidemic cholera began in Hispaniola in 2010, a total of 23 cholera cases caused by toxigenic Vibrio cholerae O1 have been confirmed in the United States. Twenty-two case-patients reported travel to Hispaniola and 1 reported consumption of seafood from Haiti. PMID:22204035

  12. Co-variation of Cholera with Climatic and Environmental Parameters ...

    African Journals Online (AJOL)

    Keywords: cholera, climate, environment, coastal regions, mainland Tanzania. Abstract — The bacterium causing cholera, Vibrio cholerae, ... important, as are the socio-economic factors for endemic and epidemic cholera. Studies ..... disease and developing early warning systems of outbreaks in this era of climate change.

  13. High case fatality cholera outbreak in Western Kenya, August 2010 ...

    African Journals Online (AJOL)

    Introduction: Cholera is a disease caused by the bacterium Vibrio cholera and has been an important public health problem since its first pandemic in 1817. Kenya has had numerous outbreaks of cholera ever since it was first detected there during 1971. In August 2010 an outbreak of cholera occurred in Kuria West District ...

  14. High case fatality cholera outbreak in Western Kenya, August 2010

    African Journals Online (AJOL)

    abp

    Abstract. Introduction: Cholera is a disease caused by the bacterium Vibrio cholera and has been an important public health problem since its first pandemic in 1817. Kenya has had numerous outbreaks of cholera ever since it was first detected there during 1971. In August 2010 an outbreak of cholera occurred in Kuria ...

  15. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle.

    Science.gov (United States)

    Klose, K E; Mekalanos, J J

    1998-05-01

    Vibrio cholerae, the bacterium that causes cholera, has a pathogenic cycle consisting of a free-swimming phase outside its host, and a sessile virulent phase when colonizing the human small intestine. We have cloned the V. cholerae homologue of the rpoN gene (encoding sigma54) and determined its role in the cholera pathogenic cycle by constructing an rpoN null mutant. The V. cholerae rpoN mutant is non-motile; examination of this mutant by electron microscopy revealed that it lacks a flagellum. In addition to flagellar synthesis, sigma54 is involved in glutamine synthetase expression. Moreover, the rpoN mutant is defective for colonization in an infant mouse model of cholera. We present evidence that the colonization defect is distinct from the non-motile and Gln phenotypes of the rpoN mutant, implicating multiple and distinct roles of sigma54 during the V. cholerae pathogenic cycle. RNA polymerase containing sigma54 (sigma54-holoenzyme) has an absolute requirement for an activator protein to initiate transcription. We have identified three regulatory genes, flrABC (flagellar regulatory proteins ABC) that are additionally required for flagellar synthesis. The flrA and flrC gene products are sigma54-activators and form a flagellar transcription cascade. flrA and flrC mutants are also defective for colonization; this phenotype is probably independent of non-motility. An flrC constitutive mutation (M114-->I) was isolated that is independent of its cognate kinase FlrB. Expression of the constitutive FlrCM114-->I from the cholera toxin promoter resulted in a change in cell morphology, implicating involvement of FlrC in cell division. Thus, sigma54 holoenzyme, FlrA and FlrC transcribe genes for flagellar synthesis and possibly cell division during the free-swimming phase of the V. cholerae life cycle, and some as yet unidentified gene(s) that aid colonization within the host.

  16. The Aquatic Environment as a Reservoir of Vibrio cholerae O1 in Hydrographic Basins of the State of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Carina Lucena Mendes-Marques

    2013-01-01

    Full Text Available After the worldwide cholera epidemic in 1993, permanent environmental monitoring of hydrographic basins was established in Pernambuco, Brazil, where cholera is endemic. After a quiescent period, 4 rfbN (serogroup O1 positive water samples that were culture negative were detected by multiplex single-tube nested PCR (MSTNPCR; 2 of these were also ctxA (cholera toxin positive. From May to June 2012, 30 V. cholerae O1 isolates were obtained by culturing samples. These isolates were analyzed for the presence of virulence genes by PCR, intergenic spacer region 16S-23S PCR (ISR-PCR, and pulsed field gel electrophoresis (PFGE. The isolates were positive for the rfbN gene and negative for the assessed pathogenic genes and were classified into 2 groups by ISR and the same profile by PFGE. Close genetic similarity was observed between them (2012 and environmental strains from 2004 to 2005, indicating the permanence of endemic V. cholerae O1 in the region.

  17. Review of the inhibition of biological activities of food-related selected toxins by natural compounds.

    Science.gov (United States)

    Friedman, Mendel; Rasooly, Reuven

    2013-04-23

    There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term 'chemical genetics' has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet.

  18. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae.

    Science.gov (United States)

    Muras, Valentin; Dogaru-Kinn, Paul; Minato, Yusuke; Häse, Claudia C; Steuber, Julia

    2016-09-01

    We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2',7'-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na(+)-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min(-1) mg(-1) membrane protein) compared to membranes from the mutant lacking Na(+)-NQR (0.18 ± 0.01 μmol min(-1) mg(-1)). Overexpression of plasmid-encoded Na(+)-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min(-1) mg(-1)). By analyzing a variant of Na(+)-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae The impact of superoxide formation by the Na(+)-NQR on the virulence of V. cholerae is discussed. In several studies, it was demonstrated that the Na(+)-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na(+)-NQR as the site of superoxide formation in the cytoplasm of V. cholerae Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on the Na

  19. Household and Individual Risk Factors for Cholera among Cholera Vaccine Recipients in Rural Haiti.

    Science.gov (United States)

    Matias, Wilfredo R; Teng, Jessica E; Hilaire, Isabelle J; Harris, Jason B; Franke, Molly F; Ivers, Louise C

    2017-08-01

    Oral cholera vaccination was used as part of cholera control in Haiti, but the vaccine does not provide complete protection. We conducted secondary data analyses of a vaccine effectiveness study in Haiti to evaluate risk factors for cholera among cholera vaccine recipients. Individuals vaccinated against cholera that presented with acute watery diarrhea and had a stool sample positive for Vibrio cholerae O1 were included as cases. Up to four vaccinated individuals who did not present for treatment of diarrhea were included as controls for each case, and matched by location of residence, enrollment time, and age. We evaluated sociodemographic characteristics and risk factors for cholera. Univariable and multivariable logistic regression were performed to identify risk factors for cholera among vaccinees. Thirty-three vaccine recipients with culture-confirmed cholera were included as cases. One-hundred-and-seventeen of their matched controls reported receiving vaccine and were included as controls. In a multivariable analysis, self-reporting use of branded household water disinfection products as a means of treating water (adjusted relative risk [aRR] = 44.3, 95% confidence interval [CI] = 4.19-468.05, P = 0.002), and reporting having a latrine as the main household toilet (aRR = 4.22, 95% CI = 1.23-14.43, P = 0.02), were independent risk factors for cholera. Self-reporting always treating water (aRR = 0.09, 95% CI = 0.01-0.57, P = 0.01) was associated with protection against cholera. The field effectiveness of water, sanitation, and hygiene interventions used in combination with cholera vaccination in cholera control should be measured and monitored over time to identify and remediate shortcomings, and ensure successful impact on disease control.

  20. Zinc: Role in the management of diarrhea and cholera

    OpenAIRE

    Qadir, M Imran; Arshad, Arfa; Ahmad, Bashir

    2013-01-01

    Diarrhea and cholera are major health problems. Vibrio cholera, the causative agent of cholera, infects the small intestine, resulting in vomiting, massive watery diarrhea and dehydration. Reduced water and electrolyte absorption is also due to zinc deficiency. Zinc has an important role in recovery from the disease. The combination of zinc with cholera vaccine and oral rehydration solutions has a positive impact on cholera and diarrhea. It has led to a decrease in the mortality and morbidity...

  1. Engineering microbial physiology with synthetic polymers: cationic polymers induce biofilm formation in Vibrio cholerae and downregulate the expression of virulence genes.

    Science.gov (United States)

    Perez-Soto, Nicolas; Moule, Lauren; Crisan, Daniel N; Insua, Ignacio; Taylor-Smith, Leanne M; Voelz, Kerstin; Fernandez-Trillo, Francisco; Krachler, Anne Marie

    2017-08-01

    Here we report the first application of non-bactericidal synthetic polymers to modulate the physiology of a bacterial pathogen. Poly(N-[3-(dimethylamino)propyl] methacrylamide) (P1) and poly(N-(3-aminopropyl)methacrylamide) (P2), cationic polymers that bind to the surface of V. cholerae, the infectious agent causing cholera disease, can sequester the pathogen into clusters. Upon clustering, V. cholerae transitions to a sessile lifestyle, characterised by increased biofilm production and the repression of key virulence factors such as the cholera toxin (CTX). Moreover, clustering the pathogen results in the minimisation of adherence and toxicity to intestinal epithelial cells. Our results suggest that the reduction in toxicity is associated with the reduction to the number of free bacteria, but also the downregulation of toxin production. Finally we demonstrate that these polymers can reduce colonisation of zebrafish larvae upon ingestion of water contaminated with V. cholerae. Overall, our results suggest that the physiology of this pathogen can be modulated without the need to genetically manipulate the microorganism and that this modulation is an off-target effect that results from the intrinsic ability of the pathogen to sense and adapt to its environment. We believe these findings pave the way towards a better understanding of the interactions between pathogenic bacteria and polymeric materials and will underpin the development of novel antimicrobial polymers.

  2. Antimicrobial drugs for treating cholera

    Science.gov (United States)

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-01-01

    Background Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. Objectives To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are differences between classes of antimicrobials or dosing schedules. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; African Index Medicus; LILACS; Science Citation Index; metaRegister of Controlled Trials; WHO International Clinical Trials Registry Platform; conference proceedings; and reference lists to March 2014. Selection criteria Randomized and quasi-randomized controlled clinical trials in adults and children with cholera that compared: 1) any antimicrobial treatment with placebo or no treatment; 2) different antimicrobials head-to-head; or 3) different dosing schedules or different durations of treatment with the same antimicrobial. Data collection and analysis Two reviewers independently applied inclusion and exclusion criteria, and extracted data from included trials. Diarrhoea duration and stool volume were defined as primary outcomes. We calculated mean difference (MD) or ratio of means (ROM) for continuous outcomes, with 95% confidence intervals (CI), and pooled data using a random-effects meta-analysis. The quality of evidence was assessed using the GRADE approach. Main results Thirty-nine trials were included in this review with 4623 participants. Antimicrobials versus placebo or no treatment Overall, antimicrobial therapy shortened the mean duration of diarrhoea by about a day and a half compared to placebo or no treatment (MD -36.77 hours, 95% CI -43

  3. Purification and characterization of the recombinant Na(+)-translocating NADH:quinone oxidoreductase from Vibrio cholerae.

    Science.gov (United States)

    Barquera, Blanca; Hellwig, Petra; Zhou, Weidong; Morgan, Joel E; Häse, Claudia C; Gosink, Khoosheh K; Nilges, Mark; Bruesehoff, Peter J; Roth, Annette; Lancaster, C Roy D; Gennis, Robert B

    2002-03-19

    The nqr operon from Vibrio cholerae, encoding the entire six-subunit, membrane-associated, Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), was cloned under the regulation of the P(BAD) promoter. The enzyme was successfully expressed in V. cholerae. To facilitate molecular genetics studies of this sodium-pumping enzyme, a host strain of V. cholerae was constructed in which the genomic copy of the nqr operon was deleted. By using a vector containing a six-histidine tag on the carboxy terminus of the NqrF subunit, the last subunit in the operon, the recombinant enzyme was readily purified by affinity chromatography in a highly active form from detergent-solubilized membranes of V. cholerae. The recombinant enzyme has a high specific activity in the presence of sodium. NADH consumption was assessed at a turnover number of 720 electrons per second. When purified using dodecyl maltoside (DM), the isolated enzyme contains approximately one bound ubiquinone, whereas if the detergent LDAO is used instead, the quinone content of the isolated enzyme is negligible. Furthermore, the recombinant enzyme, purified with DM, has a relatively low rate of reaction with O(2) (10-20 s(-1)). In steady state turnover, the isolated, recombinant enzyme exhibits up to 5-fold stimulation by sodium and functions as a primary sodium pump, as reported previously for Na(+)()-NQR from other bacterial sources. When reconstituted into liposomes, the recombinant Na(+)-NQR generates a sodium gradient and a Delta Psi across the membrane. SDS-PAGE resolves all six subunits, two of which, NqrB and NqrC, contain covalently bound flavin. A redox titration of the enzyme, monitored by UV-visible spectroscopy, reveals three n = 2 redox centers and one n = 1 redox center, for which the presence of three flavins and a 2Fe-2S center can account. The V. cholerae Na(+)-NQR is well-suited for structural studies and for the use of molecular genetics techniques in addressing the mechanism by which NADH

  4. Cholera outbreaks in the classical biotype era.

    Science.gov (United States)

    Siddique, A K; Cash, Richard

    2014-01-01

    In the Indian subcontinent description of a disease resembling cholera has been mentioned in Sushruta Samita, estimated to have been written between ~400 and 500 BC. It is however not clear whether the disease known today as cholera caused by Vibrio cholerae Vibrio cholerae O1 is the evolutionary progression of the ancient disease. The modern history of cholera began in 1817 when an explosive epidemic broke out in the Ganges River Delta region of Bengal. This was the first of the seven recorded cholera pandemics cholera pandemics that affected nearly the entire world and caused hundreds of thousands of deaths. The bacterium responsible for this human disease was first recognised during the fifth pandemic and was named V. cholerae which was grouped as O1, and was further differentiated into Classical and El Tor biotypes. It is now known that the fifth and the sixth pandemics were caused by the V. cholerae O1 of the Classical biotype Classical biotype and the seventh by the El Tor biotype El Tor biotype . The El Tor biotype of V. cholerae, which originated in Indonesia Indonesia and shortly thereafter began to spread in the early 1960s. Within the span of 50 years the El Tor biotype had invaded nearly the entire world, completely displacing the Classical biotype from all the countries except Bangladesh. What prompted the earlier pandemics to begin is not clearly understood, nor do we know how and why they ended. The success of the seventh pandemic clone over the pre-existing sixth pandemic strain remains largely an unsolved mystery. Why classical biotype eventually disappeared from the world remains to be explained. For nearly three decades (1963-1991) during the Seventh cholera pandemic seventh pandemic, cholera in Bangladesh has recorded a unique history of co-existence of Classical and El Tor biotypes of V. cholerae O1 as epidemic and endemic strain. This long co-existence has provided us with great opportunity to improve our understanding of the disease itself

  5. Comparative Genomics of Vibrio cholerae O1 Isolated from Cholera Patients in Bangladesh

    DEFF Research Database (Denmark)

    Hossain, Zenat Zebin; Leekitcharoenphon, Pimlapas; Dalsgaard, Anders

    AIM: Cholera remains an endemic disease in Bangladesh and recently, the severity of the disease has significantly increased in urban area since the emergence of the new variant of Vibrio cholerae O1 El Tor. In this study, Whole Genome Sequencing (WGS) was utilized to investigate the current genomic...... profile of V. cholerae O1 strains, isolated from symptomatic patients in the low-income urban area of Arichpur, Dhaka, Bangladesh. METHODS: During October 2015, three V. cholerae O1 strains (VC-1, 2 and 3) were isolated from rectal swabs of two patients living in households 588 m apart. One of the two...... patients was co-infected with two V. cholerae strains (VC-1 and VC-3). Major virulence factors, biotype and antimicrobial resistance genes were identified by WGS. A global phylogenetic tree was inferred using genome wide SNPs (Single Nucleotide Polymorphism) analysis. RESULTS: All the V. cholerae strains...

  6. AB toxins: a paradigm switch from deadly to desirable.

    Science.gov (United States)

    Odumosu, Oludare; Nicholas, Dequina; Yano, Hiroshi; Langridge, William

    2010-07-01

    To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.

  7. Cholera epidemiology in Nigeria: an overview.

    Science.gov (United States)

    Adagbada, Ajoke Olutola; Adesida, Solayide Abosede; Nwaokorie, Francisca Obiageri; Niemogha, Mary-Theresa; Coker, Akitoye Olusegun

    2012-01-01

    Cholera is an acute diarrhoeal infection caused by ingestion of food or water contaminated with the bacterium, Vibrio cholera. Choleragenic V. cholera O1 and O139 are the only causative agents of the disease. The two most distinguishing epidemiologic features of the disease are its tendency to appear in explosive outbreaks and its predisposition to causing pandemics that may progressively affect many countries and spread into continents. Despite efforts to control cholera, the disease continues to occur as a major public health problem in many developing countries. Numerous studies over more than a century have made advances in the understanding of the disease and ways of treating patients, but the mechanism of emergence of new epidemic strains, and the ecosystem supporting regular epidemics, remain challenging to epidemiologists. In Nigeria, since the first appearance of epidemic cholera in 1972, intermittent outbreaks have been occurring. The later part of 2010 was marked with severe outbreak which started from the northern part of Nigeria, spreading to the other parts and involving approximately 3,000 cases and 781 deaths. Sporadic cases have also been reported. Although epidemiologic surveillance constitutes an important component of the public health response, publicly available surveillance data from Nigeria have been relatively limited to date. Based on existing relevant scientific literature on features of cholera, this paper presents a synopsis of cholera epidemiology emphasising the situation in Nigeria.

  8. The Burden of Cholera in Uganda

    Science.gov (United States)

    Bwire, Godfrey; Malimbo, Mugagga; Maskery, Brian; Kim, Young Eun; Mogasale, Vittal; Levin, Ann

    2013-01-01

    Introduction In 2010, the World Health Organization released a new cholera vaccine position paper, which recommended the use of cholera vaccines in high-risk endemic areas. However, there is a paucity of data on the burden of cholera in endemic countries. This article reviewed available cholera surveillance data from Uganda and assessed the sufficiency of these data to inform country-specific strategies for cholera vaccination. Methods The Uganda Ministry of Health conducts cholera surveillance to guide cholera outbreak control activities. This includes reporting the number of cases based on a standardized clinical definition plus systematic laboratory testing of stool samples from suspected cases at the outset and conclusion of outbreaks. This retrospective study analyzes available data by district and by age to estimate incidence rates. Since surveillance activities focus on more severe hospitalized cases and deaths, a sensitivity analysis was conducted to estimate the number of non-severe cases and unrecognized deaths that may not have been captured. Results Cholera affected all ages, but the geographic distribution of the disease was very heterogeneous in Uganda. We estimated that an average of about 11,000 cholera cases occurred in Uganda each year, which led to approximately 61–182 deaths. The majority of these cases (81%) occurred in a relatively small number of districts comprising just 24% of Uganda's total population. These districts included rural areas bordering the Democratic Republic of Congo, South Sudan, and Kenya as well as the slums of Kampala city. When outbreaks occurred, the average duration was about 15 weeks with a range of 4–44 weeks. Discussion There is a clear subdivision between high-risk and low-risk districts in Uganda. Vaccination efforts should be focused on the high-risk population. However, enhanced or sentinel surveillance activities should be undertaken to better quantify the endemic disease burden and high-risk populations

  9. Understanding the Cholera Epidemic, Haiti

    Science.gov (United States)

    Barrais, Robert; Faucher, Benoît; Haus, Rachel; Piarroux, Martine; Gaudart, Jean; Magloire, Roc; Raoult, Didier

    2011-01-01

    After onset of a cholera epidemic in Haiti in mid-October 2010, a team of researchers from France and Haiti implemented field investigations and built a database of daily cases to facilitate identification of communes most affected. Several models were used to identify spatiotemporal clusters, assess relative risk associated with the epidemic’s spread, and investigate causes of its rapid expansion in Artibonite Department. Spatiotemporal analyses highlighted 5 significant clusters (p<0.001): 1 near Mirebalais (October 16–19) next to a United Nations camp with deficient sanitation, 1 along the Artibonite River (October 20–28), and 3 caused by the centrifugal epidemic spread during November. The regression model indicated that cholera more severely affected communes in the coastal plain (risk ratio 4.91) along the Artibonite River downstream of Mirebalais (risk ratio 4.60). Our findings strongly suggest that contamination of the Artibonite and 1 of its tributaries downstream from a military camp triggered the epidemic. PMID:21762567

  10. Caracterización de aislamientos de Vibrio cholerae no-O1, no-O139 asociados a cuadros de diarrea Characterization of Vibrio cholerae non-O1 and non-O139 isolates associated with diarrhea

    Directory of Open Access Journals (Sweden)

    S. González Fraga

    2009-03-01

    its virulence factors by PCR, antimicrobial susceptibility patterns and genetic diversity by pulsed-field gel electrophoresis. Eight virulence patterns were obtained although no isolate was positive for the cholera toxin or the thermostable toxin. Four isolates were positive for the type three secretion system. The 17.6% of the isolates were resistant or intermediate to ampicillin and 5.9% were resistant to trimethoprim-sulfamethoxazole. By SfiI-PFGE, all isolates were genetically very diverse, as 27 different patterns were identified in 29 typeable isolates by pulsed-field gel electrophoresis. Although it has a low incidence, V. cholerae continues to be a causative agent of diarrhea in children, who are affected by a variety of circulating strains of V. cholerae non-O1, non-O139.

  11. Anthrax toxin receptor 2-dependent lethal toxin killing in vivo.

    Directory of Open Access Journals (Sweden)

    Heather M Scobie

    2006-10-01

    Full Text Available Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2 have a related integrin-like inserted (I domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis.

  12. Are wetlands the reservoir for avian cholera?

    Science.gov (United States)

    Samuel, M.D.; Shadduck, D.J.; Goldberg, Diana R.

    2004-01-01

    Wetlands have long been suspected to be an important reservoir for Pasteurella multocida and therefore the likely source of avian cholera outbreaks. During the fall of 1995a??98 we collected sediment and water samples from 44 wetlands where avian cholera epizootics occurred the previous winter or spring. We attempted to isolate P. multocida in sediment and surface water samples from 10 locations distributed throughout each wetland. We were not able to isolate P. multocida from any of the 440 water and 440 sediment samples collected from these wetlands. In contrast, during other investigations of avian cholera we isolated P. multocida from 20 of 44 wetlands, including 7% of the water and 4.5% of the sediment samples collected during or shortly following epizootic events. Our results indicate that wetlands are an unlikely reservoir for the bacteria that causes avian cholera.

  13. Influence of human behavior on cholera dynamics.

    Science.gov (United States)

    Wang, Xueying; Gao, Daozhou; Wang, Jin

    2015-09-01

    This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera ordinary differential equation (ODE) model that incorporates human behavior via modeling disease prevalence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic reproduction number of the PDE model. Our results show that human behavior can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection (characterized by the basic reproduction number). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines

    DEFF Research Database (Denmark)

    Glenn, Gregory M; Francis, David H; Danielsen, E Michael

    2009-01-01

    mucosal barrier as a key step in enteric pathogen survival. We review key observations relevant to the roles of LT and cholera toxin in protective immunity and the effects of these toxins on innate mucosal defenses. We suggest either that toxin-mediated fluid secretion mechanically disrupts the mucus...... layer or that toxins interfere with innate mucosal defenses by other means. Such a breach gives pathogens access to the enterocyte, leading to binding and pathogenicity by enterotoxigenic E. coli (ETEC) and other organisms. Given the common exposure to LT(+) ETEC by humans visiting or residing...... in regions of endemicity, barrier disruption should frequently render the gut vulnerable to ETEC and other enteric infections. Conversely, toxin immunity would be expected to block this process by protecting the innate mucosal barrier. Years ago, Peltola et al. (Lancet 338:1285-1289, 1991) observed...

