WorldWideScience

Sample records for cholangiocarcinoma cell invasion

  1. Disruption of endocytic trafficking protein Rab7 impairs invasiveness of cholangiocarcinoma cells.

    Science.gov (United States)

    Suwandittakul, Nantana; Reamtong, Onrapak; Molee, Pattamaporn; Maneewatchararangsri, Santi; Sutherat, Maleerat; Chaisri, Urai; Wongkham, Sopit; Adisakwattana, Poom

    2017-09-07

    Alterations and mutations of endo-lysosomal trafficking proteins have been associated with cancer progression. Identification and characterization of endo-lysosomal trafficking proteins in invasive cholangiocarcinoma (CCA) cells may benefit prognosis and drug design for CCA. To identify and characterize endo-lysosomal trafficking proteins in invasive CCA. A lysosomal-enriched fraction was isolated from a TNF-α induced invasive CCA cell line (KKU-100) and uninduced control cells and protein identification was performed with nano-LC MS/MS. Novel lysosomal proteins that were upregulated in invasive CCA cells were validated by real-time RT-PCR. We selected Rab7 for further studies of protein level using western blotting and subcellular localization using immunofluorescence. The role of Rab7 in CCA invasion was determined by siRNA gene knockdown and matrigel transwell assay. Rab7 mRNA and protein were upregulated in invasive CCA cells compared with non-treated controls. Immunofluorescence studies demonstrated that Rab7 was expressed predominantly in invasive CCA cells and was localized in the cytoplasm and lysosomes. Suppression of Rab7 translation significantly inhibited TNF-α-induced cell invasion compared to non-treated control (p= 0.044). Overexpression of Rab7 in CCA cells was associated with cell invasion, supporting Rab7 as a novel candidate for the development of diagnostic and therapeutic strategies for CCA.

  2. Clonorchis sinensis infestation promotes three-dimensional aggregation and invasion of cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jihee Won

    Full Text Available Numerous experimental and epidemiological studies have demonstrated a correlation between Clonorchis sinensis (C. sinensis infestation and cholangiocarcinoma (CCA. However, the role of C. sinensis in the increased invasiveness and proliferation involved in the malignancy of CCA has not been addressed yet. Here, we investigated the possibility that C. sinensis infestation promotes expression of focal and cell-cell adhesion proteins in CCA cells and secretion of matrix metalloproteinases (MMPs. Adhesion proteins help maintain cell aggregates, and MMPs promote the three-dimensional invasion of cells into the neighboring extracellular matrix (ECM. Using a novel microfluidic assay, we quantitatively addressed the role of excretory-secretory products (ESPs gradients from C. sinensis in promoting the invasion of cells into the neighboring ECM.

  3. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma.

    Science.gov (United States)

    Tan, Xin-Yu; Chang, Shi; Liu, Wei; Tang, Hui-Huan

    2014-03-01

    To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (philar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.

  4. Current research in perineural invasion of cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Deng Xi-Yun

    2010-03-01

    Full Text Available Abstract Background Perineural invasion is a common path for cholangiocarcinoma (CCA metastasis, and it is highly correlated with postoperative recurrence and poor prognosis. It is often an early event in a disease that is commonly diagnosed in advanced stages, and thus it could offer a timely therapeutic and diagnostic target if better understood. This article systematically reviews the progress of CCA neural invasion-related molecules. Methods Studies were identified by searching MEDLINE and PubMed databases for articles from January 1990 to December 2009, using the keywords "cholangiocarcinoma," "perineural invasion," "nerve growth factor"(NGF, "neural cell adhesion molecule" (NCAM, "matrix metalloproteinase"(MMP, "neurotransmitter," "acetylcholine" (Ach, and "transforming growth factor" (TGF." Additional papers and book chapters were identified by a manual search of references from the key articles. Results From above we found that the molecules NGF, NCAM, MMP, Ach and TGF may have prognostic significance in, and offer clues to the mechanism of CCA neural invasion. Conclusions Cholangiocarcinoma's increasing worldwide incidence is especially poignant in view of both the lacking effective therapies, and the fact that it is commonly diagnosed in advanced stages. As CCA neural invasion often appears early, more complete characterization of its molecular pathology could lead to the identification of targets for the diagnosis and therapy of this devastating malignancy.

  5. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway.

    Science.gov (United States)

    Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo

    2017-06-01

    Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Haiquan Sang

    Full Text Available Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  7. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Science.gov (United States)

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2013-01-01

    Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  8. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  9. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner

    Directory of Open Access Journals (Sweden)

    Wen-Tao Wang

    2016-11-01

    Full Text Available Abstract Background Long non-coding RNAs (lncRNAs are known to play important roles in different cell contexts, including cancers. However, little is known about lncRNAs in cholangiocarcinoma (CCA, a cholangiocyte malignancy with poor prognosis, associated with chronic inflammation and damage to the biliary epithelium. The aim of the study is to identify if any lncRNA might associate with inflammation or oxidative stress in CCA and regulate the disease progression. Methods In this study, RNA-seqs datasets were used to identify aberrantly expressed lncRNAs. Small interfering RNA and overexpressed plasmids were used to modulate the expression of lncRNAs, and luciferase target assay RNA immunoprecipitation (RIP was performed to explore the mechanism of miRNA-lncRNA sponging. Results We firstly analyzed five available RNA-seqs datasets to investigate aberrantly expressed lncRNAs which might associate with inflammation or oxidative stress. We identified that two lncRNAs, H19 and HULC, were differentially expressed among all the samples under the treatment of hypoxic or inflammatory factors, and they were shown to be stimulated by short-term oxidative stress responses to H2O2 and glucose oxidase in CCA cell lines. Further studies revealed that these two lncRNAs promoted cholangiocyte migration and invasion via the inflammation pathway. H19 and HULC functioned as competing endogenous RNAs (ceRNAs by sponging let-7a/let-7b and miR-372/miR-373, respectively, which activate pivotal inflammation cytokine IL-6 and chemokine receptor CXCR4. Conclusions Our study revealed that H19 and HULC, up-regulated by oxidative stress, regulate CCA cell migration and invasion by targeting IL-6 and CXCR4 via ceRNA patterns of sponging let-7a/let-7b and miR-372/miR-373, respectively. The results suggest that these lncRNAs might be the chief culprits of CCA pathogenesis and progression. The study provides new insight into the mechanism linking lncRNA function with CCA and

  10. Prognostic significance of macrophage invasion in hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Atanasov, Georgi; Hau, Hans-Michael; Dietel, Corinna; Benzing, Christian; Krenzien, Felix; Brandl, Andreas; Wiltberger, Georg; Matia, Ivan; Prager, Isabel; Schierle, Katrin; Robson, Simon C.; Reutzel-Selke, Anja; Pratschke, Johann; Schmelzle, Moritz; Jonas, Sven

    2015-01-01

    Tumor-associated macrophages (TAMs) promote tumor progression and have an effect on survival in human cancer. However, little is known regarding their influence on tumor progression and prognosis in human hilar cholangiocarcinoma. We analyzed surgically resected tumor specimens of hilar cholangiocarcinoma (n = 47) for distribution and localization of TAMs, as defined by expression of CD68. Abundance of TAMs was correlated with clinicopathologic characteristics, tumor recurrence and patients’ survival. Statistical analysis was performed using SPSS software. Patients with high density of TAMs in tumor invasive front (TIF) showed significantly higher local and overall tumor recurrence (both ρ < 0.05). Furthermore, high density of TAMs was associated with decreased overall (one-year 83.6 % vs. 75.1 %; three-year 61.3 % vs. 42.4 %; both ρ < 0.05) and recurrence-free survival (one-year 93.9 % vs. 57.4 %; three-year 59.8 % vs. 26.2 %; both ρ < 0.05). TAMs in TIF and tumor recurrence, were confirmed as the only independent prognostic variables in the multivariate survival analysis (all ρ < 0.05). Overall survival and recurrence free survival of patients with hilar cholangiocarcinoma significantly improved in patients with low levels of TAMs in the area of TIF, when compared to those with a high density of TAMs. These observations suggest their utilization as valuable prognostic markers in routine histopathologic evaluation, and might indicate future therapeutic approaches by targeting TAMs

  11. XIAP antagonist embelin inhibited proliferation of cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Cody J Wehrkamp

    Full Text Available Cholangiocarcinoma cells are dependent on antiapoptotic signaling for survival and resistance to death stimuli. Recent mechanistic studies have revealed that increased cellular expression of the E3 ubiquitin-protein ligase X-linked inhibitor of apoptosis (XIAP impairs TRAIL- and chemotherapy-induced cytotoxicity, promoting survival of cholangiocarcinoma cells. This study was undertaken to determine if pharmacologic antagonism of XIAP protein was sufficient to sensitize cholangiocarcinoma cells to cell death. We employed malignant cholangiocarcinoma cell lines and used embelin to antagonize XIAP protein. Embelin treatment resulted in decreased XIAP protein levels by 8 hours of treatment with maximal effect at 16 hours in KMCH and Mz-ChA-1 cells. Assessment of nuclear morphology demonstrated a concentration-dependent increase in nuclear staining. Interestingly, embelin induced nuclear morphology changes as a single agent, independent of the addition of TNF-related apoptosis inducing ligand (TRAIL. However, caspase activity assays revealed that increasing embelin concentrations resulted in slight inhibition of caspase activity, not activation. In addition, the use of a pan-caspase inhibitor did not prevent nuclear morphology changes. Finally, embelin treatment of cholangiocarcinoma cells did not induce DNA fragmentation or PARP cleavage. Apoptosis does not appear to contribute to the effects of embelin on cholangiocarcinoma cells. Instead, embelin caused inhibition of cell proliferation and cell cycle analysis indicated that embelin increased the number of cells in S and G2/M phase. Our results demonstrate that embelin decreased proliferation in cholangiocarcinoma cell lines. Embelin treatment resulted in decreased XIAP protein expression, but did not induce or enhance apoptosis. Thus, in cholangiocarcinoma cells the mechanism of action of embelin may not be dependent on apoptosis.

  12. Downregulation of the expression of HDGF attenuates malignant biological behaviors of hilar cholangiocarcinoma cells.

    Science.gov (United States)

    Liu, Yanfeng; Sun, Jingxian; Yang, Guangyun; Liu, Zhaojian; Guo, Sen; Zhao, Rui; Xu, Kesen; Wu, Xiaopeng; Zhang, Zhaoyang

    2015-09-01

    Hepatoma-derived growth factor (HDGF) has been reported to be a potential predictive and prognostic marker for several types of cancer and important in malignant biological behaviors. However, its role in human hilar cholangiocarcinoma remains to be elucidated. Our previous study demonstrated that high expression levels of HDGF in hilar cholangiocarcinoma tissues correlates with tumor progression and patient outcome. The present study aimed to elucidate the detailed functions of the HDGF protein. This was performed by downregulating the protein expression of HDGF in the FRH0201 hilar cholangiocarcinoma cell line by RNA interference (RNAi) in vitro, and revealed that downregulation of the HDGF protein significantly inhibited the malignant biological behavior of the FRH0201 cells. In addition, further investigation revealed that downregulation of the protein expression of HDGF significantly decreased the secretion of vascular endothelial growth factor, which may be the mechanism partially responsible for the inhibition of malignant biological behaviors. These findings demonstrated that HDGF is important in promoting malignant biological behaviors, including proliferation, migration and invasion of hilar cholangiocarcinoma FRH0201 cells. Inhibition of the expression of HDGF downregulated the malignant biological behaviors, suggesting that downregulation of the protein expression of HDGF by RNAi may be a novel therapeutic approach to inhibit the progression of hilar cholangiocarcinoma.

