WorldWideScience

Sample records for cholecystokinin

  1. Pituitary tumors containing cholecystokinin

    DEFF Research Database (Denmark)

    Rehfeld, J F; Lindholm, J; Andersen, B N

    1987-01-01

    We found small amounts of cholecystokinin in the normal human adenohypophysis and therefore examined pituitary tumors from 87 patients with acromegaly, Cushing's disease, Nelson's syndrome, prolactinoma, or inactive pituitary adenomas. Five adenomas associated with Nelson's syndrome contained......'s disease and 7 acromegaly with adenomas containing ACTH. The cholecystokinin peptides from the tumors were smaller and less sulfated than cholecystokinin from normal pituitary glands. We conclude that ACTH-producing pituitary cells may also produce an altered form of cholecystokinin....

  2. The stomach, cholecystokinin, and satiety.

    Science.gov (United States)

    McHugh, P R; Moran, T H

    1986-04-01

    The stomach of the rhesus monkey empties liquids in a fashion that varies with the character of the solutions. Physiological saline empties exponentially. Glucose solutions empty biphasically--rapidly for the first minutes, then slowly and proportionately to glucose concentration to deliver glucose calories through the pylorus at a regulated rate (0.4 kcal/min). This prolonged and regulated second phase of gastric emptying depends on intestinal inhibition of the stomach. Cholecystokinin (CCK), a hormone released by food in the intestine, is an inhibitor of gastric emptying. In vitro receptor autoradiography demonstrates CCK receptors to be clustered on the circular muscle of the pylorus. Exogenous CCK, in doses that inhibit gastric emptying, will reduce food intake only if combined with an infusion of saline in the stomach. These observations indicate how gastric distension can be a means for provoking satiety. The variably sustained distension produced by the stomach's slow, calorically regulated emptying could prolong intermeal intervals and thus permit high-calorie meals to inhibit further caloric intake over time. CCK, by directly inhibiting gastric emptying during a meal, could promote gastric distension and so restrict the duration and size of individual meals.

  3. Fenofibrate reduces food intake via cholecystokinin

    Directory of Open Access Journals (Sweden)

    S Yu Vorotnikova

    2012-12-01

    Full Text Available Реферат по статье: Park MK, Han Y, Kim MS, Seo E, Kang S, Park SY, Koh H, Kim DK, Lee HJ. Reduction of Food Intake by Fenofibrate is Associated with Cholecystokinin Release in Long-Evans Tokushima Rats. Korean J Physiol Pharmacol. 2012 Jun;16(3:181-6.

  4. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    International Nuclear Information System (INIS)

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-01-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of 125 I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain

  5. Radioimmunoassay of cholecystokinin in tissue and plasma

    International Nuclear Information System (INIS)

    Jansen, J.B.M.J.

    1984-01-01

    The physiological and pathophysiological role of the pancreas hormone, the polypeptide 'cholecystokinin' (CCK) is not well-established yet. This is due to the lack of specific and reliable radioimmunoassays for CCK. The aim of this thesis is to develop such an assay meeting the requirements of high specificity and sensitivity. Several problems were faced, such as (1) the cross-reactivity of existing antibodies with the stomach hormone gastrin and (2) changes in immunoreactivity caused by the introduction of the labelling isotope 125 I and various labels (prepared according to the Bolton-Hunter method) into the polypeptide. The reliability of the assay for the measurement in human tissue and blood is extensively evaluated, inter alia, in patients with pancreas insufficiency (alcohol, cystic fibrosis) and with coeliac disease. (Auth.)

  6. Radioimmunoassay of cholecystokinin in human plasma

    International Nuclear Information System (INIS)

    Byrnes, D.J.; Henderson, L.; Borody, T.; Rehfeld, J.F.

    1981-01-01

    A sensitive radioimmunoassay for cholecystokinin (CCK) has been developed. Porcine CCK-33 was labelled by conjugation with 125 I-hydroxyphenyl-propionic acid succinimide ester. Antibodies were raised against porcine CCK-33 covalently coupled to egg albumin. Plasma samples were extracted with 96% ethanol prior to assay. Free and bound hormone were separated by dextran-coated charcoal. The antibodies bound CCK-8 and CCK-33 with equimolar potency. The assay detection limit was 1 pmol/l plasma. Within and between assay coefficients of variation were +-12.7 and 13.0% at mean plasma CCK concentrations of 13.2 and 13.6 pmol/l. The concentration of CCK in 47 normal fasting subjects ranged from undetectable to 22 pmol/l. Ingestion of a mixed meal in 9 normal subjects increased the plasma concentration from 8.3 +- 2.5 S.E. to 24.4 +- 6.5 pmol/l. (Auth.)

  7. The predominant cholecystokinin in human plasma and intestine is cholecystokinin-33

    DEFF Research Database (Denmark)

    Rehfeld, J F; Sun, G; Christensen, T

    2001-01-01

    Cholecystokinin (CCK) occurs in multiple molecular forms; the major ones are CCK-58, -33, -22, and -8. Their relative abundance in human plasma and intestine, however, is debated. To settle the issue, extracts of intestinal biopsies and plasma from 10 human subjects have been examined by chromato......Cholecystokinin (CCK) occurs in multiple molecular forms; the major ones are CCK-58, -33, -22, and -8. Their relative abundance in human plasma and intestine, however, is debated. To settle the issue, extracts of intestinal biopsies and plasma from 10 human subjects have been examined...... by chromatography, enzyme cleavages, and measurements using a library of sequence-specific RIAs. Plasma samples were drawn in the fasting state and at intervals after a meal. The abundance of the larger forms varied with the 8 C-terminal assays in the library, as 2 assays overestimated and 3 underestimated...... the amounts present. One assay, however, measured carboxyamidated and O:-sulfated CCKs with equimolar potency before and after tryptic cleavage. This assay showed that the predominant plasma form is CCK-33, both in the fasting state ( approximately 51%) and postprandially ( approximately 57%), whereas CCK-22...

  8. Cholecystokinin-From Local Gut Hormone to Ubiquitous Messenger

    DEFF Research Database (Denmark)

    Rehfeld, Jens F

    2017-01-01

    Cholecystokinin (CCK) was discovered in 1928 in jejunal extracts as a gallbladder contraction factor. It was later shown to be member of a peptide family, which are all ligands for the CCK1 and CCK2 receptors. CCK peptides are known to be synthetized in small intestinal endocrine I-cells and cere...

  9. Role of sulfate ester in influencing biological activity of cholecystokinin-related peptides

    International Nuclear Information System (INIS)

    Vinayek, R.; Jensen, R.T.; Gardner, J.D.

    1987-01-01

    In dispersed acini from guinea pig, mouse, or rat pancreas cholecystokinin-(27-33) is a full agonist, and removing the sulfate ester from the tyrosine residue in position 27 caused a 100- to 300-fold decrease in potency with no change in efficacy. In dispersed acini from mouse or rat pancreas, cholecystokinin-(27-32)-NH 2 is a partial agonist, and removing the sulfate ester from the tyrosine in position 27 abolished the efficacy. The desulfated peptide was able, however, to interact with [ 125 I] CCK receptors with a potency that was threefold less than that of cholecystokinin-(27-32)-NH 2 and therefore functioned as a cholecystokinin receptor antagonist. In dispersed acini from guinea pig pancreas cholecystokinin-(27-32)-NH 2 is a cholecystokinin receptor antagonist. Removing the sulfate ester from the tyrosine residue in position 27 of cholecystokinin-(27-32)-NH 2 caused a fourfold decrease in potency but did not abolish the ability of the peptide to interact with cholecystokinin receptors; therefore, desulfated cholecystokinin-(27-32)-NH 2 functioned as a cholecystokinin receptor antagonist

  10. Cholecystokinin receptor-1 mediates the inhibitory effects of exogenous cholecystokinin octapeptide on cellular morphine dependence

    Directory of Open Access Journals (Sweden)

    Wen Di

    2012-06-01

    Full Text Available Abstract Background Cholecystokinin octapeptide (CCK-8, the most potent endogenous anti-opioid peptide, has been shown to regulate the processes of morphine dependence. In our previous study, we found that exogenous CCK-8 attenuated naloxone induced withdrawal symptoms. To investigate the precise effect of exogenous CCK-8 and the role of cholecystokinin (CCK 1 and/or 2 receptors in morphine dependence, a SH-SY5Y cell model was employed, in which the μ-opioid receptor, CCK1/2 receptors, and endogenous CCK are co-expressed. Results Forty-eight hours after treating SH-SY5Y cells with morphine (10 μM, naloxone (10 μM induced a cAMP overshoot, indicating that cellular morphine dependence had been induced. The CCK receptor and endogenous CCK were up-regulated after chronic morphine exposure. The CCK2 receptor antagonist (LY-288,513 at 1–10 μM inhibited the naloxone-precipitated cAMP overshoot, but the CCK1 receptor antagonist (L-364,718 did not. Interestingly, CCK-8 (0.1-1 μM, a strong CCK receptor agonist, dose-dependently inhibited the naloxone-precipitated cAMP overshoot in SH-SY5Y cells when co-pretreated with morphine. The L-364,718 significantly blocked the inhibitory effect of exogenous CCK-8 on the cAMP overshoot at 1–10 μM, while the LY-288,513 did not. Therefore, the CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence in SH-SY5Y cells. An additional inhibitory effect of CCK-8 at higher concentrations appears to involve the CCK1 receptor. Conclusions This study reveals the difference between exogenous CCK-8 and endogenous CCK effects on the development of morphine dependence, and provides the first evidence for the participation of the CCK1 receptor in the inhibitory effects of exogenous CCK-8 on morphine dependence.

  11. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    International Nuclear Information System (INIS)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-01-01

    Autoradiography using 125 I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat

  12. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  13. Effects of growth hormone deficiency and recombinant growth hormone therapy on postprandial gallbladder motility and cholecystokinin release.

    NARCIS (Netherlands)

    Moschetta, A.; Twickler, M.; Rehfeld, J.F.; Ooteghem, N.A. van; Castro Cabezas, M.; Portincasa, P.; Berge-Henegouwen, G.P. van; Erpecum, K.J. van

    2004-01-01

    In addition to cholecystokinin, other hormones have been suggested to be involved in regulation of postprandial gallbladder contraction. We aimed to evaluate effects of growth hormone (GH) on gallbladder contractility and cholecystokinin release. Gallbladder and gastric emptying (by ultrasound) and

  14. Functional characteristics of parvalbumin- and cholecystokinin-expressing basket cells.

    Science.gov (United States)

    Bartos, Marlene; Elgueta, Claudio

    2012-02-15

    Cortical neuronal network operations depend critically on the recruitment of GABAergic interneurons and the properties of their inhibitory output signals. Recent evidence indicates a marked difference in the signalling properties of two major types of perisomatic inhibitory interneurons, the parvalbumin- and the cholecystokinin-containing basket cells. Parvalbumin-expressing basket cells are rapidly recruited by excitatory synaptic inputs, generate high-frequency trains of action potentials, discharge single action potentials phase-locked to fast network oscillations and provide fast, stable and timed inhibitory output onto their target cells. In contrast, cholecystokinin-containing basket cells are recruited in a less reliable manner, discharge at moderate frequencies with single action potentials weakly coupled to the phases of fast network oscillations and generate an asynchronous, fluctuating and less timed inhibitory output. These signalling modes are based on cell type-dependent differences in the functional and plastic properties of excitatory input synapses, integrative qualities and in the kinetics and dynamics of inhibitory output synapses. Thus, the two perisomatic inhibitory interneuron types operate with different speed and precision and may therefore contribute differently to the operations of neuronal networks.

  15. Cyclic cholecystokinin analogues with high selectivity for central receptors

    International Nuclear Information System (INIS)

    Charpentier, B.; Pelaprat, D.; Durieux, C.; Dor, A.; Roques, B.P.; Reibaud, M.; Blanchard, J.C.

    1988-01-01

    Taking as a model the N-terminal folding of the cholecystokinin tyrosine-sulfated octapeptide deduced from conformational studies, two cyclic cholecystokinin (CCK) analogues were synthesized by conventional peptide synthesis. The binding characteristics of these peptides were investigated on brain cortex membranes and pancreatic acini of guinea pig. Compounds I and II were competitive inhibitors of [ 3 H]Boc[Ahx 28,31 ]CCK-(27-33) binding to central CCK receptors and showed a high degree of selectivity for these binding sites. This high selectivity was associated with a high affinity for central CCK receptors. Similar affinities and selectivities were found when 125 I Bolton-Hunter-labeled CCK-8 was used as a ligand. Moreover, these compounds were only weakly active in the stimulation of amylase release from guinea pig pancreatic acini and were unable to induce contractions in the guinea pig ileum. The two cyclic CCK analogues, therefore, appear to be synthetic ligands exhibiting both high affinity and high selectivity for central CCK binding sites. These compounds could help clarify the respective role of central and peripheral receptors for various CCK-8-induced pharmacological effects

  16. Use of a specific cholecystokinin receptor antagonist (L-364,718) to determine the role of cholecystokinin on feeding and body weight in rats with obstructive jaundice.

    Science.gov (United States)

    Tangoku, A; Doi, R; Chowdhury, P; Pasley, J N; McKay, D W; Rayford, P L

    1992-01-01

    We conducted a study to examine the role of cholecystokinin in feeding behavior and weight change in rats with obstructive jaundice. Daily food and water intake, body weight, and short-term food intake were determined in two groups of rats with surgically induced obstructive jaundice and in control rats. One group of rats with obstructive jaundice was given L-364,718, a selective cholecystokinin receptor antagonist. Plasma bilirubin and cholecystokinin levels were measured in each rat before and 7 days after surgery. Daily food intake and body weight were decreased in obstructive jaundice rats compared with control rats during the first week after surgery (P less than .05); however, obstructive jaundice rats treated with L-364,718 had increased food intake and body weight (P less than .05). Short-term food intake measured for 30 minutes and 120 minutes in food-deprived obstructive jaundice rats was decreased when compared with control rats (P less than .05), but the obstructive jaundice rats given L-364,718 had increased short-term food intake (P less than .05). Water intake was similar between the two groups of rats. Plasma levels of cholecystokinin and bilirubin were increased in obstructive jaundice rats with and without L-364,718 treatment (P less than .05). The results support the concept that endogenously elevated levels of plasma cholecystokinin play an important role in decreased food intake and subsequent loss of body weight in rats with obstructive jaundice.

  17. Cholecystokinin in plasma predicts cardiovascular mortality in elderly females

    DEFF Research Database (Denmark)

    Gøtze, Jens P.; Rehfeld, Jens F; Alehagen, Urban

    2016-01-01

    BACKGROUND: Cholecystokinin (CCK) and gastrin are related gastrointestinal hormones with documented cardiovascular effects of exogenous administration. It is unknown whether measurement of endogenous CCK or gastrin in plasma contains information regarding cardiovascular mortality. METHODS......: Mortality risk was evaluated using Cox proportional hazard regression and Kaplan-Meier analyses. Elderly patients in a primary care setting with symptoms of cardiac disease, i.e. shortness of breath, peripheral edema, and/or fatigue, were evaluated (n=470). Primary care patients were followed for 13years...... information was obtained from 4th quartile gastrin concentrations on 5-year cardiovascular mortality risk. CONCLUSIONS: CCK in plasma is an independent marker of cardiovascular mortality in elderly female patients. The study thus introduces measurement of plasma CCK in gender-specific cardiovascular risk...

  18. Preclinical evaluation of radiolabeled DOTA-derivatized cyclic minigastrin analogs for targeting cholecystokinin receptor expressing malignancies.

    NARCIS (Netherlands)

    Guggenberg, E. von; Rangger, C.; Sosabowski, J.; Laverman, P.; Reubi, J.C.; Virgolini, I.J.; Decristoforo, C.

    2012-01-01

    PURPOSE: Targeting of cholecystokinin receptor expressing malignancies such as medullary thyroid carcinoma is currently limited by low in vivo stability of radioligands. To increase the stability, we have developed and preclinically evaluated two cyclic

  19. Radioimmunoassay of cholecystokinin in human tissue and plasma

    International Nuclear Information System (INIS)

    Jansen, J.B.M.J.; Lamers, C.B.H.W.

    1983-01-01

    A highly sensitive radioimmunoassay for cholecystokinin (CCK) without any cross-reactivity with gastrin is described. The antibody was raised in a rabbit by immunisation with 30% CCK and bound to all COOH-terminal CCK-peptides containing at least 14 amino acid residues. The affinity constant of the antibody was 59.4 x 10 10 l/mol. CCK 33 conjugated to [ 125 I]hydroxyphenylpropionic acid-succinimide ester was used as label. The binding between label and antibody was inhibited by 50% (ID 50 ) at a concentration of 2.8 pmol/l cholecystokinin 33. The detection limit of the assay was between 0.5 and 1.0 pmol/l plasma. Concentrations of CCK in aqueous acid extracts of human upper small intestine were 36.5 +- 9.8 pmol/g and of human cerebral cortex 28.2 +- 2.5 pmol/g tissue. Plasma samples were extracted in 96% ethanol prior to assay. No advantage was obtained by adding aprotinin to the tubes. When frozen at -20 0 C plasma CCK was stable for at least 6 months. Basal plasma CCK concentrations in 30 normal subjects were very low, 0.9 +- 0.1 pmol/l, range 0.5 to 3.1 pmol/l. Intraduodenal administration of fat induced significant increases in plasma CCK from 1.1 +- 0.1 to 8.2 +- 1.3 pmol/l (p = 0.01). Infusion of exogenous CCK, resulting in plasma CCK levels slightly lower than those measured during administration of fat, induced pancreatic enzyme secretion and gallbladder contraction. The reliability of this radioimmunoassay for measurements of CCK in human plasma was extensively evaluated. (Auth.)

  20. Cysteamine induces cholecystokinin release from the duodenum. Evidence for somatostatin as an inhibitory paracrine regulator of cholecystokinin secretion in the rat

    International Nuclear Information System (INIS)

    Abucham, J.; Reichlin, S.

    1990-01-01

    To determine whether cholecystokinin secretion is regulated by endogenous somatostatin, somatostatin deficiency was induced in vivo with cysteamine (250 mg/kg body wt, IV) or anti-somatostatin antiserum in anaesthetized rats and in vitro with cysteamine (30 micrograms/mL) in a rat duodenum-incubation system. Cholecystokinin secretion was assessed in vivo by measuring amylase in duodenal perfusates collected at 10-minute intervals for 1 hour and in vitro by a carboxy-terminal radioimmunoassay. Cysteamine induced a marked decrease in duodenal immunoreactive somatostatin both in vivo (50%) and in vitro (60%). The rate of amylase secretion increased from 9.7 +/- 2.1 U (mean +/- SE) to 28.0 +/- 4.8 U at 20 minutes (P less than 0.001). The cholecystokinin-receptor antagonist CR-1392 abolished amylase response for 30 minutes, whereas the more potent antagonists Asperlicin (18.0 mg/kg body wt, IV) and L-364,718 (0.25 mg/kg body wt, IV) caused prolonged blockade. The rate of amylase secretion in gastrectomized animals increased from 7.2 +/- 2.0 U to 15.0 +/- 2.2 U 20 minutes after cysteamine administration (P less than 0.01), indicating that the effect was not due to the presence of gastrin. In vitro, cysteamine caused a nearly fourfold increase in cholecystokinin secretion compared with controls (63.1 +/- 4.9 vs. 15.2 +/- 3.7, respectively; P less than 0.001). In vivo immunoneutralization of circulating somatostatin with a high-affinity and high-capacity antiserum produced no significant change in the rate of amylase secretion. These results suggest that cholecystokinin secretion is tonically inhibited by somatostatin and that this effect is mediated by locally secreted (paracrine) but not by circulating somatostatin

  1. Cholecystokinin cholescintigraphic findings in the cystic duct syndrome

    International Nuclear Information System (INIS)

    Fink-Bennett, D.; DeRidder, P.; Kolozsi, W.; Gordon, R.; Rapp, J.

    1985-01-01

    Fourteen patients with a cystic duct syndrome (CDS) underwent cholecystokinin (CCK) cholescintigraphy. All patients presented with persistent postprandial right upper quadrant pain and biliary colic. None of the patients had an abnormal oral cholecystography, gallbladder (GB) ultrasound exam or upper GI series. Each patient received 5 mCi of technetium-99m disofenin. When the GB maximally filled, 0.02 microgram/kg CCK was administered (3 min) intravenously. Background corrected gallbladder ejection fractions (GBEFs) were determined every 5 min X 4 by rationing the pre-CCK GB counts minus post-CCK GB counts to pre-CCK GB counts. GBEFs were: 12% (3 patients), 17% (2), 0%, 1.3%, 3%, 4%, 6%, 11%, 14%, 18.5%, and 22% (1 each). All patients underwent a surgical exploration and all had macro- or microscopically abnormal cystic ducts with (12 patients) or without (2 patients) concomitant chronic cholecystitis. No patient with a partially occluded cystic duct with or without concomitant chronic cholecystitis had an ejection fraction that exceeded 22%. In an appropriate clinical setting, a low EF response to CCK should alert the physician to the presence of either chronic acalculous cholecystitis, CDS, or the combination of both

  2. Cholecystokinin revisited: CCK and the hunger trap in anorexia nervosa.

    Directory of Open Access Journals (Sweden)

    Ulrich Cuntz

    Full Text Available OBJECTIVE: Despite a number of studies in the past decades, the role of Cholecystokinin (CCK in anorexia nervosa (AN has remained uncertain. In this study a highly specific assay for the biologically active part of CCK was used in patients with bulimic as well as with the restricting type of AN who were followed over the course of weight gain. METHODS: Ten patients with restricting and 13 with bulimic AN were investigated upon admission (T0, after a weight gain of at least 2 kg on two consecutive weighting dates (T1, and during the last week before discharge (T2 from inpatient treatment in a specialized clinic. Blood samples were drawn under fasting conditions and 20 and 60 minutes following a standard meal (250 kcal. Data were compared to those of eight controls matched for sex and age. Gastrointestinal complaints of patients were measured by a questionnaire at each of the follow-up time points. RESULTS: At admission, AN patients exhibited CCK-levels similar to controls both prior to and after a test meal. Pre and post-meal CCK levels increased significantly after an initial weight gain but decreased again with further weight improvement. CCK release was somewhat lower in bulimic than in restricting type AN but both subgroups showed a similar profile. There was no significant association of CCK release to either initial weight or BMI, or their changes, but CCK levels at admission predicted gastrointestinal symptom improvement during therapy. CONCLUSIONS: Normal CCK profiles in AN at admission indicates hormonal responses adapted to low food intake while change of eating habits and weight gain results in initially increased CCK release (counteracting the attempts to alter eating behavior that returns towards normal levels with continuous therapy.

  3. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Ryusuke Yoshida

    2017-10-01

    Full Text Available Cholecystokinin (CCK is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30% of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues.

  4. Stimulation of (3H) spiroperidol binding after prolonged neuroleptic therapy by the cholecystokinin octapeptide analog cerulein

    International Nuclear Information System (INIS)

    Vasar, E.E.; Allikmets, L.K.; Maimets, O.O.; Nurk, A.M.

    1985-01-01

    Evidence has recently been obtained that cholecystokinin and its analog cerulein have marked antipsychotic action on patients with schizophrenia who are resistant to neuroleptics; this is the basis for interest in this study of the effect of cerulein, a high-affinity analog of the octapeptide cholecystokinin, on binding of tritium-spiroperidol in vivo. Considering the apormorphine-like action of cerulein, this biochemical analysis was undertaken in the form of a comparative study with N-propyl-norapomorphine, a high-affinity analogy of apomorphine

  5. Cholecystokinin receptors: Biochemical demonstration and autoradiographical localization in rat brain and pancreas using [3H] cholecystokinin8 as radioligand

    International Nuclear Information System (INIS)

    Van Dijk, A.; Richards, J.G.; Trzeciak, A.; Gillessen, D.; Moehler, H.

    1984-01-01

    Since cholecystokinin8 (CCK8) seems to be the physiological ligand of CCK receptors in the brain, it would be the most suitable probe for the characterization of CCK receptors in radioligand binding studies. [ 3 H]CCK8 was synthetized with a specific radioactivity sufficient for the detection of high affinity binding sites. [ 3 H]CCK8 binds saturably and reversibly to distinct sites in rat brain and pancreas with nanomolar affinity. While the C-terminal tetrapeptide of CCK is the minimal structure required for nanomolar affinity in the brain, the entire octapeptide sequence is required for binding affinity in pancreas. Desulfated CCK8 and several gastrin-I peptides, which are likewise unsulfated, show virtually no affinity to the binding sites in pancreas but high affinity in cerebral cortex. The ligand specificity of the CCK peptides corresponds to their electrophysiological potency in the brain and their stimulation of secretion in pancreas, respectively. Autoradiographically, high densities of [ 3 H]CCK8 binding sites were found in cerebral cortex and olfactory bulb, medium levels in nucleus accumbens, hippocampus, dentate gyrus, and striatum with virtually no labeling in cerebellum. This pattern is similar to the distribution of CCK-like immunoreactivity in the brain. In pancreas, equally high levels of [ 3 H]CCK8 labeling were found in the exocrine and endocrine region. [ 3 H]CCK8 binding sites differ from those identified previously with [ 125 I]Bolton-Hunter-CCK33 by their sensitivity to guanyl nucleotides in the brain, their ion dependency in the brain, and pancreas, and their different autoradiographical localization in some parts of the brain. The distribution of CCK binding sites labeled with [ 3 H]CCK8 appears to correlate better with the CCK immunoreactivity than those labeled with [ 125 I]Bolton-Hunter-CCK33. Thus, [ 3 H]CCK8 appears to be the radioligand of choice for the investigation of CCK receptors

  6. An electrophysiological investigation of the effects of cholecystokinin on enteric neurons

    NARCIS (Netherlands)

    Schutte, I.W.M.

    1998-01-01


    Cholecystokinin (CCK) is a peptide, which is present in the gastrointestinat tract in endocrine cells and in the enteric nervous system (ENS). A possible function in the control of motility of the small intestine has been attributed to neuronal CCK. The aim of this thesis was to obtain a

  7. Cholecystokinin inhibits gastrin secretion independently of paracrine somatostatin secretion in the pig

    DEFF Research Database (Denmark)

    Schmidt, P T; Hansen, L; Hilsted, L

    2004-01-01

    BACKGROUND: Cholecystokinin inhibits the secretion of gastrin from antral G cells, an effect that is speculated to be mediated by D cells secreting somatostatin. The aim of the study was to test directly whether cholecystokinin inhibition of antral gastrin secretion is mediated by somatostatin....... METHODS: The effects of CCK on gastrin and somatostatin secretion were studied in isolated vascularly perfused preparations of pig antrum before and after immunoneutralization brought about by infusion of large amounts of a high affinity monoclonal antibody against somatostatin. RESULTS: CCK infusion...... at 10(-9) M and 10(-8) M decreased gastrin output to 70.5% +/- 7.6% (n = 8) and 76.3% +/- 3.6% (n = 7) of basal output, respectively. CCK at 10(-10) M had no effect (n = 6). Somatostatin secretion was dose-dependently increased by CCK infusion and increased to 268 +/- 38.2% (n = 7) of basal secretion...

  8. Reduction of food intake by fenofibrate is associated with cholecystokinin release in long-evanstokushima rats

    Directory of Open Access Journals (Sweden)

    S Yu Vorotnikova

    2012-09-01

    Full Text Available Реферат по статье: Reduction of food intake by fenofibrate is associated with cholecystokinin release in long-evanstokushima rats Park MK, Han Y, Kim MS, Seo E, Kang S, Park SY, Koh H, Kim DK, Lee HJ. Korean J Physiol Pharmacol Vol 16: 181-186, June, 2012

  9. Expression of cholecystokinin receptors in colon cancer and the clinical correlation in Taiwan.

    Science.gov (United States)

    Huang, Bee-Piao; Lin, Chun-Hsiang; Chen, Yi-Ching; Kao, Shao-Hsuan

    2016-04-01

    Cholecystokinin and gastrin receptors are upregulated in many human digestive malignancies; however, the correlation of their expressions with severity of colon carcinoma remains sketchy. Here, we determined the expression of cholecystokinin-1 and cholecystokinin-2 receptor, CCK1R and CCK2R, in colon carcinomas and investigated their correlations with clinicopathological characteristics and 1-year survival rate. Expression of CCK1R and CCK2R was determined by immunohistochemical assay in tissue samples obtained from 97 surgical specimens. Clinicopathological character analysis revealed that higher expression of cytoplasmic CCK1R and CCK2R was significantly associated with several variables including the depth of tumor invasion (P = 0.001), venous invasion (P = 0.023), and progression stage (P = 0.013). In addition, immunohistochemical staining revealed statistically significant associations of nuclear CCK1R expression with higher lymphatic invasion (P = 0.042), progression stage (P = 0.025), and unfavorable survival (P = 0.025). Interestingly, we found no link between nuclear CCK2R expression and all the clinicopathological characteristics examined. Taken these, our findings indicate that nuclear CCK1R represents a potential biomarker for poor prognosis, and CCK1R may play a role differing from CCK2R in colon carcinogenesis.

  10. Ontogeny of cholecystokinin-like immunoreactivity in the Brazilian opossum brain.

    Science.gov (United States)

    Fox, C A; Jeyapalan, M; Ross, L R; Jacobson, C D

    1991-12-17

    We have studied the anatomical distribution of cholecystokinin-like immunoreactive (CCK-IR) somata and fibers in the brain of the adult and developing Brazilian short-tailed opossum, Monodelphis domestica. Animals ranged in age from the day of birth (1PN) to young adulthood (180PN). A nickel enhanced, avidin-biotin, indirect immunohistochemical technique was used to identify CCK-IR structures. Somata containing CCK immunoreactivity were observed in the cerebral cortex, hippocampus, hypothalamus, thalamus, midbrain, and brainstem in the adult. Cholecystokinin immunoreactive fibers had a wide distribution in the adult Monodelphis brain. The only major region of the brain that did not contain CCK-IR fibers was the cerebellum. The earliest expression of CCK immunoreactivity was found in fibers in the dorsal brainstem of 5-day-old opossum pups. It is possible that the CCK-IR fibers in the brainstem at 5PN are of vagal origin. Cholecystokinin immunoreactive somata were observed in the brainstem on 10PN. The CCK-IR cell bodies observed in the brainstem at 10PN may mark the first expression of CCK-IR elements intrinsic to the brain. A broad spectrum of patterns of onset of CCK expression was observed in the opossum brain. The early occurrence and varied ontogenesis of CCK-IR structures indicates CCK may be involved in the function of a variety of circuits from the brainstem to the cerebral cortex. The early expression of CCK-IR structures in the dorsal brainstem suggests that CCK may modulate feeding behavior in the Monodelphis neonate. Cholecystokinin immunoreactivity in forebrain structures such as the suprachiasmatic nucleus, medial preoptic area, thalamus and cortical structures indicates that CCK may also be involved in circadian rhythmicity, reproductive functions, as well as the state of arousal of the Brazilian opossum. The ontogenic timing of CCK immunoreactivity in specific circuitry also indicates that CCK expression does not occur simultaneously throughout the

  11. In vitro release of cholecystokinin octapeptide-like immunoreactivity from rat brain synaptosomes

    International Nuclear Information System (INIS)

    Klaff, L.J.; Hudson, A.; Sheppard, M.; Tyler, M.

    1981-01-01

    Enriched synaptosome fractions prepared by differential centrifugation and ultracentrifugation of homogenates of rat cortex, striatum, thalamus and hypothalamus contained over 65% of the total immunoreactive cholecystokinin octapeptide (CCK-8) in each area. A calcium dependent release of immunoreactive CCK-8 from these fractions in vitro in response to 2 depolarizing stimuli (60 mM KCl and 75 μM veratrine) has been demonstrated. Released CCK-8 immunoreactivity showed parallelism when serial dilutions were compared with the CCK-8 dose-response curve and eluted similarly to synthetic CCK-8 on Sephadex G-50 superfine chromatography. These results provide further evidence for a neurotransmitter or neuromodulator role for CCK-8 in brain

  12. Cholecystokinin A receptor (CCKAR gene variation is associated with language lateralization.

    Directory of Open Access Journals (Sweden)

    Sebastian Ocklenburg

    Full Text Available Schizophrenia is a psychiatric disorder associated with atypical handedness and language lateralization. However, the molecular mechanisms underlying these functional changes are still poorly understood. Therefore, the present study was aimed at investigating whether variation in schizophrenia-related genes modulates individual lateralization patterns. To this end, we genotyped 16 single nucleotide polymorphisms that have previously been linked to schizophrenia on a meta-analysis level in a sample of 444 genetically unrelated healthy participants and examined the association of these polymorphisms with handedness, footedness and language lateralization. We found a significant association of the cholecystokinin-A receptor (CCKAR gene variation rs1800857 and language lateralization assessed using the dichotic listening task. Individuals carrying the schizophrenia risk allele C of this polymorphism showed a marked reduction of the typical left-hemispheric dominance for language processing. Since the cholecystokinin A receptor is involved in dopamine release in the central nervous system, these findings suggest that genetic variation in this receptor may modulate language lateralization due to its impact on dopaminergic pathways.

  13. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    Science.gov (United States)

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  14. CCK-5: sequence analysis of a small cholecystokinin from canine brain and intestine

    International Nuclear Information System (INIS)

    Shively, J.; Reeve, J.R. Jr.; Eysselein, V.E.; Ben-Avram, C.; Vigna, S.R.; Walsh, J.H.

    1987-01-01

    The purpose of this study is to purify and to characterize chemically cholecystokinin (CCK)-like peptides present in brain and gut extracts that elute from gel filtration after the octapeptide. Canine small intestinal mucosa and brain were boiled in water and then extracted in cold trifluoroacetic acid, and cholecystokinin-like immunoreactivity was determined by carboxyl-terminal specific radioimmunoassay. Gel permeation chromatography on Sephadex G-50 revealed a form of CCK apparently smaller than CCK-8. Microsequence analysis showed that the amino terminal primary sequence of this small CCK was Gly-Trp-Met-Asp. Immunochemical and chromatographic analysis indicated that the carboxyl-terminal residue was Phe-NH 2 and thus the full sequence is Gly-Trp-Met-Asp-Phe-NH 2 . An antibody that recognizes synthetic CCK-8, CCK-5, and CCK-equally did not reveal the presence of significant amounts of CCK-4. These results indicate that CCK-5 is the major CCK form smaller than the octapeptide present in brain and small intestine. This finding, coupled with the demonstration by others that CCK-5 interacts with high-affinity brain CCK receptors, indicates that CCK-5 may play a physiological role in brain function

  15. Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides

    DEFF Research Database (Denmark)

    Rehfeld, J F

    2011-01-01

    Gastrin and cholecystokinin (CCK) are homologous hormone systems known to regulate gastric acid secretion, gallbladder emptying, and cell growth in the pancreas and stomach. They are, however, also involved in the development and secretory functions of pancreatic islet cells. For instance, foetal...

  16. Unsulfated cholecystokinin

    DEFF Research Database (Denmark)

    Rehfeld, Jens F; Agersnap, Mikkel

    2012-01-01

    for the cholecystokinetic activity (i.e. gallbladder emptying) of CCK peptides. Accordingly, the purification of CCK as a sulfated peptide was originally monitored by its gallbladder emptying effect. Since then, the dogma has prevailed that CCK peptides are always sulfated. The dogma is correct in a semantic context since...

  17. Measurement and characterization of neuronal cholecystokinin using a novel radioreceptor assay

    International Nuclear Information System (INIS)

    Beresford, I.J.M.; Clark, C.R.; Hughes, J.

    1986-01-01

    This study describes a novel radioreceptor assay (RRA) for cholecystokinin (CCK) which is the first to measure and characterize brain CCK using a technique not dependent on the generation of peptide antibodies. The CCK RRA utilizes the mouse cerebral cortex CCK receptor as the binding source and [ 125 I]BH-CCK-8 as the radiolabelled probe. CCK was extracted (90% methanol) from discrete brain regions (mouse) and quantified using the CCK RRA. The amygdala contained the highest concentration of CCK, followed by the olfactory bulbs and cerebral cortex. Moderate levels of CCK were found in the hippocampus, striatum and hypothalamus. Low levels of CCK were recorded in the pons, medulla and spinal cord, whilst no CCK was detected in the cerebellum. The molecular forms of CCK in amygdala, cerebral cortex and hypothalamus were characterized using RRA in conjunction with HPLC. CCK-8 was identified as the major molecular form with a smaller component attributable to CCK-4. (Auth.)

  18. Cholecystokinin-Assisted Hydrodissection of the Gallbladder Fossa during FDG PET/CT-guided Liver Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, Sanjit O., E-mail: tewaris@mskcc.org [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Petre, Elena N., E-mail: petree@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Osborne, Joseph, E-mail: osbornej@mskcc.org [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Sofocleous, Constantinos T., E-mail: sofoclec@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States)

    2013-12-15

    A 68-year-old female with colorectal cancer developed a metachronous isolated fluorodeoxyglucose-avid (FDG-avid) segment 5/6 gallbladder fossa hepatic lesion and was referred for percutaneous ablation. Pre-procedure computed tomography (CT) images demonstrated a distended gallbladder abutting the segment 5/6 hepatic metastasis. In order to perform ablation with clear margins and avoid direct puncture and aspiration of the gallbladder, cholecystokinin was administered intravenously to stimulate gallbladder contraction before hydrodissection. Subsequently, the lesion was ablated successfully with sufficient margins, of greater than 1.0 cm, using microwave with ultrasound and FDG PET/CT guidance. The patient tolerated the procedure very well and was discharged home the next day.

  19. An intron 1 polymorphism in the cholecystokinin-A receptor gene associated with schizophrenia in males

    DEFF Research Database (Denmark)

    Koefoed, P; Hansen, T V O; Woldbye, D P D

    2009-01-01

    OBJECTIVE: To identify whether a genetic variation (rs1800857; IVS1-5T>C) in the neuropeptide cholecystokinin-A receptor (CCKAR) gene is a risk factor in the pathogenesis of schizophrenia. METhod: The variation was analysed in a case-control design comprising 508 patients with schizophrenia...... and 1619 control subjects. A possible functional impact of this variant on CCKAR protein synthesis through alterations in splicing was analysed in an exon-trapping assay. RESULTS: In males only, the risk variant, IVS1-5C, was associated with a significantly increased risk of schizophrenia. Carrying one...... risk allele was associated with an increased risk of 1.74 (Odds Ratio, OR) and homozygosity (CC) was associated with an OR of 3.19. The variation had no impact on protein synthesis of CCKAR. CONCLUSION: This is the first report associating the CCKAR gene variant with schizophrenia specifically in men...

  20. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    Science.gov (United States)

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK. Copyright © 2015 the authors 0270-6474/15/3513160-11$15.00/0.

  1. Internalization and cellular processing of cholecystokinin in rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Izzo, R.S.; Pellecchia, C.; Praissman, M.

    1988-01-01

    To evaluate the internalization of cholecystokinin, monoiodinated imidoester of cholecystokinin octapeptide [ 125 I-(IE)-CCK-8] was bound to dispersed pancreatic acinar cells, and surface-bound and internalized radioligand were differentiated by treating with an acidified glycine buffer. The amount of internalized radioligand was four- and sevenfold greater at 24 and 37 degree C than at 4 degree C between 5 and 60 min of association. Specific binding of radioligand to cell surface receptors was not significantly different at these temperatures. Chloroquine, a lysosomotropic agent that blocks intracellular proteolysis, significantly increased the amount of CCK-8 internalized by 18 and 16% at 30 and 60 min of binding, respectively, compared with control. Dithiothreitol (DTT), a sulfhydryl reducing agent, also augmented the amount of CCK-8 radioligand internalized by 25 and 29% at 30 and 60 min, respectively. The effect of chloroquine and DTT on the processing of internalized radioligand was also considered after an initial 60 min of binding of radioligand to acinar cells. After 180 min of processing, the amount of radioligand internalized was significantly greater in the presence of chloroquine compared with controls, whereas the amount of radioligand declined in acinar cells treated with DTT. Internalized and released radioactivity from acinar cells was rebound to pancreatic membrane homogenates to determine the amount of intact radioligand during intracellular processing. Chloroquine significantly increased the amount of intact 125 I-(IE)-CCK-8 radioligand in released and internalized radioactivity while DTT increased the amount of intact radioligand only in internalized samples. This study shows that pancreatic acinar cells rapidly internalize large amounts of CCK-8 and that chloroquine and DTT inhibit intracellular degradation

  2. Using cholecystokinin to facilitate endoscopic clearance of large common bile duct stones

    Science.gov (United States)

    Tao, Tao; Zhang, Qi-Jie; Zhang, Ming; Zhu, Xiao; Sun, Shu-Xia; Li, Yan-Qing

    2014-01-01

    AIM: To evaluate the effect of cholecystokinin (CCK) during extracorporeal shockwave lithotripsy (ESWL) in the clearance of common bile duct (CBD) stones in endoscopic retrograde cholangiopancreatography (ERCP). METHODS: Between January 2007 and September 2012, patients with large CBD stones who were treated with ESWL and ERCP were identified retrospectively. Patients were randomized in equal numbers to cholecystokinin (CCK) and no CCK groups. For each CCK case, a dose (3 ng/kg per min for 10 min) of sulfated octapeptide of CCK-8 was administered intravenously near the beginning of ESWL. ERCP was performed 4 h after a session of ESWL. The clearance rate of the CBD was assessed between the two groups. RESULTS: A total of 148 consecutive cases (CCK group: 74, no CCK group: 74) were tallied. Overall there were 234 ESWLs and 228 ERCPs in the 148 cases. The use of CCK showed a significantly higher rate of successful stone removal in the first ESWL/ERCP procedure (71.6% vs 55.4%, P = 0.035), but resulted in similar outcomes in the second (42.8% vs 39.4%) and third (41.7% vs 40.0%) sessions, as well as total stone clearance (90.5% vs 83.8%). The use of mechanical lithotripsy was reduced in the CCK group (6.8% vs 17.6%, P = 0.023), and extremely large stone (≥ 30 mm) removal was higher in the CCK group (72.7% vs 41.7%, P = 0.038). CONCLUSION: CCK during ESWL can aid with the clearance of CBD stones in the first ESWL/ERCP session. Mechanical lithotripsy usage was reduced and the extremely large stone (≥ 30 mm) clearance rate can be raised. PMID:25110439

  3. Cholecystokinin like immunoreactivity in the brains of young Meishan and Duroc pigs(4).

    Science.gov (United States)

    Elmquist, J K; Ross, L R; Hsu, W; Rothschild, M F; Jacobson, C D

    1993-01-12

    Cholecystokinin (CCK), a peptide found in both the gastrointestinal tract and brain, has been shown to be involved in the control of feed intake in a variety of animals including the pig. Chinese breeds of pigs such as the Meishan are noted for slow growth and heavy adipose deposition. In this study we have described the regional cholecystokinin-like immunoreactivity (CCK-IR) concentrations in the brain of young Duroc and Meishan pigs utilizing radioimmunoassay. Brains of days 1, 10, and 20 postnatal pigs from each breed were examined. The CCK-IR increased with age in all three areas examined (cortex, medulla, and hypothalamus). The cortical concentrations rose significantly from days 1 to 10 and from days 10 to 20. The levels in the hypothalamus and medulla increased significantly between days 1 and 20. There were no statistically significant differences in CCK-IR between the breeds at any of the three ages examined. Our results indicate that a rise in CCK-IR in the regions of the brain involved in the control of feed intake may parallel the ability of the young pigs to assimilate nutrients from a solid diet. ZUSAMMENFASSUNG: Cholecystokinin-ähnliche Immunreaktivität in den Gehirnen junger Meishan- und Durocschweine Das Peptid Cholecystokinin (CCK) wird im Gastrointestinaltrakt und im Gehirn gefunden und beeinflußt Futteraufnahme in einer Reihe von Tieren einschließlich Schwein. Chinesische Rassen wie Meishan sind wegen ihres langsamen Wachstums und der starken Fettablagerung bekannt. In dieser Studie beschreiben wir regionale Cholecystokinin-ähnliche Immunreaktivitäts-(CCK-IR)Konzentrationen im Gehirn junger Duroc- und Meishantiere, mittels Radioimmunassay bestimmt. Gehirne von 1, 10 und 20 Tage alten Ferkeln jeder Rasse wurden untersucht. CCK-IR nahm mit dem Alter in allen drei untersuchten Organen zu (Kortex, Medulla und Hypothalamus). Die kortikalen Spiegel stiegen vom Tag 1 bis 10 und vom Tag 10 bis 20 signifikant, die des Hypothalamus und der Medulla

  4. Characterization of cholecystokinin receptors on guinea pig gastric chief cell membranes

    International Nuclear Information System (INIS)

    Matozaki, T.; Sakamoto, C.; Nagao, M.; Nishisaki, H.; Konda, Y.; Nakano, O.; Matsuda, K.; Wada, K.; Suzuki, T.; Kasuga, M.

    1991-01-01

    The binding of cholecystokinin (CCK) to its receptors on guinea pig gastric chief cell membranes were characterized by the use of 125 I-CCK-octapeptide (CCK8). At 30 degrees C optimal binding was obtained at acidic pH in the presence of Mg2+, while Na+ reduced the binding. In contrast to reports on pancreatic and brain CCK receptors, scatchard analysis of CCK binding to chief cell membranes revealed two classes of binding sites. Whereas, in the presence of a non-hydrolyzable GTP analog, GTP gamma S, only a low affinity site of CCK binding was observed. Chief cell receptors recognized CCK analogs, with an order of potency of: CCK8 greater than gastrin-I greater than CCK4. Although all CCK receptor antagonists tested (dibutyryl cyclic GMP, L-364718 and CR1409) inhibited labeled CCK binding to chief cell membranes, the relative potencies of these antagonists in terms of inhibiting labeled CCK binding were different from those observed in either pancreatic membranes or brain membranes. The results indicate, therefore, that on gastric chief cell membranes there exist specific CCK receptors, which are coupled to G protein. Furthermore, chief cell CCK receptors may be distinct from pancreatic or brain type CCK receptors

  5. Cholecystokinin receptors: disparity between phosphoinositide breakdown and amylase releasing activity of CCK analogues in pancreas

    International Nuclear Information System (INIS)

    Lin, C.W.; Grant, D.; Bianchi, B.; Miller, T.; Witte, D.; Shue, Y.K.; Nadzan, A.

    1986-01-01

    Cholecystokinin (CCK) peptides are a family of hormones which also occur in brain. In pancreas CCK stimulates the release of amylase, a process that is dependent on the mobilization of intracellular Ca 2+ . Recent evidence suggests that inositol 1,4,5-trisphosphate, the breakdown product of phosphatidylinositol 4,5-bisphosphate, is responsible for the rise in intracellular Ca 2+ . Their laboratory has developed assays to study synthetic CCK analogues using radioligand binding, PI breakdown and amylase release. They have shown that there are good correlations among these three assay systems for the carboxy terminal fragments of CCK 8 . Recently, they have discovered synthetic analogues of CCK 4 that are full agonists in amylase release but are ineffective in causing PI breakdown. In particular, A-61576, Boc-5-amino-2-indolemethylene-pent-2-ene-1-oyl-Leu-Asp-Phe-NH 2 , is a full agonist in the amylase releasing assay, but is devoid of PI stimulating activity. A-61576 completely reverses the stimulation of PI response induced by CCK 8 , indicative of an antagonist. Since a mechanism other than the PI breakdown is responsible for amylase release by A-61576, they suggest that separate receptors are responsible for PI breakdown and amylase release

  6. G protein in stimulation of PI hydrolysis by CCK [cholecystokinin] in isolated rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Matozaki, Takashi; Sakamoto, Choitsu; Nagao, Munehiko; Nishizaki, Hogara; Baba, Shigeaki

    1988-01-01

    To clarify the possible role of a guanine nucleotide-binding protein (G protein) in the signal transducing system activated by cholecystokinin (CCK), actions of CCK on rat pancreatic acini were compared with those of fluoride, a well-known activator of stimulatory (G s ) or inhibitory (G i ) G protein. When acini were incubated with increasing concentrations of either CCK-octapeptide (CCK8) or NaF, a maximal stimulation of amylase release from acini occurred at 100 pM CCK8 or 10 mM NaF, respectively; this secretory rate decreased as CCK8 or NaF concentration was increased. NaF caused an increase in cytoplasmic Ca 2+ concentration from the internal Ca 2+ store and stimulated accumulation of inositol phosphates in acini, as observed with CCK. Guanylimidodiphosphate activated the generation of inositol phosphates in the [ 3 H]inositol-labeled pancreatic acinar cell membrane preparation, with half-maximal and maximal stimulation at 1 and 10 μM, respectively. Furthermore, the effects of submaximal CCK concentrations on inositol phosphate accumulation in membranes were markedly potentiated in the presence of 100 μM GTP, which alone was ineffective. Combined findings of the present study strongly suggest that pancreatic CCK receptors are probably coupled to the activation of polyphosphoinositide (PI) breakdown by a G protein, which appears to be fluoride sensitive but is other than G s - or G i -like protein

  7. Use of a nitrotryptophan-containing peptide for photoaffinity labeling the pancreatic cholecystokinin receptor

    International Nuclear Information System (INIS)

    Klueppelberg, U.G.; Gaisano, H.Y.; Powers, S.P.; Miller, L.J.

    1989-01-01

    The authors report the preparation and characterization of a new type of intrinsic photoaffinity labeling probe, on the basis of the incorporation of a photolabile nitrotryptophan into a biologically relevant domain of a peptide. The model system used was the pancreatic cholecystokinin (CCK) receptor, previously affinity labeled with a variety of probes. Those studies have suggested that an M r = 85,000-95,000 protein is more likely to be labeled as the site of covalent attachment approaches the receptor-binding domain of this hormone. Indeed, CCK has a Trp in the center of its receptor-binding region, and replacement of that residue with 6-nitrotryptophan resulted in a photolabile probe which affinity labeled the same M r = 85,000-95,000 pancreatic membrane protein. This probe, 125 I-D-Tyr-Gly-[(Nle 28,31 ,6-NO 2 -Trp 30 )CCK-26-33], was synthesized by solid-phase and solution techniques and characterized by mass spectrometry. Following oxidative iodination, it was purified on HPLC to 2000 Ci/mmol. Binding to pancreatic membranes was rapid, temperature dependent, reversible, saturable, and specific and was with high affinity. While its binding affinity was only 3-fold lower than that of native CCK-8, this probe was 70-fold less potent than native hormone in stimulating amylase secretion and equally efficacious to native hormone

  8. Modulation of [3H]-dopamine binding by cholecystokinin octapeptide (CCK-8)

    International Nuclear Information System (INIS)

    Murphy, R.B.; Schuster, D.I.

    1982-01-01

    Cholecystokinin-octapeptide (CCK-8) is a putative neurotransmitter which has been demonstrated previously to occur in midbrain dopamine neurones. We observe that CCK-8 causes changes in both the affinity and density of binding sites for [ 3 H]-dopamine in rat striatal homogenates, in vitro, upon incubation with the peptide at a concentration of 1 micromolar. A dose-response study of the competetion of CCK-8 with [ 3 H]-dopamine binding indicates an IC50 for the peptide of 450 nM; desulfated CCK-8 and the related peptide caerulin are at least 4-fold less active than CCK-8. CCK-8 was also administered to rats in a separate study; the binding of [ 3 H]-dopamine was evaluated to homogenates of striata and olfactory tubercles obtained from these animals, which had been treated with systemic injection at a dose of 20 micrograms/kg, daily, for four days. A decrease in the number of striatal binding sites for the radioligand was observed, with a concomitant increase in the number of binding sites in the olfactory tubercle. These data collectively suggest a possible regulatory role for CCK-8 in the ascending dopamine systems

  9. CHOLECYSTOKININ RECEPTOR ANTAGONIST HALTS PROGRESSION OF PANCREATIC CANCER PRECURSOR LESIONS AND FIBROSIS IN MICE

    Science.gov (United States)

    Smith, Jill P.; Cooper, Timothy K.; McGovern, Christopher O.; Gilius, Evan L.; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A.; Gutkind, J. Silvio; Matters, Gail L.

    2014-01-01

    Objectives Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved with the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. Methods The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-KrasG12D transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK-receptor antagonist (proglumide, 0.1mg/ml). Pancreas from mice were removed and examined histologically for number and grade of PanINs after 1, 2 or 4 months of antagonist therapy. Results Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed and progression to advanced lesions arrested in mice treated with proglumide compared to controls (p=0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared to vehicle (pitalic>0.001). Conclusions These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. Use of CCK-receptor antagonists may have a role in cancer prophylaxis in high risk subjects, and may reduce fibrosis in the microenvironment. PMID:25058882

  10. Cholecystokinin octapeptide induces endogenous opioid-dependent anxiolytic effects in morphine-withdrawal rats.

    Science.gov (United States)

    Wen, D; Sun, D; Zang, G; Hao, L; Liu, X; Yu, F; Ma, C; Cong, B

    2014-09-26

    Cholecystokinin octapeptide (CCK-8), a brain-gut peptide, plays an important role in several opioid addictive behaviors. We previously reported that CCK-8 attenuated the expression and reinstatement of morphine-induced conditioned place preference. The possible effects of CCK-8 on the negative affective components of drug abstinence are not clear. There are no studies evaluating the effect of CCK-8 on emotional symptoms, such as anxiety, in morphine-withdrawal animals. We investigated the effects of CCK-8 on the anxiety-like behavior in morphine-withdrawal rats using an elevated plus-maze. Morphine withdrawal elicited time-dependent anxiety-like behaviors with peak effects on day 10 (5 days after induction of morphine dependence). Treatment with CCK-8 (0.1 and 1 μg, i.c.v.) blocked this anxiety in a dose-dependent fashion. A CCK1 receptor antagonist (L-364,718, 10 μg, i.c.v.) blocked the effect of CCK-8. Mu-opioid receptor antagonism with CTAP (10 μg, i.c.v.) decreased the 'anxiolytic' effect. CCK-8 inhibited anxiety-like behaviors in morphine-withdrawal rats by up-regulating endogenous opioids via the CCK1 receptor in rats. This study clearly identifies a distinct function of CCK-8 and a potential medication target of central CCK1 receptors for drugs aimed at ameliorating drug addiction. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Diet composition alters the satiety effect of cholecystokinin in lean and obese Zucker rats.

    Science.gov (United States)

    Maggio, C A; Haraczkiewicz, E; Vasselli, J R

    1988-01-01

    Although exogenous administration of the peptide cholecystokinin (CCK) has been shown to reduce food intake in a variety of experimental situations, few studies have examined the influence of dietary content upon CCK's effectiveness, particularly in obese states. To evaluate the effectiveness of CCK administration in animals consuming high fat diets, groups of obese and lean Zucker rats were maintained on laboratory chow (CH), a high fat diet isocaloric to chow (IF), or a hypercaloric fat diet (HF). After a 17 hr fast, rats were given intraperitoneal injections of saline or ascending doses of 0.06 to 2.0 micrograms/kg of the synthetic octapeptide of CCK. On all diets, obese rats required higher doses of CCK to significantly reduce feeding and showed smaller intake reductions than lean rats (p less than 0.001). Despite higher baseline caloric intakes (p less than 0.001), rats of both genotypes maintained on HF displayed larger reductions of intake than those fed IF or CH (p less than 0.001). Intake reductions by either genotype maintained on IF or CH were not reliably different. The manner in which the satiety effect of CCK was enhanced in rats consuming the calorically dense, palatable HF diet is unclear but may be related to orosensory and/or postingestive attributes of the diet.

  12. Biochemical characterization of the pancreatic cholecystokinin receptor using monofunctional photoactivatable probes

    International Nuclear Information System (INIS)

    Pearson, R.K.; Miller, L.J.; Powers, S.P.; Hadac, E.M.

    1987-01-01

    Receptor characterization by affinity labeling can be enhanced by taking multiple complementary approaches. To extend our observations on the subunit structure of the rat pancreatic cholecystokinin (CCK) receptor (made using bifunctional cross-linking reagents), we synthesized two monofunctional photoactivatable receptor probes. CCK-8 was acylated with the iodinated aryl azide derivatives, methyl-3-azido-4-hydroxy-5-[ 125 I]iodobenzimidate and N-[4-(4'-azido-3'-[ 125 I]iodophenylazo)benzoyl]-3-aminopropionyl-N- oxy- succinimide. The products were purified by reverse-phase HPLC to a specific radioactivity of 2000 Ci/mmol. Both analogs demonstrated saturable and specific binding to rat pancreatic plasma membranes. Photoaffinity labeling of pancreatic membranes with these monofunctional probes identified an Mr 85,000-95,000 protein that was not part of a larger disulfide-linked complex. High affinity for CCK was demonstrated by the concentration-dependent inhibition of labeling observed with competing CCK-8 (IC50 = 1 nM). On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) this protein co-migrates with the major component we identified using a series of cross-linkable, iodinated decapeptide analogs of CCK, and is different from the major protein labeled using 125 I-Bolton Hunter-CCK-33. Thus, these results support the presence of an Mr 85,000-95,000 subunit in the pancreatic CCK receptor, while the small size of these photoaffinity probes and their monovalency suggest that this subunit may contain or be spatially apposed to the active binding site. These probes should be very useful in the further characterization of this and other receptors for this hormone

  13. Molecular cloning, characterization, and expression analysis of ghrelin and cholecystokinin in the pigeon (Columba livia).

    Science.gov (United States)

    Xie, P; Wan, X P; Bu, Z; Zou, X T

    2016-11-01

    Ghrelin and cholecystokinin (CCK) are multifunctional peptides. In the current study, complete sequences of ghrelin (800 bp) and CCK (739 bp) were firstly cloned in Columba livia by using rapid amplification of cDNA ends (RACE) method. The open reading frames of ghrelin (351bp) and CCK (393bp) encoded 116 amino acids and 130 amino acids, respectively. Sequence comparison indicated that pigeon ghrelin and CCK shared high identity with those reported in other avian species. Quantitative real-time PCR analysis found that ghrelin and CCK mRNAs expressed in three intestinal segments of pigeon during development. Both ghrelin and CCK showed generally higher expressions at days posthatch than embryonic periods regardless of intestinal segments. In duodenum and ileum, the expressions of ghrelin and CCK mRNA reached the peak values at 8 d posthatch. Jejunum CCK mRNA level increased linearly after hatching, and reached the highest point at posthatch 28 d. Based on documented effects of long chain fatty acids (LCFAs) on pigeon ghrelin and CCK expression were also investigated in vitro. Higher concentrations (50 μM or 250 μM) of linoleic acid, α-linolenic acid or arachidonic acid can significantly increase ghrelin mRNA level in pigeon jejunum. However, for oleic acid, the induction of ghrelin gene expressions needed a lower concentration (5 μM). 5 μM of linoleic acid, α-linolenic acid or arachidonic acid and 250 μM palmitic acid repressed CCK expression significantly. A higher concentration (250 μM) of oleic acid or α-linolenic acid can up-regulate CCK mRNA level significantly. Our results indicated that ghrelin and CCK may act key functions in pigeon intestine development and their expressions could be regulated by LCFAs. © 2016 Poultry Science Association Inc.

  14. Elevated plasma cholecystokinin at high altitude: metabolic implications for the anorexia of acute mountain sickness.

    Science.gov (United States)

    Bailey, D M; Davies, B; Milledge, J S; Richards, M; Williams, S R; Jordinson, M; Calam, J

    2000-01-01

    The aims of the present study were to measure the satiety neuropeptide cholecystokinin (CCK) in humans at terrestrial high altitude to investigate its possible role in the pathophysiology of anorexia, cachexia, and acute mountain sickness (AMS). Nineteen male mountaineers aged 38 +/- 12 years participated in a 20 +/- 5 day trek to Mt. Kanchenjunga basecamp (BC) located at 5,100 m, where they remained for 7 +/- 5 days. Subjects were examined at rest and during a maximal exercise test at sea-level before/after the expedition (SL1/SL2) and during the BC sojourn. There was a mild increase in Lake Louise AMS score from 1.1 +/- 1.2 points at SL1 to 2.3 +/- 2.3 points by the end of the first day at BC (P anorexia on Day 2 compared with those with a normal appetite. While there was no relationship between the increase in CCK and AMS score at BC, a more pronounced increase in resting CCK was observed in subjects with AMS (> or =3 points at the end of Day 1 at BC) compared with those without (+98.9 +/- 1.4 pmol/L(-1) vs. +67.6 +/- 37.2 pmol/L(-1), P < 0.05). Caloric intake remained remarkably low during the stay at BC (8.9 +/- 1.4 MJ.d(-1)) despite a progressive decrease in total body mass (-4.5 +/- 2.1 kg after 31 +/- 13 h at BC, P < 0.05 vs. SL1/SL2), which appeared to be due to a selective loss of torso adipose tissue. These findings suggest that the satiogenic effects of CCK may have contributed to the observed caloric deficit and subsequent cachexia at high altitude despite adequate availability of palatable foods. The metabolic implications of elevated CCK in AMS remain to be elucidated.

  15. Circulating levels of cholecystokinin and gastrin-releasing peptide in rainbow trout fed different diets.

    Science.gov (United States)

    Jönsson, Elisabeth; Forsman, Antti; Einarsdottir, Ingibjörg E; Egnér, Barbro; Ruohonen, Kari; Björnsson, Björn Thrandur

    2006-09-01

    Cholecystokinin (CCK) and gastrin-releasing peptide (GRP) are gastrointestinal peptides thought to be important regulators of intake and digestion of food in vertebrates. In this study, pre- and postprandial plasma levels of CCK and GRP were measured in rainbow trout (Oncorhynchus mykiss) by the establishment of homologous radioimmunoassays, and the hormonal levels assessed in relation to dietary lipid:protein ratio and food intake. Fish were acclimated to either a high protein/low lipid diet (HP/LL diet; 14.1% lipids) or a normal protein/high lipid diet (NP/HL diet; 31.4% lipids). On three consecutive sampling days, radio-dense lead-glass beads were included in the diets for assessment of feed intake. Fish were terminally sampled for blood and stomach contents prior to feeding at time 0, and at 0.3, 1, 2, 4, 6, and 24 h after feeding. There was a postprandial elevation of plasma CCK levels, which was most evident after 4 and 6 h. Fish fed the NP/HL diet had higher plasma CCK levels compared with those fed the HP/LL diet. Plasma CCK levels were not affected by the amount of food ingested. GRP levels in plasma were not influenced by sampling time, diet, or feed intake. The results indicate that the endocrine release of gastrointestinal CCK is increased during feeding and may be further influenced by the dietary lipid:protein ratio in rainbow trout. Plasma GRP levels, on the other hand, appear not to be influenced by feeding or diet composition.

  16. Appetite suppressing effect of Spinacia oleracea in rats: Involvement of the short term satiety signal cholecystokinin.

    Science.gov (United States)

    Panda, Vandana; Shinde, Priyanka

    2017-06-01

    Spinacia oleracea (spinach) is a green leafy vegetable rich in antioxidant phyto-constituents such as flavonoids, polyphenols, carotenoids and vitamins. Fruits and vegetables rich in flavonoids are known to prevent weight gain by inducing satiety. The present study evaluates the appetite suppressing effect of a flavonoid rich extract of the spinach leaf (SOE) in rats. HPTLC of SOE was performed for detecting flavonoids. Rats were administered SOE (200 mg/kg and 400 mg/kg, p. o) and fluoxetine (6 mg/kg i. p) as a pre-meal for 14 days. Food intake and weight gain was observed daily during the treatment period. Serum levels of the short term satiety signals cholecystokinin (CCK) and glucose were measured on the 7th and 14thdays at different time points after start of meal to study the satiety inducing effect of SOE. HPTLC showed the presence of 14 flavonoids in SOE. SOE and fluoxetine treated rats showed a significant reduction in food intake and weight gain when compared with the normal control rats. On the 7th day of treatment, peak CCK levels were reached in 30 min after start of meal in fluoxetine treated rats and in 60 min in the remaining rats. On the 14th day, CCK peaking was observed in 30 min after start of meal in the fluoxetine as well as SOE 400 mg/kg treated rats. Peak glucose levels in all treatment groups were obtained in 60 min after start of feeding on both days of the study. It maybe concluded that SOE exhibited a promising appetite suppressing effect by inducing a quicker than normal release of CCK, thus eliciting an early onset of satiety in rats. This effect may be due to its high flavonoid content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Cholecystokinin receptors on gallbladder muscle and pancreatic acinar cells: a comparative study

    International Nuclear Information System (INIS)

    von Schrenck, T.; Moran, T.H.; Heinz-Erian, P.; Gardner, J.D.; Jensen, R.T.

    1988-01-01

    To compare receptors for cholecystokinin (CCK) in pancreas and gallbladder, we measured binding of 125I-Bolton-Hunter-labeled CCK-8 (125I-BH-CCK-8) to tissue sections from guinea pig gallbladder and pancreas under identical conditions. In both tissues, binding had similar time-, temperature-, and pH dependence, was reversible, saturable and inhibited only by CCK related peptides or CCK receptor antagonists. Autoradiography localized 125I-BH-CCK-8 binding to the smooth muscle layer in the gallbladder. Binding of 125I-BH-CCK-8 to gallbladder sections was inhibited by various agonists with the following potencies (IC50):CCK-8 (0.4 nM) greater than des(SO3)CCK-8 (0.07 microM) greater than gastrin-17-I (1.7 +/- 0.3 microM) and by various receptor antagonists with the following potencies: L364,718 (1.5 nM) greater than CR 1409 (0.19 microM) greater than asperlicin = CBZ-CCK-(27-32)-NH2 (1 microM) greater than Bt2cGMP (120 microM). Similar potencies were found for the agonists and antagonists for pancreas sections. Inhibition of binding of 125I-BH-CCK-8 by 11 different analogues of proglumide gave similar potencies for both pancreas and gallbladder. The potencies of agonists in stimulating and antagonists in inhibiting CCK-stimulated contraction or amylase release correlated closely with their abilities to inhibit 125I-BH-CCK-8 binding to gallbladder or pancreas sections or acini, respectively. The present results demonstrate and characterize a method that can be used to compare the CCK receptors in guinea pig gallbladder and pancreas under identical conditions. Moreover, this study demonstrates that gallbladder and pancreatic CCK receptors have similar affinities for the various agonists and antagonists tested and, therefore, provides no evidence that they represent different subtypes of CCK receptors that can be distinguished pharmacologically

  18. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats

    Directory of Open Access Journals (Sweden)

    Cao Bing

    2012-06-01

    Full Text Available Abstract Background Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD model with the conditioned place avoidance (CPA paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes. In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK, which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. Results In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593. The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change

  19. Cholecystokinin enhances visceral pain-related affective memory via vagal afferent pathway in rats.

    Science.gov (United States)

    Cao, Bing; Zhang, Xu; Yan, Ni; Chen, Shengliang; Li, Ying

    2012-06-09

    Pain contains both sensory and affective dimensions. Using a rodent visceral pain assay that combines the colorectal distension (CRD) model with the conditioned place avoidance (CPA) paradigms, we measured a learned behavior that directly reflects the affective component of visceral pain, and showed that perigenual anterior cingulate cortex (pACC) activation is critical for memory processing involved in long-term visceral affective state and prediction of aversive stimuli by contextual cue. Progress has been made and suggested that activation of vagal afferents plays a role in the behavioral control nociception and memory storage processes.In human patients, electrical vagus nerve stimulation enhanced retention of verbal learning performance. Cholecystokinin-octapeptide (CCK), which is a gastrointestinal hormone released during feeding, has been shown to enhance memory retention. Mice access to food immediately after training session enhanced memory retention. It has been well demonstrated that CCK acting on vagal afferent fibers mediates various physiological functions. We hypothesize that CCK activation of vagal afferent enhances visceral pain-related affective memory. In the presented study, infusion of CCK-8 at physiological concentration combining with conditional training significantly increased the CRD-induced CPA scores, and enhanced the pain affective memory retention. In contrast, CCK had no effect on CPA induced by non-nociceptive aversive stimulus (U69,593). The physiological implications were further strengthened by the similar effects observed in the rats with duodenal infusion of 5% peptone, which has been shown to induce increases in plasma CCK levels. CCK-8 receptor antagonist CR-1409 or perivagal application of capsaicin abolished the effect of CCK on aversive visceral pain memory, which was consistent with the notion that vagal afferent modulates affective aspects of visceral pain. CCK does not change the nociceptive response (visceral pain

  20. Diet-induced and monosodium-glutamate obesity in mice: Relationship among neuropeptide Y, CART peptide and cholecystokinin in feeding behavior

    Czech Academy of Sciences Publication Activity Database

    Železná, Blanka; Matyšková, Resha; Maixnerová, Jana; Haugvicová, Renata; Blokešová, Darja; Maletínská, Lenka

    2007-01-01

    Roč. 88, č. 4 (2007), s. 557 ISSN 0006-3525. [American Peptide Society Symposium /20./. 26.06.2007-30.06.2007, Montreal] Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50200510 Keywords : cocaine and amphetamine regulated transcript peptide * cholecystokinin Subject RIV: CE - Biochemistry

  1. Serum gastrin and cholecystokinin are associated with subsequent development of gastric cancer in a prospective cohort of Finnish smokers

    DEFF Research Database (Denmark)

    Murphy, Gwen; Abnet, Christian C; Choo-Wosoba, Hyoyoung

    2017-01-01

    Background: Gastrin, which induces gastric acid secretion, and a structurally similar hormone, cholecystokinin (CCK)-a potent acid inhibitor, may each play a role in gastric cancer. However, few studies have investigated this hypothesis in humans. We therefore investigated whether serum gastrin...... or CCK concentrations at baseline were associated with the incidence of gastric non-cardia adenocarcinomas (GNCA), oesophagogastric junctional adenocarcinomas (EGJA) or gastric carcinoid tumours over 24 years of follow-up in a study nested within the all-male Alpha-Tocopherol, Beta-Carotene Cancer...... suggest that high serum concentrations of gastrin may be associated independently with an increased risk of gastric cancer; the role of CCK in cancer risk is less clear....