  15. FOWL CHOLERA IN A BREEDER FLOCK

    Directory of Open Access Journals (Sweden)

    Z. Parveen, A. A. Nasir, K.Tasneem and A. Shah

    2003-12-01

    Full Text Available During January, 2003 Pasteurella multocida the causative agent of fowl cholera was isolated from a breeder flock in Lahore District. The age of the flock was 245 days. Increased mortality, swollen wattles and lameness were the clinical findings present in almost all the affected birds, while gross lesions were typical of fowl cholera. To prove the virulence of the organism, mice and six-week old cockerals were infected and P. multocida was reisolated.

  16. Development and preclinical evaluation of safety and immunogenicity of an oral ETEC vaccine containing inactivated E. coli bacteria overexpressing colonization factors CFA/I, CS3, CS5 and CS6 combined with a hybrid LT/CT B subunit antigen, administered alone and together with dmLT adjuvant.

    Science.gov (United States)

    Holmgren, J; Bourgeois, L; Carlin, N; Clements, J; Gustafsson, B; Lundgren, A; Nygren, E; Tobias, J; Walker, R; Svennerholm, A-M

    2013-05-07

    A first-generation oral inactivated whole-cell enterotoxigenic Escherichia coli (ETEC) vaccine, comprising formalin-killed ETEC bacteria expressing different colonization factor (CF) antigens combined with cholera toxin B subunit (CTB), when tested in phase III studies did not significantly reduce overall (generally mild) ETEC diarrhea in travelers or children although it reduced more severe ETEC diarrhea in travelers by almost 80%. We have now developed a novel more immunogenic ETEC vaccine based on recombinant non-toxigenic E. coli strains engineered to express increased amounts of CF antigens, including CS6 as well as an ETEC-based B subunit protein (LCTBA), and the optional combination with a nontoxic double-mutant heat-labile toxin (LT) molecule (dmLT) as an adjuvant. Two test vaccines were prepared under GMP: (1) A prototype E. coli CFA/I-only formalin-killed whole-cell+LCTBA vaccine, and (2) A "complete" inactivated multivalent ETEC-CF (CFA/I, CS3, CS5 and CS6 antigens) whole-cell+LCTBA vaccine. These vaccines, when given intragastrically alone or together with dmLT in mice, were well tolerated and induced strong intestinal-mucosal IgA antibody responses as well as serum IgG and IgA responses to each of the vaccine CF antigens as well as to LT B subunit (LTB). Both mucosal and serum responses were further enhanced (adjuvanted) when the vaccines were co-administered with dmLT. We conclude that the new multivalent oral ETEC vaccine, both alone and especially in combination with the dmLT adjuvant, shows great promise for further testing in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. [The history of cholera epidemics in Israel].

    Science.gov (United States)

    Schwartz, Eli; Bar-El, Dan; Schur, Natan

    2005-05-01

    During the years 1831-1918 Israel (Palestine at that time) suffered from repeated cholera epidemics. The cholera epidemics were the major cause of severe health crisis among the population. The epidemics were transmitted by returening pilgrims returning from Mecca and, during the first world War, by the Turkish soldiers crossing the country. The disease caused panic amongst the population due to its high mortality rate. Quarantine which was the major measure taken by the government at that time was repeatedly broken by people trying to escape from the affected area. During the epidemic of 1902, patients were even reluctant to be treated by physicians as they were blamed for causing death. On the other hand, cholera was a major trigger for maintaining a better sanitation and establishing social relief systems within the communities. Most of the epidemics occurred in the old cities such as Jerusalem, Tiberia and Jaffa where infrastructure was inadequate. Cholera outbreaks were the trigger to build outside the old cities as in case of Jerusalem in which after the 1865 outbreak the city was expanded outside the walls. Since the end of the Ottoman period in Israel, cholera epidemics ceased, and except for very small occeasional small outbreaks, cholera is not seen here more.

  18. Costs of Illness Due to Endemic Cholera

    Science.gov (United States)

    Poulos, C.; Riewpaiboon, A.; Stewart, J.F.; Clemens, J.; Guh, S.; Agtini, M.; Sur, D.; Islam, Z.; Lucas, M.; Whittington, D.

    2013-01-01

    Summary Economic analyses of cholera immunization programmes require estimates of the costs of cholera. The Diseases of the Most Impoverished programme measured the public, provider, and patient costs of culture-confirmed cholera in four study sites with endemic cholera using a combination of hospital- and community-based studies. Families with culture-proven cases were surveyed at home 7 and 14 days after confirmation of illness. Public costs were measured at local health facilities using a micro-costing methodology. Hospital-based studies found that the costs of severe cholera were USD 32 and 47 in Matlab and Beira. Community-based studies in North Jakarta and Kolkata found that cholera cases cost between USD 28 and USD 206, depending on hospitalization. Patient costs of illness as a percentage of average monthly income were 21% and 65% for hospitalized cases in Kolkata and North Jakarta, respectively. This burden on families is not captured by studies that adopt a provider perspective. PMID:21554781

  19. Identification of Vibrio cholerae serotypes in high-risk marine products with non-gel sieving capillary electrophoresis.

    Science.gov (United States)

    Zhou, Chen; Li, Ming; Sun, Chengjun; Zou, Haimin; Wu, Xin; Zhang, Liyin; Tao, Siyuan; Wang, Bingyue; Li, Yongxin

    2016-02-01

    Vibrio cholerae, a natural inhabitant of the marine environment, poses a threat to human health, and its new epidemic variants have been reported. A method of multiplex polymerase chain reaction-capillary electrophoresis-laser-induced fluorescence (PCR-CE-LIF) detection has been developed to detect and identify V. cholerae in marine products sensitively, rapidly, and reliably. Four sets of primers were selected to amplify genus-specific VCC gene, O139 serogroup-specific O139 gene, O1 serogroup-specific O1 gene, and ctxA gene associated with the CT toxin of enterotoxigenic V. cholerae. The PCR products were detected using CE-LIF with SYBR Gold serving as the DNA fluorescent dye. The parameters of PCR and the separation conditions of CE-LIF were optimized. Under the optimal conditions, V. cholerae was detected and four serotypes were identified simultaneously within 8 min. The alignment analysis showed that the PCR products had good agreement with the published sequences from GenBank, indicating that the primers selected in this study had high specificity and the PCR results were reliable. The proposed method could detect 5 to 20 cfu/ml V. cholerae. The intraday precisions of migration time and peak area of DNA marker and PCR products were in the ranges of 1.60-2.56% and 1.60-6.29%, respectively. The specificity results showed that only five standard bacteria used in this study showed the specific peaks when the target bacteria were mixed with seven other common intestinal pathogenic bacteria at the same concentration. The assay was applied to 71 high-risk marine products, and different serotypes of V. cholerae could be identified sensitively and reliably. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Catechol Siderophore Transport by Vibrio cholerae.

    Science.gov (United States)

    Wyckoff, Elizabeth E; Allred, Benjamin E; Raymond, Kenneth N; Payne, Shelley M

    2015-09-01

    Siderophores, small iron-binding molecules secreted by many microbial species, capture environmental iron for transport back into the cell. Vibrio cholerae synthesizes and uses the catechol siderophore vibriobactin and also uses siderophores secreted by other species, including enterobactin produced by Escherichia coli. E. coli secretes both canonical cyclic enterobactin and linear enterobactin derivatives likely derived from its cleavage by the enterobactin esterase Fes. We show here that V. cholerae does not use cyclic enterobactin but instead uses its linear derivatives. V. cholerae lacked both a receptor for efficient transport of cyclic enterobactin and enterobactin esterase to promote removal of iron from the ferrisiderophore complex. To further characterize the transport of catechol siderophores, we show that the linear enterobactin derivatives were transported into V. cholerae by either of the catechol siderophore receptors IrgA and VctA, which also transported the synthetic siderophore MECAM [1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene]. Vibriobactin is transported via the additional catechol siderophore receptor ViuA, while the Vibrio fluvialis siderophore fluvibactin was transported by all three catechol receptors. ViuB, a putative V. cholerae siderophore-interacting protein (SIP), functionally substituted for the E. coli ferric reductase YqjH, which promotes the release of iron from the siderophore in the bacterial cytoplasm. In V. cholerae, ViuB was required for the use of vibriobactin but was not required for the use of MECAM, fluvibactin, ferrichrome, or the linear derivatives of enterobactin. This suggests the presence of another protein in V. cholerae capable of promoting the release of iron from these siderophores. Vibrio cholerae is a major human pathogen and also serves as a model for the Vibrionaceae, which include other serious human and fish pathogens. The ability of these species to persist and acquire essential

  1. Household Transmission of Vibrio cholerae in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Jonathan D Sugimoto

    2014-11-01

    Full Text Available Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures.Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001-2006. We estimated the probabilities of cholera transmission through 1 direct exposure within the household and 2 contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-value<0.0001 occurred among 1414 members of 364 households. Fecal shedding of O1 El Tor Ogawa was associated with a 4.9% (95% confidence interval: 0.9%-22.8% risk of infection among household contacts through direct exposure during an 11-day infectious period (mean length. The estimated 11-day risk of O1 El Tor Ogawa infection through exposure to community-based sources was 2.5% (0.8%-8.0%. The corresponding estimated risks for O1 El Tor Inaba and O139 infection were 3.7% (0.7%-16.6% and 8.2% (2.1%-27.1% through direct exposure, and 3.4% (1.7%-6.7% and 2.0% (0.5%-7.3% through community-based exposure. Children under 5 years-old were at elevated risk of infection. Limitations of the study may have led to an underestimation of the true risk of cholera infection. For instance, available covariate data may have incompletely characterized levels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered.Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of

  2. Spatial dependency of cholera prevalence on potential cholera reservoirs in an urban area, Kumasi, Ghana

    Science.gov (United States)

    Osei, Frank B.; Duker, Alfred A.; Augustijn, Ellen-Wien; Stein, Alfred

    2010-10-01

    Cholera has been a public health burden in Ghana since the early 1970s. Between 1999 and 2005, a total of 25,636 cases and 620 deaths were officially reported to the WHO. In one of the worst affected urban cities, fecal contamination of surface water is extremely high, and the disease is reported to be prevalent among inhabitants living in close proximity to surface water bodies. Surface runoff from dump sites is a major source of fecal and bacterial contamination of rivers and streams in the study area. This study aims to determine (a) the impacts of surface water contamination on cholera infection and (b) detect and map arbitrary shaped clusters of cholera. A Geographic Information System (GIS) based spatial analysis is used to delineate potential reservoirs of the cholera vibrios; possibly contaminated by surface runoff from open space refuse dumps. Statistical modeling using OLS model reveals a significant negative association between (a) cholera prevalence and proximity to all the potential cholera reservoirs ( R2 = 0.18, p < 0.001) and (b) cholera prevalence and proximity to upstream potential cholera reservoirs ( R2 = 0.25, p < 0.001). The inclusion of spatial autoregressive coefficients in the OLS model reveals the dependency of the spatial distribution of cholera prevalence on the spatial neighbors of the communities. A flexible scan statistic identifies a most likely cluster with a higher relative risk (RR = 2.04, p < 0.01) compared with the cluster detected by circular scan statistic (RR = 1.60, p < 0.01). We conclude that surface water pollution through runoff from waste dump sites play a significant role in cholera infection.

  3. Control and Intervention of Cholera Outbreaks in Refugee Camps

    OpenAIRE

    Sim, Christianna

    2013-01-01

    Cholera, a disease with a long history, continues to devastate populations around the world. Due to the route of transmission of Vibrio cholerae, the bacterial pathogen that causes the disease, cholera only seems to affect developing countries, giving rise to a health disparity. For developed countries with adequate water and sewage treatment systems, the threat of cholera is irrelevant. Meanwhile, developing countries which have underlying vulnerabilities of poverty and lack basic access to ...

  4. Avian cholera in Nebraska's Rainwater Basin

    Science.gov (United States)

    Windingstad, R.M.; Hurt, J.J.; Trout, A.K.; Cary, J.

    1984-01-01

    The first report of avian cholera in North America occurred in northwestern Texas in winter 1944 (Quortrup et al. 1946). In 1975, mortality from avian cholera occurred for the first time in waterfowl in the Rainwater Basin of Nebraska when an estimated 25,000 birds died (Zinkl et al. 1977). Avian cholera has continued to cause mortality in wild birds in specific areas of the Basin each spring since. Losses of waterfowl from avian cholera continue to be much greater in some of the wetlands in the western part of the Basin than in the east. Several wetlands in the west have consistently higher mortality and are most often the wetlands where initial mortality is noticed each spring (Figure 1). The establishment of this disease in Nebraska is of considerable concern because of the importance of the Rainwater Basin as a spring staging area for waterfowl migrating to their breeding grounds. The wetlands in this area are on a major migration route used by an estimated 5 to 9 million ducks and several hundred thousand geese. A large portion of the western mid-continental greater white-fronted goose (Anser albifrons) population stage in the Basin each spring. Occasionally, whooping cranes (Grus americana) use these wetlands during migration, and lesser sandhill cranes (Grus canadensis) staging on the nearby Platte River sometimes use wetlands where avian cholera occurs (Anonymous 1981). Our objectives were to determine whether certain water quality variables in the Rainwater Basin differed between areas of high and low avian cholera incidence. These results would then be used for laboratory studies involving the survivability of Pasteurella multocida, the causative bacterium of avian cholera. Those studies will be reported elsewhere.

  5. Modulating the Global Response Regulator, LuxO of V. cholerae Quorum Sensing System Using a Pyrazine Dicarboxylic Acid Derivative (PDCApy: An Antivirulence Approach

    Directory of Open Access Journals (Sweden)

    M. Hema

    2017-10-01

    Full Text Available Vibrio cholerae is a Gram-negative pathogen which causes acute diarrhoeal disease, cholera by the expression of virulence genes through quorum sensing (QS mechanism. The QS circuit of V. cholerae is controlled by the global quorum regulator, LuxO, which at low cell density (LCD state produces major virulence factors such as, toxin co-regulated pilus (TCP and cholera toxin (CT to mediate infection. On the contrary, at the high cell density (HCD state the virulent genes are downregulated and the vibrios are detached from the host intestinal epithelial cells, promoted by HapA protease. Hence, targeting the global regulator LuxO would be a promising approach to modulate the QS to curtail V. cholerae pathogenesis. In our earlier studies, LuxO targeted ligand, 2,3 pyrazine dicarboxylic acid (PDCA and its derivatives having desired pharmacophore properties were chemically synthesized and were shown to have biofilm inhibition as well as synergistic activity with the conventionally used antibiotics. In the present study, the QS modulatory effect of the PDCA derivative with pyrrolidine moiety designated as PDCApy against the V. cholerae virulence gene expression was analyzed at various growth phases. The data significantly showed a several fold reduction in the expression of the genes, tcp and ct whereas the expression of hapR was upregulated at the LCD state. In addition, PDCApy reduced the adhesion and invasion of the vibrios onto the INT407 intestinal cell lines. Collectively, our data suggest that PDCApy could be a potential QS modulator (QSM for the antivirulence therapeutic approach.

  6. Epidemiology of the 2016 Cholera Outbreak of Chibombo District ...

    African Journals Online (AJOL)

    Possible sources could have included water contaminated with faeces matter. There is need to raise awareness of cholera transmission whenever the country is experiencing outbreaks of cholera. Conclusion: Even areas that have never experienced cholera outbreaks are at risk and there is need to raise awareness.

  7. Detection and confirmation of toxigenic Vibrio cholerae O1 in ...

    African Journals Online (AJOL)

    Epidemic cholera caused by toxigenic Vibrio cholerae O1 is a major health problem in several developing countries. Traditional methods for identifying V. cholerae involve cultural, biochemical and immunological assays which are cumbersome and often take several days to complete. In the present study, a direct cell ...

  8. Cholera Epidemiology in Nigeria: an overview | Adagbada | Pan ...

    African Journals Online (AJOL)

    Cholera is an acute diarrhoeal infection caused by ingestion of food or water contaminated with the bacterium, Vibrio cholera. Choleragenic V. cholera O1 and O139 are the only causative agents of the disease. The two most distinguishing epidemiologic features of the disease are its tendency to appear in explosive ...

  9. Combating cholera epidemics by targeting reservoirs of infection ...

    African Journals Online (AJOL)

    Objectives: To determine the parameters which can be investigated for prevention and effective control of cholera. Data sources: Literature search on compact disk-read only memory (CD-ROM), medline and internet, using the key words: cholera outbreaks, and cholera transmission. A few reviews were manually reviewed.

  10. Co-variations of Cholera with Climatic and Environmental ...

    African Journals Online (AJOL)

    The bacterium causing cholera, Vibrio cholerae, is essentially a marine organism and its ecological dynamics have been linked to oceanographic conditions and climate. We used autoregressive models with external inputs to identify potential relationships between number of cholera cases in the coastal regions of ...

  11. Cholera Epidemiology in Zambia from 2000 to 2010: Implications for ...

    African Journals Online (AJOL)

    Objective: To review the cholera epidemiology in Zambia from 2000 to 2010 in order to highlight the key lessons learned. Based on our findings, we make recommendations for improving cholera prevention and control in country. Design: Ten years descriptive cholera data was extracted from the national IDSR database ...

  12. Detection and confirmation of toxigenic Vibrio cholerae O1 in ...

    African Journals Online (AJOL)

    2013-08-20

    Aug 20, 2013 ... Epidemic cholera caused by toxigenic Vibrio cholerae O1 is a major health problem in several developing countries. Traditional methods for identifying V. cholerae involve cultural, biochemical and immunological assays which are cumber- some and often take several days to complete. In the present study, ...

  13. Prevalence of Vibrio cholerae in rivers of Mpumalanga province ...

    African Journals Online (AJOL)

    Cholera is a life-threatening diarrhoeal disease, which mainly affects inhabitants of developing countries due to poor socio-economic conditions and lack of access to potable water and sanitation. Toxigenic Vibrio cholerae are the aetiological agents of cholera. These bacteria are autochthonous to aquatic environments, ...

  14. Role of Shrimp Chitin in the Ecology of Toxigenic Vibrio cholerae and Cholera Transmission

    Directory of Open Access Journals (Sweden)

    Marzia eSultana

    2012-01-01

    Full Text Available Seasonal plankton blooms correlate with occurrence of cholera in Bangladesh, although the mechanism of how dormant Vibrio cholerae, enduring interepidemic period in biofilms and plankton, initiates seasonal cholera is not fully understood. In this study, laboratory microcosms prepared with estuarine Mathbaria water (MW samples supported active growth of toxigenic V. cholerae O1 up to seven weeks as opposed to six months when microcosms were supplemented with dehydrated shrimp chitin chips (CC as the single source of nutrient. Bacterial counting and detection of wbe and ctxA genes were done employing culture, Direct Fluorescent Antibody (DFA assay, and multiplex PCR (M-PCR methods. In MW microcosm, the aqueous phase became clear as the non-culturable cells settled, whereas the aqueous phase of the MW-CC microcosm became turbid from bacterial growth stimulated by chitin. Bacterial chitin degradation and biofilm formation proceeded from an initial steady state to a gradually declining bacterial culturable count. V. cholerae within the microenvironments of chitin and chitin-associated biofilms remained metabolically active even in a high acidic environment without losing either viability or virulence. It is concluded that the abundance of chitin that occurs during blooms plays an important role in the aquatic life cycle of V. cholerae and, ultimately, in the seasonal transmission of cholera.

  15. Role of Shrimp Chitin in the Ecology of Toxigenic Vibrio cholerae and Cholera Transmission.

    Science.gov (United States)

    Nahar, Shamsun; Sultana, Marzia; Naser, M Niamul; Nair, Gopinath B; Watanabe, Haruo; Ohnishi, Makoto; Yamamoto, Shouji; Endtz, Hubert; Cravioto, Alejandro; Sack, R Bradley; Hasan, Nur A; Sadique, Abdus; Huq, Anwar; Colwell, Rita R; Alam, Munirul

    2011-01-01

    Seasonal plankton blooms correlate with occurrence of cholera in Bangladesh, although the mechanism of how dormant Vibrio cholerae, enduring interepidemic period in biofilms and plankton, initiates seasonal cholera is not fully understood. In this study, laboratory microcosms prepared with estuarine Mathbaria water (MW) samples supported active growth of toxigenic V. cholerae O1 up to 7 weeks as opposed to 6 months when microcosms were supplemented with dehydrated shrimp chitin chips (CC) as the single source of nutrient. Bacterial counting and detection of wbe and ctxA genes were done employing culture, direct fluorescent antibody (DFA) assay, and multiplex-polymerase chain reaction methods. In MW microcosm, the aqueous phase became clear as the non-culturable cells settled, whereas the aqueous phase of the MW-CC microcosm became turbid from bacterial growth stimulated by chitin. Bacterial chitin degradation and biofilm formation proceeded from an initial steady state to a gradually declining bacterial culturable count. V. cholerae within the microenvironments of chitin and chitin-associated biofilms remained metabolically active even in a high acidic environment without losing either viability or virulence. It is concluded that the abundance of chitin that occurs during blooms plays an important role in the aquatic life cycle of V. cholerae and, ultimately, in the seasonal transmission of cholera.

  16. Nepalese origin of cholera epidemic in Haiti.

    Science.gov (United States)

    Frerichs, R R; Keim, P S; Barrais, R; Piarroux, R

    2012-06-01

    Cholera appeared in Haiti in October 2010 for the first time in recorded history. The causative agent was quickly identified by the Haitian National Public Health Laboratory and the United States Centers for Disease Control and Prevention as Vibrio cholerae serogroup O1, serotype Ogawa, biotype El Tor. Since then, >500 000 government-acknowledged cholera cases and >7000 deaths have occurred, the largest cholera epidemic in the world, with the real death toll probably much higher. Questions of origin have been widely debated with some attributing the onset of the epidemic to climatic factors and others to human transmission. None of the evidence on origin supports climatic factors. Instead, recent epidemiological and molecular-genetic evidence point to the United Nations peacekeeping troops from Nepal as the source of cholera to Haiti, following their troop rotation in early October 2010. Such findings have important policy implications for shaping future international relief efforts. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  17. Knowledge, Attitudes, and Practices regarding Diarrhea and Cholera following an Oral Cholera Vaccination Campaign in the Solomon Islands.

    Directory of Open Access Journals (Sweden)

    Eleanor Burnett

    2016-08-01

    Full Text Available In response to a 2011 cholera outbreak in Papua New Guinea, the Government of the Solomon Islands initiated a cholera prevention program which included cholera disease prevention and treatment messaging, community meetings, and a pre-emptive cholera vaccination campaign targeting 11,000 children aged 1-15 years in selected communities in Choiseul and Western Provinces.We conducted a post-vaccination campaign, household-level survey about knowledge, attitudes, and practices regarding diarrhea and cholera in areas targeted and not targeted for cholera vaccination. Respondents in vaccinated areas were more likely to have received cholera education in the previous 6 months (33% v. 9%; p = 0.04, to know signs and symptoms (64% vs. 22%; p = 0.02 and treatment (96% vs. 50%; p = 0.02 of cholera, and to be aware of cholera vaccine (48% vs. 14%; p = 0.02. There were no differences in water, sanitation, and hygiene practices.This pre-emptive OCV campaign in a cholera-naïve community provided a unique opportunity to assess household-level knowledge, attitudes, and practices regarding diarrhea, cholera, and water, sanitation, and hygiene (WASH. Our findings suggest that education provided during the vaccination campaign may have reinforced earlier mass messaging about cholera and diarrheal disease in vaccinated communities.