  13. Proteomic Studies of Cholangiocarcinoma and Hepatocellular Carcinoma Cell Secretomes

    Directory of Open Access Journals (Sweden)

    Chantragan Srisomsap

    2010-01-01

    Full Text Available Cholangiocarcinoma (CCA and hepatocellular carcinoma (HCC occur with relatively high incidence in Thailand. The secretome, proteins secreted from cancer cells, are potentially useful as biomarkers of the diseases. Proteomic analysis was performed on the secreted proteins of cholangiocarcinoma (HuCCA-1 and hepatocellular carcinoma (HCC-S102, HepG2, SK-Hep-1, and Alexander cell lines. The secretomes of the five cancer cell lines were analyzed by SDS-PAGE combined with LC/MS/MS. Sixty-eight proteins were found to be expressed only in HuCCA-1. Examples include neutrophil gelatinase-associated lipocalin (lipocalin 2, laminin 5 beta 3, cathepsin D precursor, desmoplakin, annexin IV variant, and annexin A5. Immunoblotting was used to confirm the presence of lipocalin 2 in conditioned media and cell lysate of 5 cell lines. The results showed that lipocalin 2 was a secreted protein which is expressed only in the conditioned media of the cholangiocarcinoma cell line. Study of lipocalin 2 expression in different types of cancer and normal tissues from cholangiocarcinoma patients showed that lipocalin 2 was expressed only in the cancer tissues. We suggest that lipocalin 2 may be a potential biomarker for cholangiocarcinoma.

  14. Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells

    DEFF Research Database (Denmark)

    Raggi, Chiara; Gammella, Elena; Correnti, Margherita

    2017-01-01

    Cholangiocarcinoma (CCA) is a devastating liver tumour arising from malignant transformation of bile duct epithelial cells. Cancer stem cells (CSC) are a subset of tumour cells endowed with stem-like properties, which play a role in tumour initiation, recurrence and metastasis. In appropriate con...... compartment as a novel metabolic factor involved in CCA growth, may have implications for a better therapeutic approach....

  15. Expression and clinical significance of PIWIL2 in hilar cholangiocarcinoma tissues and cell lines.

    Science.gov (United States)

    Chen, Y J; Xiong, X F; Wen, S Q; Tian, L; Cheng, W L; Qi, Y Q

    2015-06-26

    The objective of this study was to explore the relationship between PIWI-like protein 2 (PIWIL2) and clinicopathological charac-teristics and prognosis after radical resection. To accomplish this, we analyzed PIWIL2 expression in hilar cholangiocarcinoma tissues and cell lines. PIWIL2 expression was detected by immunohistochemistry in 41 hilar cholangiocarcinoma samples and 10 control tissues. Western blotting and immunocytofluorescence were used to investigate PIWIL2 expression in the cholangiocarcinoma cell line QBC939 and the bile duct epithelial cell line HIBEpic. Univariate and multivariate surviv-al analyses were performed using the Kaplan-Meier method for hilar cholangiocarcinoma patients who underwent radical resection. PIWIL2 expression was significantly higher in the hilar cholangiocarcinoma tissues and QBC939 cells than in control tissues and HIBEpic cells, respectively (P hilar cholangiocarcinoma (P hilar cholangiocarcinoma.

  16. Synergistic Anticancer Effects of Vorinostat and Epigallocatechin-3-Gallate against HuCC-T1 Human Cholangiocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Tae Won Kwak

    2013-01-01

    Full Text Available The aim of this study was to investigate the effect of the combination of vorinostat and epigallocatechin-3-gallate against HuCC-T1 human cholangiocarcinoma cells. A novel chemotherapy strategy is required as cholangiocarcinomas rarely respond to conventional chemotherapeutic agents. Both vorinostat and EGCG induce apoptosis and suppress invasion, migration, and angiogenesis of tumor cells. The combination of vorinostat and EGCG showed synergistic growth inhibitory effects and induced apoptosis in tumor cells. The Bax/Bcl-2 expression ratio and caspase-3 and -7 activity increased, but poly (ADP-ribose polymerase expression decreased when compared to treatment with each agent alone. Furthermore, invasion, matrix metalloproteinase (MMP expression, and migration of tumor cells decreased following treatment with the vorinostat and EGCG combination compared to those of vorinostat or EGCG alone. Tube length and junction number of human umbilical vein endothelial cells (HUVECs decreased as well as vascular endothelial growth factor expression following vorinostat and EGCG combined treatment. These results indicate that the combination of vorinostat and EGCG had a synergistic effect on inhibiting tumor cell angiogenesis potential. We suggest that the combination of vorinostat and EGCG is a novel option for cholangiocarcinoma chemotherapy.

  17. Vitamin D3 regulates cell viability in gastric cancer and cholangiocarcinoma

    OpenAIRE

    Baek, Sungmin; Lee, Young-Suk; Shim, Hye-Eun; Yoon, Sik; Baek, Sun-Yong; Kim, Bong-Seon; Oh, Sae-Ock

    2011-01-01

    A low serum level of vitamin D has been associated with an increased incidence of gastrointestinal tract cancers. However, the effects of vitamin D3 have not been investigated in gastric cancer and cholangiocarcinoma. In the present study, we found that vitamin D3 treatment significantly suppressed the viability of gastric cancer and cholangiocarcinoma cells. Moreover, vitamin D3 had a synergistic effect with other anti-cancer drugs, such as paclitaxel, adriamycin, and vinblastine, for suppre...

  18. A functional microRNA library screen reveals miR-410 as a novel anti-apoptotic regulator of cholangiocarcinoma

    International Nuclear Information System (INIS)

    Palumbo, Tiziana; Poultsides, George A.; Kouraklis, Grigorios; Liakakos, Theodore; Drakaki, Alexandra; Peros, George; Hatziapostolou, Maria; Iliopoulos, Dimitrios

    2016-01-01

    Cholangiocarcinoma is characterized by late diagnosis and a poor survival rate. MicroRNAs have been involved in the pathogenesis of different cancer types, including cholangiocarcinoma. Our aim was to identify novel microRNAs regulating cholangiocarcinoma cell growth in vitro and in vivo. A functional microRNA library screen was performed in human cholangiocarcinoma cells to identify microRNAs that regulate cholangiocarcinoma cell growth. Real-time PCR analysis evaluated miR-9 and XIAP mRNA levels in cholangiocarcinoma cells and tumors. The screen identified 21 microRNAs that regulated >50 % cholangiocarcinoma cell growth. MiR-410 was identified as the top suppressor of growth, while its overexpression significantly inhibited the invasion and colony formation ability of cholangiocarcinoma cells. Bioinformatics analysis revealed that microRNA-410 exerts its effects through the direct regulation of the X-linked inhibitor of apoptosis protein (XIAP). Furthermore, overexpression of miR-410 significantly reduced cholangiocarcinoma tumor growth in a xenograft mouse model through induction of apoptosis. In addition, we identified an inverse relationship between miR-410 and XIAP mRNA levels in human cholangiocarcinomas. Taken together, our study revealed a novel microRNA signaling pathway involved in cholangiocarcinoma and suggests that manipulation of the miR-410/XIAP pathway could have a therapeutic potential for cholangiocarcinoma. The online version of this article (doi:10.1186/s12885-016-2384-0) contains supplementary material, which is available to authorized users

  19. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS.

    Directory of Open Access Journals (Sweden)

    Xianzhi Qu

    Full Text Available The tumor cells have some metabolic characteristics of the original tissues, and the metabolism of the tumor cells is closely related to autophagy. However, the mechanism of autophagy and metabolism in chemotherapeutic drug resistance is still poorly understood. In this study, we investigated the role and mechanism of autophagy and glucose metabolism in chemotherapeutic drug resistance by using cholangiocarcinoma QBC939 cells with primary cisplatin resistance and hepatocellular carcinoma HepG2 cells. We found that QBC939 cells with cisplatin resistance had a higher capacity for glucose uptake, consumption, and lactic acid generation, and higher activity of the pentose phosphate pathway compared with HepG2 cells, and the activity of PPP was further increased after cisplatin treatment in QBC939 cells. It is suggested that there are some differences in the metabolism of glucose in hepatocellular carcinoma and cholangiocarcinoma cells, and the activation of PPP pathway may be related to the drug resistance. Through the detection of autophagy substrates p62 and LC3, found that QBC939 cells have a higher flow of autophagy, autophagy inhibitor chloroquine can significantly increase the sensitivity of cisplatin in cholangiocarcinoma cells compared with hepatocellular carcinoma HepG2 cells. The mechanism may be related to the inhibition of QBC939 cells with higher activity of the PPP, the key enzyme G6PDH, which reduces the antioxidant capacity of cells and increases intracellular ROS, especially mitochondrial ROS. Therefore, we hypothesized that autophagy and the oxidative stress resistance mediated by glucose metabolism may be one of the causes of cisplatin resistance in cholangiocarcinoma cells. It is suggested that according to the metabolism characteristics of tumor cells, inhibition of autophagy lysosome pathway with chloroquine may be a new route for therapeutic agents against cholangiocarcinoma.

  20. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells

    OpenAIRE

    Kwak, Tae Won; Kim, Do Hyung; Jeong, Young-Il; Kang, Dae Hwan

    2015-01-01

    Background The aim of this study is to evaluate the anticancer activity of vorinostat-incorporated nanoparticles (vorinostat-NPs) against HuCC-T1 human cholangiocarcinoma cells. Vorinostat-NPs were fabricated by a nanoprecipitation method using poly(dl-lactide-co-glycolide)/poly(ethylene glycol) copolymer. Results Vorinostat-NPs exhibited spherical shapes with sizes

  1. Progranulin modulates cholangiocarcinoma cell proliferation, apoptosis, and motility via the PI3K/pAkt pathway

    Directory of Open Access Journals (Sweden)

    Daya M

    2018-01-01

    Full Text Available Minerva Daya,1–3 Watcharin Loilome,1,3 Anchalee Techasen,3,4 Malinee Thanee,3 Prakasit Sa-Ngiamwibool,4,5 Attapol Titapun,5,6 Puangrat Yongvanit,3 Nisana Namwat1,31Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; 2Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Sampaloc, Manila, Philippines; 3Cholangiocarcinoma Research Institute, 4Faculty of Associated Medical Science, 5Department of Pathology, 6Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand Abstract: Progranulin (PGRN is a growth factor normally expressed in rapidly cycling epithelial cells for growth, differentiation, and motility. Several studies have shown the association of PGRN overexpression with the progression of numerous malignancies, including cholangiocarcinoma (CCA. However, the underlying mechanisms on how PGRN modulates CCA cell proliferation and motility is not clear. In this study, we investigated the prognostic significance of PGRN expression in human CCA tissue and the mechanisms of PGRN modulation of CCA cell proliferation and motility. We found that CCA tissues with high PGRN expression were correlated with poor prognosis and likelihood of metastasis. PGRN knockdown KKU-100 and KKU-213 cells demonstrated a reduced rate of proliferation and colony formation and decreased levels of phosphatidyl inositol-3-kinase (PI3K and phosphorylated Akt (pAkt proteins. Accumulation of cells at the G1 phase was observed and was accompanied by a reduction of cyclin D1 and CDK4 protein levels. Knockdown cells also induced apoptosis by increasing the Bax-to-Bcl-2 ratio. Increased cell apoptosis was confirmed by annexin V-FITC/PI staining. Moreover, suppression of PGRN reduced CCA cell migration and invasion in vitro. Investigating the biomarkers in epithelial–mesenchymal transition (EMT revealed a decrease in the expression of vimentin, snail, and metalloproteinase-9. In

  2. [A Case of Intrahepatic Cholangiocarcinoma with Invasion to the Transverse Colon and Gallbladder, Forming an Intra-Tumor Abscess].

    Science.gov (United States)

    Okada, Nami; Kametaka, Hisashi; Koyama, Takashi; Seike, Kazuhiro; Makino, Hironobu; Fukada, Tadaomi; Sato, Yutaka; Miyazaki, Masaru

    2015-11-01

    An 81-year-old man was referred to our institution for evaluation of high fever and a liver tumor that had been detected by ultrasonography. Computed tomography revealed a low-density mass with peripheral ring-like enhancement in S5 of the liver. The liver mass was in contact with the gallbladder, and the boundary between the mass and the gallbladder was unclear. On the suspicion of liver abscess, percutaneous transhepatic drainage was performed. The cavity of the abscess communicated with the gallbladder. Because the cavity had no tendency to reduce in size, we performed surgical resection under a preoperative diagnosis of liver abscess or primary liver carcinoma invading to the gallbladder. Intraoperative findings revealed a liver tumor invading the transverse colon and gallbladder. Subsegmentectomy of S4a and S5 of the liver combined with gallbladder and transverse colon resection was performed. Histopathological findings indicated the growth of a mass forming type intrahepatic cholangiocarcinoma with invasion to the transverse colon and gallbladder, and the pathological stage of the tumor was pT3N0M0, fStage Ⅲ. Thus far, the patient is alive without recurrence 9 months after surgery. Here, we report an extremely rare case of intrahepatic cholangiocarcinoma that invaded other organs and was associated with an intra-tumor abscess.