  2. Anorexigenic effect of cholecystokinin is lost but that of CART (cocaine and amphetamine regulated transcript) peptide is preserved in monosodium glutamate obese mice

    Czech Academy of Sciences Publication Activity Database

    Železná, Blanka; Maixnerová, Jana; Matyšková, Resha; Haugvicová, Renata; Blokešová, Darja; Maletínská, Lenka

    2009-01-01

    Roč. 58, č. 5 (2009), s. 717-723 ISSN 0862-8408 R&D Projects: GA ČR GA303/05/0614 Grant - others:GA ČR(CZ) GA305/06/0427 Program:GA Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z5020903 Keywords : monosodium glutamate (MSG) obesity * neuropeptide Y (NPY) * cholecystokinin Subject RIV: CC - Organic Chemistry Impact factor: 1.430, year: 2009

  3. Effects of cholecystokinin octapeptide on striatal dopamine metabolism and on apomorphine-induced stereotyped cage-climbing in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, G L; Szabo, G; Telegdy, G [Institute of Pathophysiology, University Medical School, Szeged, Hungary; Penke, B [Institute of Medical Chemistry, University Medical School, Szeged, Hungary

    1981-01-29

    The effects of sulfated (CCK-8-SE) and non-sulfated (CCK-8-NS) cholecystokinin octapeptide on striatal dopamine (DA) metabolism have been investigated on mice. CCK-8-NS facilitated the disappearance of striatal DA, measured after synthesis inhibition with 350 mg/kg of ..cap alpha..-methyl-p-tyrosine. CCK-8-SE did not affect DA disappearance. In vitro uptake of (/sup 3/H)DA by striatal slices was affected by neither CCK-8-SE, nor CCK-8-NS (10/sup -5/ M). Potassium-induced in vitro release of (/sup 3/H)DA from striatal slices was significantly increased by 10/sup -5/ M CCK-8-NS: however, CCK-8-SE likewise increased DA release in this model system. Apomorphine-induced (1.0 mg/kg) stereotyped cage-climbing behavior was not affected by CCK-8-SE but was enhanced by CCK-8-NS. This effect could be antagonized by haloperidol, but not by naloxone. The data suggest that CCK-8-NS affects striatal DA release, disappearance and receptor sensitivity in the mouse. Dopaminergic mechanisms should therefore be regarded as a possible mode of action of CCK-8-NS on brain functions.

  4. Effects of cholecystokinin octapeptide on striatal dopamine metabolism and on apomorphine-induced stereotyped cage-climbing in mice

    International Nuclear Information System (INIS)

    Kovacs, G.L.; Szabo, G.; Telegdy, G.; Penke, B.

    1981-01-01

    The effects of sulfated (CCK-8-SE) and non-sulfated (CCK-8-NS) cholecystokinin octapeptide on striatal dopamine (DA) metabolism have been investigated on mice. CCK-8-NS facilitated the disappearance of striatal DA, measured after synthesis inhibition with 350 mg/kg of α-methyl-p-tyrosine. CCK-8-SE did not affect DA disappearance. In vitro uptake of [ 3 H]DA by striatal slices was affected by neither CCK-8-SE, nor CCK-8-NS (10 -5 M). Potassium-induced in vitro release of [ 3 H]DA from striatal slices was significantly increased by 10 -5 M CCK-8-NS: however, CCK-8-SE likewise increased DA release in this model system. Apomorphine-induced (1.0 mg/kg) stereotyped cage-climbing behavior was not affected by CCK-8-SE but was enhanced by CCK-8-NS. This effect could be antagonized by haloperidol, but not by naloxone. The data suggest that CCK-8-NS affects striatal DA release, disappearance and receptor sensitivity in the mouse. Dopaminergic mechanisms should therefore be regarded as a possible mode of action of CCK-8-NS on brain functions. (Auth.)

  5. Quantitative autoradiographic localization of cholecystokinin receptors in rat and guinea pig brain using 125I-Bolton-Hunter-CCK8

    International Nuclear Information System (INIS)

    Niehoff, D.L.

    1989-01-01

    The autoradiographic localization of receptors for the brain-gut peptide cholecystokinin (CCK) has shown differences in receptor distribution between rat and guinea pig brain. However the full anatomical extent of the differences has not been determined quantitatively. In the present study, 125 I-Bolton-Hunter-CCK8 ( 125 I-BH-CCK8) was employed in a comparative quantitative autoradiographic analysis of the distribution of CCK receptors in these two species. The pharmacological profile of 125 I-BH-CCK8 binding in guinea pig forebrain sections was comparable to those previously reported for rat and human. Statistically significant differences in receptor binding between rat and guinea pig occurred in olfactory bulb, caudate-putamen, amygdala, several cortical areas, ventromedial hypothalamus, cerebellum, and a number of midbrain and brainstem nuclei. The results of this study confirm the presence of extensive species-specific variation in the distribution of CCK receptors, suggesting possible differences in the physiological roles of this peptide in different mammalian species

  6. The gastrin/cholecystokinin-B receptor on prostate cells--a novel target for bifunctional prostate cancer imaging.

    Science.gov (United States)

    Sturzu, Alexander; Klose, Uwe; Sheikh, Sumbla; Echner, Hartmut; Kalbacher, Hubert; Deeg, Martin; Nägele, Thomas; Schwentner, Christian; Ernemann, Ulrike; Heckl, Stefan

    2014-02-14

    The means of identifying prostate carcinoma and its metastases are limited. The contrast agents used in magnetic resonance imaging clinical diagnostics are not taken up into the tumor cells, but only accumulate in the interstitial space of the highly vasculated tumor. We examined the gastrin/cholecystokinin-B receptor as a possible target for prostate-specific detection using the C-terminal seven amino acid sequence of the gastrin peptide hormone. The correct sequence and a scrambled control sequence were coupled to the fluorescent dye rhodamine and the magnetic resonance imaging contrast agent gadolinium (Gd)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Expression analysis of the gastrin receptor mRNA was performed by reverse transcriptase polymerase chain reaction on PC3 prostate carcinoma cells, U373 glioma, U2OS osteosarcoma and Colo205 colon carcinoma cells. After having confirmed elevated expression of gastrin receptor in PC3 cells and very low expression of the receptor in Colo205 cells, these two cell lines were used to create tumor xenografts on nude mice for in vivo experiments. Confocal lasers scanning microscopy and magnetic resonance imaging showed a high specificity of the correct conjugate for the PC3 xenografts. Staining of the PC3 xenografts was much weaker with the scrambled conjugate while the Colo205 xenografts showed no marked staining with any of the conjugates. In vitro experiments comparing the correct and scrambled conjugates on PC3 cells by magnetic resonance relaxometry and fluorescence-activated cell sorting confirmed markedly higher specificity of the correct conjugate. The investigations show that the gastrin receptor is a promising tumor cell surface target for future prostate-cancer-specific imaging applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effects of a high plant protein diet on the somatotropic system and cholecystokinin in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Hevrøy, Ernst M; El-Mowafi, Adel; Taylor, Richard; Norberg, Birgitta; Espe, Marit

    2008-12-01

    To investigate the endocrine signalling from dietary plant protein on somatotropic system and gastrointestinal hormone cholecystokinin (CCK), two iso-amino acid diets based on either high plant or high fish meal protein were fed to Atlantic salmon. Salmon with an average starting weight of 641+/-23 g (N=180), were fed a fish meal (FM) based diet (containing 40% FM) or diets mainly consisting of blended plant proteins (PP) containing only 13% marine protein, of which only 5% was FM for 3 months. mRNA levels of target genes GH, GH-R, IGF-I, IGF-II, IGFBP-1, IGF-IR in addition to CCK-L, were studied in brain, hepatic tissue and fast muscle, and circulating levels of IGF-I in plasma of Atlantic salmon were measured. We detected reduced feed intake resulting in lower growth, weight gain and muscle protein accretion in salmon fed plant protein compared to a diet based on fish meal. There were no significant effects on the regulation of the target genes in brain or in hepatic tissues, but a trend of down-regulation of IGF-I was detected in fast muscle. Lower feed intake, and therefore lower intake of the indispensable amino acids, may have resulted in lower pituitary GH and lower IGF-I mRNA levels in muscle tissues. This, together with higher protein catabolism, may be the main cause of the reduced growth of salmon fed plant protein diet. There were no signalling effects detected either by the minor differences of the diets on mRNA levels of GH, GH-R, IGF-IR, IGF-II, IGFBP-1, CCK or plasma protein IGF-I.

  8. Synergistic effect of CART (cocaine- and amphetamine-regulated transcript peptide and cholecystokinin on food intake regulation in lean mice

    Directory of Open Access Journals (Sweden)

    Kiss Alexander

    2008-10-01

    Full Text Available Abstract Background CART (cocaine- and amphetamine-regulated transcript peptide and cholecystokinin (CCK are neuromodulators involved in feeding behavior. This study is based on previously found synergistic effect of leptin and CCK on food intake and our hypothesis on a co-operation of the CART peptide and CCK in food intake regulation and Fos activation in their common targets, the nucleus tractus solitarii of the brainstem (NTS, the paraventricular nucleus (PVN, and the dorsomedial nucleus (DMH of the hypothalamus. Results In fasted C57BL/6 mice, the anorexigenic effect of CART(61-102 in the doses of 0.1 or 0.5 μg/mouse was significantly enhanced by low doses of CCK-8 of 0.4 or 4 μg/kg, while 1 mg/kg dose of CCK-A receptor antagonist devazepide blocked the effect of CART(61-102 on food intake. After simultaneous administration of 0.1 μg/mouse CART(61-102 and of 4 μg/kg of CCK-8, the number of Fos-positive neurons in NTS, PVN, and DMH was significantly higher than after administration of each particular peptide. Besides, CART(61-102 and CCK-8 showed an additive effect on inhibition of the locomotor activity of mice in an open field test. Conclusion The synergistic and long-lasting effect of the CART peptide and CCK on food intake and their additive effect on Fos immunoreactivity in their common targets suggest a co-operative action of CART peptide and CCK which could be related to synergistic effect of leptin on CCK satiety.

  9. Preclinical Evaluation of 68Ga-DOTA-Minigastrin for the Detection of Cholecystokinin-2/Gastrin Receptor–Positive Tumors

    Science.gov (United States)

    Brom, Maarten; Joosten, Lieke; Laverman, Peter; Oyen, Wim J.G.; Béhé, Martin; Gotthardt, Martin; Boerman, Otto C.

    2011-01-01

    In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0) showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET), which could improve image quality. Targeting of cholecystokinin-2 (CCK2)/gastrin receptor–positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET–computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g), indicating CCK2/gastrin receptor–mediated uptake (p = .0005). The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor–positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor–positive tumors in humans. PMID:21439259

  10. An assessment tumor targeting ability of 177Lu labeled cyclic CCK analogue peptide by binding with cholecystokinin receptor

    Directory of Open Access Journals (Sweden)

    Eun-Ha Cho

    2016-07-01

    Full Text Available The cholecystokinin (CCK receptor is known as a receptor that is overexpressed in many human tumors. The present study was designed to investigate the targeting ability of cyclic CCK analogue in AR42J pancreatic cells. The CCK analogues, DOTA-K(glucose-Gly-Trp-Nle-Asp-Phe (DOTA-glucose-CCK and DOTA-Nle-cyclo(Glu-Trp-Nle-Asp-Phe-Lys-NH2 (DOTA-[Nle]-cCCK, were synthesized and radiolabeled with 177Lu, and competitive binding was evaluated. The binding appearance of synthesized peptide with AR42J cells was evaluated by confocal microscopy. And bio-distribution was performed in AR42J xenografted mice. Synthesized peptides were prepared by a solid phase synthesis method, and their purity was over 98%. DOTA is the chelating agent for 177Lu-labeling, in which the peptides were radiolabeled with 177Lu by a high radiolabeling yield. A competitive displacement of 125I-CCK8 on the AR42J cells revealed that the 50% inhibitory concentration value (IC50 was 12.3 nM of DOTA-glucose-CCK and 1.7 nM of DOTA-[Nle]-cCCK. Radio-labeled peptides were accumulated in AR42J tumor in vivo, and %ID/g of the tumor was 0.4 and 0.9 at 2 h p.i. It was concluded that 177Lu-DOTA-[Nle]-cCCK has higher binding affinity than 177Lu-DOTA-glucose-CCK and can be a potential candidate as a targeting modality for a CCK receptor over-expressing tumors.

  11. Preclinical Evaluation of 68Ga-DOTA-Minigastrin for the Detection of Cholecystokinin-2/Gastrin Receptor-Positive Tumors

    Directory of Open Access Journals (Sweden)

    Maarten Brom

    2011-03-01

    Full Text Available In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0 showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET, which could improve image quality. Targeting of cholecystokinin-2 (CCK2/gastrin receptor-positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET-computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g, indicating CCK2/gastrin receptor-mediated uptake (p = .0005. The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor-positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor-positive tumors in humans.

  12. Characterization of basal hepatic bile flow and the effects of intravenous cholecystokinin on the liver, sphincter, and gallbladder in patients with sphincter of Oddi spasm.

    Science.gov (United States)

    Krishnamurthy, Gerbail T; Krishnamurthy, Shakuntala; Watson, Randy D

    2004-01-01

    The major objectives of this project were to establish the pattern of basal hepatic bile flow and the effects of intravenous administration of cholecystokinin on the liver, sphincter of Oddi, and gallbladder, and to identify reliable parameters for the diagnosis of sphincter of Oddi spasm (SOS). Eight women with clinically suspected sphincter of Oddi spasm (SOS group), ten control subjects (control group), and ten patients who had recently received an opioid (opioid group) were selected for quantitative cholescintigraphy with cholecystokinin. Each patient was studied with 111-185 MBq (3-5 mCi) technetium-99m mebrofenin after 6-8 h of fasting. Hepatic phase images were obtained for 60 min, followed by gallbladder phase images for 30 min. During the gallbladder phase, 10 ng/kg octapeptide of cholecystokinin (CCK-8) was infused over 3 min through an infusion pump. Hepatic extraction fraction, excretion half-time, basal hepatic bile flow into the gallbladder, gallbladder ejection fraction, and post-CCK-8 paradoxical filling (>30% of basal counts) were identified. Seven of the patients with SOS were treated with antispasmodics (calcium channel blockers), and one underwent endoscopic sphincterotomy. Mean (+/-SD) hepatic bile entry into the gallbladder (versus GI tract) was widely variable: it was lower in SOS patients (32%+/-31%) than in controls (61%+/-36%) and the opioid group (61%+/-25%), but the difference was not statistically significant. Hepatic extraction fraction, excretion half-time, and pattern of bile flow through both intrahepatic and extrahepatic ducts were normal in all three groups. Gallbladder mean ejection fraction was 9%+/-4% in the opioid group; this was significantly lower (Pgallbladder refluxed into intrahepatic ducts; it reentered the gallbladder after cessation of CCK-8 infusion (paradoxical gallbladder filling) in all eight patients with SOS, but in none of the patients in the other two groups. Mean paradoxical filling was 204% (+/-193%) in the

  13. Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7-36)-amide-1, cholecystokinin, and peptide YY concentrations

    DEFF Research Database (Denmark)

    Ellrichmann, Mark; Kapelle, Mario; Ritter, Peter R

    2008-01-01

    of Orlistat or placebo. Gastric emptying, gallbladder volume and the plasma levels of CCK, PYY, GLP-1, and ghrelin were determined and appetite sensations were measured using visual analogue scales. RESULTS: Gastric emptying was accelerated by Orlistat administration (P emptying.......0001), whereas appetite and prospective food consumption increased (P gastric and gallbladder emptying and reduces...... whether Orlistat alters the secretion of glucagon-like peptide-1-(7-36)-amide (GLP-1), cholecystokinin (CCK), peptide YY (PYY), and ghrelin as well as postprandial appetite sensations. METHODS: Twenty-five healthy human volunteers were examined with a solid-liquid test meal after the oral administration...

  14. Jejunal feeding is followed by a greater rise in plasma cholecystokinin, peptide YY, glucagon-like peptide 1, and glucagon-like peptide 2 concentrations compared with gastric feeding in vivo in humans

    DEFF Research Database (Denmark)

    Luttikhold, Joanna; van Norren, Klaske; Rijna, Herman

    2016-01-01

    and the associated endocrine response in vivo in humans remains largely unexplored. OBJECTIVE: We compared the impact of administering enteral nutrition as either gastric feeding or jejunal feeding on endocrine responses in vivo in humans. DESIGN: In a randomized, crossover study design, 12 healthy young men (mean...... and a greater postprandial incremental AUC for GLP-1 and cholecystokinin (all P young men results in similar postprandial plasma amino acid and glucose concentrations....... However, the endocrine response differs substantially, with higher peak plasma cholecystokinin, PYY, GLP-1, and GLP-2 concentrations being attained after jejunal feeding. This effect may result in an improved anabolic response, greater insulin sensitivity, and an improved intestinotropic effect...

  15. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  16. Effects of +G_z exposure on gallbladder emptying function,cholecystokinin,and somatostatin in rabbits with high cholesterol diets

    Directory of Open Access Journals (Sweden)

    Guo-feng XIAO

    2011-12-01

    Full Text Available Objective The present study explores the effects of +Gz exposure on the gallbladder emptying function,cholecystokinin(CCK,and somatostatin(SS in rabbits with high cholesterol diets and investigates its mechanism in the occurrence of cholecystolithiasis.Methods Twenty-four male New Zealand rabbits were randomly divided into the high cholesterol diet(control group,n=8 and high cholesterol diet plus +Gz exposure groups.The latter was divided into the four-and six-week +Gz exposure groups(n=8 based on the exposure time.Radioimmunoassay was used to determine the CCK and SS contents of the gallbladder at the end of the experiment in the fourth and sixth weeks and to calculate the gallbladder volume and maximum emptying ratio.A microcomputer biodynamic pressure monitor was used to record the hydrostatic pressure in the gallbladder to measure its capacity.Moreover,the bile properties and formation of concretion were observed with the naked eye,and polarized light microscopy was used to observe cholesterin crystallization on the gallbladder wall.Results The gallbladder capacity increased upon +Gz exposure for four and six weeks,indicating that the maximum emptying ratio(E% decreased,the empty and residual volumes improved,and the pressure increased(P < 0.05.After +Gz exposure for four and six weeks,the CCK contents in the experimental groups were evidently lower than that in the control group and gradually decreased(P < 0.05 as the +Gz exposure time increased.On the other hand,after +Gz exposure for four and six weeks,the SS contents in the experimental groups were higher than that in the control group and gradually improved(P < 0.05 as the +Gz exposure time increased.After +Gz exposure for four and six weeks,bile was turbid and sticky with cholesterol crystals and without visible concretion.Conclusions Therefore,+Gz exposure may cause abnormal gallbladder emptying functions,decrease CCK content,increase SS content,and thus cause bile stasis

  17. Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation

    Czech Academy of Sciences Publication Activity Database

    Pirnik, Z.; Maixnerová, Jana; Matyšková, Resha; Koutová, Darja; Železná, Blanka; Maletínská, Lenka; Kiss, A.

    2010-01-01

    Roč. 31, č. 1 (2010), s. 139-144 ISSN 0196-9781 R&D Projects: GA ČR GA303/05/0614 Institutional research plan: CEZ:AV0Z40550506 Keywords : cholecystokinin * CART * hypocretin * Fos peptide Subject RIV: CE - Biochemistry Impact factor: 2.654, year: 2010

  18. Effect of exogenous cholecystokinin (CCK)-8 on food intake and plasma CCK, leptin, and insulin concentrations in older and young adults: evidence for increased CCK activity as a cause of the anorexia of aging.

    NARCIS (Netherlands)

    MacIntosh, C.G.; Morley, J.E.; Wishart, J.M.; Morris, H.A.; Jansen, J.B.M.J.; Horowitz, M.M.; Chapman, I.M.

    2001-01-01

    Healthy aging is associated with reductions in appetite and food intake--the so-called anorexia of aging, which may predispose to protein-energy malnutrition. One possible cause of the anorexia of aging is an increased satiating effect of cholecystokinin (CCK). To investigate the impact of aging on

  19. The cell-specific pattern of cholecystokinin peptides in endocrine cells versus neurons is governed by the expression of prohormone convertases 1/3, 2, and 5/6

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Hannibal, J.; Zhu, X.

    2008-01-01

    Most peptide hormone genes are, in addition to endocrine cells, also expressed in neurons. The peptide hormone cholecystokinin (CCK) is expressed in different molecular forms in cerebral neurons and intestinal endocrine cells. To understand this difference, we examined the roles of the neuroendoc...

  20. Measurement of nonsulfated cholecystokinins

    DEFF Research Database (Denmark)

    Agersnap, Mikkel; Rehfeld, Jens F

    2014-01-01

    Most proteins undergo posttranslational modifications that govern the function of the protein. In synchrony, correspondingly unmodified proteins that are functionally silent or act differently may also be synthesized. The gut hormone precursor, procholecystokinin (proCCK) is an example of a protein...... such as the recently described CCKomas and medullary thyroid C-cell carcinomas....

  1. Infusion of exogenous cholecystokinin-8, gastrin releasing peptide-29 and their combination reduce body weight in diet-induced obese male rats.

    Science.gov (United States)

    Mhalhal, Thaer R; Washington, Martha C; Newman, Kayla; Heath, John C; Sayegh, Ayman I

    2017-02-01

    We hypothesized that exogenous gastrin releasing peptide-29 (GRP-29), cholecystokinin-8 (CCK-8) and their combination reduce body weight (BW). To test this hypothesis, BW was measured in four groups of diet-induced obese (DIO) male rats infused in the aorta (close to the junctions of the celiac and cranial mesenteric arteries) with saline, CCK-8 (0.5 nmol/kg), GRP-29 (0.5 nmol/kg) and CCK-8+GRP-29 (0.5 nmol/kg each) once daily for a total of 23 days. We found that CCK-8, GRP-29 and CCK-8+GRP-29 reduce BW relative to saline control. In conclusion, CCK-8, GRP-29 and their combination reduce BW in the DIO rat model. If infused near their gastrointestinal sites of action CCK-8, GRP-29 and their combination may have a role in regulating BW. Published by Elsevier Ltd.

  2. Characterization of basal hepatic bile flow and the effects of intravenous cholecystokinin on the liver, sphincter, and gallbladder in patients with sphincter of Oddi spasm

    International Nuclear Information System (INIS)

    Krishnamurthy, Gerbail T.; Krishnamurthy, Shakuntala; Watson, Randy D.

    2004-01-01

    The major objectives of this project were to establish the pattern of basal hepatic bile flow and the effects of intravenous administration of cholecystokinin on the liver, sphincter of Oddi, and gallbladder, and to identify reliable parameters for the diagnosis of sphincter of Oddi spasm (SOS). Eight women with clinically suspected sphincter of Oddi spasm (SOS group), ten control subjects (control group), and ten patients who had recently received an opioid (opioid group) were selected for quantitative cholescintigraphy with cholecystokinin. Each patient was studied with 111-185 MBq (3-5 mCi) technetium-99m mebrofenin after 6-8 h of fasting. Hepatic phase images were obtained for 60 min, followed by gallbladder phase images for 30 min. During the gallbladder phase, 10 ng/kg octapeptide of cholecystokinin (CCK-8) was infused over 3 min through an infusion pump. Hepatic extraction fraction, excretion half-time, basal hepatic bile flow into the gallbladder, gallbladder ejection fraction, and post-CCK-8 paradoxical filling (>30% of basal counts) were identified. Seven of the patients with SOS were treated with antispasmodics (calcium channel blockers), and one underwent endoscopic sphincterotomy. Mean (±SD) hepatic bile entry into the gallbladder (versus GI tract) was widely variable: it was lower in SOS patients (32%±31%) than in controls (61%±36%) and the opioid group (61%±25%), but the difference was not statistically significant. Hepatic extraction fraction, excretion half-time, and pattern of bile flow through both intrahepatic and extrahepatic ducts were normal in all three groups. Gallbladder mean ejection fraction was 9%±4% in the opioid group; this was significantly lower (P<0.0001) than the values in the control group (54%±18%) and the SOS group (48%±29%). Almost all of the bile emptied from the gallbladder refluxed into intrahepatic ducts; it reentered the gallbladder after cessation of CCK-8 infusion (paradoxical gallbladder filling) in all eight

  3. Characterization of basal hepatic bile flow and the effects of intravenous cholecystokinin on the liver, sphincter, and gallbladder in patients with sphincter of Oddi spasm

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Gerbail T.; Krishnamurthy, Shakuntala [Department of Nuclear Medicine, Tuality Community Hospital, 335 SE 8th Avenue, OR 97123, Hillsboro (United States); Watson, Randy D. [Department of Gastroenterology, Tuality Community Hospital, Hillsboro, OR (United States)

    2004-01-01

    The major objectives of this project were to establish the pattern of basal hepatic bile flow and the effects of intravenous administration of cholecystokinin on the liver, sphincter of Oddi, and gallbladder, and to identify reliable parameters for the diagnosis of sphincter of Oddi spasm (SOS). Eight women with clinically suspected sphincter of Oddi spasm (SOS group), ten control subjects (control group), and ten patients who had recently received an opioid (opioid group) were selected for quantitative cholescintigraphy with cholecystokinin. Each patient was studied with 111-185 MBq (3-5 mCi) technetium-99m mebrofenin after 6-8 h of fasting. Hepatic phase images were obtained for 60 min, followed by gallbladder phase images for 30 min. During the gallbladder phase, 10 ng/kg octapeptide of cholecystokinin (CCK-8) was infused over 3 min through an infusion pump. Hepatic extraction fraction, excretion half-time, basal hepatic bile flow into the gallbladder, gallbladder ejection fraction, and post-CCK-8 paradoxical filling (>30% of basal counts) were identified. Seven of the patients with SOS were treated with antispasmodics (calcium channel blockers), and one underwent endoscopic sphincterotomy. Mean ({+-}SD) hepatic bile entry into the gallbladder (versus GI tract) was widely variable: it was lower in SOS patients (32%{+-}31%) than in controls (61%{+-}36%) and the opioid group (61%{+-}25%), but the difference was not statistically significant. Hepatic extraction fraction, excretion half-time, and pattern of bile flow through both intrahepatic and extrahepatic ducts were normal in all three groups. Gallbladder mean ejection fraction was 9%{+-}4% in the opioid group; this was significantly lower (P<0.0001) than the values in the control group (54%{+-}18%) and the SOS group (48%{+-}29%). Almost all of the bile emptied from the gallbladder refluxed into intrahepatic ducts; it reentered the gallbladder after cessation of CCK-8 infusion (paradoxical gallbladder filling

  4. Activation of neural cholecystokinin-1 receptors induces relaxation of the isolated rat duodenum which is reduced by nitric oxide synthase inhibitors

    Directory of Open Access Journals (Sweden)

    S.R. Martins

    2006-02-01

    Full Text Available Cholecystokinin (CCK influences gastrointestinal motility, by acting on central and peripheral receptors. The aim of the present study was to determine whether CCK has any effect on isolated duodenum longitudinal muscle activity and to characterize the mechanisms involved. Isolated segments of the rat proximal duodenum were mounted for the recording of isometric contractions of longitudinal muscle in the presence of atropine and guanethidine. CCK-8S (EC50: 39; 95% CI: 4.1-152 nM and cerulein (EC50: 58; 95% CI: 18-281 nM induced a concentration-dependent and tetrodotoxin-sensitive relaxation. Nomeganitro-L-arginine (L-NOARG reduced CCK-8S- and cerulein-induced relaxation (IC50: 5.2; 95% CI: 2.5-18 µM in a concentration-dependent manner. The magnitude of 300 nM CCK-8S-induced relaxation was reduced by 100 µM L-NOARG from 73 ± 5.1 to 19 ± 3.5% in an L-arginine but not D-arginine preventable manner. The CCK-1 receptor antagonists proglumide, lorglumide and devazepide, but not the CCK-2 receptor antagonist L-365,260, antagonized CCK-8S-induced relaxation in a concentration-dependent manner. These findings suggest that CCK-8S and cerulein activate intrinsic nitrergic nerves acting on CCK-1 receptors in order to cause relaxation of the rat duodenum longitudinal muscle.

  5. Exogenous glucagon-like peptide-1 reduces body weight and cholecystokinin-8 enhances this reduction in diet-induced obese male rats.

    Science.gov (United States)

    Mhalhal, Thaer R; Washington, Martha C; Newman, Kayla; Heath, John C; Sayegh, Ayman I

    2017-10-01

    The sites of action regulating meal size (MS) and intermeal interval (IMI) length by glucagon like peptide-1 (7-36) (GLP-1 (7-36)) and cholecystokinin-8 (CCK-8) reside in the areas supplied by the two major branches of the abdominal aorta, celiac and cranial mesenteric arteries. We hypothesized that infusing GLP-1 near those sites reduces body weight (BW) and adding CCK-8 to this infusion enhances the reduction. Here, we measured BW in diet-induced obese (DIO) male rats maintained and tested on normal rat chow and infused with saline, GLP-1 (0.5nmol/kg) and GLP-1+CCK-8 (0.5nmol/kg each) in the aorta once daily for 21days. We found that GLP-1 and GLP-1+CCK-8 decrease BW relative to saline vehicle and GLP-1+CCK-8 reduced it more than GLP-1 alone. Reduction of BW by GLP-1 alone was accompanied by decreased 24-h food intake, first MS, duration of first meal and number of meals, and an increase in latency to first meal. Reduction of BW by the combination of the peptides was accompanied by decrease 24-h food intake, first MS, duration of first meal and number of meals, and increase in the IMI length, satiety ratio and latency to first meal. In conclusion, GLP-1 reduces BW and CCK-8 enhances this reduction if the peptides are given near their sites of action. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lack of Analgesic Synergy of the Cholecystokinin Receptor Antagonist Proglumide and Spinal Cord Stimulation for the Treatment of Neuropathic Pain in Rats.

    Science.gov (United States)

    Inoue, Shinsuke; Johanek, Lisa M; Sluka, Kathleen A

    2017-08-01

    Neuropathic pain is difficult to manage and treat. Spinal cord stimulation (SCS) has become an established procedure for treating chronic neuropathic pain that is refractory to pharmacological therapy. In order to achieve better analgesia, a number of studies have evaluated the effectiveness of combining drug therapy with SCS. Cholecystokinin antagonists, such as proglumide, enhance the analgesic efficacy of endogenous opioids in animal models of pain. We previously reported that both systemic and spinal administration of proglumide enhances analgesia produced by both low- and high-frequency transcutaneous electrical nerve stimulation (TENS). Since SCS produces analgesia through endogenous opioids, we hypothesized that the analgesic effect of SCS would be enhanced through co-administration with proglumide in animals with neuropathic pain. Male Sprague-Dawley rats (n = 40) with spared nerve injury were given proglumide (20 mg/kg, i.p.) or saline prior to treatment with SCS (sham, 4 Hz, and 60 Hz). Mechanical withdrawal thresholds of the paw were measured before and after induction of nerve injury, and after SCS. Physical activity levels were measured after SCS. Both proglumide and SCS when given independently significantly increased withdrawal thresholds two weeks after nerve injury. However, there was no additional effect of combining proglumide and SCS on mechanical withdrawal thresholds or activity levels in animals with nerve injury. Proglumide may be a candidate for achieving analgesia for patients with refractory neuropathic pain conditions, but does not enhance analgesia produced by SCS. © 2017 International Neuromodulation Society.

  7. Quantitative autoradiographic localization of cholecystokinin receptors in rat and guinea pig brain using sup 125 I-Bolton-Hunter-CCK8

    Energy Technology Data Exchange (ETDEWEB)

    Niehoff, D.L. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-03-01

    The autoradiographic localization of receptors for the brain-gut peptide cholecystokinin (CCK) has shown differences in receptor distribution between rat and guinea pig brain. However the full anatomical extent of the differences has not been determined quantitatively. In the present study, {sup 125}I-Bolton-Hunter-CCK8 ({sup 125}I-BH-CCK8) was employed in a comparative quantitative autoradiographic analysis of the distribution of CCK receptors in these two species. The pharmacological profile of {sup 125}I-BH-CCK8 binding in guinea pig forebrain sections was comparable to those previously reported for rat and human. Statistically significant differences in receptor binding between rat and guinea pig occurred in olfactory bulb, caudate-putamen, amygdala, several cortical areas, ventromedial hypothalamus, cerebellum, and a number of midbrain and brainstem nuclei. The results of this study confirm the presence of extensive species-specific variation in the distribution of CCK receptors, suggesting possible differences in the physiological roles of this peptide in different mammalian species.

  8. Gut satiety hormones cholecystokinin and glucagon-like Peptide-17-36 amide mediate anorexia induction by trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol.

    Science.gov (United States)

    Zhang, Jie; Liu, Shengli; Zhang, Hua; Li, Yuanyuan; Wu, Wenda; Zhang, Haibin

    2017-11-15

    The food-borne trichothecene mycotoxins have been documented to cause human and animal food poisoning. Anorexia is a hallmark of the trichothecene mycotoxins-induced adverse effects. Type B trichothecenes have been previously demonstrated to elicit robust anorectic responses, and this response has been directly linked to secretion of the gut satiety hormones cholecystokinin (CCK) and glucagon-like peptide-1 7-36 amide (GLP-1). However, less is known about the anorectic effects and underlying mechanisms of the type A trichothecenes, including T-2 toxin (T-2), HT-2 toxin (HT-2), diacetoxyscirpenol (DAS), neosolaniol (NEO). The purpose of this study was to relate type A trichothecenes T-2, HT-2, DAS and NEO-induced anorectic response to changes plasma concentrations of CCK and GLP-1. Following both oral gavage and intraperitoneal (IP) administration of 1mg/kg bw T-2, HT-2, DAS and NEO evoked robust anorectic response and secretion of CCK and GLP-1. Elevations of plasma CCK markedly corresponded to anorexia induction by T-2, HT-2, DAS and NEO. Following oral exposure, plasma CCK was peaked at 6h, 6h, 2h, 2h and lasted up to 24h, 24h, > 6h, > 6h for T-2, HT-2, DAS and NEO, respectively. IP exposed to four toxins all induced elevation of CCK with peak point and duration at 6h and >24h, respectively. In contrast to CCK, GLP-1 was moderately elevated by these toxins. Following both oral and IP exposure, T-2 and HT-2 evoked plasma GLP-1 elevation with peak point and duration at 2h and 6h, respectively. Plasma GLP-1 was peaked at 2h and still increased at 6h for IP and oral administration with DAS and NEO, respectively. In conclusion, CCK plays a contributory role in anorexia induction but GLP-1 might play a lesser role in this response. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Role of cholecystokinin in anorexia induction following oral exposure to the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol.

    Science.gov (United States)

    Wu, Wenda; Zhou, Hui-Ren; He, Kaiyu; Pan, Xiao; Sugita-Konishi, Yoshiko; Watanabe, Maiko; Zhang, Haibin; Pestka, James J

    2014-04-01

    Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY₃₋₃₆ (PYY₃₋₃₆), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY₃₋₃₆ concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY₃₋₃₆ was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY₃₋₃₆ might play a lesser, congener-dependent role in this response.

  10. Characterization of the binding of [3H]-(+/-)-L-364,718: a new potent, nonpeptide cholecystokinin antagonist radioligand selective for peripheral receptors

    International Nuclear Information System (INIS)

    Chang, R.S.; Lotti, V.J.; Chen, T.B.; Kunkel, K.A.

    1986-01-01

    [3H]-(+/-)-L-364,718 a new, potent and selective nonpeptide peripheral cholecystokinin (CCK) antagonist bound saturably and reversibly to rat pancreatic membranes. The radioligand recognized a single class of binding sites with a high affinity (Kd = 0.23 nM). The binding of [ 3 H]-(+/-)-L-364,718 was stereospecific in that the more biologically active (-)-enantiomer demonstrated greater potency than the (+)-enantiomer. The rank order of potency of various CCK agonists and antagonists in displacing [ 3 H]-(+/-)-L-364,718 correlated with their ability to displace [ 125 I]CCK-8 and their known pharmacological activities in peripheral tissues. However, the absolute potencies of agonists were greater in displacing [ 125 I]CCK-8 than [ 3 H]-(+/-)-L-364,718. As described for other physiologically relevant receptor systems, the potency for displacement of [ 3 H]-(+/-)-L-364,718 binding by CCK agonists, but not antagonists, was reduced by guanosine 5'-(beta, gamma-imido)triphosphate and NaCl and enhanced by MgCl 2 . [ 3 H]-(+/-)-L-364,718 also demonstrated specific binding to bovine gall bladder tissue but not guinea pig brain or gastric glands, consistent with its selectivity as a peripheral CCK antagonist. [ 3 H]-(+/-)-L-364,718 binding to pancreatic membranes was not affected by various pharmacological agents known to interact with other common peptide and nonpeptide receptor systems. These data indicate that [ 3 H]-(+/-)-L-364,718 represents a new potent nonpeptide antagonist radioligand for the study of peripheral CCK receptors which may allow differentiation of agonist and antagonist interactions

  11. Autoradiographical detection of cholecystokinin-A receptors in primate brain using 125I-Bolton Hunter CCK-8 and 3H-MK-329

    International Nuclear Information System (INIS)

    Hill, D.R.; Shaw, T.M.; Graham, W.; Woodruff, G.N.

    1990-01-01

    In vitro autoradiography was performed in order to visualize cholecystokinin-A (CCK-A) receptors in sections of Cynomolgus monkey brain. CCK-A receptors were defined as those which displayed high affinity for the selective non-peptide antagonist MK-329 (L-364,718) and were detected in several regions by selective inhibition of 125I-Bolton Hunter CCK using MK-329 or direct labeling with 3H-MK-329. In the caudal medulla, high densities of CCK-A sites were present in the nucleus tractus solitarius, especially the caudal and medial aspects, and also the dorsal motor nucleus of the vagus. CCK-A sites were localized to a number of hypothalamic nuclei such as the supraoptic and paraventricular nuclei, the dorsomedial and infundibular nuclei as well as the neurohypophysis. The mammillary bodies and supramammillary nuclei also contained CCK-A receptor sites. High concentrations of CCK-A receptors were present in the substantia nigra zona compacta and also the ventral tegmental area and may be associated with dopamine cell bodies. Binding of 3H-MK-329 was also detected in parts of the caudate nucleus and ventral putamen. The detection, by autoradiographical means, of CCK-A receptors throughout the Cynomolgus monkey brain contrasts with similar studies performed using rodents and suggests differences in the density and, perhaps, the importance of CCK-A receptors in the primate as opposed to the rodent. The data suggest the possibility that CCK-A receptors may be involved in a number of important brain functions as diverse as the processing of sensory information from the gut, the regulation of hormone secretion, and the activity of dopamine cell activity

  12. Management of gallbladder dyskinesia: patient outcomes following positive 99mtechnetium (Tc)-labelled hepatic iminodiacetic acid (HIDA) scintigraphy with cholecystokinin (CCK) provocation and laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Dave, R.V.; Pathak, S.; Cockbain, A.J.; Lodge, J.P.; Smith, A.M.; Chowdhury, F.U.; Toogood, G.J.

    2015-01-01

    Aims: To evaluate clinical outcomes in patients with typical biliary pain, normal ultrasonic findings, and a positive 99m technetium (Tc)-labelled hepatic iminodiacetic acid analogue (HIDA) scintigraphy with cholecystokinin (CCK) provocation indicating gallbladder dyskinesia, as per Rome III criteria, undergoing laparoscopic cholecystectomy (LC). Methods and materials: Consecutive patients undergoing LC for gallbladder dyskinesia were identified retrospectively. They were followed up by telephone interview and review of the electronic case records to assess symptom resolution. Results: One hundred consecutive patients (median age 44; 80% female) with abnormal gallbladder ejection fraction (GB-EF <35%) were followed up for a median of 12 months (range 2–80 months). Following LC, 84% reported symptomatic improvement and 52% had no residual pain. Twelve percent had persisting preoperative-type pain of either unchanged or worsening severity. Neither pathological features of chronic cholecystitis (87% of 92 incidences when histology available) nor reproduction of pain on CCK injection were significantly predictive of symptom outcome or pain relief post-LC. Conclusion: In one of the largest outcome series of gallbladder dyskinesia patients in the UK with a positive provocation HIDA scintigraphy examination and LC, the present study shows that the test is a useful functional diagnostic tool in the management of patients with typical biliary pain and normal ultrasound, with favourable outcomes following surgery. - Highlights: • Gallbladder dyskinesia (GD) is a challenging condition to diagnose and treat. • This study evaluated clinical outcomes following laparoscopic cholecystectomy (LC). • There was sustained symptomatic benefit in >80% following surgery. • Pre-operative counselling before LC is important

  13. Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis

    International Nuclear Information System (INIS)

    Matozaki, T.; Williams, J.A.

    1989-01-01

    Changes in the cellular content of 1,2-diacylglycerol (DAG) in isolated rat pancreatic acini in response to agonist stimulation were studied using a sensitive mass assay. When acini were stimulated by 10 nM COOH-terminal cholecystokinin-octapeptide (CCK8), the increase in DAG was biphasic, consisting of an early peak at 5 s and a second, larger, gradual increase that was maximal by 15 min. The basal level of DAG in acini was 1.04 nmol/mg of protein, which was increased to 1.24 nmol/mg of protein at 5 s and 2.76 nmol/mg of protein at 30 min. In comparison, the increase in DAG stimulated by 30 pM CCK8, a submaximal concentration for amylase release, was monophasic, increasing without an early peak but sustained to 60 min. Other Ca2+-mobilizing secretagogues such as carbamylcholine and bombesin increased DAG in acini, whereas vasoactive intestinal peptide, which acts to increase cAMP, had no effect. Phorbol ester and Ca2+ ionophore also stimulated DAG production. Analysis of the mass level of inositol 1,4,5-trisphosphate (1,4,5-IP3) showed that the generation of 1,4,5-IP3 stimulated by 10 nM CCK8 peaked at 5 s, a finding consistent with the early peak of DAG. The basal level was 4.7 pmol/mg of protein, which was increased to 144.6 pmol/mg of protein at 5 s by 10 nM CCK8. The levels of 1,4,5-IP3 then returned toward basal in contrast to the gradual and sustained increase of DAG. The dose dependencies of 1,4,5-IP3 and DAG formation at 5 s with respect to CCK8 were almost identical. This suggests that phosphatidylinositol 4,5-bisphosphate hydrolysis is a major source of the early increase in DAG but not of the sustained increase in DAG. Therefore, a possible contribution of phosphatidylcholine hydrolysis to DAG formation was examined utilizing acini prelabeled with [3H]choline. CCK8 (1 nM) maximally increased [3H]choline metabolite release by 133% of control at 30 min

  14. Common Hepatic Branch of Vagus Nerve-Dependent Expression of Immediate Early Genes in the Mouse Brain by Intraportal L-Arginine: Comparison with Cholecystokinin-8

    Directory of Open Access Journals (Sweden)

    Daisuke Yamada

    2017-06-01

    Full Text Available Information from the peripheral organs is thought to be transmitted to the brain by humoral factors and neurons such as afferent vagal or spinal nerves. The common hepatic branch of the vagus (CHBV is one of the main vagus nerve branches, and consists of heterogeneous neuronal fibers that innervate multiple peripheral organs such as the bile duct, portal vein, paraganglia, and gastroduodenal tract. Although, previous studies suggested that the CHBV has a pivotal role in transmitting information on the status of the liver to the brain, the details of its central projections remain unknown. The purpose of the present study was to investigate the brain regions activated by the CHBV. For this purpose, we injected L-arginine or anorexia-associated peptide cholecystokinin-8 (CCK, which are known to increase CHBV electrical activity, into the portal vein of transgenic Arc-dVenus mice expressing the fluorescent protein Venus under control of the activity-regulated cytoskeleton-associated protein (Arc promotor. The brain slices were prepared from these mice and the number of Venus positive cells in the slices was counted. After that, c-Fos expression in these slices was analyzed by immunohistochemistry using the avidin-biotin-peroxidase complex method. Intraportal administration of L-arginine increased the number of Venus positive or c-Fos positive cells in the insular cortex. This action of L-arginine was not observed in CHBV-vagotomized Arc-dVenus mice. In contrast, intraportal administration of CCK did not increase the number of c-Fos positive or Venus positive cells in the insular cortex. Intraportal CCK induced c-Fos expression in the dorsomedial hypothalamus, while intraportal L-arginine did not. This action of CCK was abolished by CHBV vagotomy. Intraportal L-arginine reduced, while intraportal CCK increased, the number of c-Fos positive cells in the nucleus tractus solitarii in a CHBV-dependent manner. The present results suggest that the CHBV

  15. Nonsulfated cholecystokinins in cerebral neurons

    DEFF Research Database (Denmark)

    Agersnap, Mikkel; Zhang, Ming-Dong; Harkany, Tibor

    2016-01-01

    ) and rats (n=6) contained nonsulfated CCK. The highest concentrations were measured in the neocortex; 4.7±0.25pmol/g (7.4%) in the rat and 4.3±1.88pmol/g (2.3%) in the pig. Chromatography of porcine cortical extracts revealed that 96.4% of the CCK was O-sulfated CCK-8. A higher fraction of the larger...

  16. Plasma cholecystokinin in obese patients before and after jejunoileal bypass with 3:1 or 1:3 jejunoileal ratio--no role in the increased risk of gallstone formation

    DEFF Research Database (Denmark)

    Sørensen, T I; Toftdahl, D B; Højgaard, L

    1994-01-01

    BACKGROUND AND AIM: Jejunoileal bypass surgery for obesity increases the risk of gallstone formation, and, contrary to expectations, the incidence is greater in patients with a long as compared to a short ileum left in continuity. Impaired gallbladder motility due to reduced cholecystokinin (CCK...... bypass surgery with either a 1:3 jejunoileal ratio (n = 14) or a 3:1 ratio (n = 15), and in unoperated obese patients (n = 7). Plasma CCK levels were determined during fasting and during 150 min following ingestion of a liquid test meal. RESULTS: There were no significant changes over time following......) stimulation could be an explanation. The aim of this study was to investigate the CCK levels in such patients. SETTING: The randomized trial of bypass surgery named The Danish Obesity Project. DESIGN AND METHODS: We compared plasma levels of CCK in obese patients at three, nine or 15 months after jejunoileal...

  17. Neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) in winter skate (Raja ocellata): cDNA cloning, tissue distribution and mRNA expression responses to fasting.

    Science.gov (United States)

    MacDonald, Erin; Volkoff, Hélène

    2009-04-01

    cDNAs encoding for neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) were cloned in an elasmobranch fish, the winter skate. mRNA tissue distribution was examined for the three peptides as well as the effects of two weeks of fasting on their expression. Skate NPY, CART and CCK sequences display similarities with sequences for teleost fish but in general the degree of identity is relatively low (50%). All three peptides are present in brain and in several peripheral tissues, including gut and gonads. Within the brain, the three peptides are expressed in the hypothalamus, telencephalon, optic tectum and cerebellum. Two weeks of fasting induced an increase in telencephalon NPY and an increase in CCK in the gut but had no effects on hypothalamic NPY, CART and CCK, or on telencephalon CART. Our results provide basis for further investigation into the regulation of feeding in winter skate.

  18. Development of new methods for the radioactive labelling of compounds useful in biology. Application to the study of digestive tract hormones and their analogues (gastrine, pentagastrine, cholecystokinine, pancreozymine, caeruleine, somatostatine)

    International Nuclear Information System (INIS)

    Girma, J.-P.

    1976-01-01

    To establish the kinetics of fixation on receptor sites, tissular distribution and metabolism of hormones, it is necessary to obtain high specific activity labelled hormones possessing biological activities identical with those of the originals. In this context two aims were pursued: hormonal peptide labelling at high specific radioactivity; research on the biological fate of the intermediate compounds involved in the preparations. This research was centred chiefly on gastrine, caeruleine, cholecystokinine and pentagastrine, structural analogues representing one of the two groups of digestive tract hormones (the gastrine family). After a brief review of present knowledge on the gastro-intestinal system; the hormones selected are situated in their biological context. Part two is devoted mainly to the study of iodine and tritium labelling of peptides and includes the adaptation of an existing method to the problem of gastrine labelling and the development of two new tritium-labelling methods, one specific to tryptophanyl residues and the other to tyrosyl residues. Finally the separation of modified hormones during the preparations offered the occasion to develop a study of the biological behavior of these analogues [fr

  19. Ghrelin suppresses cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) in the intestine, and attenuates the anorectic effects of CCK, PYY and GLP-1 in goldfish (Carassius auratus).

    Science.gov (United States)

    Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Valenciano, Ana Isabel; Delgado, María Jesús; Unniappan, Suraj

    2017-07-01

    Ghrelin is an important gut-derived hormone with an appetite stimulatory role, while most of the intestinal hormones, including cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), are appetite-inhibitors. Whether these important peptides with opposing roles on food intake interact to regulate energy balance in fish is currently unknown. The aim of this study was to characterize the putative crosstalk between ghrelin and CCK, PYY and GLP-1 in goldfish (Carassius auratus). We first determined the localization of CCK, PYY and GLP-1 in relation to ghrelin and its main receptor GHS-R1a (growth hormone secretagogue 1a) in the goldfish intestine by immunohistochemistry. Colocalization of ghrelin/GHS-R1a and CCK/PYY/GLP-1 was found primarily in the luminal border of the intestinal mucosa. In an intestinal explant culture, a significant decrease in prepro-cck, prepro-pyy and proglucagon transcript levels was observed after 60min of incubation with ghrelin, which was abolished by preincubation with the GHS-R1a ghrelin receptor antagonist [D-Lys3]-GHRP-6 (except for proglucagon). The protein expression of PYY and GLP-1 was also downregulated by ghrelin. Finally, intraperitoneal co-administration of CCK, PYY or GLP-1 with ghrelin results in no modification of food intake in goldfish. Overall, results of the present study show for the first time in fish that ghrelin exerts repressive effects on enteric anorexigens. It is likely that these interactions mediate the stimulatory effects of ghrelin on feeding and metabolism in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cholecystokinin-From Local Gut Hormone to Ubiquitous Messenger

    DEFF Research Database (Denmark)

    Rehfeld, Jens F

    2017-01-01

    pancreatic enzyme secretion and growth, gallbladder contraction, and gut motility, satiety and inhibit acid secretion from the stomach. Moreover, they are major neurotransmitters in the brain and the periphery. CCK peptides also stimulate calcitonin, insulin, and glucagon secretion, and they may act...

  1. Supersensitive gastrin assay using antibodies raised against a cholecystokinin homolog

    DEFF Research Database (Denmark)

    Rehfeld, Jens F; Ericsson, Peter

    2012-01-01

    Peptide hormones may occur in particularly low amounts in samples from small animals. Hence, in a rat microdialysis study conventional immunoassays were not sufficiently sensitive to measure gastrin in the dialysis samples. We therefore exploited the observation that antibodies raised against...... that obtained with the most avid conventional gastrin antibodies. The results may encourage similar approaches for other peptides using homologue-raised antibodies when supersensitivity is required....

  2. In vivo sulfation of cholecystokinin octapeptide. Possible interactions of the two forms of cholecystokinin with dopamine in the brain

    International Nuclear Information System (INIS)

    Penke, B.; Kovacs, G.L.; Zsigo, J.; Kadar, T.; Szabo, G.; Kovacs, K.; Telegdy, G.

    1985-01-01

    In most laboratories CCK-8(s) has been found to be the biologically active form of CCK-8 in the CNS. The role of CCK-8(ns) has scarcely been investigated and is poorly understood. These results point to the equivalence of CCK-8(s) and CCK-8(ns) in the CNS in most biological tests. It is most likely that a brain receptor population exists which can bind both forms of CCK-8 and even CCK-4. Nevertheless, the CNS could contain binding sites which bind only CCK-8(s) as a ligand. The authors have found that an unidentified sulfotransferase of the brain can sulfate CCK-8(ns) and thereby provide a ligand for the special receptors of CCK-8(s). The authors have focused their investigations on the enzymic sulfation-desulfation processes of both CCK-8 and DA and have devised a hypothetical model for the possible interactions. Both CCK-8(ns) and DA could be sulfated in vivo, this enzymic reaction generally requiring active sulfate (PAPS). These two compounds could compete for the limited pool of PAPS, and thus CCK-8 and DA could mutually regulate their levels in the same cell by influencing one of the metabolic (DA) or synthetic (CCK-8(s)) pathways

  3. Characterization of the three different states of the cholecystokinin (CCK) receptor in pancreatic acini.

    Science.gov (United States)

    Talkad, V D; Patto, R J; Metz, D C; Turner, R J; Fortune, K P; Bhat, S T; Gardner, J D

    1994-10-20

    By measuring binding of [125I]CCK-8 and [3H]L-364,718 to rat pancreatic acini we demonstrated directly that the pancreatic CCK receptor can exist in three different affinity states with respect to CCK--high affinity, low affinity and very low affinity. Binding of [125I]CCK-8 reflects interaction of the tracer with the high and low affinity states, whereas binding of [3H]L-364,718 reflects interaction of the tracer with the low and very low affinity states. Treating acini with carbachol abolished the high affinity state of the CCK receptor and converted approximately 25% of the low affinity receptors to the very low affinity state. Carbachol treatment was particularly useful in establishing the values of Kd for the high and low affinity states for different CCK receptor agonists and antagonists. Of the various CCK receptor agonists tested, CCK-8 had the highest affinity for the high affinity state (Kd approximately 1 nM), whereas CCK-JMV-180 had the highest affinity for the low (Kd 7 nM) and very low affinity (Kd 200 nM) states. Gastrin and de(SO4)CCK-8 had affinities for the high and low affinity states of the receptor that were 100- to 400-fold less than those of CCK-8 but had affinities for the very low affinity state that were only 3- to 10-fold less than that of CCK-8. CCK receptor antagonists showed several patterns in interacting with the different states of the CCK receptor. L-364,718 had the same affinity for each state of the CCK receptor. CR1409 and Bt2cGMP each had similar affinities for the high and low affinity states and lower affinity for the very low affinity state. L-365,260 and CCK-JMV-179 had the highest affinity for the low affinity state and lower affinities for the high and very low affinity states. Different CCK receptor agonists caused the same maximal stimulation of amylase secretion but showed different degrees of amplification in terms of the relationship between their abilities to stimulate amylase secretion and their abilities to occupy the low affinity state of the CCK receptor. When amplification was expressed quantitatively as the value of Kd for the low affinity state divided by the corresponding EC50 for stimulating amylase secretion the values were CCK-8 (1000), de(SO)CCK-8 (1500), gastrin (100) and CCK-JMV-180 (Menozzi, D., Vinayek, R., Jensen, R.T. and Gardner, J.D. (1991) J. Biol. Chem. 266, 10385-1091).(ABSTRACT TRUNCATED AT 400 WORDS)

  4. Cholecystokinin (CCK) functional cholescintigraphy (FC) in patients suspected of acalculous biliary disease (ABD)

    International Nuclear Information System (INIS)

    Fink-Bennett, D.; De Ridder, P.; Kolozsi, W.; Gordon, R.; Rapp, J.

    1984-01-01

    To determine if CCK FC can aid in the diagnosis (Dx.) of ABD, the authors retrospectively analyzed the max. gallbladder (GB) ejection fraction response (EFR) to CCK in 240 patients (pts.) with persistent symptoms of biliary colic, a normal GB Ultrasound exam and/or OCG. Each pt. (NPO after 12 A.M.) received 5 mCi of technetium (Tc)-99 Hepatolite. After max GB filling, .02 μg/kg CCK was administered (1-3 minutes) I.V. Background corrected GB EFs were determined q.5 min x4 by ratioing the pre-CCK GB cts. minus post-CCK GB cts. to pre-CCK GB cts. In 131/240 pts. the max. GBEFR was 35%. Eleven underwent surgery, 98 medical Rx. 4/11 Cx. apts had CAC, 7 were normal. Of the 98 medical Rx. pts. 21 lack followup, 71 are clinically felt not to have ABD; 6 are felt to have ABD. CCK FC appears to be a useful test for the detection of ABD. Its predictive value (GBEF <35%) in Cx. pts. is 97%; in all pts. (assuming medical Rx. correct), 94% (sensitivity - 91%, specificity - 93%)

  5. Cholecystokinin Receptor-Targeted Polyplex Nanoparticle Inhibits Growth and Metastasis of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Julian Burks

    2018-01-01

    Conclusions: Our polyplex nanoparticle platform establishes both a strong foundation for the development of receptor-targeted therapeutics and a unique approach for the delivery of siRNA in vivo, thus warranting further exploration of this approach in other types of cancers.

  6. Effect of cholecystokinin on feeding is attenuated in monosodium glutamate obese mice

    Czech Academy of Sciences Publication Activity Database

    Maletínská, Lenka; Toma, Resha Shamas; Pirnik, Z.; Kiss, A.; Slaninová, Jiřina; Haluzík, M.; Železná, Blanka

    2006-01-01

    Roč. 136, č. 1/3 (2006), s. 58-63 ISSN 0167-0115 R&D Projects: GA ČR(CZ) GA303/05/0614 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : monosodium glutamate * obesity * cholecistokinin * feeding behavior Subject RIV: CE - Biochemistry Impact factor: 2.442, year: 2006

  7. Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin

    International Nuclear Information System (INIS)

    Gaudreau, P.; Quirion, R.; St Pierre, S.; Pert, C.B.

    1983-01-01

    [ 3 H]Pentagastrin binds specifically to an apparent single class of CCK receptors on slide-mounted sections of rat brain (KD . 5.6 nM; Bmax . 36.6 fmol/mg protein). This specific binding is temperature-dependent and regulated by ions and nucleotides. The relative potencies of C-terminal fragments of CCK-8(SO 3 H), benzotript and proglumide in inhibiting specific [ 3 H]pentagastrin binding to CCK brain receptors reinforce the concept of different brain and pancreas CCK receptors. CCK receptors were visualized by using tritium-sensitive LKB film analyzed by computerized densitometry. CCK receptors are highly concentrated in the cortex, dentate gyrus, granular and external plexiform layers of the olfactory bulb, anterior olfactory nuclei, olfactory tubercle, claustrum, accumbens nucleus, some nuclei of the amygdala, thalamus and hypothalamus

  8. Cholecystokinin-8 suppressed /sup 3/H-etorphine binding to rat brain opiate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.J.; Fan, S.G.; Ren, M.F.; Han, J.S.

    1989-01-01

    Radioreceptor assay (RRA) was adopted to analyze the influence of CCK-8 on /sup 3/H-etorphine binding to opiate receptors in rat brain synaptosomal membranes (P2). In the competition experiment CCK-8 suppressed the binding of /sup 3/H-etorphine. This effect was completely reversed by proglumide at 1/mu/M. Rosenthal analysis for saturation revealed two populations of /sup 3/H-etorphine binding sites. CCK-8 inhibited /sup 3/H-etorphine binding to the high affinity sites by an increase in Kd and decrease in Bmax without significant changes in the Kd and Bmax of the low affinity sites. This effect of CCK-8 was also completely reversed by proglumide at 1/mu/M. Unsulfated CCK-8 produced only a slight increase in Kd of the high affinity sites without affecting Bmax. The results suggest that CCK-8 might be capable of suppressing the high affinity opioid binding sites via the activation of CCK receptor.

  9. Thylakoids promote release of the satiety hormone cholecystokinin while reducing insulin in healthy humans

    DEFF Research Database (Denmark)

    Köhnke, Rickard; Lindbo, Agnes; Larsson, Therese

    2009-01-01

    (CCK, leptin and ghrelin), insulin and blood metabolites (glucose and free fatty acids). RESULTS: The CCK level increased, in particular between the 120 min time-point and onwards, the ghrelin level was reduced at 120 min and leptin level increased at 360 min after intake of the thylakoid-enriched meal....... The insulin level was reduced, whereas glucose concentrations were unchanged. Free fatty acids were reduced between time-point 120 min and onwards after the thylakoid meal. CONCLUSIONS: The addition of thylakoids to energy-dense food promotes satiety signals and reduces insulin response during a single meal......OBJECTIVE: The effects of a promising new appetite suppressor named "thylakoids" (membrane proteins derived from spinach leaves) were examined in a single meal in man. Thylakoids inhibit the lipase/colipase hydrolysis of triacylglycerols in vitro and suppress food intake, decrease body-weight gain...

  10. Electroacupuncture modulation of reflex hypertension in rats: role of cholecystokinin octapeptide

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Longhurst, John C.

    2013-01-01

    Acupuncture or electroacupuncture (EA) potentially offers a nonpharmacological approach to reduce high blood pressure (BP). However, ∼70% of the patients and animal subjects respond to EA, while 30% do not. EA acts, in part, through an opioid mechanism in the rostral ventrolateral medulla (rVLM) to inhibit sympathoexcitatory reflexes induced by gastric distention. CCK-8 opposes the action of opioids during analgesia. Therefore, we hypothesized that CCK-8 in the rVLM antagonizes EA modulation of sympathoexcitatory cardiovascular reflex responses. Male rats anesthetized with ketamine and α-chloralose subjected to repeated gastric distension every 10 min were examined for their responsiveness to EA (2 Hz, 0.5 ms, 1–4 mA) at P5-P6 acupoints overlying median nerve. Repeated gastric distension every 10 min evoked consistent sympathoexcitatory responses. EA at P5-P6 modulated gastric distension-induced responses. Microinjection of CCK-8 in the rVLM reversed the EA effect in seven responders. The CCK1 receptor antagonist devazepide microinjected into the rVLM converted six nonresponders to responders by lowering the reflex response from 21 ± 2.2 to 10 ± 2.9 mmHg (first vs. second application of EA). The EA modulatory action in rats converted to responders with devazepide was reversed with rVLM microinjection of naloxone (n = 6). Microinjection of devazepide in the absence of a second application of EA did not influence the primary pressor reflexes of nonresponders. These data suggest that CCK-8 antagonizes EA modulation of sympathoexcitatory cardiovascular responses through an opioid mechanism and that inhibition of CCK-8 can convert animals that initially are unresponsive to EA to become responsive. PMID:23785073

  11. Cholecystokinin-2 receptor mediated gene expression in neuronal PC12 cells

    DEFF Research Database (Denmark)

    Hansen, Thomas v O; Borup, Rehannah; Marstrand, Troels

    2007-01-01

    could be identified. Comparison with forskolin- and nerve growth factor (NGF)-treated PC12 cells showed that CCK induced a separate set of target genes. Taken together, we propose that neuronal CCK may have a role in the regulation of the circadian rhythm, the metabolism of cerebral cholesterol...... of neuronal CCK are incompletely understood. To identify genes regulated by neuronal CCK, we generated neuronal PC12 cells stably expressing the CCK-2 receptor (CCK-2R) and treated the cells with sulphated CCK-8 for 2-16 h, before the global expression profile was examined. The changes in gene expression...... peaked after 2 h, with 67 differentially expressed transcripts identified. A pathway analysis indicated that CCK was implicated in the regulation of the circadian clock system, the plasminogen system and cholesterol metabolism. But transcripts encoding proteins involved in dopamine signaling, ornithine...

  12. Feeding-related effects of cart (cocaine and amphetamine regulated transcript) peptides and cholecystokinin in mouse obese models

    Czech Academy of Sciences Publication Activity Database

    Maletínská, Lenka; Maixnerová, Jana; Toma, Resha Shamas; Haugvicová, Renata; Slaninová, Jiřina; Železná, Blanka

    2006-01-01

    Roč. 12, Supplement (2006), s. 178 ISSN 1075-2617. [European Peptide Symposium /29./. 03.09.2006-08.09.2006, Gdansk] Institutional research plan: CEZ:AV0Z40550506 Keywords : CART peptides * food intake * mouse obesity * CCK Subject RIV: CC - Organic Chemistry

  13. Cholecystokinin (CCK) functional cholescintigraphic findings in patients with a partial cystic duct obstruction - the cystic duct syndrome (CDS)

    International Nuclear Information System (INIS)

    Fink-Bennett, D.; DeRidder, P.; Kolozsi, W.; Gordon, R.

    1984-01-01

    Fourteen patients (pts.) with a CDS underwent CCK functional cholescintigraphy (FC). All pts. presented with persistent post-prandial right upper quadrant pain and biliary colic. None had an abnormal OCG, gallbladder (GB) ultrasound exam or upper G.I. series. All had macro- or microscopically abnormal cystic ducts (5 fibrotic, 7 elongated and narrow, 2 kinked) with (12) or without (2) concomitant chronic cholecystitis. Each pt. (NPO after 12 A.M.) received 5 mCi of technetium (TC)-99m Hepatolite. When the GB max. filled, .02 ug/kg CCK was administered (3 min.) I.V. Background corrected GBEFs were determined q.5 min. x 4 by ratioing the pre-CCK GB cts. minus post-CCK GB cts. to pre-CCK GB cts. GB EFRs were: 3 (12%), 2 (17%), and 1 each 0%, 1.3%, 3%, 4%, 6%, 11%, 14%, 18.5% and 22%. No pt. with a partially occluded cystic duct with or without concomitant chronic cholecystitis had an ejection fraction that exceeded 22%. In an appropriate clinical setting, a low ejection fraction response to CCK should alert the physician to the presence of either chronic acalculous cholecystitis, CDS, or the combination of both

  14. Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides

    DEFF Research Database (Denmark)

    Rehfeld, J F

    2011-01-01

    and neonatal islets express significant amounts of gastrin, and human as well as porcine islet cells express the gastrin/CCK-B receptor abundantly. Therefore, exogenous gastrin and CCK peptides stimulate insulin and glucagon secretion in man. Accordingly, endogenous hypergastrinaemia is accompanied by islet...... cell hyperplasia and increased insulin secretion. Conventionally, the effect of gastrointestinal hormones on insulin secretion (the incretin effect) has been defined and quantified in relation to oral versus intravenous glucose loadings. Under these unphysiological conditions, the release of gastrin...