  18. Phylogenetic Diversity of Vibrio cholerae Associated with Endemic Cholera in Mexico from 1991 to 2008

    Directory of Open Access Journals (Sweden)

    Seon Young Choi

    2016-03-01

    Full Text Available An outbreak of cholera occurred in 1991 in Mexico, where it had not been reported for more than a century and is now endemic. Vibrio cholerae O1 prototype El Tor and classical strains coexist with altered El Tor strains (1991 to 1997. Nontoxigenic (CTX− V. cholerae El Tor dominated toxigenic (CTX+ strains (2001 to 2003, but V. cholerae CTX+ variant El Tor was isolated during 2004 to 2008, outcompeting CTX−V. cholerae. Genomes of six Mexican V. cholerae O1 strains isolated during 1991 to 2008 were sequenced and compared with both contemporary and archived strains of V. cholerae. Three were CTX+ El Tor, two were CTX− El Tor, and the remaining strain was a CTX+ classical isolate. Whole-genome sequence analysis showed the six isolates belonged to five distinct phylogenetic clades. One CTX− isolate is ancestral to the 6th and 7th pandemic CTX+V. cholerae isolates. The other CTX− isolate joined with CTX− non-O1/O139 isolates from Haiti and seroconverted O1 isolates from Brazil and Amazonia. One CTX+ isolate was phylogenetically placed with the sixth pandemic classical clade and the V. cholerae O395 classical reference strain. Two CTX+ El Tor isolates possessing intact Vibrio seventh pandemic island II (VSP-II are related to hybrid El Tor isolates from Mozambique and Bangladesh. The third CTX+ El Tor isolate contained West African-South American (WASA recombination in VSP-II and showed relatedness to isolates from Peru and Brazil. Except for one isolate, all Mexican isolates lack SXT/R391 integrative conjugative elements (ICEs and sensitivity to selected antibiotics, with one isolate resistant to streptomycin. No isolates were related to contemporary isolates from Asia, Africa, or Haiti, indicating phylogenetic diversity.

  19. Efecto citotóxico de la toxina shiga tipo 2 y su subunidad b en células epiteliales tubulares renales humanas en cultivo Cytotoxic effect of Shiga toxin type 2 and its B subunit on human renal tubular epithelial cell cultures

    Directory of Open Access Journals (Sweden)

    Virginia Pistone Creydt

    2005-04-01

    Full Text Available Escherichia coli enterohemorrágica productora de toxina Shiga (Stx causa diarrea acuosa, colitis hemorrágica y síndrome urémico hemolítico (SUH. En Argentina, el SUH es la principal causa de insuficiencia renal en niños. El objetivo de este trabajo fue estudiar la toxicidad de Stx tipo 2 (Stx2 y su subunidad B (Stx2B en células epiteliales tubulares renales humanas (CERH, en presencia y ausencia de factores inflamatorios. Los efectos citotóxicos se evaluaron como alteración de la funcionalidad del epitelio; daños histológicos; viabilidad celular; síntesis de proteínas y apoptosis celular. Los resultados muestran que Stx2 regula el pasaje de agua a través de CERH a tiempos menores de 1h de incubación. A tiempos mayores, hasta 72 hs, el estudio de la morfología, la viabilidad, la síntesis de proteínas y la apoptosis demostró que las CERH fueron sensibles a la acción citotóxica de Stx2 y Stx2B de una manera dosis y tiempo dependiente. Estos efectos fueron potenciados por lipopolisacáridos bacterianos (LPS, IL-1b, y butirato.Shiga toxin (Stx-producing E.coli causing watery diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome (HUS. In Argentina, HUS is the most common cause of acute renal failure in children. The purpose of the present study was to examine the cytotoxicity of Stx type 2 (Stx2 and its B subunit (Stx2B on human renal tubular epithelial cells (HRTEC, in the presence and absence of inflammatory factors. Cytotoxic effects were assessed in terms of functionality of the epithelium, histological damage, cell viability, protein synthesis and cellular apoptosis. Results show that Stx2 regulates the passage of water through the HRTEC within an incubation period of 1h. Within longer periods, up to 72 hours, the study of morphology, viability, protein synthesis and apoptosis shows that HRTEC were sensitive to the cytotoxic action of Stx2 and Stx2B in a dose- and time-dependent manner. These effects were potentiated by

  20. Promotion of Cholera Awareness Among Households of Cholera Patients: A Randomized Controlled Trial of the Cholera-Hospital-Based-Intervention-for-7 Days (CHoBI7) Intervention.

    Science.gov (United States)

    Saif-Ur-Rahman, K M; Parvin, Tahmina; Bhuyian, Sazzadul Islam; Zohura, Fatema; Begum, Farzana; Rashid, Mahamud-Ur; Biswas, Shwapon Kumar; Sack, David; Sack, R Bradley; Monira, Shirajum; Alam, Munirul; Shaly, Nusrat Jahan; George, Christine Marie

    2016-12-07

    Previous studies have demonstrated that household contacts of cholera patients are highly susceptible to cholera infections for a 7-day period after the presentation of the index patient in the hospital. However, there is no standard of care to prevent cholera transmission in this high-risk population. Furthermore, there is limited information available on awareness of cholera transmission and prevention among cholera patients and their household contacts. To initiate a standard of care for this high-risk population, we developed the Cholera-Hospital-Based-Intervention-for-7-Days (CHoBI7), which delivers a handwashing with soap and water treatment intervention to household contacts during the time they spend with the admitted cholera patient in the hospital and reinforces these messages through home visits. To test CHoBI7, we conducted a randomized controlled trial among 302 intervention cholera patient household members and 302 control cholera patient household members in Dhaka, Bangladesh. In this study, we evaluated the effectiveness of the CHoBI7 intervention in increasing awareness of cholera transmission and prevention, and the key times for handwashing with soap. We observed a significant increase in cholera knowledge score in the intervention arm compared with the control arm at both the 1-week follow-up {score coefficient = 2.34 (95% confidence interval [CI] = 1.96, 2.71)} and 6 to 12-month follow-up period (score coefficient = 1.59 [95% CI = 1.05, 2.13]). This 1-week hospital- and home-based intervention led to a significant increase in knowledge of cholera transmission and prevention which was sustained 6 to 12 months post-intervention. These findings suggest that the CHoBI7 intervention presents a promising approach to increase cholera awareness among this high-risk population. © The American Society of Tropical Medicine and Hygiene.

  1. Binding of pertussis toxin to eucaryotic cells and glycoproteins.

    Science.gov (United States)

    Witvliet, M H; Burns, D L; Brennan, M J; Poolman, J T; Manclark, C R

    1989-01-01

    The binding of pertussis toxin and its subunits to cell surface receptors and purified glycoproteins was examined. The interaction of pertussis toxin with components of two variant Chinese hamster ovary (CHO) cell lines was studied. These cell lines are deficient in either sialic acid residues (LEC 2) or sialic acid and galactose residues (LEC 8) on cell surface macromolecules. The binding of pertussis toxin to components of these cells differed from the binding of the toxin to wild-type components. Although the toxin bound to a 165,000-dalton glycoprotein found in N-octylglucoside extracts of wild-type cells, it did not bind to components found in extracts of LEC 2 cells. In contrast, the toxin bound to components found in extracts of LEC 8 cells, which are variant cells that contain increased amounts of terminal N-acetylglucosamine residues on cell surface macromolecules. These results suggest that the receptor for pertussis toxin on CHO cells contains terminal acetamido-containing sugars. The cytopathic effect of the toxin on both types of variant cells was much reduced compared with its effects on wild-type cells. Thus, optimal functional binding of pertussis toxin appears to require a complete sialyllactosamine (NeuAc----Gal beta 4GlcNAc) sequence on surface macromolecules. In addition to studying the nature of the eucaryotic receptor for pertussis toxin, we examined corresponding binding sites for glycoproteins on the toxin molecule. Binding of both S2-S4 and S3-S4 dimers of the toxin to cellular components and purified glycoproteins was observed. The two dimers bound to a number of glycoproteins containing N-linked oligosaccharides but not O-linked oligosaccharides, and differences in the binding of the two dimers to some glycoproteins was noted. These data indicate that the holotoxin molecule contains at least two glycoprotein-binding sites which may have slightly different specificities for glycoproteins. Images PMID:2478471

  2. Three-dimensional structure of the detergent-solubilized Vibrio cholerae cytolysin (VCC) heptamer by electron cryomicroscopy.

    Science.gov (United States)

    He, Yongning; Olson, Rich

    2010-01-01

    Vibrio cholerae cytolysin (VCC) is a pore-forming toxin that inserts a lytic water-filled channel into susceptible host membranes. Assembly of the toxin on cell surfaces may be enhanced by two tandem lectin domains, in addition to direct interactions with lipids and cholesterol within the membrane itself. We used single-particle electron cryomicroscopy (cryoEM) to generate a low-resolution molecular structure of the detergent-solubilized VCC oligomer to 20A resolution. After confirming a heptameric arrangement of individual protomers, sevenfold averaging around the central pore was utilized to improve the structure. Docking of the previously determined VCC protoxin crystal structure was possible with rigid-body rearrangements between the cytolytic and lectin domains. A second cryoEM reconstruction of a truncated VCC mutant supported the topology of our model in which the carboxyl-terminal lectin domain forms "spikes" around the toxin core with the putative carbohydrate receptor-binding site accessible on the surface of the oligomer. This finding points to an assembly mechanism in which lectin domains may remain bound to receptors on the cell surface throughout assembly of the cytolytic toxin core and explains the hemagglutinating activity of purified toxin. Our model provides an insight into the structural rearrangements that accompany VCC-mediated cytolysis and may aid in the engineering of novel pore-forming toxins to attack specific cells towards therapeutic ends. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  3. Vibrio cholerae: A historical perspective and current trend

    Directory of Open Access Journals (Sweden)

    Mary Oyenike Oladokun

    2016-11-01

    Full Text Available Vibrio cholerae (V. cholerae is a Gram-negative, curved, rod-shaped bacteria with two of its strains V. cholerae O1 and V. cholerae O139 known to cause cholera, a deadly diarrheal disease that has repeatedly plagued the world in pandemics since 1817 and still remains a public health problem globally till today. The pathogens’ persistence in aquatic milieux during inter-epidemic periods is facilitated by the production of a biofilm, thus evolving from being an infection of oral-fecal transmission to a more composite ecological framework of a communicable disease. The outbreaks of cholera spread rapidly in various intensities within and among countries and even continents and the World Health Organization estimates that 3–5 million cases outbreak and over 200 000 die yearly from cholera. Also, the impact of a cholera epidemic is not limited to its high morbidity and mortality rates alone, but also the grievous impact on the economy of the countries experiencing the outbreaks. In this review, we carried out an overview of V. cholerae including its isolation and detection, genetics as well as a comparison of the toxigenic and non-toxigenic determinants in the human host and the host defences. Furthermore, the history of global pandemics, cost implications, conflict and ecological methodologies of cholera prevention and control. The management of disease and antibiotic resistance in V. cholerae are also highlighted.

  4. Spreading of Cholera through Surface Water

    Science.gov (United States)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  5. The case for reactive mass oral cholera vaccinations.

    Directory of Open Access Journals (Sweden)

    Rita Reyburn

    Full Text Available INTRODUCTION: The outbreak of cholera in Zimbabwe intensified interest in the control and prevention of cholera. While there is agreement that safe water, sanitation, and personal hygiene are ideal for the long term control of cholera, there is controversy about the role of newer approaches such as oral cholera vaccines (OCVs. In October 2009 the Strategic Advisory Group of Experts advised the World Health Organization to consider reactive vaccination campaigns in response to large cholera outbreaks. To evaluate the potential benefit of this pivotal change in WHO policy, we used existing data from cholera outbreaks to simulate the number of cholera cases preventable by reactive mass vaccination. METHODS: Datasets of cholera outbreaks from three sites with varying cholera endemicity--Zimbabwe, Kolkata (India, and Zanzibar (Tanzania--were analysed to estimate the number of cholera cases preventable under differing response times, vaccine coverage, and vaccine doses. FINDINGS: The large cholera outbreak in Zimbabwe started in mid August 2008 and by July 2009, 98,591 cholera cases had been reported with 4,288 deaths attributed to cholera. If a rapid response had taken place and half of the population had been vaccinated once the first 400 cases had occurred, as many as 34,900 (40% cholera cases and 1,695 deaths (40% could have been prevented. In the sites with endemic cholera, Kolkata and Zanzibar, a significant number of cases could have been prevented but the impact would have been less dramatic. A brisk response is required for outbreaks with the majority of cases occurring during the early weeks. Even a delayed response can save a substantial number of cases and deaths in long, drawn-out outbreaks. If circumstances prevent a rapid response there are good reasons to roll out cholera mass vaccination campaigns well into the outbreak. Once a substantial proportion of a population is vaccinated, outbreaks in subsequent years may be reduced if not

  6. Vibrio cholerae Serogroup O139: Isolation from Cholera Patients and Asymptomatic Household Family Members in Bangladesh between 2013 and 2014.

    Directory of Open Access Journals (Sweden)

    Fahima Chowdhury

    2015-11-01

    Full Text Available Cholera is endemic in Bangladesh, with outbreaks reported annually. Currently, the majority of epidemic cholera reported globally is El Tor biotype Vibrio cholerae isolates of the serogroup O1. However, in Bangladesh, outbreaks attributed to V. cholerae serogroup O139 isolates, which fall within the same phylogenetic lineage as the O1 serogroup isolates, were seen between 1992 and 1993 and in 2002 to 2005. Since then, V. cholerae serogroup O139 has only been sporadically isolated in Bangladesh and is now rarely isolated elsewhere.Here, we present case histories of four cholera patients infected with V. cholerae serogroup O139 in 2013 and 2014 in Bangladesh. We comprehensively typed these isolates using conventional approaches, as well as by whole genome sequencing. Phenotypic typing and PCR confirmed all four isolates belonging to the O139 serogroup.Whole genome sequencing revealed that three of the isolates were phylogenetically closely related to previously sequenced El Tor biotype, pandemic 7, toxigenic V. cholerae O139 isolates originating from Bangladesh and elsewhere. The fourth isolate was a non-toxigenic V. cholerae that, by conventional approaches, typed as O139 serogroup but was genetically divergent from previously sequenced pandemic 7 V. cholerae lineages belonging to the O139 or O1 serogroups.These results suggest that previously observed lineages of V. cholerae O139 persist in Bangladesh and can cause clinical disease and that a novel disease-causing non-toxigenic O139 isolate also occurs.

  7. The Biology of the Cytolethal Distending Toxins

    Directory of Open Access Journals (Sweden)

    Teresa Frisan

    2011-03-01

    Full Text Available The cytolethal distending toxins (CDTs, produced by a variety of Gram-negative pathogenic bacteria, are the first bacterial genotoxins described, since they cause DNA damage in the target cells. CDT is an A-B2 toxin, where the CdtA and CdtC subunits are required to mediate the binding on the surface of the target cells, allowing internalization of the active CdtB subunit, which is functionally homologous to the mammalian deoxyribonuclease I. The nature of the surface receptor is still poorly characterized, however binding of CDT requires intact lipid rafts, and its internalization occurs via dynamin-dependent endocytosis. The toxin is retrograde transported through the Golgi complex and the endoplasmic reticulum, and subsequently translocated into the nuclear compartment, where it exerts the toxic activity. Cellular intoxication induces DNA damage and activation of the DNA damage responses, which results in arrest of the target cells in the G1 and/or G2 phases of the cell cycle and activation of DNA repair mechanisms. Cells that fail to repair the damage will senesce or undergo apoptosis. This review will focus on the well-characterized aspects of the CDT biology and discuss the questions that still remain unanswered.

  8. Hybrid Vibrio cholerae El Tor lacking SXT identified as the cause of a cholera outbreak in the Philippines.

    Science.gov (United States)

    Klinzing, David C; Choi, Seon Young; Hasan, Nur A; Matias, Ronald R; Tayag, Enrique; Geronimo, Josefina; Skowronski, Evan; Rashed, Shah M; Kawashima, Kent; Rosenzweig, C Nicole; Gibbons, Henry S; Torres, Brian C; Liles, Veni; Alfon, Alicia C; Juan, Maria Luisa; Natividad, Filipinas F; Cebula, Thomas A; Colwell, Rita R

    2015-04-21

    Cholera continues to be a global threat, with high rates of morbidity and mortality. In 2011, a cholera outbreak occurred in Palawan, Philippines, affecting more than 500 people, and 20 individuals died. Vibrio cholerae O1 was confirmed as the etiological agent. Source attribution is critical in cholera outbreaks for proper management of the disease, as well as to control spread. In this study, three V. cholerae O1 isolates from a Philippines cholera outbreak were sequenced and their genomes analyzed to determine phylogenetic relatedness to V. cholerae O1 isolates from recent outbreaks of cholera elsewhere. The Philippines V. cholerae O1 isolates were determined to be V. cholerae O1 hybrid El Tor belonging to the seventh-pandemic clade. They clustered tightly, forming a monophyletic clade closely related to V. cholerae O1 hybrid El Tor from Asia and Africa. The isolates possess a unique multilocus variable-number tandem repeat analysis (MLVA) genotype (12-7-9-18-25 and 12-7-10-14-21) and lack SXT. In addition, they possess a novel 15-kb genomic island (GI-119) containing a predicted type I restriction-modification system. The CTXΦ-RS1 array of the Philippines isolates was similar to that of V. cholerae O1 MG116926, a hybrid El Tor strain isolated in Bangladesh in 1991. Overall, the data indicate that the Philippines V. cholerae O1 isolates are unique, differing from recent V. cholerae O1 isolates from Asia, Africa, and Haiti. Furthermore, the results of this study support the hypothesis that the Philippines isolates of V. cholerae O1 are indigenous and exist locally in the aquatic ecosystem of the Philippines. Genetic characterization and phylogenomics analysis of outbreak strains have proven to be critical for probing clonal relatedness to strains isolated in different geographical regions and over time. Recently, extensive genetic analyses of V. cholerae O1 strains isolated in different countries have been done. However, genome sequences of V. cholerae O1

  9. Synergistic effect of various virulence factors leading to high toxicity of environmental V. cholerae non-O1/ non-O139 isolates lacking ctx gene : comparative study with clinical strains.

    Directory of Open Access Journals (Sweden)

    Neha Rajpara

    Full Text Available Vibrio cholerae non-O1/ non-O139 serogroups have been reported to cause sporadic diarrhoea in humans. Cholera toxins have been mostly implicated for hypersecretion of ions and water into the small intestine. Though most of the V. cholerae non-O1/ non-O139 strains lack these cholera toxins, several other innate virulence factors contribute towards their pathogenicity. The environmental isolates may thus act as reservoirs for potential spreading of these virulence genes in the natural environment which may cause the emergence of epidemic-causing organisms.The environmental isolates of vibrios were obtained from water samples, zooplanktons and phytoplanktons, from a village pond in Gandhinagar, Gujarat, India. They were confirmed as Vibrio cholerae non-O1/ non-O139 using standard biochemical and serotyping tests. PCR experiments revealed that the isolates lacked ctxA, ctxB, tcpA, zot and ace genes whereas other pathogenicity genes like toxR, rtxC, hlyA, hapA and prtV were detected in these isolates. Compared with epidemic strain V. cholerae O1 El Tor N16961, culture supernatants from most of these isolates caused higher cytotoxicity to HT29 cells and higher hemolytic, hemagglutinin and protease activities. In rabbit ileal loop assays, the environmental isolates showed only 2-4 folds lesser fluid accumulation in comparison to N16961 and a V. cholerae clinical isolate IDH02365 of 2009. Pulsed Field Gel electrophoresis and Random amplification of Polymorphic DNA indicated that these isolates showed considerable diversity and did not share the same clonal lineage even though they were derived from the same water source. All the isolates showed resistance to one or more antibiotics.Though these environmental isolates lacked the cholera toxins, they seem to have adopted other survival strategies by optimally utilising a diverse array of several other toxins. The current findings indicate the possibility that these isolates could cause some gastroenteric

  10. Surface-attachment sequence in Vibrio Cholerae

    Science.gov (United States)

    Utada, Andrew; Gibiansky, Maxsim; Wong, Gerard

    2013-03-01

    Vibrio cholerae is a gram-negative bacterium that causes the human disease cholera. It is found natively in brackish costal waters in temperate climates, where it attaches to the surfaces of a variety of different aquatic life. V. cholerae has a single polar flagellum making it highly motile, as well as a number of different pili types, enabling it to attach to both biotic and abiotic surfaces. Using in-house built tracking software we track all surface-attaching bacteria from high-speed movies to examine the early-time attachment profile of v. cholerae onto a smooth glass surface. Similar to previous work, we observe right-handed circular swimming trajectories near surfaces; however, in addition we see a host of distinct motility mechanisms that enable rapid exploration of the surface before forming a more permanent attachment. Using isogenic mutants we show that the motility mechanisms observed are due to a complex combination of hydrodynamics and pili-surface interactions. Lauga, E., DiLuzio, W. R., Whitesides, G. M., Stone, H. A. Biophys. J. 90, 400 (2006).

  11. Cholera Epidemic Control | Zachariah | Malawi Medical Journal

    African Journals Online (AJOL)

    Journal Home > Vol 13, No 1 (2001) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Cholera Epidemic Control. R Zachariah. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals ...

  12. Een jongen met cholera uit India

    NARCIS (Netherlands)

    van Furth, A. M.; Croughs, R. D.; Terpstra, L.; Vandenbroucke-Grauls, C. M. J. E.; van Well, G. T. H.

    2006-01-01

    A 7-year-old Indian boy travelling from India to the United Kingdom was brought to the Emergency Clinic of Airport Medical Services at Schiphol airport in Amsterdam, the Netherlands. He had had watery diarrhoea in the aircraft and had lost consciousness. In view of the strong indications for cholera

  13. Cholera Epidemic Control | Zachariah | Malawi Medical Journal

    African Journals Online (AJOL)

    Malawi Medical Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 13, No 1 (2001) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Cholera Epidemic Control. R Zachariah. Full Text: EMAIL FREE ...

  14. EPIDEMIOLOGY OF CHOLERA OUTBREAK IN KAMPALA ...

    African Journals Online (AJOL)

    hi-tech

    of immunity against the disease for the population. Those two factors, with the poor sanitary conditions prevailing in the city slums, undoubtedly favoured development of the major outbreak reported here. MATERIALS AND METHODS. Case definition: Clinical case definitions were used. A case of cholera was defined as any ...

  15. Maladi Kolera 1 PSA (:30) (Cholera 1)

    Centers for Disease Control (CDC) Podcasts

    2010-02-18

    This is an important public health announcement about cholera symptoms and ways you can prevent the spread of disease. Language: Haitian Creole.  Created: 2/18/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 2/18/2010.

  16. Maladi Kolera 2 PSA (:30) (Cholera 2)

    Centers for Disease Control (CDC) Podcasts

    2010-02-18

    This is an important public health announcement about cholera prevention and food preparation tips you can use to prevent the spread of disease. Language: Haitian Creole.  Created: 2/18/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 2/18/2010.

  17. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak

    National Research Council Canada - National Science Library

    Chunara, Rumi; Andrews, Jason R; Brownstein, John S

    2012-01-01

    .... We assessed correlation of volume of cholera-related HealthMap news media reports, Twitter postings, and government cholera cases reported in the first 100 days of the 2010 Haitian cholera outbreak...

  18. Genome sequence of vibrio cholerae G4222, a South African clinical isolate

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2013-03-01

    Full Text Available Vibrio cholerae, a Gram-negative pathogen autochthonous to the aquatic environment, is the causative agent of cholera. Here, we report the complete genome sequence of V. cholerae G4222, a clinical isolate from South Africa....

  19. [The role of food in cholera transmission].