  3. Effect of leptin on proliferation and apoptosis of cholangiocarcinoma QBC939 cells

    Directory of Open Access Journals (Sweden)

    DAI Kai

    2013-03-01

    Full Text Available ObjectiveTo determine whether leptin can exert anti-proliferative and pro-apoptotic effects on human cholangiocarcinoma cells and to investigate the underlying molecular mechanisms. MethodsHuman cholangiocarcinoma QBC939 cells were cultured and treated with different concentrations of leptin. Changes in the proliferation rate were measured by the MTT assay. Changes in cell cycle and in the apoptosis incidence rate were detected by flow cytometry. Changes in cyclin D1, bax and bcl-2 gene expression were detected by measuring mRNA levels by real-time quantitative reverse transcription-polymerase chain reaction (qPCR. Changes in caspase-3 protease activity were detected by fluorometric assay. ResultsLeptin treatment significantly increased the proliferation rate of QBC939 cells in a dose- and time-dependent manner. Compared to untreated QBC939 cells, leptin treatment led to significantly more G0/G1 to S phase transition and significantly lower apoptosis rate. In addition, leptin-treated QBC939 cells showed enhanced mRNA expression of cyclin D1 and bcl-2, but decreased mRNA expression of bax. The leptin treatment also led to decreased caspase-3 activity. ConclusionLeptin promotes S to G0/G1 phase transition and proliferation, but inhibits apoptosis, of human cholangiocarcinoma cells in vitro.

  4. Suppression of thymosin β10 increases cell migration and metastasis of cholangiocarcinoma

    International Nuclear Information System (INIS)

    Sribenja, Sirinapa; Sawanyawisuth, Kanlayanee; Kraiklang, Ratthaphol; Wongkham, Chaisiri; Vaeteewoottacharn, Kulthida; Obchoei, Sumalee; Yao, Qizhi; Wongkham, Sopit; Chen, Changyi

    2013-01-01

    Thymosin β10 (Tβ10) expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of Tβ10 in liver fluke-associated cholangiocarcinoma (CCA) are not fully understood. In this study, we investigated the expression of Tβ10 in CCA tumor tissues and cell lines as well as molecular mechanisms of Tβ10 in tumor metastasis of CCA cell lines. Tβ10 expression was determined by real time RT-PCR or immunocytochemistry. Tβ10 silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell migration was assessed using modified Boyden chamber and wound healing assay. The effect of silencing Tβ10 on CCA tumor metastasis was determined in nude mice. Phosphorylation of ERK1/2 and the expression of EGR1, Snail and matrix metalloproteinases (MMPs) were studied. Ten pairs of CCA tissues (primary and metastatic tumors) and 5 CCA cell lines were studied. With real time RT-PCR and immunostaining analysis, Tβ10 was highly expressed in primary tumors of CCA; while it was relatively low in the metastatic tumors. Five CCA cell lines showed differential expression levels of Tβ10. Silence of Tβ10 significantly increased cell migration, invasion and wound healing of CCA cells in vitro; reversely, overexpression of Tβ10 reduced cell migration compared with control cells (P<0.05). In addition, silence of Tβ10 in CCA cells increased liver metastasis in a nude mouse model of CCA implantation into the spleen. Furthermore, silence of Tβ10 activated ERK1/2 and increased the expression of Snail and MMPs in CCA cell lines. Ras-GTPase inhibitor, FPT inhibitor III, effectively blocked Tβ10 silence-associated ERK1/2 activation, Snail expression and cell migration. Low expression of Tβ10 is associated with metastatic phenotype of CCA in vitro and in vivo, which may be mediated by the activation of Ras, ERK1/2 and upregulation of Snail and MMPs. This study suggests a new molecular pathway of CCA pathogenesis and a novel strategy to

  5. CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway

    OpenAIRE

    Jung, Dawoon E.; Park, Soo Been; Kim, Kahee; Kim, Chanyang; Song, Si Young

    2017-01-01

    Cholangiocarcinoma is a devastating malignancy with fatal complications that exhibits low response and resistance to chemotherapy. Here, we evaluated the anticancer effects of CG200745, a novel histone deacetylase inhibitor, either alone or in combination with standard chemotherapy drugs in cholangiocarcinoma cells. CG200745 dose-dependently reduced the viability of cholangiocarcinoma cells in vitro and decreased tumour volume and weight in a xenograft model. Administering CG200745 along with...

  6. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells.

    Science.gov (United States)

    Kwak, Tae Won; Kim, Do Hyung; Jeong, Young-Il; Kang, Dae Hwan

    2015-09-26

    The aim of this study is to evaluate the anticancer activity of vorinostat-incorporated nanoparticles (vorinostat-NPs) against HuCC-T1 human cholangiocarcinoma cells. Vorinostat-NPs were fabricated by a nanoprecipitation method using poly(DL-lactide-co-glycolide)/poly(ethylene glycol) copolymer. Vorinostat-NPs exhibited spherical shapes with sizes Vorinostat-NPs have anticancer activity similar to that of vorinostat in vitro. Vorinostat-NPs as well as vorinostat itself increased acetylation of histone-H3. Furthermore, vorinostat-NPs have similar effectiveness in the suppression or expression of histone deacetylase, mutant type p53, p21, and PARP/cleaved caspase-3. However, vorinostat-NPs showed improved antitumor activity against HuCC-T1 cancer cell-bearing mice compared to vorinostat, whereas empty nanoparticles had no effect on tumor growth. Furthermore, vorinostat-NPs increased the expression of acetylated histone H3 in tumor tissue and suppressed histone deacetylase (HDAC) expression in vivo. The improved antitumor activity of vorinostat-NPs can be explained by molecular imaging studies using near-infrared (NIR) dye-incorporated nanoparticles, i.e. NIR-dye-incorporated nanoparticles were intensively accumulated in the tumor region rather than normal one. Our results demonstrate that vorinostat and vorinostat-NPs exert anticancer activity against HuCC-T1 cholangiocarcinoma cells by specific inhibition of HDAC expression. Thus, we suggest that vorinostat-NPs are a promising candidate for anticancer chemotherapy in cholangiocarcinoma. Graphical abstract Local delivery strategy of vorinostat-NPs against cholangiocarcinomas.

  7. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Itharat Arunporn

    2010-09-01

    Full Text Available Abstract Background Cholangiocarcinoma is a serious public health in Thailand with increasing incidence and mortality rates. The present study aimed to investigate cytotoxic activities of crude ethanol extracts of a total of 28 plants and 5 recipes used in Thai folklore medicine against human cholangiocarcinoma (CL-6, human laryngeal (Hep-2, and human hepatocarcinoma (HepG2 cell lines in vitro. Methods Cytotoxic activity of the plant extracts against the cancerous cell lines compared with normal cell line (renal epithelial cell: HRE were assessed using MTT assay. 5-fluorouracil was used as a positive control. The IC50 (concentration that inhibits cell growth by 50% and the selectivity index (SI were calculated. Results The extracts from seven plant species (Atractylodes lancea, Kaempferia galangal, Zingiber officinal, Piper chaba, Mesua ferrea, Ligusticum sinense, Mimusops elengi and one folklore recipe (Pra-Sa-Prao-Yhai exhibited promising activity against the cholangiocarcinoma CL-6 cell line with survival of less than 50% at the concentration of 50 μg/ml. Among these, the extracts from the five plants and one recipe (Atractylodes lancea, Kaempferia galangal, Zingiber officinal, Piper chaba, Mesua ferrea, and Pra-Sa-Prao-Yhai recipe showed potent cytotoxic activity with mean IC50 values of 24.09, 37.36, 34.26, 40.74, 48.23 and 44.12 μg/ml, respectively. All possessed high activity against Hep-2 cell with mean IC50 ranging from 18.93 to 32.40 μg/ml. In contrast, activity against the hepatoma cell HepG2 varied markedly; mean IC50 ranged from 9.67 to 115.47 μg/ml. The only promising extract was from Zingiber officinal (IC50 = 9.67 μg/ml. The sensitivity of all the four cells to 5-FU also varied according to cell types, particularly with CL-6 cell (IC50 = 757 micromolar. The extract from Atractylodes lancea appears to be both the most potent and most selective against cholangiocarcinoma (IC50 = 24.09 μg/ml, SI = 8.6. Conclusions The

  8. Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines.

    Science.gov (United States)

    Asgar, Md Ali; Senawong, Gulsiri; Sripa, Banchob; Senawong, Thanaset

    2016-01-01

    Clinical application of cisplatin against cholangiocarcinoma is often associated with resistance and toxicity posing urgent demand for combination therapy. In this study, we evaluated the combined anticancer effect of cisplatin and histone deacetylase inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), on the cholangiocarcinoma KKU-100 and KKU-M214 cell lines. Antiproliferative activity was evaluated using MTT assay. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. Cell cycle and apoptosis regulating proteins were evaluated by western blot analysis. MTT assay showed that cisplatin, SAHA and TSA dose-dependently reduced the viability of KKU-100 and KKU-M214 cells. The combination of cisplatin and HDACIs exerted significantly more cytotoxicity than the single drugs. Combination indices below 1.0 reflect synergism between cisplatin and HDACIs, leading to positive dose reductions of cisplatin and HDACIs. Cisplatin and HDACIs alone induced G0/G1 phase arrest in KKU-100 cells, but the drug combinations increased sub-G1 percent more than either drug. However, cisplatin and HDACIs alone or in combination increased only the sub-G1 percent in KKU-M214 cells. Annexin V-FITC staining revealed that cisplatin and HDACIs combinations induced more apoptotic cell death of both KKU-100 and KKU-M214 cells than the single drug. In KKU-100 cells, growth inhibition was accompanied by upregulation of p53 and p21 and downregulation of CDK4 and Bcl-2 due to exposure to cisplatin, SAHA and TSA alone or in combination. Moreover, combination of agents exerted higher impacts on protein expression. Single agents or combination did not affect p53 expression, however, combination of cisplatin and HDACIs increased the expression of p21 in KKU-M214 cells. Taken together, cisplatin and HDACIs combination may improve the therapeutic outcome in cholangiocarcinoma patients.

  9. Perioperative and long-term outcome of intrahepatic cholangiocarcinoma involving the hepatic hilus after curative-intent resection: comparison with peripheral intrahepatic cholangiocarcinoma and hilar cholangiocarcinoma.