  15. Gastrin and Cholecystokinin of the Bullfrog, Rana catesbeiana, Have Distinct Effects on Gallbladder Motility and Gastric Acid Secretion in Vitro

    DEFF Research Database (Denmark)

    Nielsen, Kaj; Bomgren, Peter; Holmgren, Susanne

    1998-01-01

    distinct members of the CCK/gastrin family were identified in the bullfrog (Rana catesbeiana), termed CCK and gastrin. Frog gastrin is very similar to CCK in the region defining biological activity. To evaluate whether the two endogenous peptides have distinct properties, their effects were studied...... values are 3.1 and 17.2 nM, respectively. Furthermore, gastrin had a significantly higher efficacy than CCK-8s. Thus, in spite of their close structural resemblance, there are clear differences between the two endogenous peptides in their action on gallbladder and gastric mucosa. It is concluded...

  16. Duodeno gastric reflux in peptic ulcer disease: gall bladder emptying provoked by cholecystokinin or a fatty meal

    International Nuclear Information System (INIS)

    Harding, L.K.; Donovan, I.A.; Mosimann, F.; Drumm, J.; Alexander-Williams, J.

    1986-01-01

    A wide range of incidence of diodeno-gastric bile reflux has been reported in patients with duodenal ulcer (DU) or gastric ulcer (GU). Using either 100 units of CCK i/v or a fatty meal of 320 Cal containing 20 g fat to contract the gall bladder, we have investigated the incidence of reflux in 170 subjects: CCK (Control: 20; DU: 60; GU: 19), Meal (Control: 19; DU: 37; GU: 15). The CCK or meal was given in the supine subject 30 minutes after injection of 75 MBq sup(99m)Tc diethyl Hida. Reflux was considered present if labelled bile was seen in the stomach on 3 successive 2 minute gamma camera pictures. The percentage of patients showing reflux was as follows: CCK (Control: 45%; DU: 53%; GU: 58%), Meal (Control: 11%; DU: 24%; GU: 40%). These results have been compared using the Chi-squared test. There was no significant difference in the incidence of reflux between control, DU or GU patients either in the group of patients given CCK or a meal. However, reflux was more common after CCK than the meal in control subjects (p<0.05) and in those with DU (p<0.01) but not in those with GU. We conclude that the stimulus given to contract the gall bladder affects the incidence of reflux, and that any significant difference in reflux incidence of DU or GU patients may become apparent when more patients are studied. (Author)

  17. Thylakoids suppress appetite by increasing cholecystokinin resulting in lower food intake and body weight in high-fat fed mice

    DEFF Research Database (Denmark)

    Köhnke, Rickard; Lindqvist, Andreas; Göransson, Nathanael

    2009-01-01

    Thylakoids are membranes isolated from plant chloroplasts which have previously been shown to inhibit pancreatic lipase/colipase catalysed hydrolysis of fat in vitro and induce short-term satiety in vivo. The purpose of the present study was to examine if dietary supplementation of thylakoids cou...

  18. Cholecystokinin regulates satiation idependently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy

    NARCIS (Netherlands)

    Ripken, D.; Wielen, van der N.; Meulen, van der J.; Schuurman, T.; Witkamp, R.F.; Hendriks, H.F.J.; Koopmans, S.J.

    2015-01-01

    The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to

  19. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Meulen, J. van der; Schuurman, T.; Witkamp, R.F.; Hendriks, H.F.J.; Koopmans, S.J.

    2015-01-01

    The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to

  20. Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice

    Czech Academy of Sciences Publication Activity Database

    Maletínská, Lenka; Maixnerová, Jana; Matyšková, Resha; Haugvicová, Renata; Pirnik, Z.; Kiss, A.; Železná, Blanka

    2008-01-01

    Roč. 9, č. 101 (2008), s. 1-10 ISSN 1471-2202 R&D Projects: GA ČR GA303/05/0614 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50200510 Keywords : mice * food intake * CART peptide Subject RIV: CE - Biochemistry Impact factor: 2.850, year: 2008

  1. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan

    2010-01-01

    FOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar t, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting......, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of c...

  2. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan

    2010-01-01

    FOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting......, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of c...

  3. The Synergistic Roles of Cholecystokinin B and Dopamine D5 Receptors on the Regulation of Renal Sodium Excretion.

    Directory of Open Access Journals (Sweden)

    Xiaoliang Jiang

    Full Text Available Renal dopamine D1-like receptors (D1R and D5R and the gastrin receptor (CCKBR are involved in the maintenance of sodium homeostasis. The D1R has been found to interact synergistically with CCKBR in renal proximal tubule (RPT cells to promote natriuresis and diuresis. D5R, which has a higher affinity for dopamine than D1R, has some constitutive activity. Hence, we sought to investigate the interaction between D5R and CCKBR in the regulation of renal sodium excretion. In present study, we found D5R and CCKBR increase each other's expression in a concentration- and time-dependent manner in the HK-2 cell, the specificity of which was verified in HEK293 cells heterologously expressing both human D5R and CCKBR and in RPT cells from a male normotensive human. The specificity of D5R in the D5R and CCKBR interaction was verified further using a selective D5R antagonist, LE-PM436. Also, D5R and CCKBR colocalize and co-immunoprecipitate in BALB/c mouse RPTs and human RPT cells. CCKBR protein expression in plasma membrane-enriched fractions of renal cortex (PMFs is greater in D5R-/- mice than D5R+/+ littermates and D5R protein expression in PMFs is also greater in CCKBR-/- mice than CCKBR+/+ littermates. High salt diet, relative to normal salt diet, increased the expression of CCKBR and D5R proteins in PMFs. Disruption of CCKBR in mice caused hypertension and decreased sodium excretion. The natriuresis in salt-loaded BALB/c mice was decreased by YF476, a CCKBR antagonist and Sch23390, a D1R/D5R antagonist. Furthermore, the natriuresis caused by gastrin was blocked by Sch23390 while the natriuresis caused by fenoldopam, a D1R/D5R agonist, was blocked by YF476. Taken together, our findings indicate that CCKBR and D5R synergistically interact in the kidney, which may contribute to the maintenance of normal sodium balance following an increase in sodium intake.

  4. Occupation of low-affinity cholecystokinin (CCK) receptors by CCK activates signal transduction and stimulates amylase secretion in pancreatic acinar cells.

    Science.gov (United States)

    Vinayek, R; Patto, R J; Menozzi, D; Gregory, J; Mrozinski, J E; Jensen, R T; Gardner, J D

    1993-03-10

    Based on the effects of monensin on binding of 125I-CCK-8 and its lack of effect on CCK-8-stimulated amylase secretion we previously proposed that pancreatic acinar cells possess three classes of CCK receptors: high-affinity receptors, low-affinity receptors and very low-affinity receptors [1]. In the present study we treated pancreatic acini with carbachol to induce a complete loss of high-affinity CCK receptors and then examined the action of CCK-8 on inositol trisphosphate IP3(1,4,5), cytosolic calcium and amylase secretion in an effort to confirm and extend our previous hypothesis. We found that first incubating pancreatic acini with 10 mM carbachol decreased binding of 125I-CCK-8 measured during a second incubation by causing a complete loss of high-affinity CCK receptors with no change in the low-affinity CCK receptors. Carbachol treatment of acini, however, did not alter the action of CCK-8 on IP3(1,4,5), cytosolic calcium or amylase secretion or the action of CCK-JMV-180 on amylase secretion or on the supramaximal inhibition of amylase secretion caused by CCK-8. The present findings support our previous hypothesis that pancreatic acinar cells possess three classes of CCK receptors and suggest that high-affinity CCK receptors do not mediate the action of CCK-8 on enzyme secretion, that low-affinity CCK receptors may mediate the action of CCK on cytosolic calcium that does not involve IP3(1,4,5) and produce the upstroke of the dose-response curve for CCK-8-stimulated amylase secretion and that very low-affinity CCK receptors mediate the actions of CCK on IP3(1,4,5) and cytosolic calcium and produce the downstroke of the dose-response curve for CCK-8-stimulated amylase secretion. Moreover, CCK-JMV-180 is a full agonist for stimulating amylase secretion by acting at low-affinity CCK receptors and is an antagonist at very low-affinity CCK receptors.

  5. Gallbladder ejection fraction (GBEF): after 0.02(G/KG cholecystokinin (CCK) infusion over 30 minutes in patients with a low probability of gallbladder disease

    International Nuclear Information System (INIS)

    Docherty, P.; Micallef, L.; Gruenewald, S.; Larcos, G.

    2003-01-01

    Full text: Recent literature suggests that an infusion of 0.02 (g/Kg of CCK results in a narrower range of normal GBEF than an infusion 0.01(g/Kg of. Our aim was to investigate the effect of a 30-minutes infusion of 0.02 (g/Kg, in patients with a low probability of gallbladder disease. Sixty patients presenting with abdominal symptoms were referred to West mead Medical Imaging over a 9-month period for DISIDA biliary scans. 1-minute dynamic images were collected over 90 minutes. The CCK infusion was commenced when the gallbladder was well filled. GBEF was calculated from background corrected time activity curves over the gallbladder. Sixteen patients were excluded because of previous cholecystectomy or known gallbladder disease. Thirty-three patients were considered to have a low probability of gallbladder disease after final diagnoses were obtained from referring doctors. The mean GBEF for this group was 65.6%, SD 17.2 with a mean range 28-98% compared with mean 56.9%, SD 18.1 with a mean range 21-85% of our previous study using 0.01(gCCK. Females exhibited lower GBEFs than males while females under 50 gave the lowest mean. We concluded that the higher dose infusion causes more complete gallbladder emptying, and that there is a difference in GBEF between males and females of different ages. We question the validity of the same 'Normal' range being applied to both genders and all age groups. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  6. High-protein diet improves sensitivity to cholecystokinin and shifts the cecal microbiome without altering brain inflammation in diet-induced obesity in rats.

    Science.gov (United States)

    Wang, Lixin; Jacobs, Jonathan P; Lagishetty, Venu; Yuan, Pu-Qing; Wu, Shuping V; Million, Mulugeta; Reeve, Joseph R; Pisegna, Joseph R; Taché, Yvette

    2017-10-01

    High-protein diet (HPD) curtails obesity and/or fat mass, but it is unknown whether it reverses neuroinflammation or alters glucose levels, CCK sensitivity, and gut microbiome in rats fed a Western diet (WD)-induced obesity (DIO). Male rats fed a WD (high fat and sugar) for 12 wk were switched to a HPD for 6 wk. Body composition, food intake, meal pattern, sensitivity to intraperitoneal CCK-8S, blood glucose, brain signaling, and cecal microbiota were assessed. When compared with a normal diet, WD increased body weight (9.3%) and fat mass (73.4%). CCK-8S (1.8 or 5.2 nmol/kg) did not alter food intake and meal pattern in DIO rats. Switching to a HPD for 6 wk reduced fat mass (15.7%) with a nonsignificantly reduced body weight gain, normalized blood glucose, and decreased feeding after CCK-8S. DIO rats on the WD or switched to a HPD showed comparable microbial diversity. However, in HPD versus WD rats, there was enrichment of 114 operational taxonomic units (OTUs) and depletion of 188 OTUs. Of those, Akkermansia muciniphila (enriched on a HPD), an unclassified Clostridiales, a member of the RF39 order, and a Phascolarctobacterium were significantly associated with fat mass. The WD increased cytokine expression in the hypothalamus and dorsal medulla that was unchanged by switching to HPD. These data indicate that HPD reduces body fat and restores glucose homeostasis and CCK sensitivity, while not modifying brain inflammation. In addition, expansion of cecal Akkermansia muciniphila correlated to fat mass loss may represent a potential peripheral mechanism of HPD beneficial effects.

  7. Feed intake and brain neuropeptide Y (NPY) and cholecystokinin (CCK) gene expression in juvenile cobia fed plant-based protein diets with different lysine to arginine ratios.

    Science.gov (United States)

    Nguyen, Minh Van; Jordal, Ann-Elise Olderbakk; Espe, Marit; Buttle, Louise; Lai, Hung Van; Rønnestad, Ivar

    2013-07-01

    Cobia (Rachycentron canadum, Actinopterygii, Perciformes;10.5±0.1g) were fed to satiation with three plant-based protein test diets with different lysine (L) to arginine (A) ratios (LL/A, 0.8; BL/A, 1.1; and HL/A, 1.8), using a commercial diet as control for six weeks. The test diets contained 730 g kg(-1) plant ingredients with 505-529 g protein, 90.2-93.9 g lipid kg(-1) dry matter; control diet contained 550 g protein and 95 g lipid kg(-1) dry matter. Periprandial expression of brain NPY and CCK (npy and cck) was measured twice (weeks 1 and 6). At week one, npy levels were higher in pre-feeding than postfeeding cobia for all diets, except LL/A. At week six, npy levels in pre-feeding were higher than in postfeeding cobia for all diets. cck in pre-feeding cobia did not differ from that in postfeeding for all diets, at either time point. Cobia fed LL/A had lower feed intake (FI) than cobia fed BL/A and control diet, but no clear correlations between dietary L/A ratio and FI, growth and expression of npy and cck were detected. The data suggest that NPY serves as an orexigenic factor, but further studies are necessary to describe links between dietary L/A and regulation of appetite and FI in cobia. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The impact of lysine and arginine ratios in plant-based protein diets on appetite, growth performance and gene expression of brain neuropeptide Y (NPY) and cholecystokinin (CCK) in juvenile cobia (Rachycentron canadum)

    OpenAIRE

    Nguyen, Minh Van

    2013-01-01

    Aquaculture of cobia, Rachycentron canadum is hampered by lack of good feeding protocols and nutritionally optimized diets. Studies on the role of appetite and feeding behavior regulating neuropeptides in cobia have not been pursued to date. The current study initially assessed the impact of plant-based protein diets with different lysine (L) to arginine (A) ratios on appetite and feed intake, feed efficiencies, growth performance, and the deposition of protein and lipid in juv...

  9. Jejunal feeding is followed by a greater rise in plasma cholecystokinin, peptide YY, glucagon-like peptide 1, and glucagon-like peptide 2 concentrations compared with gastric feeding in vivo in humans

    NARCIS (Netherlands)

    Luttikhold, Joanna; Norren, Van Klaske; Rijna, Herman; Buijs, Nikki; Ankersmit, Marjolein; Heijboer, Annemieke C.; Gootjes, Jeannette; Hartmann, Bolette; Holst, Jens J.; Loon, Van Luc J.C.; Leeuwen, Van P.A.M.

    2016-01-01

    Background: Jejunal feeding is preferred instead of gastric feeding in patients who are intolerant to gastric feeding or at risk of aspiration. However, the impact of gastric feeding compared with that of jejunal feeding on postprandial circulating plasma glucose and amino acid concentrations and

  10. Jejunal feeding is followed by a greater rise in plasma cholecystokinin, peptide YY, glucagon-like peptide 1, and glucagon-like peptide 2 concentrations compared with gastric feeding in vivo in humans: a randomized trial

    NARCIS (Netherlands)

    Luttikhold, Joanna; van Norren, Klaske; Rijna, Herman; Buijs, Nikki; Ankersmit, Marjolein; Heijboer, Annemieke C.; Gootjes, Jeannette; Hartmann, Bolette; Holst, Jens J.; van Loon, Luc Jc; van Leeuwen, Paul Am

    2016-01-01

    Jejunal feeding is preferred instead of gastric feeding in patients who are intolerant to gastric feeding or at risk of aspiration. However, the impact of gastric feeding compared with that of jejunal feeding on postprandial circulating plasma glucose and amino acid concentrations and the associated

  11. Fasting and meal-induced CCK and PP secretion following intragastric balloon treatment for obesity

    NARCIS (Netherlands)

    Mathus-Vliegen, Elisabeth M. H.; de Groot, Gerrit H.

    2013-01-01

    Satiety is centrally and peripherally mediated by gastrointestinal peptides and the vagal nerve. We aimed to investigate whether intragastric balloon treatment affects satiety through effects on fasting and meal-stimulated cholecystokinin (CCK) and pancreatic polypeptide (PP) secretion. Patients

  12. Mechanism-Based Modeling of Gastric Emptying Rate and Gallbladder Emptying in Response to Caloric Intake

    DEFF Research Database (Denmark)

    Guiastrennec, B; Sonne, David Peick; Hansen, M

    2016-01-01

    Bile acids released postprandially modify the rate and extent of absorption of lipophilic compounds. The present study aimed to predict gastric emptying (GE) rate and gallbladder emptying (GBE) patterns in response to caloric intake. A mechanism-based model for GE, cholecystokinin plasma concentr......Bile acids released postprandially modify the rate and extent of absorption of lipophilic compounds. The present study aimed to predict gastric emptying (GE) rate and gallbladder emptying (GBE) patterns in response to caloric intake. A mechanism-based model for GE, cholecystokinin plasma...... concentrations, and GBE was developed on data from 33 patients with type 2 diabetes and 33 matched nondiabetic individuals who were administered various test drinks. A feedback action of the caloric content entering the proximal small intestine was identified for the rate of GE. The cholecystokinin...

  13. Localization of cholecystokininlike immunoreactivity in the rat spinal cord, with particular reference to the autonomic innervation of the pelvic organs

    DEFF Research Database (Denmark)

    Schrøder, H D

    1983-01-01

    tracing and immunocytochemistry revealed that the two cholecystokinin terminal fields characteristic for L1-L2 and that surrounding the intermediolateral nucleus in L6-S1 were situated corresponding to preganglionic neurons innervating pelvic organs through the hypogastric nerve or the pelvic nerves...... from the more cranial part with respect to type of afferent connections. The origin of the spinal cholecystokinin was investigated and it was found that neither complete transection of the spinal cord nor ipsilateral sectioning of three or four dorsal roots induced visible changes...

  14. Diagnostic informative value of gastroduodenal regulatory peptides of the blood serum on an empty stomach and after test breakfasts of various compositions

    International Nuclear Information System (INIS)

    Ablyazov, A.A.; Korot'ko, G.F.

    1992-01-01

    Gastrin, secretin and cholecystokinin were determined by a radioimmunoassay in healthy persons (19) and in patients with peptic ulcer (13) on an empty stomach and after test breakfasts with different nutrients. In the healthy persons the blood concentration of regulatory peptides was lower than in the patients. Breakfasts increased the concentrations of gastrin, secretin and cholecystokinin in the patients much more than in the controls. Some differences in changes of the blood concentration of peptides were noted with regard to a type of test breakfast. However differentiated reactions of the endocrine apparatus of the gastroduodenal complex in response to the breakfasts were not a reliable functional and diagnostic criterion

  15. Expression of receptors for gut peptides in human pancreatic adenocarcinoma and tumour-free pancreas

    NARCIS (Netherlands)

    Tang, C.; Biemond, I.; Offerhaus, G. J.; Verspaget, W.; Lamers, C. B.

    1997-01-01

    Gut hormones that modulate the growth of normal pancreas may also modulate the growth of cancers originating from pancreas. This study visualized and compared the receptors for cholecystokinin (CCK), bombesin (BBS), secretin and vasoactive intestinal peptide (VIP) in tumour-free tissue sections of

  16. Author Details

    African Journals Online (AJOL)

    Rooeintan, Y. Vol 8, No 4 (2016): Special Issue - Articles The effect of aqueous extract of caraway seed (Carum carvi) on cholecystokinin hormone in male rat. Abstract PDF. ISSN: 1112-9867. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  17. Time-resolved quantitative analysis of CCK1 receptor-induced intracellular calcium increase.

    NARCIS (Netherlands)

    Staljanssens, D.; Vos, W.H. De; Willems, P.H.; Camp, J. Van; Smagghe, G.

    2012-01-01

    Cholecystokinin (CCK) is a gastrointestinal hormone, which regulates many physiological functions such as satiety by binding to the CCK receptor (CCKR). Molecules, which recognize this receptor can mimic or block CCK signaling and thereby influence CCKR-mediated processes. We have set up a

  18. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women

    NARCIS (Netherlands)

    Pasman, W.J.; Heimerikx, J.; Rubingh, C.M.; Berg, R. van den; O'Shea, M.; Gambelli, L.; Hendriks, H.F.J.; Einerhand, A.W.C.; Scott, C.; Keizer, H.G.; Mennen, L.I.

    2008-01-01

    Appetite suppressants may be one strategy in the fight against obesity. This study evaluated whether Korean pine nut free fatty acids (FFA) and triglycerides (TG) work as an appetite suppressant. Korean pine nut FFA were evaluated in STC-1 cell culture for their ability to increase cholecystokinin

  19. The Noncaloric Sweetener Rebaudioside A Stimulates Glucagon-Like Peptide 1 Release and Increases Enteroendocrine Cell Numbers in 2-Dimensional Mouse Organoids Derived from Different Locations of the Intestine

    NARCIS (Netherlands)

    van der Wielen, Nikkie; Ten Klooster, Jean Paul; Muckenschnabl, Susanne; Pieters, Raymond; Hendriks, Henk Fj; Witkamp, Renger F; Meijerink, Jocelijn

    2016-01-01

    BACKGROUND: Glucagon-like peptide 1 (GLP-1) contributes to satiety and plays a pivotal role in insulin secretion and glucose homeostasis. Similar to GLP-1, peptide YY (PYY) and cholecystokinin also influence food intake. The secretion of these hormones by enteroendocrine cells along the intestine is

  20. The noncaloric sweetener rebaudioside a stimulates glucagon-like peptide 1 release and increases enteroendocrine cell numbers in 2-dimensional mouse organoids derived from different locations of the intestine

    NARCIS (Netherlands)

    Wielen, van der Nikkie; Klooster, ten Jean Paul; Muckenschnabl, Susanne; Pieters, Raymond; Hendriks, Henk F.J.; Witkamp, Renger F.; Meijerink, Jocelijn

    2016-01-01

    Background: Glucagon-like peptide 1 (GLP-1) contributes to satiety and plays a pivotal role in insulin secretion and glucose homeostasis. Similar to GLP-1, peptide YY (PYY) and cholecystokinin also influence food intake. The secretion of these hormones by enteroendocrine cells along the intestine

  1. NCBI nr-aa BLAST: CBRC-MEUG-01-2527 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MEUG-01-2527 ref|NP_001013868.1| cholecystokinin B receptor [Canis lupus famil...iaris] gb|AAB87706.1| gastrin/CCK-B receptor [Canis lupus familiaris] NP_001013868.1 1e-165 73% ...

  2. Sulfakinin is an important regulator of digestive processes in the migratory locust, Locusta migratoria

    Science.gov (United States)

    Sulfakinin (SK) is a sulfated insect neuropeptide that is best known for its function as a satiety factor. It displays structural and functional similarities with the vertebrate peptides gastrin and cholecystokinin. Peptidomic studies in multiple insects, crustaceans and arachnids have revealed th...

  3. The Dynamics of Gastric Emptying and Self-Reported Feelings of Satiation Are Better Predictors Than Gastrointestinal Hormones of the Effects of Lipid Emulsion Structure on Fat Digestion in Healthy Adults-A Bayesian Inference Approach

    DEFF Research Database (Denmark)

    Steingoetter, Andreas; Buetikofer, Simon; Curcic, Jelena

    2017-01-01

    and acid stability were stronger modulators of fat emptying and hormone profiles than were emulsion droplet size or redispersibility. Cholecystokinin and PYY were most strongly affected by fat emulsion instability and droplet size. Although both hormones were relevant predictors of gastric emptying, only...

  4. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex

    NARCIS (Netherlands)

    de Haan, Jacco J.; Hadfoune, M.'hamed; Lubbers, Tim; Hodin, Caroline; Lenaerts, Kaatje; Ito, Akihiko; Verbaeys, Isabelle; Skynner, Michael J.; Cailotto, Cathy; van der Vliet, Jan; de Jonge, Wouter J.; Greve, Jan-Willem M.; Buurman, Wim A.

    2013-01-01

    Nutritional stimulation of the cholecystokinin-1 receptor (CCK-1R) and nicotinic acetylcholine receptor (nAChR)-mediated vagal reflex was shown to reduce inflammation and preserve intestinal integrity. Mast cells are important early effectors of the innate immune response; therefore modulation of

  5. Quantitative hepatobiliary scintigraphy and endoscopic sphincter of Oddi manometry in patients with suspected sphincter of Oddi dysfunction: assessment of flow-pressure relationship in the biliary tract

    DEFF Research Database (Denmark)

    Madácsy, L; Middelfart, H V; Matzen, Peter

    2000-01-01

    %. No scintigraphic sign of a paradoxical response to cholecystokinin was detected. CONCLUSIONS: QHBS is a useful non-invasive diagnostic method for the selection of SOD patients with an elevated SO basal pressure. A significant correlation has been established between the trans-papillary bile flow measured by QHBS...

  6. NCBI nr-aa BLAST: CBRC-OPRI-01-1304 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OPRI-01-1304 ref|NP_001013868.1| cholecystokinin B receptor [Canis lupus famil...iaris] gb|AAB87706.1| gastrin/CCK-B receptor [Canis lupus familiaris] NP_001013868.1 0.0 91% ...

  7. Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    P. Laverman (Peter); L. Joosten; A. Eek (Annemarie); S. Roosenburg (Susan); P.K. Peitl; T. Maina (Theodosia); H.R. Mäcke (Helmut); L. Aloj (Luigi); E. von Guggenber (Elisabeth); J.K. Sosabowski (Jane); M. de Jong (Marion); J.-C. Reubi (Jean-Claude); W.J.G. Oyen (Wim); O.C. Boerman (Otto)

    2011-01-01

    textabstractPurpose Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide

  8. Comparative biodistribution of 12 (1)(1)(1)In-labelled gastrin/CCK2 receptor-targeting peptides

    NARCIS (Netherlands)

    Laverman, P.; Joosten, L.; Eek, A.; Roosenburg, S.; Peitl, P.K.; Maina, T.; Macke, H.; Aloj, L.; Guggenberg, E. von; Sosabowski, J.K.; Jong, M. de; Reubi, J.C.; Oyen, W.J.G.; Boerman, O.C.

    2011-01-01

    PURPOSE: Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several

  9. Inhibition of gastrin-stimulated gastric acid secretion by medium-chain triglycerides and long-chain triglycerides in healthy young men.

    NARCIS (Netherlands)

    Maas, M.I.M.; Hopman, W.P.M.; Katan, M.B.; Jansen, J.B.M.J.

    1996-01-01

    Long-chain triglycerides inhibit gastric acid secretion, but the effect of medium-chain triglycerides in humans is unknown. We compared the effects of intraduodenally perfused saline, medium-chain and long-chain triglycerides on gastrin-stimulated gastric acid secretion and cholecystokinin release.

  10. Beta-conglycinin and gut histology of sunshine bass fed diets with new varieties of non-GM soybeans

    Science.gov (United States)

    It is reported that the soybean protein (Beta-conglycinin) might cause inflammation of the distal intestine and stimulate endogenous cholecystokinin release that suppresses food intake in fish. We are studying the effects of meals made from new strains of non-GMO soybeans with high protein and redu...

  11. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats

    Directory of Open Access Journals (Sweden)

    Malihe Sadeghi

    2017-12-01

    Full Text Available Objective(s: Cholecystokinin (CCK has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S was injected (1.6 µg/kg, IP before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long term potentiation (LTP in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization in order to investigate synaptic plasticity. Results: Stress impaired spatial memory significantly (P

  12. Comparison of the dynamics of bile emptying by quantitative hepatobiliary scintigraphy before and after cholecystectomy in patients with uncomplicated gallstone disease

    DEFF Research Database (Denmark)

    Madácsy, L; Toftdahl, D B; Middelfart, H V

    1999-01-01

    of cholecystectomy on the bile flow has not yet been investigated. The goal of the current study was to examine the dynamics and normal variations of bile flow by quantitative hepatobiliary scintigraphy before and after cholecystectomy in a group of patients with uncomplicated gallstone disease. METHODS: Twenty...... patients were evaluated before and after cholecystectomy through cholecystokinin octapeptide-augmented quantitative hepatobiliary scintigraphy, and quantitative parameters of bile emptying (Tmax: time to peak activity, T1/2: half-emptying time before and after cholecystokinin octapeptide and duodenum...... appearance time) were determined and then compared. RESULTS: Before operation, the bile outflow displayed wide variations, with a moderately delayed common bile duct emptying time in some patients. After cholecystectomy, the T1/2 of the common bile duct decreased significantly when compared...

  13. The uncovering and characterization of a CCKoma syndrome in enteropancreatic neuroendocrine tumor patients

    DEFF Research Database (Denmark)

    Rehfeld, Jens F; Federspiel, Birgitte; Agersnap, Mikkel

    2016-01-01

    OBJECTIVE: Neuroendocrine tumors in the pancreas and the gastrointestinal tract may secrete hormones which cause specific syndromes. Well-known examples are gastrinomas, glucagonomas, and insulinomas. Cholecystokinin-producing tumors (CCKomas) have been induced experimentally in rats, but a CCKoma...... disease and diarrhea with permanently low gastrin in plasma suggest that CCKomas may mimic gastrinoma-like symptoms, because CCK peptides are full agonists of the gastrin/CCK-B receptor....

  14. Timeline of changes in appetite during weight loss with a ketogenic diet

    OpenAIRE

    Nymo, Siren

    2017-01-01

    Background/objective: Diet-induced weight loss (WL) leads to increased hunger and reduced fullness feelings, increased ghrelin and reduced satiety peptides concentration (glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK) and peptide YY (PYY)). Ketogenic diets seem to minimise or supress some of these responses. The aim of this study was to determine the timeline over which changes in appetite occur during progressive WL with a ketogenic very-low-energy diet (VLED). Subjects/methods: T...

  15. A Pilot Study: Evaluation of the Effects of Treatment with 0.75% Topical Capsaicin in Patients with Reflex Sympathetic Dystrophy Using Three Phase Bone Scintigraphy

    Science.gov (United States)

    1991-01-28

    years topical capsaicin has recieved growing attention in the treatment of specific pain syndromes. Derived primarily from neonatal and adult rat...dorsal roots19󈧚, cornea19, and coeliac ganglion23 . Similar, and generally parallel, depletions have been shown for cholecystokinin.16-23 A review this...stimulation. Therapy of causalgia has its roots in S. Wier Mitchell’s civil war experience beginning at the United States Army Hospital for Diseases on

  16. Relationship between Gastrointestinal Peptides, Intestinal Wall Compliance, and Vascular Resistance

    Science.gov (United States)

    1983-01-20

    postprandial blood level =• 200-600 pg/ml) (14,16,34), the observations of an increase in the functional exchange vessel surface area and elevations in...transcapillary fluid exchange and imposes a "vas- cular waterfall" effect (similar to that in the upright lung) on the in- testinal vasculature. Normally...8217 hormone inhibitrice de la cholecystokinine son role en pathologle biliaire et pancreatique. Rev. Franc. Etudes. Clinet , Biol. 5: 545-557, 1960. 37

  17. State of Motor-Evacuation Function of the Stomach According to 13C-Octanoate Breath Test in Patients with Gastroesophageal Reflux Disease

    Directory of Open Access Journals (Sweden)

    V.G. Mishchuk

    2014-09-01

    Full Text Available We examined 58 patients with erosive form of gastroesophageal reflux disease and 10 healthy volunteers. All patients underwent fibrogastroduodenoscopy, 24 hour pH monitoring in the lower third of esophagus, 13C-octanoate breath test, identified concentration of cholecystokinin-pankreozymin in blood serum. It is found that 44.83 % of patients with gastroesophageal reflux disease have delayed, 36.21 % — rapid and 18.97 % — normal motor-e­vacuation function of the stomach. In patients with delayed gastric motility we observed prevalence of bile reflux with pH over 6 in the lower third of the esophagus, amounting to 42 % (p = 0.044, and increased concentration in the blood of cholecystokinin-pankreozymin up to (7.12 ± 0.21 ng/ml (p < 0.05, in healthy subjects — (5.91 ± 0.34 ng/ml. In patients with accelerated motility number of refluxes under 4 was 45 %, and cholecystokinin-pankreozymin le­vel — (4.4 ± 1.2 ng/ml. These data support the view of other authors that causes of heartburn as a leading symptom of gastroesophageal reflux disease can be duodenogastric reflux and visceral hyperalgesia.

  18. Evaluation of the marker technique for measurement of exocrine pancreatic secretion rate

    International Nuclear Information System (INIS)

    Rune, S.J.; Worning, H.

    1985-01-01

    A secretin-cholecystokinin test was performed in 103 patients, representing both normal and reduced exocrine pancreatic function. The duodenum was intubated with a triple-lumen tube. The gastric and duodenal contents were aspirated separately and sampled in 10-min. periods. An inert, water-soluble marker ( 58 Co-vitamin B 12 dissolved in isotonic saline) was infused at a constant rate into the duodenum. Exocrine panreatic secretion was stimulated by continuous intravenous infusion of secretin for 60 min. and a combination of secretin and cholecystokinin for another 60 min. The total recovery of the infused marker was 80%. The concentration of marker in the aspriate did not vary significantly between consecutive 10-min. periods during the last 20 min. of the secretin stimulation period, or during the last 50 min. of the combined secretin-cholecystokinin stimulation period, indicating a steady secretion rate into the duodenum. By means of the marker, concentrations in the aspirate, the duodenal volumes were calculated and found to vary significantly less than the aspirated volumes. This finding demonstrates that the duodenal volume calculated from the recovery of an inert marker, is a closer estimate of the true volume than that obtained by the usual apsiration technique without a volume indicator

  19. Gallbladder filling and emptying during cholesterol gallstone formation in the prairie dog. A cholescintigraphic study

    International Nuclear Information System (INIS)

    Pellegrini, C.A.; Ryan, T.; Broderick, W.; Way, L.W.

    1986-01-01

    We studied gallbladder bile flow before, during, and after cholesterol gallstone formation in the prairie dog using infusion cholescintigraphy with /sup 99m/Tc-diethyl iminodiacetic acid. In 18 fasting animals partitioning of bile between gallbladder and intestine was determined every 15 min for 140 min, and gallbladder response to cholecystokinin (5 U/kg X h) was calculated from the gallbladder ejection fraction. Ten prairie dogs were then placed on a 0.4% cholesterol diet and 8 on a regular diet, and the studies were repeated 1, 2, and 6 wk later. The proportion of hepatic bile that entered the gallbladder relative to the intestine varied from one 15-min period to the next, and averaged 28.2% +/- 5.1% at 140 min. Partial spontaneous gallbladder emptying (ejection fraction 11.5% +/- 5.6%) was intermittently observed. Neither the number nor the ejection fraction of spontaneous gallbladder contractions changed during gallstone formation. By contrast, the percent of gallbladder emptying in response to cholecystokinin decreased from 72.1% +/- 5% to 25.9% +/- 9.3% (p less than 0.025) in the first week and was 14.3% +/- 5.5% at 6 wk (p less than 0.01 from prediet values, not significant from first week). Gallbladder filling decreased from 28.2% +/- 5.1% to 6.7% +/- 3% (p less than 0.01), but this change was only observed after 6 wk, when gallstones had formed. This study shows that bile flow into the gallbladder during fasting is not constant; the gallbladder contracts intermittently; gallbladder emptying in response to exogenous cholecystokinin is altered very early during gallstone formation; and gallbladder filling remains unaffected until later stages, when gallstones have formed

  20. Dose-dependent effect of ghrelin on gastric emptying in rats and the related mechanism of action

    Directory of Open Access Journals (Sweden)

    Shu-Guang Cao

    2016-03-01

    Full Text Available The aim of this study was to investigate the dose-dependent effect of ghrelin on gastric emptying in rats and the related mechanism of action. Sixty Wistar rats were randomized into control and test groups, which respectively received intraperitoneal injection of normal saline and ghrelin at different doses (0.5 nmol/kg, 1.0 nmol/kg, 1.5 nmol/kg, 2.0 nmol/kg, and 2.5 nmol/kg. After 45 minutes, all rats were gavaged with semisolid paste. The gastric emptying rate was determined 30 minutes later, and the plasma cholecystokinin level was tested by radioimmunoassay. The mean gastric emptying rate in the test groups was significantly higher than in the control group (38.24 ± 7.15% and 27.18 ± 2.37%, respectively, p < 0.05. Medium and high doses of ghrelin (1.0 nmol/kg, 1.5 nmol/kg, 2.0 nmol/kg, and 2.5 nmol/kg, but not low dose (0.5 nmol/kg, accelerated the gastric emptying. In addition, the plasma cholecystokinin level in the test groups was significantly higher than in the control group (p < 0.01. The gastric emptying rate was positively correlated with the plasma cholecystokinin level (p < 0.01. Intraperitoneal injection of ghrelin at medium and high doses significantly accelerated gastric emptying in rats.

  1. Molecular basis of neural function

    International Nuclear Information System (INIS)

    Tucek, S.; Stipek, S.; Stastny, F.; Krivanek, J.

    1986-01-01

    The conference proceedings contain abstracts of plenary lectures, of young neurochemists' ESN honorary lectures, lectures at symposia and workshops and poster communications. Twenty abstracts were inputted in INIS. The subject of these were the use of autoradiography for the determination of receptors, cholecystokinin, nicotine, adrenaline, glutamate, aspartate, tranquilizers, for distribution and pharmacokinetics of obidoxime-chloride, for cell proliferation, mitosis of brain cells, DNA repair; radioimmunoassay of cholinesterase, tyrosinase; positron computed tomography of the brain; biological radiation effects on cholinesterase activity; tracer techniques for determination of adrenaline; and studies of the biological repair of nerves. (J.P.)

  2. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y

    DEFF Research Database (Denmark)

    Ledri, Marco; Sørensen, Andreas Toft; Erdelyi, Ferenc

    2011-01-01

    Cholecystokinin (CCK)-expressing basket cells encompass a subclass of inhibitory GABAergic interneurons that regulate memory-forming oscillatory network activity of the hippocampal formation in accordance to the emotional and motivational state of the animal, conveyed onto these cells by respective...... are modulated by neuropeptide Y (NPY), one of the major local neuropeptides that strongly inhibits hippocampal excitability and has significant effect on its memory function. Here, using GAD65-GFP transgenic mice for prospective identification of CCK basket cells and whole-cell patch-clamp recordings, we show...

  3. On the regulatory functions of neuropeptide Y (NPY) with respect to vascular resistance and exocrine and endocrine secretion in the pig pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Orskov, C; Knuhtsen, S

    1989-01-01

    We compared the effects of electrical stimulation of the splanchnic nerves and infusions of neuropeptide Y, noradrenaline or a combination of the two on pancreatic vascular resistance and exocrine and endocrine secretion. For these studies we used isolated perfused pig pancreas with preserved...... splanchnic nerve supply. The exocrine secretion was stimulated with physiological concentrations of secretin and cholecystokinin octapeptide. Noradrenaline and NPY at 10(-8) M both increased pancreatic perfusion pressure. Their effects were additive and similar in magnitude to that of electrical stimulation...

  4. Ketosis, ketogenic diet and food intake control: a complex relationship.

    Science.gov (United States)

    Paoli, Antonio; Bosco, Gerardo; Camporesi, Enrico M; Mangar, Devanand

    2015-01-01

    Though the hunger-reduction phenomenon reported during ketogenic diets is well-known, the underlying molecular and cellular mechanisms remain uncertain. Ketosis has been demonstrated to exert an anorexigenic effect via cholecystokinin (CCK) release while reducing orexigenic signals e.g., via ghrelin. However, ketone bodies (KB) seem to be able to increase food intake through AMP-activated protein kinase (AMPK) phosphorylation, gamma-aminobutyric acid (GABA) and the release and production of adiponectin. The aim of this review is to provide a summary of our current knowledge of the effects of ketogenic diet (KD) on food control in an effort to unify the apparently contradictory data into a coherent picture.

  5. Pathophysiology of the anorexia of aging.

    Science.gov (United States)

    Morley, John E

    2013-01-01

    Anorexia represents a major problem for older persons leading to weight loss, sarcopenia, functional decline, and mortality. There is increasing information on the pathophysiological mechanisms that lead to anorexia. Increasing evidence has shown the importance of gastrointestinal hormones (ghrelin, cholecystokinin, and glucagon-like peptide) and adipokines in producing the anorexia of aging. Numerous neurotransmitters have been shown to be involved in this aging anorexia, but evidence in humans is lacking. The early recognition of anorexia of aging is important to allow intervention and prevent functional deterioration in older persons. Screening tests for anorexia have been developed. New approaches to managing anorexia are being tested.

  6. Epidemiološke karakteristike i etiopatogeneza gojaznosti dece i adolescenata

    Directory of Open Access Journals (Sweden)

    Živić Saša

    2011-01-01

    Full Text Available The prevalence of obesity increased in all age and ethnic groups dramatically. In Serbia, 54% of people are with excess weight - 36.7% are overweight, 17.3% are obese. The prevalence of obesity among Serbian children are estimated about 19%. Maintenance of body weight depend on complex interaction between central nervous system and numerous organs on periphery which provides energy metabolism. The hormones of gastrointestinal tract (cholecystokinin, glucagon like peptide 1 and adiposity tissue (leptin are in communication with orexigene and anorexigene centers in hypothalamus. Obesity could be consequence of gene mutations (leptin, melanocortin and increasing influence of environment factors: sedentary life styles and excessive caloric consumption.

  7. Appetite suppression through smelling of dark chocolate correlates with changes in ghrelin in young women

    DEFF Research Database (Denmark)

    Massolt, Elske T; van Haard, Paul M; Rehfeld, Jens F

    2010-01-01

    eating or smelling; n=6). At the start of the sessions, levels of insulin, glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK), but not glucose, correlated with appetite scored on a visual analogue scale (VAS). In contrast, ghrelin levels correlated inversely with scored appetite. Chocolate eating...... and smelling both induced a similar appetite suppression with a disappearance of correlations between VAS scores and insulin, GLP-1 and CCK levels. However, while the correlation between VAS score and ghrelin disappeared completely after chocolate eating, it reversed after chocolate smelling, that is......, olfactory stimulation with dark chocolate (85%) resulted in a satiation response that correlated inversely with ghrelin levels....

  8. Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake

    DEFF Research Database (Denmark)

    Lorenzen, J.K.; Nielsen, S.; Holst, J.J.

    2007-01-01

    postprandially. Results: Dairy calcium significantly diminished the postprandial lipid response. The baseline adjusted area under the curve for chylomicron triacylglycerol was approximate to 17% lower after the MC meal (P = 0.02) and approximate to 19% lower after the HC meal (P = 0.007) than after the LC meal...... and approximate to 15% lower after the MC meal (P = 0.0495) and approximate to 17% lower after the HC meal (P = 0.02) than after the Suppl meal. No consistent effects of calcium on appetite sensation, or on energy intake at the subsequent meal, or on the postprandial responses of cholecystokinin, glucagon...

  9. Antimuscarinic effects of chloroquine in rat pancreatic acini

    International Nuclear Information System (INIS)

    Habara, Y.; Williams, J.A.; Hootman, S.R.

    1986-01-01

    Chloroquine inhibited carbachol-induced amylase release in a dose-dependent fashion in rat pancreatic acini; cholecystokinin- and bombesin-induced secretory responses were almost unchanged by the antimalarial drug. The inhibition of carbachol-induced amylase release by chloroquine was competitive in nature with a K/sub i/ of 11.7 μM. Chloroquine also inhibited [ 3 H]N-methylscopolamine binding to acinar muscarinic receptors. The IC 50 for chloroquine inhibition of [ 3 H]N-methylscopolamine binding was lower than that for carbachol or the other antimalarial drugs, quinine and quinidine. These results demonstrate that chloroquine is a muscarinic receptor antagonist in the exocrine pancreas

  10. Bilio-pancreatic common channel (BPCC) in children

    International Nuclear Information System (INIS)

    Suarez, F.; Bernard, O.; Gauthier, F.; Valayer, J.; Brunelle, F.

    1987-01-01

    Twelve patients (11 girls and 1 boy) with dilated bile ducts and anomalous junction between the common bile duct and pancreatic duct are reported. All patients underwent preoperative opacification of the bile ducts either by transhepatic cholangiography or percutaneous cholecystography. Abdominal pain and jaundice were the main clinical symptoms. Reflux of pancreatic enzymes in the bile duct was proven by measuring amylase and lipase activity in the biliary system after IV injection of 1 IU/kg of cholecystokinin. All patients were operated upon. Bile duct size returned to normal in all patients who are clinical well with a follow-up from 6 to 1 years. (orig.)

  11. Dietary green-plant thylakoids decrease gastric emptying and gut transit, promote changes in the gut microbial flora, but does not cause steatorrhea

    DEFF Research Database (Denmark)

    Stenblom, Eva-Lena; Weström, Björn R.; Linninge, Caroline

    2016-01-01

    Green-plant thylakoids increase satiety by affecting appetite hormones such as ghrelin, cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1). The objective of this study was to investigate if thylakoids also affect gastrointestinal (GI) passage and microbial composition. To analyse the effects......, and specifically the Bacteriodes fragilis group, were increased by thylakoid treatment versus placebo, while thylakoids did not cause steatorrhea. Dietary supplementation with thylakoids thus affects satiety both via appetite hormones and GI fullness, and affects the microbial composition without causing GI...... adverse effects such as steatorrhea. This suggests thylakoids as a novel agent in prevention and treatment of obesity....

  12. The relationship between gut hormone secretion and gastric emptying in different phases of the migrating motor complex

    DEFF Research Database (Denmark)

    Rasmussen, L; Oster-Jørgensen, E; Qvist, N

    1996-01-01

    a higher incremental integrated postprandial motilin response in phase I than in phase II (998 pmol/l*30 min (495 to 2010) versus 210 pmol/l*30 min (-270 to 2323), p total integrated motilin response and solid emptying at 120 min in phase I (Rs = 0.58; p......BACKGROUND: No studies are available on the relationship between the response of gut hormones and gastric emptying in different phases of the migrating motor complex. This study examined whether basal gut hormone concentrations in plasma before food ingestion are predictors of emptying...... total integrated area of cholecystokinin and solid emptying at 120 min was demonstrated (Rs = 0.62; p

  13. Do glycine-extended hormone precursors have clinical significance?

    DEFF Research Database (Denmark)

    Rehfeld, Jens Frederik

    2014-01-01

    Half of the known peptide hormones are C-terminally amidated. Subsequent biogenesis studies have shown that the immediate precursor is a glycine-extended peptide. The clinical interest in glycine-extended hormones began in 1994, when it was suggested that glycine-extended gastrin stimulated cancer...... and clinical effects of glycine-extended precursors for most other amidated hormones than gastrin and cholecystokinin (CCK). The idea of glycine-extended peptides as independent messengers was interesting. But clinical science has to move ahead from ideas that cannot be supported at key points after decades...

  14. Ceruletide decreases food intake in non-obese man.

    Science.gov (United States)

    Stacher, G; Steinringer, H; Schmierer, G; Schneider, C; Winklehner, S

    1982-01-01

    Cholecystokinin decreases food intake in animals and in man. This study investigated whether the structurally related ceruletide reduces food intake in healthy non-obese man. Twelve females and 12 males participated, after an over-night fast, in each of two experiments. During the basal 40 min, saline was infused IV. Thereafter, the infusion was, in random double blind fashion, either continued with saline or switched to 60 or 120 ng/kg b. wt/hr ceruletide. Butter was melted in a pan and scrambled eggs with ham were prepared in front of the subjects, who were instructed to eat, together with bread and mallow tea, as much as they wanted. With 120 ng/kg/hr ceruletide, the subjects ate significantly less (16.8 percent) than with saline (3725 kJ +/- 489 SEM and 4340 kJ +/- 536, respectively; p less than 0.025). They also reported less hunger (p less than 0.005) and activation (p less than 0.005) and activation (p less than 0.01), and had longer reaction times (p less than 0.01) and a weaker psychomotor performance (p less than 0.025). 60 ng/kg/hr ceruletide decreased food intake only slightly (6.6%; 3089 kJ +/- 253 and 3292 kJ +/- 300 respectively) and no significant changes in the above measures occurred. In conclusion, ceruletide reduces food intake in man, thus resembling the effects of cholecystokinin.

  15. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats.

    Science.gov (United States)

    Sadeghi, Malihe; Reisi, Parham; Radahmadi, Maryam

    2017-12-01

    Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S) was injected (1.6 µg/kg, IP) before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long-term potentiation (LTP) in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization) in order to investigate synaptic plasticity. Stress impaired spatial memory significantly ( P stress group. With respect to the control group, both fEPSP amplitude and slope were significantly ( P stress group. However, there were no differences between responses of the control-CCK and Stress-CCK groups compared to the control group. The present results suggest that high levels of CCK-8S during induction of stress can modulate the destructive effects of stress on hippocampal synaptic plasticity and memory. Therefore, the mediatory effects of CCK in stress are likely as compensatory responses.

  16. Influence of gallstones and ursodeoxycholic acid therapy on gallbladder emptying

    International Nuclear Information System (INIS)

    Forgacs, I.C.; Maisey, M.N.; Murphy, G.M.; Dowling, R.H.

    1984-01-01

    Altered gallbladder motility could predispose to, or result from, gallstone formation and could also explain the alleged relief of biliary colic seen during bile acid therapy. Therefore, in 14 controls, 25 patients with radiolucent gallstones, and 14 patients with radiopaque gallstones, the authors used two techniques to measure gallbladder contraction--radionuclide imaging and real-time ultrasound--in response to one of two stimuli--a Lundh meal or intravenous cholecystokinin-octapeptide. Using the radionuclide technique, postprandial gallbladder emptying (t1/2) was prolonged both in patients with radiopaque and radiolucent gallstones when compared with controls. In patients with radiolucent stones, the t1/2 of gallbladder emptying became further prolonged after 1 mo of therapy with ursodeoxycholic acid. A similar pattern of results was seen after cholecystokinin-octapeptide and also with real-time ultrasound. Thus, after both stimuli and using two independent techniques, gallbladder contraction was reduced in patients with gallstones. The slower and less complete gallbladder emptying with ursotherapy might explain the reduction in biliary colic noted during treatment

  17. Involvement of endogenous opiates in regulation of gastric emptying of fat test meals in mice

    International Nuclear Information System (INIS)

    Fioramonti, J.; Fargeas, M.J.; Bueno, L.

    1988-01-01

    The role of endogenous opioids and cholecystokinin (CCK) in gastric emptying was investigated in mice killed 30 min after gavage with 51 Cr-radiolabeled liquid meals. The meals consisted of 0.5 ml of milk or one of five synthetic meals containing arabic gum, glucose and/or arachis oil and/or casein. Naloxone (0.1 mg/kg sc) significantly (P less than 0.01) accelerated gastric emptying of milk and meals containing fat but did not modify gastric emptying of nonfat meals. The CCK antagonist asperlicin (0.1 mg/kg ip) increased by 25% gastric emptying of milk. The gastric emptying of meals containing glucose and casein but not fat was reduced after administration of the COOH-terminal octapeptide of cholecystokinin (CCK-8, 4 micrograms/kg ip). This decrease was antagonized by both asperlicin (10 mg/kg ip) and naloxone (0.1 mg/kg sc). Intracerebroventricular (icv) administration of an opiate antagonist that poorly crosses the blood-brain barrier, methyl levallorphan (10 micrograms/kg), did not modify gastric emptying of milk but accelerated it when peripherally administered (0.1 mg/kg sc). Similarly, asperlicin (icv) administered at a dose of 1 mg/kg did not affect milk emptying. These results indicate that endogenous opiates are involved at peripheral levels in the regulation of gastric emptying of fat meals only and that such regulation involves release of CCK

  18. The relationship between gut hormone secretion and gastric emptying in different phases of the migrating motor complex

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, L.; Oester-Joergensen, E.; Quist, N. [Odense University Hospital, Odense (Denmark); and others

    1996-05-01

    No studies are available on the relationship between the response of gut hormones and gastric emptying in different phases of the migrating motor complex. This study examined whether basal gut hormone concentrations in plasma before food ingestion are predictors of emptying characteristics and whether different hormone secretion patterns are associated with specific alteration in emptying rate. 12 healthy men were examined on two occasion: one with meal ingestion in phase I and the other with meal ingestion in phase II. The meal consisted of an omelette labelled with {sup 99m}Tc followed by 150 ml water labelled with {sup 111}In. Plasma concentrations of gastrin, cholecystokinin, motilin, and peptide YY were measured in the fasting state, immediately after food ingestion, and at 15 min-min intervals in the postprandial period. New findings from the present study include a higher incremental integrated postprandial motilin response in phase I than in phase II, and a linear relationship between median total integrated motilin response and solid emptying at 120 min in phase I. Furthermore, in phase I a linear relationship between total integrated area of cholecystokinin and solid emptying at 120 min was demonstrated. The findings from the present investigation have to be considered in the future design of studies that focus on postprandial release of gastrointestinal hormones. The transition from phase III to phase I is a reproducible and easily recognized pressure event. Therefore, the authors recommend the use of food ingestion immediately after termination of duodenal phase III. 14 refs.

  19. [Effect of different nutritional support on pancreatic secretion in acute pancreatitis].

    Science.gov (United States)

    Achkasov, E E; Pugaev, A V; Nabiyeva, Zh G; Kalachev, S V

    To develop and justify optimal nutritional support in early phase of acute pancreatitis (AP). 140 AP patients were enrolled. They were divided into groups depending on nutritional support: group I (n=70) - early enteral tube feeding (ETF) with balanced mixtures, group II (n=30) - early ETF with oligopeptide mixture, group III (n=40) - total parenteral nutrition (TPN). The subgroups were also isolated depending on medication: A - Octreotide, B - Quamatel, C - Octreotide + Quamatel. Pancreatic secretion was evaluated by using of course of disease, instrumental methods, APUD-system hormone levels (secretin, cholecystokinin, somatostatin, vasointestinal peptide). ETF was followed by pancreas enlargement despite ongoing therapy, while TPN led to gradual reduction of pancreatic size up to normal values. α-amylase level progressively decreased in all groups, however in patients who underwent ETF (I and II) mean values of the enzyme were significantly higher compared with TPN (group III). Secretin, cholecystokinin and vasointestinal peptide were increasing in most cases, while the level of somatostatin was below normal in all groups. Enteral tube feeding (balanced and oligopeptide mixtures) contributes to pancreatic secretion compared with TPN, but this negative impact is eliminated by antisecretory therapy. Dual medication (Octreotide + Quamatel) is more preferable than monotherapy (Octreotide or Quamatel).

  20. Humoral regulation of heart rate during digestion in pythons (Python molurus and Python regius).

    Science.gov (United States)

    Enok, Sanne; Simonsen, Lasse Stærdal; Pedersen, Signe Vesterskov; Wang, Tobias; Skovgaard, Nini

    2012-05-15

    Pythons exhibit a doubling of heart rate when metabolism increases several times during digestion. Pythons, therefore, represent a promising model organism to study autonomic cardiovascular regulation during the postprandial state, and previous studies show that the postprandial tachycardia is governed by a release of vagal tone as well as a pronounced stimulation from nonadrenergic, noncholinergic (NANC) factors. Here we show that infusion of plasma from digesting donor pythons elicit a marked tachycardia in fasting snakes, demonstrating that the NANC factor resides in the blood. Injections of the gastrin and cholecystokinin receptor antagonist proglumide had no effect on double-blocked heart rate or blood pressure. Histamine has been recognized as a NANC factor in the early postprandial period in pythons, but the mechanism of its release has not been identified. Mast cells represent the largest repository of histamine in vertebrates, and it has been speculated that mast cells release histamine during digestion. Treatment with the mast cell stabilizer cromolyn significantly reduced postprandial heart rate in pythons compared with an untreated group but did not affect double-blocked heart rate. While this study indicates that histamine induces postprandial tachycardia in pythons, its release during digestion is not stimulated by gastrin or cholecystokinin nor is its release from mast cells a stimulant of postprandial tachycardia.

  1. Effects of food form on food intake and postprandial appetite sensations, glucose and endocrine responses, and energy expenditure in resistance trained v. sedentary older adults

    Science.gov (United States)

    Apolzan, John W.; Leidy, Heather J.; Mattes, Richard D.; Campbell, Wayne W.

    2013-01-01

    Limited research has suggested that the food form of nutritional supplements (FFNS) and resistance training (RT) influence ingestive behaviour and energy balance in older adults. The effects of the FFNS and RT on acute appetitive, endocrine and metabolic responses are not adequately documented. The present study assessed the effects of the FFNS and RT on postprandial appetite sensations (hunger and fullness), endocrine responses (plasma insulin, cholecystokinin, ghrelin and glucagon-like peptide-1 (GLP-1)), metabolism (glucose, energy expenditure and RER) and food intake (satiation) in older adults. On separate days, eighteen sedentary (Sed) and sixteen RT healthy adults (age 62–84 years) consumed 12·5% of their energy need as an isoenergetic- and macronutrient-matched solid or beverage. Postprandial responses were assessed over 4 h. No RT × FFNS interactions were observed for any parameter. Fasting cholecystokinin was higher in the RT v. Sed group (Pingestive behaviour. The appetitive and endocrine responses suggested the solid-promoted satiety; however, the FFNS did not alter subsequent food intake. PMID:21492495

  2. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    Directory of Open Access Journals (Sweden)

    Elena Baldascino

    2017-12-01

    Full Text Available The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase. Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i potential roles of the various molecules

  3. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    Science.gov (United States)

    Baldascino, Elena; Di Cristina, Giulia; Tedesco, Perla; Hobbs, Carl; Shaw, Tanya J.; Ponte, Giovanna; Andrews, Paul L. R.

    2017-01-01

    The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake

  4. Anorexia of ageing: a key component in the pathogenesis of both sarcopenia and cachexia.

    Science.gov (United States)

    Morley, John E

    2017-08-01

    The anorexia of aging was first recognized as a physiological syndrome 30 years ago. Its major causes are an alteration in fundal compliance with an increase in antral stretch and enhanced cholecystokinin activity leading to increased satiation.This anorexia leads to weight loss in aging persons and is one of the component causes of the aging related sarcopenia. This physiological anorexia also increases the risk of more severe anorexia when an older person has an increase in inflammatory cytokines such as occurs when they have an illness. This results in an increase in the anorexia due to cachexia in older persons. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  5. A review of endocrine changes in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Hangaard, J; Hansen-Nord, M

    1999-01-01

    Anorexia nervosa is a syndrome of unknown etiology. It is associated with multiple endocrine abnormalities. Hypothalamic monoamines (especially serotonin), neuropeptides (especially neuropeptide Y and cholecystokinin) and leptin are involved in the regulation of human appetite, and in several ways...... they are changed in anorexia nervosa. However, it remains to be clarified whether the altered appetite regulation is secondary or etiologic. Increased secretion of corticotropin-releasing hormone and proopiomelanocortin seems to be secondary to starvation, however, there is evidence that it may maintain...... and intensify anorexia, excessive physical activity and amenorrhea. Hypothalamic amenorrhea, which is a diagnostic criterion in anorexia nervosa, is not solely related to the low body weight and exercise. Growth hormone resistance with low production of insulin-like growth factor I and high growth hormone...

  6. Gastric emptying and disease activity in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Keller, Jutta; Binnewies, Ulrich; Rösch, Marie

    2015-01-01

    BACKGROUND: Gastric emptying (GE) is delayed in a subset of patients with inflammatory bowel disease (IBD). We have shown before that altered release of gastrointestinal hormones may contribute to GE disturbances, but overall effects of disease activity remain unclear. Thus, we aimed to evaluate GE...... test (baseline test). Plasma glucose, cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) were measured periodically throughout the test. A total of 16 patients underwent a second GE test after 3-4 months of therapy. RESULTS: At baseline, nine patients with IBD had...... pathologically delayed GE half-time (T½ > 150 min) (P = 0·028 vs. HC). Moreover, T½ was significantly longer in the total group of patients with IBD than in HC (129 ± 12 min vs. 96 ± 7, P = 0·030). Postprandial GLP-1 responses were elevated in IBD (P = 0·002 vs. HC) and correlated with T½ (P = 0·05). Following...

  7. Neuronal Fibers and Neurotransmitter Receptor Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2017-01-01

    in intracranial pressure homeostasis. The anatomical location towards the sigmoid sinus would suggest a possible endo- and/or paracrine signaling. However, neuronal connections may also apply, but it remains very scarcely explored in the human ES. STUDY DESIGN: DNA micro-arrays and immunohistochemistry were used...... of genes specific for neuronal signaling was determined and results for selected key molecules verified by immunohistochemistry. Transmission electron microscopy was used for ultrastructural analysis. RESULTS: For the transmission electron microscopy analysis, a direct innervation of the ES was observed...... with unmyelinated fibers imbedded in the ES epithelial lining. The microarrays confirmed, that several molecules involved in neuronal signaling were found expressed significantly in the ES DNA profile, such as the Cholecystokinin peptide and related receptors, Dopamine receptors 2 and 5, vesicular monoamine...

  8. Cholescintigraphy in patients with acute cholecystitis before and after percutaneous gallbladder drainage

    DEFF Research Database (Denmark)

    Borly, L; Stage, J G; Grønvall, S

    1995-01-01

    gallbladder drainage. During the post-drainage cholescintigraphies, a cholecystokinin stimulation was performed to investigate gallbladder emptying in 12 selected patients. Gallbladder pressure and volume were measured before drainage in another group of 12 patients with acute cholecystitis. RESULTS......OBJECTIVE: To investigate gallbladder function by use of cholescintigraphy in patients with acute cholecystitis before and after percutaneous gallbladder drainage. DESIGN: A cholescintigraphy was performed in 40 patients with acute cholecystitis before and after the performance of percutaneous......: As expected, no gallbladder activity was observed in the cholescintigraphies before drainage, except in a patient with an occluding stone in the common bile duct. Cystic duct patency and gallbladder activity were seen in 80% of patients in cholescintigraphies performed after drainage but before any other...

  9. Olfaction Under Metabolic Influences

    Science.gov (United States)

    2012-01-01

    Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis. PMID:22832483

  10. Gut hormones and gastric bypass

    DEFF Research Database (Denmark)

    Holst, Jens J.

    2016-01-01

    Gut hormone secretion in response to nutrient ingestion appears to depend on membrane proteins expressed by the enteroendocrine cells. These include transporters (glucose and amino acid transporters), and, in this case, hormone secretion depends on metabolic and electrophysiological events elicited...... that determines hormone responses. It follows that operations that change intestinal exposure to and absorption of nutrients, such as gastric bypass operations, also change hormone secretion. This results in exaggerated increases in the secretion of particularly the distal small intestinal hormones, GLP-1, GLP-2......, oxyntomodulin, neurotensin and peptide YY (PYY). However, some proximal hormones also show changes probably reflecting that the distribution of these hormones is not restricted to the bypassed segments of the gut. Thus, cholecystokinin responses are increased, whereas gastric inhibitory polypeptide responses...

  11. Genetic susceptibility factors for multiple chemical sensitivity revisited

    DEFF Research Database (Denmark)

    Berg, Nikolaj Drimer; Rasmussen, Henrik Berg; Linneberg, Allan

    2010-01-01

    of this study was to investigate genetic susceptibility factors for MCS and self-reported chemical sensitivity in a population sample. Ninety six MCS patients and 1,207 controls from a general population divided into four severity groups of chemical sensitivity were genotyped for variants in the genes encoding......Multiple chemical sensitivity (MCS) is characterised by adverse effects due to exposure to low levels of chemical substances. Various genes, especially genes of importance to the metabolism of xenobiotic compounds, have been associated with MCS, but findings are inconsistent. The purpose...... significant (OR=1.2, p=0.28). Fast arylamine N-acetyltransferase 2 metaboliser status was associated with severity of chemical sensitivity only in the most severely affected group in the population sample (OR=3.1, p=0.04). The cholecystokinin 2 receptor allele with 21 CT repeats was associated with MCS when...

  12. Ketosis, ketogenic diet and food intake control: a complex relationship

    Directory of Open Access Journals (Sweden)

    Antonio ePaoli

    2015-02-01

    Full Text Available Though the hunger-reduction phenomenon reported during ketogenic diets is well known, the underlying molecular and cellular mechanisms remain uncertain. Ketosis has been demonstrated to exert an anorexigenic effect via cholecystokinin (CCK release while reducing orexigenic signals e.g. via ghrelin. However ketone bodies (KB seem to be able to increase food intake through AMP-activated protein kinase (AMPK phosphorylation, gamma-aminobutyric acid (GABA and the release and production of adiponectin. The aim of this review is to provide an overview of our current knowledge of the effects of ketogenic diet (KD on food control in an effort to unify the apparently contradictory data into a coherent picture.

  13. Development of novel ligands for peptide GPCRs.

    Science.gov (United States)

    Moran, Brian M; McKillop, Aine M; O'Harte, Finbarr Pm

    2016-12-01

    Incretin based glucagon-like peptide-1 receptor (GLP-1R) agonists which target a G-protein coupled receptor (GPCR) are currently used in the treatment of type 2 diabetes. This review focuses on GPCRs from pancreatic β-cells, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon, somatostatin, pancreatic polypeptide (PP), cholecystokinin (CCK), peptide YY (PYY), oxyntomodulin (OXM) and ghrelin receptors. In addition, fatty acids GPCRs are thought to have an increasing role in regulating peptide secretions namely short fatty acids GPCR (GPR41, GPR43), medium chain fatty acid GPCR (GPR84), long chain fatty acid GPCR (GPR40, GPR120) and cannabinoid-like GPCR (GPR55, GPR119). Several pre-clinical and clinical trials are currently ongoing in peptide GPCR based therapies, including dual and triple agonist peptides which activate two or more GPCRs simultaneously. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pharmacogenomics of GPCR Drug Targets

    DEFF Research Database (Denmark)

    Hauser, Alexander Sebastian; Chavali, Sreenivas; Masuho, Ikuo

    2018-01-01

    Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs...... and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug......- and effector-binding sites in the human population. We experimentally show that certain variants of μ-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants...

  15. Receptors for sensory neuropeptides in human inflammatory diseases: Implications for the effector role of sensory neurons

    International Nuclear Information System (INIS)

    Mantyh, P.W.; Catton, M.D.; Boehmer, C.G.; Welton, M.L.; Passaro, E.P. Jr.; Maggio, J.E.; Vigna, S.R.

    1989-01-01

    Glutamate and several neuropeptides are synthesized and released by subpopulations of primary afferent neurons. These sensory neurons play a role in regulating the inflammatory and immune responses in peripheral tissues. Using quantitative receptor autoradiography we have explored what changes occur in the location and concentration of receptor binding sites for sensory neurotransmitters in the colon in two human inflammatory diseases, ulcerative colitis and Crohn's disease. The sensory neurotransmitter receptors examined included bombesin, calcitonin gene related peptide-alpha, cholecystokinin, galanin, glutamate, somatostatin, neurokinin A (substance K), substance P, and vasoactive intestinal polypeptide. Of the nine receptor binding sites examined only substance P binding sites associated with arterioles, venules and lymph nodules were dramatically up-regulated in the inflamed tissue. These data suggest that substance P is involved in regulating the inflammatory and immune responses in human inflammatory diseases and indicate a specificity of efferent action for each sensory neurotransmitter in peripheral tissues

  16. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin

    DEFF Research Database (Denmark)

    Egerod, Kristoffer Lihme; Engelstoft, Maja Storm; Grunddal, Kaare Villum

    2012-01-01

    Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing...... enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive...... to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity....