    Science.gov (United States)

    Dobosch, D; Gomez Zavaglia, A; Kuljich, A

    1995-01-01

    The spreading of cholera, from Peru to other Latinoamerican countries in 1991, raised questions regarding food safety, food transportation and handling. Control, prevention and risks implied in food import-export were also matters of concern. We deemed it interesting to determine the viability of Vibrio cholerae in wide consumption food locally. Selected food had different intrinsic characteristics such as: acidity (pH), water activity (aw), chemical composition, indigenous flora and other biologic and physic parameters. Twenty food products were contaminated with V. cholerae O1, Ogawa, toxigenic and not toxigenic strains: yoghurt, cream cheese, apricot marmelade, hip rose marmelade, mayonnaise, italian pasta for "empanadas", "dulce de leche", meat sausage, meat and spinach ravioli, margarine, milk dessert (made with cocoa, milk confiture, starch and additives), lettuce, tuna fish, ricotta and sterilized milk. Table I shows the viability of V. cholerae in tested foods, its pH and the reasons why the experiments were ended: 75% of the products studied could tolerate the development of the microorganism for a period ranging from one day (pasta for "empanadas") to ninety days (sterilized milk). Foods with acredity higher than pH 5.5 did not favor the growth of Vibrio. When pH was neutral or slightly acid, viability persisted independently from aw, microbial antagonisms and other physic, chemical or biologic parameters. Nevertheless, other factors such as: surface adherence, amino acids, magnesium and environmental influences not yet well determined, could eventually modify the persistence of V. cholerae in food. According to this study, most food products could tolerate growth and persistence of the infectant agent, up for three months in some cases.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Antibiotics resistance in El Tor Vibrio cholerae 01 isolated during cholera outbreaks in Mozambique from 2012 to 2015.

    Science.gov (United States)

    Dengo-Baloi, Liliana Candida; Semá-Baltazar, Cynthia Amino; Manhique, Lena Vania; Chitio, Jucunu Elias; Inguane, Dorteia Luísa; Langa, José Paulo

    2017-01-01

    Mozambique has recorded cyclically epidemic outbreaks of cholera. Antibiotic therapy is recommended in specific situations for management and control of cholera outbreaks. However, an increase in resistance rates to antibiotics by Vibrio cholerae has been reported in several epidemic outbreaks worldwide. On the other hand, there are few recent records of continuous surveillance of antibiotics susceptibility pattern of V. cholerae in Mozambique. The purpose of this study was to evaluate antibiotics resistance pattern of Vibrio cholerae O1 Ogawa isolated during Cholera outbreaks in Mozambique to commonly used antibiotics. We analyzed data from samples received in the context of surveillance and response to Cholera outbreaks in the National Reference Laboratory of Microbiology from the National Institute of Health of Mozambique, 159 samples suspected of cholera from cholera treatment centers of, Metangula (09), Memba (01), Tete City (08), Moatize (01), Morrumbala (01) districts, City of Quelimane (01), Lichinga (06) and Nampula (86) districts, from 2012 to 2015. Laboratory culture and standard biochemical tests were employed to isolate and identify Vibrio cholerae; serotypes were determined by antisera agglutination reaction in blade. Biotype and presence of important virulence factors analysis was done by PCR. Antibiotics susceptibility pattern was detected by disk diffusion method Kirby Bauer. Antibiotic susceptibility and results were interpreted by following as per recommendations of CLSI (Clinical and Laboratory Standards Institute) 2014. All samples were collected and tested in the context of Africhol Project, approved by the National Bioethics Committee for Health. Among isolates from of Vibrio cholerae O1 El Tor Ogawa resistance to Sulphamethoxazole-trimethropim was 100% (53/53) to Trimethoprim-, being 100% (54/54) for Ampicillin, 99% (72/74) for Nalidixic Acid, 97% (64/66) to Chloramphenicol, 95% (42/44) for Nitrofurantoin and (19/20) Cotrimoxazole, 83% (80

  1. Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes.

    Science.gov (United States)

    Son, Mike S; Megli, Christina J; Kovacikova, Gabriela; Qadri, Firdausi; Taylor, Ronald K

    2011-11-01

    Vibrio cholerae serogroup O1, the causative agent of the diarrheal disease cholera, is divided into two biotypes: classical and El Tor. Both biotypes produce the major virulence factors toxin-coregulated pilus (TCP) and cholera toxin (CT). Although possessing genotypic and phenotypic differences, El Tor biotype strains displaying classical biotype traits have been reported and subsequently were dubbed El Tor variants. Of particular interest are reports of El Tor variants that produce various levels of CT, including levels typical of classical biotype strains. Here, we report the characterization of 10 clinical isolates from the International Centre for Diarrhoeal Disease Research, Bangladesh, and a representative strain from the 2010 Haiti cholera outbreak. We observed that all 11 strains produced increased CT (2- to 10-fold) compared to that of wild-type El Tor strains under in vitro inducing conditions, but they possessed various TcpA and ToxT expression profiles. Particularly, El Tor variant MQ1795, which produced the highest level of CT and very high levels of TcpA and ToxT, demonstrated hypervirulence compared to the virulence of El Tor wild-type strains in the infant mouse cholera model. Additional genotypic and phenotypic tests were conducted to characterize the variants, including an assessment of biotype-distinguishing characteristics. Notably, the sequencing of ctxB in some El Tor variants revealed two copies of classical ctxB, one per chromosome, contrary to previous reports that located ctxAB only on the large chromosome of El Tor biotype strains.

  2. Characterization of Vibrio cholerae O1 El Tor Biotype Variant Clinical Isolates from Bangladesh and Haiti, Including a Molecular Genetic Analysis of Virulence Genes ▿

    Science.gov (United States)

    Son, Mike S.; Megli, Christina J.; Kovacikova, Gabriela; Qadri, Firdausi; Taylor, Ronald K.

    2011-01-01

    Vibrio cholerae serogroup O1, the causative agent of the diarrheal disease cholera, is divided into two biotypes: classical and El Tor. Both biotypes produce the major virulence factors toxin-coregulated pilus (TCP) and cholera toxin (CT). Although possessing genotypic and phenotypic differences, El Tor biotype strains displaying classical biotype traits have been reported and subsequently were dubbed El Tor variants. Of particular interest are reports of El Tor variants that produce various levels of CT, including levels typical of classical biotype strains. Here, we report the characterization of 10 clinical isolates from the International Centre for Diarrhoeal Disease Research, Bangladesh, and a representative strain from the 2010 Haiti cholera outbreak. We observed that all 11 strains produced increased CT (2- to 10-fold) compared to that of wild-type El Tor strains under in vitro inducing conditions, but they possessed various TcpA and ToxT expression profiles. Particularly, El Tor variant MQ1795, which produced the highest level of CT and very high levels of TcpA and ToxT, demonstrated hypervirulence compared to the virulence of El Tor wild-type strains in the infant mouse cholera model. Additional genotypic and phenotypic tests were conducted to characterize the variants, including an assessment of biotype-distinguishing characteristics. Notably, the sequencing of ctxB in some El Tor variants revealed two copies of classical ctxB, one per chromosome, contrary to previous reports that located ctxAB only on the large chromosome of El Tor biotype strains. PMID:21880975

  3. Validation and characterization of a human volunteer challenge model for cholera by using frozen bacteria of the new Vibrio cholerae epidemic serotype, O139

    NARCIS (Netherlands)

    Cohen, MB; Giannella, RA; Losonsky, GA; Lang, DR; Parker, S; Hawkins, JA; Gunther, C; Schiff, GA

    1999-01-01

    Until recently, all epidemic strains of Vibrio cholerae were of the O1 serotype. Current epidemics have also been caused by a new serotype, Vibrio cholerae O139. Although the pathogenesis and clinical features of O139 cholera are similar to those of O1 cholera, immunity to serotype O1 does not

  4. Reported cholera in the United States, 1992-1994: a reflection of global changes in cholera epidemiology.

    Science.gov (United States)

    Mahon, B E; Mintz, E D; Greene, K D; Wells, J G; Tauxe, R V

    To describe US cholera surveillance data from 1992 to 1994 and the domestic impact of the epidemics of Vibrio cholerae O1 in Latin America and V cholerae O139 in Asia. Retrospective review of surveillance data from all cases of cholera reported to the Centers for Disease Control and Prevention (CDC) from January 1, 1992, through December 31, 1994, in the United States and its territories. Clinical, epidemiologic, and laboratory surveillance data. From 1992 through 1994, 160 cases of cholera were reported to CDC by 20 states and 1 territory. This is a marked increase: only 136 cases were reported from 1965 through 1991. Outbreaks affecting 75 passengers on an airplane from Latin America and 5 passengers on a cruise ship in Southeast Asia accounted for 50 percent of cases. Vibrio cholerae O139 caused 6 cases (4 percent). The proportion of V cholerae O1 isolates resistant to at least 1 antimicrobial agent rose from 3 percent in 1992 to 93 percent in 1994. Of 158 patients whose location of exposure was known, 151 (96 percent) acquired infection abroad (125 in Latin America, 26 in Asia). Of 105 persons whose reason for travel was known, 31 (30 percent) were US residents who had returned to their country of origin to visit family or friends, and 65 (62 percent) were non-US residents visiting the United States from cholera-affected countries. The cholera rate among persons arriving in the United States from cholera-affected regions was 0.27 case per 100000 air travelers, not substantially increased from earlier estimates. Cholera has increased in the United States since 1991, reflecting global changes in cholera epidemiology, and is now primarily travel associated and antimicrobial resistant. Most travelers were not traditional tourists; reaching them with prevention measures may be difficult. The risk of cholera to the individual traveler remains extremely low.

  5. [Hemolysis of Scolopendra toxins].

    Science.gov (United States)

    Deng, F; Fang, H; Wang, K

    1997-01-01

    The hemolysis of toxins from alive Scolopendra subspinipes mutilans, medicinal material of Scolopendra subspimipes mutilans and S. multidens have been compared. The result shows that all the toxins have hemolytic activity. The hemolytic activity of the toxin from the medicinal materials of S. subspinipes mutilans is obviously lower than that from alive ones, and that from fresh medicinal materials are twice as high that from old ones, and that from S. multidens is higher than that from S. subspinipes multilans.

  6. Evolutionary perspective on the origin of Haitian cholera outbreak strain.

    Science.gov (United States)

    Dasgupta, Anirban; Banerjee, Rachana; Das, Santasabuj; Basak, Surajit

    2012-01-01

    Cholera epidemic has not been reported in Haiti for at least 100 years, although cholera has been present in Latin America since 1991. Surprisingly, the recent cholera epidemic in Haiti (October 2010) recorded more than 250,000 cases and 4000 deaths in the first 6 months and became one of the most explosive and deadly cholera outbreak in recent history. In the present study, we conducted genomic analyses of pathogenicity islands of three Haitian Vibrio cholerae strains and compared them with nine different V. cholerae O1 El Tor genomes. Although CIRS101 is evolutionarily most similar to the Haitian strains, our study also provides some important differences in the genetic organization of pathogenicity islands of Haitian strains with CIRS101. Evolutionary analysis suggests that unusual functional constraints have been imposed on the Haitian strains and we hypothesize that amino acid substitution is more deleterious in Haitian strains than in nonHaitian strains.

  7. Proteinaceous toxins from three species of scorpaeniform fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis): close similarity in properties and primary structures to stonefish toxins.

    Science.gov (United States)

    Kiriake, Aya; Suzuki, Yasuko; Nagashima, Yuji; Shiomi, Kazuo

    2013-08-01

    The crude toxins from three species of venomous fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis) belonging to the order Scorpaeniformes exhibited mouse-lethal, hemolytic, edema-forming and nociceptive activities. In view of the antigenic cross-reactivity with the stonefish toxins, the primary structures of the stonefish toxin-like toxins from the three scorpaeniform fish were determined by cDNA cloning using primers designed from the highly conserved sequences of the stonefish toxins. Based on the data obtained in gel filtration, immunoblotting and cDNA cloning, each toxin was judged to be a 160 kDa heterodimer composed of 80 kDa α- and β-subunits. The three scorpaeniform fish toxins contain a B30.2/SPRY domain (∼200 amino acid residues) in the C-terminal region of each subunit, as reported for the toxins from two species of lionfish and two species of stonefish. With respect to the amino acid sequence similarity, the scorpaeniform fish toxins are divided into the following two groups: toxins from three species of lionfish and those from devil stinger, two species of stonefish and waspfish. The phylogenetic tree generated also clearly supports the classification of the toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay.

    Science.gov (United States)

    Blackstone, George M; Nordstrom, Jessica L; Bowen, Michael D; Meyer, Richard F; Imbro, Paula; DePaola, Angelo

    2007-02-01

    Toxigenic Vibrio cholerae, the etiological agent of cholera, is a natural inhabitant of the marine environment and causes severe diarrheal disease affecting thousands of people each year in developing countries. It is the subject of extensive testing of shrimp produced and exported from these countries. We report the development of a real time PCR (qPCR) assay to detect the gene encoding cholera toxin, ctxA, found in toxigenic V. cholerae strains. This assay was tested against DNA isolated from soil samples collected from diverse locations in the US, a panel of eukaryotic DNA from various sources, and prokaryotic DNA from closely related and unrelated bacterial sources. Only Vibrio strains known to contain ctxA generated a fluorescent signal with the 5' nuclease probe targeting the ctxA gene, thus confirming the specificity of the assay. In addition, the assay was quantitative in pure culture across a six-log dynamic range down to <10 CFU per reaction. To test the robustness of this assay, oysters, aquatic sediments, and seawaters from Mobile Bay, AL, were analyzed by qPCR and traditional culture methods. The assay was applied to overnight alkaline peptone water enrichments of these matrices after boiling the enrichments for 10 min. Toxigenic V. cholerae strains were not detected by either qPCR or conventional methods in the 16 environmental samples examined. A novel exogenous internal amplification control developed by us to prevent false negatives identified the samples that were inhibitory to the PCR. This assay, with the incorporated internal control, provides a highly specific, sensitive, and rapid detection method for the detection of toxigenic strains of V. cholerae.

  9. Cholera revolts: a class struggle we may not like

    OpenAIRE

    Cohn Jr, Samuel Kline

    2017-01-01

    Few have studied cholera revolts comparatively, and certainly not over the vast terrain from Asiatic Russia to Quebec or across time from the first European cholera wave of the 1830s to the twentieth century. Scholars have instead concentrated on the first European cholera wave in the 1830s and have tended to explain cholera’s social violence within the political contexts of individual nations, despite these riots raging across vast differences in political landscapes from Czarist Russia to N...

  10. Vaccines for Cholera Control: Does Herd Immunity Play a Role?

    OpenAIRE

    Ira M Longini; Azhar Nizam; Mohammad Ali; Mohammad Yunus; Neeta Shenvi; Clemens, John D.

    2007-01-01

    Editors' Summary Background. Throughout history, there have been devastating outbreaks of cholera—a gut infection characterized by diarrhea and severe dehydration—around the world. These days, cholera is mainly confined to developing countries where it disrupts social structures, impedes economic development, and probably causes about 100,000 deaths a year. People get cholera, which is caused by a bacterium called Vibrio cholerae, by eating food or drinking water contaminated with feces (stoo...

  11. Updated Global Burden of Cholera in Endemic Countries

    Science.gov (United States)

    Ali, Mohammad; Nelson, Allyson R.; Lopez, Anna Lena; Sack, David A.

    2015-01-01

    Background The global burden of cholera is largely unknown because the majority of cases are not reported. The low reporting can be attributed to limited capacity of epidemiological surveillance and laboratories, as well as social, political, and economic disincentives for reporting. We previously estimated 2.8 million cases and 91,000 deaths annually due to cholera in 51 endemic countries. A major limitation in our previous estimate was that the endemic and non-endemic countries were defined based on the countries’ reported cholera cases. We overcame the limitation with the use of a spatial modelling technique in defining endemic countries, and accordingly updated the estimates of the global burden of cholera. Methods/Principal Findings Countries were classified as cholera endemic, cholera non-endemic, or cholera-free based on whether a spatial regression model predicted an incidence rate over a certain threshold in at least three of five years (2008-2012). The at-risk populations were calculated for each country based on the percent of the country without sustainable access to improved sanitation facilities. Incidence rates from population-based published studies were used to calculate the estimated annual number of cases in endemic countries. The number of annual cholera deaths was calculated using inverse variance-weighted average case-fatality rate (CFRs) from literature-based CFR estimates. We found that approximately 1.3 billion people are at risk for cholera in endemic countries. An estimated 2.86 million cholera cases (uncertainty range: 1.3m-4.0m) occur annually in endemic countries. Among these cases, there are an estimated 95,000 deaths (uncertainty range: 21,000-143,000). Conclusion/Significance The global burden of cholera remains high. Sub-Saharan Africa accounts for the majority of this burden. Our findings can inform programmatic decision-making for cholera control. PMID:26043000

  12. A generalized cholera model and epidemic-endemic analysis

    National Research Council Canada - National Science Library

    Wang, Jin; Liao, Shu

    2012-01-01

    .... Particularly, this work unifies many existing cholera models proposed by different authors. We conduct equilibrium analysis to carefully study the complex epidemic and endemic behaviour of the disease...

  13. Transmission dynamics of cholera: Mathematical modeling and control strategies

    Science.gov (United States)

    Sun, Gui-Quan; Xie, Jun-Hui; Huang, Sheng-He; Jin, Zhen; Li, Ming-Tao; Liu, Liqun

    2017-04-01

    Cholera, as an endemic disease around the world, has generated great threat to human society and caused enormous morbidity and mortality with weak surveillance system. In this paper, we propose a mathematical model to describe the transmission of Cholera. Moreover, basic reproduction number and the global dynamics of the dynamical model are obtained. Then we apply our model to characterize the transmission process of Cholera in China. It was found that, in order to avoid its outbreak in China, it may be better to increase immunization coverage rate and make effort to improve environmental management especially for drinking water. Our results may provide some new insights for elimination of Cholera.

  14. Structure of the CFA/III major pilin subunit CofA from human enterotoxigenic Escherichia coli determined at 0.90 Å resolution by sulfur-SAD phasing.

    Science.gov (United States)

    Fukakusa, Shunsuke; Kawahara, Kazuki; Nakamura, Shota; Iwashita, Takaki; Baba, Seiki; Nishimura, Mitsuhiro; Kobayashi, Yuji; Honda, Takeshi; Iida, Tetsuya; Taniguchi, Tooru; Ohkubo, Tadayasu

    2012-10-01

    CofA, a major pilin subunit of colonization factor antigen III (CFA/III), forms pili that mediate small-intestinal colonization by enterotoxigenic Escherichia coli (ETEC). In this study, the crystal structure of an N-terminally truncated version of CofA was determined by single-wavelength anomalous diffraction (SAD) phasing using five sulfurs in the protein. Given the counterbalance between anomalous signal strength and the undesired X-ray absorption of the solvent, diffraction data were collected at 1.5 Å resolution using synchrotron radiation. These data were sufficient to elucidate the sulfur substructure at 1.38 Å resolution. The low solvent content (29%) of the crystal necessitated that density modification be performed with an additional 0.9 Å resolution data set to reduce the phase error caused by the small sulfur anomalous signal. The CofA structure showed the αβ-fold typical of type IVb pilins and showed high structural homology to that of TcpA for toxin-coregulated pili of Vibrio cholerae, including spatial distribution of key residues critical for pilin self-assembly. A pilus-filament model of CofA was built by computational docking and molecular-dynamics simulation using the previously reported filament model of TcpA as a structural template. This model revealed that the CofA filament surface was highly negatively charged and that a 23-residue-long loop between the α1 and α2 helices filled the gap between the pilin subunits. These characteristics could provide a unique binding epitope for the CFA/III pili of ETEC compared with other type IVb pili.

  15. Bacteriemia por Vibrio cholerae no-O1, no-O139 en un paciente en hemodiálisis crónica Non-O1, non-O139 Vibrio cholerae bacteremia in a chronic hemodialysis patient

    Directory of Open Access Journals (Sweden)

    Mariela S. Zárate

    2011-06-01

    Full Text Available Vibrio cholerae no-O1, no-O139 es un agente poco frecuente como causal de bacteriemias y no hay informes que documenten su presencia en pacientes en hemodiálisis crónica. Se describe el caso de una paciente en hemodiálisis crónica que presentó un cuadro de sepsis, por lo cual inició un tratamiento con vancomicina y ceftacidima. Al cabo de seis horas y media de incubación en el sistema BACT/ALERT de hemocultivo, se evidenció la presencia de bacilos curvos gram negativos, posteriormente identificados como Vibrio cholerae mediante pruebas bioquímicas convencionales y el uso de los kits API 20 NE y VITEK 2. La evaluación del serogrupo y de la presencia de factores de patogenicidad, realizada en el laboratorio de referencia, determinó que el microorganismo hallado pertenecía al serogrupo no-O1, no-O139. No se detectó la toxina de cólera, tampoco el factor de colonización ni la toxina termoestable. El aislamiento presentó sensibilidad frente a ampicilina, trimetoprima-sulfametoxazol, ciprofloxacina, tetraciclina, ceftacidima y cefotaxima por el método de difusión con discos y por VITEK 2. La paciente cumplió 14 días de tratamiento con ceftacidima endovenosa, con evolución favorable.Non-O1, and non-O139 Vibrio cholerae is an infrequent cause of bacteremia. There are no reports of such bacteremia in chronic hemodialysis patients. This work describes the case of a chronic hemodialysis patient that had an episode of septicemia associated with dialysis. Blood cultures were obtained and treatment was begun with vancomycin and ceftazidime. After 6.5 hours of incubation in the Bact/Alert system there is evidence of gram-negative curved bacilli that were identified as Vibrio cholerae by conventional biochemical tests, API 20 NE and the VITEK 2 system. This microorganism was sent to the reference laboratory for evaluation of serogroup and virulence factors and was identified as belonging to the non-O1 and non-O139 serogroup. The cholera

  16. Independent Regulation of Type VI Secretion in Vibrio cholerae by TfoX and TfoY

    Directory of Open Access Journals (Sweden)

    Lisa C. Metzger

    2016-05-01

    Full Text Available Type VI secretion systems (T6SSs are nanomachines used for interbacterial killing and intoxication of eukaryotes. Although Vibrio cholerae is a model organism for structural studies on T6SSs, the underlying regulatory network is less understood. A recent study showed that the T6SS is part of the natural competence regulon in V. cholerae and is activated by the regulator TfoX. Here, we identify the TfoX homolog TfoY as a second activator of the T6SS. Importantly, despite inducing the same T6SS core machinery, the overall regulons differ significantly for TfoX and TfoY. We show that TfoY does not contribute to competence induction. Instead, TfoY drives the production of T6SS-dependent and T6SS-independent toxins, together with an increased motility phenotype. Hence, we conclude that V. cholerae uses its sole T6SS in response to diverse cues and for distinctive outcomes: either to kill for the prey’s DNA, leading to horizontal gene transfer, or as part of a defensive escape reaction.

  17. Protection against Shiga Toxins

    Directory of Open Access Journals (Sweden)

    Simona Kavaliauskiene

    2017-02-01

    Full Text Available Shiga toxins consist of an A-moiety and five B-moieties able to bind the neutral glycosphingolipid globotriaosylceramide (Gb3 on the cell surface. To intoxicate cells efficiently, the toxin A-moiety has to be cleaved by furin and transported retrogradely to the Golgi apparatus and to the endoplasmic reticulum. The enzymatically active part of the A-moiety is then translocated to the cytosol, where it inhibits protein synthesis and in some cell types induces apoptosis. Protection of cells can be provided either by inhibiting binding of the toxin to cells or by interfering with any of the subsequent steps required for its toxic effect. In this article we provide a brief overview of the interaction of Shiga toxins with cells, describe some compounds and conditions found to protect cells against Shiga toxins, and discuss whether they might also provide protection in animals and humans.