    Science.gov (United States)

    Zhang, Xu-Feng; Bagante, Fabio; Chen, Qinyu; Beal, Eliza W; Lv, Yi; Weiss, Matthew; Popescu, Irinel; Marques, Hugo P; Aldrighetti, Luca; Maithel, Shishir K; Pulitano, Carlo; Bauer, Todd W; Shen, Feng; Poultsides, George A; Soubrane, Olivier; Martel, Guillaume; Koerkamp, B Groot; Guglielmi, Alfredo; Itaru, Endo; Pawlik, Timothy M

    2018-05-01

    Intrahepatic cholangiocarcinoma with hepatic hilus involvement has been either classified as intrahepatic cholangiocarcinoma or hilar cholangiocarcinoma. The present study aimed to investigate the clinicopathologic characteristics and short- and long-term outcomes after curative resection for hilar type intrahepatic cholangiocarcinoma in comparison with peripheral intrahepatic cholangiocarcinoma and hilar cholangiocarcinoma. A total of 912 patients with mass-forming peripheral intrahepatic cholangiocarcinoma, 101 patients with hilar type intrahepatic cholangiocarcinoma, and 159 patients with hilar cholangiocarcinoma undergoing curative resection from 2000 to 2015 were included from two multi-institutional databases. Clinicopathologic characteristics and short- and long-term outcomes were compared among the 3 groups. Patients with hilar type intrahepatic cholangiocarcinoma had more aggressive tumor characteristics (eg, higher frequency of vascular invasion and lymph nodes metastasis) and experienced more extensive resections in comparison with either peripheral intrahepatic cholangiocarcinoma or hilar cholangiocarcinoma patients. The odds of lymphadenectomy and R0 resection rate among patients with hilar type intrahepatic cholangiocarcinoma were comparable with hilar cholangiocarcinoma patients, but higher than peripheral intrahepatic cholangiocarcinoma patients (lymphadenectomy incidence, 85.1% vs 42.5%, P hilar type intrahepatic cholangiocarcinoma experienced a higher rate of technical-related complications compared with peripheral intrahepatic cholangiocarcinoma patients. Of note, hilar type intrahepatic cholangiocarcinoma was associated with worse disease-specific survival and recurrence-free survival after curative resection versus peripheral intrahepatic cholangiocarcinoma (median disease-specific survival, 26.0 vs 54.0 months, P hilar cholangiocarcinoma (median disease-specific survival, 26.0 vs 49.0 months, P = .003; median recurrence-free survival

  10. [Anti-tumor effects of DDP-PLLA-CNTs on human cholangiocarcinoma cell line in vitro].

    Science.gov (United States)

    Li, Maolan; Lu, Wei; Zhang, Fei; Ding, Qichen; Wu, Xiangsong; Tan, Zhujun; Wu, Wenguang; Weng, Hao; Wang, Xuefeng; Shi, Weibin; Dong, Ping; Gu, Jun; Liu, Yingbin

    2014-11-04

    To explore the antitumor effects of DDP-PLLA-CNTs on human cholangiocarcinoma cell line. DDP-PLLA-CNTs were prepared with the method of ultrasound emulsification. The morphology of DDP-PLLA-CNTs was determined by scanning electron microscope (SEM). And its drug loading and drug release curve in vitro was detected by UV-Vis-NIR spectrophotometer. CCK8 was used to test the cytotoxic effects of DDP-PLLA-CNTs at different concentrations on QBC939 cell proliferation.Flow cytometry was employed to measure the changes of apoptotic rate. With excellent controlled-release characteristic of in vitro drug release, DDP-PLLA-CNTs inhibited the proliferation and significantly increased the apoptotic rate of QBC939 cell line. DDP-PLLA-CNTs have drug sustained-release characteristics and can significantly inhibit the proliferation of QBC939 cell line.

  11. Infiltration of peritumoural but tumour-free parenchyma with IgG4-positive plasma cells in hilar cholangiocarcinoma and pancreatic adenocarcinoma.

    Science.gov (United States)

    Resheq, Yazid J; Quaas, Alexander; von Renteln, Daniel; Schramm, Christoph; Lohse, Ansgar W; Lüth, Stefan

    2013-10-01

    Recently, new guidelines for diagnosing IgG4-associated cholangitis have been published devaluing the diagnostic significance of IgG4-positive plasma cells and steroid trials. We sought to evaluate the utility of IgG4-positive plasma cells in discriminating IgG4-associated cholangitis from hilar cholangiocarcinoma and autoimmune pancreatitis from pancreatic adenocarcinoma under conditions when malignancy is likely to be missed. Resection specimens obtained from patients with hilar cholangiocarcinoma, pancreatic adenocarcinoma or hepatocellular carcinoma were re-evaluated for IgG4-positivity. Histological analysis focussed on peritumoural but tumour-free sections. Perioperative biochemical and clinical data were reviewed. Nineteen patients with hilar cholangiocarcinoma and 29 patients with pancreatic adenocarcinoma were eligible for histological re-evaluation. Six of 19 (32%) patients with hilar cholangiocarcinoma and 5 of 29 (17%) patients with pancreatic adenocarcinoma were IgG4-positive (≥20 IgG4-positive plasma cells per high power field). Patients with IgG4-positive hilar cholangiocarcinoma showed significantly higher levels of serum total bilirubin (3.6mg/dl vs. 1.8mg/dl; Philar cholangiocarcinoma. IgG4-positive plasma cells are of limited utility especially in distinguishing hilar cholangiocarcinoma from IgG4-associated cholangitis even when combined with clinical parameters and may be misleading under conditions when malignancy is missed. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. Effect of blocking Rac1 expression in cholangiocarcinoma QBC939 cells

    Directory of Open Access Journals (Sweden)

    Liu Xudong

    2011-05-01

    Full Text Available Cholangiocarcinomas (CCs are malignant tumors that originate from epithelial cells lining the biliary tree and gallbladder. Ras correlative C3 creotoxin substrate 1 (Rac1, a small guanosine triphosphatase, is a critical mediator of various aspects of endothelial cell functions. The objective of the present investigation was to study the effect of blocking Rac1 expression in CCs. Seventy-four extrahepatic CC (ECC specimens and matched adjacent normal mucosa were obtained from the Department of Pathology, Inner Mongolia Medicine Hospital, between 2007 and 2009. Our results showed that the expression of Rac1 was significantly higher (53.12% in tumor tissues than in normal tissues. Western blotting data indicated a significant reduction in Rac1-miRNA cell protein levels. Rac1-miRNA cell growth rate was significantly different at 24, 48, and 72 h after transfection. Flow cytometry analysis showed that Rac1-miRNA cells undergo apoptosis more effectively than control QBC939 cells. Blocking Rac1 expression by RNAi effectively inhibits the growth of CCs. miRNA silencing of the Rac1 gene suppresses proliferation and induces apoptosis of QBC939 cells. These results suggest that Rac1 may be a new gene therapy target for CC. Blocking Rac1 expression in CC cells induces apoptosis of these tumor cells and may thus represent a new therapeutic approach.

  13. Bile Duct Cancer (Cholangiocarcinoma)

    Science.gov (United States)

    ... Home > Types of Cancer > Bile Duct Cancer (Cholangiocarcinoma) Bile Duct Cancer (Cholangiocarcinoma) This is Cancer.Net’s Guide to Bile Duct Cancer (Cholangiocarcinoma). Use the menu below to ...

  14. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  15. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  16. Squamous cell carcinoma - invasive (image)

    Science.gov (United States)

    This irregular red nodule is an invasive squamous cell carcinoma (a form of skin cancer). Initial appearance, shown here, may be very similar to a noncancerous growth called a keratoacanthoma. Squamous cell cancers ...

  17. Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Sawanyawisuth Kanlayanee

    2011-08-01

    Full Text Available Abstract Background Cyclophilin A (CypA expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of CypA in liver fluke-associated cholangiocarcinoma (CCA are not presently known. In this study, we investigated the expression of CypA in CCA tumor tissues and CCA cell lines as well as regulation mechanisms of CypA in tumor growth using CCA cell lines. Methods CypA expression was determined by real time RT-PCR, Western blot or immunohistochemistry. CypA silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell proliferation was assessed using MTS assay or Ki-67 staining. The effect of silencing CypA on CCA tumor growth was determined in nude mice. The effect of CypA knockdown on ERK1/2 activation was assessed by Western blot. Results CypA was upregulated in 68% of CCA tumor tissues. Silencing CypA significantly suppressed cell proliferation in several CCA cell lines. Likewise, inhibition of CypA peptidyl-prolyl cis-trans isomerase (PPIase activity using cyclosporin A (CsA decreased cell proliferation. In contrast, overexpression of CypA resulted in 30% to 35% increases in proliferation of CCA cell lines. Interestingly, neither silence nor overexpression of CypA affected cell proliferation of a non-tumor human cholangiocyte cell line, MMNK1. Suppression of CypA expression attenuated ERK1/2 activity in CCA M139 cells by using both transient and stable knockdown methods. In the in vivo study, there was a 43% reduction in weight of tumors derived from CypA-silenced CCA cell lines compared with control vector CCA tumors in mice; these tumors with stable CypA silencing showed a reduced cell proliferation. Conclusions CypA is upregulated in majority of CCA patients' tissues and confers a significant growth advantage in CCA cells. Suppression of CypA expression decreases proliferation of CCA cell lines in vitro and reduces tumor growth in the nude mouse model. Inhibition of Cyp

  18. CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway.

    Science.gov (United States)

    Jung, Dawoon E; Park, Soo Been; Kim, Kahee; Kim, Chanyang; Song, Si Young

    2017-09-07

    Cholangiocarcinoma is a devastating malignancy with fatal complications that exhibits low response and resistance to chemotherapy. Here, we evaluated the anticancer effects of CG200745, a novel histone deacetylase inhibitor, either alone or in combination with standard chemotherapy drugs in cholangiocarcinoma cells. CG200745 dose-dependently reduced the viability of cholangiocarcinoma cells in vitro and decreased tumour volume and weight in a xenograft model. Administering CG200745 along with other chemotherapeutic agents including gemcitabine, 5-fluorouracil (5-FU), cisplatin, oxaliplatin, or gemcitabine plus cisplatin further decreased cholangiocarcinoma cell viability, with a combination index CG200745 also enhanced the sensitivity of gemcitabine-resistant cells to gemcitabine and 5-FU, thereby decreasing cell viability and inducing apoptosis. This was accompanied by downregulation of YAP, TEAD4, TGF-β2, SMAD3, NOTCH3, HES5, Axl, and Gas6 and upregulation of the miRNAs miR-22-3p, miR-22-5p, miR-194-5p, miR-194-3p, miR-194-5p, miR-210-3p, and miR-509-3p. The Ingenuity Pathway Analysis revealed that CG200745 mainly targets the Hippo signalling pathway by inducing miR-509-3p expression. Thus, CG200745 inhibits cholangiocarcinoma growth in vitro and in vivo, and acts synergistically when administered in combination with standard chemotherapeutic agents, enabling dose reduction. CG200745 is therefore expected to improve the outcome of cholangiocarcinoma patients who exhibit resistance to conventional therapies.

  19. Overexpression of Prdx1 in hilar cholangiocarcinoma: a predictor for recurrence and prognosis.

    Science.gov (United States)

    Zhou, Jie; Shen, Weiwen; He, Xiaojing; Qian, Jing; Liu, Shiyuan; Yu, Guanzhen

    2015-01-01

    Prdx1 is an important member of peroxiredoxins (Prdxs) regulating various cellular signaling and differentiation. Prdx1 confers an aggressive survival phenotype of cancer cells and drug-resistance, yet its role in hilar cholangiocarcinoma is not fully investigated. In present study, we detected the expression profile of Prdx1 in 88 hilar cholangiocarcinoma by tissue arrays and immunohistochemistry. Prdx1 level was down-regulated by specific Prdx1-shRNA in vitro and the possible mechanism was investigated. Overexpression of Prdx1 was observed in 53 of 88 cases (60.2%). Prdx1 expression was significantly associated with tumor invasion, nodal metastasis, advanced disease stage. Down-regulation of Prdx1 inhibited cell proliferation and colony formation of QBC939 cells and reduced the level of SNAT1 expression. Patients with Prdx1 overexpression had a shorter disease-free survival and overall survival than those without Prdx1 expression. Multivariate analysis showed that Prdx1 was an independent prognostic factor for patients with hilar cholangiocarcinoma. The data indicate that Prdx1 may contribute to the development and progression of hilar cholangiocarcinoma, partially through regulating SNAT1 expression, and may be used as a biomarker in predicting the outcome of patients with hilar cholangiocarcinoma.