  17. Changes in Gut Hormones After Roux en Y Gastric bypass, Sleeve Gastrectomy, and Adjustable Gastric Banding

    Directory of Open Access Journals (Sweden)

    Miroslav Ilić

    2015-12-01

    Full Text Available The obesity epidemic has burdened healthcare systems worldwide. Bariatric surgery is currently the most effective method for long-term weight loss in obese adults, but the exact mechanism of weight loss is poorly understood. Bariatric procedures were initially classified by their presumed mechanism of action into restrictive, malabsoptive, or mixed procedures; however, due to recent advancements in the field of neuroendocrinology, hormones are increasing being recognized as important regulators of satiation, hunger, and energy expenditure. Studies examining changes in gut hormones following bariatric surgery have yielded conflicting results and the relationship between these hormones and weight loss is nothing but clear. This review will summarize the effect of Roux en Y gastric bypass, sleeve gastrectomy and adjustable gastric banding on various gut hormones including ghrelin, cholecystokinin, glucagon-like polypeptide-1, peptide YY3, and pancreatic polypeptide. Furthermore, the relationship between these hormones and weight loss will be examined.

  18. Associations between personality traits and CCK-4-induced panic attacks in healthy volunteers.

    Science.gov (United States)

    Tõru, Innar; Aluoja, Anu; Võhma, Ulle; Raag, Mait; Vasar, Veiko; Maron, Eduard; Shlik, Jakov

    2010-07-30

    In this study we examined how personality disposition may affect the response to cholecystokinin tetrapeptide (CCK-4; 50 microg) challenge in healthy volunteers (n=105). Personality traits were assessed with the Swedish universities Scales of Personality (SSP). Statistical methods employed were correlation analysis and logistic regression. The results showed that the occurrence of CCK-4-induced panic attacks was best predicted by baseline diastolic blood pressure, preceding anxiety and SSP-defined traits of lack of assertiveness, detachment, embitterment and verbal aggression. Significant interactions were noted between the above mentioned variables, modifying their individual effects. For different subsets of CCK-4-induced symptoms, the traits of physical aggression, irritability, somatic anxiety and stress susceptibility also appeared related to panic manifestations. These findings suggest that some personality traits and their interactions may influence vulnerability to CCK-4-induced panic attacks in healthy volunteers. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. The Gut Hormones in Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Suzuki

    2011-01-01

    Full Text Available Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.

  20. The relationship between gut hormone secretion and gastric emptying in different phases of the migrating motor complex

    DEFF Research Database (Denmark)

    Rasmussen, L; Oster-Jørgensen, E; Qvist, N

    1996-01-01

    BACKGROUND: No studies are available on the relationship between the response of gut hormones and gastric emptying in different phases of the migrating motor complex. This study examined whether basal gut hormone concentrations in plasma before food ingestion are predictors of emptying characteri......BACKGROUND: No studies are available on the relationship between the response of gut hormones and gastric emptying in different phases of the migrating motor complex. This study examined whether basal gut hormone concentrations in plasma before food ingestion are predictors of emptying...... a higher incremental integrated postprandial motilin response in phase I than in phase II (998 pmol/l*30 min (495 to 2010) versus 210 pmol/l*30 min (-270 to 2323), p linear relationship between median total integrated motilin response and solid emptying at 120 min in phase I (Rs = 0.58; p...... linear relationship between total integrated area of cholecystokinin and solid emptying at 120 min was demonstrated (Rs = 0.62; p

  1. Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Gribble, Fiona M; Hartmann, Bolette

    2014-01-01

    Nutrients often stimulate gut hormone secretion, but the effects of fructose are incompletely understood. We studied the effects of fructose on a number of gut hormones with particular focus on glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In healthy humans......, fructose intake caused a rise in blood glucose and plasma insulin and GLP-1, albeit to a lower degree than isocaloric glucose. Cholecystokinin secretion was stimulated similarly by both carbohydrates, but neither peptide YY3-36 nor glucagon secretion was affected by either treatment. Remarkably, while...... glucose potently stimulated GIP release, fructose was without effect. Similar patterns were found in the mouse and rat, with both fructose and glucose stimulating GLP-1 secretion, whereas only glucose caused GIP secretion. In GLUTag cells, a murine cell line used as model for L cells, fructose...

  2. Ketosis, ketogenic diet and food intake control: a complex relationship

    Science.gov (United States)

    Paoli, Antonio; Bosco, Gerardo; Camporesi, Enrico M.; Mangar, Devanand

    2015-01-01

    Though the hunger-reduction phenomenon reported during ketogenic diets is well-known, the underlying molecular and cellular mechanisms remain uncertain. Ketosis has been demonstrated to exert an anorexigenic effect via cholecystokinin (CCK) release while reducing orexigenic signals e.g., via ghrelin. However, ketone bodies (KB) seem to be able to increase food intake through AMP-activated protein kinase (AMPK) phosphorylation, gamma-aminobutyric acid (GABA) and the release and production of adiponectin. The aim of this review is to provide a summary of our current knowledge of the effects of ketogenic diet (KD) on food control in an effort to unify the apparently contradictory data into a coherent picture. PMID:25698989

  3. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.

    2013-01-01

    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  4. Hepatobiliary imaging

    International Nuclear Information System (INIS)

    Klingensmith, W.C.

    1988-01-01

    If the gallbladder is not being evaluated, no patient preparation is necessary. However, if the gallbladder is being evaluated, the patient must have fasted for approximately 2-14 hr prior to injection of the radiopharmaceutical. If the patient has fasted for less than 2 hr. the gallbladder may still be contracting and, thus, prevent the inflow of radioactive bile. On the other hand, if the patient has fasted for more than 14 hr. the gallbladder may have concentrated its contents to the point where the osmotic gradient prevents further reabsorption of water. The author discusses how, in this situation, an analog of cholecystokinin-pancreazymin such as sincalide can be given intravenously approximately 20 min before injection of the radiopharmaceutical. This agent will cause the gallbladder to empty so that reabsorption of water and filling of the gallbladder can begin again

  5. Effects of itopride hydrochloride on plasma gut-regulatory peptide and stress-related hormone levels in healthy human subjects.

    Science.gov (United States)

    Katagiri, Fumihiko; Shiga, Toru; Inoue, Shin; Sato, Yuhki; Itoh, Hiroki; Takeyama, Masaharu

    2006-01-01

    Itopride hydrochloride (itopride), a gastrokinetic drug, has recently been evaluated for its clinical usefulness in functional dyspepsia. We investigated effects of itopride on human plasma gastrin-, somatostatin-, motilin-, and cholecystokinin (CCK)-like immunoreactive substances (IS); adrenocorticotropic hormone (ACTH)-immunoreactive substances (IS), and cortisol under stress conditions in healthy subjects. A single administration of itopride caused significant increases in plasma somatostatin- and motilin-IS levels compared to placebo. Itopride significantly decreased plasma CCK-IS, and suppressed the ACTH-IS level compared to placebo. We hypothesize that itopride may have an accelerating gastric emptying effect, and a modulatory effect on the hypothalamo-pituitary-adrenal axis and autonomic nervous functions. These effects might be beneficial in stress-related diseases, suggesting that itopride has clinicopharmacological activities.

  6. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    Science.gov (United States)

    2012-01-01

    Obesity and type 2 diabetes mellitus (DM) have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1); and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress. PMID:22676328

  7. Dietary thylakoids suppress blood glucose and modulate appetite-regulating hormones in pigs exposed to oral glucose tolerance test

    DEFF Research Database (Denmark)

    Montelius, Caroline; Szwiec, Katarzyna; Kardas, Marek

    2014-01-01

    BACKGROUND & AIMS: Dietary chloroplast thylakoids have previously been found to reduce food intake and body weight in animal models, and to change metabolic profiles in humans in mixed-food meal studies. The aim of this study was to investigate the modulatory effects of thylakoids on glucose...... metabolism and appetite-regulating hormones during an oral glucose tolerance test in pigs fed a high fat diet. METHODS: Six pigs were fed a high fat diet (36 energy% fat) for one month before oral glucose tolerance test (1 g/kg d-glucose) was performed. The experiment was designed as a cross-over study......, either with or without addition of 0.5 g/kg body weight of thylakoid powder. RESULTS: The supplementation of thylakoids to the oral glucose tolerance test resulted in decreased blood glucose concentrations during the first hour, increased plasma cholecystokinin concentrations during the first two hours...

  8. Effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon-like peptide-1 secretion

    DEFF Research Database (Denmark)

    Hansen, Morten; Scheltema, Matthijs J; Sonne, David P

    2016-01-01

    AIMS: In patients with type 2 diabetes, rectal administration of bile acids increases glucagon-like peptide-1 (GLP-1) secretion and reduces plasma glucose. In addition, oral bile acid sequestrants (BASs) reduce blood glucose by an unknown mechanism. In this study we evaluated the effects...... of the primary human bile acid, chenodeoxycholic acid (CDCA), and the BAS, colesevelam, instilled into the stomach, on plasma levels of GLP-1, glucose-dependent insulinotropic polypeptide, glucose, insulin, C-peptide, glucagon, cholecystokinin and gastrin as well as gastric emptying, gallbladder volume, appetite......, and delayed gastric emptying. We speculate that bile acid-induced activation of TGR5 on L cells increases GLP-1 secretion, which in turn may result in amplification of glucose-stimulated insulin secretion. Furthermore our data suggest that colesevelam does not have an acute effect on GLP-1 secretion in humans....

  9. Molecular Mechanisms of Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Ji Hee Yu

    2012-12-01

    Full Text Available The prevalence of obesity has been rapidly increasing worldwide over the last several decades and has become a major health problem in developed countries. The brain, especially the hypothalamus, plays a key role in the control of food intake by sensing metabolic signals from peripheral organs and modulating feeding behaviors. To accomplish these important roles, the hypothalamus communicates with other brain areas such as the brainstem and reward-related limbic pathways. The adipocyte-derived hormone leptin and pancreatic β-cell-derived insulin inform adiposity to the hypothalamus. Gut hormones such as cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide 1, and oxyntomodulin transfer satiety signals to the brain and ghrelin relays hunger signals. The endocannabinoid system and nutrients are also involved in the physiological regulation of food intake. In this article, we briefly review physiological mechanisms of appetite regulation.

  10. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses.

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M; Tu, Tiffany; Reijmers, Leon G

    2013-11-20

    A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos-based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Timeline of changes in appetite during weight loss with a ketogenic diet

    DEFF Research Database (Denmark)

    Nymo, S; Coutinho, S R; Jørgensen, J

    2017-01-01

    BACKGROUND/OBJECTIVE: Diet-induced weight loss (WL) leads to increased hunger and reduced fullness feelings, increased ghrelin and reduced satiety peptides concentration (glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK) and peptide YY (PYY)). Ketogenic diets seem to minimise or supress some...... of these responses. The aim of this study was to determine the timeline over which changes in appetite occur during progressive WL with a ketogenic very-low-energy diet (VLED). SUBJECTS/METHODS: Thirty-one sedentary adults (18 men), with obesity (body mass index: 37±4.5 kg m-2) underwent 8 weeks (wks) of a VLED...... followed by 4 wks of weight maintenance. Body weight and composition, subjective feelings of appetite and appetite-related hormones (insulin, active ghrelin (AG), active GLP-1, total PYY and CCK) were measured in fasting and postprandially, at baseline, on day 3 of the diet, 5 and 10% WL, and at wks 9...

  12. Gastroparesis is associated with oxytocin deficiency, oesophageal dysmotility with hyperCCKemia, and autonomic neuropathy with hypergastrinemia

    DEFF Research Database (Denmark)

    Borg, Julia; Melander, Olle; Johansson, Linda

    2009-01-01

    . They further received a fat-rich meal, after which blood samples were collected and plasma frozen until analysed for hormonal concentrations. RESULTS: There was an increase in postprandial oxytocin plasma concentration in the group with normal gastric emptying (p = 0.015) whereas subjects with delayed gastric...... emptying had no increased oxytocin secretion (p = 0.114). Both CCK and gastrin levels increased after the meal, with no differences between subjects with normal respective delayed gastric emptying. The concentration of vasopressin did not increase after the meal. In patients with oesophageal dysmotility......, cholecystokinin (CCK), gastrin and vasopressin in plasma differ between diabetics with normal function and dysfunction in GI motility. METHODS: Nineteen patients with symptoms from the GI tract who had been examined with gastric emptying scintigraphy, oesophageal manometry, and deep-breathing test were included...

  13. Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients

    DEFF Research Database (Denmark)

    Sonne, David P; Hare, Kristine J; Martens, Pernille

    2013-01-01

    -rich liquid meal (2,200 kJ). Basal and postprandial plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-2 (GLP-2), cholecystokinin (CCK), and gastrin were measured. Furthermore, gastric emptying and duodenal and serum......Preclinical studies suggest that gallbladder emptying, via bile acid-induced activation of the G protein-coupled receptor TGR5 in intestinal L cells, may play a significant role in the secretion of the incretin hormone glucagon-like peptide-1 (GLP-1) and, hence, postprandial glucose homeostasis. We...... examined the secretion of gut hormones in cholecystectomized subjects to test the hypothesis that gallbladder emptying potentiates postprandial release of GLP-1. Ten cholecystectomized subjects and 10 healthy, age-, gender-, and body mass index-matched control subjects received a standardized fat...

  14. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    Directory of Open Access Journals (Sweden)

    Sousa Gabriela TD

    2012-07-01

    Full Text Available Abstract Obesity and type 2 diabetes mellitus (DM have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1; and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress.

  15. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  16. Duodenal endocrine cells in adult coeliac disease.

    Science.gov (United States)

    Sjölund, K; Alumets, J; Berg, N O; Håkanson, R; Sundler, F

    1979-01-01

    Using immunohistochemical techniques we studied duodenal biopsies from 18 patients with coeliac disease and 24 patients with normal duodenal morphology. We had access to antisera against the following gastrointestinal peptides: cholecystokinin (CCK), gastric inhibitory peptide (GIP), gastrin-17, glucagon-enteroglucagon, motilin, neurotensin, pancreatic peptide (PP), secretin, somatostatin, substance P and vasoactive intestinal peptide (VIP). The somatostatin, GIP, CCK, and glucagon cells were increased in number in coeliac disease. The number of motilin cells was slightly increased, while secretin cells were reduced. Cells storing gastrin-17, substance P, or neurotensin were rare in all patients regardless of diagnosis. No PP immunoreactive cells were found and VIP was localised to neurons only. In biopsies from patients having a mucosa with ridging of villi the number of the various endocrine cell types did not differ from that in the control group. Images Fig. 2 PMID:385455

  17. The impact of rate of weight loss on body composition and compensatory mechanisms during weight reduction

    DEFF Research Database (Denmark)

    Coutinho, Sílvia Ribeiro; With, Emilie; Rehfeld, Jens F

    2018-01-01

    BACKGROUND & AIMS: Rapid weight loss (WL) has been associated with a larger loss of fat free mass and a disproportional reduction in resting metabolic rate (RMR), but the evidence is inconclusive. We aimed to evaluate the impact of WL rate on body composition and compensatory mechanisms activated...... with WL (reduced RMR, increased exercise efficiency (ExEff) and appetite), both during negative and neutral energy balance (EB). METHODS: Thirty-five participants with obesity were randomized to lose a similar weight rapidly (4 weeks) or gradually (8 weeks), and afterwards to maintain it (4 weeks). Body...... weight and composition, RMR, ExEff (10, 25 and 50 W), appetite feelings and appetite-regulating hormones (active ghrelin, cholecystokinin, total peptide YY (PYY), active glucagon-like peptide-1 and insulin), in fasting and every 30 min up to 2.5 h, were measured at baseline and after each phase. RESULTS...

  18. Supplementation by thylakoids to a high carbohydrate meal decreases feelings of hunger, elevates CCK levels and prevents postprandial hypoglycaemia in overweight women

    DEFF Research Database (Denmark)

    Stenblom, Eva-Lena; Montelius, Caroline; Östbring, Karolina

    2013-01-01

    Thylakoids are chlorophyll-containing membranes in chloroplasts that have been isolated from green leaves. It has been previously shown that thylakoids supplemented with a high-fat meal can affect cholecystokinin (CCK), ghrelin, insulin and blood lipids in humans, and can act to suppress food...... intake and prevent body weight gain in rodents. This study investigates the addition of thylakoids to a high carbohydrate meal and its effects upon hunger motivation and fullness, and the levels of glucose, insulin, CCK, ghrelin and tumour necrosis factor (TNF)-alpha in overweight women. Twenty...... moderately overweight female subjects received test meals on three different occasions; two thylakoid enriched and one control, separated by 1 week. The test meals consisted of a high carbohydrate Swedish breakfast, with or without addition of thylakoids. Blood samples and VAS-questionnaires were evaluated...

  19. Synthesis, analytical analysis, and medicinal aspect of novel benzimidazoles and their metal complexes.

    Science.gov (United States)

    Agrawal, Sangeeta; Bhatnagar, Rishi Raj; Tiwari, Anjani; Srivastava, Rakesh; Sharma, Upasana

    2013-11-01

    Benzimidazole and their metal analogs that can act as multimodal agent and have non-peptidic CCK-B receptor antagonist were synthesized and characterized on the basis of spectroscopic techniques such as FT-IR, NMR, FAB-MS and also evaluated for biologic efficacy. The ligands showed binding to most of the organs, known to express CCK receptors in biodistribution studies. Cholecystokinin (CCK1 and CCK2) receptor binding affinities of these analogs (IC50) are 0.802 ± 0.007 for compound C and 0.326 ± 0.012 for compound D in rat pancreatic acini. These studies have provided a new template for further development of novel agents for various related diseases.

  20. Changes in Gastrointestinal Hormone Responses, Insulin Sensitivity, and Beta-Cell Function Within 2 Weeks After Gastric Bypass in Non-diabetic Subjects

    DEFF Research Database (Denmark)

    Jacobsen, Siv Hesse; Olesen, S C; Dirksen, C

    2012-01-01

    measured fasting and postprandial glucose, insulin, C-peptide, glucagon, total and intact glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-2 (GLP-2), peptide YY(3-36) (PYY), cholecystokinin (CCK), total and active ghrelin, gastrin, somatostatin......, pancreatic polypeptide (PP), amylin, leptin, free fatty acids (FFA), and registered postprandial dumping. Insulin sensitivity was measured by homeostasis model assessment of insulin resistance. RESULTS: Fasting glucose, insulin, ghrelin, and PYY were significantly decreased and FFA was elevated...... postoperatively. Insulin sensitivity increased after surgery. The postprandial response increased for C-peptide, GLP-1, GLP-2, PYY, CCK, and glucagon (in response to the mixed meal) and decreased for total and active ghrelin, leptin, and gastrin, but were unchanged for GIP, amylin, PP, and somatostatin after...

  1. Opioid adjuvant strategy: improving opioid effectiveness.

    Science.gov (United States)

    Bihel, Frédéric

    2016-01-01

    Opioid analgesics continue to be the mainstay of pharmacologic treatment of moderate to severe pain. Many patients, particularly those suffering from chronic pain, require chronic high-dose analgesic therapy. Achieving clinical efficacy and tolerability of such treatment regimens is hampered by the appearance of opioid-induced side effects such as tolerance, hyperalgesia and withdrawal syndrome. Among the therapeutic options to improve the opioid effectiveness, this current review focuses on strategies combining opioids to other drugs that can modulate opioid-mediated effects. We will discuss about experimental evidences reported for several potential opioid adjuvants, including N-methyl-D-aspartate receptor antagonists, 5-HT7 agonists, sigma-1 antagonists, I2-R ligands, cholecystokinin antagonists, neuropeptide FF-R antagonists and toll-like receptor 4 antagonists.

  2. Procholecystokinin as marker of human Ewing sarcomas

    DEFF Research Database (Denmark)

    Reubi, Jean Claude; Koefoed, Pernille; Hansen, Thomas von O

    2004-01-01

    PURPOSE: Ewing sarcoma is a rapidly growing mesenchymal tumor in young adults. Although it was shown previously to express the cholecystokinin (CCK) gene, it is unknown whether CCK gene expression is detectable at protein level in Ewing sarcoma tumor cell lines, in tumor tissue, and in plasma from...... Ewing sarcoma patients, and, if so, whether CCK peptides might play a role as tumor markers. EXPERIMENTAL DESIGN: CCK gene expression was evaluated with in situ hybridization or reverse transcription-PCR in tumor tissue. CCK precursors and bioactive CCK were measured with specific RIAs in tumor tissue......, in cell culture medium, and in plasma of Ewing sarcoma patients before and after chemotherapy as well as after tumor recurrence. RESULTS: CCK mRNA was identified in 12 Ewing sarcoma biopsies sampled in two series and in four Ewing sarcoma cell lines but not in unrelated neoplasia. Immunoreactive pro...

  3. Importance of the gut-brain axis in the control of glucose homeostasis.

    Science.gov (United States)

    Migrenne, Stéphanie; Marsollier, Nicolas; Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2006-12-01

    Adult mammals finely match glucose production to glucose utilization, thus allowing glycaemia to be maintained in a physiological range of 0.8-1.2mg/dl whatever the energetic status of the mammal (i.e. fed or fasted, rested or exercised). To accomplish this, peripheral signals originating from the gut 'inform' the central nervous system, which in turn is able to monitor the status of both peripheral glucose stores and ongoing fuel availability. Indeed, both secretion and action of hormones regulating endogenous glucose production and utilization are regulated by the autonomic nervous system. These gut signals are either hormonal (e.g. glucagon-like peptide-1, ghrelin and cholecystokinine) or neuronal (e.g. afferent vagus nerve fibres). Recent data, combined with the development of incretin analogues for treatment of diabetes, highlight the importance of the gut-brain axis, especially glucagon-like peptide-1 and ghrelin, in the control of glucose homeostasis.

  4. Carbachol does not down-regulate substance P receptors in pancreatic acini.

    Science.gov (United States)

    Patto, R J; Vinayek, R; Jensen, R T; Gardner, J D

    1992-01-01

    In a previous study, we found that first incubating guinea pig pancreatic acini with carbachol caused desensitization of the enzyme secretory response to cholecystokinin-octapeptide (CCK-8), bombesin, and carbachol but not that to substance P. This carbachol-induced desensitization could be accounted for by carbachol-induced down-regulation of receptors for CCK-8, bombesin, and carbachol. Although carbachol did not desensitize the enzyme secretory response to substance P, an effect of carbachol on substance P receptors was not examined. In the present study, in dispersed acini from guinea pig pancreas, substance P caused a twofold increase in amylase secretion. Stimulation was half-maximal at 0.7 nM and was maximal at 10 nM. Analysis of the ability of substance P to inhibit binding of 125I-substance P to substance P receptors indicated that acini possess a single class of receptors for substance P (Kd = 0.8 +/- 0.1 nM; Bmax = 1,037 +/- 145 fmol/mg of DNA). There was a close correlation between the relative potency with which substance P stimulated amylase secretion (0.7 nM) and the potency for inhibiting binding of 125I-substance P (Kd = 0.8 nM). First incubating pancreatic acini with carbachol did not alter either substance P-stimulated enzyme secretion or binding of 125I-substance P to substance P receptors, whereas in the same experiments, carbachol reduced binding of 125I-CCK-8 to cholecystokinin receptors by 50% and decreased in CCK-8-stimulated enzyme secretion by 50%.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  6. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women

    Directory of Open Access Journals (Sweden)

    Hendriks Henk FJ

    2008-03-01

    Full Text Available Abstract Appetite suppressants may be one strategy in the fight against obesity. This study evaluated whether Korean pine nut free fatty acids (FFA and triglycerides (TG work as an appetite suppressant. Korean pine nut FFA were evaluated in STC-1 cell culture for their ability to increase cholecystokinin (CCK-8 secretion vs. several other dietary fatty acids from Italian stone pine nut fatty acids, oleic acid, linoleic acid, alpha-linolenic acid, and capric acid used as a control. At 50 μM concentration, Korean pine nut FFA produced the greatest amount of CCK-8 release (493 pg/ml relative to the other fatty acids and control (46 pg/ml. A randomized, placebo-controlled, double-blind cross-over trial including 18 overweight post-menopausal women was performed. Subjects received capsules with 3 g Korean pine (Pinus koraiensis nut FFA, 3 g pine nut TG or 3 g placebo (olive oil in combination with a light breakfast. At 0, 30, 60, 90, 120, 180 and 240 minutes the gut hormones cholecystokinin (CCK-8, glucagon like peptide-1 (GLP-1, peptide YY (PYY and ghrelin, and appetite sensations were measured. A wash-out period of one week separated each intervention day. CCK-8 was higher 30 min after pine nut FFA and 60 min after pine nut TG when compared to placebo (p This study suggests that Korean pine nut may work as an appetite suppressant through an increasing effect on satiety hormones and a reduced prospective food intake.

  7. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans.

    Directory of Open Access Journals (Sweden)

    Yvonne Ritze

    Full Text Available OBJECTIVE: Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. METHODS: Five iso-caloric diets, enriched with liquid (in water 30% vol/vol or solid (in diet 65% g/g fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5 and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. RESULTS: In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001. Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. CONCLUSIONS: We show that the form of sugar intake (liquid versus solid is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals.

  8. Update on endoscopic pancreatic function testing

    Institute of Scientific and Technical Information of China (English)

    Tyler Stevens; Mansour A Parsi

    2011-01-01

    Hormone-stimulated pancreatic function tests (PFTs) are considered the gold standard for measuring pancreatic exocrine function. PFTs involve the administration of intravenous secretin or cholecystokinin, followed by collection and analysis of pancreatic secretions. Because exocrine function may decline in the earliest phase of pancreatic fibrosis, PFTs are considered accurate for diagnosing chronic pancreatitis. Unfortunately, these potentially valuable tests are infrequently performed except at specialized centers, because they are time consuming and complicated. To overcome these limitations, endoscopic PFT methods have been developed which include aspiration of pancreatic secretions through the suction channel of the endoscope. The secretin endoscopic pancreatic function test (ePFT) involves collection of duodenal aspirates at 15, 30, 45 and 60 min after secretin stimulation. A bicarbonate concentration greater than 80 mmol/L in any of the samples is considered a normal result. The secretin ePFT has demonstrated good sensitivity and specificity compared with various reference standards, including the "Dreiling tube" secretin PFT, endoscopic ultrasound, and surgical histology. Furthermore, a standard autoanalyzer can be used for bicarbonate analysis, which allows the secretin ePFT to be performed at any hospital. The secretin ePFT may complement imaging tests like endoscopic ultrasound (EUS) in the diagnosis of early chronic pancreatitis.This paper will review the literature validating the use of ePFT in the diagnosis of exocrine insufficiency and chronic pancreatitis. Newer developments will also be discussed, including the feasibility of combined EUS/ePFT, the use of cholecystokinin alone or in combination with secretin, and the discovery of new protein and lipid pancreatic juice biomarkers which may complement traditionalfluid analysis.

  9. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  10. Sleeve gastrectomy effects on hunger, satiation, and gastrointestinal hormone and motility responses after a liquid meal test.

    Science.gov (United States)

    Mans, Esther; Serra-Prat, Mateu; Palomera, Elisabet; Suñol, Xavier; Clavé, Pere

    2015-09-01

    The relation between hunger, satiation, and integrated gastrointestinal motility and hormonal responses in morbidly obese patients after sleeve gastrectomy has not been determined. The objective was to assess the effects of sleeve gastrectomy on hunger, satiation, gastric and gallbladder motility, and gastrointestinal hormone response after a liquid meal test. Three groups were studied: morbidly obese patients (n = 16), morbidly obese patients who had had sleeve gastrectomy (n = 8), and nonobese patients (n = 16). The participants fasted for 10 h and then consumed a 200-mL liquid meal (400 kcal + 1.5 g paracetamol). Fasting and postprandial hunger, satiation, hormone concentrations, and gastric and gallbladder emptying were measured several times over 4 h. No differences were observed in hunger and satiation curves between morbidly obese and nonobese groups; however, sleeve gastrectomy patients were less hungry and more satiated than the other groups. Antrum area during fasting in morbidly obese patients was statistically significant larger than in the nonobese and sleeve gastrectomy groups. Gastric emptying was accelerated in the sleeve gastrectomy group compared with the other 2 groups (which had very similar results). Gallbladder emptying was similar in the 3 groups. Sleeve gastrectomy patients showed the lowest ghrelin concentrations and higher early postprandial cholecystokinin and glucagon-like peptide 1 peaks than did the other participants. This group also showed an improved insulin resistance pattern compared with morbidly obese patients. Sleeve gastrectomy seems to be associated with profound changes in gastrointestinal physiology that contribute to reducing hunger and increasing sensations of satiation. These changes include accelerated gastric emptying, enhanced postprandial cholecystokinin and glucagon-like peptide 1 concentrations, and reduced ghrelin release, which together may help patients lose weight and improve their glucose metabolism after

  11. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  12. A new, highly selective CCK-B receptor radioligand ([3H][N-methyl-Nle28,31]CCK26-33): Evidence for CCK-B receptor heterogeneity

    International Nuclear Information System (INIS)

    Knapp, R.J.; Vaughn, L.K.; Fang, S.N.; Bogert, C.L.; Yamamura, M.S.; Hruby, V.J.; Yamamura, H.I.

    1990-01-01

    [N-methyl-Nle28,31]CCK26-33 (SNF 8702) is a nonsulfated cholecystokinin octapeptide analog that is highly selective for cholecystokinin-B (CCK-B) receptors. Inhibition studies using [125I] Bolton-Hunter-labeled CCK-8 show that SNF 8702 has over 4,000-fold greater affinity for CCK receptors in guinea pig cortex relative to those in guinea pig pancreas. SNF 8702 was tritium-labeled to a specific activity of 23.7 Ci/mmol and its binding properties characterized for guinea pig brain membrane preparations. [3H]SNF 8702 binds to a single site with high affinity (Kd = 0.69-0.90 nM) in guinea pig cortex, cerebellum, hippocampus and pons-medulla. Of these four tissues, the highest receptor density was measured in the cortex (86 fmol/mg of protein) and the lowest in the pons-medulla (22 fmol/mg of protein). In contrast to findings of single-site binding in some brain regions, evidence for CCK-B receptor heterogeneity is observed under other conditions. [3H]SNF 8702 binding to membranes prepared from whole guinea pig brain shows biphasic association kinetics at a concentration of 2.0 nM consistent with the presence of binding site heterogeneity. Binding site heterogeneity is consistently observed for [3H]SNF 8702 binding to guinea pig whole brain membranes in saturation studies where a high-affinity site (Kd = 0.31 nM) is distinguished from a low-affinity site (Kd = 3.3 nM). Binding site heterogeneity is also observed for the midbrain-thalamic region. CCK-B receptor heterogeneity is suggested by the effect of the guanyl nucleotide analogue, guanylyl-imidodiphosphate (Gpp(NH)p), on [3H]SNF 8702 binding to CCK-B receptors in the cerebellum

  13. The effective dose and pattern of soybean extract administration to regulate body weight of laboratory rats

    Directory of Open Access Journals (Sweden)

    Meilinah Hidayat

    2016-07-01

    Full Text Available Abstrak Latar Belakang: Protein dalam kedelai, β conglycinin mempunyai efek menekan nafsu makan melalui stimulasi Kolesistokinin. Kolesistokinin adalah hormon yang dilepaskan di saluran pencernaan dipicu oleh asupan protein dan berefek menekan nafsu makan untuk jangka pendek. Detam 1 adalah jenis kedelai berkualitas tinggi berdasarkan dengan Menteri Pertanian Indonesia. Ekstrak protein kedelai Detam 1 oleh Deak metode mengandung kadar β conglycinin yang tinggi. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh ekstrak protein kedelai Detam 1 metode Deak dalam menurunkan asupan makanan, berat badan, dan kadar CCK plasma selama 14 dan 28 hari pada berbagai dosis dan pola pemberian pada tikus Wistar jantan. Metode: Terdapat sebelas kelompok perlakuan (n=3, kelompok dosis (5mg/1x//hari, 10mg/1x/hari, 20mg/1x/hari, (2,5mg/2x/hari, 5mg/2x/hari, 10mg/2x/hari dan (1,7mg/3x/hari, 3,4mg/3x/ hari, 6,7mg/3x/ hari, kelompok kontrol negatif (akuades dan kelompok positif kontrol (Sibutramine. asupan makanan (g, berat badan (g dan pengukuran tingkat Cholecystokinin plasma dengan metode ELISA (ng / ml. Hasil: Hasil penelitian menunjukkan bahwa persentase penurunan asupan makanan yang terbaik adalah: kelompok 3,4mg/3x/hari (p <0,05, penghambatan berat badan selama 14 hari: kelompok 10 mg/1x/hari, selama 28 hari: kelompok 1,7mg/3x/hari (p <0,05, peningkatan kadar Kolesistokinin plasma: kelompok 20 mg / 1 x / hari (p <0,05. Simpulan: Dosis dan pola pemberian terbaik untuk menghambat berat badan selama 14 hari adalah ekstrak 10 mg sekali sehari di pagi hari, selama 28 hari adalah 1,7 mg tiga kali sehari. (Health Science Journal of Indonesia 2016;7:17-26 Kata kunci: Kedelai Detam 1 -dosis efektif - berat badan - kolesistokinin Abstract Background: Protein in soybean, β conglycinin is responsible for anti-obesity effects by suppressing appetite via stimulation of Cholecystokinin. Cholecystokinin is a hormone released in the digestive tract in response to

  14. Nutritional status-dependent endocannabinoid signalling regulates the integration of rat visceral information.

    Science.gov (United States)

    Khlaifia, Abdessattar; Matias, Isabelle; Cota, Daniela; Tell, Fabien

    2017-06-01

    Vagal sensory inputs transmit information from the viscera to brainstem neurones located in the nucleus tractus solitarii to set physiological parameters. These excitatory synapses exhibit a CB1 endocannabinoid-induced long-term depression (LTD) triggered by vagal fibre stimulation. We investigated the impact of nutritional status on long-term changes in this long-term synaptic plasticity. Food deprivation prevents LTD induction by disrupting CB1 receptor signalling. Short-term refeeding restores the capacity of vagal synapses to express LTD. Ghrelin and cholecystokinin, respectively released during fasting and refeeding, play a key role in the control of LTD via the activation of energy sensing pathways such as AMPK and the mTOR and ERK pathways. Communication form the viscera to the brain is essential to set physiological homoeostatic parameters but also to drive more complex behaviours such as mood, memory and emotional states. Here we investigated the impact of the nutritional status on long-term changes in excitatory synaptic transmission in the nucleus tractus solitarii, a neural hub integrating visceral signals. These excitatory synapses exhibit a CB1 endocannabinoid (eCB)-induced long-term depression (LTD) triggered by vagal fibre stimulation. Since eCB signalling is known to be an important component of homoeostatic regulation of the body and is regulated during various stressful conditions, we tested the hypothesis that food deprivation alters eCB signalling in central visceral afferent fibres. Food deprivation prevents eCB-LTD induction due to the absence of eCB signalling. This loss was reversed by blockade of ghrelin receptors. Activation of the cellular fuel sensor AMP-activated protein kinase or inhibition of the mechanistic target of rapamycin pathway abolished eCB-LTD in free-fed rats. Signals associated with energy surfeit, such as short-term refeeding, restore eCB-LTD induction, which in turn requires activation of cholecystokinin receptors and

  15. Effects of randomized whey-protein loads on energy intake, appetite, gastric emptying, and plasma gut-hormone concentrations in older men and women.

    Science.gov (United States)

    Giezenaar, Caroline; Trahair, Laurence G; Luscombe-Marsh, Natalie D; Hausken, Trygve; Standfield, Scott; Jones, Karen L; Lange, Kylie; Horowitz, Michael; Chapman, Ian; Soenen, Stijn

    2017-09-01

    Background: Protein- and energy-rich supplements are used widely for the management of malnutrition in the elderly. Information about the effects of protein on energy intake and related gastrointestinal mechanisms and whether these differ between men and women is limited. Objective: We determined the effects of whey protein on energy intake, appetite, gastric emptying, and gut hormones in healthy older men and women. Design: Eight older women and 8 older men [mean ± SEM age: 72 ± 1 y; body mass index (in kg/m 2 ): 25 ± 1] were studied on 3 occasions in which they received protein loads of 30 g (120 kcal) or 70 g (280 kcal) or a flavored water control drink (0 kcal). At regular intervals over 180 min, appetite (visual analog scales), gastric emptying (3-dimensional ultrasonography), and blood glucose and plasma gut-hormone concentrations [insulin, glucagon, ghrelin, cholecystokinin, gastric inhibitory polypeptide (GIP), glucagon-like peptide 1 (GLP-1), and peptide tyrosine tyrosine (PYY)] were measured, and ad libitum energy intake was quantified from a buffet meal (180-210 min; energy intake, appetite, and gastric emptying in the men have been published previously). Results: Energy intake at the buffet meal was ∼80% higher in older men than in older women ( P 0.05). There was no effect of sex on gastric emptying, appetite, gastrointestinal symptoms, glucose, or gut hormones ( P > 0.05). There was a protein load-dependent slowing of gastric emptying, an increase in concentrations of insulin, glucagon, cholecystokinin, GIP, GLP-1, and PYY, and an increase in total energy intake (drink plus meal: 12% increase with 30 g and 32% increase with 70 g; P < 0.001). Energy intake at the buffet meal was inversely related to the stomach volume and area under the curve of hormone concentrations ( P < 0.05). Conclusion: In older men and women, whey-protein drinks load-dependently slow gastric emptying and alter gut hormone secretion compared with a control but have no

  16. The CCK(-like) receptor in the animal kingdom: functions, evolution and structures.

    Science.gov (United States)

    Staljanssens, Dorien; Azari, Elnaz Karimian; Christiaens, Olivier; Beaufays, Jérôme; Lins, Laurence; Van Camp, John; Smagghe, Guy

    2011-03-01

    In this review, the cholecystokinin (CCK)(-like) receptors throughout the animal kingdom are compared on the level of physiological functions, evolutionary basis and molecular structure. In vertebrates, the CCK receptor is an important member of the G-protein coupled receptors as it is involved in the regulation of many physiological functions like satiety, gastrointestinal motility, gastric acid secretion, gall bladder contraction, pancreatic secretion, panic, anxiety and memory and learning processes. A homolog for this receptor is also found in nematodes and arthropods, called CK receptor and sulfakinin (SK) receptor, respectively. These receptors seem to have evolved from a common ancestor which is probably still closely related to the nematode CK receptor. The SK receptor is more closely related to the CCK receptor and seems to have similar functions. A molecular 3D-model for the CCK receptor type 1 has been built together with the docking of the natural ligands for the CCK and SK receptors in the CCK receptor type 1. These molecular models can help to study ligand-receptor interactions, that can in turn be useful in the development of new CCK(-like) receptor agonists and antagonists with beneficial health effects in humans or potential for pest control. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. The Role of “Mixed” Orexigenic and Anorexigenic Signals and Autoantibodies Reacting with Appetite-Regulating Neuropeptides and Peptides of the Adipose Tissue-Gut-Brain Axis: Relevance to Food Intake and Nutritional Status in Patients with Anorexia Nervosa and Bulimia Nervosa

    Science.gov (United States)

    Papezova, Hana; Vondra, Karel; Hill, Martin; Hainer, Vojtech; Nedvidkova, Jara

    2013-01-01

    Eating disorders such as anorexia (AN) and bulimia nervosa (BN) are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT) peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY), peptide YY (PYY), cholecystokinin (CCK), leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE), serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice. PMID:24106499

  18. Role of Glucagon-Like Peptide-1 and Gastric Inhibitory Peptide in Anorexia Induction Following Oral Exposure to the Trichothecene Mycotoxin Deoxynivalenol (Vomitoxin).

    Science.gov (United States)

    Jia, Hui; Wu, Wen-Da; Lu, Xi; Zhang, Jie; He, Cheng-Hua; Zhang, Hai-Bin

    2017-09-01

    Deoxynivalenol (DON), which is a Type B trichothecene mycotoxin produced by Fusarium, frequently contaminates cereal staples, such as wheat, barley and corn. DON threatens animal and human health by suppressing food intake and impairing growth. While anorexia induction in mice exposed to DON has been linked to the elevation of the satiety hormones cholecystokinin and peptide YY3-36 in plasma, the effects of DON on the release of other satiety hormones, such as glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), have not been established. The purpose of this study was to determine the roles of GLP-1 and GIP in DON-induced anorexia. In a nocturnal mouse food consumption model, the elevation of plasma GLP-1 and GIP concentrations markedly corresponded to anorexia induction by DON. Pretreatment with the GLP-1 receptor antagonist Exendin9-39 induced a dose-dependent attenuation of both GLP-1- and DON-induced anorexia. In contrast, the GIP receptor antagonist Pro3GIP induced a dose-dependent attenuation of both GIP- and DON-induced anorexia. Taken together, these results suggest that GLP-1 and GIP play instrumental roles in anorexia induction following oral exposure to DON, and the effect of GLP-1 is more potent and long-acting than that of GIP. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Murine Anorectic Response to Deoxynivalenol (Vomitoxin Is Sex-Dependent

    Directory of Open Access Journals (Sweden)

    Erica S. Clark

    2015-07-01

    Full Text Available Deoxynivalenol (DON, vomitoxin, a common trichothecene mycotoxin found in cereal foods, dysregulates immune function and maintenance of energy balance. The purpose of this study was to determine if sex differences are similarly evident in DON’s anorectic responses in mice. A bioassay for feed refusal, previously developed by our lab, was used to compare acute i.p. exposures of 1 and 5 mg/kg bw DON in C57BL6 mice. Greater anorectic responses were seen in male than female mice. Male mice had higher organ and plasma concentrations of DON upon acute exposure than their female counterparts. A significant increase in IL-6 plasma levels was also observed in males while cholecystokinin response was higher in females. When effects of sex on food intake and body weight changes were compared after subchronic dietary exposure to 1, 2.5, and 10 ppm DON, males were found again to be more sensitive. Demonstration of male predilection to DON-induced changes in food intake and weight gain might an important consideration in future risk assessment of DON and other trichothecenes.

  20. The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans

    DEFF Research Database (Denmark)

    Mandøe, Mette J.; Hansen, Katrine B.; Hartmann, Bolette

    2015-01-01

    acid), olive oil [contg. long-chain fatty acids; e.g., oleic acid plus 2-oleoyl glycerol (2-OG)], and 1,3-dioctanoyl-2-oleoyl glycerol (C8-dietary oil), which is digested to form medium-chain fatty acids (i.e., octanoic acid) and 2-OG. Design: In a randomized, single-blinded crossover study, 12 healthy...... white men [mean age: 24 y; BMI (in kg/m2): 22] were given the following 4 meals on 4 different days: 200 g carrots + 6.53 g tributyrin, 200 g carrots + 13.15 g C8-dietary oil, 200 g carrots + 19 g olive oil, or 200 g carrots. All of the lipids totaled 0.0216 mol. Main outcome measures were incremental...... areas under the curve for total GLP-1, GIP, and cholecystokinin (CCK) in plasma. Results: C8-dietary oil and olive oil showed the same GLP-1 response [583 ± 101 and 538 ± 71 (pmol/L) × 120 min; P = 0.733], whereas the GIP response was higher for olive oil than for C8-dietary oil [3293 ± 404 and 1674...

  1. Immunohistochemical study of the digestive tract of Oligosarcus hepsetus

    Science.gov (United States)

    Vieira-Lopes, Danielle A; Pinheiro, Nadja L; Sales, Armando; Ventura, Adriana; Araújo, Francisco G; Gomes, Iracema D; Nascimento, Aparecida A

    2013-01-01

    AIM: To describe the histology of the digestive tract and to investigate the occurrence of endocrine cells in Oligosarcus hepsetus (O. hepsetus). METHODS: The digestive tract (DT) of O. hepsetus was divided into esophagus, two stomach regions (glandular and non-glandular) and two intestinal regions (anterior and posterior). These specimens were processed by routine histological techniques and stained with hematoxylin-eosin, Gomori’s trichrome, periodic acid Schiff (PAS) and Alcian blue (AB). An immunohistochemical method using avidin-biotin-peroxidase was employed. RESULTS: The esophagus is lined with a non-keratinized stratified squamous epithelium that is reactive to PAS and AB. The stomach has a mucosa lined with a simple columnar epithelium with mucus-secreting cells that are reactive only to PAS. The intestine has a simple columnar epithelium with a brush border and goblet cells that are reactive to PAS and AB. Somatostatin, serotonin and cholecystokinin immunoreactive cells were identified throughout the DT. CONCLUSION: This study revealed adaptations for the species’ diet and showed that the distribution and relative frequency of immunoreactive cells are similar to those of other fish. PMID:23569337

  2. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    International Nuclear Information System (INIS)

    Yu, Ge; Wan, Rong; Hu, Yanling; Ni, Jianbo; Yin, Guojian; Xing, Miao; Shen, Jie; Tang, Maochun; Chen, Congying; Fan, Yuting; Xiao, Wenqin; Zhao, Yan; Wang, Xingpeng

    2014-01-01

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway

  3. Anorexia induction by the trichothecene deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY.

    Science.gov (United States)

    Flannery, Brenna M; Clark, Erica S; Pestka, James J

    2012-12-01

    Consumption of deoxynivalenol (DON), a trichothecene mycotoxin known to commonly contaminate grain-based foods, suppresses growth of experimental animals, thus raising concerns over its potential to adversely affect young children. Although this growth impairment is believed to result from anorexia, the initiating mechanisms for appetite suppression remain unknown. Here, we tested the hypothesis that DON induces the release of satiety hormones and that this response corresponds to the toxin's anorectic action. Acute ip exposure to DON had no effect on plasma glucagon-like peptide-1, leptin, amylin, pancreatic polypeptide, gastric inhibitory peptide, or ghrelin; however, the toxin was found to robustly elevate peptide YY (PYY) and cholecystokinin (CCK). Specifically, ip exposure to DON at 1 and 5mg/kg bw induced PYY by up to 2.5-fold and CCK by up to 4.1-fold. These responses peaked within 15-120 min and lasted up to 120 min (CCK) and 240 min (PPY), corresponding with depressed rates of food intake. Direct administration of exogenous PYY or CCK similarly caused reduced food intake. Food intake experiments using the NPY2 receptor antagonist BIIE0246 and the CCK1A receptor antagonist devazepide, individually, suggested that PYY mediated DON-induced anorexia but CCK did not. Orolingual exposure to DON induced plasma PYY and CCK elevation and anorexia comparable with that observed for ip exposure. Taken together, these findings suggest that PYY might be one critical mediator of DON-induced anorexia and, ultimately, growth suppression.

  4. Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans.

    Science.gov (United States)

    Keogh, Jennifer B; Wooster, Tim J; Golding, Matthew; Day, Li; Otto, Bärbel; Clifton, Peter M

    2011-05-01

    Little is known about the effect of dietary fat emulsion microstructure on plasma TG concentrations, satiety hormones, and food intake. The aim of this study was to structure dietary fat to slow digestion and flatten postprandial plasma TG concentrations but not increase food intake. Emulsions were stabilized by egg lecithin (control), sodium sterol lactylate, or sodium caseinate/monoglyceride (CasMag) with either liquid oil or a liquid oil/solid fat mixture. In a randomized, double-blind, crossover design, 4 emulsions containing 30 g of fat in a 350-mL preload were consumed by 10 men and 10 women (BMI = 25.1 ± 2.8 kg/m(2); age = 58.8 ± 4.8 y). Pre- and postprandial plasma TG, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) concentrations and food intake were measured. In a second experiment in a subset of the participants (n = 8, 4 men and 4 women), (13)C-labeled mixed TG was incorporated into 2 different emulsions and breath (13)C was measured over 6 h. In the first experiment, the postprandial rise in plasma TG concentrations following the CasMag-stabilized emulsion containing 30% solid fat was lower than all other emulsions at 90 and 120 min (P structured to decrease its effect on plasma TG concentrations without increasing food intake.

  5. Supplementation with a new trypsin inhibitor from peanut is associated with reduced fasting glucose, weight control, and increased plasma CCK secretion in an animal model.

    Science.gov (United States)

    Serquiz, Alexandre C; Machado, Richele J A; Serquiz, Raphael P; Lima, Vanessa C O; de Carvalho, Fabiana Maria C; Carneiro, Marcella A A; Maciel, Bruna L L; Uchôa, Adriana F; Santos, Elizeu A; Morais, Ana H A

    2016-12-01

    Ingestion of peanuts may have a beneficial effect on weight control, possibly due to the satietogenic action of trypsin inhibitors. The aim of this study was to isolate a new trypsin inhibitor in a typical Brazilian peanut sweet (paçoca) and evaluate its effect in biochemical parameters, weight gain and food intake in male Wistar rats. The trypsin inhibitor in peanut paçoca (AHTI) was isolated. Experimental diets were prepared with AIN-93G supplemented with AHTI. Animals had their weight and food intake monitored. Animals were anesthetized, euthanized, and their bloods collected by cardiac puncture for dosage of cholecystokinin (CCK) and other biochemical parameters. Supplementation with AHTI significantly decreased fasting glucose, body weight gain, and food intake. These effects may be attributed to increased satiety, once supplemented animals showed no evidence of impaired nutritional status and also because AHTI increased CCK production. Thus, our results indicate that AHTI, besides reducing fasting glucose, can reduce weight gain via food intake reduction.

  6. Changes in Ghrelin-Related Factors in Gastroesophageal Reflux Disease in Rats

    Directory of Open Access Journals (Sweden)

    Miwa Nahata

    2013-01-01

    Full Text Available To examine gastrointestinal hormone profiles and functional changes in gastroesophageal reflux disease (GERD, blood levels of the orexigenic hormone ghrelin were measured in rats with experimentally induced GERD. During the experiment, plasma acyl ghrelin levels in GERD rats were higher than those in sham-operated rats, although food intake was reduced in GERD rats. Although plasma levels of the appetite-suppressing hormone leptin were significantly decreased in GERD rats, no changes were observed in cholecystokinin levels. Repeated administration of rat ghrelin to GERD rats had no effect on the reduction in body weight or food intake. Therefore, these results suggest that aberrantly increased secretion of peripheral ghrelin and decreased ghrelin responsiveness may occur in GERD rats. Neuropeptide Y and agouti-related peptide mRNA expression in the hypothalamus of GERD rats was significantly increased, whereas proopiomelanocortin mRNA expression was significantly decreased compared to that in sham-operated rats. However, melanin-concentrating hormone (MCH and prepro-orexin mRNA expression in the hypothalamus of GERD rats was similar to that in sham-operated rats. These results suggest that although GERD rats have higher plasma ghrelin levels, ghrelin signaling in GERD rats may be suppressed due to reduced MCH and/or orexin synthesis in the hypothalamus.

  7. Interaction of angiotensin II with dispersed cells from the anterior pituitary of the male rat

    International Nuclear Information System (INIS)

    Paglin, S.; Stukenbrok, H.; Jamieson, J.D.

    1984-01-01

    Membranes from 6-week-old male rat anterior pituitaries possess saturable binding sites for angiotensin II (AII; Kd . approximately 2 X 10(-9) M). The binding is specific since it can be competed for with [Sar1,Leu8]AII and is unaffected by the presence of insulin or cholecystokinin octapeptide at nanomolar concentrations. To find out which cell types specifically interact with AII, rat anterior pituitaries were enzymatically dispersed and exposed to [ 125 I]iodo-AII (2 nM) in the absence or presence of [Sar1,Leu8]AII (400 nM). The cells were then washed free of unbound ligand and processed for light and electron microscopic autoradiography. Distribution of autoradiographic grains revealed that three cell types were specifically labeled with [ 125 I]iodo-AII, namely mammotrophs, corticotrophs, and presumptive thyrotrophs. These cells were all labeled in the presence of [ 125 I]iodo-AII alone (experimentals), whereas only 10-30% of them were labeled when 400 nM [Sar1,Leu8]AII was included in the binding reaction (controls). The number of grains over the labeled cells in the controls was 20% of that found in the experimental cells. These results may imply that AII can regulate anterior pituitary functions under physiological conditions by interacting directly with its secretory cells

  8. The effect of pancreatic polypeptide and peptide YY on pancreatic blood flow and pancreatic exocrine secretion in the anesthetized dog

    International Nuclear Information System (INIS)

    DeMar, A.R.; Lake, R.; Fink, A.S.

    1991-01-01

    Pancreatic polypeptide (PP) and peptide YY (PYY) are inhibitors of pancreatic exocrine secretion in vivo but not in vitro, which suggests intermediate mechanisms of action. To examine the role of pancreatic blood flow in these inhibitory effects, xenon-133 gas clearance was used to measure pancreatic blood flow while simultaneously measuring pancreatic exocrine secretion. PP or PYY (400 pmol/kg/h) was administered during the intermediate hour of a 3-h secretin (125 ng/kg/h)/cholecystokinin octapeptide (CCK-8) (50 ng/kg/h) infusion. Exocrine secretion and pancreatic blood flow during the PP or PYY hours were compared with that observed in the first and third hours of the secretin/CCK-8 infusion. PP and PYY significantly inhibited secretin/CCK-8-induced pancreatic exocrine secretion. In addition, PYY (but not PP) significantly reduced pancreatic blood flow during secretin/CCK-8 stimulation. Nevertheless, there was no correlation between pancreatic blood flow and bicarbonate or protein outputs. It is concluded that changes in pancreatic blood flow do not mediate the inhibitory effects of PP or PYY on the exocrine pancreas

  9. Laparoscopic cholecystectomy for biliary dyskinesia in children provides durable symptom relief.

    Science.gov (United States)

    Haricharan, Ramanath N; Proklova, Lyudmila V; Aprahamian, Charles J; Morgan, Traci L; Harmon, Carroll M; Barnhart, Douglas C; Saeed, Shehzad A

    2008-06-01

    The purpose of this study was to determine the effectiveness of laparoscopic cholecystectomy in children with biliary dyskinesia. Reports of children with an abnormal cholecystokinin (CCK)-stimulated HIDA scan between January 2001 and July 2006 who underwent laparoscopic cholecystectomy were reviewed. Postoperatively, a 23-item Likert scale, symptom questionnaire was administered to parents. Sixty-four children with chronic abdominal pain and no gallstones on ultrasound had an abnormal CCK-HIDA scan. Twenty-three children (median age, 14 years; 16 girls), with mean (SD) ejection fraction of 17% (8), underwent laparoscopic cholecystectomy and were further analyzed. Preoperatively, these children had right upper quadrant/epigastric pain (78%), nausea (52%), vomiting (43%), and generalized abdominal pain (22%) lasting for a median of 3 months (range, 1 month to 2.5 years). Median postoperative follow-up was 2.7 years. Sixteen (70%) parents completed the questionnaire. Of those who responded, 63% indicated that their children had no abdominal pain, 87% had no vomiting, and 69% had no nausea in the month preceding the questionnaire. Overall, 67% of parents indicated that their children's symptoms were completely relieved after cholecystectomy, whereas 7% indicated that the symptoms were not relieved. Laparoscopic cholecystectomy is effective in providing both short-term and long-term improvement of symptoms in children with biliary dyskinesia.

  10. Characterization of renal hyperemia in portal hypertensive rats

    International Nuclear Information System (INIS)

    Premen, A.J.; Banchs, V.; Go, V.L.W.; Benoit, J.N.; Granger, D.N.

    1986-01-01

    In anesthetized sham-operated control (C) and portal vein stenosed (PVS) rats, renal blood flow (RBF) was measured with radioactive microspheres on days 2, 4, 6, 8, and 10 following surgery. On day 2, only a small increase in RBF (19%) was produced in PVS versus C rats. However, by day 4, a significant increase in RBF (35%) was observed in PVS versus C animals. By day 6, the renal hyperemia in PVS rats reached a maximal value that was 42% higher than in C rats. Thereafter (on days 8 and 10), the renal hyperemia remained at the maximal value. In a separate group of 10-day PVS rats, glucagon antiserum failed to attenuate the 44% increase in RBF observed in PVS versus C rats. Radioimmunoassay of C and PVS plasma (10-day samples) revealed that vasoactive intestinal polypeptide, substance P, cholecystokinin/gastrin, neurotensin, pancreatic polypeptide, beta-endorphin, and peptide histidine-isoleucine amide are not elevated in arterial plasma of PVS rats. These data indicate that the renal hyperemia induced by chronic portal hypertension is manifested within 4 days after the hypertensive insult. Our studies also suggest that at least 9 blood-borne gastrointestinal peptides are not directly involved in the renal response to portal vein stenosis

  11. Lack of effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids on intestinal peptide release and adipokines in healthy female subjects

    Directory of Open Access Journals (Sweden)

    Ingunn Naverud

    2016-08-01

    Full Text Available Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3 fatty acids from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil and a combination of linseed and cod liver oil. The test days were separated by two weeks. Fasting and postprandial blood samples at three and six hours after intake were analysed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 fatty acids from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  12. New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology

    Directory of Open Access Journals (Sweden)

    Anna Lucia Tornesello

    2017-08-01

    Full Text Available Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc., produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.

  13. Beneficial effects of (pGlu-Gln)-CCK-8 on energy intake and metabolism in high fat fed mice are associated with alterations of hypothalamic gene expression.

    Science.gov (United States)

    Montgomery, I A; Irwin, N; Flatt, P R

    2013-06-01

    Cholecystokinin (CCK) is a gastrointestinal hormone with potential therapeutic promise for obesity-diabetes. The present study examined the effects of twice daily administration of the N-terminally modified stable CCK-8 analogue, (pGlu-Gln)-CCK-8, on metabolic control and hypothalamic gene expression in high fat fed mice. Sub-chronic twice daily injection of (pGlu-Gln)-CCK-8 for 16 days significantly decreased body weight (penergy intake (pcontrols. Furthermore, (pGlu-Gln)-CCK-8 markedly improved glucose tolerance (p<0.05) and insulin sensitivity (p<0.05). Assessment of hypothalamic gene expression on day 16 revealed significantly elevated NPY (p<0.05) and reduced POMC (p<0.05) and MC4R (p<0.05) mRNA expression in (pGlu-Gln)-CCK-8 treated mice. High fat feeding or (pGlu-Gln)-CCK-8 treatment had no significant effects on hypothalamic gene expression of receptors for leptin, CCK₁ and GLP-1. These studies underscore the potential of (pGlu-Gln)-CCK-8 for the treatment of obesity-diabetes and suggest modulation of NPY and melanocortin related pathways may be involved in the observed beneficial effects. © Georg Thieme Verlag KG Stuttgart · New York.

  14. The daidzein- and estradiol- induced anorectic action in CCK or leptin receptor deficiency rats.

    Science.gov (United States)

    Fujitani, Mina; Mizushige, Takafumi; Bhattarai, Keshab; Iwahara, Asami; Aida, Ryojiro; Kishida, Taro

    2015-01-01

    We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R- rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb- rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb- rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.

  15. The nocebo effect of drugs.

    Science.gov (United States)

    Planès, Sara; Villier, Céline; Mallaret, Michel

    2016-04-01

    While the placebo effect has been studied for a long time, much less is known about its negative counterpart, named the nocebo effect. However, it may be of particular importance because of its impact on the treatment outcomes and public health. We conducted a review on the nocebo effect using PubMed and other databases up to July 2014. The nocebo effect refers by definition to the induction or the worsening of symptoms induced by sham or active therapies. Examples are numerous and concerns both clinical trials and daily practice. The underlying mechanisms are, on one hand, psychological (conditioning and negative expectations) and, on the other hand, neurobiological (role of cholecystokinin, endogenous opioids and dopamine). Nocebo effects can modulate the outcome of a given therapy in a negative way, as do placebo effects in a positive way. The verbal and nonverbal communications of physicians contain numerous unintentional negative suggestions that may trigger a nocebo response. This raises the important issue of how physicians can at the same time obtain informed consent and minimize nocebo-related risks. Every physician has to deal with this apparent contradiction between primum non nocere and to deliver truthful information about risks. Meticulous identification of patients at risk, information techniques such as positive framing, contextualized informed consent, and even noninformation, is valuable.

  16. NUTRALYS® pea protein: characterization of in vitro gastric digestion and in vivo gastrointestinal peptide responses relevant to satiety

    Directory of Open Access Journals (Sweden)

    Joost Overduin

    2015-04-01

    Design: Under in vitro simulated gastric conditions, the digestion of NUTRALYS® pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY] responses were monitored in nine male Wistar rats following isocaloric (11 kcal meals containing 35 energy% of either NUTRALYS® pea protein, whey protein, or carbohydrate (non-protein. Results: In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. Conclusions: These results indicate that 1 pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2 pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals.

  17. Addition of sucralose enhances the release of satiety hormones in combination with pea protein.

    Science.gov (United States)

    Geraedts, Maartje C P; Troost, Freddy J; Saris, Wim H M

    2012-03-01

    Exposing the intestine to proteins or tastants, particularly sweet, affects satiety hormone release. There are indications that each sweetener has different effects on this release, and that combining sweeteners with other nutrients might exert synergistic effects on hormone release. STC-1 cells were incubated with acesulfame-K, aspartame, saccharine, sucralose, sucrose, pea, and pea with each sweetener. After a 2-h incubation period, cholecystokinin(CCK) and glucagon-like peptide 1 (GLP-1) concentrations were measured. Using Ussing chamber technology, the mucosal side of human duodenal biopsies was exposed to sucrose, sucralose, pea, and pea with each sweetener. CCK and GLP-1 levels were measured in basolateral secretions. In STC-1 cells, exposure to aspartame, sucralose, sucrose, pea, and pea with sucralose increased CCK levels, whereas GLP-1 levels increased after addition of all test products. Addition of sucrose and sucralose to human duodenal biopsies did not affect CCK and GLP-1 release; addition of pea stimulated CCK and GLP-1 secretion. Combining pea with sucrose and sucralose induced even higher levels of CCK and GLP-1. Synchronous addition of pea and sucralose to enteroendocrine cells induced higher levels of CCK and GLP-1 than addition of each compound alone. This study shows that combinations of dietary compounds synergize to enhance satiety hormone release. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The role of CCK2 receptors in energy homeostasis: insights from the CCK2 receptor-deficient mouse.

    Science.gov (United States)

    Weiland, Tracey J; Voudouris, Nicholas J; Kent, Stephen

    2004-09-15

    The present study explored the contribution of type 2 cholecystokinin (CCK) receptors in energy regulation. A total of 78 CCK2 receptor-deficient mice and 80 wild-type controls were acclimated to a 12:12 light-dark cycle at 30 +/- 1 degrees C. Using a computer-monitored biotelemetry system, circadian patterns of body temperature, food intake, and activity were monitored for 4 days. Body weight and water consumption were manually recorded during this period. Results indicate that CCK2 receptor invalidation produces elevated body temperature during both the photophase and scotophase (by 0.38 and 0.12 degrees C, respectively), increased body weight (29.3 +/- 0.2 vs. 26.8 +/- 0.2 g) and water consumption (4.1 +/- 0.1 vs. 3.2 +/- 0.1 ml), and decreased scotophase locomotor activity (WT: 7.0 +/- 0.2 vs. KO: 6.1 +/- 0.2 counts/min). These findings suggest an important role for CCK2 receptors in processes underlying energy regulation during basal and possibly pathological states.

  19. Effect of chronic mild stress on hippocampal transcriptome in mice selected for high and low stress-induced analgesia and displaying different emotional behaviors.

    Science.gov (United States)

    Lisowski, Pawel; Juszczak, Grzegorz R; Goscik, Joanna; Wieczorek, Marek; Zwierzchowski, Lech; Swiergiel, Artur H

    2011-01-01

    There is increasing evidence that mood disorders may derive from the impact of environmental pressure on genetically susceptible individuals. Stress-induced hippocampal plasticity has been implicated in depression. We studied hippocampal transcriptomes in strains of mice that display high (HA) and low (LA) swim stress-induced analgesia and that differ in emotional behaviors and responses to different classes of antidepressants. Chronic mild stress (CMS) affected expression of a number of genes common for both strains. CMS also produced strain specific changes in expression suggesting that hippocampal responses to stress depend on genotype. Considerably larger number of genes, biological processes, molecular functions, biochemical pathways, and gene networks were affected by CMS in LA than in HA mice. The results suggest that potential drug targets against detrimental effects of stress include glutamate transporters, and cholinergic, cholecystokinin (CCK), glucocorticoids, and thyroid hormones receptors. Furthermore, some biological processes evoked by stress and different between the strains, such as apoptosis, neurogenesis and chromatin modifications, may be responsible for the long-term, irreversible effects of stress and suggest a role for epigenetic regulation of mood related stress responses. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  20. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ge [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wan, Rong [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Hu, Yanling [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Ni, Jianbo [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Yin, Guojian; Xing, Miao [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Shen, Jie [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Tang, Maochun [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Chen, Congying [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Fan, Yuting; Xiao, Wenqin; Zhao, Yan [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wang, Xingpeng, E-mail: wangxingpeng@hotmail.com [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  1. The effect of PGE2, gastrin and CCK-8 on postirradiation recovery of small intestine epithelium

    International Nuclear Information System (INIS)

    Dziekiewicz, M.; Chomiczewski, K.; Jablonska, H.

    1997-01-01

    The role of some natural factors in the postirradiation recovery of intestinal epithelium is a very interesting and inscrutable problem. In our experiment the comparative effect of PGE 2 , Gastrin and CCK-8 fragment of Cholecystokinin on this problem has been investigated. Male Swiss PZH mice 8 weeks old were irradiated to the whole body with a dose of 5.5 Gy and to abdomen with a dose of 12 Gy of gamma rays. The first experimental group received PGE 2 before 30 min. irradiation, the second received Gastrin after irradiation during 5 days, the third was injected with CCK-8 after irradiation during 5 days too. Unirradiated and only irradiated animals served as control groups. Survival of 30 mice in every group was registered during 30 days after irradiation. The another part of animals in every group were killed between 1 and 12 days after irradiation. Changes in the body weight were registered. Using computer image analysis system , some histological slides were examined, adding the statistical analysis of results. The preliminary results suggest that all those factors are able to stimulate the postirradiation regeneration of small intestinal epithelium (author)

  2. An Exploratory Study on the Development of an Animal Model of Acute Pancreatitis Following Nicotine Exposure

    Directory of Open Access Journals (Sweden)

    Chowdhury P

    2003-09-01

    Full Text Available Abstract Cigarette smoking is known to be a major risk factor for pancreatic cancer and pancreatitis is believed to be a predisposed condition for pancreatic cancer. As of this date, there is no established experimental animal model to conduct detailed studies on these two deadly diseases. Our aim is to establish a rodent model by which we can systematically study the pathogenesis of pancreatitis and pancreatic cancer. Methods Adult Male Sprague Dawley rats were exposed to graded doses of nicotine by various routes for periods of three to 16 weeks. Blood samples were measured for hormonal and metabolic parameters. The pancreas was evaluated for histopathological changes and its function was assessed in isolated pancreatic acini upon stimulation with cholecystokinin (CCK or carbachol (Cch. The pancreatic tissue was evaluated further for oncogene expression. Results Body weight, food and fluid intakes, plasma glucose and insulin levels were significantly reduced in animals with nicotine exposure when compared to control. However, CCK and gastrin levels in the blood were significantly elevated. Pancreatic function was decreased significantly with no alteration in CCK receptor binding. Pancreatic histology revealed vacuolation, swelling, cellular pyknosis and karyorrhexis. Mutant oncogene, H-ras, was overexpressed in nicotine-treated pancreatic tissue. Summary and conclusion The results suggest that alterations in metabolic, hormonal and pathologic parameters following nicotine-treatment appear consistent with diagnostic criteria of human pancreatitis. It is proposed that rats could be considered as a potential animal model to study the pathogenesis of pancreatitis.