  18. CHOLERA EL-TOR EN IRAN

    Directory of Open Access Journals (Sweden)

    M. Ghodssi

    1969-01-01

    Full Text Available The bacteriological analysis shows that we have been confronted with the ELTor type, and only that type, until the end of the epidemic.The clinical study presents the symptoms of the real cholera with all its grievous consequences.The epidemiological supertnisicn stales that the El..Tor cholera is not agressiveat all in town areas whereas it presents its usual aspect in country areas, because of a lack of hygiene. there.That disease can be completely cured if the balance between the electrolytesis quickly restored.The disease was all the more dreadful since it came as a surprise and spread from one province to the other.L'examen bacteriologique montrc qu'il s'agit du type EI_ Tor et uniquement du meme type jusqu'a la fin de l'epldemie.La surveillance epidemiologique constate que Ie cholera EI_Tor n'cst nullement agressif dans Ie milieu urbain; mais qu'H revet l'aspect classique dans les milieuxruraux, depourvus d'hyglene.La maludic est totalement guerissablc a condition que l'equilibre des electrolytes so it rapidement retabli. L'evenement a tHe maladie se repandit d'une12

  19. Spatially explicit modelling of cholera epidemics

    Science.gov (United States)

    Finger, F.; Bertuzzo, E.; Mari, L.; Knox, A. C.; Gatto, M.; Rinaldo, A.

    2013-12-01

    Epidemiological models can provide crucial understanding about the dynamics of infectious diseases. Possible applications range from real-time forecasting and allocation of health care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. We apply a spatially explicit model to the cholera epidemic that struck Haiti in October 2010 and is still ongoing. The dynamics of susceptibles as well as symptomatic and asymptomatic infectives are modelled at the scale of local human communities. Dissemination of Vibrio cholerae through hydrological transport and human mobility along the road network is explicitly taken into account, as well as the effect of rainfall as a driver of increasing disease incidence. The model is calibrated using a dataset of reported cholera cases. We further model the long term impact of several types of interventions on the disease dynamics by varying parameters appropriately. Key epidemiological mechanisms and parameters which affect the efficiency of treatments such as antibiotics are identified. Our results lead to conclusions about the influence of different intervention strategies on the overall epidemiological dynamics.

  20. The Vaccine Candidate Vibrio cholerae 638 Is Protective against Cholera in Healthy Volunteers

    Science.gov (United States)

    García, Luis; Jidy, Manuel Díaz; García, Hilda; Rodríguez, Boris L.; Fernández, Roberto; Año, Gemma; Cedré, Bárbara; Valmaseda, Tania; Suzarte, Edith; Ramírez, Margarita; Pino, Yadira; Campos, Javier; Menéndez, Jorge; Valera, Rodrigo; González, Daniel; González, Irma; Pérez, Oliver; Serrano, Teresita; Lastre, Miriam; Miralles, Fernando; del Campo, Judith; Maestre, Jorge Luis; Pérez, José Luis; Talavera, Arturo; Pérez, Antonio; Marrero, Karen; Ledón, Talena; Fando, Rafael

    2005-01-01

    Vibrio cholerae 638 is a living candidate cholera vaccine strain attenuated by deletion of the CTXΦ prophage from C7258 (O1, El Tor Ogawa) and by insertion of the Clostridium thermocellum endoglucanase A gene into the hemagglutinin/protease coding sequence. This vaccine candidate was previously found to be well tolerated and immunogenic in volunteers. This article reports a randomized, double-blind, placebo-controlled trial conducted to test short-term protection conferred by 638 against subsequent V. cholerae infection and disease in volunteers in Cuba. A total of 45 subjects were enrolled and assigned to receive vaccine or placebo. The vaccine contained 109 CFU of freshly harvested 638 buffered with 1.3% NaHCO3, while the placebo was buffer alone. After vaccine but not after placebo intake, 96% of volunteers had at least a fourfold increase in vibriocidal antibody titers, and 50% showed a doubling of at least the lipopolysaccharide-specific immunoglobulin A titers in serum. At 1 month after vaccination, five volunteers from the vaccine group and five from the placebo group underwent an exploratory challenge study with 109 CFU of ΔCTXΦ attenuated mutant strain V. cholerae 81. Only two volunteers from the vaccine group shed strain 81 in their feces, but none of them experienced diarrhea; in the placebo group, all volunteers excreted the challenge strain, and three had reactogenic diarrhea. An additional 12 vaccinees and 9 placebo recipients underwent challenge with 7 × 105 CFU of virulent strain V. cholerae 3008 freshly harvested from a brain heart infusion agar plate and buffered with 1.3% NaHCO3. Three volunteers (25%) from the vaccine group and all from the placebo group shed the challenge agent in their feces. None of the 12 vaccinees but 7 volunteers from the placebo group had diarrhea, and 2 of the latter exhibited severe cholera (>5,000 g of diarrheal stool). These results indicate that at 1 month after ingestion of a single oral dose (109 CFU) of strain

  1. Safety and immunogenicity of a live oral recombinant cholera vaccine VA1.4: a randomized, placebo controlled trial in healthy adults in a cholera endemic area in Kolkata, India.

    Science.gov (United States)

    Kanungo, Suman; Sen, Bandana; Ramamurthy, Thandavarayan; Sur, Dipika; Manna, Byomkesh; Pazhani, Gururaja P; Chowdhury, Goutam; Jhunjhunwala, Puja; Nandy, Ranjan K; Koley, Hemanta; Bhattacharya, Mihir Kumar; Gupta, Sanjay; Goel, Gaurav; Dey, Bindu; M, Thungapathra; Nair, G Balakrish; Ghosh, Amit; Mahalanabis, Dilip

    2014-01-01

    A live oral cholera vaccine VA 1.4 developed from a non-toxigenic Vibrio cholerae O1 El Tor strain using ctxB gene insertion was further developed into a clinical product following cGMP and was evaluated in a double-blind randomized placebo controlled parallel group two arm trial with allocation ratio of 1∶1 for safety and immunogenicity in men and women aged 18-60 years from Kolkata, India. A lyophilized dose of 1.9×109 CFU (n = 44) or a placebo (n = 43) reconstituted with a diluent was administered within 5 minutes of drinking 100 ml of a buffer solution made of sodium bicarbonate and ascorbic acid and a second dose on day 14. The vaccine did not elicit any diarrhea related adverse events. Other adverse events were rare, mild and similar in two groups. One subject in the vaccine group excreted the vaccine strain on the second day after first dose. The proportion of participants who seroconverted (i.e. had 4-folds or higher rise in reciprocal titre) in the vaccine group were 65.9% (95% CI: 50.1%-79.5%) at both 7 days (i.e. after 1st dose) and 21 days (i.e. after 2nd dose). None of the placebo recipients seroconverted. Anti-cholera toxin antibody was detected in very few recipients of the vaccine. This study demonstrates that VA 1.4 at a single dose of 1.9×109 is safe and immunogenic in adults from a cholera endemic region. No additional benefit after two doses was seen. Clinical Trials Registry-India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2012/04/002582.

  2. Safety and immunogenicity of a live oral recombinant cholera vaccine VA1.4: a randomized, placebo controlled trial in healthy adults in a cholera endemic area in Kolkata, India.

    Directory of Open Access Journals (Sweden)

    Suman Kanungo

    Full Text Available BACKGROUND: A live oral cholera vaccine VA 1.4 developed from a non-toxigenic Vibrio cholerae O1 El Tor strain using ctxB gene insertion was further developed into a clinical product following cGMP and was evaluated in a double-blind randomized placebo controlled parallel group two arm trial with allocation ratio of 1∶1 for safety and immunogenicity in men and women aged 18-60 years from Kolkata, India. METHOD: A lyophilized dose of 1.9×109 CFU (n = 44 or a placebo (n = 43 reconstituted with a diluent was administered within 5 minutes of drinking 100 ml of a buffer solution made of sodium bicarbonate and ascorbic acid and a second dose on day 14. RESULT: The vaccine did not elicit any diarrhea related adverse events. Other adverse events were rare, mild and similar in two groups. One subject in the vaccine group excreted the vaccine strain on the second day after first dose. The proportion of participants who seroconverted (i.e. had 4-folds or higher rise in reciprocal titre in the vaccine group were 65.9% (95% CI: 50.1%-79.5% at both 7 days (i.e. after 1st dose and 21 days (i.e. after 2nd dose. None of the placebo recipients seroconverted. Anti-cholera toxin antibody was detected in very few recipients of the vaccine. CONCLUSION: This study demonstrates that VA 1.4 at a single dose of 1.9×109 is safe and immunogenic in adults from a cholera endemic region. No additional benefit after two doses was seen. TRIAL REGISTRATION: Clinical Trials Registry-India, National Institute of Medical Statistics (Indian Council of Medical Research CTRI/2012/04/002582.

  3. Microalgal toxin(s): characteristics and importance

    African Journals Online (AJOL)

    Prokaryotic and eukaryotic microalgae produce a wide array of compounds with biological activities. These include antibiotics, algicides, toxins, pharmaceutically active compounds and plant growth regulators. Toxic microalgae, in this sense, are common only among the cyanobacteria and dinoflagellates. The microalgal ...

  4. Characters of homogentisate oxygenase gene mutation and high clonality of the natural pigment-producing Vibrio cholerae strains

    Directory of Open Access Journals (Sweden)

    Diao Baowei

    2011-05-01

    different regions. Additionally all these O139 strains belong to the rb4 ribotype, which contains the O139 strains isolated from diarrheal patients, although these strains are cholera toxin negative. Conclusion Dysfunction of homogentisate oxygenase (VC1345 causes homogentisate accumulation and pigment formation in naturally pigmented strains of V. cholerae. The high clonality of these strains may correlate to an environmental survival advantage in the V. cholerae community due to their pigment production, and may imply a potential protective function of melanin in environmental survival of such strains.

  5. Multi-site cholera surveillance within the African Cholera Surveillance Network shows endemicity in Mozambique, 2011-2015.

    Directory of Open Access Journals (Sweden)

    Cynthia Semá Baltazar

    2017-10-01

    Full Text Available Mozambique suffers recurrent annual cholera outbreaks especially during the rainy season between October to March. The African Cholera Surveillance Network (Africhol was implemented in Mozambique in 2011 to generate accurate detailed surveillance data to support appropriate interventions for cholera control and prevention in the country.Africhol was implemented in enhanced surveillance zones located in the provinces of Sofala (Beira, Zambézia (District Mocuba, and Cabo Delgado (Pemba City. Data were also analyzed from the three outbreak areas that experienced the greatest number of cases during the time period under observation (in the districts of Cuamba, Montepuez, and Nampula. Rectal swabs were collected from suspected cases for identification of Vibrio cholerae, as well as clinical, behavioral, and socio-demographic variables. We analyzed factors associated with confirmed, hospitalized, and fatal cholera using multivariate logistic regression models. A total of 1,863 suspected cases and 23 deaths (case fatality ratio (CFR, 1.2% were reported from October 2011 to December 2015. Among these suspected cases, 52.2% were tested of which 23.5% were positive for Vibrio cholerae O1 Ogawa. Risk factors independently associated with the occurrence of confirmed cholera were living in Nampula city district, the year 2014, human immunodeficiency virus infection, and the primary water source for drinking.Cholera was endemic in Mozambique during the study period with a high CFR and identifiable risk factors. The study reinforces the importance of continued cholera surveillance, including a strong laboratory component. The results enhanced our understanding of the need to target priority areas and at-risk populations for interventions including oral cholera vaccine (OCV use, and assess the impact of prevention and control strategies. Our data were instrumental in informing integrated prevention and control efforts during major cholera outbreaks in recent

  6. Multidrug-Resistant Vibrio cholerae O1 was Responsible for a Cholera Outbreak in 2013 in Bagalkot, North Karnataka.

    Science.gov (United States)

    Bhattacharya, Debdutta; Dey, Shuchismita; Roy, Subarna; Parande, Mahantesh V; Telsang, M; Seema, M H; Parande, Aisha V; Mantur, Basappa G

    2015-01-01

    Cholera is a major cause of illness in the developing world. During the monsoon season, small sporadic clusters of cholera cases are reported on an annual basis in Karnataka, India. During the monsoons of 2013, there was a cholera outbreak in Badami, a remote area of Bagalkot district in Karnataka. The multi-drug-resistant Vibrio cholerae O1 serotype Ogawa was found to be responsible for this outbreak. On 5 August 2013, a 30-year-old woman presented with severe dehydration and watery diarrhea at the Aganwadi Health Centre in Badami. A total of 49 suspected cholera cases were reported, with an attack rate of 3.5%. The V. cholerae isolates exhibited resistance to a wide range of drugs, including ampicillin, co-trimoxazole, nitrofurantoin, carbenicillin, and third generation cephalosporins, and showed reduced susceptibility to third generation fluoroquinolones. All of the cephalosporin-resistant V. cholerae strains produced extended-spectrum beta-lactamase. All V. cholerae O1 isolates harbored virulent genes (ctxA, ctxB, tcpA El Tor, Tox S, VPI, ToxT, ToxR, ToxRS, ace, zot, and tcpP) and were found to be genetically similar as determined by randomly amplified polymorphic DNA fingerprinting assay. To the best of our knowledge, this is the first report of a cholera outbreak in the district of Bagalkot. The resistance of V. cholerae to commonly used antimicrobial drugs is becoming a major public health concern in the region as clinicians are left with a limited choice of antibiotics for the treatment of cholera.

  7. Multi-site cholera surveillance within the African Cholera Surveillance Network shows endemicity in Mozambique, 2011-2015.

    Science.gov (United States)

    Semá Baltazar, Cynthia; Langa, José Paulo; Dengo Baloi, Liliana; Wood, Richard; Ouedraogo, Issaka; Njanpop-Lafourcade, Berthe-Marie; Inguane, Dorteia; Elias Chitio, Jucunu; Mhlanga, Themba; Gujral, Lorna; D Gessner, Bradford; Munier, Aline; A Mengel, Martin

    2017-10-01

    Mozambique suffers recurrent annual cholera outbreaks especially during the rainy season between October to March. The African Cholera Surveillance Network (Africhol) was implemented in Mozambique in 2011 to generate accurate detailed surveillance data to support appropriate interventions for cholera control and prevention in the country. Africhol was implemented in enhanced surveillance zones located in the provinces of Sofala (Beira), Zambézia (District Mocuba), and Cabo Delgado (Pemba City). Data were also analyzed from the three outbreak areas that experienced the greatest number of cases during the time period under observation (in the districts of Cuamba, Montepuez, and Nampula). Rectal swabs were collected from suspected cases for identification of Vibrio cholerae, as well as clinical, behavioral, and socio-demographic variables. We analyzed factors associated with confirmed, hospitalized, and fatal cholera using multivariate logistic regression models. A total of 1,863 suspected cases and 23 deaths (case fatality ratio (CFR), 1.2%) were reported from October 2011 to December 2015. Among these suspected cases, 52.2% were tested of which 23.5% were positive for Vibrio cholerae O1 Ogawa. Risk factors independently associated with the occurrence of confirmed cholera were living in Nampula city district, the year 2014, human immunodeficiency virus infection, and the primary water source for drinking. Cholera was endemic in Mozambique during the study period with a high CFR and identifiable risk factors. The study reinforces the importance of continued cholera surveillance, including a strong laboratory component. The results enhanced our understanding of the need to target priority areas and at-risk populations for interventions including oral cholera vaccine (OCV) use, and assess the impact of prevention and control strategies. Our data were instrumental in informing integrated prevention and control efforts during major cholera outbreaks in recent years.

  8. Multi-site cholera surveillance within the African Cholera Surveillance Network shows endemicity in Mozambique, 2011–2015

    Science.gov (United States)

    Langa, José Paulo; Dengo Baloi, Liliana; Wood, Richard; Ouedraogo, Issaka; Njanpop-Lafourcade, Berthe-Marie; Inguane, Dorteia; Elias Chitio, Jucunu; Mhlanga, Themba; Gujral, Lorna; D. Gessner, Bradford; Munier, Aline; A. Mengel, Martin

    2017-01-01

    Background Mozambique suffers recurrent annual cholera outbreaks especially during the rainy season between October to March. The African Cholera Surveillance Network (Africhol) was implemented in Mozambique in 2011 to generate accurate detailed surveillance data to support appropriate interventions for cholera control and prevention in the country. Methodology/Principal findings Africhol was implemented in enhanced surveillance zones located in the provinces of Sofala (Beira), Zambézia (District Mocuba), and Cabo Delgado (Pemba City). Data were also analyzed from the three outbreak areas that experienced the greatest number of cases during the time period under observation (in the districts of Cuamba, Montepuez, and Nampula). Rectal swabs were collected from suspected cases for identification of Vibrio cholerae, as well as clinical, behavioral, and socio-demographic variables. We analyzed factors associated with confirmed, hospitalized, and fatal cholera using multivariate logistic regression models. A total of 1,863 suspected cases and 23 deaths (case fatality ratio (CFR), 1.2%) were reported from October 2011 to December 2015. Among these suspected cases, 52.2% were tested of which 23.5% were positive for Vibrio cholerae O1 Ogawa. Risk factors independently associated with the occurrence of confirmed cholera were living in Nampula city district, the year 2014, human immunodeficiency virus infection, and the primary water source for drinking. Conclusions/Significance Cholera was endemic in Mozambique during the study period with a high CFR and identifiable risk factors. The study reinforces the importance of continued cholera surveillance, including a strong laboratory component. The results enhanced our understanding of the need to target priority areas and at-risk populations for interventions including oral cholera vaccine (OCV) use, and assess the impact of prevention and control strategies. Our data were instrumental in informing integrated prevention and

  9. Antimicrobial susceptibility pattern of Vibrio cholerae 01 strains ...

    African Journals Online (AJOL)

    Results: A total of 181 V. cholerae 01 strains were studied during two epidemic periods when tetracycline or erythromycin was used for treatment of patients with severe disease. Among the 94 V. cholerae Ol strains isolated in 1997; 98.6%, 93.6%, 83%, 81.9%, 36.2%, 35.5%, 3.2% were sensitive to ciprofloxacin, tetracycline, ...

  10. Detection of viable toxigenic Vibrio cholerae and virulent Shigella ...

    African Journals Online (AJOL)

    . cholerae and the invasion plasmid antigen gene (ipaH) of virulent Shigella spp., was performed and the PCR products were visualised by agarose gel electrophoresis. The assay allowed the detection of as few as 1 cfu/100 ml of V. cholerae ...

  11. The case of cholera preparedness, response and prevention in the ...

    African Journals Online (AJOL)

    2011-10-07

    Oct 7, 2011 ... terns conducive to the outbreak of cholera, a history of labour migration, lack of adequate sanitation in informal ..... in terms of performing an educational and knowledge-dissem- inating function. Public health authorities are .... patterns of cholera in Mexico, 1991-1996. Int. J. Epidemiol. 29 (40). 764-772.

  12. Genome sequence of the human pathogen Vibrio cholerae Amazonia.

    NARCIS (Netherlands)

    Thompson, C.C.; Marin, M.A.; Dias, G.M.; Dutilh, B.E.; Edwards, R.A.; Iida, T.; Thompson, F.L.; Vicente, A.C.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis

  13. Antimicrobial susceptibility pattern of Vibrio cholerae 01 strains ...

    African Journals Online (AJOL)

    Conclusion: Significant proportion of V. cholerae 0l strains in Dar es Salaam were resistant to commonly used antimicrobial agents during the two years of the study. Therefore, there is a great need to control the utilisation of antimicrobial agents in cholera control, in addition to continuing carrying out surveillance of ...

  14. Epidemiology of the 2016 Cholera Outbreak of Chibombo District ...

    African Journals Online (AJOL)

    three years. Since then, cholera has become endemic with cases being registered every year except in 1994 and. 1995. Generally most cases are recorded in the fishing camps of the rural areas and in the peri-urban areas of. Lusaka and Copperbelt provinces. Cholera is an acute secretory watery diarrhoea caused by.

  15. Understanding the Hydrology of Cholera in South Asia

    Science.gov (United States)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2007-12-01

    Cholera is an acute waterborne illness caused by the bacterium Vibrio cholerae. The disease remains a major public health issue in several regions of the developing world, mainly in coastal areas around the tropics. Cholera incidences have been historically linked to climate variables and more recently with El Nino-Southern Oscillation. The occurrence of cholera shows bi-annual seasonal peaks and strong inter-annual variability in the Ganges basin region of South Asia. However, the role of hydrologic variables in the seasonal patterns of cholera epidemics is less understood. Preliminary results suggest that a unique combination of increasing water temperature and higher salinity in the coastal zone during the low flow season provide the situation amenable to the first outbreak of cholera in the spring season. Other major factors contributing to the subsequent spread of the disease are sea surface height, monsoon precipitation, and coastal phytoplankton concentration. We will further examine the lag periods between the dominant environmental variables and cholera incidences to understand the seasonal dynamics of cholera in South Asia.

  16. The association between non-biting midges and Vibrio cholerae.

    Science.gov (United States)

    Broza, Meir; Gancz, Hanan; Kashi, Yechezkel

    2008-12-01

    Vibrio cholerae is a natural inhabitant of aquatic ecosystems, yet its interactions within this habitat are poorly understood. Here we describe the current knowledge on the interaction of V. cholerae with one group of co-inhabitants, the chironomids. Chironomids, non-biting midges (Chironomidae, Diptera), are an abundant macroinvertebrate group encountered in freshwater aquatic habitats. As holometabolous insects, chironomids start life when their larvae hatch from eggs laid at the water/air interface; through various feeding strategies, the larvae grow and pupate to become short-lived, non-feeding, adult flying insects. The discovery of the connection between V. cholerae and chironomids was accidental. While working with Chironomus transavaalensis, we observed the disintegration of its egg masses and searched for a possible microbial agent. We identified V. cholerae as the primary cause of this phenomenon. Haemagglutinin/protease, a secreted extracellular enzyme, degraded the gelatinous matrix surrounding the eggs, enabling bacterial growth. Observation of chironomids in relation to V. cholerae continuously for 7 years in various types of water bodies in Israel, India, and Africa revealed that environmental V. cholerae adhere to egg-mass surfaces of various Chironomini ('bloodworms'). The flying adults' potential to serve as mechanical vectors of V. cholerae from one water body to another was established. This, in turn, suggested that these insects play a role in the ecology of V. cholerae and possibly take part in the dissemination of the pathogenic serogroups during, and especially between, epidemics.

  17. Satellite Water Impurity Marker (SWIM) for predicting seasonal cholera outbreaks

    Science.gov (United States)

    Jutla, A. S.; Akanda, A. S.; Islam, S.

    2011-12-01

    Prediction of outbreaks of cholera, a deadly water related disease, remains elusive. Since coastal brackish water provides a natural ecological niche for cholera bacteria and because a powerful evidence of new biotypes is emerging, it is highly unlikely that cholera will be fully eradicated. Therefore, it is necessary to develop cholera prediction model with several months' of lead time. Satellite based estimates of chlorophyll, a surrogate for phytoplankton abundance, has been associated with proliferation of cholera bacteria. However, survival of cholera bacteria in a variety of coastal ecological environment put constraints on predictive abilities of chlorophyll algorithm since it only measures greenness in coastal waters. Here, we propose a new remote sensing reflectance based statistical index: Satellite Water Impurity Marker, or SWIM. This statistical index estimates impurity levels in the coastal waters and is based on the variability observed in the difference between the blue (412nm) and green (555nm) wavelengths in coastal waters. The developed index is bounded between clear and impure water and shows the ability to predict cholera outbreaks in the Bengal Delta with a predicted r2 of 78% with two months lead time. We anticipate that a predictive system based on SWIM will provide essential lead time allowing effective intervention and mitigation strategies to be developed for other cholera endemic regions of the world.

  18. The cholera epidemic in South Africa, 1980 - 1987 Epidemiological ...

    African Journals Online (AJOL)

    During the cholera epidemic in South Africa, 1980-1987, 25251 cases of cholera were bacteriologically proven. The case-fatality rate was 1,4%. Outbreaks occurred in the summer rainfall season. Age-specific aUack rates followed the pattern typically found during the 'epidemic phase' of the disease in most years. The vast ...