  20. Fisetin Reduces Cell Viability Through Up-Regulation of Phosphorylation of ERK1/2 in Cholangiocarcinoma Cells.

    Science.gov (United States)

    Kim, Nayoung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Jae Min; Kang, Min-Jung; Kim, Bo Hye; Lee, Jung-Su; Ryu, Ji Kon; Kim, Yong-Tae

    2016-11-01

    Cholangiocarcinoma (CCA) is a malignancy with poor prognosis and limited therapeutic options. Effective prevention and treatment of CCA require developing novel anticancer agents and improved therapeutic regimens. As natural products are concidered a rich source of potential anticancer agents, we investigated the anticancer effect of fisetin in combination with gemcitabine. Cytotoxic effect of fisetin and gemcitabine on a human CCA cell line SNU-308 was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptosis assay using propidium iodine and annexin V. Molecular mechanisms of fisetin action in CCA were investigated by western blotting. Fisetin was found to inhibit survival of CCA cells, through strongly phosphorylating ERK. It also induced cellular apoptosis additively in combination with gemcitabine. Expression of cellular proliferative markers, such as phospho-p65 and myelocytomatosis (MYC), were reduced by fisetin. These results suggest fisetin in combination with gemcitabine as a candidate for use in improved anticancer regimens. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Tumour cell–derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth

    Directory of Open Access Journals (Sweden)

    Hiroaki Haga

    2015-01-01

    Full Text Available The contributions of mesenchymal stem cells (MSCs to tumour growth and stroma formation are poorly understood. Tumour cells can transfer genetic information and modulate cell signalling in other cells through the release of extracellular vesicles (EVs. We examined the contribution of EV-mediated inter-cellular signalling between bone marrow MSCs and tumour cells in human cholangiocarcinoma, highly desmoplastic cancers that are characterized by tumour cells closely intertwined within a dense fibrous stroma. Exposure of MSCs to tumour cell–derived EVs enhanced MSC migratory capability and expression of alpha-smooth muscle actin mRNA, in addition to mRNA expression and release of CXCL-1, CCL2 and IL-6. Conditioned media from MSCs exposed to tumour cell–derived EVs increased STAT-3 phosphorylation and proliferation in tumour cells. These effects were completely blocked by anti-IL-6R antibody. In conclusion, tumour cell–derived EVs can contribute to the generation of tumour stroma through fibroblastic differentiation of MSCs, and can also selectively modulate the cellular release of soluble factors such as IL-6 by MSCs that can, in turn, alter tumour cell proliferation. Thus, malignant cells can “educate” MSCs to induce local microenvironmental changes that enhance tumour cell growth.

  2. The heat shock protein 90 inhibitor 17-AAG suppresses growth and induces apoptosis in human cholangiocarcinoma cells.

    Science.gov (United States)

    Zhang, Jianjun; Zheng, Zhichao; Zhao, Yan; Zhang, Tao; Gu, Xiaohu; Yang, Wei

    2013-11-01

    The aim of this study was to investigate the effects of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (HSP90) inhibitor, on the proliferation, cell cycle, and apoptosis of human cholangiocarcinoma (CCA) cells. Cell proliferation and cell cycle distribution were measured by the MTT assay and flow cytometry analysis, respectively. Induction of apoptosis was determined by flow cytometry and Hoechst staining. The expressions of cleaved poly ADP-ribose polymerase (PARP), Bcl-2, Survivin, and Cyclin B1 were detected by Western blot analysis. The activity of caspase-3 was also examined. We found that 17-AAG inhibited cell growth and induced G2/M cell cycle arrest and apoptosis in CCA cells together with the down-regulation of Bcl-2, Survivin and Cyclin B1, and the up-regulation of cleaved PARP. Moreover, increased caspase-3 activity was also observed in CCA cells treated with 17-AAG. In conclusion, our data suggest that the inhibition of HSP90 function by 17-AAG may provide a promising therapeutic strategy for the treatment of human CCA.

  3. Impact of Salinomycin on human cholangiocarcinoma: induction of apoptosis and impairment of tumor cell proliferation in vitro

    Directory of Open Access Journals (Sweden)

    Lieke Thorsten

    2012-10-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a primary liver cancer with increasing incidence worldwide. Despite all efforts made in past years, prognosis remains to be poor. At least in part, this might be explained by a pronounced resistance of CC cells to undergo apoptosis. Thus, new therapeutic strategies are imperatively required. In this study we investigated the effect of Salinomycin, a polyether ionophore antibiotic, on CC cells as an appropriate agent to treat CC. Salinomycin was quite recently identified to induce apoptosis in cancer stem cells and to overcome apoptosis-resistance in several leukemia-cells and other cancer cell lines of different origin. Methods To delineate the effects of Salinomycin on CC, we established an in vitro cell culture model using three different human CC cell lines. After treatment apoptosis as well as migration and proliferation behavior was assessed and additional cell cycle analyses were performed by flowcytometry. Results By demonstrating Annexin V and TUNEL positivity of human CC cells, we provide evidence that Salinomycin reveals the capacity to break apoptosis-resistance in CC cells. Furthermore, we are able to demonstrate that the non-apoptotic cell fraction is characterized by sustainable impaired migration and proliferation. Cell cycle analyses revealed G2-phase accumulation of human CC cells after treatment with Salinomycin. Even though apoptosis is induced in two of three cell lines of CC cells, one cell line remained unaffected in regard of apoptosis but revealed as the other CC cells decreased proliferation and migration. Conclusion In this study, we are able to demonstrate that Salinomycin is an effective agent against previously resistant CC cells and might be a potential candidate for the treatment of CC in the future.

  4. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis.

    Science.gov (United States)

    Suriyo, Tawit; Pholphana, Nanthanit; Rangkadilok, Nuchanart; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2014-05-01

    Andrographis paniculata is an important herbal medicine widely used in several Asian countries for the treatment of various diseases due to its broad range of pharmacological activities. The present study reports that A. paniculata extracts potently inhibit the growth of liver (HepG2 and SK-Hep1) and bile duct (HuCCA-1 and RMCCA-1) cancer cells. A. paniculata extracts with different contents of major diterpenoids, including andrographolide, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and 14-deoxyandrographolide, exhibited a different potency of growth inhibition. The ethanolic extract of A. paniculata at the first true leaf stage, which contained a high amount of 14-deoxyandrographolide but a low amount of andrographolide, showed a cytotoxic effect to cancer cells about 4 times higher than the water extract of A. paniculata at the mature leaf stage, which contained a high amount of andrographolide but a low amount of 14-deoxyandrographolide. Andrographolide, not 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, or 14-deoxyandrographolide, possessed potent cytotoxic activity against the growth of liver and bile duct cancer cells. The cytotoxic effect of the water extract of A. paniculata at the mature leaf stage could be explained by the present amount of andrographolide, while the cytotoxic effect of the ethanolic extract of A. paniculata at the first true leaf stage could not. HuCCA-1 cells showed more sensitivity to A. paniculata extracts and andrographolide than RMCCA-1 cells. Furthermore, the ethanolic extract of A. paniculata at the first true leaf stage increased cell cycle arrest at the G0/G1 and G2/M phases, and induced apoptosis in both HuCCA-1 and RMCCA-1 cells. The expressions of cyclin-D1, Bcl-2, and the inactive proenzyme form of caspase-3 were reduced by the ethanolic extract of A. paniculata in the first true leaf stage treatment, while a proapoptotic protein Bax was increased. The cleavage of poly (ADP

  5. Mandibular metastasis of cholangiocarcinoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    You, Tae Min [Dept. of Advanced General Dentistry, Dankook University, Cheonan (Korea, Republic of); Kim, Kee Dong; Jeong, Ho Gui; Park, Won Se [Advanced General Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2015-12-15

    Tumors metastasizing from distant regions to the oral and maxillofacial region are uncommon, comprising only 1%-2% of all malignancies. Cholangiocarcinoma is a malignancy that arises from cholangiocytes, which are epithelial cells that line the bile ducts. These cancers are difficult to diagnose and have a poor prognosis. In this paper, we report a rare case of mandibular metastasis of cholangiocarcinoma diagnosed at the primary site and discuss the radiographic findings observed in this case.

  6. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo

    OpenAIRE

    Qin, Youyou; Cui, Wu; Yang, Xuewei; Tong, Baifeng

    2016-01-01

    Kaempferol is a flavonoid that has been reported to exhibit antitumor activity in various malignant tumors. However, the role of kaempferol on cholangiocarcinoma (CCA) is largely unknown. In this article, we found that kaempferol inhibited proliferation, reduced colony formation ability, and induced apoptosis in HCCC9810 and QBC939 cells in vitro. Results from transwell assay and wound-healing assay demonstrated that kaempferol significantly suppressed the migration and invasion abilities of ...

  7. Quinoline-based clioquinol and nitroxoline exhibit anticancer activity inducing FoxM1 inhibition in cholangiocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Chan-on W

    2015-04-01

    Full Text Available Waraporn Chan-on,1 Nguyen Thi Bich Huyen,2 Napat Songtawee,3 Wilasinee Suwanjang,1 Supaluk Prachayasittikul,3 Virapong Prachayasittikul2 1Center for Research and Innovation, 2Department of Clinical Microbiology and Applied Technology, 3Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand Purpose: Fork head box M1 (FoxM1 is an oncogenic transcription factor frequently elevated in numerous cancers, including cholangiocarcinoma (CCA. A growing body of evidence documents its diverse functions contributing to tumorigenesis and cancer progression. As such, discovery of agents that can target FoxM1 would be valuable for the treatment of CCA. The quinoline-based compounds, namely clioquinol (CQ and nitroxoline (NQ, represent a new class of anticancer drug. However, their efficacy and underlying mechanisms have not been elucidated in CCA. In this study, anticancer activities and inhibitory effects of CQ and NQ on FoxM1 signaling were explored using CCA cells.Methods: The effects of CQ and NQ on cell viability and proliferation were evaluated using the colorimetric 3-(4,5-dimethylthiazol-2yl-5-(3-carboxymethoxyphenyl-(4-sulfophenyl-2H-tetrazolium (MTS assay. Colony formation and cell migration affected by CQ and NQ were investigated using a clonogenic and a wound healing assay, respectively. To demonstrate the agents’ effects on FoxM1 signaling, expression levels of the target genes were quantitatively determined using real-time polymerase chain reaction.Results: CQ and NQ significantly inhibited cell survival of HuCCT1 and Huh28 in a dose- and a time-dependent fashion. Further investigations using the rapidly proliferating HuCCT1 cells revealed significant suppression of cell proliferation and colony formation induced by low doses of the compounds. Treatment of CQ and NQ repressed expression of cyclin D1 but enhanced expression of p21. Most importantly, upon CQ and NQ treatment

  8. Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells.

    Science.gov (United States)

    Kwak, Tae Won; Lee, Hye Lim; Song, Yeon Hui; Kim, Chan; Kim, Jungsoo; Seo, Sol-Ji; Jeong, Young-Il; Kang, Dae Hwan

    2017-01-01

    The aim of this study was to fabricate a vorinostat (Zolinza™)-eluting nanofiber membrane-coated gastrointestinal (GI) stent and to study its antitumor activity against cholangiocarcinoma (CCA) cells in vitro and in vivo. Vorinostat and poly(DL-lactide-co-glycolide) dissolved in an organic solvent was sprayed onto a GI stent to make a nanofiber-coated stent using an electro-spinning machine. Intact vorinostat and vorinostat released from nanofibers was used to assess anticancer activity in vitro against various CCA cells. The antitumor activity of the vorinostat-eluting nanofiber membrane-coated stent was evaluated using HuCC-T1 bearing mice. A vorinostat-incorporated polymer nanofiber membrane was formed on the surface of the GI stent. Vorinostat was continuously released from the nanofiber membrane over 10 days, and its release rate was higher in cell culture media than in phosphate-buffered saline. Released vorinostat showed similar anticancer activity against various CCA cells in vitro compared to that of vorinostat. Like vorinostat, vorinostat released from nanofibers induced acetylation of histone H4 and inhibited histone deacetylases 1⋅3⋅4/5/7 expression in vitro and in vivo. Furthermore, vorinostat nanofibers showed a higher tumor growth inhibition rate in HuCC-T1 bearing mice than vorinostat injections. Vorinostat-eluting nanofiber membranes showed significant antitumor activity against CCA cells in vitro and in vivo. We suggest the vorinostat nanofiber-coated stent may be a promising candidate for CCA treatment.