  3. Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis.

    Science.gov (United States)

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-12-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-gamma (PI3K gamma) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3K gamma, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3K gamma significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3K gamma-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3K gamma, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3K gamma. Our results thus suggest that inhibition of PI3K gamma may be of therapeutic value in acute pancreatitis.

  4. Ablation of Phosphoinositide 3-Kinase-γ Reduces the Severity of Acute Pancreatitis

    Science.gov (United States)

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P.; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-01-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-γ (PI3Kγ) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3Kγ, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3Kγ significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3Kγ-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3Kγ, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3Kγ. Our results thus suggest that inhibition of PI3Kγ may be of therapeutic value in acute pancreatitis. PMID:15579443

  5. Proteins are secreted from heterogeneous prestored sources in the exocrine pancreas

    International Nuclear Information System (INIS)

    Miller, P.E.; Adelson, J.W.

    1987-01-01

    Recent studies demonstrating nonparallel regulated secretion of prestored digestive enzymes in tightly linked groups consistent with the exocytosis mechanisms led the authors to predict that digestive enzymes would be found to be secreted from heterogeneous sources within the exocrine pancreas. They explored whether the gland was heterogeneous with respect to its sources of prestored secretory proteins with a double isotopic label method not dependent on activity of secreted digestive enzymes. Rabbit pancreatic proteins were double labeled in vivo by injection of each animal with chemically identical but isotopically distinct mixtures of 3 H- and 14 C-labeled amino acids, which were administered separately or together on consecutive days after partial depletion of prestored proteins by administration of cholecystokinin (CCK), methacholine chloride, or saline in a protocol in which order of both isotope and secretagogue administration was varied. Three days after labeling, proteins were recovered by collection from cannulated pancreatic ducts of anesthetized animals after stimulation with alternating increasing doses of CCK and methacholine chloride. Correlation and regression analysis of isotopic outputs and variance analysis of specific radioactivities of secreted proteins showed sequestration into and secretion from heterogeneous pools of secretory proteins, directly confirming the hypothesis. These results provide a cell biological mechanism explaining regulated nonparallel secretion of digestive enzymes

  6. Cholelitholytic therapy and diverticula of the gallbladder

    Energy Technology Data Exchange (ETDEWEB)

    Wolpers, C.

    1984-04-01

    Fifty patients with cholesterol stones in their gallbladder, with few symptoms were treated with the bile acids cheno- or ursodeoxycholic acid. 38 had a 'normal' gallbladder, 12 had diverticula of the gallbladder. After the complete dissolution of the stones the bile acid treatment was stopped. The follow-up period lasted up to 7 years. No recurrence was observed in the gallbladder of 18 patients, but 32 developed new stones. With a second bile acid treatment we could dissolve the new stones of 13 patients, up to now without further relapses. After the second bile acid treatment of 9 months and x-ray controls 19 patients (38%) developed insoluble material in their gallbladders, independent of the presence of diverticula. We tried to eliminate calcium sediments with cholecystokinin-like substances. Temporary success was achieved in three of five patients only, and one person only remained free of further relapses. There is no reason to exclude patients with cholesterol stones and diverticula of the gallbladder from litholytic therapy. 10 figs.

  7. Cholelitholytic therapy and diverticula of the gallbladder

    International Nuclear Information System (INIS)

    Wolpers, C.

    1984-01-01

    Fifty patients with cholesterol stones in their gallbladder, with few symptoms were treated with the bile acids cheno- or ursodeoxycholic acid. 38 had a 'normal' gallbladder, 12 had diverticula of the gallbladder. After the complete dissolution of the stones the bile acid treatment was stopped. The follow-up period lasted up to 7 years. No recurrence was observed in the gallbladder of 18 patients, but 32 developed new stones. With a second bile acid treatment we could dissolve the new stones of 13 patients, up to now without further relapses. After the second bile acid treatment of 9 months and x-ray controls 19 patients (38%) developed insoluble material in their gallbladders, independent of the presence of diverticula. We tried to eliminate calcium sediments with cholecystokinin-like substances. Temporary success was achieved in three of five patients only, and one person only remained free of further relapses. There is no reason to exclude patients with cholesterol stones and diverticula of the gallbladder from litholytic therapy. (orig.) [de

  8. The role of "mixed" orexigenic and anorexigenic signals and autoantibodies reacting with appetite-regulating neuropeptides and peptides of the adipose tissue-gut-brain axis: relevance to food intake and nutritional status in patients with anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Smitka, Kvido; Papezova, Hana; Vondra, Karel; Hill, Martin; Hainer, Vojtech; Nedvidkova, Jara

    2013-01-01

    Eating disorders such as anorexia (AN) and bulimia nervosa (BN) are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT) peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY), peptide YY (PYY), cholecystokinin (CCK), leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE), serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice.

  9. MR-cholangiography with a double contrast technique

    International Nuclear Information System (INIS)

    Hemmingsson, A.; Carlsten, J.; Ericsson, A.; Holtz, E.; Klaveness, J.; Loennemark, M.; Nyman, R.

    1989-01-01

    The combination of superparamagnetic particles (SPP) as a ''negative'' contrast agent for the liver parenchyma and Cr-HIDA as a ''positive'' one for the bile ducts was tested in dogs. The maximum effect of SPP was present about 30 minutes after injection with a reduction of the image intensity of the liver close to the background noise level at the highest dosages. This effect lasted for about 4 to 5 hours and it had disappeared after 24 hours. Before any contrast administration or after Cr-HIDA the bile ducts were not discernible, but a high signal in the gallbladder was present 15 to 30 minutes after injection of Cr-HIDA. After SPP the wider bile ducts were discernible because of the lowering of the signal intensity in the liver. When SPP were followed by Cr-HIDA, the bile had a higher signal intensity, and even tiny bile ducts were visible. After cholecystokinin visualization of the choledochus duct was achieved as well as contrast filling of the duodenum. The blood, urine and liver function tests were found normal during the experiments. The combination of superparamagnetic particles and Cr-HIDA seems to be a promising method for MR-cholangiography. An evaluation of the anatomic structures of the liver should be possible with this method in different pathologies. (orig.)

  10. Effect of long-term administration of dietary fiber on the exocrine pancreas in the rat.

    Science.gov (United States)

    Sommer, H; Kasper, H

    1984-08-01

    Male Sprague-Dawley rats (50--70g) were fed a standard laboratory diet containing 6% dietary fiber substances (diet I), the same diet supplemented with 5% guar (diet II), 10% wheat bran (diet III), or 5% pectin of high (76%) methylic esterification (diet IV), or a fiber-free diet (diet V). After a 6-week feeding period, the body weight of the animals had increased to 300--350g. The common bile duct was then canulated and the exocrine pancreatic function tested under urethane anesthesia (1.5 g/kg body weight). The tested fiber substances had no effect on the basal pancreatic secretion of volume, bicarbonate, lipase, amylase or protein, or on the wet weight and histological appearance of the organ. However, the fiber substances influenced the pancreatic response to maximal exogenous stimulation with secretin (3.0 CU/100 g X hour) and cholecystokinin (0.6 IDU/100 g X hour) and the enzyme content of the gland significantly. Compared with diet V, diet I increased the DNA content of the pancreas and its secretion of bicarbonate and protein, and decreased the protein concentration in the gland. Diet II reduced the pancreatic content of trypsinogen and protein. Diet III decreased the protein content, but increased the bicarbonate secretion, which was also increased by diet IV. -- We conclude that fiber substances influence stimulated secretion and the enzyme content of the pancrease to a varying degree.

  11. Gall bladder function test with Ceruletid

    International Nuclear Information System (INIS)

    Schindler, G.

    1981-01-01

    Compared with the stimulating food given orally in the gall bladder function test the administration of the decapeptide Ceruletid which is related with Cholecystokinin has the advantage of avoiding resorption disturbances in the upper gastrointestinal tract. To 100 patients with positive peroral cholecystography, Ceruletid was injected i.m. in a dose of 0.4 μg/kg body weight. The contrasting of the main bile duct was thus increased from 10% to 86%. The oral stimulating food brings an increase to appr. 20%. A special importance is assigned to the frequent diagnosis of adenomyomatoses which, with 6%, lies significantly above the 0.8% achieved by means of the oral stimulating food. More contractile segments of the gall bladder wall can cause pain symptoms which are typical for the biliary tract. Adenomyomatoses in the region of the infundibulum of the gall bladder cause colicky pains and are, as generally accepted, an absolute indication for a surgical intervention. The finding of small gall bladder conrements is often connected with a strong diminution of the gall bladder in order to prevent the small concrements from being overlapped by the non-contrasting bladder bile. Therefore, the application of Ceruletid should be considered also within the frame of the intravenous cholegraphy, thinking of the large number of normal gall bladder findings which were obtained with the oral stimulating food as the only diagnostical help. (orig./MG) [de

  12. Gallbladder function in diabetic patients

    International Nuclear Information System (INIS)

    Shreiner, D.P.; Sarva, R.P.; Van Thiel, D.; Yingvorapant, N.

    1986-01-01

    Gallbladder emptying and filling was studied in eight diabetic and six normal control patients. None of the patients had gallstones. Cholescintigraphy was performed using [/sup 99m/Tc]disofenin, and gallbladder emptying was studied using a 45-min i.v. infusion of the octapeptide of cholecystokinin (OP-CCK) 20 ng/kg X hr. The peak filling rate was greater in diabetic than in normal subjects; however, emptying of the gallbladder in response to OP-CCK was significantly less in the diabetic subjects (51.6 +/- 10.4% compared with 77.2 +/- 4.9%). When the diabetic group was subdivided into obese and nonobese diabetics, the obese diabetics had a much lower percentage of emptying than the nonobese diabetics (30.0 +/- 10.4% compared with 73.1 +/- 9.3%). These findings suggest that obese diabetics may have impaired emptying of the gallbladder even in the absence of gallstones. The more rapid rate of gallbladder filling in obesity may indicate hypotonicity of the gallbladder. The combination of these abnormalities may predispose the obese diabetic to the development of gallstones

  13. A study on gallbladder empty of patients with functional dyspepsia by radionuclide imaging and on assessment of plasma levels of gastrointestinal hormones

    International Nuclear Information System (INIS)

    Li Juan; Sun Xiaoning; Liu Baojun; Zhang Li

    2001-01-01

    Objective: To study the role of gallbladder kinetics and plasma levels of gastrointestinal hormones in the mechanism of functional dyspepsia. Methods: Gallbladder ejection fractions (GBEF) were determined with 99 Tc m radionuclide imaging, and plasma levels of motilin (MTL), cholecystokinin (CCK), vasoactive intestinal peptide (VIP) and somatostatin (SS) were measured with radioimmunoassay. Thirty-two patients with functional dyspepsia of dyskinetic type (FD group) and 20 normal volunteers in control group were studied. Results: The preprandial and postprandial gallbladder ejection fractions (GBEF) and MTL levels were both obviously lower in FD group (P preprandial = 0.82, P postprandial 0.94, P 0.05), while the levels of postprandial CCK were significantly decreased in FD group (P preprandial -0.81, P postprandial = - 0.47, P 0.05). Conclusions: Patients with FD of dyskinetic type might have a significant decrease of preprandial and postprandial gallbladder emptying. The decrease of plasma levels of gastrointestinal hormones. MTL, CCK and the elevation of VIP might be the cause of slow gallbladder emptying and part of the basic pathophysiology in FD

  14. Gastrointestinal peptide levels in obese and anorexic females

    International Nuclear Information System (INIS)

    Pasley, J.N.; Rice, R.L.; McCullough, S.S.; McKay, D.W.; Rayford, P.L.

    1989-01-01

    The role of gastrointestinal peptides in eating disorders has yet to be determined. Methods: In this study we examined plasma levels of gastrin (G), cholecystokinin (CCK), and pancreatic polypeptide (PP) in adolescent anorexic, and obese female subjects hospitalized for feeding behavior disorders. Six anorexic, six obese and six control young females (ages 13-26) were studied after an overnight fast and after consuming a liquid test meal. The liquid test meal (Ensure, Ross Laboratories; Columbus OH) consisted of 14% calories as protein, 31.5% calories as fat and 54.5% calories as carbohydrate in a 240ml volume. Plasma levels of gastrointestinal peptides, G, CCK and PP were determined by specific radioimmunoassay. The data were analyzed by one way analysis of variance and the Student's t-test. Results: show that fasting levels of G were greater in control and obese groups than the anorexic subjects. Postprandial G levels for controls were higher than the anorexic, and obese groups respectively. When fasting and postprandial G levels were compared among the same groups only the controls increased after eating. Fasting CCK levels were lower in control and anorexic groups than the obese group. Postprandial CCK levels were higher among control patients compared to anorexic and obese subjects. When fasting and postprandial CCK levels were compared among groups, only control levels increased after eating. Fasting and postprandial PP levels were not different between groups. Postprandial PP levels increased over fasting PP levels only in controls

  15. Somatostatin: a metabolic regulator

    International Nuclear Information System (INIS)

    Dileepan, K.N.; Wagle, S.R.

    1985-01-01

    Somatostatin, the hypothalamic release-inhibiting factor, has been found to stimulate gluconeogenesis in rat kidney cortical slices. Stimulation by somatostatin was linear and dose-dependent. Other bioactive peptides such as cholecystokinin, gastro-intestinal peptide, secretin, neurotensin, vasoactive intestinal peptide, pancreatic polypeptide, beta endorphin and substance P did not affect the renal gluconeogenic activity. Somatostatin-induced gluconeogenesis was blocked by phentolamine (alpha adrenergic antagonist) and prazosin (alpha 1 adrenergic antagonist) but not by propranolol (beta adrenergic antagonist) and yohimbine (alpha 2 adrenergic antagonist) suggesting that the effect is via alpha 1 adrenergic stimuli. Studies on the involvement of Ca 2+ revealed that tissue depletion and omission of Ca 2+ from the reaction mixture would abolish the stimulatory effect of somatostatin. Furthermore, somatostatin enhanced the uptake of 45 calcium in renal cortical slices which could be blocked by lanthanum, an inhibitor of Ca 2+ influx. It is proposed that the stimulatory effect of somatostatin on renal gluconeogenesis is mediated by alpha 1 adrenergic receptors, or those which functionally resemble the alpha 1 receptors and that the increased influx of Ca 2+ may be the causative factor for carrying out the stimulus. 88 references

  16. Diagnostic nuclear medicine. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schiepers, C.

    2006-01-01

    The field of nuclear medicine is undergoing rapid expansion, and is evolving into diagnostic molecular imaging. During recent years, dual-modality imaging with PET/CT has gained acceptance and this is currently the fastest-growing technique for oncological imaging applications. The glucose analogue FDG has held its place in diagnostic oncology, assessment of myocardial viability and diagnosis of neuro-degenerative disorders. Peptides have become even more important as imaging agents. The accuracy of hepatobiliary scintigraphy has been enhanced by cholecystokinin. The use of ACE inhibitors in the evaluation of renovascular hypertension has become the standard in renography. New instrumentation has led to faster scanners, and computer development to better image processing software. Automatic processing is more common, and standardization of protocols can be accomplished easily. The field of gene imaging has progressed, although routine clinical applications are not yet available. The present text, supplemented with many detailed and informative illustrations, represents an adjunct to the standard knowledge of diagnostic nuclear medicine and provides both the student and the professional with an overview of developments during the past decade. (orig.)

  17. D-tagatose, a stereoisomer of D-fructose, increases blood uric acid concentration.

    Science.gov (United States)

    Buemann, B; Toubro, S; Holst, J J; Rehfeld, J F; Bibby, B M; Astrup, A

    2000-08-01

    D-Fructose has been found to increase uric acid production by accelerating the degradation of purine nucleotides, probably due to hepatocellular depletion of inorganic phosphate (Pi) by an accumulation of ketohexose-1-phosphate. The hyperuricemic effect of D-tagatose, a stereoisomer of D-fructose, may be greater than that of D-fructose, as the subsequent degradation of D-tagatose-1-phosphate is slower than the degradation of D-fructose-1-phosphate. We tested the effect of 30 g oral D-tagatose versus D-fructose on plasma uric acid and other metabolic parameters in 8 male subjects by a double-blind crossover design. Both the peak concentration and 4-hour area under the curve (AUC) of serum uric acid were significantly higher after D-tagatose compared with either 30 g D-fructose or plain water. The decline in serum Pi concentration was greater at 50 minutes after D-tagatose versus D-fructose. The thermogenic and lactacidemic responses to D-tagatose were blunted compared with D-fructose. D-Tagatose attenuated the glycemic and insulinemic responses to a meal that was consumed 255 minutes after its administration. Moreover, both fructose and D-tagatose increased plasma concentrations of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1). The metabolic effects of D-tagatose occurred despite its putative poor absorption.

  18. Central Pathways Integrating Metabolism and Reproduction in Teleosts

    Science.gov (United States)

    Shahjahan, Md.; Kitahashi, Takashi; Parhar, Ishwar S.

    2014-01-01

    Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH), orexin, neuropeptide-Y, ghrelin, pituitary adenylate cyclase-activating polypeptide, α-melanocyte stimulating hormone, melanin-concentrating hormone, cholecystokinin, 26RFamide, nesfatin, kisspeptin, and gonadotropin-inhibitory hormone. These neuropeptides are involved in the control of energy balance and reproduction either directly or indirectly. On the other hand, synthesis and release of these hypothalamic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue. Furthermore, neurons producing these neuropeptides interact with each other, providing neuronal basis of the link between energy balance and reproduction. This review summarizes the advances made in our understanding of the physiological roles of the hypothalamic neuropeptides in energy balance and reproduction in teleosts, and discusses how they interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in teleosts. PMID:24723910

  19. Identification of proteins involved in the pancreatic exocrine by exogenous ghrelin administration in Sprague-Dawley rats.

    Science.gov (United States)

    Lee, Kyung-Hoon; Wang, Tao; Jin, Yong-Cheng; Lee, Sang-Bum; Oh, Jin-Ju; Hwang, Jin-Hee; Lim, Ji-Na; Lee, Jae-Sung; Lee, Hong-Gu

    2014-01-01

    The aims of study were to investigate the effects of intraperitoneal (i.p.) infusion of ghrelin on pancreatic α-amylase outputs and the responses of pancreatic proteins to ghrelin that may relate to the pancreatic exocrine. Six male Sprague-Dawley rats (300 g) were randomly divided into two groups, a control group (C, n = 3) and a treatment group (T, 10.0μg/kg BW, n = 3). Blood samples were collected from rat caudal vein once time after one hour injection. The concentrations of plasma ghrelin, cholecystokinin (CCK) and alfa-amylase activity were evaluated by enzyme immunoassay (EIA) kit. Two-dimensional gel electrophoresis (2-DE) analysis was conducted to separate the proteins in pancreas tissue. Results showed that the i.p. infusion of ghrelin at doses of 10.0 μg/kg body weight (BW) increased the plasma ghrelin concentrations (p = 0.07) and elevated the plasma CCK level significantly (p amylase activity tended to increase. The proteomics analysis indicated that some pancreatic proteins with various functions were up- or down- regulated compared with control group. In conclusion, ghrelin may have role in the pancreatic exocrine, but the signaling pathway was still not clear. Therefore, much more functional studies focus on these found proteins are needed in the near future.

  20. Regulatory signals for intestinal amino acid transporters and peptidases

    International Nuclear Information System (INIS)

    Ferraris, R.P.; Kwan, W.W.; Diamond, J.

    1988-01-01

    Dietary protein ultimately regulates many processes involved in protein digestion, but it is often unclear whether proteins themselves, peptides, or amino acids (AAs) are the proximate regulatory signal. Hence the authors compared several processes involved in protein digestion in mice adapted to one of three rations, identical except for containing 54% of either casein, a partial hydrolysate of casein, or a free AA mixture simulating a complete hydrolysate of casein. The authors measured brush-border uptakes of seven AAs that variously serve as substrates for four AA transporters, and brush-border and cytosolic activities of four peptidases. The three rations yielded essentially the same AA uptake rates. Peptidase activities tended to be lower on the AA ration than on the protein ration. In other studies, all three rations yielded the same rates of brush-border peptide uptake; protein is only modestly more effective than AAs at inducing synthesis of pancreatic proteases; and, depending on the animal species, protein is either much less or much more effective than AAs at stimulating release of cholecystokinin and hence of pancreatic enzymes. Thus the regulators of each process involved in protein digestion are not necessarily that process's substrate

  1. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human

    Directory of Open Access Journals (Sweden)

    Katalin eSkrapits

    2015-02-01

    Full Text Available Hypothalamic peptidergic neurons using kisspeptin (KP and its co-transmitters for communication are critically involved in the regulation of mammalian reproduction and puberty. This article provides an overview of neuropeptides present in KP neurons, with a focus on the human species. Immunohistochemical studies reveal that large subsets of human KP neurons synthesize neurokinin B, as also shown in laboratory species. In contrast, dynorphin described in KP neurons of rodents and sheep is found rarely in KP cells of human males and postmenopausal females. Similarly, galanin is detectable in mouse, but not human, KP cells, whereas substance P, cocaine- and amphetamine-regulated transcript and proenkephalin-derived opioids are expressed in varying subsets of KP neurons in humans, but not reported in ARC of other species. Human KP neurons do not contain neurotensin, cholecystokinin, proopiomelanocortin-derivatives, agouti-related protein, neuropeptide Y, somatostatin or tyrosine hydroxylase (dopamine. These data identify the possible co-transmitters of human KP cells. Neurochemical properties distinct from those of laboratory species indicate that humans use considerably different neurotransmitter mechanisms to regulate fertility.

  2. Difference in postprandial GLP-1 response despite similar glucose kinetics after consumption of wheat breads with different particle size in healthy men.

    Science.gov (United States)

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2017-04-01

    Underlying mechanisms of the beneficial health effects of low glycemic index starchy foods are not fully elucidated yet. We varied the wheat particle size to obtain fiber-rich breads with a high and low glycemic response and investigated the differences in postprandial glucose kinetics and metabolic response after their consumption. Ten healthy male volunteers participated in a randomized, crossover study, consuming 13 C-enriched breads with different structures; a control bread (CB) made from wheat flour combined with wheat bran, and a kernel bread (KB) where 85 % of flour was substituted with broken wheat kernels. The structure of the breads was characterized extensively. The use of stable isotopes enabled calculation of glucose kinetics: rate of appearance of exogenous glucose, endogenous glucose production, and glucose clearance rate. Additionally, postprandial plasma concentrations of glucose, insulin, glucagon, incretins, cholecystokinin, and bile acids were analyzed. Despite the attempt to obtain a bread with a low glycemic response by replacing flour by broken kernels, the glycemic response and glucose kinetics were quite similar after consumption of CB and KB. Interestingly, the glucagon-like peptide-1 (GLP-1) response was much lower after KB compared to CB (iAUC, P bread did not result in a difference in glucose response and kinetics, but in a pronounced difference in GLP-1 response. Thus, changing the processing conditions of wheat for baking bread can influence the metabolic response beyond glycemia and may therefore influence health.

  3. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    International Nuclear Information System (INIS)

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-01-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 μM, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. 45 Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45 Ca outflux. BPP was also capable of displacing the specific binding of [ 3 H]-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 μM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant

  4. Cyanide and sulfide interact with nitrogenous compounds to influence the relaxation of various smooth muscles

    Energy Technology Data Exchange (ETDEWEB)

    Kruszyna, H.; Kruszyna, R.; Smith, R.P.

    1985-05-01

    Sodium nitroprusside relaxed guinea pig ileum after the segment had been submaximally contracted by either histamine or acetylcholine, intact isolated rabbit gall bladder after submaximal contraction by either acetylcholine or cholecystokinin octapeptide, and rat pulmonary artery helical strips after submaximal contraction with norepinephrine. In each of these cases the relaxation produced by nitroprusside was at least partially reversed by the subsequent addition of excess sodium cyanide. Cyanide, however, in nontoxic concentrations did not reverse the spasmolytic effects of hydroxylamine hydrochloride, sodium azide, nitroglycerin, sodium nitrite, or nitric oxide hemoglobin on guinea pig ileum, nor did cyanide alone in the same concentrations have any effect. The similar interaction between nitroprusside and cyanide on rabbit aortic strips is not dependent on the presence of an intact endothelia cell layer. Also, on rabbit aortic strips and like cyanide, sodium sulfide reversed the spasmolytic effects of azide and hydroxylamine, but it had little or no effect on the relaxation induced by papaverine. Unlike cyanide, however, sulfide augmented the relaxation induced by nitroprusside, and it reversed the effects of nitric oxide hemoglobin, nitroglycerin, and nitrite. A direct chemical reaction between sulfide and nitroprusside may account for the difference between it and cyanide. Although evidence was obtained also for a direct chemical reaction between sulfide and norepinephrine, that reaction does not seem to have played a role in these results.

  5. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Lydia eOuellet

    2014-06-01

    Full Text Available In both humans and rodents, decline in cognitive function is a hallmark of the aging process, the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern detection and other large-scale population dynamics, but they have also been linked to mechanisms mediating plasticity and learning, making them a prime candidate for study and modelling of modifications to cortical communication pathways in neurodegenerative diseases. Using the rat primary auditory cortex (A1 as a model, we probed the known markers of GABAergic interneurons with immunohistological methods, using antibodies against gamma aminobutyric acid (GABA, parvalbumin (PV, somatostatin (SOM, calretinin (CR, vasoactive intestinal peptide (VIP, choline acetyltransferase (ChAT, neuropeptide Y (NPY and cholecystokinin (CCK to document the changes observed in interneuron populations across the rat’s lifespan. This analysis provided strong evidence that several but not all GABAergic neurons were affected by the aging process, showing most dramatic changes in expression of parvalbumin (PV and somatostatin (SOM expression. With this evidence, we show how understanding these trajectories of cell counts may be factored into a simple model to quantify changes in inhibitory signalling across the course of life, which may be applied as a framework for creating more advanced simulations of interneuronal implication in normal cerebral processing, normal aging, or pathological processes.

  6. Stimulus-secretion coupling in the developing exocrine pancreas

    International Nuclear Information System (INIS)

    Chang, A.Y.S.

    1986-01-01

    Acinar cells of the embryonic pancreas are filled with zymogen granules containing, among others, the secretory protein, cholecystokinin (CCK) α-amylase, the rate of amylase secretion from pancreatic lobules incubated in vitro was not increased in response to CCK. In contrast, the rate of CCK-stimulated amylase discharge from the neonatal pancreas was increased 4- to 8-fold above that seen in the embryonic gland. The postnatal amplification of secretory responsiveness was not associated with an increase in the level of 125 I-CCK octapeptide specifically bound/cell equivalent or a change in the affinity of binding. Light microscopic autoradiography revealed a similar 125 I-CCK-33 labeling pattern in pancreatic lobules from both ages with autoradiographic grains specifically localized at the periphery of acinar cells. In order to determine whether CCK binding is coupled to a rise in the cytosolic Ca ++ concentration, [Ca ++ ]c, in the embryonic pancreas, 45 Ca ++ efflux from tracer-loaded lobules was measured. Efflux of 45 Ca ++ from both embryonic and neonatal pancreas was comparably increased in the presence of CCK

  7. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight

    Science.gov (United States)

    Borer, Katarina T

    2014-01-01

    A re-examination of the mechanism controlling eating, locomotion, and metabolism prompts formulation of a new explanatory model containing five features: a coordinating joint role of the (1) autonomic nervous system (ANS); (2) the suprachiasmatic (SCN) master clock in counterbalancing parasympathetic digestive and absorptive functions and feeding with sympathetic locomotor and thermogenic energy expenditure within a circadian framework; (3) interaction of the ANS/SCN command with brain substrates of reward encompassing dopaminergic projections to ventral striatum and limbic and cortical forebrain. These drive the nonhomeostatic feeding and locomotor motivated behaviors in interaction with circulating ghrelin and lateral hypothalamic neurons signaling through melanin concentrating hormone and orexin-hypocretin peptides; (4) counterregulation of insulin by leptin of both gastric and adipose tissue origin through: potentiation by leptin of cholecystokinin-mediated satiation, inhibition of insulin secretion, suppression of insulin lipogenesis by leptin lipolysis, and modulation of peripheral tissue and brain sensitivity to insulin action. Thus weight-loss induced hypoleptimia raises insulin sensitivity and promotes its parasympathetic anabolic actions while obesity-induced hyperleptinemia supresses insulin lipogenic action; and (5) inhibition by leptin of bone mineral accrual suggesting that leptin may contribute to the maintenance of stability of skeletal, lean-body, as well as adipose tissue masses. PMID:25317239

  8. Characterization of renal hyperemia in portal hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Premen, A.J.; Banchs, V.; Go, V.L.W.; Benoit, J.N.; Granger, D.N.

    1986-03-01

    In anesthetized sham-operated control (C) and portal vein stenosed (PVS) rats, renal blood flow (RBF) was measured with radioactive microspheres on days 2, 4, 6, 8, and 10 following surgery. On day 2, only a small increase in RBF (19%) was produced in PVS versus C rats. However, by day 4, a significant increase in RBF (35%) was observed in PVS versus C animals. By day 6, the renal hyperemia in PVS rats reached a maximal value that was 42% higher than in C rats. Thereafter (on days 8 and 10), the renal hyperemia remained at the maximal value. In a separate group of 10-day PVS rats, glucagon antiserum failed to attenuate the 44% increase in RBF observed in PVS versus C rats. Radioimmunoassay of C and PVS plasma (10-day samples) revealed that vasoactive intestinal polypeptide, substance P, cholecystokinin/gastrin, neurotensin, pancreatic polypeptide, beta-endorphin, and peptide histidine-isoleucine amide are not elevated in arterial plasma of PVS rats. These data indicate that the renal hyperemia induced by chronic portal hypertension is manifested within 4 days after the hypertensive insult. Our studies also suggest that at least 9 blood-borne gastrointestinal peptides are not directly involved in the renal response to portal vein stenosis.

  9. Somatostatin: a metabolic regulator

    Energy Technology Data Exchange (ETDEWEB)

    Dileepan, K.N.; Wagle, S.R.

    1985-12-23

    Somatostatin, the hypothalamic release-inhibiting factor, has been found to stimulate gluconeogenesis in rat kidney cortical slices. Stimulation by somatostatin was linear and dose-dependent. Other bioactive peptides such as cholecystokinin, gastro-intestinal peptide, secretin, neurotensin, vasoactive intestinal peptide, pancreatic polypeptide, beta endorphin and substance P did not affect the renal gluconeogenic activity. Somatostatin-induced gluconeogenesis was blocked by phentolamine (alpha adrenergic antagonist) and prazosin (alpha/sub 1/ adrenergic antagonist) but not by propranolol (beta adrenergic antagonist) and yohimbine (alpha/sub 2/ adrenergic antagonist) suggesting that the effect is via alpha/sub 1/ adrenergic stimuli. Studies on the involvement of Ca/sup 2 +/ revealed that tissue depletion and omission of Ca/sup 2 +/ from the reaction mixture would abolish the stimulatory effect of somatostatin. Furthermore, somatostatin enhanced the uptake of /sup 45/calcium in renal cortical slices which could be blocked by lanthanum, an inhibitor of Ca/sup 2 +/ influx. It is proposed that the stimulatory effect of somatostatin on renal gluconeogenesis is mediated by alpha/sub 1/ adrenergic receptors, or those which functionally resemble the alpha/sub 1/ receptors and that the increased influx of Ca/sup 2 +/ may be the causative factor for carrying out the stimulus. 88 references.

  10. Effect of the lectins wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA-I) on the alpha-amylase secretion of rat pancreas in vitro and in vivo.

    Science.gov (United States)

    Mikkat, U; Damm, I; Schröder, G; Schmidt, K; Wirth, C; Weber, H; Jonas, L

    1998-05-01

    Lectins are able to bind to cholecystokinin (CCK) receptors and other glycosylated membrane proteins. The lectins wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA-I) are used for affinity chromatography to isolate the highly glycosylated CCK-A receptor of pancreatic acinar cells. According to the working hypothesis that lectin binding to the CCK receptor should alter the ligand-receptor interaction, the effect of WGA and UEA-I on CCK-8-induced enzyme secretion was studied on isolated rat pancreatic acini in vitro. In vitro both lectins showed a dosage-dependent inhibition of CCK-8-induced alpha-amylase secretion of acini over 60 min. WGA showed a strong inhibitory effect on amylase secretion, approximately 40%, in vitro. UEA-I caused a smaller, but significant decrease, approximately 20%, in enzyme secretion of isolated acini. Additionally, both lectins inhibited cerulein/secretin- or cerulein-induced pancreatic secretion of rats in vivo, but not after secretin alone. The results are discussed with respect to a possible influence of both lectins on the interaction of CCK or cerulein with the CCK-A receptor.

  11. Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population.

    Science.gov (United States)

    Miyasaka, K; Hosoya, H; Sekime, A; Ohta, M; Amono, H; Matsushita, S; Suzuki, K; Higuchi, S; Funakoshi, A

    2006-09-01

    Eating disorders (EDs) have a highly heterogeneous etiology and multiple genetic factors might contribute to their pathogenesis. Ghrelin, a novel growth hormone-releasing peptide, enhances appetite and increases food intake, and human ghrelin plasma levels are inversely correlated with body mass index. In the present study, we examined the 171T/C polymorphism of the ghrelin receptor (growth hormone secretagogue receptor, GHSR) gene in patients diagnosed with EDs, because the subjects having ghrelin gene polymorphism (Leu72Met) was not detected in a Japanese population, previously. In addition, beta3 adrenergic receptor gene polymorphism (Try64Arg) and cholecystokinin (CCK)-A receptor (R) gene polymorphism (-81A/G, -128G/T), which are both associated with obesity, were investigated. The subjects consisted of 228 Japanese patients with EDs [96 anorexia nervosa (AN), 116 bulimia nervosa (BN) and 16 not otherwise specified (NOS)]. The age- and gender-matched control group consisted of 284 unrelated Japanese subjects. The frequency of the CC type of the GHSR gene was significantly higher in BN subjects than in control subjects (chi(2) = 4.47, p = 0.035, odds ratio = 2.05, Bonferroni correction: p = 0.070), while the frequency in AN subjects was not different from that in controls. The distribution of neither beta3 adrenergic receptor gene nor CCK-AR polymorphism differed between EDs and control subjects. Therefore, the CC type of GHSR gene polymorphism (171T/C) is a risk factor for BN, but not for AN.

  12. Development of gene diagnosis for diabetes and cholecystitis based on gene analysis of CCK-A receptor

    International Nuclear Information System (INIS)

    Kono, Akira

    1999-01-01

    Base sequence analysis of CCKAR gene (a gene of A-type receptor for cholecystokinin) from OLETF rat, a model rat for insulin-independent diabetes was made based on the base sequence of wild CCKAR gene, which had been clarified in the previous year. From the pancreas of OLETF rat, DNA was extracted and transduced into λphage after fragmentation to construct the gene library of OLETF. Then, λphage DNA clone bound with labelled cDNA of CCKAR gene was analyzed and the gene structure was compared with that of the wild gene. It was demonstrated that CCKAR gene of OLETF had a deletion (6800 b.p.) ranging from the promoter region to the Exon 2, suggesting that CCKAR gene is not functional in OLETF rat. The whole sequence of this mutant gene was registered into Japan DNA Bank (D 50610). Then, F 2 offspring rats were obtained through crossing OLETF (female) and F344 (male) and the time course-changes in the blood glucose level after glucose loading were compared among them. The blood glucose level after glucose loading was significantly higher in the homo-mutant F 2 (CCKAR,-/-) as well as the parent OLETF rat than hetero-mutant F 2 (CCKARm-/+) or the wild rat (CCKAR,+/+). This suggests that CCKAR gene might be involved in the control of blood glucose level and an alteration of the expression level or the functions of CCKAR gene might affect the blood glucose level. (M.N.)

  13. Expression of CCK Receptors in Carcinoma Gallbladder and Cholelithiasis: A Pilot Study.

    Science.gov (United States)

    Faridi, Mohammad Shazib; Jaiswal, Mahabir Saran Das; Goel, Sudhir K

    2015-07-01

    Gastrin and cholecystokinin (CCK) receptors are trophic for various gastrointestinal malignancies. Their role in gallbladder cancer has not been widely studied. To identify expression of CCK-A and CCK-B receptors in the tissue and blood of patients suffering from carcinoma (CA) gallbladder and gallstone disease and to compare expression of CCK A and B receptors in the gall bladder tissue and blood of healthy individuals and patients of CA gallbladder, and gallstone diseases. Forty nine subjects of both genders were recruited, comprising of 22 patients of CA gall bladder, 19 cases of cholelithiasis and, 8 normal gallbladders obtained from patients operated for trauma of the biliary system or Whipple's procedure. RNA extraction and cDNA formation for CCK-A and CCK-B receptors were carried out. Real Time PCR was performed on cDNA and threshold cycle (Ct) value of each sample was obtained and ΔCt was calculated. Chi-square test for comparing two groups and ANOVA test for comparing multiple groups were applied and if pgallbladder and there was no difference among them (p>0.05). This preliminary study showed higher expression of CCK-A receptors in patients of cholelithiasis and decreased expression of CCK-A receptors in patients of CA gallbladder as compared to normal gallbladder although it did not rise to statistical significance.

  14. Motor activity of the gallbladder and gastrointestinal tract as determinants of enterohepatic circulation. A scintigraphic and manometric study

    International Nuclear Information System (INIS)

    Qvist, N.

    1995-01-01

    The aims of the study were to describe the dynamics of the enterohepatic circulation in relation to gallbladder and gastrointestinal motility in the interdigestive as well as the postprandial period. Furthermore, to investigate the level of circulating cholecystokinin, secretin, pancreatic polypeptide, motilin and bile acids in relation to gallbladder motility and MMC during the interdigestive period. All investigations were carried out on healthy male volunteers aged 18-40 years. The most suitable method for studying various characteristics of the enterohepatic circulation, and especially gallbladder motility in humans, is scintigraphy. It is non-invasive, and allows a continuing dynamic investigation of the partitioning of the radioactive marker between the various compartment. Two entirely different pharmacological substances may be use. HIDA (diethyl-acetanilide-iminodiacetic acid) which is semisynthetic and closely related to lidocaine forms a chelate with 99m Tc for intravenous administration only. The transport of 99m Tc-HIDA across the hepatocyte is a carrier-mediated organic anion pathway, similar to the hepatic handling of bilirubin. Homocholic-acid-taurine (HCAT) is a synthetic bile acid analogue, corresponding to the naturally occurring bile acid cholic acid-taurine. It is marked with 75 Se and is available for peroral use only. The 75 SeHCAT is adsorbed in the same manner as the naturally occurring conjugated trihydroxy bile acids, involving specific carrier systems for absorption and secretion, i.e. with a high first pass extraction and a secretory rate proportional to the blood concentration. (EG) 24 refs

  15. Anti-angiogenic mechanism of cordycepin on rhesus macaque choroid-retinal endothelial cell line cultured in high glucose condition

    Directory of Open Access Journals (Sweden)

    Xiao-Li Zhu*

    2016-07-01

    Full Text Available AIM: To investigate the angiogenesis effect and protective mechanism of cordycepin on rhesus macaque choroid-retinal endothelial(RF/6Acell line cultured in high glucose condition. METHODS: Cultured RF/6A cells were divided into normal control group, high glucose group and high glucose(HG+ different concentration cordycepin groups(HG+10μg/mL group, HG+50μg/mL group, HG+100μg/mL group. The cell proliferation was assessed using cholecystokinin octapeptide dye after treated for 48h. The cell migration was investigated by a Transwell assay. The tube formation was measured on Matrigel. Furthermore, the impact of cordycepin on high glucose-induced activation of VEGF and VEGF receptor 2(VEGFR-2was tested by Western blot analysis. RESULTS: Compared with normal control group, cell viability markedly increased in high glucose group(PPPPPPvs normal control group, oppositely gradually decreased with the increase of cordycepin concentrations, and had a statistically significant difference vs high glucose group(PCONCLUSION: Cordycepin can suppress the proliferation, migration and tubu formation of RF/6A in high glucose condition, might via inhibiting expression of VEGF and VEGFR-2.

  16. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization.

    Science.gov (United States)

    Blevins, James E; Thompson, Benjamin W; Anekonda, Vishwanath T; Ho, Jacqueline M; Graham, James L; Roberts, Zachary S; Hwang, Bang H; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J; Havel, Peter J; Bales, Karen L; Morton, Gregory J; Schwartz, Michael W; Baskin, Denis G

    2016-04-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.

  17. Effect of biologically active fraction of Nardostachys jatamansi on cerulein-induced acute pancreatitis

    Science.gov (United States)

    Bae, Gi-Sang; Kim, Min-Sun; Park, Kyoung-Chel; Koo, Bon Soon; Jo, Il-Joo; Choi, Sun Bok; Lee, Dong-Sung; Kim, Youn-Chul; Kim, Tae-Hyeon; Seo, Sang-Wan; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo

    2012-01-01

    AIM: To determine if the fraction of Nardostachys jatamansi (NJ) has the potential to ameliorate the severity of acute pancreatitis (AP). METHODS: Mice were administered the biologically active fraction of NJ, i.e., the 4th fraction (NJ4), intraperitoneally, and then injected with the stable cholecystokinin analogue cerulein hourly for 6 h. Six hours after the last cerulein injection, the pancreas, lung, and blood were harvested for morphological examination, measurement of cytokine expression, and examination of neutrophil infiltration. RESULTS: NJ4 administration attenuated the severity of AP and lung injury associated with AP. It also reduced cytokine production and neutrophil infiltration and resulted in the in vivo up-regulation of heme oxygenase-1 (HO-1). Furthermore, NJ4 and its biologically active fraction, NJ4-2 inhibited the cerulein-induced death of acinar cells by inducing HO-1 in isolated pancreatic acinar cells. CONCLUSION: These results suggest that NJ4 may be a candidate fraction offering protection in AP and NJ4 might ameliorate the severity of pancreatitis by inducing HO-1 expression. PMID:22783046

  18. Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types.

    Science.gov (United States)

    Gil-Ibañez, Pilar; García-García, Francisco; Dopazo, Joaquín; Bernal, Juan; Morte, Beatriz

    2017-01-01

    Thyroid hormones, thyroxine, and triiodothyronine (T3) are crucial for cerebral cortex development acting through regulation of gene expression. To define the transcriptional program under T3 regulation, we have performed RNA-Seq of T3-treated and untreated primary mouse cerebrocortical cells. The expression of 1145 genes or 7.7% of expressed genes was changed upon T3 addition, of which 371 responded to T3 in the presence of cycloheximide indicating direct transcriptional regulation. The results were compared with available transcriptomic datasets of defined cellular types. In this way, we could identify targets of T3 within genes enriched in astrocytes and neurons, in specific layers including the subplate, and in specific neurons such as prepronociceptin, cholecystokinin, or cortistatin neurons. The subplate and the prepronociceptin neurons appear as potentially major targets of T3 action. T3 upregulates mostly genes related to cell membrane events, such as G-protein signaling, neurotransmission, and ion transport and downregulates genes involved in nuclear events associated with the M phase of cell cycle, such as chromosome organization and segregation. Remarkably, the transcriptomic changes induced by T3 sustain the transition from fetal to adult patterns of gene expression. The results allow defining in molecular terms the elusive role of thyroid hormones on neocortical development. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Effect of corticosterone on gene expression of feed intake regulatory peptides in laying hens.

    Science.gov (United States)

    Liu, Lei; Song, Zhigang; Sheikhahmadi, Ardashir; Jiao, Hongchao; Lin, Hai

    2012-08-01

    The present study was conducted to explore the effects of corticosterone (CORT) on the regulation of appetite-associated genes in laying hens. Forty eight laying hens were randomly divided into two groups: one received subcutaneous injection of CORT (2mg/kg body weight, CORT-exposed) and the other received sham-treatment (Control). Treatment of hens with CORT stimulated an increase (P0.05) on the mRNA levels of neuropeptide Y (NPY), corticotropin-releasing hormone (CRH), melanocortin receptor 4 and 5 (MCR-4 and MCR-5) and cholecystokinin (CCK) in the hypothalamus when compared with control hens. However, the expression of pro-opiomelanocortin (POMC), agouti-related protein (AgRP) and melanocortin recepter 1 (MCR-1) were significantly (Phens. Treatment of laying hens with CORT had no significant (P>0.05) effect on the mRNA levels of CCK in the glandular stomach and the duodenum, and those of ghrelin in the glandular stomach, the duodenum and the jejunum. However, the mRNA levels of CCK in the jejunum and the ileum, and those of ghrelin in the ileum were significantly (Pfeeding status of CORT-exposed laying hens. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Glycine-extended gastrin enhances somatostatin release from cultured rabbit fundic D-cells [v1; ref status: indexed, http://f1000r.es/8n

    Directory of Open Access Journals (Sweden)

    Ian LP Beales

    2013-02-01

    Full Text Available The role of the peptide hormone gastrin in stimulating gastric acid secretion is well established. Mature amidated gastrin is processed from larger peptide precursor forms. Increasingly these processing intermediates, such as glycine-extended gastrin (G-Gly and progastrin, have been shown to have biological activities of their own, often separate and complementary to gastrin. Although G-Gly is synthesized and secreted by gastric antral G-cells, the physiological functions of this putative mediator are unclear. Gastrin and cholecystokinin (CCK stimulate the secretion of somatostatin from gastric D-cells as part of the feedback control of gastric acid. In this study the effect of G-Gly and gastrin on the release of somatostatin from rabbit fundic D-cells was examined. D-cells were obtained by collagenase-EDTA digestion and elutriation and cultured for 48 hours. With a 2 hour exposure to the peptides, gastrin but not G-Gly stimulated somatostatin release. Treatment of D-cells for 24 hours with gastrin or G-Gly individually, significantly enhanced subsequent basal as well as CCK- and GLP-1-stimulated somatostatin release. Twenty four hours exposure to gastrin combined with G-Gly synergistically enhanced basal and agonist-stimulated somatostatin release and cellular somatostatin content. Gastrin and G-Gly may be important in the longer term regulation of D-cell function.

  1. Effects of dietary fat on appetite and energy intake in health and obesity--oral and gastrointestinal sensory contributions.

    Science.gov (United States)

    Little, Tanya J; Feinle-Bisset, Christine

    2011-09-26

    While epidemiological studies have revealed a strong positive relationship between the intake of dietary fat with total energy intake and body weight, laboratory-based studies investigating physiological effects of fat have demonstrated that the direct exposure of receptors in the oral cavity and small intestine to fat, specifically fatty acids (FAs), induces potent effects on gastrointestinal (GI) motility and gut peptide secretion that favor the suppression of appetite and energy intake. Recent studies in humans have demonstrated an association between a decreased ability to detect the presence of FAs in the oral cavity with increased energy intake and body mass index suggesting that impairment of oral fat sensing mechanisms may contribute to overeating and obesity. Furthermore, while sensing of the presence of FAs in the small intestine results in the modulation of GI motility, stimulation of GI hormone release, including cholecystokinin (CCK) and peptide YY (PYY), and suppression of subsequent energy intake, recent data indicate that these effects of fat are attenuated in individuals with reduced oral sensitivity to fat, and following consumption of a high-fat diet. This review will focus on emerging knowledge about the physiological mechanisms that sense the presence of fat in both the oral cavity and the small intestine, and environmental factors, such as high-fat diet exposure and energy restriction, that may modulate sensitivity to nutrients, and thereby contribute to the regulation of appetite and body weight. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Digestive physiology of the pig symposium: secretion of gastrointestinal hormones and eating control.

    Science.gov (United States)

    Steinert, R E; Feinle-Bisset, C; Geary, N; Beglinger, C

    2013-05-01

    Nutrient ingestion triggers numerous changes in gastrointestinal (GI) peptide hormone secretion that affect appetite and eating. Evidence for these effects comes from research in laboratory animals, healthy humans, and, increasingly, obese patients after Roux-en-Y gastric bypass (RYGB) surgery, which has marked effects on GI hormone function and is currently the most effective therapy for morbid obesity. Increases in cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine (PYY) and decreases in ghrelin secretion after meals are triggered by changes in the nutrient content of the intestine. One apparent physiological function of each is to initiate a reflex-like feedback control of eating. Here we briefly review this function, with an emphasis on the controls of their secretion. Each is secreted from enteroendocrine cells that are directly or indirectly affected by caloric load, macronutrient composition, and other characteristics of ingested food such as fatty acid chain length. In addition, digestive hydrolysis is a critical mechanism that controls their secretion. Although there are relatively few data in agricultural animals, the generally consistent results across widely divergent mammals suggests that most of the processes described are also likely to be relevant to GI hormone functions and eating in agricultural animals.

  3. Short-term effects of chewing gum on satiety and afternoon snack intake in healthy weight and obese women.

    Science.gov (United States)

    Park, Eunyoung; Edirisinghe, Indika; Inui, Taichi; Kergoat, Sophie; Kelley, Michael; Burton-Freeman, Britt

    2016-05-15

    Afternoon snacking contributes significantly to total energy intake. Strategies to enhance the satiety value of lunch and reduce afternoon snacking are of interest for body weight management. To assess whether between-meal gum chewing would enhance the satiety response to a fixed lunch meal; and assess the role of cholecystokinin (CCK) as a potential mediator of the response in non-obese healthy weight and obese women. Fifty unrestrained obese (n=25) and non-obese healthy weight (n=25) women participated in a two-arm cross-over study assessing multiple (15min per hour×3h) gum chewing (GUM) occurrences or no gum (Control) on subjective ratings of satiety, subsequent sweet and salty snack intake, CCK and general metabolic responses. GUM compared to Control resulted in significant suppression of hunger, desire to eat and prospective consumption (pwomen (p=0.05) and Oreo cookie intake in healthy weight women (p=0.03) 3h after lunch. Metabolic responses and CCK did not differ between experimental conditions. Chewing gum intermittently post-lunch enhances perceptions of satiety and may have important implications in reducing afternoon high carbohydrate-snack intake. Copyright © 2016. Published by Elsevier Inc.

  4. Signaling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Sven Zels

    Full Text Available Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.

  5. Signaling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Zels, Sven; Verlinden, Heleen; Dillen, Senne; Vleugels, Rut; Nachman, Ronald J; Vanden Broeck, Jozef

    2014-01-01

    Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.

  6. Induction of gastrin expression in gastrointestinal cells by hypoxia or cobalt is independent of hypoxia-inducible factor (HIF).

    Science.gov (United States)

    Xiao, Lin; Kovac, Suzana; Chang, Mike; Shulkes, Arthur; Baldwin, Graham S; Patel, Oneel

    2012-07-01

    Gastrin and its precursors have been shown to promote mitogenesis and angiogenesis in gastrointestinal tumors. Hypoxia stimulates tumor growth, but its effect on gastrin gene regulation has not been examined in detail. Here we have investigated the effect of hypoxia on the transcription of the gastrin gene in human gastric cancer (AGS) cells. Gastrin mRNA was measured by real-time PCR, gastrin peptides were measured by RIA, and gastrin promoter activity was measured by dual-luciferase reporter assay. Exposure to a low oxygen concentration (1%) increased gastrin mRNA concentrations in wild-type AGS cells (AGS) and in AGS cells overexpressing the gastrin receptor (AGS-cholecystokinin receptor 2) by 2.1 ± 0.4- and 4.1 ± 0.3-fold (P factor hypoxia-inducible factor 1 (HIF-1) or knockdown of either the HIF-1α or HIF-1β subunit did not affect gastrin promoter inducibility under hypoxia indicated that the hypoxic activation of the gastrin gene is likely HIF independent. Mutational analysis of previously identified Sp1 regulatory elements in the gastrin promoter also failed to abrogate the induction of promoter activity by hypoxia. The observations that hypoxia up-regulates the gastrin gene in AGS cells by HIF-independent mechanisms, and that this effect is enhanced by the presence of gastrin receptors, provide potential targets for gastrointestinal cancer therapy.

  7. Radiologic diagnostic criteria of sphincter of oddi dysfunction: analysis of five cases confirmed by biliary manometry

    International Nuclear Information System (INIS)

    Auh, Yong Ho; Kim, Myung Hwan; Lim, Hyun Chul; Baek, Seung Yeon; Lee, Moon Gyu; Cho, Kyoung Sik; Sung, Hyun Kyung

    1994-01-01

    Biliary dyskinesia was considered as a wastebasket of quasi-biliary disease which could not be clearly explained under the basis of morphologic pathology. This entity was a source of confusion because of misconception and poor understanding. Recent introduction of biliary manometric technique enlightened some of these disorders. We evaluated the cholangiographic morphology of these disorders to clarify and to characterize the some characteristic findings, subsequently in order to help the diagnosis. Five cases were confirmed by this technique as sphincter of Oddi dysfunction for last 13 months. All patients were female and age range was 53 to 75 years old. All patients were suffered from intermittent and recurrent biliary type pain. ERCP showed five common findings. The common bile duct was dilated over 12 mm in all patients. Different from recurrent pyogenic cholangiohepatitis, intrahepatic ducts were proportionally dilated as extrahepatic ducts, in four patients and they branched normally and ductal wall was smooth. Transient or persistent meniscus sign was observed in four patients. All patients showed delayed emptying of contrast media from the common bile duct into the duodenum. Following IV injection of cholecystokinin, persistent meniscus disappeared and contrast media inflowed into the duodenum. Identification of all or some characteristic cholangiographic findings may eliminate a cumbersome and painful biliary manometric test for the diagnosis of sphincter of Oddi dysfunction

  8. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  9. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F. (Hagedorn Research Laboratory, Gentofte (Denmark))

    1988-09-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression.

  10. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F.

    1988-01-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  11. Effect of a high-fat-high-cholesterol diet on gallbladder bile acid composition and gallbladder motility in dogs.

    Science.gov (United States)

    Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime

    2017-12-01

    OBJCTIVE To investigate the effects of dietary lipid overload on bile acid metabolism and gallbladder motility in healthy dogs. ANIMALS 7 healthy Beagles. PROCEDURES In a crossover study, dogs were fed a high-fat-high-cholesterol diet (HFCD) or a low-fat diet (LFD) for a period of 2 weeks. After a 4-month washout period, dogs were fed the other diet for 2 weeks. Before and at the end of each feeding period, the concentrations of each of the gallbladder bile acids, cholecystokinin (CCK)-induced gallbladder motility, and bile acid metabolism-related hepatic gene expression were examined in all dogs. RESULTS The HFCD significantly increased plasma total cholesterol concentrations. The HFCD also increased the concentration of taurochenodeoxycholic acid and decreased the concentration of taurocholic acid in bile and reduced gallbladder contractility, whereas the LFD significantly decreased the concentration of taurodeoxycholic acid in bile. Gene expression analysis revealed significant elevation of cholesterol 7α-hydroxylase mRNA expression after feeding the HFCD for 2 weeks, but the expression of other genes was unchanged. CONCLUSIONS AND CLINICAL RELEVANCE Feeding the HFCD and LFD for 2 weeks induced changes in gallbladder bile acid composition and gallbladder motility in dogs. In particular, feeding the HFCD caused an increase in plasma total cholesterol concentration, an increase of hydrophobic bile acid concentration in bile, and a decrease in gallbladder sensitivity to CCK. These results suggested that similar bile acid compositional changes and gallbladder hypomotility might be evident in dogs with hyperlipidemia.

  12. Effect of alpha 2-adrenoceptor agonists on gastric pepsin and acid secretion in the rat.

    Science.gov (United States)

    Tazi-Saad, K.; Chariot, J.; Del Tacca, M.; Rozé, C.

    1992-01-01

    1. The purpose of the present study was to analyze the effects of the alpha 2-adrenoceptor agonists clonidine, guanabenz, detomidine and medetomidine on pepsin secretion in conscious rats provided with gastric chronic fistula and to compare this with acid secretion. 2. Basal interdigestive gastric secretion, which is mainly neurally driven in the rat, and the secretion directly stimulated by the two main stimulants of chief cells, cholecystokinin octapeptide (CCK8) and methacholine, were studied. 3. Basal secretion of pepsin and acid was inhibited by all four drugs with comparable EC50S. 4. CCK-stimulated pepsin and acid secretion was less sensitive than basal pepsin and acid secretion to alpha 2-adrenoceptor inhibition. 5. Methacholine-stimulated pepsin and acid secretion was not changed by clonidine and guanabenz; methacholine-stimulated acid was even marginally increased by clonidine. 6. These results do not favour the presence of alpha 2-receptors on chief cells in the rat stomach. They rather suggest that pepsin inhibition by alpha 2-adrenoceptor agonists is indirect and due to central or peripheral inhibition of the discharge of nerve fibres activating pepsin secretion. PMID:1356566

  13. Perspectives of drug treatment of obesity

    Directory of Open Access Journals (Sweden)

    Alfredo Halpern

    2006-03-01

    Full Text Available The perspectives in the pharmacological treatment of obesitycan be classified in two classes: drugs already in the market,in advanced clinical trial or in final approval, or drugs in earlydevelopment. Among the first class are antiepileptic drugslike topiramate (although it was studied for obesity treatmentit was descontinued for this indication because of the highdrop-out rate in clinical trials and zonisamide (with someshort term studies in obese adults; antidepressives likebupropion (that leads to weight reduction and also diminishesthe weight gain associated to smoking cessation andradafaxine (a bupropion metabolite, without reported trials inobese subjects; glucagon-like peptide-1 analogues like exenatide(exendin-4, pramlintide and liraglutide (with studiesin type 2 diabetic obese subjects and the selective blockerof the cannabinoid-1 receptor, rimonabant, with a large bodyof studies (Rimonabant in Obesity, RIO-Europe, RIO-NorthAmerica, RIO-Lipids and RIO-Diabetes, involving more than6.600 patients with obesity, with and without diabetes, beingan important perspective of treatment for obesity andmetabolic syndrome. In early phase of development, we canreport some energy balance modulators like neuropeptide Yantagonists, melanocortin agonists, leptine and its analoguesand ciliary neurotrophic factor (axokine; termogenic agentslike agonists of the beta-3 adrenergic receptor, uncouplingagents of the mithocondrial membrane and peripheralmodulators of the energy balance (cholecystokinine.

  14. Contraction and evacuation of the gallbladder studied simultaneously by ultrasonography and 99mTc-labelled diethyl-iminodiacetic acid scintigraphy

    International Nuclear Information System (INIS)

    Raadberg, G.; Asztely, M.; Moonen, M.; Svanvik, J.

    1993-01-01

    Emptying of the gallbladder was studied by the simultaneous use of 99m Tc-labelled diethyl-iminodiacetic acid (HIDA) scanning and real-time ultrasonography. In response to a liquid test meal the gallbladder volume was reduced for 80 min and then increased again, but the radionuclide evacuation continued and was more complete than could be explained by the reduction of gallbladder volume. In response to intravenous infusion of cholecystokinin, a maximal contraction of the gallbladder to 35% of the basal volume was obtained at 40 min, and 36% of the HIDA then remained in the gallbladder. In a separate series repeated intravenous injections of 99m Tc-HIDA were given after the test meal, and the isotope was found to enter the gallbladder even when the gallbladder contracted. The results support the view that the gallbladder acts like a ''bellows'' when contracting and that postprandial fluid secretion by the gallbladder mucosa may help to evacuate its contents. 11 refs., 4 figs

  15. Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory.

    Science.gov (United States)

    Leroy, Felix; Brann, David H; Meira, Torcato; Siegelbaum, Steven A

    2017-08-30

    Input-timing-dependent plasticity (ITDP) is a circuit-based synaptic learning rule by which paired activation of entorhinal cortical (EC) and Schaffer collateral (SC) inputs to hippocampal CA1 pyramidal neurons (PNs) produces a long-term enhancement of SC excitation. We now find that paired stimulation of EC and SC inputs also induces ITDP of SC excitation of CA2 PNs. However, whereas CA1 ITDP results from long-term depression of feedforward inhibition (iLTD) as a result of activation of CB1 endocannabinoid receptors on cholecystokinin-expressing interneurons, CA2 ITDP results from iLTD through activation of δ-opioid receptors on parvalbumin-expressing interneurons. Furthermore, whereas CA1 ITDP has been previously linked to enhanced specificity of contextual memory, we find that CA2 ITDP is associated with enhanced social memory. Thus, ITDP may provide a general synaptic learning rule for distinct forms of hippocampal-dependent memory mediated by distinct hippocampal regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Impaired Enterohormone Response Following a Liquid Test Meal in Gastrectomized Patients.

    Science.gov (United States)

    Santarpia, Lidia; Pagano, Maria Carmen; Cioffi, Iolanda; Alfonsi, Lucia; Cuomo, Rosario; Labruna, Giuseppe; Sacchetti, Lucia; Contaldo, Franco; Pasanisi, Fabrizio

    2017-01-01

    Total gastrectomy (TG) is responsible for symptoms or disturbance of alimentary status (changes in body weight, food intake per meal and frequency of meal per day) which, in turn are responsible for weight loss and malnutrition. The study evaluates the gut hormone responses in totally gastrectomized (TG) patients after a liquid meal test. Twenty total gastrectomized cancer-free patients (12 M, 8 F, 56.4 ± 10.2 years, BMI 21.4 ± 2.2 kg/m2) and 10 healthy volunteers (4 M, 6 F, 48.0 ± 12.7 years, BMI 26.7 ± 3.0 kg/m2 ) drank a liquid meal (1.25 kcal/mL) at the rate of 50 mL/5' min for a maximum of 30 min. Satiety score was assessed and blood sample was taken at different time points. The time response course, particularly for insulin, glucose-like pepetide-1, and cholecystokinin, significantly differed between TG patients and controls. Our results may help to better understand hormone responses triggered by the faster arrival of nutrients in the small bowel and to explain some post-TG symptoms. © 2017 S. Karger AG, Basel.

  17. CCK1-Receptor Stimulation Protects Against Gut Mediator-Induced Lung Damage During Endotoxemia

    Directory of Open Access Journals (Sweden)

    Friederike Eisner

    2013-12-01

    Full Text Available Background/Aims: Cholecystokinin 1-receptor (CCK1-R activation by long chain fatty acid (LCFA absorption stimulates vago-vagal reflex pathways in the brain stem. The present study determines whether this reflex also activates the cholinergic anti-inflammatory pathway, a pathway known to modulate cytokine release during endotoxemia. Methods:Mesenteric lymph was obtained from wild type (WT and CCK1-R knockout (CCK1-R-/- mice intraperitoneally challenged with Lipopolysaccharid (LPS (endotoxemic lymph, EL and intestinally infused with vehicle or LCFA-enriched solution. The lymph was analyzed for TNFα, IL-6 and IL-10 concentration and administered to healthy recipient mice via jugular infusion. Alveolar wall thickness, myeloperoxidase (MPO and TUNEL positive cells were determined in lung tissue of recipient mice. Results: LCFA infusion in WT mice reduced TNFα concentration in EL by 49% compared to vehicle infusion, but had no effect in CCK1-R-/- mice. EL significantly increased the alveolar wall thickness, the number of MPO-positive and TUNEL-positive cells compared to control lymph administration. LCFA infusion in WT, but not in CCK1R-/- mice, significantly reduced these pathological effects of EL. Conclusion: During endotoxemia enteral LCFA absorption reduces TNFα release into mesenteric lymph and attenuates histomorphologic parameters of lung dysfunction. Failure to elicit this effect in CCK1R-/- mice demonstrates that anti-inflammatory properties of LCFAs are mediated through CCK1-Rs.

  18. Chronic restraint stress impairs endocannabinoid mediated suppression of GABAergic signaling in the hippocampus of adult male rats.

    Science.gov (United States)

    Hu, Wen; Zhang, Mingyue; Czéh, Boldizsár; Zhang, Weiqi; Flügge, Gabriele

    2011-07-15

    Chronic stress, a risk factor for the development of psychiatric disorders, is known to induce alterations in neuronal networks in many brain areas. Previous studies have shown that chronic stress changes the expression of the cannabinoid receptor 1 (CB1) in the brains of adult rats, but neurophysiological consequences of these changes remained unclear. Here we demonstrate that chronic restraint stress causes a dysfunction in CB1 mediated modulation of GABAergic transmission in the hippocampus. Using an established protocol, adult male Sprague Dawley rats were daily restrained for 21 days and whole-cell voltage clamp was performed at CA1 pyramidal neurons. When recording carbachol-evoked inhibitory postsynaptic currents (IPSCs) which presumably originate from CB1 expressing cholecystokinin (CCK) interneurons, we found that depolarization-induced suppression of inhibition (DSI) was impaired by the stress. DSI is a form of short-term plasticity at GABAergic synapses that is known to be CB1 mediated and has been suggested to be involved in hippocampal information encoding. Chronic stress attenuated the depolarization-induced suppression of the frequency of carbachol-evoked IPSCs. Incubation with a CB1 receptor antagonist prevented this DSI effect in control but not in chronically stressed animals. The stress-induced impairment of CB1-mediated short-term plasticity at GABAergic synapses may underlie cognitive deficits which are commonly observed in animal models of stress as well as in patients with stress-related psychiatric disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Extracellular pH monitoring for use in closed-loop vagus nerve stimulation

    Science.gov (United States)

    Cork, Simon C.; Eftekhar, Amir; Mirza, Khalid B.; Zuliani, Claudio; Nikolic, Konstantin; Gardiner, James V.; Bloom, Stephen R.; Toumazou, Christofer

    2018-02-01

    Objective. Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pHe) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. Approach. Iridium oxide has previously been shown to be sensitive to fluctuations in pH and is biocompatible. Iridium oxide microelectrodes were inserted into the subdiaphragmatic vagus nerve of anaesthetised rats. Introduction of the gut hormone cholecystokinin (CCK) or distension of the stomach was used to elicit vagal nerve activity. Main results. Iridium oxide microelectrodes have sufficient pH sensitivity to readily detect changes in pHe associated with both CCK and gastric distension. Furthermore, a custom-made Matlab script was able to use these changes in pHe to automatically trigger an implanted VNS device. Significance. This is the first study to show pHe changes in peripheral nerves in vivo. In addition, the demonstration that iridium oxide microelectrodes are sufficiently pH sensitive as to measure changes in pHe associated with physiological stimuli means they have the potential to be integrated into closed-loop neurostimulating devices.

  20. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining

    Directory of Open Access Journals (Sweden)

    Yuri Gonchar

    2008-03-01

    Full Text Available The majority of cortical interneurons use GABA (gamma amino butyric acid as inhibitory neurotransmitter. GABAergic neurons are morphologically, connectionally, electrically and chemically heterogeneous. In rat cerebral cortex three distinct groups of GABAergic interneurons have been identifi ed by the expression of parvalbumin (PV, calretinin (CR and somatostatin (SOM. Recent studies in mouse cerebral cortex have revealed a different organization in which the CR and SOM populations are partially overlapping. Because CR and SOM neurons derive from different progenitors located in different embryonic structures, the coexpression of CR + SOM suggests that the chemical differentiation of interneurons is regulated postmitotically. Here, we have taken an important fi rst step towards understanding this process by triple immunostaining mouse visual cortex with a panel of antibodies, which has been used extensively for classifying developing interneurons. We have found at least 13 distinct groups of GABAergic neurons which include PV, CR, SOM, CCK (cholecystokinin, CR + SOM, CR + NPY (neuropeptide Y, CR + VIP (vasointestinal polypeptide, SOM + NPY, SOM + VIP, VIP + ChAT (choline acetyltransferase, CCK + NPY, CR + SOM + NPY and CR + SOM + VIP expressing cells. Triple immunostaining with PV, CR and SOM antibodies during postnatal development further showed that PV is never colocalized with CR and SOM. Importantly, expression of SOM and CR + SOM developed after the percentage of CR cells that do not express SOM has reached the mature level, suggesting that the chemical differentiation of SOM and CR + SOM neurons is a postnatal event, which may be controlled by transcriptional regulation.