  19. Feasibility and acceptability of oral cholera vaccine mass ...

    African Journals Online (AJOL)

    Introduction: Despite some improvement in provision of safe drinking water, proper sanitation and hygiene promotion, cholera still remains a major public health problem in Malawi with outbreaks occurring almost every year since 1998. In response to 2014/2015 cholera outbreak, ministry of health and partners made a ...

  20. The cholera epidemic in South Africa, 1980 - 1987

    African Journals Online (AJOL)

    1991-05-04

    May 4, 1991 ... During the cholera epidemic in South Africa, 1980-1987,. 25251 cases of cholera were bacteriologically proven. The case-fatality rate was 1,4%. Outbreaks occurred in the summer rainfall season. Age-specific aUack rates followed the pattern typically found during the 'epidemic phase' of the disease in.

  1. A comparison of various modelling approaches applied to Cholera ...

    African Journals Online (AJOL)

    The application of a methodology that proposes the use of spectral methods to inform the development of statistical forecasting models for cholera case data is explored in this paper. The seasonal behaviour of the target variable (cholera cases) is analysed using singular spectrum analysis followed by spectrum estimation ...

  2. Risk factors associated with cholera in Harare City, Zimbabwe, 2008 ...

    African Journals Online (AJOL)

    Objective: Two suspected cholera cases at Beatrice Road Infectious Diseases Hospital were reported to Harare City Health on 14 October 2008 setting in motion investigation and control measures. We determined the extent of the epidemic and risk factors for contracting cholera. Methods: An unmatched 1:1 case-control ...

  3. Timely Response and Containment of 2016 Cholera Outbreak in ...

    African Journals Online (AJOL)

    Background: The Northern Province of Zambia has recorded outbreaks of Cholera in Nsumbu area over the years including the year 2008 and 2012. Recently, an outbreak of cholera was reported in Northern Province between March and April 2016. This study aims to document the appropriateness of the response to the ...

  4. A comparison of various modelling approaches applied to Cholera ...

    African Journals Online (AJOL)

    Abstract. The application of a methodology that proposes the use of spectral methods to inform the development of statistical forecasting models for cholera case data is explored in this pa- per. The seasonal behaviour of the target variable (cholera cases) is analysed using singular spectrum analysis followed by spectrum ...

  5. Dealing with cholera: exclusively the domain of environmental ...

    African Journals Online (AJOL)

    Cholera outbreaks have a profound impact on the health and well-being of communities. Especially young children are vulnerable to the disease and schools report high absenteeism during epidemics. There is both the perception and evidence thereof, that educating communities about cholera (its prevention and ...

  6. Cultural influences behind cholera transmission in the Far North ...

    African Journals Online (AJOL)

    Introduction: in recent years, the Far North Region of Cameroon has experienced serious and recurrent cholera outbreaks. Yet, understanding of cultural influences on outbreaks and spread remain poorly understood. This qualitative study explored cultural influences on cholera exposure in this region. Methods: interviews ...

  7. Prevalence of Vibrio cholerae in rivers of Mpumalanga province ...

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... cholera. The aim of this study was to determine the prevalence of V. cholerae from 32 sites of major rivers in Mpumalanga province of South Africa using a polyphasic approach. Water samples (594) collected over for 4 months were cultured on thiosulphate-citrate-bile salt-sucrose agar, and oxidase.

  8. Endemicity of cholera in Nigeria: A mathematical model to ...

    African Journals Online (AJOL)

    This work investigates cholera as a disease using mathematical models with emphasis on its endemic nature. The focal point is to investigate the persistent endemic nature of cholera in Nigeria using mathematical model. We found that, there can be no backward bifurcation because there existed only one positive endemic ...

  9. Cholera outbreak in districts around Lake Chilwa, Malawi: Lessons ...

    African Journals Online (AJOL)

    Cholera is endemic in Malawi with seasonal outbreaks during the wet season. People living around Lake Chilwa rely on the lake for their water supply. From May 2009 to May 2010, a cholera outbreak occurred in fishing communities around Lake Chilwa. This paper describes the outbreak response and lessons learned for ...

  10. antimicrobial susceptibility pattern of vibrio cholerae 01 strains

    African Journals Online (AJOL)

    hi-tech

    East African Medical Journal Vol. 77 No. 7 July 2000. ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF VIBRIO CHOLERAE 01 STRAINS DURING TWO CHOLERA OUTBREAKS IN DAR ES SALAAM,. TANZANIA. W.K. Urassa, MD, MSc, MMed, Lecturer, Department of Microbiology and Immunology, Muhimbili University ...

  11. Lessons learned in Argentina helping Haiti cope with cholera | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-17

    Jan 17, 2011 ... The model has also been replicated in Brazil, Colombia, Guatemala and Venezuela. During a cholera outbreak in 1996, Pro-Huerta trained members of their technical team in Argentina on appropriate irrigation management, which was then passed on to farmers through a campaign, In the face of cholera, ...

  12. Epidemiology of the 2016 Cholera Outbreak of Chibombo District ...

    African Journals Online (AJOL)

    World Health Organization, Country office, Lusaka, Zambia. 1. 1. 1. 2. 2. RM Chirambo *, J Mufunda , P Songolo ... cholera outbreaks are at risk and there is need to raise awareness. INTRODUCTION. The first outbreak of ... cholera outbreaks, such as those seen in Haiti, Vietnam and Zimbabwe in recent years, can occur.

  13. antimicrobial susceptibility pattern of vibrio cholerae 01 strains

    African Journals Online (AJOL)

    hi-tech

    2000-07-07

    Jul 7, 2000 ... Literature on the antibiotic susceptibility of cholera organisms from most developing countries is patchy. Worldwide, V. cholerae 01 strains resistant to tetracycline, trimethoprim/sulphamethoxazole and ampicillin are common(6-10). In many of these studies, the main reasons for the rapid rise in antimicrobial ...

  14. Cholera with severe renal failure in an Italian tourist returning from Cuba, July 2013.

    Science.gov (United States)

    Mascarello, M; Deiana, M L; Maurel, C; Lucarelli, C; Luzzi, I; Luzzati, R

    2013-08-29

    In July 2013, an Italian tourist returning from Cuba was hospitalised in Trieste, Italy, for cholera caused by Vibrio cholerae O1 serotype Ogawa with severe renal failure. An outbreak of cholera was reported in Cuba in January 2013. Physicians should consider the diagnosis of cholera in travellers returning from Cuba presenting with acute watery diarrhoea.

  15. Risk Factors for Sustained Cholera Transmission, Juba County, South Sudan, 2014.

    Science.gov (United States)

    Ujjiga, Thomas T A; Wamala, Joseph F; Mogga, Juma J H; Othwonh, Thabo O; Mutonga, David; Kone-Coulibaly, Asta; Shaikh, Masood Ali; Mpairwe, Allan M; Abdinasir, Abubaker; Abdi, Mohamed A; Yoti, Zabulon; Olushayo, Olu; Nyimol, Pinyi; Lul, Riek; Lako, Richard L; Rumunu, John

    2015-10-01

    We conducted a case-control study to identify risk factors for the 2014 cholera outbreak in Juba County, South Sudan. Illness was associated with traveling or eating away from home; treating drinking water and receiving oral cholera vaccination were protective. Oral cholera vaccination should be used to complement cholera prevention efforts.

  16. Inventory Management of Cholera Vaccinations in the Event of Complex Natural Disasters

    Science.gov (United States)

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT INVENTORY MANAGEMENT OF CHOLERA VACCINATIONS IN THE...December 2015 3. REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE INVENTORY MANAGEMENT OF CHOLERA VACCINATIONS IN THE...effects, specifically cholera epidemics and the vaccine stockpile necessary to effectively treat the disease. Cholera is a significant post disaster

  17. Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xuan; Liang, Pingdong; Raba, Daniel Alexander; Rosas-Lemus, Mónica; Chakravarthy, Srinivas; Tuz, Karina; Juárez, Oscar; Permyakov, Eugene A.

    2017-10-24

    ApbE is a member of a novel family of flavin transferases that incorporates flavin mononucleotide (FMN) to subunits of diverse respiratory complexes, which fulfill important homeostatic functions. In this work a detailed characterization of Vibrio cholerae ApbE physiologic activity, substrate specificity and pH dependency was carried out. The data obtained show novel characteristics of the regulation and function of this family. For instance, our experiments indicate that divalent cations are essential for ApbE function, and that the selectivity depends largely on size and the coordination sphere of the cation. Our data also show that ApbE regulation by pH, ADP and potassium is an important mechanism that enhances the adaptation, survival and colonization of V. cholerae in the small intestine. Moreover, studies of the pH-dependency of the activity show that the reaction is favored under alkaline conditions, with a pKa of 8.4. These studies, together with sequence and structure analysis allowed us to identify His257, which is absolutely conserved in the family, as a candidate for the residue whose deprotonation controls the activity. Remarkably, the mutant H257G abolished the flavin transfer activity, strongly indicating that this residue plays an important role in the catalytic mechanism of ApbE.

  18. USE OF MODIFIED CAMP TEST FOR PRELIMINARY NONSEROLOGIC IDENTIFICATION OF VIBRIO CHOLERAE IN STOOL SPECIMENS

    Directory of Open Access Journals (Sweden)

    Murad Lesmana

    2012-09-01

    Full Text Available Suatu modifikasi uji CAMP digunakan bersama dengan reaksi biokimiawi untuk identifikasi Vibrio cholerae pada sampel klinis. Dari 579 usap dubur penderita diare, 92 (16% memberikan hasil isolasi V. cholerae 01 biotipe El Tor dan 34 (6% V. cholerae non-01. Semua isolat V. cholerae 01 El Tor menunjukkan reaksi CAMP positif kuat dengan gambaran hemolisis sinergistik lengkap berbentuk sosis; sedangkan V. cholerae non-01 memberikan reaksi CAMP yang sempit dengan pola hemolisis menyerupai bulan sabit. Hasil uji CAMP yang dilakukan bersama dengan reaksi biokimiawi sesuai dengan metode biakan konvensional yang menyertakan tes aglutinasi dengan antiserum V. cholerae 01 untuk mengidentifikasi V. cholerae.

  19. US Gulf-like toxigenic O1 Vibrio cholerae causing sporadic cholera outbreaks in China.

    Science.gov (United States)

    Luo, Yun; Octavia, Sophie; Jin, Dazhi; Ye, Julian; Miao, Ziping; Jiang, Tao; Xia, Shichang; Lan, Ruiting

    2016-05-01

    Cholera is potentially a life threatening disease caused by toxigenic Vibrio cholerae. Here we report the identification and characterisation of 76 non-7th pandemic clone O1 V. cholerae isolates including 65 clinical isolates from diarrhoeal patients from 2005 to 2014 in Zhejiang Province, China. We used multilocus sequence typing (MLST) to characterise 65 V. cholerae isolates. Pulse-Field Gel Electrophoresis (PFGE) was performed on a subset of the isolates and whole-genome sequencing was done on 13 isolates. MLST separated 65 isolates into 19 sequence types (STs). Thirty three isolates belonged to ST75 which also contains the US Gulf Coast clone. PFGE separated the 33 isolates into 16 pulsotypes. Whole genome sequencing of 10 ST75 isolates showed that the US Gulf Coast clone and the Chinese ST75 isolates can be separated into two distinct lineages, ST75a and ST75b. All Zhejiang ST75 isolates were ST75b. PFGE and genome sequencing confirmed the linked cases and identified small outbreaks caused by ST75b. The emergence and potential spread of ST75b may pose significant threat to public health. Epidemiological surveillance is required to further understand its epidemic potential. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. Antibacterial activity of Psidium guajava leaf and bark against multidrug-resistant Vibrio cholerae: implication for cholera control.

    Science.gov (United States)

    Rahim, Niaz; Gomes, Donald James; Watanabe, Haruo; Rahman, Sabita Rizwana; Chomvarin, Chariya; Endtz, Hubert Ph; Alam, Munirul

    2010-07-01

    In clinical cholera, a 3-day course of antibiotic complements extensive rehydration therapy by reducing stool volume, shortening the illness, and averting death. However, antibiotic therapy, which has lifesaving implications for cholera, is often hindered due to multidrug resistance in Vibrio cholerae, the cause of cholera. Crude aqueous mixture and water soluble methanol extract from leaf and bark of Psidium guajava, a tropical fruit guava of the family Myrtaceae, showed strong antibacterial activity against multidrug-resistant V. cholerae O1. The in vitro minimum inhibitory concentration of the crude aqueous mixture and water soluble methanol extract, which was bactericidal against 10(7) CFU/mL of V. cholerae was determined to be 1,250 microg/mL and 850 microg/mL, respectively. The antibacterial activity of P. guajava was stable at 100 degrees C for 15-20 min, suggesting nonprotein nature of the active component. The growth of V. cholerae in rice oral rehydration saline (ORS) was completely inhibited when 10 mg/mL (wt/vol) of crude aqueous mixture was premixed with the ORS in a ratio of 1:7 (vol. extract/vol. ORS). P. guajava, which is widely distributed in Bangladesh, thus offers great potential for use in indigenous, herbal medicine for controlling epidemics of cholera.

  1. Killed oral cholera vaccines: history, development and implementation challenges.

    Science.gov (United States)

    Lopez, Anna Lena; Gonzales, Maria Liza Antoinette; Aldaba, Josephine G; Nair, G Balakrish

    2014-09-01

    Cholera is still a major global health problem, affecting mainly people living in unsanitary conditions and who are at risk for outbreaks of cholera. During the past decade, outbreaks are increasingly reported from more countries. From the early killed oral cholera vaccine, rapid improvements in vaccine development occurred as a result of a better understanding of the epidemiology of the disease, pathogenesis of cholera infection and immunity. The newer-generation oral killed cholera vaccines have been shown to be safe and effective in field trials conducted in cholera endemic areas. Likewise, they have been shown to be protective when used during outbreak settings. Aside from providing direct protection to vaccinated individuals, recent studies have demonstrated that these killed oral vaccines also confer indirect protection through herd immunity. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches in countries where they are most needed, especially improved water quality and sanitation, these vaccines serve as immediately available public health tools for preventing further morbidity and mortality from cholera. However, despite its availability for more than two decades, use of these vaccines has not been optimized. Although there are limitations of the currently available oral cholera vaccines, recent data show that the vaccines are safe, feasible to use even in difficult circumstances and able to provide protection in various settings. Clear identification of the areas and target population groups who will benefit from the use of the cholera vaccines will be required and strategies to facilitate accessibility and usage of these vaccines in these areas and population groups will need to be developed.

  2. Vaxchora: A Single-Dose Oral Cholera Vaccine.

    Science.gov (United States)

    Cabrera, Adriana; Lepage, Jayne E; Sullivan, Karyn M; Seed, Sheila M

    2017-07-01

    To review trials evaluating the efficacy and safety of Vaxchora, a reformulated, single-dose, oral, lyophilized Vibrio cholerae CVD 103-HgR vaccine for the prevention of travel-related cholera caused by V cholerae serogroup O1. A literature search was conducted using MEDLINE (1946 to January week 3, 2017) and EMBASE (1996 to 2017 week 3). Keywords included oral cholera vaccine, single-dose, Vaxchora, and CVD 103-HgR. Limits included human, clinical trials published in English since 2010. ClinicalTrials.gov was used as a source for unpublished data. Additional data sources were obtained through bibliographic review of selected articles. Studies that addressed the safety and efficacy of Vaxchora, the reformulated, single-dose oral CVD 103-HgR cholera vaccine, were selected for analysis. Approval of Vaxchora, was based on efficacy of the vaccine in human trials demonstrating 90.3% protection among those challenged with V cholerae 10 days after vaccination and in immunogenicity studies with 90% systemic vibriocidal antibody conversion at 6 months after a single-dose of vaccine. Tolerability was acceptable, with the most common adverse effects reported to be fatigue, headache, and abdominal pain. Vaxchora is the only FDA-approved, single-dose oral vaccine for the prevention of cholera caused by V cholerae serogroup O1 in adult travelers from the United States going to cholera-affected areas. Safety and efficacy has not been established in children, immunocompromised persons, and pregnant or breastfeeding women or those living in cholera-endemic areas.

  3. Botulinum Toxin Therapy

    Science.gov (United States)

    ... AADA Health System Reform Principles Drug pricing and availability CVS dermatologic formulary restrictions Access to compounded medications ... Botulinum toxin therapy: Overview Also called botulinum rejuvenation Brand names: Botox® Cosmetic, Dysport®, MYOBLOC®, and XEOMIN® When ...

  4. Wallpaper May Breed Toxins

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_166850.html Wallpaper May Breed Toxins: Study Fungus on the walls might ... 2017 FRIDAY, June 23, 2017 (HealthDay News) -- Wallpaper may contribute to "sick building syndrome," a new study ...

  5. Staphylococcus aureus toxins.

    Science.gov (United States)

    Otto, Michael

    2014-02-01

    Staphylococcus aureus is a dangerous pathogen that causes a variety of severe diseases. The virulence of S. aureus is defined by a large repertoire of virulence factors, among which secreted toxins play a preeminent role. Many S. aureus toxins damage biological membranes, leading to cell death. In particular, S. aureus produces potent hemolysins and leukotoxins. Among the latter, some were recently identified to lyse neutrophils after ingestion, representing an especially powerful weapon against bacterial elimination by innate host defense. Furthermore, S. aureus secretes many factors that inhibit the complement cascade or prevent recognition by host defenses. Several further toxins add to this multi-faceted program of S. aureus to evade elimination in the host. This review will give an overview over S. aureus toxins focusing on recent advances in our understanding of how leukotoxins work in receptor-mediated or receptor-independent fashions. Published by Elsevier Ltd.

  6. Expression and purification of recombinant Shiga toxin 2B from ...

    African Journals Online (AJOL)

    sunny t

    expression of Stx2B economically was obtained using 1 mM IPTG for 4 h at 37°C. Protein identity was confirmed by a band at ~11.4 kDa using ... of recombinant Shiga toxin B subunit (rStxB) protein in. BALB/c mice was evaluated. Animal ..... tag-based purification of PKCƔ Kinase free tag protein. (Ohana et al., 2011) which ...

  7. Effect of the T-domain on intracellular transport of diphtheria toxin

    Directory of Open Access Journals (Sweden)

    А. J. Labyntsev

    2014-06-01

    Full Text Available Subunit B of diphtheria toxin (DT, which consists of two domains: R (receptor-binding and T (transmembrane, plays an important role in toxin-receptor binding on the cell-targets and in transportation of catalytic subunit A to the cell cytosol. Recombinant analogues of the subunit B are promising representatives in the unique class of transporting proteins, able to deliver different types of biologically active molecules to cell cytosol. In the development of these protein constructs understanding of the role of each of the DT fragments in determination of transporting pathways of endocytosed complex toxin-receptor is urgently required. We have studied in this work the T-domain effect on intracellular transport of recombinant fragments of DT. We have compared intracellular transport of the R-domain and the subunit B, the last one consisted of both R-domain and T-domain. Recombinant fragments of DT used in this work were labeled with fluorescent proteins, which allowed applying colocalization technique for our study. Application of confocal microscopy technique revealed differences in transportation of recombinant derivates of DT in Vero cells: R domain moved faster than subunit B to tubular compartments. Analysis of R-domain and subunit B transportation confirmed almost linear increase of their colocalization with the time regarding to Pearsons correlation coefficient (PCC. However, amount of colocalized with R-domain subunit B were not linearly increased with time according to Manders coefficient (M1, this could indicate the ability of subunit B to transport to such compartments that R-domain do not reach. Possible role of the T-domain in intracellular transportation and compartmentalization of the toxin may be associated with the ability of the T-domain to form a proton channels and its ability to interact with COPI complex.

  8. Mitigating the future impact of Cholera Epidemics

    CSIR Research Space (South Africa)

    Woodborne, S

    2008-11-01

    Full Text Available .F., TAYLOR, D.N., RUSSEK- COHEN, E., CHOOPUN, N., SACK, R.B. & COLWELL, R.T. 2004. Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environmental Microbiology 6: 699-706. HARTLEY, D.M., MORRIS, J.G. Jr., SMITH, D...-12906. SALAZAR-LINDO, E., PINELL-SALLES, P., MARUY, A. & CHEA-W00, E. 1997. El Nino and diarrhoea and dehydration in Lima, Peru. The Lancet. 350:1597-1598. SIMANJUNTAK, C.H., LARASATI, W., ARJOSO, S., PUTRI, M., LESMANA, M., OYOFO, B.A., SUKRI, N., NURDIN...

  9. Hydroclimatological And Anthropogenic Drivers For Cholera Spreading

    Science.gov (United States)

    Righetto, Lorenzo; Bertuzzo, Enrico; Mari, Lorenzo; Casagrandi, Renato; Gatto, Marino; Rinaldo, Andrea

    2010-05-01

    The nature of waterborne diseases, among which cholera has a prominent importance, calls for a better understanding of the link between epidemic spreading, water and climate. To this end, we have developed a framework which involves a network-based description of a river system, connected with local communities which act as nodes of the network. This has allowed us to produce consistent simulations of real case studies. More recent investigations comprise the evaluation of the spreading velocity of an epidemic wave by means of a reaction-diffusion modeling approach. In particular, we have found that both transport processes and epidemiological quantities, such as the basic reproduction number, have a crucial effect in controlling the spreading of the epidemics. We first developed a description of bacterial movement along the network driven by advection and diffusion; afterward, we have included the movement of human populations. This latter model allowed us to establish the conditions that can trigger epidemic waves that start from the coastal region, where bacteria are autochthonous, and travel inland. In particular, our findings suggest that even relatively low values of human diffusion can have the epidemic propagate upstream. The interaction between climate, hydrology and epidemic events is still much debated, since no clear correlation between climatologic and epidemiological phenomena has emerged so far. However, a spatial assessment of hydrological and epidemiological mechanisms could be crucial to understand the evolution of cholera outbreaks. In particular, a hotly debated topic is the understanding of the mechanisms that can generate patterns of cholera incidence that exhibit an intra-annual double peak, as frequently observed in endemic region such as Bangladesh. One of the possible explanations proposed in the literature is that spring droughts cause bacteria concentration in water to rise dramatically, triggering the first peak. On the other hand

  10. Aeromonas trota strains, which agglutinate with Vibrio cholerae O139 Bengal antiserum, possess a serologically distinct fimbrial colonization factor.

    Science.gov (United States)

    Nakasone, N; Iwanaga, M; Yamashiro, T; Nakashima, K; Albert, M J

    1996-02-01

    Pili of Aeromonas trota strain 1220, which agglutinates with Vibrio cholerae O139 Bengal antiserum, were purified and characterized. The molecular mass of the subunit protein was estimated to be 20 kDa and the pl was 5 center dot 4. The pili were immunologically unrelated to the other Aeromonas pili reported so far. However, the N-terminal amino acid sequence of the subunit pilin was similar to those of the pilins from other Aeromonas pili reported previously. Neither A. trota cells nor pili purified from strain 1220 agglutinated human and rabbit erythrocytes, but both adhered to the rabbit intestine. Bacterial cells pretreated with antipilus antibody (Fab portion) failed to adhere to the rabbit intestine. Moreover, bacteria did not adhere to the rabbit intestine pretreated with the purified pili. This pilus antigen was not detected in V. cholerae O139 Bengal and other Aeromonas spp. These findings suggest that the pilus of the A. trota strain is a novel colonization factor of Aeromonas spp.