  9. Vorinostat-eluting poly(DL-lactide-co-glycolide nanofiber-coated stent for inhibition of cholangiocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Kwak TW

    2017-10-01

    Full Text Available Tae Won Kwak,1,* Hye Lim Lee,2,* Yeon Hui Song,2 Chan Kim,3 Jungsoo Kim,2 Sol-Ji Seo,2 Young-Il Jeong,2 Dae Hwan Kang2,4 1Medical Convergence Textile Center, Gyeongbuk, Republic of Korea; 2Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea; 3Amogreentech Co. Ltd. Gyeonggi-do, Republic of Korea; 4Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, Republic of Korea *These authors contributed equally to this work Purpose: The aim of this study was to fabricate a vorinostat (Zolinza™-eluting nanofiber membrane-coated gastrointestinal (GI stent and to study its antitumor activity against cholangiocarcinoma (CCA cells in vitro and in vivo. Methods: Vorinostat and poly(DL-lactide-co-glycolide dissolved in an organic solvent was sprayed onto a GI stent to make a nanofiber-coated stent using an electro-spinning machine. Intact vorinostat and vorinostat released from nanofibers was used to assess anticancer activity in vitro against various CCA cells. The antitumor activity of the vorinostat-eluting nanofiber membrane-coated stent was evaluated using HuCC-T1 bearing mice. Results: A vorinostat-incorporated polymer nanofiber membrane was formed on the surface of the GI stent. Vorinostat was continuously released from the nanofiber membrane over 10 days, and its release rate was higher in cell culture media than in phosphate-buffered saline. Released vorinostat showed similar anticancer activity against various CCA cells in vitro compared to that of vorinostat. Like vorinostat, vorinostat released from nanofibers induced acetylation of histone H4 and inhibited histone deacetylases 1·3·4/5/7 expression in vitro and in vivo. Furthermore, vorinostat nanofibers showed a higher tumor growth inhibition rate in HuCC-T1 bearing mice than vorinostat injections. Conclusion: Vorinostat-eluting nanofiber membranes showed significant antitumor

  10. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  11. Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells.

    Science.gov (United States)

    Bahk, Young Yil; Pak, Jhang Ho

    2016-10-01

    Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-κB-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

  12. Risk factors and classifications of hilar cholangiocarcinoma.

    Science.gov (United States)

    Suarez-Munoz, Miguel Angel; Fernandez-Aguilar, Jose Luis; Sanchez-Perez, Belinda; Perez-Daga, Jose Antonio; Garcia-Albiach, Beatriz; Pulido-Roa, Ysabel; Marin-Camero, Naiara; Santoyo-Santoyo, Julio

    2013-07-15

    Cholangiocarcinoma is the second most common primary malignant tumor of the liver. Perihilar cholangiocarcinoma or Klatskin tumor represents more than 50% of all biliary tract cholangiocarcinomas. A wide range of risk factors have been identified among patients with Perihilar cholangiocarcinoma including advanced age, male gender, primary sclerosing cholangitis, choledochal cysts, cholelithiasis, cholecystitis, parasitic infection (Opisthorchis viverrini and Clonorchis sinensis), inflammatory bowel disease, alcoholic cirrhosis, nonalcoholic cirrhosis, chronic pancreatitis and metabolic syndrome. Various classifications have been used to describe the pathologic and radiologic appearance of cholangiocarcinoma. The three systems most commonly used to evaluate Perihilar cholangiocarcinoma are the Bismuth-Corlette (BC) system, the Memorial Sloan-Kettering Cancer Center and the TNM classification. The BC classification provides preoperative assessment of local spread. The Memorial Sloan-Kettering cancer center proposes a staging system according to three factors related to local tumor extent: the location and extent of bile duct involvement, the presence or absence of portal venous invasion, and the presence or absence of hepatic lobar atrophy. The TNM classification, besides the usual descriptors, tumor, node and metastases, provides additional information concerning the possibility for the residual tumor (R) and the histological grade (G). Recently, in 2011, a new consensus classification for the Perihilar cholangiocarcinoma had been published. The consensus was organised by the European Hepato-Pancreato-Biliary Association which identified the need for a new staging system for this type of tumors. The classification includes information concerning biliary or vascular (portal or arterial) involvement, lymph node status or metastases, but also other essential aspects related to the surgical risk, such as remnant hepatic volume or the possibility of underlying disease.

  13. Multidetector Computed Tomography in the Preoperative Workup of Hilar Cholangiocarcinoma

    International Nuclear Information System (INIS)

    Kim, Hyoung Jung; Lee, Dong Ho; Lim, Joo Won; Ko, Young Tae

    2009-01-01

    Hilar cholangiocarcinoma is associated with a dismal prognosis; however, curative resection may offer a chance of cure. Various factors should be considered in the surgical planning for curative resection. These factors include extent of bile duct involvement, relationship between portal vein and tumor involvement, diffuse hepato duodenal ligament infiltration, vascular invasion, lymph node metastasis, peritoneal seeding, and hepatic volume. Using high-quality volume data from multidetector-row computed tomography (MDCT) and adequate postprocessing images, radiologists can provide various types of information, imperative for curative resection of a hilar cholangiocarcinoma. This review illustrates the role of MDCT in the preoperative workup of hilar cholangiocarcinoma

  14. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Techasen, Anchalee [Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Hou, Bo [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Jamnongkan, Wassana; Armartmuntree, Napat [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Yongvanit, Puangrat, E-mail: puangrat@kku.ac.th [Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Murata, Mariko, E-mail: mmurata@doc.medic.mie-u.ac.jp [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan)

    2015-08-14

    Oxidative stress is a cause of inflammation–related diseases, including cancers. Cholangiocarcinoma is a liver cancer with bile duct epithelial cell phenotypes. Our previous studies in animal and human models indicated that oxidative stress is a major cause of cholangiocarcinoma development. Hydrogen peroxide (H{sub 2}O{sub 2}) can generate hydroxyl radicals, which damage lipids, proteins, and nucleic acids, leading to cell death. However, some cells can survive by adapting to oxidative stress conditions, and selective clonal expansion of these resistant cells would be involved in oxidative stress-related carcinogenesis. The present study aimed to establish H{sub 2}O{sub 2}-resistant cell line from an immortal cholangiocyte cell line (MMNK1) by chronic treatment with low-concentration H{sub 2}O{sub 2} (25 μM). After 72 days of induction, H{sub 2}O{sub 2}-resistant cell lines (ox-MMNK1-L) were obtained. The ox-MMNK1-L cell line showed H{sub 2}O{sub 2}-resistant properties, increasing the expression of the anti-oxidant genes catalase (CAT), superoxide dismutase-1 (SOD1), superoxide dismutase-2 (SOD2), and superoxide dismutase-3 (SOD3) and the enzyme activities of CAT and intracellular SODs. Furthermore, the resistant cells showed increased expression levels of an epigenetics-related gene, DNA methyltransferase-1 (DNMT1), when compared to the parental cells. Interestingly, the ox-MMNK1-L cell line had a significantly higher cell proliferation rate than the MMNK1 normal cell line. Moreover, ox-MMNK1-L cells showed pseudopodia formation and the loss of cell-to-cell adhesion (multi-layers) under additional oxidative stress (100 μM H{sub 2}O{sub 2}). These findings suggest that H{sub 2}O{sub 2}-resistant cells can be used as a model of oxidative stress-related cholangiocarcinoma genesis through molecular changes such as alteration of gene expression and epigenetic changes. - Highlights: • An H{sub 2}O{sub 2}-resistant ox-MMNK1-L cells was established from

  15. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia

    2015-01-01

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  16. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  17. Genetics Home Reference: cholangiocarcinoma

    Science.gov (United States)

    ... year in the United States. This type of cancer occurs much more frequently in Southeast Asian countries such as Thailand, where it is related to infection with a parasite that is common there. For unknown reasons, cholangiocarcinoma ...

  18. Pathological aspects of so called "hilar cholangiocarcinoma".

    Science.gov (United States)

    Castellano-Megías, Víctor M; Ibarrola-de Andrés, Carolina; Colina-Ruizdelgado, Francisco

    2013-07-15

    Cholangiocarcinoma (CC) arising from the large intrahepatic bile ducts and extrahepatic hilar bile ducts share clinicopathological features and have been called hilar and perihilar CC as a group. However, "hilar and perihilar CC" are also used to refer exclusively to the intrahepatic hilar type CC or, more commonly, the extrahepatic hilar CC. Grossly, a major distinction can be made between papillary and non-papillary tumors. Histologically, most hilar CCs are well to moderately differentiated conventional type (biliary) carcinomas. Immunohistochemically, CK7, CK20, CEA and MUC1 are normally expressed, being MUC2 positive in less than 50% of cases. Two main premalignant lesions are known: biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the biliary tract (IPNB). IPNB includes the lesions previously named biliary papillomatosis and papillary carcinoma. A series of 29 resected hilar CC from our archives is reviewed. Most (82.8%) were conventional type adenocarcinomas, mostly well to moderately differentiated, although with a broad morphological spectrum; three cases exhibited a poorly differentiated cell component resembling signet ring cells. IPNB was observed in 5 (17.2%), four of them with an associated invasive carcinoma. A clear cell type carcinoma, an adenosquamous carcinoma and two gastric foveolar type carcinomas were observed.

  19. Cell signaling during Trypanosoma cruzi invasion

    Directory of Open Access Journals (Sweden)

    Fernando Yukio Maeda

    2012-11-01

    Full Text Available Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT generated in vitro and tissue culture-derived trypomastigotes (TCT, used as counterparts of insect-borne and bloodstream parasites respectively. During invasion of host cells by MT or TCT, intracellular Ca2+ mobilization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface molecule gp82 requires the activation of mammalian target of rapamycin (mTOR, phosphatidylinositol 3-kinase (PI3K and protein kinase C (PKC in the host cell, associated with Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase (PTK, PI3K, phospholipase C (PLC and PKC appear to be activated. TCT invasion, on the other hand, does not rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy for parasite internalization. Enzymes, such oligopeptidase B and the major T. cruzi cysteine proteinase cruzipain, have been shown to generate molecules that induce target cell Ca2+ signal. In addition, TCT may trigger host cell responses mediated by TGF-β receptor or integrin family member. Further investigations are needed for a more complete and detailed picture of T. cruzi invasion.

  20. Endoscopic tissue diagnosis of cholangiocarcinoma.

    LENUS (Irish Health Repository)

    Harewood, Gavin C

    2008-09-01

    The extremely poor outcome in patients with cholangiocarcinoma, in large part, reflects the late presentation of these tumors and the challenging nature of establishing a tissue diagnosis. Establishing a diagnosis of cholangiocarcinoma requires obtaining evidence of malignancy from sampling of the epithelium of the biliary tract, which has proven to be challenging. Although endoscopic ultrasound-guided fine needle aspiration performs slightly better than endoscopic retrograde cholangiopancreatography in diagnosing cholangiocarcinoma, both endoscopic approaches demonstrate disappointing performance characteristics.

  1. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages

    DEFF Research Database (Denmark)

    Raggi, Chiara; Correnti, Margherita; Sica, Antonio

    2017-01-01

    BACKGROUND AND AIMS: Therapeutically challenging subset, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may......-activator. Gene expression profile of CCA-SPH activated MØ (SPH MØ) revealed unique molecular TAM-like features confirmed by high invasion capacity. Also, freshly isolated MØs from CCA-resections recapitulated similar molecular phenotype of in vitro educated-MØs. Consistently with invasive features, largest CD163...... providing a rationale for a synergistic therapeutic strategy for CCA-disease. LAY SUMMARY: Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of key deregulated immune subtype responsible...

  2. Computed tomography of intrahepatic cholangiocarcinoma

    International Nuclear Information System (INIS)

    Kamimura, Ryoichi; Takashima, Tsutomu; Matsui, Osamu; Tsuji, Masahiko; Hirose, Shoichiro.

    1983-01-01

    Intrahepatic cholangiocarcinoma is an uncommon tumor as primary hepatic neoplasm. Five cases of cholangiocarcinoma, mass forming peripheral type, are reported about its CT findings. They were manifested as a poorly marginated low density mass with a irregular stellate area. In one case, a cut section of the gross specimen following surgery showed a central callagenous scar and vessels within the necrotic tumor. (author)

  3. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures.