  1. Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources.

    Science.gov (United States)

    De Loof, A; Schoofs, L

    1990-01-01

    1. The 4K-prothoracicotropic hormone (PTTH) or bombyxin and the melanization-reddish coloration hormone of the silkworm Bombyx mori resemble insulin and insulin-like growth factors. 2. The family of adipokinetic/red pigment concentrating hormones has some similarity with glucagon. 3. Members of the FMRFamide family are found in vertebrates as well as in invertebrates. 4. In Locusta, a molecule immunologically and biologically related to amphibian melanophore stimulating hormone has been partially characterized. 5. Enkephalins and enkephalin-related peptides occur in insects and other invertebrates. 6. Peptides belonging to the tachykinin family have been isolated from molluscan (Octopus) salivary glands and from insect nervous tissue (Locusta migratoria). 7. Invertebrate arginine-vasotocin homologs have been isolated from an insect (Locusta migratoria) and from a mollusc (Conus). 8. In Leucophaea, Locusta and Drosophila, peptides resembling those of the vertebrate gastrin/cholecystokinin family have been identified. 9. As the number of different neuro-/gut peptides with possible function(s) as hormone, neurotransmitter or neuromodulator is now estimated to be of the order of a few hundred, more similarities will probably show up in the near future.

  2. Detailed characterisation of STC-1 cells and the pGIP/Neo sub-clone suggests the incretin hormones are translationally regulated.

    Science.gov (United States)

    Gillespie, Anna L; Pan, Xiaobei; Marco-Ramell, Anna; Meharg, Caroline; Green, Brian D

    2017-10-01

    STC-1 is a heterogeneous plurihormonal cell line producing several prominent gut peptide hormones. pGIP/Neo is a genetically selected sub-clone of STC-1 with augmented levels of glucose-dependent insulinotropic peptide (GIP). Morphometric parameters, hormone concentrations, mRNA transcripts, hormone immunocytochemistry and nutrient utilisation/production of these two cell lines were compared. Proglucagon-derived peptides (Glucagon-like peptide-1 (GLP-1) and - 2(GLP-2)) were lower in sub-clone cells than progenitor cells. High Content Analysis found altered intracellular GLP-1, GIP, cholecystokinin (CCK) and peptide YY (PYY) levels and differing hormone co-localisation. The proportion pGIP/Neo cells containing GIP immunoreactivity (82%) was greater than STC-1 (65%), as were the proportion with 'GIP only', 'GLP-1+GIP' or 'GIP+PYY' immunoreactivity. Most surprisingly mRNA transcripts of the proglucagon and GIP genes were inversely correlated to the levels of their translated peptides. This strongly suggests that proglucagon and GIP are encoded on 'translationally regulated genes' - a characteristic possessed by other endocrine hormones. Metabolomic profiling revealed differences in cellular nutrient utilisation/production and that under normal culture conditions both cell lines exhibit signs of overflow metabolism. These studies provide an insight into the metabolism and properties of these valuable cells, suggesting for the first time that incretin hormone genes are translationally regulated. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression.

    Science.gov (United States)

    Gregg, T R; Siegel, A

    2001-01-01

    1. Violence and aggression are major public health problems. 2. The authors have used techniques of electrical brain stimulation, anatomical-immunohistochemical techniques, and behavioral pharmacology to investigate the neural systems and circuits underlying aggressive behavior in the cat. 3. The medial hypothalamus and midbrain periaqueductal gray are the most important structures mediating defensive rage behavior, and the perifornical lateral hypothalamus clearly mediates predatory attack behavior. The hippocampus, amygdala, bed nucleus of the stria terminalis, septal area, cingulate gyrus, and prefrontal cortex project to these structures directly or indirectly and thus can modulate the intensity of attack and rage. 4. Evidence suggests that several neurotransmitters facilitate defensive rage within the PAG and medial hypothalamus, including glutamate, Substance P, and cholecystokinin, and that opioid peptides suppress it; these effects usually depend on the subtype of receptor that is activated. 5. A key recent discovery was a GABAergic projection that may underlie the often-observed reciprocally inhibitory relationship between these two forms of aggression. 6. Recently, Substance P has come under scrutiny as a possible key neurotransmitter involved in defensive rage, and the mechanism by which it plays a role in aggression and rage is under investigation. 7. It is hoped that this line of research will provide a better understanding of the neural mechanisms and substrates regulating aggression and rage and thus establish a rational basis for treatment of disorders associated with these forms of aggression.

  4. Cigarette smoke-induced differential expression of the genes involved in exocrine function of the rat pancreas.

    Science.gov (United States)

    Wittel, Uwe A; Singh, Ajay P; Henley, Brandon J; Andrianifahanana, Mahefatiana; Akhter, Mohammed P; Cullen, Diane M; Batra, Surinder K

    2006-11-01

    Little is known about the molecular and biological aspects of the epidemiological association between smoking and pancreatic pathology, such as chronic pancreatitis and pancreatic cancer. Recently, we reported that tobacco smoke exposure induced morphological alterations in the rat pancreas. Here, we have investigated the alterations in the expression of genes associated with exocrine pancreatic function and cellular differentiation upon exposure to cigarette smoke. Female rats were exposed to environmental smoke inhalation for 2 d/wk (70 min/d) for 12 weeks. The expression profiles of trypsinogen, pancreas-specific trypsin inhibitor, cholecystokinin A receptor, cystic fibrosis transmembrane conductance regulator (CFTR), carbonic anhydrase, and Muc1 and Muc4 mucins transcripts were analyzed by RNA slot blot analysis. Muc4 expression was also examined by immunohistochemistry. Our data revealed that the ratio of trypsinogen to that of the protective pancreas-specific trypsin inhibitor was elevated upon cigarette smoke exposure. The expression of carbonic anhydrase and CFTR remained unaltered when inflammatory signs were not detected in histological examinations. On the other hand, when pancreatic inflammation was present, the levels of CFTR and carbonic anhydrase were increased, indicating ductal and/or centroacinar cell involvement. No changes in the expression of Muc1 and Muc4 mucins were observed. Our data show that cigarette smoke exposure leads to an increased vulnerability to pancreatic self-digestion. Moreover, the concomitant involvement of pancreatic ducts occurs only when focal pancreatic inflammation is present.

  5. The Role of Episodic Postprandial Peptides in Exercise-Induced Compensatory Eating.

    Science.gov (United States)

    Gibbons, Catherine; Blundell, John E; Caudwell, Phillipa; Webb, Dominic-Luc; Hellström, Per M; Näslund, Erik; Finlayson, Graham

    2017-11-01

    Prolonged physical activity gives rise to variable degrees of body weight and fat loss, and is associated with variability in appetite control. Whether these effects are modulated by postprandial, peptides is unclear. We examined the role of postprandial peptide response in compensatory eating during 12 weeks of aerobic exercise and in response to high-fat, low-carbohydrate (HFLC) and low-fat, high-carbohydrate (LFHC) meals. Of the 32 overweight/obese individuals, 16 completed 12 weeks of aerobic exercise and 16 nonexercising control subjects were matched for age and body mass index. Exercisers were classified as responders or nonresponders depending on net energy balance from observed compared with expected body composition changes from measured energy expenditure. Plasma samples were collected before and after meals to compare profiles of total and acylated ghrelin, insulin, cholecystokinin, glucagon-like peptide 1 (GLP-1), and total peptide YY (PYY) between HFLC and LFHC meals, pre- and postexercise, and between groups. No differences between pre- and postintervention peptide release. Responders had greater suppression of acylated ghrelin (P exercise. Responders to exercise-induced weight loss showed greater suppression of acylated ghrelin and greater release of GLP-1 and total PYY at baseline. Therefore, episodic postprandial peptide profiles appear to form part of the pre-existing physiology of exercise responders and suggest differences in satiety potential may underlie exercise-induced compensatory eating. Copyright © 2017 Endocrine Society

  6. The Role of “Mixed” Orexigenic and Anorexigenic Signals and Autoantibodies Reacting with Appetite-Regulating Neuropeptides and Peptides of the Adipose Tissue-Gut-Brain Axis: Relevance to Food Intake and Nutritional Status in Patients with Anorexia Nervosa and Bulimia Nervosa

    Directory of Open Access Journals (Sweden)

    Kvido Smitka

    2013-01-01

    Full Text Available Eating disorders such as anorexia (AN and bulimia nervosa (BN are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY, peptide YY (PYY, cholecystokinin (CCK, leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE, serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice.

  7. Peripheral axotomy of the rat mandibular trigeminal nerve leads to an increase in VIP and decrease of other primary afferent neuropeptides in the spinal trigeminal nucleus.

    Science.gov (United States)

    Atkinson, M E; Shehab, S A

    1986-12-01

    In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.

  8. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Directory of Open Access Journals (Sweden)

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  9. Reducing Renal Uptake of {sup 177}Lu Labeled CCK Derivative using Basic Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung; Lim, Jaecheong; Joh, Eunha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Radiolabeled peptides have been designed to target the relative receptors overespressed in tumor cells, such as integrin αvβ3, gastrin-releasing peptide receptor (GRPR), melanocortin-1 receptor (MC1-R), glucagon-like peptide-a receptor (GLP-1R), and cholecystokinin (CCK) receptor. Most of these peptides are eliminated from the body via the kidney and are partly reabsorbed in the proximal tubular cells. However, the high renal uptake of the radiolabeled peptides may lead to renal toxicity. In this study we investigated various amino acid solutions to reduce the renal uptake of {sup 177}Lu-DOTA-CCK derivative. Renal uptake of {sup 177}Lu-DOTA-CCK derivative is effectively reduced by the administration of positively charged amino acids. The administration of 12 mg of L-lysine was as effective in reducing the renal uptake as 6 mg of lysine and 6 mg of arginine combinations. Further studies will be performed to identify the most potent inhibitor of renal reuptake of radiolabeled peptides and minimize the chance of unwanted side effects.

  10. Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition

    Science.gov (United States)

    Bandelow, Borwin; Baldwin, David; Abelli, Marianna; Bolea-Alamanac, Blanca; Bourin, Michel; Chamberlain, Samuel R.; Cinosi, Eduardo; Davies, Simon; Domschke, Katharina; Fineberg, Naomi; Grünblatt, Edna; Jarema, Marek; Kim, Yong-Ku; Maron, Eduard; Masdrakis, Vasileios; Mikova, Olya; Nutt, David; Pallanti, Stefano; Pini, Stefano; Ströhle, Andreas; Thibaut, Florence; Vaghix, Matilde M.; Won, Eunsoo; Wedekind, Dirk; Wichniak, Adam; Woolley, Jade; Zwanzger, Peter; Riederer, Peter

    2017-01-01

    Objective Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). Methods Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. Results The present article (Part II) summarises findings on potential biomarkers in neurochemistry (neurotransmitters such as serotonin, norepinephrine, dopamine or GABA, neuropeptides such as cholecystokinin, neurokinins, atrial natriuretic peptide, or oxytocin, the HPA axis, neurotrophic factors such as NGF and BDNF, immunology and CO2 hypersensitivity), neurophysiology (EEG, heart rate variability) and neurocognition. The accompanying paper (Part I) focuses on neuroimaging and genetics. Conclusions Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high quality research has accumulated that should improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD. PMID:27419272

  11. Morphological and functional correlates of VIP neurons in cerebral cortex

    International Nuclear Information System (INIS)

    Magistretti, P.J.; Morrison, J.H.; Shoemaker, W.J.; Bloom, F.E.

    1984-01-01

    Vasoactive Intestinal Polypeptide (VIP) promotes the hydrolysis of 3H-glycogen newly synthesized from 3H-glucose by mouse cortical slices. This effect occurs rapidly, approximately 50% of the maximal effect being reached within one minute. The maximal effect is achieved after 5 minutes and maintained for at least 25 minutes. Furthermore the glycogenolytic effect of VIP is reversible, and pharmacologically specific. Thus several neuropeptides present in cerebral cortex such as cholecystokinin-8, somatostatin-28, somatostatin-14, met-enkephalin, leu-enkephalin, do not affect 3H-glycogen levels. VIP fragments 6-28, 16-28 and 21-28 are similarly inactive. Furthermore, among the peptides which share structural homologies with VIP, such as glucagon, secretin, PHI-27 and Gastric Inhibitory Peptide, only secretin and PHI-27 promote 3H-glycogen hydrolysis, with EC50 of 500 and 300 nM respectively, compared to an EC50 of 25 nM for VIP. Immunohistochemical observations indicate that each VIP-containing bipolar cell is identified with a unique radical cortical volume, which is generally between 15-60 micrograms in diameter and overlaps with the contiguous domains of neighbouring VIP-containing bipolar cells. Thus this set of biochemical and morphological observations support the notion that VIP neurons have the capacity to regulate the availability of energy substrates in cerebral cortex locally, within circumscribed, contiguous, radial domains

  12. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus

    Directory of Open Access Journals (Sweden)

    Zesemdorj Otgon-Uul

    2016-08-01

    Full Text Available Objective: The dorsomedial hypothalamus (DMH has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY, cocaine- and amphetamine-regulated transcript (CART, cholecystokinin (CCK, leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. Methods: We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. Results: Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN, where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. Conclusion: DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN. Keywords: Dorsomedial hypothalamus, GABAergic neuron, Feeding, Leptin, Glucose, Optogenetics

  13. Goldfish Leptin-AI and Leptin-AII: Function and Central Mechanism in Feeding Control

    Directory of Open Access Journals (Sweden)

    Ai-Fen Yan

    2016-05-01

    Full Text Available In mammals, leptin is a peripheral satiety factor that inhibits feeding by regulating a variety of appetite-related hormones in the brain. However, most of the previous studies examining leptin in fish feeding were performed with mammalian leptins, which share very low sequence homologies with fish leptins. To elucidate the function and mechanism of endogenous fish leptins in feeding regulation, recombinant goldfish leptin-AI and leptin-AII were expressed in methylotrophic yeast and purified by immobilized metal ion affinity chromatography (IMAC. By intraperitoneal (IP injection, both leptin-AI and leptin-AII were shown to inhibit the feeding behavior and to reduce the food consumption of goldfish in 2 h. In addition, co-treatment of leptin-AI or leptin-AII could block the feeding behavior and reduce the food consumption induced by neuropeptide Y (NPY injection. High levels of leptin receptor (lepR mRNA were detected in the hypothalamus, telencephalon, optic tectum and cerebellum of the goldfish brain. The appetite inhibitory effects of leptins were mediated by downregulating the mRNA levels of orexigenic NPY, agouti-related peptide (AgRP and orexin and upregulating the mRNA levels of anorexigenic cocaine-amphetamine-regulated transcript (CART, cholecystokinin (CCK, melanin-concentrating hormone (MCH and proopiomelanocortin (POMC in different areas of the goldfish brain. Our study, as a whole, provides new insights into the functions and mechanisms of leptins in appetite control in a fish model.

  14. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    Science.gov (United States)

    Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu; Heldsinger, Andrea; Song, Il; Zhou, Shi-Yi; Owyang, Chung

    2015-01-01

    Abstract Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Key points Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological

  15. Pancreatic acini possess endothelin receptors whose internalization is regulated by PLC-activating agents.

    Science.gov (United States)

    Hildebrand, P; Mrozinski, J E; Mantey, S A; Patto, R J; Jensen, R T

    1993-05-01

    Endothelin-1 (ET-1) and ET-3 mRNA have been found in the pancreas. We investigated the ability of ET-1, ET-2, and ET-3 to interact with and alter dispersed rat pancreatic acinar cell function. Radiolabeled ETs bound in a time- and temperature-dependent fashion, which was specific and saturable. Analysis demonstrated two classes of receptors, one class (ETA receptor) had a high affinity for ET-1 but a low affinity for ET-3, and the other class (ETB receptor) had equally high affinities for ET-1 and ET-3. No specific receptor for ET-2 was identified. Pancreatic secretagogues that activate phospholipase C (PLC) inhibited binding of 125I-labeled ET-1 (125I-ET-1) or 125I-ET-3, whereas agents that act through adenosine 3',5'-cyclic monophosphate (cAMP) did not. A23187 had no effect on 125I-ET-1 or 125I-ET-3 binding, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate reduced binding. The effect of cholecystokinin octapeptide (CCK-8) was mediated through its own receptor. Stripping of surface bound ligand studies demonstrated that both 125I-labeled ET-1 and 125I-labeled ET-3 were rapidly internalized. CCK-8 decreased the internalization but did not change the amount of surface bound ligand. Endothelins neither stimulate nor alter changes in enzyme secretion, intracellular calcium, cAMP, or [3H]inositol trisphosphate (IP3). This study demonstrates the presence of ETA and ETB receptors on rat pancreatic acini; occupation of both receptors resulted in rapid internalization, which is regulated by PLC-activating secretagogues. Occupation of either ET receptor did not alter intracellular calcium, cAMP, IP3, or stimulate amylase release.

  16. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

    Science.gov (United States)

    Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D

    1992-10-15

    In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.

  17. CCK response in bulimia nervosa and following remission.

    Science.gov (United States)

    Hannon-Engel, Sandra L; Filin, Evgeniy E; Wolfe, Barbara E

    2013-10-02

    The core defining features of bulimia nervosa (BN) are repeated binge eating episodes and inappropriate compensatory (e.g., purging) behavior. Previous studies suggest an abnormal post-prandial response in the satiety-signaling peptide cholecystokinin (CCK) in persons with BN. It is unknown whether this altered response persists following remission or if it may be a potential target for the development of clinical treatment strategies. To examine the nature of this altered response, this study assessed whether CCK normalizes following remission from BN (RBN). This study prospectively evaluated the plasma CCK response and corresponding eating behavior-related ratings (e.g., satiety, fullness, hunger, urge to binge and vomit) in individuals with BN-purging subtype (n=10), RBN-purging subtype (n=14), and healthy controls (CON, n=13) at baseline, +15, +30, and +60 min following the ingestion of a standardized liquid test meal. Subject groups did not significantly differ in CCK response to the test meal. A significant relationship between CCK response and satiety ratings was observed in the RBN group (r=.59, p<.05 two-tailed). A new and unanticipated finding in the BN group was a significant relationship between CCK response and ratings of "urge to vomit" (r=.86, p<.01, two-tailed). Unlike previous investigations, CCK response did not differ in BN and CON groups. Thus the role of symptom severity remains an area of further investigation. Additionally, findings suggest that in this sample, CCK functioning following remission from BN-purging subtype is not different from controls. It remains unknown whether or not CCK functioning may be a protective or liability factor in the stabilization and recovery process. Replication studies utilizing a larger sample size are needed to further elucidate the role of CCK in recovery from BN and its potential target of related novel treatment strategies. © 2013 Elsevier Inc. All rights reserved.

  18. Basal and meal-stimulated ghrelin, PYY, CCK levels and satiety in lean women with polycystic ovary syndrome: effect of low-dose oral contraceptive.

    Science.gov (United States)

    Arusoglu, Gulcan; Koksal, Gulden; Cinar, Nese; Tapan, Serkan; Aksoy, Duygu Yazgan; Yildiz, Bulent O

    2013-11-01

    Ghrelin is an orexigenic peptide that stimulates food intake, whereas peptide YY (PYY) and cholecystokinin (CCK) are anorexigenic gut hormones. Patients with polycystic ovary syndrome (PCOS) appear to have alterations in appetite regulation. We aimed to determine whether fasting or meal-stimulated ghrelin, PYY, CCK, and satiety responses are different between lean PCOS patients and healthy women. We also aimed to assess the potential effect of oral contraceptive use on these hormones and satiety response. We conducted a prospective observational study in a university practice. Eighteen lean PCOS patients and 18 healthy control women matched for age and body mass index underwent measurements of circulating ghrelin, PYY, CCK, and satiety index (SI) before and after a standardized mixed meal at 0, 15, 30, 45, 60, 90, 120, and 180 minutes. For PCOS patients who were treated with ethinyl estradiol 30 μg/drospirenone 3 mg for 3 months, measurements were repeated. We measured ghrelin, PYY, and CCK levels and SI. At baseline, fasting ghrelin, PYY, CCK, and SI values in PCOS patients were not different from controls. Meal-stimulated PYY, CCK, and SI were also not different between the groups, whereas PCOS patients had significantly lower meal-stimulated ghrelin levels compared to controls (P = .04). Ghrelin, PYY, CCK, and SI did not show a significant change after treatment with ethinyl estradiol/drospirenone for 3 months. Basal and stimulated hunger and satiety hormones in lean PCOS patients are not different from lean healthy women, except for a lower meal-stimulated ghrelin response. Short-term use of a low-dose oral contraceptive does not have an effect on appetite regulation of PCOS.

  19. CCK increases the transport of insulin into the brain.

    Science.gov (United States)

    May, Aaron A; Liu, Min; Woods, Stephen C; Begg, Denovan P

    2016-10-15

    Food intake occurs in bouts or meals, and numerous meal-generated signals have been identified that act to limit the size of ongoing meals. Hormones such as cholecystokinin (CCK) are secreted from the intestine as ingested food is being processed, and in addition to aiding the digestive process, they provide a signal to the brain that contributes to satiation, limiting the size of the meal. The potency of CCK to elicit satiation is enhanced by elevated levels of adiposity signals such as insulin. In the present experiments we asked whether CCK and insulin interact at the level of the blood-brain barrier (BBB). We first isolated rat brain capillary endothelial cells that comprise the BBB and found that they express the mRNA for both the CCK1R and the insulin receptor, providing a basis for a possible interaction. We then administered insulin intraperitoneally to another group of rats and 15min later administered CCK-8 intraperitoneally to half of those rats. After another 15min, CSF and blood samples were obtained and assayed for immunoreactive insulin. Plasma insulin was comparably elevated above baseline in both the CCK-8 and control groups, indicating that the CCK had no effect on circulating insulin levels given these parameters. In contrast, rats administered CCK had CSF-insulin levels that were more than twice as high as those of control rats. We conclude that circulating CCK greatly facilitates the transport of insulin into the brain, likely by acting directly at the BBB. These findings imply that in circumstances in which the plasma levels of both CCK and insulin are elevated, such as during and soon after meals, satiation is likely to be due, in part, to this newly-discovered synergy between CCK and insulin. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Energy homeostasis genes and breast cancer risk: The influence of ancestry, body size, and menopausal status, the breast cancer health disparities study.

    Science.gov (United States)

    Slattery, Martha L; Lundgreen, Abbie; Hines, Lisa; Wolff, Roger K; Torres-Mejia, Gabriella; Baumgartner, Kathy N; John, Esther M

    2015-12-01

    Obesity and breast cancer risk is multifaceted and genes associated with energy homeostasis may modify this relationship. We evaluated 10 genes that have been associated with obesity and energy homeostasis to determine their association with breast cancer risk in Hispanic/Native American (2111 cases, 2597 controls) and non-Hispanic white (1481 cases, 1585 controls) women. Cholecystokinin (CCK) rs747455 and proopiomelanocortin (POMC) rs6713532 and rs7565877 (for low Indigenous American (IA) ancestry); CCK rs8192472 and neuropeptide Y (NYP) rs16141 and rs14129 (intermediate IA ancestry); and leptin receptor (LEPR) rs11585329 (high IA ancestry) were strongly associated with multiple indicators of body size. There were no significant associations with breast cancer risk between genes and SNPs overall. However, LEPR was significantly associated with breast cancer risk among women with low IA ancestry (PARTP=0.024); POMC was significantly associated with breast cancer risk among women with intermediate (PARTP=0.015) and high (PARTP=0.012) IA ancestry. The overall pathway was statistically significant for pre-menopausal women with low IA ancestry (PARTP=0.05), as was cocaine and amphetamine regulated transcript protein (CARTPT) (PARTP=0.014) and ghrelin (GHRL) (PARTP=0.007). POMC was significantly associated with breast cancer risk among post-menopausal women with higher IA ancestry (PARTP=0.005). Three SNPs in LEPR (rs6704167, rs17412175, and rs7626141), and adiponectin (ADIPOQ); rs822391) showed significant 4-way interactions (GxExMenopausexAncestry) for multiple indicators of body size among pre-menopausal women. Energy homeostasis genes were associated with breast cancer risk; menopausal status, body size, and genetic ancestry influenced this relationship. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets

    Directory of Open Access Journals (Sweden)

    Carmela eGiordano

    2014-04-01

    Full Text Available Various ketogenic diet (KD therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs. In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the

  2. Direct measurement of acid efflux from isolated guinea pig pancreatic ducts.

    Science.gov (United States)

    Hootman, Seth R; Hobbs, Errett C; Luckie, Douglas B

    2005-05-01

    The current studies used the technique of microphysiometry to directly determine the effects of stimulators and inhibitors of pancreatic duct secretion on acid efflux from isolated pancreatic ducts. Main and interlobular ducts were isolated from guinea pig pancreata by collagenase digestion and manual selection. Segments were placed in the chambers of a microphysiometer, which uses a silicon chip-based, light-addressable potentiometric sensor to determine the proton concentration in the superfusing solution. Isolated ducts were superfused with a low buffer capacity Ringer's solution at 37 degrees C and the extracellular acidification rate (EAR) was determined by computer-directed protocols. A survey of potential agonists demonstrated that both secretin and the cholinomimetic, carbachol, dramatically increased EAR, with EC50 of 3 nmol/L and 0.6 mumol/L, respectively. The changes in EAR induced by both secretagogues were rapid, peaking within 4-6 minutes, and then declining to a level below the peak but above basal EAR. The enhanced EAR was maintained for at least 30 minutes in the presence of either secretagogue. More modest increases in EAR were evoked by bombesin, substance P, and vasoactive intestinal peptide (VIP). Cholecystokinin and isoproterenol caused no significant change in pancreatic duct EAR. A combination of amiloride and bafilomycin A1, inhibitors, respectively, of Na/H exchange and of vacuolar type H-ATPase activity, caused a dramatic drop in EAR but did not fully inhibit the increase in EAR elicited by carbachol, suggesting that other mechanisms may contribute to agonist-stimulated EAR of pancreatic ducts. Thus, the results support the use of microphysiometry as a tool to study pancreatic duct physiology and in particular a method to measure acid efflux from the serosal surface.

  3. Increased insulin sensitivity and changes in the expression profile of key insulin regulatory genes and beta cell transcription factors in diabetic KKAy-mice after feeding with a soy bean protein rich diet high in isoflavone content.

    Science.gov (United States)

    Nordentoft, I; Jeppesen, P B; Hong, J; Abudula, R; Hermansen, K

    2008-06-25

    High content isoflavone soy protein (SBP) (Abalon) has been found in animal studies to possess beneficial effects on a number of the characteristic features of the insulin resistance syndrome. The aim of this study was to investigate whether SBP exerts beneficial effects on metabolism in the diabetic KKAy-mouse. Furthermore, we investigated the long-term in vivo effect of SBP on the expression profile in islets of key insulin regulatory genes. Twenty KKAy-mice, aged 5 weeks, were divided into 2 groups and treated for 9 weeks with either (A) standard chow diet (control) or (B) chow + 50% SBP. Twenty normal C57BL-mice fed with standard chow diet served as nondiabetic controls (C). Blood samples were collected and analyzed before and after intervention. Gene expression was determined in islets by quantitative real-time RT-PCR and Affymetrix microarray. It was demonstrated that long-term treatment with SBP improves glucose homeostasis, increases insulin sensitivity, and lowers plasma triglycerides in diabetic KKAy-mice. SBP reduces fasting plasma glucose, insulin, triglycerides, and total cholesterol. Furthermore, SBP markedly changes the gene expression profile of key insulin regulatory genes GLUT2, GLUT3, Ins1, Ins2, IGF1, Beta2/Neurod1, cholecystokinin, and LDLr, and proliferative genes in islets isolated from KKAy-mice. After 9 weeks of treatment with SBP, plasma glucose and insulin homeostasis was normalized compared to start levels. The results indicate that SBP improves glucose and insulin sensitivity and up-regulates the expression of key insulin regulatory genes.

  4. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    Science.gov (United States)

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  5. Mapping glucose-mediated gut-to-brain signalling pathways in humans☆

    Science.gov (United States)

    Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.

    2014-01-01

    Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436

  6. ‘Amygdala activation and GABAergic gene expression in hippocampal sub-regions at the interplay of stress and spatial learning

    Directory of Open Access Journals (Sweden)

    Osnat eHadad-Ophir

    2014-01-01

    Full Text Available Molecular processes in GABAergic local circuit neurons critically contribute to information processing in the hippocampus and to stress-induced activation of the amygdala. In the current study, we determined expression changes in GABA-related factors induced in subregions of the dorsal hippocampus as well as in the BLA of rats 5h after spatial learning in a Morris Water maze, using laser microdissection and quantitative real-time PCR. Spatial learning resulted in highly selective pattern of changes in hippocampal subregions: gene expression levels of neuropeptide Y were reduced in the hilus of the dentate gyrus, whereas somatostatin was increased in the stratum oriens of CA3. The GABA-synthesizing enzymes GAD65 and GAD67 as well as the neuropeptide cholecystokinin were reduced in stratum oriens of CA1. In the BLA, expression of GAD65 and GAD67 were reduced compared to a handled Control group. These expression patterns were further compared to alterations in a group of rats that have been exposed to the water maze but were not provided with an invisible escape platform. In this Water Exposure group, no expression changes were observed in any of the hippocampal subregions, but a differential regulation of all selected target genes was evident in the BLA. These findings suggest that expression changes of GABAergic factors in the hippocampus are associated with spatial learning, while additional stress effects modulate expression alterations in the BLA. Indeed, while in both experimental groups plasma corticosterone levels were enhanced, only Water Exposure stress activated the basolateral amygdala, as indicated by increased levels of phosphorylated ERK1/2. Altered GABAergic function in the BLA may thus contribute to memory consolidation in the hippocampus, in relation to levels of stress and emotionality associated with the experience.

  7. New advances in cell physiology and pathophysiology of the exocrine pancreas.

    Science.gov (United States)

    Mössner, Joachim

    2010-01-01

    This review provides some aspects on the physiology of stimulation and inhibition of pancreatic digestive enzyme secretion and the pathophysiology of pancreatic acinar cell function leading to pancreatitis. Cholecystokinin (CCK) stimulates both directly via CCK-A receptors on acinar cells and indirectly via CCK-B receptors on nerves, followed by acetylcholine release, pancreatic enzyme secretion. It is still not known whether CCK-A receptors exist in human acinar cells, in contrast to acinar cells of rodents where CCK-A receptors have been well described. CCK has numerous actions both in the periphery and in the central nervous systems. CCK inhibits gastric motility and regulates satiety. Another major function of CCK is stimulation of gallbladder contraction. This function enables that bile acids act simultaneously with pancreatic lipolytic enzymes. Secretin is a major stimulator of bicarbonate secretion. Trypsinogen is activated by the gut mucosal enzyme enterokinase. The other pancreatic proenzymes are activated by trypsin. Termination of enzyme secretion may be regulated by negative feedback mechanisms via destruction of CCK-releasing peptides by trypsin. Furthermore, the ileum may act as a brake by release of inhibitory hormones such as PYY and somatostatin. In the pathophysiology of acute pancreatitis, fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen is regarded as an initiation step. This activation of trypsinogen may be caused by the lysosomal enzyme cathepsin B. However, autoactivation of trypsinogen itself may be a possibility in pathogenesis. Autoactivation is enhanced in certain mutations of trypsinogen. Furthermore, an imbalance of protease inhibitors and active proteases may be involved. The role of pancreatic lipolytic enzymes, the role of bicarbonate secretion, and toxic Ca(2+) signals by excessive liberation from the endoplasmic reticulum have to be discussed in the pathogenesis of acute pancreatitis

  8. Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans.

    Science.gov (United States)

    Little, Tanya J; Gupta, Nili; Case, R Maynard; Thompson, David G; McLaughlin, John T

    2009-09-01

    In cell line and animal models, sweet and bitter tastants induce secretion of signaling peptides (e.g., glucagon-like peptide-1 and cholecystokinin) and slow gastric emptying (GE). Whether human GE and appetite responses are regulated by the sweetness or bitterness per se of ingested food is, however, unknown. We aimed to determine whether intragastric infusion of "equisweet" (Study A) or "equibitter" (Study B) solutions slow GE to the same extent, and whether a glucose solution made sweeter by the addition of saccharin will slow GE more potently than glucose alone. Healthy nonobese subjects were studied in a single-blind, randomized fashion. Subjects received 500-ml intragastric infusions of predetermined equisweet solutions of glucose (560 mosmol/kgH(2)O), fructose (290 mosmol/kgH(2)O), aspartame (200 mg), and saccharin (50 mg); twice as sweet glucose + saccharin, water (volumetric control) (Study A); or equibitter solutions of quinine (0.198 mM), naringin (1 mM), or water (Study B). GE was evaluated using a [(13)C]acetate breath test, and hunger and fullness were scored using visual analog scales. In Study A, equisweet solutions did not empty similarly. Fructose, aspartame, and saccharin did not slow GE compared with water, but glucose did (P solution (P > 0.05, compared with glucose alone). In Study B, neither bitter tastant slowed GE compared with water. None of the solutions modulated perceptions of hunger or fullness. We conclude that, in humans, the presence of sweetness and bitterness taste per se in ingested solutions does not appear to signal to influence GE or appetite perceptions.

  9. Intracellular mediators of Na+-K+ pump activity in guinea pig pancreatic acinar cells

    International Nuclear Information System (INIS)

    Hootman, S.R.; Ochs, D.L.; Williams, J.A.

    1985-01-01

    The involvement of Ca 2+ and cyclic nucleotides in neurohormonal regulation of Na + -K + -ATPase (Na + -K + pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by [3H]ouabain binding and by ouabain-sensitive 86 Rb + uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of [ 3 H]ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in Ca 2+ -free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular Ca 2+ , while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free Ca 2+ levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent Ca 2+ chelator. Basal intracellular Ca 2+ concentration ([Ca 2+ ]i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively

  10. Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks.

    Science.gov (United States)

    Savanthrapadian, Shakuntala; Meyer, Thomas; Elgueta, Claudio; Booker, Sam A; Vida, Imre; Bartos, Marlene

    2014-06-11

    Hippocampal GABAergic cells are highly heterogeneous, but the functional significance of this diversity is not fully understood. By using paired recordings of synaptically connected interneurons in slice preparations of the rat and mouse dentate gyrus (DG), we show that morphologically identified interneurons form complex neuronal networks. Synaptic inhibitory interactions exist between cholecystokinin (CCK)-expressing hilar commissural associational path (HICAP) cells and among somatostatin (SOM)-containing hilar perforant path-associated (HIPP) interneurons. Moreover, both interneuron types inhibit parvalbumin (PV)-expressing perisomatic inhibitory basket cells (BCs), whereas BCs and HICAPs rarely target HIPP cells. HICAP and HIPP cells produce slow, weak, and unreliable inhibition onto postsynaptic interneurons. The time course of inhibitory signaling is defined by the identity of the presynaptic and postsynaptic cell. It is the slowest for HIPP-HIPP, intermediately slow for HICAP-HICAP, but fast for BC-BC synapses. GABA release at interneuron-interneuron synapses also shows cell type-specific short-term dynamics, ranging from multiple-pulse facilitation at HICAP-HICAP, biphasic modulation at HIPP-HIPP to depression at BC-BC synapses. Although dendritic inhibition at HICAP-BC and HIPP-BC synapses appears weak and slow, channelrhodopsin 2-mediated excitation of SOM terminals demonstrates that they effectively control the activity of target interneurons. They markedly reduce the discharge probability but sharpen the temporal precision of action potential generation. Thus, dendritic inhibition seems to play an important role in determining the activity pattern of GABAergic interneuron populations and thereby the flow of information through the DG circuitry. Copyright © 2014 the authors 0270-6474/14/348197-13$15.00/0.

  11. Renal uptake and retention of radiolabeled somatostatin, bombesin, neurotensin, minigastrin and CCK analogues: species and gender differences

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Marleen [Department of Nuclear Medicine, Erasmus MC Rotterdam, 3015 CE Rotterdam (Netherlands)], E-mail: m.melis@erasmusmc.nl; Krenning, Eric P.; Bernard, Bert F.; Visser, Monique de; Rolleman, Edgar; Jong, Marion de [Department of Nuclear Medicine, Erasmus MC Rotterdam, 3015 CE Rotterdam (Netherlands)

    2007-08-15

    Introduction: During therapy with radiolabeled peptides, the kidney is most often the critical organ. Newly developed peptides are evaluated preclinically in different animal models before their application in humans. In this study, the renal retention of several radiolabeled peptides was compared in male and female rats and mice. Methods: After intravenous injection of radiolabeled peptides [somatostatin, cholecystokinin (CCK), minigastrin, bombesin and neurotensin analogues], renal uptake was determined in both male and female Lewis rats and C57Bl mice. In addition, ex vivo autoradiography of renal sections was performed to localize accumulated radioactivity. Results: An equal distribution pattern of renal radioactivity was found for all peptides: high accumulation in the cortex, lower accumulation in the outer medulla and no radioactivity in the inner medulla of the kidneys. In both male rats and mice, an increasing renal uptake was found: [{sup 111}In-DTPA]CCK8<[{sup 111}In-DTPA-Pro{sup 1},Tyr{sup 4}]bombesin{approx}[{sup 111}In-DTPA] neurotensin<[{sup 111}In-DTPA]octreotide<<[{sup 111}In-DTPA]MG0. Renal uptake of [{sup 111}In-DTPA]octreotide in rats showed no gender difference, and renal radioactivity was about constant over time. In mice, however, renal uptake in females was significantly higher than that in males and decreased rapidly over time in both genders. Moreover, renal radioactivity in female mice injected with [{sup 111}In-DTPA]octreotide showed a different localization pattern. Conclusions: Regarding the renal uptake of different radiolabeled peptides, both species showed the same ranking order. Similar to findings in patients, rats showed comparable and constant renal retention of radioactivity in both genders, in contrast to mice. Therefore, rats appear to be the more favorable species for the study of the renal retention of radioactivity.

  12. Uremic anorexia: a consequence of persistently high brain serotonin levels? The tryptophan/serotonin disorder hypothesis.

    Science.gov (United States)

    Aguilera, A; Selgas, R; Codoceo, R; Bajo, A

    2000-01-01

    Anorexia is a frequent part of uremic syndrome, contributing to malnutrition in dialysis patients. Many factors have been suggested as responsible for uremic anorexia. In this paper we formulate a new hypothesis to explain the appetite disorders in dialysis patients: "the tryptophan/serotonin disorder hypothesis." We review current knowledge of normal hunger-satiety cycle control and the disorders described in uremic patients. There are four phases in food intake regulation: (1) the gastric phase, during which food induces satiety through gastric distention and satiety peptide release; (2) the post absorptive phase, during which circulating compounds, including glucose and amino acids, cause satiety by hepatic receptors via the vagus nerve; (3) the hepatic phase, during which adenosine triphosphate (ATP) concentration is the main stimulus inducing hunger or satiety, with cytokines inhibiting ATP production; and (4) the central phase, during which appetite is regulated through peripheral (circulating plasma substances and neurotransmitters) and brain stimuli. Brain serotonin is the final target for peripheral mechanisms controlling appetite. High brain serotonin levels and a lower serotonin/dopamine ratio cause anorexia. Plasma and brain amino acid concentrations are recognized factors involved in neurotransmitter synthesis and appetite control. Tryptophan is the substrate of serotonin synthesis. High plasma levels of anorectics such as tryptophan (plasma and brain), cholecystokinin, tumor necrosis factor alpha, interleukin-1, and leptin, and deficiencies of nitric oxide and neuropeptide Y have been described in uremia; all increase intracerebral serotonin. We suggest that brain serotonin hyperproduction due to a uremic-dependent excess of tryptophan may be the final common pathway involved in the genesis of uremic anorexia. Various methods of ameliorating anorexia by decreasing the central effects of serotonin are proposed.

  13. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    Science.gov (United States)

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID

  14. The role of the lateral amygdala in the retrieval and maintenance of fear-memories formed by probabilistic reinforcement

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Erlich

    2012-04-01

    Full Text Available The lateral nucleus of the amygdala (LA is a key element in the neural circuit subserving Pavlovian fear conditioning, an animal model of fear and anxiety. Most studies have focused on the role of the LA in fear acquisition and extinction, i.e. how neural plasticity results from changing contingencies between a neutral conditioned stimulus (e.g. a tone and an aversive unconditioned stimulus (e.g. a shock. However, outside of the lab, fear memories are often the result of repeated and unpredictable experiences. Examples include domestic violence, child abuse or combat. To better understand the role of the LA in the expression of fear resulting from repeated and uncertain reinforcement, rats experienced a 30% partial reinforcement fear-conditioning schedule four days a week for four weeks. Rats reached asymptotic levels of conditioned fear expression after the first week. We then manipulated LA activity with drug (or vehicle infusions once a week, for the next three weeks, before the training session. LA infusions of muscimol, a GABA-A agonist that inhibits neural activity, reduced conditioned stimulus (CS evoked fear behavior to pre-conditioning levels. LA infusions of pentagastrin, a cholecystokinin-2 (CCK agonist that increases neural excitability, resulted in CS-evoked fear behavior that continued past the offset of the CS. This suggests that neural activity in the LA is required for the retrieval of fear memories that stem from repeated and uncertain reinforcement, and that CCK signaling in the LA plays a role in the recovery from fear after the removal of the fear-evoking stimulus.

  15. Neurotransmitters and putative neuromodulators in the gut of Anguilla anguilla (L.. Localizations in the enteric nervous and endocrine systems

    Directory of Open Access Journals (Sweden)

    A Veggetti

    2009-12-01

    Full Text Available The gut of silver eels (Anguilla anguilla L. was investigated in order to describe both the cholinergic and adrenergic intramural innervations, and the localization of possible accessory neuromediators. Histochemical reactions for the demonstration of nicotinamide adenine dinucleotide phosphate, reduced form-(NADPH-diaphorase and acetylcholinesterese (AChEase were performed, as well as the immunohistochemical testing of tyrosine hydroxylase, met-enkephalin, substance P, calcitonin gene-related peptide (CGRP, bombesin, vasoactive intestinal peptide (VIP, neuropeptide Y (NPY, somatostatin, cholecystokinin-octapeptide (CCK-8, serotonin, cholineacetyltransferase. The results evidenced a different pattern in comparison with other vertebrates, namely mammals, and with other fish. Both NADPH-diaphorase and AChEase activities were histochemically detected all along the gut in the myenteric plexus, the inner musculature and the propria-submucosa. Tyrosine hydroxylase immunoreactivity was observed in the intestinal tract only, both in the myenteric plexus and in the inner musculature. Several neuropeptides (metenkephalin, CGRP, bombesin, substance P, VIP, NPY, somatostatin were, in addition, detected in the intramural innervation; some of them also in epithelial cells of the diffuse endocrine system (met-enkephalin, substance P, NPY, somatostatin. Serotonin was only present in endocrine cells. Tyrosine hydroxylase immunoreactivity was present in localizations to those of similar NADPHdiaphorase- reactivity, and in the same nerve bundles in which substance P- and CGRP-likeimmunoreactivities were detectable in the intestinal tract. In addition, NADPH-diaphorase-reactive neurons showed an anatomical relationship with AChEase-reactive nerve terminals, and a similar relationship existed between the latter and substance P-like immunoreactivity.

  16. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion.

    Science.gov (United States)

    Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao

    2005-08-01

    To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  17. Effects of Substitution, and Adding of Carbohydrate and Fat to Whey-Protein on Energy Intake, Appetite, Gastric Emptying, Glucose, Insulin, Ghrelin, CCK and GLP-1 in Healthy Older Men—A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Caroline Giezenaar

    2018-01-01

    Full Text Available Protein-rich supplements are used widely for the management of malnutrition in the elderly. We reported previously that the suppression of energy intake by whey protein is less in older than younger adults. The aim was to determine the effects of substitution, and adding of carbohydrate and fat to whey protein, on ad libitum energy intake from a buffet meal (180–210 min, gastric emptying (3D-ultrasonography, plasma gut hormone concentrations (0–180 min and appetite (visual analogue scales, in healthy older men. In a randomized, double-blind order, 13 older men (75 ± 2 years ingested drinks (~450 mL containing: (i 70 g whey protein (280 kcal; ‘P280’; (ii 14 g protein, 28 g carbohydrate, 12.4 g fat (280 kcal; ‘M280’; (iii 70 g protein, 28 g carbohydrate, 12.4 g fat (504 kcal; ‘M504’; or (iv control (~2 kcal. The caloric drinks, compared to a control, did not suppress appetite or energy intake; there was an increase in total energy intake (drink + meal, p < 0.05, which was increased most by the M504-drink. P280- and M504-drink ingestion were associated with slower a gastric-emptying time (n = 9, lower ghrelin, and higher cholecystokinin (CCK and glucagon-like peptide-1 (GLP-1 than M280 (p < 0.05. Glucose and insulin were increased most by the mixed-macronutrient drinks (p < 0.05. In conclusion, energy intake was not suppressed, compared to a control, and particularly whey protein, affected gastric emptying and gut hormone responses.

  18. Effect of Age on Blood Glucose and Plasma Insulin, Glucagon, Ghrelin, CCK, GIP, and GLP-1 Responses to Whey Protein Ingestion

    Directory of Open Access Journals (Sweden)

    Caroline Giezenaar

    2017-12-01

    Full Text Available Protein-rich supplements are used widely to prevent and manage undernutrition in older people. We have previously shown that healthy older, compared to younger, adults have less suppression of energy intake by whey protein—although the effects of age on appetite-related gut hormones are largely unknown. The aim of this study was to determine and compare the acute effects of whey protein loads on blood glucose and plasma gut hormone concentrations in older and younger adults. Sixteen healthy older (eight men, eight women; mean ± SEM: age: 72 ± 1 years; body mass index: 25 ± 1 kg/m2 and 16 younger (eight men, eight women; 24 ± 1 years; 23 ± 0.4 kg/m2 adults were studied on three occasions in which they ingested 30 g (120 kcal or 70 g (280 kcal whey protein, or a flavored-water control drink (~2 kcal. At regular intervals over 180 min, blood glucose and plasma insulin, glucagon, ghrelin, cholecystokinin (CCK, gastric inhibitory peptide (GIP, and glucagon-like peptide-1 (GLP-1 concentrations were measured. Plasma ghrelin was dose-dependently suppressed and insulin, glucagon, CCK, GIP, and GLP-1 concentrations were dose-dependently increased by the whey protein ingestion, while blood glucose concentrations were comparable during all study days. The stimulation of plasma CCK and GIP concentrations was greater in older than younger adults. In conclusion, orally ingested whey protein resulted in load-dependent gut hormone responses, which were greater for plasma CCK and GIP in older compared to younger adults.

  19. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function.

    Science.gov (United States)

    Desai, Aditya J; Dong, Maoqing; Harikumar, Kaleeckal G; Miller, Laurence J

    2015-09-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. Copyright © 2015 the American Physiological Society.

  20. Phencyclidine-Induced Social Withdrawal Results from Deficient Stimulation of Cannabinoid CB1 Receptors: Implications for Schizophrenia

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-01-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  1. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.

  2. Plasma hormones facilitated the hypermotility of the colon in a chronic stress rat model.

    Directory of Open Access Journals (Sweden)

    Chengbai Liang

    Full Text Available OBJECTIVE: To study the relationship between brain-gut peptides, gastrointestinal hormones and altered motility in a rat model of repetitive water avoidance stress (WAS, which mimics the irritable bowel syndrome (IBS. METHODS: Male Wistar rats were submitted daily to 1-h of water avoidance stress (WAS or sham WAS (SWAS for 10 consecutive days. Plasma hormones were determined using Enzyme Immunoassay Kits. Proximal colonic smooth muscle (PCSM contractions were studied in an organ bath system. PCSM cells were isolated by enzymatic digestion and IKv and IBKca were recorded by the patch-clamp technique. RESULTS: The number of fecal pellets during 1 h of acute restraint stress and the plasma hormones levels of substance P (SP, thyrotropin-releasing hormone (TRH, motilin (MTL, and cholecystokinin (CCK in WAS rats were significantly increased compared with SWAS rats, whereas vasoactive intestinal peptide (VIP, calcitonin gene-related peptide (CGRP and corticotropin releasing hormone (CRH in WAS rats were not significantly changed and peptide YY (PYY in WAS rats was significantly decreased. Likewise, the amplitudes of spontaneous contractions of PCSM in WAS rats were significantly increased comparing with SWAS rats. The plasma of WAS rats (100 µl decreased the amplitude of spontaneous contractions of controls. The IKv and IBKCa of PCSMs were significantly decreased in WAS rats compared with SWAS rats and the plasma of WAS rats (100 µl increased the amplitude of IKv and IBKCa in normal rats. CONCLUSION: These results suggest that WAS leads to changes of plasma hormones levels and to disordered myogenic colonic motility in the short term, but that the colon rapidly establishes a new equilibrium to maintain the normal baseline functioning.

  3. The assessment of gallbladder with various fatty meal in oral cholecystography

    International Nuclear Information System (INIS)

    Yeon, Jeong Hum; Kwon, Lee Seon; Kim, Myung Sook; Cheung, Kyung Mo; Kim, Hea Sung; Cheung, Hwan

    1993-01-01

    However, technical advances in ultrasono imaging have had a remarkable impact on the study of biliary system oral cholecystography is a contrast of the gallbladder which is very frequently performed even with the application of Extra Shock Wave Lithotripsy(ESWL) in clinical use. Oral GB requires a stringent preparation if it is to be fully successful and a considerable amount of time to complete all its procedures and its objects of the radiographs. 1) to obtain a firm diagnosis of the presence of gallstones. 2) to ease function of the gallbladder that is, its ability to concentrate and store bile After a times sequence of X - ray exposures taken in various positions to show the gallbladder to be satisfactorily filled, the patient is given a fatty meal, for instances two eggs or a cup of milk. The gallbladder which is drained by the cystic duct stores and concentrates the bile and is stimulated to contrast and excrete the bile by hormone 'cholecystokinin' secreted in the intestinal mucosa. To evaluate the effect of the fatty meal which caused the gallbladder to constrict and empty, and by so doing the contrast medium passes through the cystic and bile ducts which are shown in radiographs exposed from 15-30 minutes after the variety practice of fatty meal, such as soft-boiled 2 eggs, raw 2 eggs, 100g of peanuts, and 200ml of milk. If the concentration of the opaque medium in the gallbladder is adequate, then not only the size, shape and position of the gallbladder will be shown from firms taken at intervals, the rate of concentration of the opaque medium and of the emptying of gallbladder has been measured and analyzed

  4. Does low-dose CCK-8 injection produce abdominal pain in 'truly normal' individuals?

    International Nuclear Information System (INIS)

    Ramsay, S.; Webb, B.; Hille, N.

    1999-01-01

    Full text: The development of abdominal pain following cholecystokinin (CCK) injection is not specific for biliary disease. Patients can develop abdominal pain with CCK during hepatobiliary studies and have normal gallbladder function. Does this non-biliary pain indicate pathology? High doses of CCK induce pain in functional bowel syndromes, but may also produce pain in normals. Pain is less common at lower CCK doses, and hence may be more significant. This study aimed to determine the rate at which the low dose of CCK used in hepatobiliary scans causes abdominal pain and other side-effects in 'truly normal' individuals. Some preliminary results of CCK-induced pain in gastro-oesophageal reflux (GOR) patients are also discussed. Six 'truly normal' subjects were studied. 'Truly normal' was defined as: no current history of abdominal pain; no biliary or gallbladder disease; no significant GIT pathology; not currently on medication designed to be pharmacologically active in the GIT. Each patient was given an intravenous dose of 0.01 μg-kg -1 of CCK8 over 3 min, and side-effects were recorded for 30 min. No subject had abdominal pain. Two developed nausea, 1 moderate and 1 mild. An identical dose of CCK was given to 2 patients with endoscopically proven GOR. Anti-reflux medication had been ceased for 12 h. After CCK, 1 patient developed typical 'reflux' pain and 1 was asymptomatic. In conclusion, none of our 'truly normal' patients had abdominal pain with low-dose CCK. This suggests that patients developing pain following injection of this dose of CCK are indeed abnormal. The literature infers these patients may have irritable bowel syndrome; however, this hypothesis is complicated by our preliminary results indicating that CCK can reproduce pain in some patients with GOR

  5. Fasting and meal-induced CCK and PP secretion following intragastric balloon treatment for obesity.

    Science.gov (United States)

    Mathus-Vliegen, Elisabeth M H; de Groot, Gerrit H

    2013-05-01

    Satiety is centrally and peripherally mediated by gastrointestinal peptides and the vagal nerve. We aimed to investigate whether intragastric balloon treatment affects satiety through effects on fasting and meal-stimulated cholecystokinin (CCK) and pancreatic polypeptide (PP) secretion. Patients referred for obesity treatment were randomised to 13 weeks of sham treatment followed by 13 weeks of balloon treatment (group 1; sham/balloon) or to twice a 13-week period of balloon treatment (group 2; balloon/balloon). Blood samples were taken for fasting and meal-stimulated CCK and PP levels at the start (T0) and after 13 (T1) and 26 (T2) weeks. Patients filled out visual analogue scales (VAS) to assess satiety. Forty-two patients (35 females, body weight 125.1 kg, BMI 43.3 kg/m(2)) participated. In group 1, basal CCK levels decreased but meal-stimulated response remained unchanged after 13 weeks of sham treatment. In group 2, basal and meal-stimulated CCK levels decreased after 13 weeks of balloon treatment. At the end of the second 13-week period, when group 1 had their first balloon treatment, they duplicated the initial 13-week results of group 2, whereas group 2 continued their balloon treatment and reduced meal-stimulated CCK release. Both groups showed reduced meal-stimulated PP secretions at T1 and T2 compared to T0. Changes in diet composition and VAS scores were similar. Improvements in glucose homeostasis partly explained the PP results. The reduced CCK and PP secretion after balloon positioning was unexpected and may reflect delayed gastric emptying induced by the balloon. Improved glucose metabolism partly explained the reduced PP secretion. Satiety and weight loss were not adversely influenced by these hormonal changes.

  6. Supplementation with a fish protein hydrolysate (Micromesistius poutassou: effects on body weight, body composition, and CCK/GLP-1 secretion

    Directory of Open Access Journals (Sweden)

    Vincenzo Nobile

    2016-01-01

    Full Text Available Background: Fish protein hydrolysates (FPHs have been reported as a suitable source of proteins for human nutrition because of their balanced amino acid composition and positive effect on gastrointestinal absorption. Objective: Here, we investigated the effect of a FPH, Slimpro®, obtained from blue whiting (Micromesistius poutassou muscle by enzymatic hydrolysis, on body composition and on stimulating cholecystokinin (CCK and glucagon-like peptide-1 (GLP-1 secretion. Design: A randomized clinical study was carried out on 120, slightly overweight (25 kg/m2 ≤ BMI<30 kg/m2, male (25% and female (75% subjects. FPH was tested in a food supplement at two doses (1.4 and 2.8 g to establish if a dose–effect relationship exists. Product use was associated with a mild hypocaloric diet (−300 kcal/day. Body composition (body weight; fat mass; extracellular water; and circumference of waist, thighs, and hips and CCK/GLP-1 blood levels were measured at the beginning of the study and after 45 and 90 days of product use. CCK/GLP-1 levels were measured since they are involved in controlling food intake. Results: Treated subjects reported an improvement of body weight composition and an increased blood concentration of both CCK and GLP-1. No differences were found between the 1.4 and 2.8 g FPH doses, indicating a plateau effect starting from 1.4 g FPH. Conclusions: Both 1.4 and 2.8 g of FPH were effective in improving body composition and in increasing CCK and GLP-1 blood levels.

  7. Critical review evaluating the pig as a model for human nutritional physiology.

    Science.gov (United States)

    Roura, Eugeni; Koopmans, Sietse-Jan; Lallès, Jean-Paul; Le Huerou-Luron, Isabelle; de Jager, Nadia; Schuurman, Teun; Val-Laillet, David

    2016-06-01

    The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet), glutamic acid (umami) and fatty acids are conserved between humans and pigs. In contrast, pigs show limited perception of high-intensity sweeteners and NaCl and sense a wider array of amino acids than humans. Differences on bitter taste may reflect the adaptation to ecosystems. In relation to appetite regulation, plasma concentrations of cholecystokinin and glucagon-like peptide-1 are similar in pigs and humans, while peptide YY in pigs is ten to twenty times higher and ghrelin two to five times lower than in humans. Pigs are an excellent model for human studies for vagal nerve function related to the hormonal regulation of food intake. Similarly, the study of gut barrier functions reveals conserved defence mechanisms between the two species particularly in functional permeability. However, human data are scant for some of the defence systems and nutritional programming. The pig model has been valuable for studying the changes in human microbiota following nutritional interventions. In particular, the use of human flora-associated pigs is a useful model for infants, but the long-term stability of the implanted human microbiota in pigs remains to be investigated. The similarity of the pig and human brain anatomy and development is paradigmatic. Brain explorations and therapies described in pig, when compared with available human data, highlight their value in nutritional neuroscience, particularly regarding functional neuroimaging techniques.

  8. Compensatory mechanisms activated with intermittent energy restriction: A randomized control trial.

    Science.gov (United States)

    Coutinho, Sílvia Ribeiro; Halset, Eline Holli; Gåsbakk, Sigrid; Rehfeld, Jens F; Kulseng, Bård; Truby, Helen; Martins, Cátia

    2018-06-01

    Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. 35 adults (age: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m 2 ) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting respiratory quotient (RQ), ExEff (10, 25, and 50 W), subjective appetite ratings (hunger, fullness, desire to eat, and prospective food consumption (PFC)), and appetite-regulating hormones (active ghrelin (AG), cholecystokinin (CCK), total peptide YY (PYY), active glucagon-like peptide-1 (GLP-1), and insulin) were measured before and after WL. Changes in body weight (≈12.5% WL) and composition were similar in both groups. Fasting RQ and ExEff at 10 W increased in both groups. Losing weight, either by IER or CER dieting, did not induce significant changes in subjective appetite ratings. RMR decreased and ExEff at 25 and 50 W increased (P intermittent, does not appear to modulate the compensatory mechanisms activated by weight loss. NCT02169778 (the study was registered in clinicaltrial.gov). Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Ghrelin is involved in the paracrine communication between neurons and glial cells.

    Science.gov (United States)

    Avau, B; De Smet, B; Thijs, T; Geuzens, A; Tack, J; Vanden Berghe, P; Depoortere, I

    2013-09-01

    Ghrelin is the only known peripherally active orexigenic hormone produced by the stomach that activates vagal afferents to stimulate food intake and to accelerate gastric emptying. Vagal sensory neurons within the nodose ganglia are surrounded by glial cells, which are able to receive and transmit chemical signals. We aimed to investigate whether ghrelin activates or influences the interaction between both types of cells. The effect of ghrelin was compared with that of leptin and cholecystokinin (CCK). Cultures of rat nodose ganglia were characterized by immunohistochemistry and the functional effects of peptides, neurotransmitters, and pharmacological blockers were measured by Ca(2+) imaging using Fluo-4-AM as an indicator. Neurons responded to KCl and were immunoreactive for PGP-9.5 whereas glial cells responded to lysophosphatidic acid and had the typical SOX-10-positive nuclear staining. Neurons were only responsive to CCK (31 ± 5%) whereas glial cells responded equally to the applied stimuli: ghrelin (27 ± 2%), leptin (21 ± 2%), and CCK (30 ± 2%). In contrast, neurons stained more intensively for the ghrelin receptor than glial cells. ATP induced [Ca(2+) ]i rises in 90% of the neurons whereas ACh and the NO donor, SIN-1, mainly induced [Ca(2+) ]i changes in glial cells (41 and 51%, respectively). The percentage of ghrelin-responsive glial cells was not affected by pretreatment with suramin, atropine, hexamethonium or 1400 W, but was reduced by l-NAME and by tetrodotoxin. Neurons were shown to be immunoreactive for neuronal NO-synthase (nNOS). Our data show that ghrelin induces Ca(2+) signaling in glial cells of the nodose ganglion via the release of NO originating from the neurons. © 2013 John Wiley & Sons Ltd.

  10. Fluoxetine impairs GABAergic signaling in hippocampal slices from neonatal rats

    Directory of Open Access Journals (Sweden)

    Enrico eCherubini

    2013-05-01

    Full Text Available Fluoxetine (Prozac, an antidepressant known to selectively inhibit serotonin reuptake, is widely used to treat mood disorders in women suffering from depression during pregnancy and postpartum period. Several lines of evidence suggest that this drug, which crosses the human placenta and is secreted into milk during lactation, exerts its action not only by interfering with serotoninergic but also with GABAergic transmission. GABA is known to play a crucial role in the construction of neuronal circuits early in postnatal development. The immature hippocampus is characterized by an early type of network activity, the so-called Giant Depolarizing Potentials (GDPs, generated by the synergistic action of glutamate and GABA, both depolarizing and excitatory. Here we tested the hypothesis that fluoxetine may interfere with GABAergic signaling during the first postnatal week, thus producing harmful effects on brain development. At micromolar concentrations fluoxetine severely depressed GDPs frequency (IC50 22 M in a reversible manner and independently of its action on serotonin reuptake. This effect was dependent on a reduced GABAergic (but not glutamatergic drive to principal cells most probably from parvalbumin-positive fast spiking neurons. Cholecystokinin-positive GABAergic interneurons were not involved since the effects of the drug persisted when cannabinoid receptors were occluded with WIN55,212-2, a CB1/CB2 receptor agonist. Fluoxetine effects on GABAergic transmission were associated with a reduced firing rate of both principal cells and interneurons further suggesting that changes in network excitability account for GDPs disruption. This may have critical consequences on the functional organization and stabilization of neuronal circuits early in postnatal development.

  11. The cannabinoid transporter inhibitor OMDM-2 reduces social interaction: Further evidence for transporter-mediated endocannabinoid release.

    Science.gov (United States)

    Seillier, Alexandre; Giuffrida, Andrea

    2018-03-01

    Experimental evidence suggests that the transport of endocannabinoids might work bi-directionally. Accordingly, it is possible that pharmacological blockade of the latter affects not only the re-uptake, but also the release of endocannabinoids, thus preventing them from stimulating CB 1 receptors. We used biochemical, pharmacological, and behavioral approaches to investigate the effects of the transporter inhibitor OMDM-2 on social interaction, a behavioral assay that requires activation of CB 1 receptors. The underlying mechanisms of OMDM-2 were compared with those of the Fatty Acid Amide Hydrolase (FAAH) inhibitor URB597. Systemic administration of OMDM-2 reduced social interaction, but in contrast to URB597-induced social deficit, this effect was not reversed by the TRPV1 antagonist capsazepine. The CB 1 antagonist AM251, which did not affect URB597-induced social withdrawal, exacerbated OMDM-2 effect. In addition, the potent CB 1 agonist CP55,940 reversed OMDM-2-, but not URB597-, induced social withdrawal. Blockade of CB 1 receptor by AM251 reduced social interaction and the cholecystokinin CCK2 antagonist LY225910 reversed this effect. Similarly, OMDM-2-induced social withdrawal was reversed by LY225910, whereas URB597 effect was not. Elevation of endocannabinoid levels by URB597 or JZL184, an inhibitor of 2-AG degradation, failed to reverse OMDM-2-induced social withdrawal, and did not show additive effects on cannabinoid measurements when co-administered with OMDM-2. Taken together, these findings indicate that OMDM-2 impaired social interaction in a manner that is consistent with reduced activation of presynaptic CB 1 receptors. As cannabinoid reuptake inhibitors may impair endocannabinoid release, caution should be taken when using these drugs to enhance endocannabinoid tone in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Motor activity of the gallbladder and gastrointestinal tract as determinants of enterohepatic circulation. A scintigraphic and manometric study

    Energy Technology Data Exchange (ETDEWEB)

    Qvist, N. [Odense University Hospital, Dept. of Surgical Gastroenterology and Clinical Physiology, Div. of Nuclear Medicine, Odense (Denmark)

    1995-12-31

    The aims of the study were to describe the dynamics of the enterohepatic circulation in relation to gallbladder and gastrointestinal motility in the interdigestive as well as the postprandial period. Furthermore, to investigate the level of circulating cholecystokinin, secretin, pancreatic polypeptide, motilin and bile acids in relation to gallbladder motility and MMC during the interdigestive period. All investigations were carried out on healthy male volunteers aged 18-40 years. The most suitable method for studying various characteristics of the enterohepatic circulation, and especially gallbladder motility in humans, is scintigraphy. It is non-invasive, and allows a continuing dynamic investigation of the partitioning of the radioactive marker between the various compartment. Two entirely different pharmacological substances may be use. HIDA (diethyl-acetanilide-iminodiacetic acid) which is semisynthetic and closely related to lidocaine forms a chelate with {sup 99m}Tc for intravenous administration only. The transport of {sup 99m}Tc-HIDA across the hepatocyte is a carrier-mediated organic anion pathway, similar to the hepatic handling of bilirubin. Homocholic-acid-taurine (HCAT) is a synthetic bile acid analogue, corresponding to the naturally occurring bile acid cholic acid-taurine. It is marked with {sup 75}Se and is available for peroral use only. The {sup 75}SeHCAT is adsorbed in the same manner as the naturally occurring conjugated trihydroxy bile acids, involving specific carrier systems for absorption and secretion, i.e. with a high first pass extraction and a secretory rate proportional to the blood concentration. (EG) 24 refs.

  13. Relationship of Genetic Variants With Procedural Pain, Anxiety, and Distress in Children.

    Science.gov (United States)

    Ersig, Anne L; Schutte, Debra L; Standley, Jennifer; Leslie, Elizabeth; Zimmerman, Bridget; Kleiber, Charmaine; Hanrahan, Kirsten; Murray, Jeffrey C; McCarthy, Ann Marie

    2017-05-01

    This study used a candidate gene approach to examine genomic variation associated with pain, anxiety, and distress in children undergoing a medical procedure. Children aged 4-10 years having an IV catheter insertion were recruited from three Midwestern children's hospitals. Self-report measures of pain, anxiety, and distress were obtained as well as an observed measure of distress. Samples were collected from children and biological parents for analysis of genomic variation. Genotyped variants had known or suspected association with phenotypes of interest. Analyses included child-only association and family-based transmission disequilibrium tests. Genotype and phenotype data were available from 828 children and 376 family trios. Children were 50% male, had a mean age of 7.2 years, and were 84% White/non-Hispanic. In family-based analysis, one single-nucleotide polymorphism (SNP; rs1143629, interleukin ( IL1B) 1β) was associated with observed child distress at Bonferroni-corrected levels of significance ( p = .00013), while two approached significance for association with high state anxiety (rs6330 Nerve Growth Factor, Beta Subunit, [ NGFB]) and high trait anxiety (rs6265 brain-derived neurotrophic factor [ BDNF]). In the child-only analysis, multiple SNPs showed nominal evidence of relationships with phenotypes of interest. rs6265 BDNF and rs2941026 cholecystokinin B receptor had possible relationships with trait anxiety in child-only and family-based analyses. Exploring genomic variation furthers our understanding of pain, anxiety, and distress and facilitates genomic screening to identify children at high risk of procedural pain, anxiety, and distress. Combined with clinical observations and knowledge, such explorations could help guide tailoring of interventions to limit procedure-related distress and identify genes and pathways of interest for future genotype-phenotype studies.

  14. Acute and second-meal effects of peanuts on glycaemic response and appetite in obese women with high type 2 diabetes risk: a randomised cross-over clinical trial.