  11. Cholera in travelers: shifting tides in epidemiology, management, and prevention.

    Science.gov (United States)

    Fillion, Katie; Mileno, Maria D

    2015-01-01

    The distribution of cholera's devastating effects has changed. While cholera is endemic in 50 countries mostly in Asia and Africa, more than half of the cases reported in 2012 were in the Western Hemisphere, predominantly Haiti. Since the current epidemic began in Haiti in 2010, there has been spread to the Dominican Republic, Cuba, and most recently Mexico. Several recent case reports document individuals returning home from affected areas with diarrhea from cholera, in some cases severe. Hopeful news reported the containment of an outbreak through the use of a Vibrio cholera vaccine. There are safe and effective oral cholera vaccines available and recommended in outbreaks and endemic areas, although they are not currently available in the USA or to travelers. This review aims to discuss the latest data to aid our current recommendations for the prevention of cholera in travelers beyond standard personal and food hygiene precautions for the prevention of travelers' diarrhea and to offer insights on the most current data available about cholera vaccine progress and potential use.

  12. Spatial and demographic patterns of Cholera in Ashanti region - Ghana

    Directory of Open Access Journals (Sweden)

    Duker Alfred A

    2008-08-01

    Full Text Available Abstract Background Cholera has claimed many lives throughout history and it continues to be a global threat, especially in countries in Africa. The disease is listed as one of three internationally quarantinable diseases by the World Health organization, along with plague and yellow fever. Between 1999 and 2005, Africa alone accounted for about 90% of over 1 million reported cholera cases worldwide. In Ghana, there have been over 27000 reported cases since 1999. In one of the affected regions in Ghana, Ashanti region, massive outbreaks and high incidences of cholera have predominated in urban and overcrowded communities. Results A GIS based spatial analysis and statistical analysis, carried out to determine clustering of cholera, showed that high cholera rates are clustered around Kumasi Metropolis (the central part of the region, with Moran's Index = 0.271 and P Chi square for trend analysis reflected a direct spatial relationship between cholera and urbanization (χ2 = 2995.5, P χ2 = 1757.2, P χ2 = 831.38, P Conclusion The results suggest that high urbanization, high overcrowding, and neighborhood with Kumasi Metropolis are the most important predictors of cholera in Ashanti region.

  13. Cholera - the new strike of an old foe.

    Science.gov (United States)

    Kuna, Anna; Gajewski, Michał

    2017-01-01

    Cholera is an acute bacterial gastrointestinal infection caused by ingestion of water or food containing the pathogen Vibrio cholerae. The incubation period can be very short and it takes between several hours and 5 days. During the 19th century, cholera was spreading from India across the world. Its original reservoir was located in the Ganges delta. So far, there have been six epidemics of cholera; the current outbreak is the seventh. It started in Asia, attacked Africa and then the Americas. Cholera causes thousands of illnesses and deaths annually, mostly in South Asia and Sub-Saharan Africa. The current outbreak began in Yemen in October 2016, it peaked in December with subsequent decline, then the epidemic has re-erupted in April 2017 and it still continues. It is currently the largest outbreak in the world, with 5000 new infections a day (as of August 19th, 2017 the number of cholera cases stands at 527,000 with 1997 deaths). The most common symptoms of the illness are diarrhoea, dehydration, vomiting, and abdominal cramps. Case-fatality rate is lower than 1%, if rehydration treatment is prescribed rapidly, but it can exceed 70% in patients not treated properly. Aggressive and rapid fluid repletion is the basis of treatment for cholera. In many cases, rehydration therapy, given orally or parenterally, is enough to rescue infected patients. Antibiotics, mainly fluoroquinolones, tetracyclines, and macrolides are an adjunctive therapy for patients with moderate to severe fluid loss.

  14. Cholera, canals, and contagion: Rediscovering Dr. Beck's report.

    Science.gov (United States)

    Tuite, Ashleigh R; Chan, Christina H; Fisman, David N

    2011-08-01

    Cholera first appeared in North America (in Montreal and Quebec) in 1832 and spread rapidly across the eastern half of the continent. The dispatch of American disease control experts to Lower Canada in anticipation of cholera's spread implies that medical professionals expected spread, possibly from contagion, even though the notion that cholera was contagious was disparaged in medical writings of the time, and would be until John Snow's landmark work in London in the 1850s. Snow's insights derived largely from his observations on spatial and temporal patterns of cholera cases. We discuss a document from the 1832 epidemic, the report of Dr. Lewis Beck to New York's Governor Throop, which anticipates Snow in presenting geospatial data that imply cholera's contagiousness. Beck shows that the movements of immigrants along the newly completed New York state canal system resulted in sequential cholera outbreaks along the canal's path. Although aware of the degree to which this suggested contagion, Beck argues strenuously against the contagiousness of cholera. We explore the social context of early nineteenth-century medicine that probably led Beck to disbelieve his own observations, and to favor a medical model inconsistent with his data. Themes that emerge from our inquiry include belief in disease as a physical manifestation of defective morality, stigmatization of the poor and immigrant groups, and reluctance to overturn prevailing medical models that themselves reflected the economic position of medical practitioners. We show that these themes continue to serve as obstacles to innovation in medical and public health practice today.

  15. Cholera outbreak in Senegal in 2005: was climate a factor?

    Directory of Open Access Journals (Sweden)

    Guillaume Constantin de Magny

    Full Text Available Cholera is an acute diarrheal illness caused by Vibrio cholerae and occurs as widespread epidemics in Africa. In 2005, there were 31,719 cholera cases, with 458 deaths in the Republic of Senegal. We retrospectively investigated the climate origin of the devastating floods in mid-August 2005, in the Dakar Region of Senegal and the subsequent outbreak of cholera along with the pattern of cholera outbreaks in three other regions of that country. We compared rainfall patterns between 2002 and 2005 and the relationship between the sea surface temperature (SST gradient in the tropical Atlantic Ocean and precipitation over Senegal for 2005. Results showed a specific pattern of rainfall throughout the Dakar region during August, 2005, and the associated rainfall anomaly coincided with an exacerbation of the cholera epidemic. Comparison of rainfall and epidemiological patterns revealed that the temporal dynamics of precipitation, which was abrupt and heavy, was presumably the determining factor. Analysis of the SST gradient showed that the Atlantic Ocean SST variability in 2005 differed from that of 2002 to 2004, a result of a prominent Atlantic meridional mode. The influence of this intense precipitation on cholera transmission over a densely populated and crowded region was detectable for both Dakar and Thiès, Senegal. Thus, high resolution rainfall forecasts at subseasonal time scales should provide a way forward for an early warning system in Africa for cholera and, thereby, trigger epidemic preparedness. Clearly, attention must be paid to both natural and human induced environmental factors to devise appropriate action to prevent cholera and other waterborne disease epidemics in the region.

  16. Wind direction and its linkage with Vibrio cholerae dissemination.

    Science.gov (United States)

    Paz, Shlomit; Broza, Meir

    2007-02-01

    The relevance of climatic events as causative factors for cholera epidemics is well known. However, examinations of the involvement of climatic factors in intracontinental disease distribution are still absent. The spreading of cholera epidemics may be related to the dominant wind direction over land. We examined the geographic diffusion of three cholera outbreaks through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970-1971 and b) again in 2005-2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992-1993. We also discuss the possible influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Analysis of air pressure data at sea level and at several altitudes over Africa, India, and Bangladesh show a correspondence between the dominant wind direction and the intracontinental spread of cholera. We explored the hypothesis that winds have assisted the progress of cholera Vibrios throughout continents. The current analysis supports the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. This finding may improve our understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease's geographic dissemination.

  17. T-2 Toxin-induced Toxicity in Pregnant Mice and Rats

    Directory of Open Access Journals (Sweden)

    Shinya Sehata

    2008-11-01

    Full Text Available T-2 toxin is a cytotoxic secondary fungal metabolite that belongs to the trichothecene mycotoxin family. This mycotoxin is a well known inhibitor of protein synthesis through its high binding affinity to peptidyl transferase, which is an integral part of the ribosomal 60s subunit, and it also inhibits the synthesis of DNA and RNA, probably secondary to the inhibition of protein synthesis. In addition, T-2 toxin is said to induce apoptosis in many types of cells bearing high proliferating activity. T-2 toxin readily passes the placenta and is distributed to embryo/fetal tissues, which include many component cells bearing high proliferating activity. This paper reviews the reported data related to T-2 toxin-induced maternal and fetal toxicities in pregnant mice and rats. The mechanisms of T-2 toxin-induced apoptosis in maternal and fetal tissues are also discussed in this paper.

  18. [The knowledge of the population about cholera].

    Science.gov (United States)

    de la Cruz, A M; de Rojas, V; Delgado, J; Alonso, A; Finlay, C M

    1996-01-01

    In order to determine the impact of the educational campaign about cholera on the knowledge and believes of the population, a survey was made in 1993 among 1324 persons from 14 provinces and from Isla de la Juventud special municipality. 85% were 20-59 years old and 89% had an secondary basic or higher educational level. 69% had the minimum knowledge to face the disease, 90% would see a doctor if they had and suspicion, 72% knew that diarrhea is the main symptom of cholera, 54% new how it is transmitted 89% thought that they may be infected by drinking water, 54% understood the importance of giving liquids to the sick subject, and 78% realized the significance of washing their hands before eating anf cooking. It is concluded that even though our population has a general knowledge about the disease, due to the fact that our country is located in an endemic zone, health education must be reinforced, specifically those aspects connected with the communication and with the increase of liquids administration to the patients.

  19. Comparison of various modelling approaches applied to cholera case data

    CSIR Research Space (South Africa)

    Van Den Bergh, F

    2008-06-01

    Full Text Available and outbreaks of cholera in Bangladesh have been demonstrated by Huq et al. [15]. A study by Gil et al. [12] indicated a relationship between cholera incidence and elevated sea surface temperatures in Peru, including e ects from the 1997{1998 El Ni~no, while... regression has previously been used to model cholera case data in the Bangladesh study of Huq et al. [15]. Further details on Poisson regression may be found in McCullagh & Nelder [22], Agresti [2] or Montgomery et al. [23]. Negative binomial regression...

  20. Cholera on Nauru. Possible non-point source transmission.

    Science.gov (United States)

    Kuberski, T

    1980-11-15

    An outbreak of Vibrio cholerae, serotype Ogawa, biotype El Tor, was experienced on the coral atoll of Nauru in the central Pacific. Primary water-borne transmission was unlikely because the population was supplied with water from individual rainwater catchment tanks and surveillance of the tanks of patients and persons with asymptomatic infection showed no evidence of contamination with V. cholerae. A matched pair, case-control study suggested a food-borne point source for transmission also was unlikely. The principal mode of transmission was not established, but spread of cholera appeared to be by a route other than common source contamination of water or food.

  1. Botulinum Toxin (Botox) for Facial Wrinkles

    Science.gov (United States)

    ... Eye Health / Eye Health A-Z Botulinum Toxin (Botox) for Facial Wrinkles Sections Botulinum Toxin (Botox) for ... How Does Botulinum Toxin (Botox) Work? Botulinum Toxin (Botox) for Facial Wrinkles Leer en Español: La toxina ...

  2. Diversity and impact of prokaryotic toxins on aquatic environments: a review.

    Science.gov (United States)

    Valério, Elisabete; Chaves, Sandra; Tenreiro, Rogério

    2010-10-01

    Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water

  3. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    Directory of Open Access Journals (Sweden)

    Rogério Tenreiro

    2010-10-01

    Full Text Available Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS, involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking

  4. Marine Toxins: An Overview

    Science.gov (United States)

    Fusetani, Nobuhiro

    Oceans provide enormous and diverse space for marine life. Invertebrates are conspicuous inhabitants in certain zones such as the intertidal; many are soft-bodied, relatively immobile and lack obvious physical defenses. These animals frequently have evolved chemical defenses against predators and overgrowth by fouling organisms. Marine animals may accumulate and use a variety of toxins from prey organisms and from symbiotic microorganisms for their own purposes. Thus, toxic animals are particularly abundant in the oceans. The toxins vary from small molecules to high molecular weight proteins and display unique chemical and biological features of scientific interest. Many of these substances can serve as useful research tools or molecular models for the design of new drugs and pesticides. This chapter provides an initial survey of these toxins and their salient properties.

  5. Marine and freshwater toxins.

    Science.gov (United States)

    Hungerford, James M

    2006-01-01

    In a very busy and exciting year, 2005 included First Action approval of a much needed official method for paralytic shellfish toxins and multiple international toxin symposia highlighted by groundbreaking research. These are the first-year milestones and activities of the Marine and Freshwater Toxins Task Force and Analytical Community. Inaugurated in 2004 and described in detail in last year's General Referee Report (1) this international toxins group has grown to 150 members from many regions and countries. Perhaps most important they are now making important and global contributions to food safety and to providing alternatives to animal-based assays. Official Method 2005.06 was first approved in late 2004 by the Task Force and subsequently Official First Action in 2005 (2) by the Methods Committee on Natural Toxins and Food Allergens and the Official Methods Board. This nonproprietary method (3) is a precolumn oxidation, liquid chromatographic method that makes good use of fluorescence detection to provide high sensitivity detection of the saxitoxins. It has also proven to be rugged enough for regulatory use and the highest level of validation. As pointed out in the report of method principle investigator and Study Director James Lawrence, approval of 2005.06 now provides the first official alternative to the mouse bioassay after many decades of shellfish monitoring. This past year in April 2005 the group also held their first international conference, "Marine and Freshwater Toxins Analysis: Ist Joint Symposium and AOAC Task Force Meeting," in Baiona, Spain. The 4-day conference consisted of research and stakeholder presentations and symposium-integrated subgroup sessions on ciguatoxins, saxitoxin assays and liquid chromatography (LC) methods for saxitoxins and domoic acids, okadaiates and azaspiracids, and yessotoxins. Many of these subgroups were recently formed in 2005 and are working towards their goals of producing officially validated analytical methods

  6. [Toxins as a biological weapon].

    Science.gov (United States)

    Płusa, Tadeusz

    2015-09-01

    The criteria for recognizing a chemical compound for the toxin are vague and gave it the possibility of inclusion in this group a number of biological agents. Toxins list is extensive, but the interest is focused on bacterial toxins, poisons derived from snake venoms, algae and plant proteins, and small molecules. Particular attention is focused on the so-called "sea" toxins, which include tetrodotoxin, brevetoxin and saxitoxin. This indicates the search for a new hitherto unknown potential bioterrorist threats. © 2015 MEDPRESS.

  7. Genomic history of the seventh pandemic of cholera in Africa.

    Science.gov (United States)

    Weill, François-Xavier; Domman, Daryl; Njamkepo, Elisabeth; Tarr, Cheryl; Rauzier, Jean; Fawal, Nizar; Keddy, Karen H; Salje, Henrik; Moore, Sandra; Mukhopadhyay, Asish K; Bercion, Raymond; Luquero, Francisco J; Ngandjio, Antoinette; Dosso, Mireille; Monakhova, Elena; Garin, Benoit; Bouchier, Christiane; Pazzani, Carlo; Mutreja, Ankur; Grunow, Roland; Sidikou, Fati; Bonte, Laurence; Breurec, Sébastien; Damian, Maria; Njanpop-Lafourcade, Berthe-Marie; Sapriel, Guillaume; Page, Anne-Laure; Hamze, Monzer; Henkens, Myriam; Chowdhury, Goutam; Mengel, Martin; Koeck, Jean-Louis; Fournier, Jean-Michel; Dougan, Gordon; Grimont, Patrick A D; Parkhill, Julian; Holt, Kathryn E; Piarroux, Renaud; Ramamurthy, Thandavarayan; Quilici, Marie-Laure; Thomson, Nicholas R

    2017-11-10

    The seventh cholera pandemic has heavily affected Africa, although the origin and continental spread of the disease remain undefined. We used genomic data from 1070 Vibrio cholerae O1 isolates, across 45 African countries and over a 49-year period, to show that past epidemics were attributable to a single expanded lineage. This lineage was introduced at least 11 times since 1970, into two main regions, West Africa and East/Southern Africa, causing epidemics that lasted up to 28 years. The last five introductions into Africa, all from Asia, involved multidrug-resistant sublineages that replaced antibiotic-susceptible sublineages after 2000. This phylogenetic framework describes the periodicity of lineage introduction and the stable routes of cholera spread, which should inform the rational design of control measures for cholera in Africa. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Assessment of Risk of Cholera in Haiti following Hurricane Matthew.

    Science.gov (United States)

    Khan, Rakib; Anwar, Rifat; Akanda, Shafqat; McDonald, Michael D; Huq, Anwar; Jutla, Antarpreet; Colwell, Rita

    2017-09-01

    Damage to the inferior and fragile water and sanitation infrastructure of Haiti after Hurricane Matthew has created an urgent public health emergency in terms of likelihood of cholera occurring in the human population. Using satellite-derived data on precipitation, gridded air temperature, and hurricane path and with information on water and sanitation (WASH) infrastructure, we tracked changing environmental conditions conducive for growth of pathogenic vibrios. Based on these data, we predicted and validated the likelihood of cholera cases occurring past hurricane. The risk of cholera in the southwestern part of Haiti remained relatively high since November 2016 to the present. Findings of this study provide a contemporary process for monitoring ground conditions that can guide public health intervention to control cholera in human population by providing access to vaccines, safe WASH facilities. Assuming current social and behavioral patterns remain constant, it is recommended that WASH infrastructure should be improved and considered a priority especially before 2017 rainy season.

  9. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae

    Science.gov (United States)

    Lutz, Carla; Erken, Martina; Noorian, Parisa; Sun, Shuyang; McDougald, Diane

    2013-01-01

    It is now well accepted that Vibrio cholerae, the causative agent of the water-borne disease cholera, is acquired from environmental sources where it persists between outbreaks of the disease. Recent advances in molecular technology have demonstrated that this bacterium can be detected in areas where it has not previously been isolated, indicating a much broader, global distribution of this bacterium outside of endemic regions. The environmental persistence of V. cholerae in the aquatic environment can be attributed to multiple intra- and interspecific strategies such as responsive gene regulation and biofilm formation on biotic and abiotic surfaces, as well as interactions with a multitude of other organisms. This review will discuss some of the mechanisms that enable the persistence of this bacterium in the environment. In particular, we will discuss how V. cholerae can survive stressors such as starvation, temperature, and salinity fluctuations as well as how the organism persists under constant predation by heterotrophic protists. PMID:24379807

  10. Cholera in Haiti: Reproductive numbers and vaccination coverage estimates

    Science.gov (United States)

    Mukandavire, Zindoga; Smith, David L.; Morris, J. Glenn, Jr.

    2013-01-01

    Cholera reappeared in Haiti in October, 2010 after decades of absence. Cases were first detected in Artibonite region and in the ensuing months the disease spread to every department in the country. The rate of increase in the number of cases at the start of epidemics provides valuable information about the basic reproductive number (). Quantitative analysis of such data gives useful information for planning and evaluating disease control interventions, including vaccination. Using a mathematical model, we fitted data on the cumulative number of reported hospitalized cholera cases in Haiti. varied by department, ranging from 1.06 to 2.63. At a national level, 46% vaccination coverage would result in an () cholera vaccines in endemic and non-endemic regions, our results suggest that moderate cholera vaccine coverage would be an important element of disease control in Haiti.

  11. A study of V. cholerae strains isolated in Bombay.

    Directory of Open Access Journals (Sweden)

    Saraswathi K

    1990-07-01

    Full Text Available Of 935 faecal samples studied over a period of one year, V. cholerae 01 was isolated from 102 samples (10.9%. All the strains were found to be E1 Tor Ogawa. The strains belonging to the phage types 2 and 4 were encountered in our study, type 2 being the highest (76.5%. The sensitivity pattern of all strains to the commonly used antibiotics was determined. Strains sensitive to gentamicin (92.2%, nalidixic acid (85.3%, kanamycin (83.3%, cotrimoxazole (80.4% and chloramphenicol (75.5% were observed. Out of the total, 36.3%, 29.4% and 28.4% of V. cholerae strains were found to be resistant to ampicillin, streptomycin and tetracycline respectively. V. cholerae was isolated throughout the year indicating the endemicity of cholera in Bombay.

  12. Degradation and inactivation of Shiga toxins by nitrogen gas plasma.

    Science.gov (United States)

    Sakudo, Akikazu; Imanishi, Yuichiro

    2017-12-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) leads to food poisoning by causing hemorrhagic colitis and hemolytic uremic syndrome. Some STEC produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2), a relatively stable protein toxin, necessitating the development of an efficient inactivation method. Here we applied a nitrogen gas plasma apparatus to the inactivation of Stx. Samples of Stx1 and Stx2 were treated with a nitrogen gas plasma generated by a plasma device using a short high-voltage pulse applied by a static induction thyristor power supply at 1.5 kpps (kilo pulse per second). The recovered Stx samples were then analyzed for immunological and biological activities. Immunochromatography demonstrated that Stx1 and Stx2 were degraded by the gas plasma. Quantification by enzyme-linked immunosorbent assay (ELISA) showed that both toxins were efficiently degraded to less than 1/10th of their original concentration within 5 min of treatment. Western blotting further showed the gas plasma treatment degraded the A subunit, which mediates the toxicity of Stx. Moreover, an assay using HEp-2 cells as an index of cytotoxicity showed that gas plasma treatment reduced the toxic activity of Stx. Therefore, nitrogen gas plasma might be an efficient method for the inactivation of Stx.

  13. Hydroclimatic Extremes and Cholera Dynamics in the 21st Century

    Science.gov (United States)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2012-12-01

    Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A

  14. Epidemiological characteristics of cholera in Singapore, 1992-2007.

    Science.gov (United States)

    Wong, Chia Siong; Ang, Li Wei; James, Lyn; Goh, Kee Tai

    2010-07-01

    We carried out an epidemiological review of cholera in Singapore to determine its trends and the factors contributing to its occurrence. Epidemiological data of all notified cases of cholera maintained by the Communicable Diseases Division, Ministry of Health, for the period 1992 to 2007 were collated and analysed. Case-control studies were carried out in outbreaks to determine the source of infection and mode of transmission. Linear patterns in age and ethnic distribution of cholera cases were assessed using chi2 test for trend. There were a total of 210 cholera cases reported between 1992 and 2007. The incidence of cholera declined from 17 cases in 1992 to 7 cases in 2007. About a quarter of the cases were imported from endemic countries in the region. Between 76% and 95% of the reported cases were local residents. Four elderly patients with comorbidities and who sought medical treatment late died, giving a case-fatality rate of 1.9%. Vibrio cholerae 01, biotype El Tor, serotype Ogawa, accounted for 83.8% of the cases. The vehicles of transmission identified in outbreaks included raw fi sh, undercooked seafood and iced drinks cross-contaminated with raw seafood. With the high standard of environmental hygiene and sanitation, a comprehensive epidemiological surveillance system and licensing and control of food establishments, cholera could not gain a foothold in Singapore despite it being situated in an endemic region. However, health education of the public on the importance of personal and food hygiene is of paramount importance in preventing foodborne outbreaks. Physicians should also maintain a high level of suspicion of cholera in patients presenting with severe gastroenteritis, especially those with a recent travel history to endemic countries.

  15. Response to the cholera outbreak in South Sudan

    African Journals Online (AJOL)

    On Thursday, May 15th 2014, the Ministry of Health (MoH) of the Republic of South Sudan declared a cholera outbreak in the capital Juba. As we go to press, the cholera has spread to other parts of the country and the cases are increasing. In its press statement, the MoH said it had “Reactivated a national emergency ...