    Directory of Open Access Journals (Sweden)

    Anna Maria Lustri

    Full Text Available Cholangiocarcinoma (CCA and its subtypes (mucin- and mixed-CCA arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT traits, with these features being associated with aggressiveness and drug resistance. TGF-β signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i CX-4945, a casein kinase-2 (CK2 inhibitor that blocks TGF-β1-induced EMT; and (ii LY2157299, a TGF-β receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay.at a dose of 10 μM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30μM. At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA. Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks foci, suggesting the active role of CK2 as

  4. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  5. Sublethal irradiation promotes invasiveness of neuroblastoma cells

    International Nuclear Information System (INIS)

    Schweigerer, Lothar; Rave-Fraenk, Margret; Schmidberger, Heinz; Hecht, Monica

    2005-01-01

    Neuroblastoma is the most frequent extracranial solid tumour of childhood. Despite multiple clinical efforts, clinical outcome has remained poor. Neuroblastoma is considered to be radiosensitive, but some clinical studies including the German trial NB90 failed to show a clinical benefit of radiation therapy. The mechanisms underlying this apparent discrepancy are still unclear. We have therefore investigated the effects of radiation on neuroblastoma cell behaviour in vitro. We show that sublethal doses of irradiation up-regulated the expression of the hepatocyte growth factor (HGF) and its receptor c-Met in some neuroblastoma cell lines. The increase in HGF/c-Met expression was correlated with enhanced invasiveness and activation of proteases degrading the extracellular matrix. Thus, irradiation at sublethal doses may promote the metastatic dissemination of neuroblastoma cells through activating the HGF/c-Met pathway and triggering matrix degradation

  6. Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis

    Directory of Open Access Journals (Sweden)

    Napat Armartmuntree

    2018-04-01

    Full Text Available Early B cell factor 1 (EBF1 is a transcription factor involved in the differentiation of several stem cell lineages and it is a negative regulator of estrogen receptors. EBF1 is down-regulated in many tumors, and is believed to play suppressive roles in cancer promotion and progression. However, the functional roles of EBF1 in carcinogenesis are unclear. Liver fluke-infection-associated cholangiocarcinoma (CCA is an oxidative stress-driven cancer of bile duct epithelium. In this study, we investigated EBF1 expression in tissues from CCA patients, CCA cell lines (KKU-213, KKU-214 and KKU-156, cholangiocyte (MMNK1 and its oxidative stress-resistant (ox-MMNK1-L cell lines. The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG was used as an oxidative stress marker. Our results revealed that EBF1 expression was suppressed in cancer cells compared with the individual normal bile duct cells at tumor adjacent areas of CCA tissues. CCA patients with low EBF1 expression and high formation of 8-oxodG were shown to correlate with poor survival. Moreover, EBF1 was suppressed in the oxidative stress-resistant cell line and all of CCA cell lines compared to the cholangiocyte cell line. This suggests that prolonged oxidative stress suppressed EBF1 expression and the reduced EBF1 level may facilitate CCA genesis. To elucidate the significance of EBF1 suppression in CCA genesis, EBF1 expression of the MMNK1 cell line was down-regulated by siRNA technique, and its effects on stem cell properties (CD133 and Oct3/4 expressions, tumorigenic properties (cell proliferation, wound healing and cell migration, estrogen responsive gene (TFF1, estrogen-stimulated wound healing, and cell migration were examined. The results showed that CD133, Oct3/4 and TFF1 expression levels, wound healing, and cell migration of EBF1 knockdown-MMNK1 cells were significantly increased. Also, cell migration of EBF1-knockdown cells was significantly enhanced after 17

  7. MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Korvala, Johanna, E-mail: johanna.korvala@oulu.fi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Jee, Kowan [Department of Pathology, University of Turku, Turku University Hospital, Turku (Finland); Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Porkola, Emmi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Almangush, Alhadi [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Mosakhani, Neda [Department of Pathology, HUSLAB, Helsinki (Finland); Bitu, Carolina [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Cervigne, Nilva K. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); Department of Clinical and Pathology, Faculty of Medicine of Jundiai - FMJ, Jundiai, SP (Brazil); Zandonadi, Flávia S.; Meirelles, Gabriela V.; Leme, Adriana Franco Paes [Laboratório Nacional de Biociências, LNBio, CNPEM, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas/SP, P.O.Box 6192, CEP 13083-970 Campinas, São Paulo (Brazil); Coletta, Ricardo D. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); and others

    2017-01-01

    Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.

  8. Perioperative Management of Hilar Cholangiocarcinoma.

    Science.gov (United States)

    Poruk, Katherine E; Pawlik, Timothy M; Weiss, Matthew J

    2015-10-01

    Cholangiocarcinoma is the most common primary tumor of the biliary tract although it accounts for only 2 % of all human malignancies. We herein review hilar cholangiocarcinoma including its risk factors, the main classification systems for tumors, current surgical management of the disease, and the role chemotherapy and liver transplantation may play in selected patients. We performed a comprehensive literature search using PubMed, Medline, and the Cochrane library for the period 1980-2015 using the following MeSH terms: "hilar cholangiocarcinoma", "biliary cancer", and "cholangiocarcinoma". Only recent studies that were published in English and in peer reviewed journals were included. Hilar cholangiocarcinoma is a disease of advanced age with an unclear etiology, most frequently found in Southeast Asia and relatively rare in Western countries. The best chance of long-term survival and potential cure is surgical resection with negative surgical margins, but many patients are unresectable due to locally advanced or metastatic disease at diagnosis. As a result of recent efforts, new methods of management have been identified for these patients, including preoperative portal vein embolism and biliary drainage, neoadjuvant chemotherapy with subsequent transplantation, and chemoradiation therapy. Current management of hilar cholangiocarcinoma depends on extent of the tumor at presentation and includes surgical resection, liver transplantation, portal vein embolization, and chemoradiation therapy. Our understanding of hilar cholangiocarcinoma has improved in recent years and further research offers hope to improve the outcome in patients with these rare tumors.

  9. Cholangiocarcinoma with respect to IgG4 Reaction

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2014-01-01

    Full Text Available IgG4 reactions marked by infiltration of IgG4-positive plasma cells in affected organs occur in cancer patients and in patients with IgG4-related diseases. Extrahepatic cholangiocarcinomas including gall bladder cancer are often accompanied by significant IgG4 reactions; these reactions show a negative correlation with CD8-positive cytotoxic T cells, suggesting that the evasion of immune surveillance is associated with cytotoxic T cells. The regulatory cytokine IL-10 may induce IgG4-positive plasma cell differentiation or promote B cell switching to IgG4 in the presence of IL-4. Cholangiocarcinoma cells may function as nonprofessional antigen presenting cells that indirectly induce IgG4 reactions via the IL-10-producing cells and/or these may act as Foxp3-positive and IL-10-producing cells that directly induce IgG4 reactions. Moreover, IgG4-related disease is a high-risk factor for cancer development; IgG4-related sclerosing cholangitis (IgG4-SC cases associated with cholangiocarcinoma or its precursor lesion biliary intraepithelial neoplasia (BilIN have been reported. IgG4-positive cell infiltration is an important finding of IgG4-SC but is not a histological hallmark of IgG4-SC. For the diagnosis of IgG4-SC, its differentiation from cholangiocarcinoma remains important.

  10. Cell-ECM Interactions During Cancer Invasion

    Science.gov (United States)

    Jiang, Yi

    The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.

  11. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism.

    Science.gov (United States)

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2012-02-01

    Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies.

  12. MOLECULAR MECHANISMS THAT LEAD TO CHOLANGIOCARCINOMA, DURING CHRONIC INFECTION OF LIVER FLUKES

    Directory of Open Access Journals (Sweden)

    A. O. Bogdanov

    2015-01-01

    Full Text Available Cholangiocarcinoma is a malignant tumor, characterized by poor prognosis and a low five-year survival rate. There is a clear correlation between the incidence of opisthorchiasis and high incidence of cholangiocarcinoma in South-East Asia. Liver flukes Clonorchis sinensis and Opisthorchis viverrini are I class carcinogens. There are some endemic regions of opisthorchiasis In the Russian Federation. The most important factor that leads to carcinogenesis during liver fluke infection is chronic inflammation. This review article focuses on the communication of chronic inflammation caused by invasion of liver flukes and cholangiocarcinoma. This paper summarizes the current knowledge about the risk factors for cholangiocarcinoma, as well as knowledge about the molecular aspects of the induction of carcinogenesis by liver flukes.

  13. Peritoneal seeding of cholangiocarcinoma in patients with percutaneous biliary drainage

    International Nuclear Information System (INIS)

    Miller, G.A. Jr.; Heaston, D.K.; Moore, A.V. Jr.; Mills, S.R.; Dunnick, N.R.

    1983-01-01

    Percutaneous transhepatic catheter decompression is performed increasingly as an adjunct or alternative to surgery in patients with benign or malignant biliary obstruction. The authors recently saw three patients with cholangiocarcinoma in whom metastatic seeding of the peritoneal serosa was identified some months after initial percutaneous transhepatic biliary drainage. Although no tumor was found along the hepatic tract of the biliary drainage catheters to implicate the drainage tubes as the direct source of peritoneal spread, the occurrence of this rare type of metastasis of cholangiocarcinoma in patients with potential access of tumor cells to the peritoneal cavity via the catheter tracts does suggest such a relation. The clinical history of one patient is presented

  14. Hilar cholangiocarcinoma: Cross sectional evaluation of disease spectrum

    Science.gov (United States)

    Mahajan, Mangal S; Moorthy, Srikanth; Karumathil, Sreekumar P; Rajeshkannan, R; Pothera, Ramchandran

    2015-01-01

    Although hilar cholangiocarcinoma is relatively rare, it can be diagnosed on imaging by identifying its typical pattern. In most cases, the tumor appears to be centered on the right or left hepatic duct with involvement of the ipsilateral portal vein, atrophy of hepatic lobe on that side, and invasion of adjacent liver parenchyma. Multi-detector computed tomography (MDCT) and magnetic resonance cholangiopancreatography (MRCP) are commonly used imaging modalities to assess the longitudinal and horizontal spread of tumor. PMID:25969643

  15. Invasive Glioblastoma Cells Acquire Stemness and Increased Akt Activation

    Directory of Open Access Journals (Sweden)

    Jennifer R. Molina

    2010-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most frequent and most aggressive brain tumor in adults. The dismal prognosis is due to postsurgery recurrences arising from escaped invasive tumor cells. The signaling pathways activated in invasive cells are under investigation, and models are currently designed in search for therapeutic targets. We developed here an in vivo model of human invasive GBM in mouse brain from a GBM cell line with moderate tumorigenicity that allowed simultaneous primary tumor growth and dispersal of tumor cells in the brain parenchyma. This strategy allowed for the first time the isolation and characterization of matched sets of tumor mass (Core and invasive (Inv cells. Both cell populations, but more markedly Inv cells, acquired stem cell markers, neurosphere renewal ability, and resistance to rapamycin-induced apoptosis relative to parental cells. The comparative phenotypic analysis between Inv and Core cells showed significantly increased tumorigenicity in vivo and increased invasion with decreased proliferation in vitro for Inv cells. Examination of a large array of signaling pathways revealed extracellular signal-regulated kinase (Erk down-modulation and Akt activation in Inv cells and an opposite profile in Core cells. Akt activation correlated with the increased tumorigenicity, stemness, and invasiveness, whereas Erk activation correlated with the proliferation of the cells. These results underscore complementary roles of the Erk and Akt pathways for GBM proliferation and dispersal and raise important implications for a concurrent inhibitory therapy.