    Science.gov (United States)

    Reis, Caio E G; Ribeiro, Daniela N; Costa, Neuza M B; Bressan, Josefina; Alfenas, Rita C G; Mattes, Richard D

    2013-06-01

    Nut consumption is associated with a reduced risk of type 2 diabetes mellitus (T2DM). The aim of the present study was to assess the effects of adding peanuts (whole or peanut butter) on first (0-240 min)- and second (240-490 min)-meal glucose metabolism and selected gut satiety hormone responses, appetite ratings and food intake in obese women with high T2DM risk. A group of fifteen women participated in a randomised cross-over clinical trial in which 42·5 g of whole peanuts without skins (WP), peanut butter (PB) or no peanuts (control) were added to a 75 g available carbohydrate-matched breakfast meal. Postprandial concentrations (0-490 min) of glucose, insulin, NEFA, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), cholecystokinin (CCK), appetitive sensations and food intake were assessed after breakfast treatments and a standard lunch. Postprandial NEFA incremental AUC (IAUC) (0-240 min) and glucose IAUC (240-490 min) responses were lower for the PB breakfast compared with the control breakfast. Insulin concentrations were higher at 120 and 370 min after the PB consumption than after the control consumption. Desire-to-eat ratings were lower, while PYY, GLP-1 and CCK concentrations were higher after the PB intake compared with the control intake. WP led to similar but non-significant effects. The addition of PB to breakfast moderated postprandial glucose and NEFA concentrations, enhanced gut satiety hormone secretion and reduced the desire to eat. The greater bioaccessibility of the lipid component in PB is probably responsible for the observed incremental post-ingestive responses between the nut forms. Inclusion of PB, and probably WP, to breakfast may help to moderate glucose concentrations and appetite in obese women.

  15. Effects of polydextrose with breakfast or with a midmorning preload on food intake and other appetite-related parameters in healthy normal-weight and overweight females: An acute, randomized, double-blind, placebo-controlled, and crossover study.

    Science.gov (United States)

    Ibarra, Alvin; Olli, Kaisa; Pasman, Wilrike; Hendriks, Henk; Alhoniemi, Esa; Raza, Ghulam Shere; Herzig, Karl-Heinz; Tiihonen, Kirsti

    2017-03-01

    Polydextrose (PDX) reduces subsequent energy intake (EI) when administered at midmorning in single-blind trials of primarily normal-weight men. However, it is unclear if this effect also occurs when PDX is given at breakfast time. Furthermore, for ecological validity, it is desirable to study a female population, including those at risk for obesity. We studied the effects of PDX, served as part of a breakfast or midmorning preload, on subsequent EI and other appetite-related parameters in healthy normal-weight and overweight females. Per earlier studies, the primary outcome was defined as the difference in subsequent EI when PDX was consumed at midmorning versus placebo. Thirty-two volunteers were enrolled in this acute, double-blind, placebo-controlled, randomized, and crossover trial to examine the effects of 12.5 g of PDX, administered as part of a breakfast or midmorning preload, on subsequent EI, subjective feelings of appetite, well-being, and mood. Gastric emptying rates and the blood concentrations of glucose, insulin, cholecystokinin, ghrelin, glucagon-like peptide 1 (GLP-1), and peptide tyrosine-tyrosine were measured in the group that received PDX as part of their breakfast. There were no differences in EI between volunteers who were fed PDX and placebo. PDX intake with breakfast tended to elevate blood glucose (P = 0.06) during the postabsorptive phase, significantly lowered insulin by 15.7% (P = 0.04), and increased GLP-1 by 39.9% (P = 0.02); no other effects on blood parameters or gastric emptying rates were observed. PDX intake at midmorning reduced hunger by 31.4% during the satiation period (P = 0.02); all other subjective feelings of appetite were unaffected. Volunteers had a uniform mood profile during the study. PDX was well tolerated, causing one mild adverse event throughout the trial. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Impaired barrier function by dietary fructo-oligosaccharides (FOS in rats is accompanied by increased colonic mitochondrial gene expression

    Directory of Open Access Journals (Sweden)

    Kramer Evelien

    2008-03-01

    well as three other peptide hormone genes; peptide YY, pancreatic polypeptide and cholecystokinin. Conclusion We conclude that altered energy metabolism may underly colonic barrier function disruption due to FOS feeding in rats.

  17. Whey Protein Supplementation Enhances Body Fat and Weight Loss in Women Long After Bariatric Surgery: a Randomized Controlled Trial.

    Science.gov (United States)

    Lopes Gomes, Daniela; Moehlecke, Milene; Lopes da Silva, Fernanda Bassan; Dutra, Eliane Said; D'Agord Schaan, Beatriz; Baiocchi de Carvalho, Kenia Mara

    2017-02-01

    The ideal nutritional approach for weight regain after bariatric surgery remains unclear. The objective of this study is to assess the effect of whey protein supplementation on weight loss and body composition of women who regained weight 24 or more months after bariatric surgery. This is a 16-week open-label, parallel-group, randomized controlled trial of women who regained at least 5 % of their lowest postoperative weight after a Roux-en-Y gastric bypass (RYGB). A total of 34 participants were treated with hypocaloric diet and randomized (1:1) to receive or not supplementation with whey protein, 0.5 g/kg of the ideal body weight. The primary outcomes were changes in body weight, fat free mass (FFM), and fat mass (FM), evaluated by tetrapolar bioelectrical impedance analysis (BIA). Secondary outcomes included resting energy expenditure, blood glucose, lipids, adiponectin, interleukin 6 (IL-6), and cholecystokinin levels. Statistical analyses included generalized estimating equations adjusted for age and physical activity. Fifteen patients in each group were evaluated: mean age was 45 ± 11 years, body mass index (BMI) was 35.7 ± 5.2 kg/m 2 , and time since surgery was 69 ± 23 months. Protein intake during follow-up increased by approximately 75 % in the intervention group (p = 0.01). The intervention group presented more body weight loss (1.86 kg, p = 0.017), accounted for FM loss (2.78, p = 0.021) and no change in FFM, as compared to controls (gain of 0.42 kg of body weight and 0.6 kg of FM). No differences in secondary outcomes were observed between groups. Whey protein supplementation promoted body weight and FM loss in women with long-term weight regain following RYGB.

  18. Placebo-mediated, Naloxone-sensitive suggestibility of short-term memory performance.

    Science.gov (United States)

    Stern, Jair; Candia, Victor; Porchet, Roseline I; Krummenacher, Peter; Folkers, Gerd; Schedlowski, Manfred; Ettlin, Dominik A; Schönbächler, Georg

    2011-03-01

    Physiological studies of placebo-mediated suggestion have been recently performed beyond their traditional clinical context of pain and analgesia. Various neurotransmitter systems and immunological modulators have been used in successful placebo suggestions, including Dopamine, Cholecystokinin and, most extensively, opioids. We adhered to an established conceptual framework of placebo research and used the μ-opioid-antagonist Naloxone to test the applicability of this framework within a cognitive domain (e.g. memory) in healthy volunteers. Healthy men (n=62, age 29, SD=9) were required to perform a task-battery, including standardized and custom-designed memory tasks, to test short-term recall and delayed recognition. Tasks were performed twice, before and after intravenous injection of either NaCl (0.9%) or Naloxone (both 0.15 mg/kg), in a double-blind setting. While one group was given neutral information (S-), the other was told that it might receive a drug with suspected memory-boosting properties (S+). Objective and subjective indexes of memory performance and salivary cortisol (as a stress marker) were recorded during both runs and differences between groups were assessed. Short-term memory recall, but not delayed recognition, was objectively increased after placebo-mediated suggestion in the NaCl-group. Naloxone specifically blocked the suggestion effect without interfering with memory performance. These results were not affected when changes in salivary cortisol levels were considered. No reaction time changes, recorded to uncover unspecific attentional impairment, were seen. Placebo-mediated suggestion produced a training-independent, objective and Naloxone-sensitive increase in memory performance. These results indicate an opioid-mediated placebo effect within a circumscribed cognitive domain in healthy volunteers. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals.

    Science.gov (United States)

    Juvonen, Kristiina R; Macierzanka, Adam; Lille, Martina E; Laaksonen, David E; Mykkänen, Hannu M; Niskanen, Leo K; Pihlajamäki, Jussi; Mäkelä, Kari A; Mills, Clare E N; Mackie, Alan R; Malcolm, Paul; Herzig, Karl-Heinz; Poutanen, Kaisa S; Karhunen, Leila J

    2015-08-14

    The physico-chemical and interfacial properties of fat emulsions influence lipid digestion and may affect postprandial responses. The aim of the present study was to determine the effects of the modification of the interfacial layer of a fat emulsion by cross-linking on postprandial metabolic and appetite responses. A total of fifteen healthy individuals (26.5 (sem 6.9) years and BMI 21.9 (sem 2.0) kg/m2) participated in a cross-over design experiment in which they consumed two isoenergetic (1924 kJ (460 kcal)) and isovolumic (250 g) emulsions stabilised with either sodium caseinate (Cas) or transglutaminase-cross-linked sodium caseinate (Cas-TG) in a randomised order. Blood samples were collected from the individuals at baseline and for 6 h postprandially for the determination of serum TAG and plasma NEFA, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), glucose and insulin responses. Appetite was assessed using visual analogue scales. Postprandial TAG and NEFA responses and gastric emptying (GE) rates were comparable between the emulsions. CCK increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05), while GLP-1 responses did not differ between the two test emulsions. Glucose and insulin profiles were lower after consuming Cas-TG than after consuming Cas (P< 0.05). The overall insulin, glucose and CCK responses, expressed as areas above/under the curve, did not differ significantly between the Cas and Cas-TG meal conditions. Satiety ratings were reduced and hunger, desire to eat and thirst ratings increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05). The present results suggest that even a subtle structural modification of the interfacial layer of a fat emulsion can alter the early postprandial profiles of glucose, insulin, CCK, appetite and satiety through decreased protein digestion without affecting significantly on GE or overall lipid digestion.

  20. Tracing of the Bile-chemotactic migration of juvenile Clonorchis sinensis in rabbits by PET-CT.

    Directory of Open Access Journals (Sweden)

    Tae Im Kim

    2011-12-01

    Full Text Available BACKGROUND: Adult Clonorchis sinensis live in the bile duct and cause clonorchiasis. It is known that the C. sinensis metacercariae excyst in the duodenum and migrate up to the bile duct through the common bile duct. However, no direct evidence is available on the in vivo migration of newly excysted C. sinensis juveniles (CsNEJs. Advanced imaging technologies now allow the in vivo migration and localization to be visualized. In the present study, we sought to determine how sensitively CsNEJs respond to bile and how fast they migrate to the intrahepatic bile duct using PET-CT. METHODOLOGY/PRINCIPAL FINDINGS: CsNEJs were radiolabeled with (18F-fluorodeoxyglucose ((18F-FDG. Rabbits with a gallbladder contraction response to cholecystokinin-8 (CCK-8 injection were pre-screened using cholescintigraphy. In these rabbits, gallbladders contracted by 50% in volume at an average of 11.5 min post-injection. The four rabbits examined were kept anesthetized and a catheter inserted into the mid duodenum. Gallbladder contraction was stimulated by injecting CCK-8 (20 ng/kg every minute over the experiment. Anatomical images were acquired by CT initially and dynamic PET was then carried out for 90 min with a 3-min acquisition per frame. Twelve minutes after CCK-8 injection, about 3,000 (18F-FDG-labeled CsNEJs were inoculated into the mid duodenum through the catheter. Photon signals were detected in the liver 7-9 min after CsNEJs inoculation, and these then increased in the whole liver with stronger intensity in the central area, presenting that the CsNEJs were arriving at the intrahepatic bile ducts. CONCLUSION: In the duodenum, CsNEJs immediately sense bile and migrate quickly with bile-chemotaxis to reach the intrahepatic bile ducts by way of the ampulla of Vater.

  1. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence?

    Science.gov (United States)

    Lean, M E J; Malkova, D

    2016-04-01

    The aim of this article is to review the research into the main peripheral appetite signals altered in human obesity, together with their modifications after body weight loss with diet and exercise and after bariatric surgery, which may be relevant to strategies for obesity treatment. Body weight homeostasis involves the gut-brain axis, a complex and highly coordinated system of peripheral appetite hormones and centrally mediated neuronal regulation. The list of peripheral anorexigenic and orexigenic physiological factors in both animals and humans is intimidating and expanding, but anorexigenic glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY) and orexigenic ghrelin from the gastrointestinal tract, pancreatic polypeptide (PP) from the pancreas and anorexigenic leptin from adiposites remain the most widely studied hormones. Homeostatic control of food intake occurs in humans, although its relative importance for eating behaviour is uncertain, compared with social and environmental influences. There are perturbations in the gut-brain axis in obese compared with lean individuals, as well as in weight-reduced obese individuals. Fasting and postprandial levels of gut hormones change when obese individuals lose weight, either with surgical or with dietary and/or exercise interventions. Diet-induced weight loss results in long-term changes in appetite gut hormones, postulated to favour increased appetite and weight regain while exercise programmes modify responses in a direction expected to enhance satiety and permit weight loss and/or maintenance. Sustained weight loss achieved by bariatric surgery may in part be mediated via favourable changes to gut hormones. Future work will be necessary to fully elucidate the role of each element of the axis, and whether modifying these signals can reduce the risk of obesity.

  2. The evolution and functional characterization of lined seahorse (Hippocampus erectus) CCKs involved in fasting and thermal stress response.

    Science.gov (United States)

    Zhang, Huixian; Qin, Geng; Sun, Jinhui; Zhang, Bo; Lin, Qiang

    2018-01-01

    The peptide cholecystokinin (CCK) plays an important role in the regulation of vertebrate appetite and feeding behaviour. In the present study, the full-length cDNA and genomic DNA sequences of two CCK precursors were cloned and analysed in the Syngnathidae fish, the lined seahorse (Hippocampus erectus). Both CCK1 and CCK2 in the seahorse consist of four exons. The sequence of the octapeptide of seahorse CCK1 (DYMGWMDF) was the same as that of the chicken and human, while the octapeptide of seahorse CCK2 (DYEGWMDF) was unique among vertebrates. According to the phylogenetic analysis, two types of CCKs were produced by teleost-specific genome duplication (TGD). Both CCK1 and CCK2 were highly expressed in the brain, while detectable amounts of CCK1 mRNA in the brood pouch and CCK2 mRNA in the intestine were also found. Both CCK1 and CCK2 mRNA levels significantly increased during the transition from endogenous to exogenous nutrition. Additionally, fasting induced a significant increase in the CCK1 mRNA expression in the brain of juvenile seahorses but had no effect on CCK2 transcript levels. In addition, the CCK1 and CCK2 mRNA levels in the seahorse brain significantly increased after a high-temperature treatment. Thus, the mRNA expression of CCK had obvious tissue specificities and this preliminary study opens new avenues for further functional studies on the endocrine regulations of CCK in the transition from endogenous to exogenous nutrition, food intake regulation and metabolism in the seahorse. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine.

    Directory of Open Access Journals (Sweden)

    Takahiro Nagatake

    Full Text Available Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them because of the lack of specific cell surface markers. Here, we report that enteroendocrine cells selectively express a tight junction membrane protein, claudin-4 (Cld4, and are efficiently isolated with the use of an antibody specific for the Cld4 extracellular domain and flow cytometry. Sorted Cld4+ epithelial cells in the small intestine exclusively expressed a chromogranin A gene (Chga and other enteroendocrine cell-related genes (Ffar1, Ffar4, Gpr119, and the population was divided into two subpopulations based on the activity of binding to Ulex europaeus agglutinin-1 (UEA-1. A Cld4+UEA-1- cell population almost exclusively expressed glucose-dependent insulinotropic polypeptide gene (Gip, thus representing K cells, whereas a Cld4+UEA-1+ cell population expressed other gut hormone genes, including glucagon-like peptide 1 (Gcg, pancreatic polypeptide-like peptide with N-terminal tyrosine amide (Pyy, cholecystokinin (Cck, secretin (Sct, and tryptophan hydroxylase 1 (Tph1. In addition, we found that orally administered luminal antigens were taken up by the solitary Cld4+ cells in the small intestinal villi, raising the possibility that enteroendocrine cells might also play a role in initiation of mucosal immunity. Our results provide a useful tool for the cellular and functional characterization of enteroendocrine cells.

  4. Morphometric Measurements to Quantify the Cerulein Induced Hyperstimulatory Pancreatitis of Rats under the Protective Effect of Lectins

    Directory of Open Access Journals (Sweden)

    Ludwig Jonas

    1998-01-01

    Full Text Available In preceding papers we demonstrated an inhibitory effect of wheat germ agglutinin (WGA and Ulex europaeus agglutinin (UEA on the cholecystokinin (CCK binding to the CCK receptor of rat pancreatic cells and also on the CCK induced Ca2+ release and α-amylase secretion in vitro as well as on pancreatic secretion of intact rats in vivo. In the present study we show the same inhibitory effect of both lectins on the cerulein pancreatitis of rats. This acute pancreatitis was induced by supramaximal injections (5 µg/kg/h iv or 10 µg/kg/h ip of the CCK analogue cerulein in rats every hour. To monitor the degree of pancreatitis, we measured the number and diameter of injury vacuoles in the pancreatic acinar cells as one of the most important signs of this type of pancreatitis by light microscopic morphometry with two different systems on paraffin sections. Furthermore, the serum α-amylase activity was measured biochemically. We found a correlation between the diameter of vacuoles inside the acinar cells and the serum enzyme activity up to 24 h. The simultaneous ip administration of cerulein and WGA or UEA in a dosage of 125 µg/kg/h for 8 h led to a reduction of vacuolar diameter from 13.1 ± 2.0 µm (cerulein to 7.5 ± 1.1 µm (cerulein + WGA or 7.2 ± 1.3 µm (cerulein + UEA. The serum amylase activity was reduced from 63.7 ± 15.8 mmol/l \\times min (cerulein to 37.7 ± 11.8 (cerulein + WGA or 39.4; +52.9; -31.1 (cerulein + UEA-I. Both parameters allow the grading this special type of pancreatitis to demonstrate the protective effect of the lectins.

  5. A Mini-Review on the Effect of Docosahexaenoic Acid (DHA on Cerulein-Induced and Hypertriglyceridemic Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yoo Kyung Jeong

    2017-10-01

    Full Text Available Acute pancreatitis refers to the sudden inflammation of the pancreas. It is associated with premature activation and release of digestive enzymes into the pancreatic interstitium and systemic circulation, resulting in pancreatic tissue autodigestion and multiple organ dysfunction, as well as with increased cytokine production, ultimately leading to deleterious local and systemic effects. Although mechanisms involved in pathogenesis of acute pancreatitis have not been completely elucidated, oxidative stress is regarded as a major risk factor. In human acute pancreatitis, lipid peroxide levels in pancreatic tissues increase. Docosahexaenoic acid (DHA, an omega-3 polyunsaturated fatty acid (C22:6n-3, exerts anti-inflammatory and antioxidant effects on various cells. Previous studies have shown that DHA activates peroxisome proliferator-activated receptor-γ and induces catalase, which inhibits oxidative stress-mediated inflammatory signaling required for cytokine expression in experimental acute pancreatitis using cerulein. Cerulein, a cholecystokinin analog, induces intra-acinar activation of trypsinogen in the pancreas, which results in human acute pancreatitis-like symptoms. Therefore, DHA supplementation may be beneficial for preventing or inhibiting acute pancreatitis development. Since DHA reduces serum triglyceride levels, addition of DHA to lipid-lowering drugs like statins has been investigated to reduce hypertriglyceridemic acute pancreatitis. However, high DHA concentrations increase cytosolic Ca2+, which activates protein kinase C and may induce hyperlipidemic acute pancreatitis. In this review, effect of DHA on cerulein-induced and hypertriglyceridemic acute pancreatitis has been discussed. The relation of high concentration of DHA to hyperlipidemic acute pancreatitis has been included.

  6. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus

    Directory of Open Access Journals (Sweden)

    Michael C. Andresen

    2013-01-01

    Full Text Available The brainstem nucleus of the solitary tract (NTS holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current (EPSC often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g. hypothalamus neuron sources. Presynaptic receptors for angiotensin (AT1, vasopressin (V1a, oxytocin (OT, opioid (MOR, ghrelin (GHSR1 and cholecystokinin (CCK differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 (TRPV1 and the cannabinoid receptor (CB1 that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.

  7. Hypoxia-Related Hormonal Appetite Modulation in Humans during Rest and Exercise: Mini Review

    Directory of Open Access Journals (Sweden)

    Tadej Debevec

    2017-05-01

    Full Text Available Obesity is associated with numerous chronic ailments and represents one of the major health and economic issues in the modernized societies. Accordingly, there is an obvious need for novel treatment approaches. Recently, based on the reports of reduced appetite and subsequent weight loss following high-altitude sojourns, exposure to hypoxia has been proposed as a viable weight-reduction strategy. While altitude-related appetite modulation is complex and not entirely clear, hypoxia-induced alterations in hormonal appetite modulation might be among the key underlying mechanisms. The present paper summarizes the up-to-date research on hypoxia/altitude-induced changes in the gut and adipose tissue derived peptides related to appetite regulation. Orexigenic hormone ghrelin and anorexigenic peptides leptin, glucagon-like peptide-1, peptide YY, and cholecystokinin have to-date been investigated as potential modulators of hypoxia-driven appetite alterations. Current evidence suggests that hypoxia can, especially acutely, lead to decreased appetite, most probably via reduction of acylated ghrelin concentration. Hypoxia-related short and long-term changes in other hormonal markers are more unclear although hypoxia seems to importantly modulate leptin levels, especially following prolonged hypoxic exposures. Limited evidence also suggests that different activity levels during exposures to hypoxia do not additively affect hormonal appetite markers. Although very few studies have been performed in obese/overweight individuals, the available data indicate that hypoxia/altitude exposures do not seem to differentially affect appetite regulation via hormonal pathways in this cohort. Given the lack of experimental data, future well-controlled acute and prolonged studies are warranted to expand our understanding of hypoxia-induced hormonal appetite modulation and its kinetics in health and disease.

  8. Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI) injury: correlation of anatomic changes and responses to cold stimuli.

    Science.gov (United States)

    Datta, Sukdeb; Chatterjee, Koel; Kline, Robert H; Wiley, Ronald G

    2010-01-27

    Unilateral constrictive sciatic nerve injury (uCCI) is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI) model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing. All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK) staining at all times after bCCI, decreased mu opiate receptor (MOR) staining, maximal at 15 days, increased neuropeptide Y (NPY) staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R) staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY. These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain.

  9. Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI injury: correlation of anatomic changes and responses to cold stimuli

    Directory of Open Access Journals (Sweden)

    Kline Robert H

    2010-01-01

    Full Text Available Abstract Background Unilateral constrictive sciatic nerve injury (uCCI is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing. Results All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK staining at all times after bCCI, decreased mu opiate receptor (MOR staining, maximal at 15 days, increased neuropeptide Y (NPY staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY. Conclusions These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain.

  10. Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6J mice.

    Science.gov (United States)

    Ito, Junko; Ito, Masahiko; Nambu, Hirohide; Fujikawa, Toru; Tanaka, Kenichi; Iwaasa, Hisashi; Tokita, Shigeru

    2009-11-01

    G-protein-coupled receptors (GPCRs) constitute the largest family of transmembrane receptors and regulate a variety of physiological and disease processes. Although the roles of many non-odorant GPCRs have been identified in vivo, several GPCRs remain orphans (oGPCRs). The gastrointestinal (GI) tract is the largest endocrine organ and is a promising target for drug discovery. Given their close link to physiological function, the anatomical and histological expression profiles of benchmark GI-related GPCRs, such as the cholecystokinin-1 receptor and GPR120, and 106 oGPCRs were investigated in the mucosal and muscle-myenteric nerve layers in the GI tract of C57BL/6J mice by quantitative real-time polymerase chain reaction. The mRNA expression patterns of these benchmark molecules were consistent with previous in situ hybridization and immunohistochemical studies, validating the experimental protocols in this study. Of 96 oGPCRs with significant mRNA expression in the GI tract, several oGPCRs showed unique expression patterns. GPR85, GPR37, GPR37L1, brain-specific angiogenesis inhibitor (BAI) 1, BAI2, BAI3, and GPRC5B mRNAs were preferentially expressed in the muscle-myenteric nerve layer, similar to GPCRs that are expressed in both the central and enteric nerve systems and that play multiple regulatory roles throughout the gut-brain axis. In contrast, GPR112, trace amine-associated receptor (TAAR) 1, TAAR2, and GPRC5A mRNAs were preferentially expressed in the mucosal layer, suggesting their potential roles in the regulation of secretion, immunity, and epithelial homeostasis. These anatomical and histological mRNA expression profiles of oGPCRs provide useful clues about the physiological roles of oGPCRs in the GI tract.

  11. Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects.

    Science.gov (United States)

    Wölnerhanssen, Bettina K; Cajacob, Lucian; Keller, Nino; Doody, Alison; Rehfeld, Jens F; Drewe, Juergen; Peterli, Ralph; Beglinger, Christoph; Meyer-Gerspach, Anne Christin

    2016-06-01

    With the increasing prevalence of obesity and a possible association with increasing sucrose consumption, nonnutritive sweeteners are gaining popularity. Given that some studies indicate that artificial sweeteners might have adverse effects, alternative solutions are sought. Xylitol and erythritol have been known for a long time and their beneficial effects on caries prevention and potential health benefits in diabetic patients have been demonstrated in several studies. Glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) are released from the gut in response to food intake, promote satiation, reduce gastric emptying (GE), and modulate glucose homeostasis. Although glucose ingestion stimulates sweet taste receptors in the gut and leads to incretin and gastrointestinal hormone release, the effects of xylitol and erythritol have not been well studied. Ten lean and 10 obese volunteers were given 75 g of glucose, 50 g of xylitol, or 75 g of erythritol in 300 ml of water or placebo (water) by a nasogastric tube. We examined plasma glucose, insulin, active GLP-1, CCK, and GE with a [(13)C]sodium acetate breath test and assessed subjective feelings of satiation. Xylitol and erythritol led to a marked increase in CCK and GLP-1, whereas insulin and plasma glucose were not (erythritol) or only slightly (xylitol) affected. Both xylitol and erythritol induced a significant retardation in GE. Subjective feelings of appetite were not significantly different after carbohydrate intake compared with placebo. In conclusion, acute ingestion of erythritol and xylitol stimulates gut hormone release and slows down gastric emptying, whereas there is no or only little effect on insulin release. Copyright © 2016 the American Physiological Society.

  12. Gastroparesis is associated with oxytocin deficiency, oesophageal dysmotility with hyperCCKemia, and autonomic neuropathy with hypergastrinemia

    Directory of Open Access Journals (Sweden)

    Uvnäs-Moberg Kerstin

    2009-02-01

    Full Text Available Abstract Background Gastrointestinal (GI dysmotility and autonomic neuropathy are common problems among diabetics with largely unknown aetiology. Many peptides are involved in the autonomic nervous system regulating the GI tract. The aim of this study was to examine if concentrations of oxytocin, cholecystokinin (CCK, gastrin and vasopressin in plasma differ between diabetics with normal function and dysfunction in GI motility. Methods Nineteen patients with symptoms from the GI tract who had been examined with gastric emptying scintigraphy, oesophageal manometry, and deep-breathing test were included. They further received a fat-rich meal, after which blood samples were collected and plasma frozen until analysed for hormonal concentrations. Results There was an increase in postprandial oxytocin plasma concentration in the group with normal gastric emptying (p = 0.015 whereas subjects with delayed gastric emptying had no increased oxytocin secretion (p = 0.114. Both CCK and gastrin levels increased after the meal, with no differences between subjects with normal respective delayed gastric emptying. The concentration of vasopressin did not increase after the meal. In patients with oesophageal dysmotility the basal level of CCK tended to be higher (p = 0.051 and those with autonomic neuropathy had a higher area under the curve (AUC of gastrin compared to normal subjects (p = 0.007. Conclusion Reduced postprandial secretion of oxytocin was found in patients with delayed gastric emptying, CCK secretion was increased in patients with oesophageal dysmotility, and gastrin secretion was increased in patients with autonomic neuropathy. The findings suggest that disturbed peptide secretion may be part of the pathophysiology of digestive complications in diabetics.

  13. Effect of Herbal Acupuncture with Sang-hwang(Phellinus linteus on High Fat Diet-induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2004-02-01

    Full Text Available Acupuncture has fairly good weight-reducing effect in treating simple obesity due to the neuroendocrine regulation. In this study, the anti-obesity effects of herbal acupuncture (HA with Sang-hwang (Phellinus linteus at Fuai (SP16 were investigated in the rat fed on high-fat (HF diet. Sang-hwang mushroom has been proven to have anti-carcinogenic effects and Sang-hwang extracts are highly effective in treatment and preventive treatment of AIDS, diabetes and high blood-pressure. To determine whether the Sang-hwang herbal acupuncture may have the anti-obesity effect, male Sprague-Dawley (4-wk-old rats were fed a HF diet for 5 wk, which produced significant weight gain compared to rats were fed a normal diet, and then herbal acupuncture were treated for 3 wk in HF diet group. The body weight, food consumption, food effeciency ratio (FER, body fat mass, plasma nitric oxide (NO were investigated in rats fed on normal diet, HF diet, and HF diet with HA (HF-diet-HA groups. NO has been proposed to be involved in the regulation of food intake. In addition, the expression of appetite peptides such as orexigenic peptide neuropeptide Y (NPY and the anorectic peptide cholecystokinin (CCK were observed in the hypothalamus. HF-HA group reduced body weight gain, FER, body fat contents and NO concentration compared to HF diet group. The expression of NPY was reduced in arcuate nucleus (ARC, and CCK was increased in the paraventricular nucleus (PVN after treatment of HA. In conclusion, Sang-hwang HA reduced adipocity, plasma NO and hypothalamic NPY, but increased CCK expression in the HF diet-induced obesity rat, therefore HA may have anti-obesity action through regulating body weight and appetite peptide of the central nervous system.

  14. Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity

    Directory of Open Access Journals (Sweden)

    Zhenwei Su

    2017-12-01

    Full Text Available Summary: The brain regulates food intake by processing sensory cues and peripheral physiological signals, but the neural basis of this integration remains unclear. Hypothalamic, agouti-related protein (AgRP-expressing neurons are critical regulators of food intake. AgRP neuron activity is high during hunger and is rapidly reduced by the sight and smell of food. Here, we reveal two distinct components of AgRP neuron activity regulation: a rapid but transient sensory-driven signal and a slower, sustained calorie-dependent signal. We discovered that nutrients are necessary and sufficient for sustained reductions in AgRP neuron activity and that activity reductions are proportional to the calories obtained. This change in activity is recapitulated by exogenous administration of gut-derived satiation signals. Furthermore, we showed that the nutritive value of food trains sensory systems—in a single trial—to drive rapid, anticipatory AgRP neuron activity inhibition. Together, these data demonstrate that nutrients are the primary regulators of AgRP neuron activity. : Su et al. demonstrate that nutrient content in the GI tract is rapidly signaled to hypothalamic neurons activated by hunger. This rapid effect is mediated by three satiation signals that synergistically reduce the activity of AgRP neurons. These findings uncover how hunger circuits in the brain are regulated and raise the possibility that hunger can be pharmacologically controlled. Keywords: calcium imaging, AgRP neurons, calories, satiation signals, sensory regulation, single trial learning, cholecystokinin, CCK, peptide tyrosine tyrosine, PYY, amylin, homeostasis

  15. Validation and characterization of a novel method for selective vagal deafferentation of the gut.

    Science.gov (United States)

    Diepenbroek, Charlene; Quinn, Danielle; Stephens, Ricky; Zollinger, Benjamin; Anderson, Seth; Pan, Annabelle; de Lartigue, Guillaume

    2017-10-01

    There is a lack of tools that selectively target vagal afferent neurons (VAN) innervating the gut. We use saporin (SAP), a potent neurotoxin, conjugated to the gastronintestinal (GI) hormone cholecystokinin (CCK-SAP) injected into the nodose ganglia (NG) of male Wistar rats to specifically ablate GI-VAN. We report that CCK-SAP ablates a subpopulation of VAN in culture. In vivo, CCK-SAP injection into the NG reduces VAN innervating the mucosal and muscular layers of the stomach and small intestine but not the colon, while leaving vagal efferent neurons intact. CCK-SAP abolishes feeding-induced c-Fos in the NTS, as well as satiation by CCK or glucagon like peptide-1 (GLP-1). CCK-SAP in the NG of mice also abolishes CCK-induced satiation. Therefore, we provide multiple lines of evidence that injection of CCK-SAP in NG is a novel selective vagal deafferentation technique of the upper GI tract that works in multiple vertebrate models. This method provides improved tissue specificity and superior separation of afferent and efferent signaling compared with vagotomy, capsaicin, and subdiaphragmatic deafferentation. NEW & NOTEWORTHY We develop a new method that allows targeted lesioning of vagal afferent neurons that innervate the upper GI tract while sparing vagal efferent neurons. This reliable approach provides superior tissue specificity and selectivity for vagal afferent over efferent targeting than traditional approaches. It can be used to address questions about the role of gut to brain signaling in physiological and pathophysiological conditions. Copyright © 2017 the American Physiological Society.

  16. Sludge and stone formation in the gallbladder in bedridden elderly patients with cerebrovascular disease: influence of feeding method.

    Science.gov (United States)

    Onizuka, Y; Mizuta, Y; Isomoto, H; Takeshima, F; Murase, K; Miyazaki, M; Ogata, H; Otsuka, K; Murata, I; Kohno, S

    2001-05-01

    The incidence of gallbladder sludge or gallstone formation in bedridden patients with cerebrovascular disease (CVD) remains obscure. The aim of this study was to determine the incidence, relationship to feeding method, and mechanisms of gallbladder sludge and gallstone formation in elderly patients with CVD. Using ultrasonography, we determined the development of gallbladder sludge and gallstone over a 12-month period, the area of the gallbladder, the gallbladder contractile response to cerulein, and fasting levels of plasma cholecystokinin (CCK) in 40 bedridden elderly patients with CVD. The patients were divided into three groups based on the feeding method: oral ingestion (OI), nasogastric feeding (NF), and total parenteral nutrition (TPN). Gallbladder sludge and gallstone were not observed in any of the 14 OI patients, but occurred in 6 and 1 of the 11 NF patients, and in 14 and 3 of the 15 TPN patients, respectively. Fasting gallbladder areas were significantly larger in the TPN group than in the other two groups. The TPN group showed a marked decrease in cerulein-induced gallbladder contractility. Fasting plasma CCK levels were lower in the TPN group than in the OI group. Our results indicate that elderly patients with CVD confined to bed over long periods are not necessarily at risk of gallbladder sludge or gallstone formation, and the development of these features may be associated with the feeding method. The predisposition of CVD patients on TPN to gallbladder disease is probably caused by failure of gallbladder contraction, resulting from insufficient secretion of CCK and impaired sensitivity of the gallbladder to CCK.

  17. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar CellsSummary

    Directory of Open Access Journals (Sweden)

    Scott W. Messenger

    2015-11-01

    Full Text Available Background & Aims: Pancreatic acinar cells have an expanded apical endosomal system, the physiologic and pathophysiologic significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate [PI(3,5P2] is an essential phospholipid generated by phosphatidylinositol 3-phosphate 5-kinase (PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI3P. PI(3,5P2 is necessary for maturation of early endosomes (EE to late endosomes (LE. Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Methods: Inhibition of EE to LE trafficking was achieved using pharmacologic inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1, and trypsinogen activation in response to supramaximal cholecystokinin (CCK-8, bile acids, and cigarette toxin was determined. Results: PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to supramaximal CCK-8, tobacco toxin, and bile salts in both rodent and human acini. Conclusions: These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular

  18. Small intestinal digestion of raw cornstarch in cattle consuming a soybean hull-based diet is improved by duodenal casein infusion.

    Science.gov (United States)

    Brake, D W; Titgemeyer, E C; Bailey, E A; Anderson, D E

    2014-09-01

    Six duodenally and ileally cannulated steers were used in 3 sequential studies to measure 1) basal nutrient flows from a soybean hull-based diet, 2) small intestinal digestibility of raw cornstarch continuously infused into the duodenum, and 3) responses of small intestinal starch digestion to duodenal infusion of 200 or 400 g/d casein. Our objective was to evaluate responses in small intestinal starch digestion in cattle over time and to measure responses in small intestinal starch digestion to increasing amounts of MP. On average, cattle consumed 3.7 kg/d DM, 68 g/d dietary N, and 70 g/d dietary starch. Starch flow to the duodenum was small (38 g/d), and N flow was 91 g/d. Small intestinal digestibility of duodenal N was 57%, and small intestinal digestion of duodenal starch flow was extensive (92%). Small intestinal starch digestibility was 34% when 1.5 kg/d raw cornstarch was continuously infused into the duodenum. Subsequently, cattle were placed in 1 of 2 replicated Latin squares that were balanced for carryover effects to determine response to casein infusions and time required for adaptation. Duodenal infusion of casein linearly increased (P ≤ 0.05) small intestinal starch digestibility, and small intestinal starch digestion adapted to infusion of casein in 6 d. Ethanol-soluble starch and unpolymerized glucose flowing to the ileum increased linearly (P ≤ 0.05) with increasing infusion of casein. Plasma cholecystokinin was not affected by casein infusion, but circulating levels of glucose were increased by casein supplementation (P ≤ 0.05). Responses in small intestinal starch digestion in cattle adapted to casein within 6 d, and increases in duodenal supply of casein up to 400 g/d increased small intestinal starch digestion in cattle.

  19. Intragastric nutrient infusion reduces motivation for food in male and female rats.

    Science.gov (United States)

    Maske, Calyn B; Loney, Gregory C; Lilly, Nicole; Terrill, Sarah J; Williams, Diana L

    2018-03-13

    The idea that gut-derived satiation signals influence food reward has recently gained traction, but this hypothesis is largely based on studies focused on neural circuitry, not the peripherally released signals. Here, we directly tested the hypothesis that intragastric (IG) nutrient infusion can suppress motivation for food. In a series of experiments, IG sucrose infusion (15 kcal) significantly and reliably reduced operant responding for a sucrose reward on a progressive ratio (PR) schedule. Moreover, food deprivation for 24 h before the test session did not prevent the suppressive effect of nutrients. The suppressive effect of IG sucrose on fixed ratio 5 (FR5) operant responding was also assessed as a comparison. The effect of IG nutrients to reduce motivation was not limited to sucrose; IG Ensure infusion (9.3 kcal) also significantly reduced PR operant responding for sucrose pellets. To verify that these effects are not secondary to the osmotic challenge of concentrated nutrients, we tested IG infusion of non-caloric saline solutions equiosmolar to 40% sucrose or Ensure, and found no effect. Finally, we focused on glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK) as candidate mediators for the effect of IG nutrients. Pretreatment with Exendin-9, a GLP-1R antagonist, delivered IP, significantly attenuated the ability of IG nutrients to suppress PR responding and breakpoint in males, but not females, whereas pretreatment with Devazepide, a CCKA receptor antagonist, failed to do so in both sexes. Together, these data support the idea that nutrient-induced satiation signals influence food reward, and may implicate GLP-1 in this process.

  20. Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota.

    Science.gov (United States)

    Mishra, Alok Kumar; Dubey, Vinay; Ghosh, Asit Ranjan

    2016-01-01

    Obesity is one of the major challenges for public health in 21st century, with 1.9 billion people being considered as overweight and 600 million as obese. There are certain diseases such as type 2 diabetes, hypertension, cardiovascular disease, and several forms of cancer which were found to be associated with obesity. Therefore, understanding the key molecular mechanisms involved in the pathogenesis of obesity could be beneficial for the development of a therapeutic approach. Hormones such as ghrelin, glucagon like peptide 1 (GLP-1) peptide YY (PYY), pancreatic polypeptide (PP), cholecystokinin (CCK) secreted by an endocrine organ gut, have an intense impact on energy balance and maintenance of homeostasis by inducing satiety and meal termination. Glucose and energy homeostasis are also affected by lipid sensing in which different organs respond in different ways. However, there is one common mechanism i.e. formation of esterified lipids (long chain fatty acyl CoAs) and the activation of protein kinase C δ (PKC δ) involved in all these organs. The possible role of gut microbiota and obesity has been addressed by several researchers in recent years, indicating the possible therapeutic approach toward the management of obesity by the introduction of an external living system such as a probiotic. The proposed mechanism behind this activity is attributed by metabolites produced by gut microbial organisms. Thus, this review summarizes the role of various physiological factors such as gut hormone and lipid sensing involved in various tissues and organ and most important by the role of gut microbiota in weight management. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides.

    Science.gov (United States)

    Lach, Gilliard; Schellekens, Harriet; Dinan, Timothy G; Cryan, John F

    2018-01-01

    The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.

  2. Lysosome-Associated Membrane Proteins (LAMP Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Olga A. Mareninova

    2015-11-01

    Full Text Available Background & Aims: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs in pancreatitis. Methods: We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP deglycosylation and degradation. LAMP cleavage by cathepsin B (CatB was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Results: Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger the LAMPs’ bulk deglycosylation but induces their degradation via CatB-mediated cleavage of the LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, and stimulates the basal and inhibits cholecystokinin-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. Conclusions: The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction. Keywords: Amylase Secretion, Autophagy

  3. Regulation of CCK-induced ERK1/2 activation by PKC epsilon in rat pancreatic acinar cells

    Directory of Open Access Journals (Sweden)

    Chenwei Li

    2017-11-01

    Full Text Available The extracellular signal-regulated kinase ERK1/2 is activated in pancreatic acinar cells by cholecystokinin (CCK and other secretagogues with this activation mediated primarily by protein kinase C (PKC. To identify the responsible PKC isoform, we utilized chemical inhibitors, cell permeant inhibitory peptides and overexpression of individual PKC dominant negative variants by means of adenoviral vectors. While the broad-spectrum PKC inhibitor GF109203X strongly inhibited ERK1/2 activation induced by 100 pM CCK, Go6976 which inhibits the classical PKC isoforms (alpha, beta and gamma, as well as Rottlerin, a specific PKC delta inhibitor, had no inhibitory effect. To test the role of PKC epsilon, we used specific cell permeant peptide inhibitors which block PKC interaction with their intracellular receptors or RACKs. Only PP93 (PKC epsilon peptide inhibitor inhibited CCK-induced ERK1/2 activation, while PP95, PP101 and PP98, which are PKC alpha, delta and zeta peptide inhibitors respectively, had no effect. We also utilized adenovirus to express dominant negative PKC isoforms in pancreatic acini. Only PKC epsilon dominant negative inhibited CCK-induced ERK1/2 activation. Dominant negative PKC epsilon expression similarly blocked the effect of carbachol and bombesin to activate ERK1/2. Immunoprecipitation results demonstrated that CCK can induce an interaction of c-Raf-1 and PKC epsilon, but not that of other isoforms of Raf or PKC. We conclude that PKC epsilon is the isoform of PKC primarily involved with CCK-induced ERK1/2 activation in pancreatic acinar cells.

  4. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  5. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud.

    Science.gov (United States)

    Herness, Scott; Zhao, Fang-Li

    2009-07-14

    The evolving view of the taste bud increasingly suggests that it operates as a complex signal processing unit. A number of neurotransmitters and neuropeptides and their corresponding receptors are now known to be expressed in subsets of taste receptor cells in the mammalian bud. These expression patterns set up hard-wired cell-to-cell communication pathways whose exact physiological roles still remain obscure. As occurs in other cellular systems, it is likely that neuropeptides are co-expressed with neurotransmitters and function as neuromodulators. Several neuropeptides have been identified in taste receptor cells including cholecystokinin (CCK), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and glucagon-like peptide 1 (GLP-1). Of these, CCK and NPY are the best studied. These two peptides are co-expressed in the same presynaptic cells; however, their postsynaptic actions are both divergent and antagonistic. CCK and its receptor, the CCK-1 subtype, are expressed in the same subset of taste receptor cells and the autocrine activation of these cells produces a number of excitatory physiological actions. Further, most of these cells are responsive to bitter stimuli. On the other hand, NPY and its receptor, the NPY-1 subtype, are expressed in different cells. NPY, acting in a paracrine fashion on NPY-1 receptors, results in inhibitory actions on the cell. Preliminary evidence suggests the NPY-1 receptor expressing cell co-expresses T1R3, a member of the T1R family of G-protein coupled receptors thought to be important in detection of sweet and umami stimuli. Thus the neuropeptide expressing cells co-express CCK, NPY, and CCK-1 receptor. Neuropeptides released from these cells during bitter stimulation may work in concert to both modulate the excitation of bitter-sensitive taste receptor cells while concurrently inhibiting sweet-sensitive cells. This modulatory process is similar to the phenomenon of lateral inhibition that occurs in other sensory systems.

  6. Renal uptake and retention of radiolabeled somatostatin, bombesin, neurotensin, minigastrin and CCK analogues: species and gender differences

    International Nuclear Information System (INIS)

    Melis, Marleen; Krenning, Eric P.; Bernard, Bert F.; Visser, Monique de; Rolleman, Edgar; Jong, Marion de

    2007-01-01

    Introduction: During therapy with radiolabeled peptides, the kidney is most often the critical organ. Newly developed peptides are evaluated preclinically in different animal models before their application in humans. In this study, the renal retention of several radiolabeled peptides was compared in male and female rats and mice. Methods: After intravenous injection of radiolabeled peptides [somatostatin, cholecystokinin (CCK), minigastrin, bombesin and neurotensin analogues], renal uptake was determined in both male and female Lewis rats and C57Bl mice. In addition, ex vivo autoradiography of renal sections was performed to localize accumulated radioactivity. Results: An equal distribution pattern of renal radioactivity was found for all peptides: high accumulation in the cortex, lower accumulation in the outer medulla and no radioactivity in the inner medulla of the kidneys. In both male rats and mice, an increasing renal uptake was found: [ 111 In-DTPA]CCK8 111 In-DTPA-Pro 1 ,Tyr 4 ]bombesin∼[ 111 In-DTPA] neurotensin 111 In-DTPA]octreotide 111 In-DTPA]MG0. Renal uptake of [ 111 In-DTPA]octreotide in rats showed no gender difference, and renal radioactivity was about constant over time. In mice, however, renal uptake in females was significantly higher than that in males and decreased rapidly over time in both genders. Moreover, renal radioactivity in female mice injected with [ 111 In-DTPA]octreotide showed a different localization pattern. Conclusions: Regarding the renal uptake of different radiolabeled peptides, both species showed the same ranking order. Similar to findings in patients, rats showed comparable and constant renal retention of radioactivity in both genders, in contrast to mice. Therefore, rats appear to be the more favorable species for the study of the renal retention of radioactivity

  7. Intragastric administration of leucine or isoleucine lowers the blood glucose response to a mixed-nutrient drink by different mechanisms in healthy, lean volunteers.

    Science.gov (United States)

    Ullrich, Sina S; Fitzgerald, Penelope Ce; Schober, Gudrun; Steinert, Robert E; Horowitz, Michael; Feinle-Bisset, Christine

    2016-11-01

    The branched-chain amino acids leucine and isoleucine lower blood glucose after oral glucose ingestion, and the intraduodenal infusion of leucine decreases energy intake in healthy, lean men. We investigated the effects of the intragastric administration of leucine and isoleucine on the gastric emptying of, and blood glucose responses to, a physiologic mixed-macronutrient drink and subsequent energy intake. In 2 separate studies, 12 healthy, lean subjects received on 3 separate occasions an intragastric infusion of 5 g leucine (leucine-5g) or an intragastric infusion of 10 g leucine (leucine-10g), an intragastric infusion of 5 g isoleucine (isoleucine-5g) or an intragastric infusion of 10 g isoleucine (isoleucine-10g), or a control. Fifteen minutes later, subjects consumed a mixed-nutrient drink (400 kcal, 56 g carbohydrates, 15 g protein, and 12 g fat), and gastric emptying ( 13 C-acetate breath test) and blood glucose, plasma insulin, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (leucine study only) were measured for 60 min. Immediately afterward, energy intake from a cold, buffet-style meal was assessed. Compared with the control, leucine-10g decreased the blood glucose area under the curve (AUC) (P blood glucose (P = 0.07), whereas effects of leucine-5g were NS. Leucine-10g, but not leucine-5g, increased plasma insulin and C-peptide AUCs (P blood glucose AUC and peak blood glucose (P blood glucose AUC. Isoleucine did not affect energy intake. In healthy subjects, both leucine and isoleucine reduced blood glucose in response to a mixed-nutrient drink but did not affect subsequent energy intake. The mechanisms underlying glucose lowering appear to differ; leucine stimulated insulin, whereas isoleucine acted insulin independently. These trials were registered at www.anzctr.org.au as 12613000899741 and 12614000837628. © 2016 American Society for Nutrition.

  8. Novel Mechanism of Fatty Acid Sensing in Enteroendocrine Cells: Specific Structures in Oxo-Fatty Acids Produced by Gut Bacteria are Responsible for CCK Secretion in STC-1 Cells via GPR40.

    Science.gov (United States)

    Hira, Tohru; Ogasawara, Shono; Yahagi, Asuka; Kamachi, Minami; Li, Jiaxin; Nishimura, Saki; Sakaino, Masayoshi; Yamashita, Takatoshi; Kishino, Shigenobu; Ogawa, Jun; Hara, Hiroshi

    2018-06-25

    The secretion of gut hormones, such as cholecystokinin (CCK) is stimulated by fatty acids. Although a chain length-dependent mechanism has been proposed, other structural relationships to releasing activity remain unclear. We aimed to elucidate specific structures in fatty acids that are responsible for their CCK-releasing activity, and related sensing mechanisms in enteroendocrine cells. We examined CCK secretory activities in a murine CCK-producing cell line STC-1 by exposing the cells to various modified fatty acids produced by gut lactic acid bacteria. The effects of fatty acids on gastric emptying rate as a CCK-mediated function were examined using acetaminophen- and phenol red-methods in rats. Out of more than thirty octadecanoic (C18)-derived fatty acids tested, five oxo-fatty acids potently stimulated CCK secretion without cytotoxic effects in STC-1 cells. Three fatty acids had a distinct specific structure containing one double-bond, whereas the other two had two double-bonds, nearby an oxo residue. CCK secretion induced by representative fatty acids (10-oxo-trans-11-18:1 and 13-oxo-cis-9,cis-15-18:2) was attenuated by a fatty acid-receptor GPR40 antagonist. Oral administration of 13-oxo-cis-9,cis-15-18:2 lowered the gastric emptying rate in rats in a dose- and structure-dependent manner. These results revealed a novel fatty acid-sensing mechanism in enteroendocrine cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Comparative density of CCK- and PV-GABA cells within the cortex and hippocampus

    Directory of Open Access Journals (Sweden)

    Paul David Whissell

    2015-09-01

    Full Text Available Cholecystokinin (CCK- and parvalbumin (PV-expressing neurons constitute the two major populations of perisomatic GABAergic neurons in the cortex and the hippocampus. As CCK- and PV-GABA neurons differ in an array of morphological, biochemical and electrophysiological features, it has been proposed that they form distinct inhibitory ensembles which differentially contribute to network oscillations and behaviour. However, the relationship and balance between CCK- and PV-GABA neurons in the inhibitory networks of the brain is currently unclear as the distribution of these cells has never been compared on a large scale. Here, we systemically investigated the distribution of CCK- and PV-GABA cells across a wide number of discrete forebrain regions using an intersectional genetic approach. Our analysis revealed several novel trends in the distribution of these cells. While PV-GABA cells were more abundant overall, CCK-GABA cells outnumbered PV-GABA cells in several subregions of the hippocampus, medial prefrontal cortex and ventrolateral temporal cortex. Interestingly, CCK-GABA cells were relatively more abundant in secondary/association areas of the cortex (V2, S2, M2, and AudD/AudV than they were in corresponding primary areas (V1, S1, M1 and Aud1. The reverse trend was observed for PV-GABA cells. Our findings suggest that the balance between CCK- and PV-GABA cells in a given cortical region is related to the type of processing that area performs; inhibitory networks in the secondary cortex tend to favour the inclusion of CCK-GABA cells more than networks in the primary cortex. The intersectional genetic labelling approach employed in the current study expands upon the ability to study molecularly defined subsets of GABAergic neurons. This technique can be applied to the investigation of neuropathologies which involve disruptions to the GABAergic system, including schizophrenia, stress, maternal immune activation and autism.

  10. Sulphate in Pregnancy

    Directory of Open Access Journals (Sweden)

    Paul A. Dawson

    2015-03-01

    Full Text Available Sulphate is an obligate nutrient for healthy growth and development. Sulphate conjugation (sulphonation of proteoglycans maintains the structure and function of tissues. Sulphonation also regulates the bioactivity of steroids, thyroid hormone, bile acids, catecholamines and cholecystokinin, and detoxifies certain xenobiotics and pharmacological drugs. In adults and children, sulphate is obtained from the diet and from the intracellular metabolism of sulphur-containing amino acids. Dietary sulphate intake can vary greatly and is dependent on the type of food consumed and source of drinking water. Once ingested, sulphate is absorbed into circulation where its level is maintained at approximately 300 μmol/L, making sulphate the fourth most abundant anion in plasma. In pregnant women, circulating sulphate concentrations increase by twofold with levels peaking in late gestation. This increased sulphataemia, which is mediated by up-regulation of sulphate reabsorption in the maternal kidneys, provides a reservoir of sulphate to meet the gestational needs of the developing foetus. The foetus has negligible capacity to generate sulphate and thereby, is completely reliant on sulphate supply from the maternal circulation. Maternal hyposulphataemia leads to foetal sulphate deficiency and late gestational foetal death in mice. In humans, reduced sulphonation capacity has been linked to skeletal dysplasias, ranging from the mildest form, multiple epiphyseal dysplasia, to achondrogenesis Type IB, which results in severe skeletal underdevelopment and death in utero or shortly after birth. Despite being essential for numerous cellular and metabolic functions, the nutrient sulphate is largely unappreciated in clinical settings. This article will review the physiological roles and regulation of sulphate during pregnancy, with a particular focus on animal models of disturbed sulphate homeostasis and links to human pathophysiology.

  11. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats.

    Science.gov (United States)

    O'Mahony, S M; Felice, V D; Nally, K; Savignac, H M; Claesson, M J; Scully, P; Woznicki, J; Hyland, N P; Shanahan, F; Quigley, E M; Marchesi, J R; O'Toole, P W; Dinan, T G; Cryan, J F

    2014-09-26

    Disruption of bacterial colonization during the early postnatal period is increasingly being linked to adverse health outcomes. Indeed, there is a growing appreciation that the gut microbiota plays a role in neurodevelopment. However, there is a paucity of information on the consequences of early-life manipulations of the gut microbiota on behavior. To this end we administered an antibiotic (vancomycin) from postnatal days 4-13 to male rat pups and assessed behavioral and physiological measures across all aspects of the brain-gut axis. In addition, we sought to confirm and expand the effects of early-life antibiotic treatment using a different antibiotic strategy (a cocktail of pimaricin, bacitracin, neomycin; orally) during the same time period in both female and male rat pups. Vancomycin significantly altered the microbiota, which was restored to control levels by 8 weeks of age. Notably, vancomycin-treated animals displayed visceral hypersensitivity in adulthood without any significant effect on anxiety responses as assessed in the elevated plus maze or open field tests. Moreover, cognitive performance in the Morris water maze was not affected by early-life dysbiosis. Immune and stress-related physiological responses were equally unaffected. The early-life antibiotic-induced visceral hypersensitivity was also observed in male rats given the antibiotic cocktail. Both treatments did not alter visceral pain perception in female rats. Changes in visceral pain perception in males were paralleled by distinct decreases in the transient receptor potential cation channel subfamily V member 1, the α-2A adrenergic receptor and cholecystokinin B receptor. In conclusion, a temporary disruption of the gut microbiota in early-life results in very specific and long-lasting changes in visceral sensitivity in male rats, a hallmark of stress-related functional disorders of the brain-gut axis such as irritable bowel disorder. Copyright © 2014 IBRO. Published by Elsevier Ltd. All

  12. Effects of Melatonin and Its Analogues on Pancreatic Inflammation, Enzyme Secretion, and Tumorigenesis.

    Science.gov (United States)

    Jaworek, Jolanta; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Szklarczyk, Joanna; Kot, Michalina; Pierzchalski, Piotr; Góralska, Marta; Ceranowicz, Piotr; Warzecha, Zygmunt; Dembinski, Artur; Bonior, Joanna

    2017-05-08

    Melatonin is an indoleamine produced from the amino acid l-tryptophan, whereas metabolites of melatonin are known as kynuramines. One of the best-known kynuramines is N ¹-acetyl- N ¹-formyl-5-methoxykynuramine (AFMK). Melatonin has attracted scientific attention as a potent antioxidant and protector of tissue against oxidative stress. l-Tryptophan and kynuramines share common beneficial features with melatonin. Melatonin was originally discovered as a pineal product, has been detected in the gastrointestinal tract, and its receptors have been identified in the pancreas. The role of melatonin in the pancreatic gland is not explained, however several arguments support the opinion that melatonin is probably implicated in the physiology and pathophysiology of the pancreas. (1) Melatonin stimulates pancreatic enzyme secretion through the activation of entero-pancreatic reflex and cholecystokinin (CCK) release. l-Tryptophan and AFMK are less effective than melatonin in the stimulation of pancreatic exocrine function; (2) Melatonin is a successful pancreatic protector, which prevents the pancreas from developing of acute pancreatitis and reduces pancreatic damage. This effect is related to its direct and indirect antioxidant action, to the strengthening of immune defense, and to the modulation of apoptosis. Like melatonin, its precursor and AFMK are able to mimic its protective effect, and it is commonly accepted that all these substances create an antioxidant cascade to intensify the pancreatic protection and acinar cells viability; (3) In pancreatic cancer cells, melatonin and AFMK activated a signal transduction pathway for apoptosis and stimulated heat shock proteins. The role of melatonin and AFMK in pancreatic tumorigenesis remains to be elucidated.

  13. Anti-obesity drugs: past, present and future

    Directory of Open Access Journals (Sweden)

    R. John Rodgers

    2012-09-01

    Full Text Available The ideal anti-obesity drug would produce sustained weight loss with minimal side effects. The mechanisms that regulate energy balance have substantial built-in redundancy, overlap considerably with other physiological functions, and are influenced by social, hedonic and psychological factors that limit the effectiveness of pharmacological interventions. It is therefore unsurprising that anti-obesity drug discovery programmes have been littered with false starts, failures in clinical development, and withdrawals due to adverse effects that were not fully appreciated at the time of launch. Drugs that target pathways in metabolic tissues, such as adipocytes, liver and skeletal muscle, have shown potential in preclinical studies but none has yet reached clinical development. Recent improvements in the understanding of peptidergic signalling of hunger and satiety from the gastrointestinal tract mediated by ghrelin, cholecystokinin (CCK, peptide YY (PYY and glucagon-like peptide-1 (GLP-1, and of homeostatic mechanisms related to leptin and its upstream pathways in the hypothalamus, have opened up new possibilities. Although some have now reached clinical development, it is uncertain whether they will meet the strict regulatory hurdles required for licensing of an anti-obesity drug. However, GLP-1 receptor agonists have already succeeded in diabetes treatment and, owing to their attractive body-weight-lowering effects in humans, will perhaps also pave the way for other anti-obesity agents. To succeed in developing drugs that control body weight to the extent seen following surgical intervention, it seems obvious that a new paradigm is needed. In other therapeutic arenas, such as diabetes and hypertension, lower doses of multiple agents targeting different pathways often yield better results than strategies that modify one pathway alone. Some combination approaches using peptides and small molecules have now reached clinical trials, although recent

  14. Neuropeptide B in Nile tilapia Oreochromis niloticus: molecular cloning and its effects on the regulation of food intake and mRNA expression of growth hormone and prolactin.

    Science.gov (United States)

    Yang, Lu; Sun, Caiyun; Li, Wensheng

    2014-05-01

    Neuropeptide B (NPB) regulates food intake, energy homeostasis and hormone secretion in mammals via two G-protein coupled receptors, termed as GPR 7 and GPR 8. However, there is no study that reports the function of NPB in teleosts. In this study, the full-length cDNA of prepro-NPB with the size of 663bp was cloned from the hypothalamus of Nile tilapia. The CDS of the prepro-NPB is 387bp which encodes a precursor protein with the size of 128a.a. This precursor contains a mature peptide with the size of 29a.a, and it was named as NPB29. Tissue distribution study showed that this gene was mainly expressed in different parts of brain, especially in the diencephalon as well as hypothalamus, and the spinal cord in Nile tilapia. Fasting significantly stimulated the mRNA expression of NPB in the brain area without hypothalamus, and refeeding after fasting for 3 and 14days also showed similar effects on NPB expression. While, only short-term fasting (3days) and refeeding after fasting for 7 and 14days induced mRNA expression of NPB in the hypothalamus. Intraperitoneal (i.p.) injection of NPB remarkably elevated the mRNA expression of hypothalamic neuropeptide Y (NPY), cholecystokinin 1 (CCK1) and pituitary prolactin (PRL), whereas significantly inhibited growth hormone (GH) expression in pituitary. These observations in the present study suggested that NPB may participate in the regulation of feeding and gene expression of pituitary GH and PRL in Nile tilapia. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Appetite control and energy balance: impact of exercise.

    Science.gov (United States)

    Blundell, J E; Gibbons, C; Caudwell, P; Finlayson, G; Hopkins, M

    2015-02-01

    Exercise is widely regarded as one of the most valuable components of behaviour that can influence body weight and therefore help in the prevention and management of obesity. Indeed, long-term controlled trials show a clear dose-related effect of exercise on body weight. However, there is a suspicion, particularly fuelled by media reports, that exercise serves to increase hunger and drive up food intake thereby nullifying the energy expended through activity. Not everyone performing regular exercise will lose weight and several investigations have demonstrated a huge individual variability in the response to exercise regimes. What accounts for this heterogeneous response? First, exercise (or physical activity) through the expenditure of energy will influence the energy balance equation with the potential to generate an energy deficit. However, energy expenditure also influences the control of appetite (i.e. the physiological and psychological regulatory processes underpinning feeding) and energy intake. This dynamic interaction means that the prediction of a resultant shift in energy balance, and therefore weight change, will be complicated. In changing energy intake, exercise will impact on the biological mechanisms controlling appetite. It is becoming recognized that the major influences on the expression of appetite arise from fat-free mass and fat mass, resting metabolic rate, gastric adjustment to ingested food, changes in episodic peptides including insulin, ghrelin, cholecystokinin, glucagon-like peptide-1 and tyrosine-tyrosine, as well as tonic peptides such as leptin. Moreover, there is evidence that exercise will influence all of these components that, in turn, will influence the drive to eat through the modulation of hunger (a conscious sensation reflecting a mental urge to eat) and adjustments in postprandial satiety via an interaction with food composition. The specific actions of exercise on each physiological component will vary in strength from

  16. Effects of amylin and bupropion/naltrexone on food intake and body weight are interactive in rodent models.

    Science.gov (United States)

    Clapper, Jason R; Athanacio, Jennifer; Wittmer, Carrie; Griffin, Pete S; D'Souza, Lawrence; Parkes, David G; Roth, Jonathan D

    2013-01-05

    Antagonism of opioid systems (e.g., with naltrexone) has been explored as an anti-obesity strategy, and is particularly effective when co-administered with dual inhibitors of dopamine and norepinephrine reuptake (e.g., bupropion). Previously, we demonstrated that amylin enhances the food intake lowering and weight loss effects of neurohormonal (e.g., leptin, cholecystokinin, melanocortins) and small molecule (e.g., phentermine, sibutramine) agents. Here, we sought to characterize the interaction of amylin with naltrexone/bupropion on energy balance. Wild-type and amylin knockout mice were similarly responsive to the food intake lowering effects of either naltrexone (1mg/kg, subcutaneous) or bupropion (50mg/kg, subcutaneous) suggesting that they act independently of amylinergic systems and could interact additively when given in combination with amylin. To test this, diet-induced obese rats were treated (for 11 days) with vehicle, rat amylin (50 μg/kg/d, infused subcutaneously), naltrexone/bupropion (1 and 20mg/kg, respectively by twice daily subcutaneous injection) or their combination. We found that amylin+naltrexone/bupropion combination therapy exerted additive effects to reduce cumulative food intake, body weight and fat mass. In a separate study, the effects of amylin and naltrexone/bupropion administered at the same doses (for 14 days) were compared to a pair-fed group. Although the combination and pair-fed groups lost a similar amount of body weight, rats treated with the combination lost 68% more fat and better maintained their lean mass. These findings support the strategy of combined amylin agonism with opioid and catecholaminergic signaling systems for the treatment of obesity. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The assessment of gallbladder with various fatty meal in oral cholecystography

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Jeong Hum; Kwon, Lee Seon; Kim, Myung Sook; Cheung, Kyung Mo; Kim, Hea Sung; Cheung, Hwan [Seoul National University Hospital, Seoul (Korea, Republic of)

    1993-05-15

    However, technical advances in ultrasono imaging have had a remarkable impact on the study of biliary system oral cholecystography is a contrast of the gallbladder which is very frequently performed even with the application of Extra Shock Wave Lithotripsy(ESWL) in clinical use. Oral GB requires a stringent preparation if it is to be fully successful and a considerable amount of time to complete all its procedures and its objects of the radiographs. 1) to obtain a firm diagnosis of the presence of gallstones. 2) to ease function of the gallbladder that is, its ability to concentrate and store bile After a times sequence of X - ray exposures taken in various positions to show the gallbladder to be satisfactorily filled, the patient is given a fatty meal, for instances two eggs or a cup of milk. The gallbladder which is drained by the cystic duct stores and concentrates the bile and is stimulated to contrast and excrete the bile by hormone 'cholecystokinin' secreted in the intestinal mucosa. To evaluate the effect of the fatty meal which caused the gallbladder to constrict and empty, and by so doing the contrast medium passes through the cystic and bile ducts which are shown in radiographs exposed from 15-30 minutes after the variety practice of fatty meal, such as soft-boiled 2 eggs, raw 2 eggs, 100g of peanuts, and 200ml of milk. If the concentration of the opaque medium in the gallbladder is adequate, then not only the size, shape and position of the gallbladder will be shown from firms taken at intervals, the rate of concentration of the opaque medium and of the emptying of gallbladder has been measured and analyzed.

  18. Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus

    Science.gov (United States)

    Yoshida, Tadashi; Semprun-Prieto, Laura; Wainford, Richard D.; Sukhanov, Sergiy; Kapusta, Daniel R.

    2012-01-01

    Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated. PMID:22234465

  19. Effects of Melatonin and Its Analogues on Pancreatic Inflammation, Enzyme Secretion, and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jolanta Jaworek

    2017-05-01

    Full Text Available Melatonin is an indoleamine produced from the amino acid l-tryptophan, whereas metabolites of melatonin are known as kynuramines. One of the best-known kynuramines is N1-acetyl-N1-formyl-5-methoxykynuramine (AFMK. Melatonin has attracted scientific attention as a potent antioxidant and protector of tissue against oxidative stress. l-Tryptophan and kynuramines share common beneficial features with melatonin. Melatonin was originally discovered as a pineal product, has been detected in the gastrointestinal tract, and its receptors have been identified in the pancreas. The role of melatonin in the pancreatic gland is not explained, however several arguments support the opinion that melatonin is probably implicated in the physiology and pathophysiology of the pancreas. (1 Melatonin stimulates pancreatic enzyme secretion through the activation of entero-pancreatic reflex and cholecystokinin (CCK release. l-Tryptophan and AFMK are less effective than melatonin in the stimulation of pancreatic exocrine function; (2 Melatonin is a successful pancreatic protector, which prevents the pancreas from developing of acute pancreatitis and reduces pancreatic damage. This effect is related to its direct and indirect antioxidant action, to the strengthening of immune defense, and to the modulation of apoptosis. Like melatonin, its precursor and AFMK are able to mimic its protective effect, and it is commonly accepted that all these substances create an antioxidant cascade to intensify the pancreatic protection and acinar cells viability; (3 In pancreatic cancer cells, melatonin and AFMK activated a signal transduction pathway for apoptosis and stimulated heat shock proteins. The role of melatonin and AFMK in pancreatic tumorigenesis remains to be elucidated.