  16. Community health facility preparedness for a cholera surge in Haiti.

    Science.gov (United States)

    Mobula, Linda Meta; Jacquet, Gabrielle A; Weinhauer, Kristin; Alcidas, Gladys; Thomas, Hans-Muller; Burnham, Gilbert

    2013-01-01

    With increasing population displacement and worsening water insecurity after the 2010 earthquake, Haiti experienced a large cholera outbreak. Our goal was to evaluate the strengths and weaknesses of seven community health facilities' ability to respond to a surge in cholera cases. Since 2010, Catholic Relief Services (CRS) with a number of public and private donors has been working with seven health facilities in an effort to reduce morbidity and mortality from cholera infection. In November 2012, CRS through the Centers for Disease Control and Prevention (CDC)'s support, asked the Johns Hopkins Center for Refugee and Disaster Response to conduct a cholera surge simulation tabletop exercise at these health facilities to improve each facility's response in the event of a cholera surge. Using simulation development guidelines from the Pan American Health Organization and others, a simulation scenario script was produced that included situations of differing severity, supply chain, as well as a surge of patients. A total of 119 hospital staff from seven sites participated in the simulation exercise including community health workers, clinicians, managers, pharmacists, cleaners, and security guards. Clinics that had challenges during the simulated clinical care of patients were those that did not appropriately treat all cholera patients according to protocol, particularly those that were vulnerable, those that would need additional staff to properly treat patients during a surge of cholera, and those that required a better inventory of supplies. Simulation-based activities have the potential to identify healthcare delivery system vulnerabilities that are amenable to intervention prior to a cholera surge.

  17. Antimicrobial Resistance Risks of Cholera Prophylaxis for United Nations Peacekeepers.

    Science.gov (United States)

    Kunkel, Amber; Lewnard, Joseph A; Pitzer, Virginia E; Cohen, Ted

    2017-08-01

    More than 5 years after a United Nations peacekeeping battalion introduced cholera to Haiti, over 150,000 peacekeepers continue to be deployed annually from countries where cholera is endemic. The United Nations has thus far declined to provide antimicrobial chemoprophylaxis to peacekeepers, a policy based largely on concerns that the risks of drug resistance generation and spread would outweigh the potential benefits of preventing future cholera importations. In this study, we sought to better understand the relative benefits and risks of cholera chemoprophylaxis for peacekeepers in terms of antibiotic resistance. Using a stochastic model to quantify the potential impact of chemoprophylaxis on importation and transmission of drug-resistant and drug-sensitive Vibrio cholerae, we found that chemoprophylaxis would decrease the probability of cholera importation but would increase the expected number of drug-resistant infections if an importation event were to occur. Despite this potential increase, we found that at least 10 drug-sensitive infections would likely be averted per excess drug-resistant infection under a wide range of assumptions about the underlying prevalence of drug resistance and risk of acquired resistance. Given these findings, policymakers should reconsider whether the potential resistance risks of providing antimicrobial chemoprophylaxis to peacekeepers are sufficient to outweigh the anticipated benefits. Copyright © 2017 American Society for Microbiology.

  18. Medico - historical study of "Visŭcikă" (Cholera).

    Science.gov (United States)

    Prasad, P V V

    2005-01-01

    The Sanskrit word Visŭcikă refers to a condition in which vitiated văta dŏşa causes pain like pricking with a needle over the body. It occurs in a person suffering with ajĭrna (indigestion) and its detailed description is available in Ayurvedic literature. This disease has its existence in India since ancient times; it has also been referred in Mahăhărata and Tripitikas. Its etiology, signs, symptoms, complications, prognosis and treatment etc. as described in Ayurveda may be correlated with the disease Cholera, which is commonly known as "Haiza" in Hindi. In Greek language, the word Cholera means a flow of bile or the bilious disease. Cholera is an acute infectious diarrheal disease, caused by comma bacillus or vibrio cholerae sero groups 01 or 0139. Aretaetus, Benjamin Rush, Chadwick, John Snow, Robert Koch, etc. were some of the pioneers in Cholera research. Medico- historical importance of Cholera, its transmission, description and references from Ayurvedic texts etc., are being presented in this article.

  19. Considerations around the introduction of a cholera vaccine in Bangladesh.

    Science.gov (United States)

    Nelson, Christopher B; Mogasale, Vittal; Bari, Tajul Islam A; Clemens, John D

    2014-12-12

    Cholera is an endemic and epidemic disease in Bangladesh. On 3 March 2013, a meeting on cholera and cholera vaccination in Bangladesh was convened by the Foundation Mérieux jointly with the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B). The purpose of the meeting was to discuss the investment case for cholera vaccination as a complimentary control and prevention strategy. The performance of a new low cost oral cholera vaccine, Shanchol™, used in recent trials in Bangladesh, was also reviewed in the context of a potential large-scale public-sector vaccination program. Findings showed the oral vaccine to be highly cost-effective when targeting ages 1-14 y, and cost-effective when targeting ages 1+y, in high-burden/high-risk districts. Other vaccination strategies targeting urban slums and rural areas without improved water were found to be cost-effective. Regardless of cost-effectiveness (value), the budget impact (affordability) will be an important determinant of which target population and vaccination strategy is selected. Most importantly, adequate vaccine supply for the proposed vaccination programs must be addressed in the context of global efforts to establish a cholera vaccine stockpile and supply other control and prevention efforts. Copyright © 2014. Published by Elsevier Ltd.. All rights reserved.

  20. Vibrio cholerae/mimicus in fecal microbiota of healthy children in a cholera endemic urban slum setting in Kolkata, India

    National Research Council Canada - National Science Library

    Nair, Gopinath Balakrish; Ramamurthy, Thandavarayan; Sur, Dipika; Kurakawa, Takashi; Takahashi, Takuya; Nomoto, Koji; Takeda, Yoshifumi

    2012-01-01

    During a double‐blind, randomized, placebo‐controlled probiotic trial among 3758 children residing in an urban slum in Kolkata, India, Vibrio cholerae / mimicus was detected in fecal microbiota of healthy children...

  1. [Performance of Cholera-SMART and Pathogen-Detection-Kit in the quick diagnosis of cholera].

    Science.gov (United States)

    Bolaños, Hilda María; Acuña, María Teresa; Serrano, Ana María; Obando, Xinia; Mairena, Hazel; Cháves, Lorena; Sandí, Flor; Rodríguez, Gina; Tamplin, Mark L; Pérez, Enrique; Campos, Elena

    2004-10-01

    To compare the performance of two rapid systems for the diagnosis of cholera with the culture method, and to propose a strategy for improving the specificity and sensitivity of these systems and reducing the costs involved in making a diagnosis. The following institutions participated in the study: the National Bacteriology Referral Center (Centro Nacional de Referencia en Bacteriologia, CNRB) of the Costa Rican Institute for Research and Teaching in Nutrition and Health (Instituto Costarricense de Investigacion y Ensenanza en Nutricion y Salud, INCIENSA) and various hospitals in the provinces of Alajuela, Guanacaste and San Jose, in Costa Rica. A total of 237 feces samples were used to asses the performance of two tests for the rapid detection of Vibrio cholerae 01: the Pathogen Detection Kit (PDK, Intelligent Monitoring Systems, Gainesville, Florida, USA) and Cholera-SMART (New Horizons Diagnostics Corp., Columbia, Maryland, USA), both when applied directly (direct SMART and direct PDK) and when applied to specimens cultured in broth-enriched medium for 6 hours (SMART-6 and CPK-6) and for 18 hours (SMART-18 and PDK-18) at 37 degrees C in alkaline peptone water. Liquid and partially formed stools were cultured and examined by means of the rapid direct test; when the initial result was negative, the tests were repeated after culture for periods of 6 and 18 hours. Rectal and fecal swabs were obtained from feces cultured in enriched-broth medium for 6 and 18 hours. In addition, we studied the sensitivity of the rapid testing systems by using pure cultures of V. cholerae 01 (strain SOS-833, CNRB, Costa Rica) that were incubated for 18 to 24 hours, and we assessed the usefulness of observing motility under the microscope in order to rationalize the use of rapid methods. The sensitivity of the direct SMART test and of the direct PDK test was 100% when samples obtained from liquid and partially formed stools and from the intestinal contents of dead bodies were used. With

  2. Epidemiology, determinants and dynamics of cholera in Pakistan: gaps and prospects for future research.

    Science.gov (United States)

    Naseer, Maliha; Jamali, Tanzil

    2014-11-01

    Cholera is one of the notifiable endemic diseases in Pakistan, but the reporting of cholera cases is still unsatisfactory. Most of the diagnosed cases are never reported to the relevant authorities. In the year 1993 - 2005, the country did not report any single case of cholera to the WHO. The objectives of this review were to understand the epidemiology and to identify the possible determinants of cholera infection in Pakistan. Medscape, Medline, PakMedinet and PubMed, was searched, using key words, epidemiology and determinants of cholera infection in Pakistan during 1995 - 2010. Morbidity and mortality due to cholera infection during 1995 - 2010, without any language restriction. Out of 27 articles published between 1995 - 2010, 17 articles were included in the review. Vibrio cholerae O139 identified as a major cause of infection in older age group, while O1 biotype of cholera as a predominant cause of cholera among young individuals. Mainly reported determinants of cholera in Pakistan include poor sanitation and hygiene practices, increased population density in urban areas, leading to rapid and unplanned urbanization of the major cities and climate change due to increased environmental pollution in Pakistan are plausible factors for endemicity of cholera in Pakistan. Cholera reporting as a notifiable disease to the relevant departments and timely action can prevent the risk of outbreaks. There is a need to identify specific behavioral and environmental determinants responsible for outbreaks and epidemics of cholera in Pakistan which can help to design appropriate preventive and control interventions.

  3. Toxins Best Paper Award 2015

    Directory of Open Access Journals (Sweden)

    Vernon L. Tesh

    2015-03-01

    Full Text Available In order to recognize outstanding papers related to biotoxins and toxinology that have been published in Toxins, the Editorial Board established an annual “Toxins Best Paper Award”. We are pleased to announce the first “Toxins Best Paper Award” for 2015. Nominations were selected by the Editorial Board members, with all papers published in 2011 eligible for consideration. Reviews and original research articles were evaluated separately. Following review and voting by the Toxins Best Paper Award Committee, the following three papers have won Toxins Best Paper Awards for 2015:[...

  4. [Protein toxins of Staphylococcus aureus].

    Science.gov (United States)

    Shamsutdinov, A F; Tiurin, Iu A

    2014-01-01

    Main scientific-research studies regarding protein bacterial toxins of the most widespread bacteria that belong to Staphylococcus spp. genus and in particular the most pathogenic species for humans--Staphylococcus aureus, are analyzed. Structural and biological properties of protein toxins that have received the name of staphylococcus pyrogenic toxins (PTSAg) are presented. Data regarding genetic regulation of secretion and synthesis of these toxins and 3 main regulatory genetic systems (agr--accessory gene regulator, xpr--extracellular protein regulator, sar--staphylococcal accessory regulator) that coordinate synthesis of the most important protein toxins and enzymes for virulence of S. aureus, are presented.

  5. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  6. Comparing sociocultural features of cholera in three endemic African settings

    Science.gov (United States)

    2013-01-01

    Background Cholera mainly affects developing countries where safe water supply and sanitation infrastructure are often rudimentary. Sub-Saharan Africa is a cholera hotspot. Effective cholera control requires not only a professional assessment, but also consideration of community-based priorities. The present work compares local sociocultural features of endemic cholera in urban and rural sites from three field studies in southeastern Democratic Republic of Congo (SE-DRC), western Kenya and Zanzibar. Methods A vignette-based semistructured interview was used in 2008 in Zanzibar to study sociocultural features of cholera-related illness among 356 men and women from urban and rural communities. Similar cross-sectional surveys were performed in western Kenya (n = 379) and in SE-DRC (n = 360) in 2010. Systematic comparison across all settings considered the following domains: illness identification; perceived seriousness, potential fatality and past household episodes; illness-related experience; meaning; knowledge of prevention; help-seeking behavior; and perceived vulnerability. Results Cholera is well known in all three settings and is understood to have a significant impact on people’s lives. Its social impact was mainly characterized by financial concerns. Problems with unsafe water, sanitation and dirty environments were the most common perceived causes across settings; nonetheless, non-biomedical explanations were widespread in rural areas of SE-DRC and Zanzibar. Safe food and water and vaccines were prioritized for prevention in SE-DRC. Safe water was prioritized in western Kenya along with sanitation and health education. The latter two were also prioritized in Zanzibar. Use of oral rehydration solutions and rehydration was a top priority everywhere; healthcare facilities were universally reported as a primary source of help. Respondents in SE-DRC and Zanzibar reported cholera as affecting almost everybody without differentiating much for gender, age

  7. Structure of the Minor Pseudopilin EpsH From the Type 2 Secretion System of Vibrio Cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Yanez, M.E.; Korotkov, K.V.; Abendroth, J.; Hol, W.G.J.

    2009-05-28

    Many Gram-negative bacteria use the multi-protein type II secretion system (T2SS) to selectively translocate virulence factors from the periplasmic space into the extracellular environment. In Vibrio cholerae the T2SS is called the extracellular protein secretion (Eps) system, which translocates cholera toxin and several enzymes in their folded state across the outer membrane. Five proteins of the T2SS, the pseudopilins, are thought to assemble into a pseudopilus, which may control the outer membrane pore EpsD, and participate in the active export of proteins in a 'piston-like' manner. We report here the 2.0 {angstrom} resolution crystal structure of an N-terminally truncated variant of EpsH, a minor pseudopilin from Vibrio cholerae. While EpsH maintains an N-terminal {alpha}-helix and C-terminal {beta}-sheet consistent with the type 4a pilin fold, structural comparisons reveal major differences between the minor pseudopilin EpsH and the major pseudopilin GspG from Klebsiella oxytoca: EpsH contains a large {beta}-sheet in the variable domain, where GspG contains an {alpha}-helix. Most importantly, EpsH contains at its surface a hydrophobic crevice between its variable and conserved {beta}-sheets, wherein a majority of the conserved residues within the EpsH family are clustered. In a tentative model of a T2SS pseudopilus with EpsH at its tip, the conserved crevice faces away from the helix axis. This conserved surface region may be critical for interacting with other proteins from the T2SS machinery.

  8. Tightly Bound Binary Toxin in the Cell Wall of Bacillus sphaericus

    Science.gov (United States)

    Klein, Daniela; Uspensky, Igor; Braun, Sergei

    2002-01-01

    We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earlier than the appearance of the binary toxin crystal. It disappears with sporulation when the binary toxin activity reaches its peak. Disruption of the gene for the 42-kDa protein (P42) of the binary toxin abolishes both cell wall toxicity and crystal formation. However, the cell wall of B. sphaericus 2297, lacking P42, kills C. pipiens larvae when mixed with Escherichia coli cells expressing P42. Thus, the cell wall toxicity in strongly toxic B. sphaericus strains must be attributed to the presence in the cell wall of tightly bound 51-kDa (P51) and P42 binary toxin proteins. The synergism between binary toxin crystals and urea-treated cell wall preparations reflects suboptimal distribution of binary toxin subunits in both compartments. Binary toxin crystal is slightly deficient in P51, while cell wall is lacking in P42. PMID:12089007

  9. Nanomolar cholera toxin inhibitors based on symmetrical pentavalent ganglioside GM1os-sym-corannulenes

    NARCIS (Netherlands)

    Mattarella, M.; Garcia-Hartjes, J.; Wennekes, T.; Zuilhof, H.; Siegel, J.S.

    2013-01-01

    Eight symmetric and pentavalent corannulene derivatives were functionalized with galactose and the ganglioside GM1-oligosaccharide (GM1os) via copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions. The compounds were evaluated for their ability to inhibit the binding of the pentavalent

  10. Salinity-induced survival strategy of Vibrio cholerae associated with copepods in Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Thomas, K.U.; Joseph, N.; Raveendran, O.; Nair, S.

    The occurrence of Vibrio cholerae in water, sediment and copepods was studied over a wide range of salinity using conventional and polymerase chain reaction (PCR) techniques in the Cochin backwaters. V. cholerae occurred either as culturable or non-culturable...

  11. Fuzzy expert systems and GIS for cholera health risk prediction in southern Africa

    CSIR Research Space (South Africa)

    Fleming, GJ

    2007-01-01

    Full Text Available is based on the assumption that endemic reservoirs of cholera occur and that environmental conditions, especially algal blooms, trigger Vibrio growth in the natural environment. If the preconditions are met, the subsequent spread of cholera depends mainly...

  12. Breast milk reduces the risk of illness in children of mothers with cholera

    DEFF Research Database (Denmark)

    Qureshi, Katja; Mølbak, Kåre; Sandström, Anita

    2006-01-01

    BACKGROUND: A protective effect of breastfeeding against cholera has been demonstrated in areas endemic of cholera. To assess the protection offered by breast milk from mothers living in an area that had been free from cholera for 7 years, we investigated mothers with cholera and their children...... during an epidemic with Vibrio cholerae El Tor in the capital of Guinea-Bissau. METHODS: Eighty mothers with clinical cholera and their children were identified, and interviewed. Blood samples for vibriocidal and antitoxin antibodies were collected from mother-and-child pairs. Breast milk samples were...... collected from lactating mothers.Cholera was defined as acute watery diarrhea during the epidemic and a vibriocidal reciprocal titer of 20 or above. RESULTS: Three (7%) of 42 breastfed children had cholera as defined above compared with 9 (24%) of 38 nonbreastfed children (RR for breastfed children, 0...

  13. Monitoring water sources for environmental reservoirs of toxigenic Vibrio cholerae O1, Haiti.

    Science.gov (United States)

    Alam, Meer T; Weppelmann, Thomas A; Weber, Chad D; Johnson, Judith A; Rashid, Mohammad H; Birch, Catherine S; Brumback, Babette A; Beau de Rochars, Valery E Madsen; Morris, J Glenn; Ali, Afsar

    2014-03-01

    An epidemic of cholera infections was documented in Haiti for the first time in more than 100 years during October 2010. Cases have continued to occur, raising the question of whether the microorganism has established environmental reservoirs in Haiti. We monitored 14 environmental sites near the towns of Gressier and Leogane during April 2012-March 2013. Toxigenic Vibrio cholerae O1 El Tor biotype strains were isolated from 3 (1.7%) of 179 water samples; nontoxigenic O1 V. cholerae was isolated from an additional 3 samples. All samples containing V. cholerae O1 also contained non-O1 V. cholerae. V. cholerae O1 was isolated only when water temperatures were ≥31°C. Our data substantiate the presence of toxigenic V. cholerae O1 in the aquatic environment in Haiti. These isolations may reflect establishment of long-term environmental reservoirs in Haiti, which may complicate eradication of cholera from this coastal country.

  14. Lipid reorganization induced by Shiga toxin clustering on planar membranes.

    Directory of Open Access Journals (Sweden)

    Barbara Windschiegl

    Full Text Available The homopentameric B-subunit of bacterial protein Shiga toxin (STxB binds to the glycolipid Gb(3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC/cholesterol/Gb(3 (65:30:5 bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3 (40:35:20:5 phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3, STxB-Gb(3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.

  15. Time series analysis of cholera in Matlab, Bangladesh, during 1988-2001.

    Science.gov (United States)

    Ali, Mohammad; Kim, Deok Ryun; Yunus, Mohammad; Emch, Michael

    2013-03-01

    The study examined the impact of in-situ climatic and marine environmental variability on cholera incidence in an endemic area of Bangladesh and developed a forecasting model for understanding the magnitude of incidence. Diarrhoea surveillance data collected between 1988 and 2001 were obtained from a field research site in Matlab, Bangladesh. Cholera cases were defined as Vibrio cholerae O1 isolated from faecal specimens of patients who sought care at treatment centres serving the Matlab population. Cholera incidence for 168 months was correlated with remotely-sensed sea-surface temperature (SST) and in-situ environmental data, including rainfall and ambient temperature. A seasonal autoregressive integrated moving average (SARIMA) model was used for determining the impact of climatic and environmental variability on cholera incidence and evaluating the ability of the model to forecast the magnitude of cholera. There were 4,157 cholera cases during the study period, with an average of 1.4 cases per 1,000 people. Since monthly cholera cases varied significantly by month, it was necessary to stabilize the variance of cholera incidence by computing the natural logarithm to conduct the analysis. The SARIMA model shows temporal clustering of cholera at one- and 12-month lags. There was a 6% increase in cholera incidence with a minimum temperature increase of one degree celsius in the current month. For increase of SST by one degree celsius, there was a 25% increase in the cholera incidence at currrent month and 18% increase in the cholera incidence at two months. Rainfall did not influenc to cause variation in cholera incidence during the study period. The model forecast the fluctuation of cholera incidence in Matlab reasonably well (Root mean square error, RMSE: 0.108). Thus, the ambient and sea-surface temperature-based model could be used in forecasting cholera outbreaks in Matlab.

  16. Influence of solar water disinfection on immunity against cholera: a review

    CSIR Research Space (South Africa)

    Ssemakalu, CC

    2014-09-01

    Full Text Available on the spread of waterborne diseases 115 The consumption of SODIS water in sub-Saharan African and various East Asian countries 116 has reduced the percentage of individuals acquiring water borne diseases such as dysentery 117 typhoid and cholera (Conroy, et... review, the possible influence that solar water disinfection may have on the immunity 35 against cholera is discussed. 36 Keywords: Cholera, SODIS, Solar Ultraviolet Radiation, Vaccine, V. cholerae, Waterborne 37 disease 38 39 40 3...

  17. CHANGING EPIDEMIOLOGICAL TREND OF CHOLERA IN WEST BENGAL: THE GIANT IS BACK

    OpenAIRE

    Indrani; Jayashree; Pratip Kumar; Dilip Kumar; M ohammad Samidul

    2013-01-01

    ABSTRACT: Choler a is a devastating diarrheal disease caused by V. cholera. Two biotypes of V. cholerae O1, classical and El - Tor, are distinguished. Each biotype is further subdivided into two serotypes, termed Inaba and Ogawa. As large deltaic areas of the Ganges and Brah maputra rivers are considered to be the homeland of cholera, objective of our study was to detect the circulating strain of Vibrio causing Cholera outbreaks in different pockets of W...

  18. Retrospective genomic analysis of Vibrio cholerae O1 El Tor strains from different places in India reveals the presence of ctxB-7 allele found in Haitian isolates.

    Science.gov (United States)

    DE, R; Ramamurthy, T; Sarkar, B L; Mukhopadhyay, A K; Pazhani, G P; Sarkar, S; Dutta, S; Nair, G B

    2017-08-01

    A total of 45 strains of Vibrio cholerae O1 isolated from 10 different places in India where they were associated with cases of cholera between the years 2007 and 2008 were examined by molecular methods. With the help of phenotypic and genotypic tests the strains were confirmed to be O1 El Tor biotype strains with classical ctxB gene. Polymerase chain reaction (PCR) analysis by double - mismatch amplification mutation assay PCR showed 16 of these strains carried the ctxB-7 allele reported in Haitian strains. Sequencing of the ctxB gene in all the 45 strains revealed that in 16 strains the histidine at the 20th amino acid position had been replaced by asparagine and this single nucleotide polymorphism did not affect cholera toxin production as revealed by beads enzyme-linked immunosorbent assay. This study shows that the new ctxB gene sequence was circulating in different places in India. Seven representatives of these 45 strains analysed by pulsed - field gel electrophoresis showed four distinct Not I digested profiles showing that multiple clones were causing cholera in 2007 and 2008.

  19. 9 CFR 309.5 - Swine; disposal because of hog cholera.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Swine; disposal because of hog cholera... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.5 Swine; disposal because of hog cholera. (a) All swine found by an inspector to be affected with hog cholera shall be identified as U.S. Condemned and...

  20. A model to predict when a cholera outbreak might hit the Congo

    Science.gov (United States)

    Schultz, Colin

    2014-09-01

    In 2011, as many as 600,000 people in 58 countries contracted cholera, with thousands succumbing to the disease. In most countries, cholera is rare. In others, like the Democratic Republic of the Congo, cholera is an endemic threat, always lurking in the background waiting for the right set of conditions to spark an outbreak.