  20. Molecular characterization of the mouse superior lateral parabrachial nucleus through expression of the transcription factor Runx1.

    Directory of Open Access Journals (Sweden)

    Chrissandra J Zagami

    2010-11-01

    Full Text Available The ability to precisely identify separate neuronal populations is essential to the understanding of the development and function of different brain structures. This necessity is particularly evident in regions such as the brainstem, where the anatomy is quite complex and little is known about the identity, origin, and function of a number of distinct nuclei due to the lack of specific cellular markers. In this regard, the gene encoding the transcription factor Runx1 has emerged as a specific marker of restricted neuronal populations in the murine central and peripheral nervous systems. The aim of this study was to precisely characterize the expression of Runx1 in the developing and postnatal mouse brainstem.Anatomical and immunohistochemical studies were used to characterize mouse Runx1 expression in the brainstem. It is shown here that Runx1 is expressed in a restricted population of neurons located in the dorsolateral rostral hindbrain. These neurons define a structure that is ventromedial to the dorsal nucleus of the lateral lemniscus, dorsocaudal to the medial paralemniscal nucleus and rostral to the cerebellum. Runx1 expression in these cells is first observed at approximately gestational day 12.5, persists into the adult brain, and is lost in knockout mice lacking the transcription factor Atoh1, an important regulator of the development of neuronal lineages of the rhombic lip. Runx1-expressing neurons in the rostral hindbrain produce cholecystokinin and also co-express members of the Groucho/Transducin-like Enhancer of split protein family.Based on the anatomical and molecular characteristics of the Runx1-expressing cells in the rostral hindbrain, we propose that Runx1 expression in this region of the mouse brain defines the superior lateral parabrachial nucleus.

  1. Mechanisms of the placebo response in pain in osteoarthritis.

    Science.gov (United States)

    Abhishek, A; Doherty, M

    2013-09-01

    Administration of a placebo associates with symptomatic improvement in many conditions--the so-called placebo response. In this review we explain the concept of placebo response, examine the data that supports existence in osteoarthritis (OA), and discuss its possible mechanisms and determinants. A Pubmed literature search was carried out. Key articles were identified, and their findings discussed in a narrative review. Pain, stiffness, self-reported function and physician-global assessment in OA clearly improve in response to placebo. However, more objective measures such as quadriceps strength and radiographic progression appear less responsive. Although not directly studied in OA, contextual effects, patient expectation and conditioning are believed to be the main mechanisms. Neurotransmitter changes that mediate placebo-induced analgesia include increased endogenous opioid levels, increased dopamine levels, and reduced levels of cholecystokinin. Almost all parts of the brain involved in pain processing are influenced during placebo-induced analgesia. Determinants of the magnitude of placebo response include the patient-practitioner interaction, treatment response expectancy, knowledge of being treated, patient personality traits and placebo specific factors such as the route and frequency of administration, branding, and treatment costs. Clearer understanding of the neurobiology of placebo response validates its existence as a real phenomenon. Although routine administration of placebo for symptomatic improvement is difficult to justify, contextual factors that enhance treatment response should be employed in the management of chronic painful conditions such as OA where available treatments have only modest efficacy. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex

    Science.gov (United States)

    Varga, Csaba; Tamas, Gabor; Barzo, Pal; Olah, Szabolcs; Somogyi, Peter

    2015-01-01

    Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells. PMID:25787832

  3. Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in pancreatic tumour AR42J cells.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; Plaza-Davila, María; Martinez-Ruiz, Antonio; Fernandez-Bermejo, Miguel; Mateos-Rodriguez, Jose M; Salido, Gines M; Gonzalez, Antonio

    2018-01-01

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca 2+ concentration ([Ca 2+ ] c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca 2+ ] c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells. © 2017 Wiley Periodicals, Inc.

  4. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.

    Science.gov (United States)

    Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T

    2012-04-01

    The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Orexins control intestinal glucose transport by distinct neuronal, endocrine, and direct epithelial pathways.

    Science.gov (United States)

    Ducroc, Robert; Voisin, Thierry; El Firar, Aadil; Laburthe, Marc

    2007-10-01

    Orexins are neuropeptides involved in energy homeostasis. We investigated the effect of orexin A (OxA) and orexin B (OxB) on intestinal glucose transport in the rat. Injection of orexins led to a decrease in the blood glucose level in oral glucose tolerance tests (OGTTs). Effects of orexins on glucose entry were analyzed in Ussing chambers using the Na(+)-dependent increase in short-circuit current (Isc) to quantify jejunal glucose transport. The rapid and marked increase in Isc induced by luminal glucose was inhibited by 10 nmol/l OxA or OxB (53 and 59%, respectively). Response curves to OxA and OxB were not significantly different with half-maximal inhibitory concentrations at 0.9 and 0.4 nmol/l, respectively. On the one hand, OxA-induced inhibition of Isc was reduced by the neuronal blocker tetrodotoxin (TTX) and by a cholecystokinin (CCK) 2R antagonist, indicating involvement of neuronal and endocrine CCK-releasing cells. The OX(1)R antagonist SB334867 had no effect on OxA-induced inhibition, which is likely to occur via a neuronal and/or endocrine OX(2)R. On the other hand, SB334867 induced a significant right shift of the concentration-effect curve for OxB. This OxB-preferring OX(1)R pathway was not sensitive to TTX or to CCKR antagonists, suggesting that OxB may act directly on enterocytic OX(1)R. These distinct effects of OxA and OxB are consistent with the expression of OX(1)R and OX(2)R mRNA in the epithelial and nonepithelial tissues, respectively. Our data delineate a new function for orexins as inhibitors of intestinal glucose absorption and provide a new basis for orexin-induced short-term control of energy homeostasis.

  6. The role of a pre-load beverage on gastric volume and food intake: comparison between non-caloric carbonated and non-carbonated beverage.

    Science.gov (United States)

    Cuomo, Rosario; Savarese, Maria Flavia; Sarnelli, Giovanni; Nicolai, Emanuele; Aragri, Adriana; Cirillo, Carla; Vozzella, Letizia; Zito, Francesco Paolo; Verlezza, Viviana; Efficie, Eleonora; Buyckx, Maxime

    2011-10-14

    There is conflicting data on the effects of carbon dioxide contained in beverages on stomach functions. We aimed to verify the effect of a pre-meal administration of a 300 ml non-caloric carbonated beverage (B+CO2) compared to water or a beverage without CO2 (B-CO2), during a solid (SM) and a liquid meal (LM) on: a) gastric volume, b) caloric intake, c) ghrelin and cholecystokinin (CCK) release in healthy subjects. After drinking the beverages (Water, B-CO2, B+CO2), ten healthy subjects (4 women, aged 22-30 years; BMI 23 ± 1) were asked to consume either an SM or an LM, at a constant rate (110 kcal/5 min). Total gastric volumes (TGV) were evaluated by Magnetic Resonance Imaging after drinking the beverage and at maximum satiety (MS). Total kcal intake at MS was evaluated. Ghrelin and CCK were measured by enzyme immunoassay until 120 min after the meal. Statistical calculations were carried out by paired T-test and analysis of variance (ANOVA). The data is expressed as mean ± SEM. TGV after B+CO2 consumption was significantly higher than after B-CO2 or water (p beverages tested, with either the SM (Water: 783 ± 77 kcals; B-CO2: 837 ± 66; B+CO2: 774 ± 66) or the LM (630 ± 111; 585 ± 88; 588 ± 95). Area under curve of ghrelin was significantly (p beverages. The increase in gastric volume following a 300 ml pre-meal carbonated beverage did not affect food intake whether a solid or liquid meal was given. The consistency of the meal and the carbonated beverage seemed to influence ghrelin release, but were unable, under our experimental conditions, to modify food intake in terms of quantity. Further studies are needed to verify if other food and beverage combinations are able to modify satiation.

  7. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    Science.gov (United States)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  8. Development of an injectable formulation for the preparation of radiopharmaceutical 68Ga-DOTA-Sar gastrin

    International Nuclear Information System (INIS)

    Castillo P, M.

    2015-01-01

    The CCK2 receptor (cholecystokinin) is located in areas of the central and peripheral nervous system and is over expressed in several types of human cancer, as medullar thyroid, lung and ovarian carcinomas. One of the endogenous ligands for the CCK2 receptor is the gastrin, so that radiolabeled peptides analogues to gastrin as Sar gastrin (Gln-Gly-Pro-Trp-Leu-Glu-Glu-Glu-Glu-Glu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH 2 ) have been proposed as potential diagnostic radiopharmaceuticals for obtaining tumors images with CCK2 receptors over expressed. The 68 Ga is an ideal candidate for the peptides radiolabelled and has favorable characteristics to be used for diagnostic purposes by imaging with Positron emission tomography (PET). This work aimed to verify the technical documentation of the production process of radiopharmaceutical 68 Ga-DOTA-Sar gastrin for its sanitary registration before the Comision Federal contra Riesgos Sanitarios (COFEPRIS) in Mexico. For optimization of the production process was assessed a factorial design of two variables with mixed levels (27 combinations), where the dependent variable was the radiochemical purity. The analytical method used for evaluating the content of Sar gastrin peptide in the injectable formulation was also validated by High-performance liquid chromatography. Subsequently the validation of the production process was carried out by manufacturing of lots in single-dose of the optimized injectable formulation of the radiopharmaceutical 68 Ga-DOTA-Sar gastrin and the stability study was conducted at different times to determine the useful life time. The following was established as the optimal pharmaceutical formulation: 185 MBq of 68 Ga, 50 μg de DOTA-Sar gastrin, 14 mg of sodium acetate and 0.5 m L of buffer acetates, 1.0 M, ph 4.22 in 2.5 m L of the vehicle. The analytical method used to determine the radiochemical purity of the formulation satisfied the requirements for the intended analytical application. The lots in

  9. Energy intake compensation after 3 weeks of restricted energy intake in young and elderly men.

    Science.gov (United States)

    Winkels, Renate M; Jolink-Stoppelenburg, Angelique; de Graaf, Kees; Siebelink, Els; Mars, Monica; de Groot, Lisette

    2011-05-01

    Decreased energy intake in older persons poses these people at risk of progressive weight loss. It may result from a failure to regulate energy intake and expenditure after periods of underfeeding. The objective of this study was to investigate if a period of underfeeding differentially influences energy intake of older compared with young men and, additionally, to study potential underlying mechanisms, namely changes in gastric emptying rate and cholecystokinin (CCK) levels in blood. Dietary intervention of 3 phases. After a phase of energy balance, we fed participants in phase 2 by a mean of 70% of their needs for 21 days. During phase 3, we assessed ad libitum energy intake of the participants during 9 days. At the end of phases 1 and 2, we assessed appetite, gastric emptying, and CCK levels in blood in response to a test meal. Fifteen young (age 24 years [range 20-34], body mass index 23.0 kg/m(2) ± 2.3) and 17 older (age 68 years [64-85], body mass index 24.5 kg/m(2) ± 1.9) men participated in this study. During energy balance, mean energy intake of young men (14.3 ± 2.3 MJ/day) was significantly higher than that of older men (11.3 ± 1.8 MJ/day, P men and to 14.4 ± 3.2 MJ/day in older men. Ad lib energy intake after underfeeding did not differ between young and older men (analysis of covariance, with energy intake during phase 1 as covariate, P = .99). There were no differential changes in body weight, body composition, resting energy expenditure, gastric emptying rate, CCK-8 levels, and appetite between young and older men during the study. Our results do not indicate that older men have an impaired ability to control energy intake after a period of underfeeding compared with younger men. NCT00561145. Copyright © 2011 American Medical Directors Association. Published by Elsevier Inc. All rights reserved.

  10. Examination of some factors responsible for a food-induced increase in absorption of atovaquone.

    Science.gov (United States)

    Rolan, P E; Mercer, A J; Weatherley, B C; Holdich, T; Meire, H; Peck, R W; Ridout, G; Posner, J

    1994-01-01

    1. Atovaquone is a potent antiprotozoal slowly and irregularly absorbed after administration as tablets to fasting volunteers. A series of studies was performed to investigate the effects of food, bile and formulation on atovaquone absorption. 2. In 18 healthy male volunteers, a high-fat breakfast administered 45 min before 500 mg atovaquone as tablets increased AUC by 3.3-fold (95% CI 2.8-4.0) and Cmax 5.3-fold (4.3-6.6) compared with fasting. 3. The absorption of atovaquone from tablets was examined in 12 healthy male volunteers after an overnight fast, following toast alone, toast with 28 g butter (LOFAT), or toast with 56 g butter (HIFAT). Compared with absorption when fasted, toast had no significant effect but LOFAT increased AUC 3.0-fold (2.1-4.2) and Cmax 3.9-fold (2.6-5.8). HIFAT increased AUC 3.9-fold (2.7-5.5) and Cmax 5.6-fold (3.8-8.4). 4. The absorption of atovaquone was examined in nine healthy fasting male volunteers from tablets, an aqueous suspension, and an oily solution/suspension in miglyol (fractionated coconut oil). Compared with tablets, AUC following the aqueous suspension was increased 1.7-fold (1.0-2.7) and Cmax 2.4-fold (1.7-3.5). Following miglyol, AUC was increased to the same extent but Cmax was only increased 1.8-fold (1.2-2.6). 5. Atovaquone absorption was examined in eight healthy fasting male volunteers following an i.v. infusion of cholecystokinin octapeptide (CCK-OP) which decreased gallbladder volume by 82% (73%-90%) on occasion 1 or saline on occasion 2. AUC(0,12) was increased following CCK-OP by 1.6-fold (1.1-2.4) and Cmax by 1.5-fold (0.98-2.4).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8148213

  11. The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans.

    Science.gov (United States)

    Mandøe, Mette J; Hansen, Katrine B; Hartmann, Bolette; Rehfeld, Jens F; Holst, Jens J; Hansen, Harald S

    2015-09-01

    Dietary triglycerides can, after digestion, stimulate the intestinal release of incretin hormones through activation of G protein-coupled receptor (GPR) 119 by 2-monoacylglycerol and by the activation of fatty acid receptors for long- and short-chain fatty acids. Medium-chain fatty acids do not stimulate the release of intestinal hormones. To dissect the mechanism of fat-induced glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) release in humans, we compared the effects of tributyrin (containing short-chain fatty acids; i.e., butyric acid), olive oil [containing long-chain fatty acids; e.g., oleic acid plus 2-oleoyl glycerol (2-OG)], and 1,3-dioctanoyl-2-oleoyl glycerol (C8-dietary oil), which is digested to form medium-chain fatty acids : i.e., octanoic acid : and 2-OG. In a randomized, single-blinded crossover study, 12 healthy white men [mean age: 24 y; BMI (in kg/m(2)): 22] were given the following 4 meals on 4 different days: 200 g carrots + 6.53 g tributyrin, 200 g carrots + 13.15 g C8-dietary oil, 200 g carrots + 19 g olive oil, or 200 g carrots. All of the lipids totaled 0.0216 mol. Main outcome measures were incremental areas under the curve for total GLP-1, GIP, and cholecystokinin (CCK) in plasma. C8-dietary oil and olive oil showed the same GLP-1 response [583 ± 101 and 538 ± 71 (pmol/L) × 120 min; P = 0.733], whereas the GIP response was higher for olive oil than for C8-dietary oil [3293 ± 404 and 1674 ± 270 (pmol/L) × 120 min; P = 0.002]. Tributyrin and carrots alone resulted in no increase in any of the measured hormones. Peptide YY (PYY) and neurotensin responses resembled those of GLP-1. Only olive oil stimulated CCK release. Under our study conditions, 2-OG and GPR119 activation can fully explain the olive oil-induced secretion of GLP-1, PYY, and neurotensin. In contrast, both oleic acid and 2-OG contributed to the GIP response. Dietary butyrate did not stimulate gut hormone secretion. Olive oil

  12. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus.

    Science.gov (United States)

    Hájos, N; Papp, E C; Acsády, L; Levey, A I; Freund, T F

    1998-01-01

    In previous studies m2 muscarinic acetylcholine receptor-immunoreactive interneurons and various types of m2-positive axon terminals have been described in the hippocampal formation. The aim of the present study was to identify the types of interneurons expressing m2 receptor and to examine whether the somadendritic and axonal m2 immunostaining labels the same or distinct cell populations. In the CA1 subfield, neurons immunoreactive for m2 have horizontal dendrites, they are located at the stratum oriens/alveus border and have an axon that project to the dendritic region of pyramidal cells. In the CA3 subfield and the hilus, m2-positive neurons are multipolar and are scattered in all layers except stratum lacunosum-moleculare. In stratum pyramidale of the CA1 and CA3 regions, striking axon terminal staining for m2 was observed, surrounding the somata and axon initial segments of pyramidal cells in a basket-like manner. The co-localization of m2 with neurochemical markers and GABA was studied using the "mirror" technique and fluorescent double-immunostaining at the light microscopic level and with double-labelling using colloidal gold-conjugated antisera and immunoperoxidase reaction (diaminobenzidine) at the electron microscopic level. GABA was shown to be present in the somata of most m2-immunoreactive interneurons, as well as in the majority of m2-positive terminals in all layers. The calcium-binding protein parvalbumin was absent from practically all m2-immunoreactive cell bodies and dendrites. In contrast, many of the terminals synapsing on pyramidal cell somata and axon initial segments co-localized parvalbumin and m2, suggesting a differential distribution of m2 receptor immunoreactivity on the axonal and somadendritic membrane of parvalbumin-containing basket and axo-axonic cells. The co-existence of m2 receptors with the calcium-binding protein calbindin and the neuropeptides cholecystokinin and vasoactive intestinal polypeptide was rare throughout the

  13. Design, synthesis, and testing of multivalent compounds targeted to melanocortin receptors

    Science.gov (United States)

    Dehigaspitiya, Dilani Chathurika

    Our focus is on developing non-invasive molecular imaging reagents, which target human cancers that presently are difficult to detect, such as melanoma. We wish to apply the multivalency concept to differentiate between healthy cells and melanoma cells. Melanoma cells are known to over-express alpha melanocyte stimulating hormone receptors. A successful multivalent construct should show greater avidity towards melanoma cells than healthy cells due to the synergistic effects arising from multivalency. Both oligomeric and shorter linear constructs bearing the minimum active sequence of melanocyte stimulating hormone, His-DPhe-Arg-Trp-NH2(MSH4), which binds with low micromolar affinity to alpha melanocyte stimulating hormone receptors, were synthesized. Binding affinities of these constructs were evaluated in a competitive binding assay by competing with labeled ligands, Eu-DTPA-PEGO-MSH7 and/or Eu-DTPA-PEGO-NDP-alpha-MSH on the engineered cell line HEK293 CCK2R/hMC4R, which is genetically modified to over-express both the cholecystokinin 2 receptor (CCK2R) and human melanocortin 4 receptor (hMC4R). The oligomers were rapidly assembled using microwave-assisted copper catalyzed azide-alkyne cycloaddition between a dialkyne derivative of MSH4 and a diazide derivative of (Pro-Gly)3 as co-monomers. Three oligomer mixtures were further analyzed based on their degree of oligomerization and the route by which the MSH4 monomers were oligomerized, protected vs deprotected. Completive binding assay against Eu-DTPA-PEGO-MSH7 showed only a statistical enhancement of binding when calculated based on the total MSH4 concentration. However, when the calculation of avidity is based on an estimation of the particles numbers, there was a seven times enhancement of binding compared to a monovalent MSH4 control. The shorter linear multivalent MSH4 constructs were synthesized using ethylene glycol, glycerol, and mannitol as core scaffolds with maximum inter-ligand distances ranging from 27

  14. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    Science.gov (United States)

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these

  15. Development of an injectable formulation for the preparation of radiopharmaceutical {sup 68}Ga-DOTA-Sar gastrin; Desarrollo de una formulacion inyectable para la preparacion del radiofarmaco {sup 68}Ga-DOTA-Sargastrina

    Energy Technology Data Exchange (ETDEWEB)

    Castillo P, M.

    2015-07-01

    The CCK2 receptor (cholecystokinin) is located in areas of the central and peripheral nervous system and is over expressed in several types of human cancer, as medullar thyroid, lung and ovarian carcinomas. One of the endogenous ligands for the CCK2 receptor is the gastrin, so that radiolabeled peptides analogues to gastrin as Sar gastrin (Gln-Gly-Pro-Trp-Leu-Glu-Glu-Glu-Glu-Glu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH{sub 2}) have been proposed as potential diagnostic radiopharmaceuticals for obtaining tumors images with CCK2 receptors over expressed. The {sup 68}Ga is an ideal candidate for the peptides radiolabelled and has favorable characteristics to be used for diagnostic purposes by imaging with Positron emission tomography (PET). This work aimed to verify the technical documentation of the production process of radiopharmaceutical {sup 68}Ga-DOTA-Sar gastrin for its sanitary registration before the Comision Federal contra Riesgos Sanitarios (COFEPRIS) in Mexico. For optimization of the production process was assessed a factorial design of two variables with mixed levels (27 combinations), where the dependent variable was the radiochemical purity. The analytical method used for evaluating the content of Sar gastrin peptide in the injectable formulation was also validated by High-performance liquid chromatography. Subsequently the validation of the production process was carried out by manufacturing of lots in single-dose of the optimized injectable formulation of the radiopharmaceutical {sup 68}Ga-DOTA-Sar gastrin and the stability study was conducted at different times to determine the useful life time. The following was established as the optimal pharmaceutical formulation: 185 MBq of {sup 68}Ga, 50 μg de DOTA-Sar gastrin, 14 mg of sodium acetate and 0.5 m L of buffer acetates, 1.0 M, ph 4.22 in 2.5 m L of the vehicle. The analytical method used to determine the radiochemical purity of the formulation satisfied the requirements for the intended analytical

  16. Appetite Suppression and Altered Food Preferences Coincide with Changes in Appetite-Mediating Hormones During Energy Deficit at High Altitude, But Are Not Affected by Protein Intake.

    Science.gov (United States)

    Karl, J Philip; Cole, Renee E; Berryman, Claire E; Finlayson, Graham; Radcliffe, Patrick N; Kominsky, Matthew T; Murphy, Nancy E; Carbone, John W; Rood, Jennifer C; Young, Andrew J; Pasiakos, Stefan M

    2018-02-12

    Karl, J. Philip, Renee E. Cole, Claire E. Berryman, Graham Finlayson, Patrick N. Radcliffe, Matthew T. Kominsky, Nancy E. Murphy, John W. Carbone, Jennifer C. Rood, Andrew J. Young, and Stefan M. Pasiakos. Appetite Suppression and Altered Food Preferences Coincide with Changes in Appetite-Mediating Hormones During Energy Deficit at High Altitude, But Are Not Affected by Protein Intake. High Alt Med Biol. 00:000-000, 2018.-Anorexia and unintentional body weight loss are common during high altitude (HA) sojourn, but underlying mechanisms are not fully characterized, and the impact of dietary macronutrient composition on appetite regulation at HA is unknown. This study aimed to determine the effects of a hypocaloric higher protein diet on perceived appetite and food preferences during HA sojourn and to examine longitudinal changes in perceived appetite, appetite mediating hormones, and food preferences during acclimatization and weight loss at HA. Following a 21-day level (SL) period, 17 unacclimatized males ascended to and resided at HA (4300 m) for 22 days. At HA, participants were randomized to consume measured standard-protein (1.0 g protein/kg/d) or higher protein (2.0 g/kg/d) hypocaloric diets (45% carbohydrate, 30% energy restriction) and engaged in prescribed physical activity to induce an estimated 40% energy deficit. Appetite, food preferences, and appetite-mediating hormones were measured at SL and at the beginning and end of HA. Diet composition had no effect on any outcome. Relative to SL, appetite was lower during acute HA (days 0 and 1), but not different after acclimatization and weight loss (HA day 18), and food preferences indicated an increased preference for sweet- and low-protein foods during acute HA, but for high-fat foods after acclimatization and weight loss. Insulin, leptin, and cholecystokinin concentrations were elevated during acute HA, but not after acclimatization and weight loss, whereas acylated ghrelin concentrations were

  17. Eating habits and appetite control in the elderly: the anorexia of aging.

    Science.gov (United States)

    Donini, Lorenzo M; Savina, Claudia; Cannella, Carlo

    2003-03-01

    Although a high prevalence of overweight is present in elderly people, the main concern in the elderly is the reported decline in food intake and the loss of the motivation to eat. This suggests the presence of problems associated with the regulation of energy balance and the control of food intake. A reduced energy intake causing body weight loss may be caused by social or physiological factors, or a combination of both. Poverty, loneliness, and social isolation are the predominant social factors that contribute to decreased food intake in the elderly. Depression, often associated with loss or deterioration of social networks, is a common psychological problem in the elderly and a significant cause of loss of appetite. The reduction in food intake may be due to the reduced drive to eat (hunger) resulting from a lower need state, or it arises because of more rapidly acting or more potent inhibitory (satiety) signals. The early satiation appears to be predominantly due to a decrease in adaptive relaxation of the stomach fundus resulting in early antral filling, while increased levels and effectiveness of cholecystokinin play a role in the anorexia of aging. The central feeding drive (both the opioid and the neuropeptide Y effects) appears to decline with age. Physical factors such as poor dentition and ill-fitting dentures or age-associated changes in taste and smell may influence food choice and limit the type and quantity of food eaten in older people. Common medical conditions in the elderly such as gastrointestinal disease, malabsorption syndromes, acute and chronic infections, and hypermetabolism often cause anorexia, micronutrient deficiencies, and increased energy and protein requirements. Furthermore, the elderly are major users of prescription medications, a number of which can cause malabsorption of nutrients, gastrointestinal symptoms, and loss of appetite. There is now good evidence that, although age-related reduction in energy intake is largely a

  18. Trends in management of gallbladder disorders in children.

    Science.gov (United States)

    Lugo-Vicente, H L

    1997-07-01

    . Persistent biliary symptoms associated with low gallbladder ejection fractions during hepatobiliary cholecystokinin-stimulated scans can be caused by dyskinesia. The method of choice to remove the diseased gallbladder in children is LC, which is safe, efficient, and superior to the conventional method. Common duct stones can be managed by simultaneous endoscopic papillotomy. The costs of LC are reduced by employing reusable equipment and selective cholangiographic indications.

  19. Comparison of biological stability and metabolism of CCK2 receptor targeting peptides, a collaborative project under COST BM0607

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, Meltem [Innsbruck Medical University, Clinical Department of Nuclear Medicine, Innsbruck (Austria); Istanbul University, Department of Pharmaceutical Technology, Pharmacy Faculty, Istanbul (Turkey); Helbok, Anna; Rangger, Christine; Decristoforo, Clemens [Innsbruck Medical University, Clinical Department of Nuclear Medicine, Innsbruck (Austria); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department for Nuclear Medicine, Ljubljana (Slovenia); Nock, Berthold A. [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Morelli, Giancarlo [University of Naples ' ' Federico II' ' and IBB-CN, Department of Biological Sciences, CIRPeB, Naples (Italy); Eek, Annemarie [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Institute of Cancer, Barts and the London Queen Mary' s School of Medicine and Dentistry, Centre for Molecular Oncology and Imaging, London (United Kingdom); Breeman, W.A.P. [Erasmus MC Rotterdam, Department of Nuclear Medicine, Rotterdam (Netherlands); Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research Institute of Pathology, Berne (Switzerland)

    2011-08-15

    Stability of radiolabelled cholecystokinin 2 (CCK2) receptor targeting peptides has been a major limitation in the use of such radiopharmaceuticals especially for targeted radionuclide therapy applications, e.g. for treatment of medullary thyroid carcinoma (MTC). The purpose of this study was to compare the in vitro stability of a series of peptides binding to the CCK2 receptor [selected as part of the COST Action on Targeted Radionuclide Therapy (BM0607)] and to identify major cleavage sites. Twelve different 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-minigastrin/CCK conjugates were provided within an European COST Action (BM0607) by different laboratories and radiolabelled with {sup 177}Lu. Their in vitro stabilities were tested in fresh human serum. Radiochemical yields (RCY) and intact radioligands for half-life calculations were determined by radio-HPLC. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) analysis of metabolites was performed to identify cleavage products using conjugates labelled with excess stable {sup nat}Lu, incubated in serum at 37 C. Urine metabolite analysis after injection in normal mice was performed by radio-HPLC analysis. Variable stability in human serum was found for the different peptides with calculated half-lives between 4.5 {+-} 0.1 h and 198 {+-} 0.1 h (n = 2). In urine of normal mice only metabolised peptide fragments were detected even at short times after injection for all peptides. MALDI-TOF MS revealed a major cleavage site of all minigastrin derivatives between Asp and Phe-NH{sub 2} at the C-terminal end. Development of CCK2 receptor ligands especially for therapeutic purposes in patients with MTC or small cell lung cancer (SCLC) is still ongoing in different laboratories. This comparative study provided valuable insight into the importance of biological stability especially in the context of other results of this comparative

  20. Comparative biodistribution of 12 {sup 111}In-labelled gastrin/CCK2 receptor-targeting peptides

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Joosten, Lieke; Eek, Annemarie; Roosenburg, Susan; Oyen, Wim J.G.; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department of Nuclear Medicine, Ljubljana (Slovenia); Maina, Theodosia [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Maecke, Helmut [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Aloj, Luigi [Fondazione ' ' G. Pascale' ' , Department of Nuclear Medicine, Istituto Nazionale Tumouri, Naples (Italy); Guggenberg, Elisabeth von [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Sosabowski, Jane K. [Queen Mary, University of London, Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, London (United Kingdom); Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Reubi, Jean-Claude [University of Berne, Institute of Pathology, Berne (Switzerland)

    2011-08-15

    Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several CCK-2 receptor-binding radiopeptides have been developed and some have been tested in patients. Here we aimed to compare the in vivo tumour targeting properties of 12 {sup 111}In-labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated gastrin/CCK2 receptor-binding peptides. Two CCK8-based peptides and ten gastrin-based peptide analogues were tested. All peptides were conjugated with DOTA and labelled with {sup 111}In. Biodistribution studies were performed in mice with subcutaneous CCK2/gastrin receptor-expressing tumours and with receptor-negative tumours contralaterally. Biodistribution was studied by counting dissected tissues at 1 and 4 h after injection. Both the CCK analogues displayed relatively low tumour uptake (approximately 2.5%ID/g) as compared to minigastrin analogues. Two linear minigastrin peptides (MG0 and sargastrin) displayed moderate tumour uptake at both 1 and 4 h after injection, but also very high kidney uptake (both higher than 48%ID/g). The linear MG11, lacking the penta-Glu sequence, showed lower tumour uptake and also low kidney uptake. Varying the N-terminal Glu residues in the minigastrin analogues led to improved tumour targeting properties, with PP-F11 displaying the optimal biodistribution. Besides the monomeric linear peptides, a cyclized peptide and a divalent peptide were tested. Based on these studies, optimal peptides for peptide receptor radionuclide targeting of CCK2/gastrin receptor-expressing tumours were the linear minigastrin analogue with six D-Glu residues (PP-F11), the divalent analogue MGD5 and the cyclic peptide cyclo-MG1. These peptides combined high tumour uptake with low kidney retention, and may

  1. Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours

    International Nuclear Information System (INIS)

    Good, Stephan; Wang, Xuejuan; Maecke, Helmut R.; Walter, Martin A.; Mueller-Brand, Jan; Waser, Beatrice; Reubi, Jean-Claude; Behe, Martin P.

    2008-01-01

    Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available β-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using 111 In-labelled derivatives. Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using 111 In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the nat In-metallated compounds were determined by receptor autoradiography using 125 I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the 111 In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. IC 50 values of the nat In-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC 50 between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All 111 In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All 111 In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to 111 In-DTPA-minigastrin 0(0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in lower metabolic stability. The properties of the macrocyclic

  2. Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours

    Energy Technology Data Exchange (ETDEWEB)

    Good, Stephan; Wang, Xuejuan; Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Walter, Martin A.; Mueller-Brand, Jan [University Hospital, Institute of Nuclear Medicine, Basel (Switzerland); Waser, Beatrice; Reubi, Jean-Claude [University of Berne, Department of Pathology, Bern (Switzerland); Behe, Martin P. [Philipps-University of Marburg, Department of Nuclear Medicine, Marburg (Germany)

    2008-10-15

    Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available {beta}-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using {sup 111}In-labelled derivatives. Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using {sup 111}In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the {sup nat}In-metallated compounds were determined by receptor autoradiography using {sup 125}I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the {sup 111}In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. IC{sub 50} values of the {sup nat}In-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC{sub 50} between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All {sup 111}In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All {sup 111}In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to {sup 111}In-DTPA-minigastrin 0(0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in

  3. Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties.

    Science.gov (United States)

    Picot, Laurent; Ravallec, Rozenn; Fouchereau-Péron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-Derouiniot, Maryse; Guérard, Fabienne; Chabeaud, Aurélie; Legal, Yves; Alvarez, Oscar Martinez; Bergé, Jean-Pascal; Piot, Jean-Marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inez; Bourseau, Patrick

    2010-08-30

    Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation

  4. Comparison of the binding and internalization properties of 12 DOTA-coupled and {sup 111}In-labelled CCK2/gastrin receptor binding peptides: a collaborative project under COST Action BM0607

    Energy Technology Data Exchange (ETDEWEB)

    Aloj, Luigi; Aurilio, Michela; Rinaldi, Valentina; D' Ambrosio, Laura [Istituto Nazionale Tumori, Fondazione ' ' G. Pascale' ' , AF Medicina Nucleare, Naples (Italy); Tesauro, Diego [Universita ' ' Federico II' ' , CIRPeB, Naples (Italy); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department of Nuclear Medicine, Ljubljana (Slovenia); Maina, Theodosia [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Mansi, Rosalba [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Guggenberg, Elisabeth von [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Joosten, Lieke [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Institute of Cancer, Barts and the London Queen Mary' s School of Medicine and Dentistry, Centre for Molecular Oncology and Imaging, London (United Kingdom); Breeman, W.A.P.; Blois, Erik de; Koelewijn, Stuart; Melis, Marleen; Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Waser, Beatrice; Beetschen, Karin; Reubi, Jean Claude [University of Berne, Berne (Switzerland)

    2011-08-15

    Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide therapy (PRRT) may be a viable therapeutic strategy in the management of these patients. Several CCK2R-targeted radiopharmaceuticals have been described in recent years. As part of the European Union COST Action BM0607 we studied the in vitro and in vivo characteristics of 12 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R binding peptides. In the present study, we analysed binding and internalization characteristics. Stability, biodistribution and imaging studies have been performed in parallel by other centres involved in the project. Determination of IC{sub 50} values was performed using autoradiography, with DOTA-peptides displacing {sup 125}I-CCK from receptors on tissue sections from human tumours. Saturation binding and internalization experiments were performed using {sup 111}In-labelled peptides. The rat AR42J cell line and the human A431-CCK2R transfected cell line were utilized for in vitro experiments; dissociation constants (K{sub d}) and apparent number of binding sites (B{sub max}) were determined. Internalization was determined in receptor-expressing cells by incubating with tracer amounts of peptide at 37 and 4 C for different times up to 120 min. Surface-bound peptide was then stripped either by acid wash or subsequent incubation with 1 {mu}M unlabelled peptide at 4 C. All peptides showed high receptor affinity with IC{sub 50} values ranging from 0.2 to 3.4 nM. Saturation experiments also showed high affinity with K{sub d} values in the 10{sup -9}-10{sup -8} M range. B{sub max} values estimated in A431-CCK2R cells ranged from 0.6 to 2.2 x 10{sup 6} per cell. All peptides

  5. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Tracey A Martin

    Full Text Available Methamphetamine (METH addiction is associated with several neuropsychiatric symptoms. Little is known about the effects of METH on gene expression and epigenetic modifications in the rat nucleus accumbens (NAC. Our study investigated the effects of a non-toxic METH injection (20 mg/kg on gene expression, histone acetylation, and the expression of the histone acetyltransferase (HAT, ATF2, and of the histone deacetylases (HDACs, HDAC1 and HDAC2, in that structure. Microarray analyses done at 1, 8, 16 and 24 hrs after the METH injection identified METH-induced changes in the expression of genes previously implicated in the acute and longterm effects of psychostimulants, including immediate early genes and corticotropin-releasing factor (Crf. In contrast, the METH injection caused time-dependent decreases in the expression of other genes including Npas4 and cholecystokinin (Cck. Pathway analyses showed that genes with altered expression participated in behavioral performance, cell-to-cell signaling, and regulation of gene expression. PCR analyses confirmed the changes in the expression of c-fos, fosB, Crf, Cck, and Npas4 transcripts. To determine if the METH injection caused post-translational changes in histone markers, we used western blot analyses and identified METH-mediated decreases in histone H3 acetylated at lysine 9 (H3K9ac and lysine 18 (H3K18ac in nuclear sub-fractions. In contrast, the METH injection caused time-dependent increases in acetylated H4K5 and H4K8. The changes in histone acetylation were accompanied by decreased expression of HDAC1 but increased expression of HDAC2 protein levels. The histone acetyltransferase, ATF2, showed significant METH-induced increased in protein expression. These results suggest that METH-induced alterations in global gene expression seen in rat NAC might be related, in part, to METH-induced changes in histone acetylation secondary to changes in HAT and HDAC expression. The causal role that HATs and

  6. Effect of emodin on mobility signal transduction system of gallbladder smooth muscle in Guinea pig with cholelithiasis.

    Science.gov (United States)

    Fang, Bang-Jiang; Shen, Jun-Yi; Zhang, Hua; Zhou, Shuang; Lyu, Chuan-Zhu; Xie, Yi-Qiang

    2016-10-01

    To study the effect of emodin on protein and gene expressions of the massagers in mobility signal transduction system of cholecyst smooth muscle cells in guinea pig with cholesterol calculus. The guinea pigs were randomly divided into 4 groups, such as control group, gall-stone (GS) group, emodin group and ursodeoxycholic acid (UA) group. Cholesterol calculus models were induced in guinea pigs of GS, emodin and UA groups by lithogenic diet, while emodin or UA were given to the corresponding group for 7 weeks. The histomorphological and ultrastructure change of gallbladder were detected by microscope and electron microscope, the content of plasma cholecystokinin (CCK) and [Ca 2+ ] i were analyzed successively by radioimmunoassay and flow cytometry. The protein and mRNA of Gsα, Giα and Cap in cholecyst cells were determined by western blotting and real time polymerase chain reaction (RT-PCR). Emodin or UA can relieve pathogenic changes in epithelial cells and muscle cells in gallbladder of guinea pig with cholesterol calculus by microscope and transmission electron microscope. In the cholecyst cells of GS group, CCK levels in plasma and [Ca 2+ ] i decreased, the protein and mRNA of GS were down-regulated, the protein and mRNA of Gi and Cap were up-regulated. Emodin significantly decreased the formative rate of gallstone, improved the pathogenic change in epithelial cells and muscle cells, increased CCK levels in plasma and [Ca 2+ ] i in cholecyst cells, enhanced the protein and mRNA of Gs in cholecyst cells, reduced the protein and mRNA of Gi and Cap in cholecyst cells in guinea pig with cholesterol calculus. The dysfunction of gallbladder contraction gives rise to the disorders of mobility signal transduction system in cholecyst smooth muscle cells, including low content of plasma CCK and [Ca 2+ ] i in cholecyst cells, abnormal protein and mRNA of Gs, Gi and Cap. Emodin can enhance the contractibility of gallbladder and alleviate cholestasis by regulating plasma

  7. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones.

    Science.gov (United States)

    Browning, Kirsteen N; Fortna, Samuel R; Hajnal, Andras

    2013-05-01

    Diet-induced obesity (DIO) has been shown to alter the biophysical properties and pharmacological responsiveness of vagal afferent neurones and fibres, although the effects of DIO on central vagal neurones or vagal efferent functions have never been investigated. The aims of this study were to investigate whether high-fat diet-induced DIO also affects the properties of vagal efferent motoneurones, and to investigate whether these effects were reversed following weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Whole-cell patch-clamp recordings were made from rat dorsal motor nucleus of the vagus (DMV) neurones in thin brainstem slices. The DMV neurones from rats exposed to high-fat diet for 12-14 weeks were less excitable, with a decreased membrane input resistance and decreased ability to fire action potentials in response to direct current pulse injection. The DMV neurones were also less responsive to superfusion with the satiety neuropeptides cholecystokinin and glucagon-like peptide 1. Roux-en-Y gastric bypass reversed all of these DIO-induced effects. Diet-induced obesity also affected the morphological properties of DMV neurones, increasing their size and dendritic arborization; RYGB did not reverse these morphological alterations. Remarkably, independent of diet, RYGB also reversed age-related changes of membrane properties and occurrence of charybdotoxin-sensitive (BK) calcium-dependent potassium current. These results demonstrate that DIO also affects the properties of central autonomic neurones by decreasing the membrane excitability and pharmacological responsiveness of central vagal motoneurones and that these changes were reversed following RYGB. In contrast, DIO-induced changes in morphological properties of DMV neurones were not reversed following gastric bypass surgery, suggesting that they may be due to diet, rather than obesity. These findings represent the first direct evidence for the plausible effect of RYGB to improve vagal

  8. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.

    Science.gov (United States)

    Bhagat, Ruchi; Fortna, Samuel R; Browning, Kirsteen N

    2015-01-01

    brainstem slices from rats that were exposed to either a control diet or HFD from pregnancy day 13. Our data demonstrate that following perinatal HFD: (i) DMV neurones had decreased excitability and input resistance with a reduced ability to fire action potentials; (ii) the proportion of DMV neurones excited by cholecystokinin (CCK) was unaltered but the proportion of neurones in which CCK increased excitatory glutamatergic synaptic inputs was reduced; (iii) the tonic activation of presynaptic group II metabotropic glutamate receptors on inhibitory nerve terminals was attenuated, allowing modulation of GABAergic synaptic transmission; and (iv) the size and dendritic arborization of gastric-projecting DMV neurones was increased. These results suggest that perinatal HFD exposure compromises the excitability and responsiveness of gastric-projecting DMV neurones, even in the absence of obesity, suggesting that attenuation of vago-vagal reflex signalling may precede the development of obesity. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  9. Gastrin-Releasing Peptide and Glucose Metabolism Following Pancreatitis.

    Science.gov (United States)

    Pendharkar, Sayali A; Drury, Marie; Walia, Monika; Korc, Murray; Petrov, Maxim S

    2017-08-01

    Gastrin-releasing peptide (GRP) is a pluripotent peptide that has been implicated in both gastrointestinal inflammatory states and classical chronic metabolic diseases such as diabetes. Abnormal glucose metabolism (AGM) after pancreatitis, an exemplar inflammatory disease involving the gastrointestinal tract, is associated with persistent low-grade inflammation and altered secretion of pancreatic and gut hormones as well as cytokines. While GRP is involved in secretion of many of them, it is not known whether GRP has a role in AGM. Therefore, we aimed to investigate the association between GRP and AGM following pancreatitis. Fasting blood samples were collected to measure GRP, blood glucose, insulin, amylin, glucagon, pancreatic polypeptide (PP), somatostatin, cholecystokinin, gastric-inhibitory peptide (GIP), gastrin, ghrelin, glicentin, glucagon-like peptide-1 and 2, oxyntomodulin, peptide YY (PYY), secretin, vasoactive intestinal peptide, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein (MCP)-1, and interleukin-6. Modified Poisson regression analysis and linear regression analyses were conducted. Four statistical models were used to adjust for demographic, metabolic, and pancreatitis-related risk factors. A total of 83 individuals after an episode of pancreatitis were recruited. GRP was significantly associated with AGM, consistently in all four models (P -trend < 0.05), and fasting blood glucose contributed 17% to the variance of GRP. Further, GRP was significantly associated with glucagon (P < 0.003), MCP-1 (P < 0.025), and TNF-α (P < 0.025) - consistently in all four models. GRP was also significantly associated with PP and PYY in three models (P < 0.030 for both), and with GIP and glicentin in one model (P = 0.001 and 0.024, respectively). Associations between GRP and other pancreatic and gut hormones were not significant. GRP is significantly increased in patients with AGM after pancreatitis and is associated with increased levels of pro

  10. The small intestine and irritable bowel syndrome (IBS): a batch process model.

    Science.gov (United States)

    Dobson, Brian C

    2008-11-01

    Faults in a batch process model of the small intestine create the symptoms of all types of irritable bowel syndrome. The model has three sequential processing sections corresponding to the natural divisions of the intestine. It is governed by a brain controller that is divided into four sub-controllers, each with a unique neurotransmitter. Each section has a sub-controller to manage transport. Sensors in the walls of the intestine provide input and output goes to the muscles lining the walls of the intestine. The output controls the speed of the food soup, moves it in both directions, mixes it, controls absorption, and transfers it to the next section at the correct speed (slow). The fourth sub-controller manages the addition of chemicals. It obtains input from the first section of the process via the signalling hormone Cholecystokinin and sends output to the muscles that empty the gall bladder and pancreas. The correct amounts of bile salts and enzymes are then added to the first section. The sub-controllers produce output only when input is received. When output is missing the enteric nervous system applies a default condition. This default condition normally happens when no food is in the intestine. If food is in the intestine and a transport sub-controller fails to provide output then the default condition moves the food soup to the end of that section. The movement is in one direction only (forward), at a speed dependent on the amount and type of fibre present. Cereal, bean and vegetable fibre causes high speeds. This default high speed transport causes irritable bowel syndrome. A barrier is created when a section moving fast at the default speed, precedes a section controlled by a transport sub-controller. Then the sub-controller constricts the intestine to stop the fast flow. The barrier causes constipation, cramping, and bloating. Diarrhoea results when the section terminating the process moves at the fast default speed. Two problems can occur to prevent

  11. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.

    Science.gov (United States)

    Essner, Rachel A; Smith, Alison G; Jamnik, Adam A; Ryba, Anna R; Trutner, Zoe D; Carter, Matthew E

    2017-09-06

    To maintain energy homeostasis, orexigenic (appetite-inducing) and anorexigenic (appetite suppressing) brain systems functionally interact to regulate food intake. Within the hypothalamus, neurons that express agouti-related protein (AgRP) sense orexigenic factors and orchestrate an increase in food-seeking behavior. In contrast, calcitonin gene-related peptide (CGRP)-expressing neurons in the parabrachial nucleus (PBN) suppress feeding. PBN CGRP neurons become active in response to anorexigenic hormones released following a meal, including amylin, secreted by the pancreas, and cholecystokinin (CCK), secreted by the small intestine. Additionally, exogenous compounds, such as lithium chloride (LiCl), a salt that creates gastric discomfort, and lipopolysaccharide (LPS), a bacterial cell wall component that induces inflammation, exert appetite-suppressing effects and activate PBN CGRP neurons. The effects of increasing the homeostatic drive to eat on feeding behavior during appetite suppressing conditions are unknown. Here, we show in mice that food deprivation or optogenetic activation of AgRP neurons induces feeding to overcome the appetite suppressing effects of amylin, CCK, and LiCl, but not LPS. AgRP neuron photostimulation can also increase feeding during chemogenetic-mediated stimulation of PBN CGRP neurons. AgRP neuron stimulation reduces Fos expression in PBN CGRP neurons across all conditions. Finally, stimulation of projections from AgRP neurons to the PBN increases feeding following administration of amylin, CCK, and LiCl, but not LPS. These results demonstrate that AgRP neurons are sufficient to increase feeding during noninflammatory-based appetite suppression and to decrease activity in anorexigenic PBN CGRP neurons, thereby increasing food intake during homeostatic need. SIGNIFICANCE STATEMENT The motivation to eat depends on the relative balance of activity in distinct brain regions that induce or suppress appetite. An abnormal amount of activity in

  12. The role of a pre-load beverage on gastric volume and food intake: comparison between non-caloric carbonated and non-carbonated beverage

    Directory of Open Access Journals (Sweden)

    Zito Francesco

    2011-10-01

    Full Text Available Abstract Background There is conflicting data on the effects of carbon dioxide contained in beverages on stomach functions. We aimed to verify the effect of a pre-meal administration of a 300 ml non-caloric carbonated beverage (B+CO2 compared to water or a beverage without CO2 (B-CO2, during a solid (SM and a liquid meal (LM on: a gastric volume, b caloric intake, c ghrelin and cholecystokinin (CCK release in healthy subjects. Methods After drinking the beverages (Water, B-CO2, B+CO2, ten healthy subjects (4 women, aged 22-30 years; BMI 23 ± 1 were asked to consume either an SM or an LM, at a constant rate (110 kcal/5 min. Total gastric volumes (TGV were evaluated by Magnetic Resonance Imaging after drinking the beverage and at maximum satiety (MS. Total kcal intake at MS was evaluated. Ghrelin and CCK were measured by enzyme immunoassay until 120 min after the meal. Statistical calculations were carried out by paired T-test and analysis of variance (ANOVA. The data is expressed as mean ± SEM. Results TGV after B+CO2 consumption was significantly higher than after B-CO2 or water (p 2: 837 ± 66; B+CO2: 774 ± 66 or the LM (630 ± 111; 585 ± 88; 588 ± 95. Area under curve of ghrelin was significantly (p 2 compared to B+CO2 and water (26.2 ± 4.5; 27.1 ± 5.1. No significant differences were found for ghrelin during LM, and for CCK during both SM and LM after all beverages. Conclusions The increase in gastric volume following a 300 ml pre-meal carbonated beverage did not affect food intake whether a solid or liquid meal was given. The consistency of the meal and the carbonated beverage seemed to influence ghrelin release, but were unable, under our experimental conditions, to modify food intake in terms of quantity. Further studies are needed to verify if other food and beverage combinations are able to modify satiation.

  13. [Neurobiology and pharmacotherapy of social phobia].

    Science.gov (United States)

    Aouizerate, B; Martin-Guehl, C; Tignol, J

    2004-01-01

    Social phobia (also known as social anxiety disorder) is still not clearly understood. It was not established as an authentic psychiatric entity until the diagnostic nomenclature of the American Psychiatric Association DSM III in 1980. In recent years, increasing attention among researchers has contributed to provide important information about the genetic, familial and temperamental bases of social phobia and its neurochemical, neuroendocrinological and neuroanatomical substrates, which remain to be further investigated. Up to date, there have been several findings about the possible influence of variables, including particularly genetic, socio-familial and early temperamental (eg behavioral inhibition) factors that represent risk for the later development of social phobia. Clinical neurobiological studies, based on the use of exogenous compounds such as lactate, CO2, caffeine, epinephrine, flumazenil or cholecystokinin/pentagastrin to reproduce naturally occurring phobic anxiety, have shown that patients with social phobia appear to exhibit an intermediate sensitivity between patients with panic disorder and control subjects. No difference in the rate of panic attacks in response to lactate, low concentrations of CO2 (5%), epinephrine or flumazenil was observed between patients with social phobia and normal healthy subjects, both being less reactive compared to patients with panic disorder. However, patients with social phobia had similar anxiety reactions to high concentrations of CO2 (35%), caffeine or cholecystokinin/pentagastrin than those seen in patients with panic disorder, both being more intensive than in controls. Several lines of evidence suggest specific neurotransmitter system alterations in social phobia, especially with regard to the serotoninergic, noradrenergic and dopaminergic systems. Although no abnormality in platelet serotonin transporter density has been found, patients with social phobia appear to show an enhanced sensitivity of both post

  14. Ovarian hormones and obesity.

    Science.gov (United States)

    Leeners, Brigitte; Geary, Nori; Tobler, Philippe N; Asarian, Lori

    2017-05-01

    central action of estrogens to increase the satiating potency of the gastrointestinal hormone cholecystokinin. Another mechanism involves a decrease in the preference for sweet foods during the follicular phase. Genetic defects in brain α-melanocycte-stimulating hormone-melanocortin receptor (melanocortin 4 receptor, MC4R) signaling lead to a syndrome of overeating and obesity that is particularly pronounced in women and in female animals. The syndrome appears around puberty in mice with genetic deletions of MC4R, suggesting a role of ovarian hormones. Emerging functional brain-imaging data indicates that fluctuations in ovarian hormones affect eating by influencing striatal dopaminergic processing of flavor hedonics and lateral prefrontal cortex processing of cognitive inhibitory controls of eating. There is a dearth of research on the neuroendocrine control of eating after menopause. There is also comparatively little research on the effects of ovarian hormones on EE, although changes in ovarian hormone levels during the menstrual cycle do affect resting EE. The markedly greater obesity burden in women makes understanding the diverse effects of ovarian hormones on eating, EE and body adiposity urgent research challenges. A variety of research modalities can be used to investigate these effects in women, and most of the mechanisms reviewed are accessible in animal models. Therefore, human and translational research on the roles of ovarian hormones in women's obesity and its causes should be intensified to gain further mechanistic insights that may ultimately be translated into novel anti-obesity therapies and thereby improve women's health. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Management of Irritable Bowel Syndrome: Novel Approaches to the Pharmacology of Gut Motility

    Directory of Open Access Journals (Sweden)

    Carmelo Scarpignato

    1999-01-01

    Full Text Available Although it is unclear to what extent irritable bowel syndrome (IBS symptoms represent a normal perception of abnormal function or an abnormal perception of normal function, many believe that IBS constitutes the clinical expression of an underlying motility disorder, affecting primarily the mid- and lower gut. Indeed, transit and contractile abnormalities have been demonstrated with sophisticated techniques in a subset of patients with IBS. As a consequence, drugs affecting gastrointestinal (GI motility have been widely employed with the aim of correcting the major IBS manifestations, ie, pain and altered bowel function. Unfortunately, no single drug has proven to be effective in treating IBS symptom complex. In addition, the use of some medications has often been associated with unpleasant side effects. Therefore, the search for a truly effective and safe drug to control motility disturbances in IBS continues. Several classes of drugs look promising and are under evaluation. Among the motor- inhibiting drugs, gut selective muscarinic antagonists (such as zamifenacin and darifenacin, neurokinin2 antagonists (such as MEN-10627 and MEN-11420, beta3-adrenoreceptor agonists (eg, SR-58611A and GI-selective calcium channel blockers (eg, pinaverium bromide and octylonium are able to decrease painful contractile activity in the gut (antispasmodic effect, without significantly affecting other body functions. Novel mechanisms to stimulate GI motility and transit include blockade of cholecystokinin (CCKA receptors and stimulation of motilin receptors. Loxiglumide (and its dextroisomer, dexloxiglumide is the only CCKA receptor antagonist that is being evaluated clinically. This drug accelerates gastric emptying and colonic transit, thereby increasing the number of bowel movements in patients with chronic constipation. It is also able to reduce visceral perception. Erythromycin and related 14-member macrolide compounds inhibit the binding of motilin to its

  16. Blocking opioid receptors alters short-term feed intake and oro-sensorial preferences in weaned calves.

    Science.gov (United States)

    Montoro, C; Ipharraguerre, I R; Bach, A

    2012-05-01

    during the first 4 h after feeding and tended to prefer SF only after 6 h from feeding. Plasma glucose, insulin, and cholecystokinin concentrations were greater in FED than in FAS calves. Injection of naloxone decreased plasma glucagon-like peptide-1 (GLP-1) in NAL calves. Blocking opioid receptors reduced intake the first 2 h after naloxone injection in FED calves, altered oro-sensorial preferences, and reduced plasma GLP-1 concentration. In conclusion, the opioid peptide system may control short-term feed intake by modulating the oro-sensorial response triggered by feed consumption, especially when calves are fed ad libitum. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. A radiological study on the effect of postural changes after far meal on contraction of the gallbladder

    International Nuclear Information System (INIS)

    Choi, Il Bong; Park, Seog Hee; Yim, Jeong Ik; Kim, Jong Woo; Bahk, Yong Whee

    1982-01-01

    Oral cholecystography is one of the most reliable and widely used x-ray examination which enables us to observed not only morphological features of the gallbladder (GB) but also functioning state. It was disclosed that functional evaluation of the GB is mandatory to recognize such kinetic disorders of the viscus as acalculous cholecystitis or dyskinesia. For the purpose of functional evaluation, fat meal has been used traditionally. Recently, cholecystokinin (CCK) and ceruletide were introduced into clinical diagnosis of the GB, the usefulness of which we have confirmed. In the present study we have made an attempt at improving cholecystagogic effect of conventional fat meals(FM) such as whole milk and egg yolk by changing the posture of the examined from sitting up to right decubitus position after the ingestion of fat meal. The hypothesis involved in this study is that the presence of quantitatively more fat meal in the duodenum per unit time may result in more effective cholecystagogic action and such a setting would be created by enhancement of pyloric passage of fat meal by decubitus posturing. Clinical materials consisted of 280 normal oral GB series (136 males and 144 females) and they were divided into 4 equally numbered groups of milk sitting and milk decubitus and egg sitting and egg decubitus. Upon confirming satisfactory opacification of the GB 11 hours after the ingestion of 3 g of sodium ipodate or iopanoic acid either 2 pieces of medium sized hen's egg yolk were given. The xaminess were than allowed either sitting up comfortably on a bench or lying down on the right flank on a couch. After the ingestion of fat mean, x-ray was taken at the end of 30 minutes in all but the milk decubitus group in which x-rays were taken serially at the end of 5, 15, 30 and 60 minutes. The frontal area of each opacified GB was measured by using a planimeter and the contraction rate before and after fat meal stimulation was calculated by the following equation and

  18. Digestion and absorption of olive oil

    Directory of Open Access Journals (Sweden)

    Muriana, Francisco J.G.

    2004-03-01

    Full Text Available Olive oil is a monounsaturated (oleic acid-rich fat, mainly constituted by triglycerides (>98 % and minor compounds. As other macronutrients, dietary triglyceride digestion and absorption are a complex processes involving enzyme activities and physicochemical changes. In humans, hydrolysis of olive oil triglycerides begins in the stomach where it is catalyzed by an acid-stable gastric lipase. Triglyceride hydrolysis continues in the duodenum, by the synergetic actions of gastric and colipase-dependent pancreatic lipases and bile secretion. Gastric lipolysis leads to the hydrolysis of 10-30 % of ingested triglycerides, generating mainly diglycerides (DG and free fatty acids. This facilitates subsequent triglyceride hydrolysis by pancreatic lipase by allowing fat emulsification. Pancreatic lipase cleaves the sn-1 and sn-3 positions of triglycerides and/or DG obtaining sn-2 monoglycerides. Different lipid metabolites are quickly absorbed along the epithelial cells of the small intestine, acting olive oil as a supplier of oleic-acid-rich hydrocarbon skeletons for cellular synthesis of triglycerides and phospholipids. Absorption of mostly minor compounds of (extra virgin olive oil takes place in the small intestine, as native or derivatives. Compared to diets rich in polyunsaturated fatty acids, olive oil suppresses gastric acid secretion and is a potent releasing factor of cholecystokinin peptide, which consistently indicate that the consumption of olive oil might be beneficial in digestive diseases.El aceite de oliva es una grasa monoinsaturada (rica en ácido oleico, compuesta por triglicéridos (>98% y componentes menores. En los procesos de digestión y absorción de los triglicéridos participan enzimas y se producen cambios fisicoquímicos. La lipasa gástrica es el componente mayoritario de la actividad lipolítica gástrica en humanos. La hidrólisis de los triglicéridos continúa en el duodeno, por la acción sinérgica de las lipasas g

  19. Cholecystokinetic cholecysto-choledochography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Han Kyu; Bahk, Yong Whee [Catholic Medical College, Seoul (Korea, Republic of)

    1980-12-15

    Oral cholecystography is a reliable and the most popular clinical examination. The examinations is not suitable for morphological study of the gallbladder but also efficient in diagnosing acalculous cholecystitis and cystic duct syndrome and some ill defined functional disorders. For the functional evaluation of the gallbladder fat meal stimulation has been used traditionally. Recently, however, potent cholecystagogues called cholecystokinin (CCK) and ceruletide were introduced in the radiological examination of the gallbladder stimulating acute interest in research of acalculous cholecystitis and cystic duct syndrome. The present study has been undertaken to test both experimentally and clinically the cholecystokinetic effects of CCK and ceruletide. In addition, the study has been designed to test if pharmacological constriction of the Oddi sphincter with morphine in animal and prostigmine in human subjects promotes visualization of the common bile duct and hopefully the common hepatic duct. Seen (7) mongrel dogs weighing 10 kg were anesthesized with Pentothal sodium (20mg/kg body wt) in the evening allowed to swallow 2 g of lopanoic acid (Telepaque) per os. Twelve hours later in the next morning dogs were radiographed of their upper abdomen in LAO. Upon confirming optimal opacification of the GB 0.03 {mu} g/kg of CCK was injected intravenously to each of the 7 mongrel dogs for the test of contraction-rate and contraction-time of the gallbladder. The same test was repeated after injecting 10 mg/dog of morphine to strict the Oddi sphincter. The clinical materials consisted of 30 normal human subjects and 60 patients with biliary symptoms and signs. Those with abnormal upper gastrointestinal series and abnormal function tests of the pancreas were excluded from the materials. We injected the same amount of CCK and studied the contraction rate and time with an emphasis on acalculous cholecystitis and cystic duct syndrome and some ill-defined functional disorder. In

  20. A radiological study on the effect of postural changes after far meal on contraction of the gallbladder

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Il Bong; Park, Seog Hee; Yim, Jeong Ik; Kim, Jong Woo; Bahk, Yong Whee [Catholic Medical College, Seoul (Korea, Republic of)

    1982-06-15

    Oral cholecystography is one of the most reliable and widely used x-ray examination which enables us to observed not only morphological features of the gallbladder (GB) but also functioning state. It was disclosed that functional evaluation of the GB is mandatory to recognize such kinetic disorders of the viscus as acalculous cholecystitis or dyskinesia. For the purpose of functional evaluation, fat meal has been used traditionally. Recently, cholecystokinin (CCK) and ceruletide were introduced into clinical diagnosis of the GB, the usefulness of which we have confirmed. In the present study we have made an attempt at improving cholecystagogic effect of conventional fat meals(FM) such as whole milk and egg yolk by changing the posture of the examined from sitting up to right decubitus position after the ingestion of fat meal. The hypothesis involved in this study is that the presence of quantitatively more fat meal in the duodenum per unit time may result in more effective cholecystagogic action and such a setting would be created by enhancement of pyloric passage of fat meal by decubitus posturing. Clinical materials consisted of 280 normal oral GB series (136 males and 144 females) and they were divided into 4 equally numbered groups of milk sitting and milk decubitus and egg sitting and egg decubitus. Upon confirming satisfactory opacification of the GB 11 hours after the ingestion of 3 g of sodium ipodate or iopanoic acid either 2 pieces of medium sized hen's egg yolk were given. The xaminess were than allowed either sitting up comfortably on a bench or lying down on the right flank on a couch. After the ingestion of fat mean, x-ray was taken at the end of 30 minutes in all but the milk decubitus group in which x-rays were taken serially at the end of 5, 15, 30 and 60 minutes. The frontal area of each opacified GB was measured by using a planimeter and the contraction rate before and after fat meal stimulation was calculated by the following equation and

  1. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    Full Text Available Three hundred one-day-old male broiler chickens (Ross-308 were fed corn-soybean basal diets containing non-starch polysaccharide (NSP enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI and average daily gain (ADG were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05. Feed-to-gain ratio (FGR was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05. Apparent digestibility of crude protein (ADCP was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05. Cholecystokinin (CCK level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05, but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05, respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05. However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05. The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05. Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  2. Cholecystokinetic cholecysto-choledochography

    International Nuclear Information System (INIS)

    Park, Han Kyu; Bahk, Yong Whee

    1980-01-01

    Oral cholecystography is a reliable and the most popular clinical examination. The examinations is not suitable for morphological study of the gallbladder but also efficient in diagnosing acalculous cholecystitis and cystic duct syndrome and some ill defined functional disorders. For the functional evaluation of the gallbladder fat meal stimulation has been used traditionally. Recently, however, potent cholecystagogues called cholecystokinin (CCK) and ceruletide were introduced in the radiological examination of the gallbladder stimulating acute interest in research of acalculous cholecystitis and cystic duct syndrome. The present study has been undertaken to test both experimentally and clinically the cholecystokinetic effects of CCK and ceruletide. In addition, the study has been designed to test if pharmacological constriction of the Oddi sphincter with morphine in animal and prostigmine in human subjects promotes visualization of the common bile duct and hopefully the common hepatic duct. Seen (7) mongrel dogs weighing 10 kg were anesthesized with Pentothal sodium (20mg/kg body wt) in the evening allowed to swallow 2 g of lopanoic acid (Telepaque) per os. Twelve hours later in the next morning dogs were radiographed of their upper abdomen in LAO. Upon confirming optimal opacification of the GB 0.03 μ g/kg of CCK was injected intravenously to each of the 7 mongrel dogs for the test of contraction-rate and contraction-time of the gallbladder. The same test was repeated after injecting 10 mg/dog of morphine to strict the Oddi sphincter. The clinical materials consisted of 30 normal human subjects and 60 patients with biliary symptoms and signs. Those with abnormal upper gastrointestinal series and abnormal function tests of the pancreas were excluded from the materials. We injected the same amount of CCK and studied the contraction rate and time with an emphasis on acalculous cholecystitis and cystic duct syndrome and some ill-defined functional disorder. In

  3. EndoBarrier gastrointestinal liner. Delineation of underlying mechanisms and clinical effects.

    Science.gov (United States)

    Rohde, Ulrich

    2016-11-01

    Bariatric surgery (e.g. Roux-en-Y gastric bypass (RYGB)) has proven the most effective way of achieving sustainable weight losses and remission of type 2 diabetes (T2D). Studies indicate that the effectiveness of RYGB is mediated by an altered gastrointestinal tract anatomy, which in particular favours release of the gut incretin hormone glucagon-like peptide-1 (GLP-1). The EndoBarrier gastrointestinal liner or duodenal-jejunal bypass sleeve (DJBS) is an endoscopic deployable minimally invasive and fully reversible technique designed to mimic the bypass component of the RYGB. Not only GLP-1 is released when nutrients enter the gastrointestinal tract. Cholecystokinin (CCK), secreted from duodenal I cells, elicits gallbladder emptying. Traditionally, bile acids are thought of as essential elements for fat absorption. However, growing evidence suggests that bile acids have additional effects in metabolism. Thus, bile acids appear to increase GLP-1 secretion via activation of the TGR5 receptor on the intestinal L cell. Recently FXR receptors were postulated to contribute to GLP-1 secretion too. Furthermore, metformin has been shown to increase circulating GLP-1 levels but although the exact mechanism is not fully elucidated it may involve metformin-induced inhibition of bile acid reuptake from the small intestines. Small-sized studies reported varying degrees of weight loss and, in some, improvement of glucose metabolism. Therefore, the objectives of this thesis were to collect existing information on the DJBS in order to evaluate clinical efficacy and safety (study I and II). Furthermore, since the endocrine impact of the DJBS is not fully elucidated, and DJBS is expected to mimic RYGB, we investigated postprandial metabolic changes following 26 weeks of DJBS treatment in ten obese subjects with normal glucose tolerance (NGT) and nine matched patients with T2D (study III). Finally, we studied the single and combined effects of CCK induced gallbladder emptying and