  16. Nerve Invasion by Epithelial Cells in Benign Breast Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Jan Chan

    2009-03-01

    Full Text Available Nerve invasion by glandular epithelial cells in a lesion is usually regarded as invasive carcinoma. However, some benign conditions in the pancreas, prostate, breast and other organs may show involvement of nerve bundles by benign epithelial cells. We report an 18-year-old female with nerve invasion in benign breast disease. The lesion in her right breast revealed fibrocystic changes with ductal hyperplasia and stromal sclerosis. Perineural and intraneural involvement by bland-looking small ducts lined by 2 layers of cells including an outer layer of myoepithelial cells were found, suggestive of benign nerve invasion. There was no evidence of malignant cells in any of the sections. The patient remains well after 31 months of follow-up. About 44 cases of nerve invasion in benign breast diseases have been reported in the literature. It is necessary to carefully evaluate nerve involvement in breast lesions to avoid over-diagnosis and inappropriate operation.

  17. miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Kinya Okamoto

    Full Text Available BACKGROUND AND AIMS: Cholangiocarcinoma (CCA is highly resistant to chemotherapy, including gemcitabine (Gem treatment. MicroRNAs (miRNAs are endogenous, non-coding, short RNAs that can regulate multiple genes expression. Some miRNAs play important roles in the chemosensitivity of tumors. Here, we examined the relationship between miRNA expression and the sensitivity of CCA cells to Gem. METHODS: Microarray analysis was used to determine the miRNA expression profiles of two CCA cell lines, HuH28 and HuCCT1. To determine the effect of candidate miRNAs on Gem sensitivity, expression of each candidate miRNA was modified via either transfection of a miRNA mimic or transfection of an anti-oligonucleotide. Ontology-based programs were used to identify potential target genes of candidate miRNAs that were confirmed to affect the Gem sensitivity of CCA cells. RESULTS: HuCCT1 cells were more sensitive to Gem than were HuH28 cells, and 18 miRNAs were differentially expressed whose ratios over ± 2log2 between HuH28 and HuCCT1. Among these 18 miRNAs, ectopic overexpression of each of three downregulated miRNAs in HuH28 (miR-29b, miR-205, miR-221 restored Gem sensitivity to HuH28. Suppression of one upregulated miRNA in HuH28, miR-125a-5p, inhibited HuH28 cell proliferation independently to Gem treatment. Selective siRNA-mediated downregulation of either of two software-predicted targets, PIK3R1 (target of miR-29b and miR-221 or MMP-2 (target of miR-29b, also conferred Gem sensitivity to HuH28. CONCLUSIONS: miRNA expression profiling was used to identify key miRNAs that regulate Gem sensitivity in CCA cells, and software that predicts miRNA targets was used to identify promising target genes for anti-tumor therapies.

  18. Combined Gemcitabine and Metronidazole Is a Promising Therapeutic Strategy for Cancer Stem-like Cholangiocarcinoma.

    Science.gov (United States)

    Kawamoto, Makoto; Umebayashi, Masayo; Tanaka, Hiroto; Koya, Norihiro; Nakagawa, Sinichiro; Kawabe, Ken; Onishi, Hideya; Nakamura, Masafumi; Morisaki, Takashi

    2018-05-01

    Metronidazole (MNZ) is a common antibiotic that exerts disulfiram-like effects when taken together with alcohol. However, the relationship between MNZ and aldehyde dehydrogenase (ALDH) activity remains unclear. This study investigated whether MNZ reduces cancer stemness by suppressing ALDH activity and accordingly reducing the malignancy of cholangiocarcinoma (CCA). We developed gemcitabine (GEM)-resistant TFK-1 cells and originally established CCA cell line from a patient with GEM-resistant CCA. Using these cell lines, we analyzed the impacts of MNZ for cancer stem cell markers, invasiveness, and chemosensitivity. MNZ reduced ALDH activity in GEM-resistant CCA cells, leading to decreased invasiveness and enhanced chemosensitivity. MNZ diminished the invasiveness by inducing mesenchymal-epithelial transition and enhancing chemosensitivity by increasing ENT1 (equilibrative nucleoside transporter 1) and reducing RRM1 (ribonucleotide reductase M1). MNZ reduced cancer stemness in GEM-resistant CCA cells. Combined GEM and MNZ would be a promising therapeutic strategy for cancer stem-like CAA. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K; van Wijk, Albert C; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C; van Gulik, Thomas M; Storm, Gert; Heger, Michal

    2016-01-19

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of HIF-1-associated proteins in human perihilar cholangiocarcinomas, (2) investigate the role of HIF-1 in PDT-treated human perihilar cholangiocarcinoma cells, and (3) determine whether HIF-1 inhibition reduces survival signaling and enhances PDT efficacy. Increased expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was confirmed in human perihilar cholangiocarcinomas. PDT with liposome-delivered zinc phthalocyanine caused HIF-1α stabilization in SK-ChA-1 cells and increased transcription of HIF-1α downstream genes. Acriflavine was taken up by SK-ChA-1 cells and translocated to the nucleus under hypoxic conditions. Importantly, pretreatment of SK-ChA-1 cells with acriflavine enhanced PDT efficacy via inhibition of HIF-1 and topoisomerases I and II. The expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was determined by immunohistochemistry in human perihilar cholangiocarcinomas. In addition, the response of human perihilar cholangiocarcinoma (SK-ChA-1) cells to PDT with liposome-delivered zinc phthalocyanine was investigated under both normoxic and hypoxic conditions. Acriflavine, a HIF-1α/HIF-1β dimerization inhibitor and a potential dual topoisomerase I/II inhibitor, was evaluated for its adjuvant effect on PDT efficacy. HIF-1, which is activated in human hilar cholangiocarcinomas, contributes to tumor cell survival following PDT in vitro. Combining PDT with acriflavine pretreatment improves PDT efficacy in cultured cells and therefore warrants further preclinical validation for therapy-recalcitrant perihilar cholangiocarcinomas.

  20. Pure laparoscopic radical resection for type IIIa hilar cholangiocarcinoma.

    Science.gov (United States)

    Zhang, Cheng-Wu; Liu, Jie; Hong, De-Fei; Wang, Zhi-Fei; Hu, Zhi-Ming; Huang, Dong-Shen; Shang, Min-Jie; Yao, Wei-Feng

    2018-03-01

    Pure laparoscopic radical resection of hilar cholangiocarcinoma is still a challenging procedure, in which laparoscopic lymphadenectomy, hemihepatectomy with caudate lobectomy, and hepaticojejunostomy were included [1-4]. Relative report is rare in the world up to now. Hilar cholangiocarcinoma has a poor prognosis, especially when it occurs with lymph node metastasis or vessel invasion [5, 6]. We recently had a patient who underwent a pure laparoscopic extended right hepatectomy and lymph node dissection and hepaticojejunostomy for a type IIIa hilar cholangiocarcinoma. The tumor was 20 × 15 × 12 mm in diameter and located in the right bile duct and common hepatic duct. Radiological examination showed that hepatic artery and portal vein was not invaded. After the division and mutilation of the right hepatic artery and the right portal vein, short hepatic veins were divided and cut off with clip and ultrasound knife from the anterior face of the vena cava. Mobilization was performed after the devascularization of the right liver, followed by the transection of liver parenchymal with CUSA and ultrasound knife. Finally, left hepatic bile duct jejunum Roux-en-Y reconstruction was performed. This patient underwent successfully with a totally laparoscopic procedure. An extended right hepatectomy (right hemihepatectomy combined with caudate lobectomy) and complete lymph node dissection and hepaticojejunostomy were performed in this operation. The operation time was nearly 590 min, and the intraoperative blood loss was about 300 ml. No obvious complication was observed and the postoperative hospital stay was 11 days. The final diagnosis of the hilar cholangiocarcinoma with no lymph node metastasis was pT2bN0M0 stage II (American Joint Committee on Cancer, AJCC). Pure laparoscopic resection for hilar cholangiocarcinoma was proved safe and feasible, which enabled the patient to recover early and have an opportunity to receive chemotherapy as soon as possible. We

  1. Invasion of vascular cells in vitro by Porphyromonas endodontalis.

    Science.gov (United States)

    Dorn, B R; Harris, L J; Wujick, C T; Vertucci, F J; Progulske-Fox, A

    2002-04-01

    The objective of this study was to determine whether laboratory strains and clinical isolates of microorganisms associated with root canal infections can invade primary cultures of cardiovascular cells. Quantitative levels of bacterial invasion of human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC) were measured using a standard antibiotic protection assay. Transmission electron microscopy was used to confirm and visualize internalization within the vascular cells. Of the laboratory and clinical strains tested, only P. endodontalis ATCC 35406 was invasive in an antibiotic protection assay using HCAEC and CASMC. Invasion of P. endodontalis ATCC 35406 was confirmed by transmission electron microscopy. Certain microorganisms associated with endodontic infections are invasive. If bacterial invasion of the vasculature contributes to the pathogenesis of cardiovascular disease, then microorganisms in the pulp chamber represent potential pathogens.

  2. Laparoscopic resection of hilar cholangiocarcinoma.

    Science.gov (United States)

    Lee, Woohyung; Han, Ho-Seong; Yoon, Yoo-Seok; Cho, Jai Young; Choi, YoungRok; Shin, Hong Kyung; Jang, Jae Yool; Choi, Hanlim

    2015-10-01

    Laparoscopic resection of hilar cholangiocarcinoma is technically challenging because it involves complicated laparoscopic procedures that include laparoscopic hepatoduodenal lymphadenectomy, hemihepatectomy with caudate lobectomy, and hepaticojejunostomy. There are currently very few reports describing this type of surgery. Between August 2014 and December 2014, 5 patients underwent total laparoscopic or laparoscopic-assisted surgery for hilar cholangiocarcinoma. Two patients with type I or II hilar cholangiocarcinoma underwent radical hilar resection. Three patients with type IIIa or IIIb cholangiocarcinoma underwent extended hemihepatectomy together with caudate lobectomy. The median (range) age, operation time, blood loss, and length of hospital stay were 63 years (43-76 years), 610 minutes (410-665 minutes), 650 mL (450-1,300 mL), and 12 days (9-21 days), respectively. Four patients had a negative margin, but 1 patient was diagnosed with high-grade dysplasia on the proximal resection margin. The median tumor size was 3.0 cm. One patient experienced postoperative biliary leakage, which resolved spontaneously. Laparoscopic resection is a feasible surgical approach in selected patients with hilar cholangiocarcinoma.

  3. Vinculin contributes to Cell Invasion by Regulating Contractile Activation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2008-07-01

    Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.

  4. ABT737 enhances cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics

    International Nuclear Information System (INIS)

    Fan, Zhongqi; Yu, Huimei; Cui, Ni; Kong, Xianggui; Liu, Xiaomin; Chang, Yulei; Wu, Yao; Sun, Liankun; Wang, Guangyi

    2015-01-01

    Cholangiocarcinoma responses weakly to cisplatin. Mitochondrial dynamics participate in the response to various stresses, and mainly involve mitophagy and mitochondrial fusion and fission. Bcl-2 family proteins play critical roles in orchestrating mitochondrial dynamics, and are involved in the resistance to cisplatin. Here we reported that ABT737, combined with cisplatin, can promote cholangiocarcinoma cells to undergo apoptosis. We found that the combined treatment decreased the Mcl-1 pro-survival form and increased Bak. Cells undergoing cisplatin treatment showed hyperfused mitochondria, whereas fragmentation was dominant in the mitochondria of cells exposed to the combined treatment, with higher Fis1 levels, decreased Mfn2 and OPA1 levels, increased ratio of Drp1 60 kD to 80 kD form, and more Drp1 located on mitochondria. More p62 aggregates were observed in cells with fragmented mitochondria, and they gradually translocated to mitochondria. Mitophagy was induced by the combined treatment. Knockdown p62 decreased the Drp1 ratio, increased Tom20, and increased cell viability. Our data indicated that mitochondrial dynamics play an important role in the response of cholangiocarcinoma to cisplatin. ABT737 might enhance cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics and the balance within Bcl-2 family proteins. Furthermore, p62 seems to be critical in the regulation of mitochondrial dynamics. - Highlights: • Cholangiocarcinoma may adapt to cisplatin through mitochondrial fusion. • ABT737 sensitizes cholangiocarcinoma to cisplatin by promoting fission and mitophagy. • p62 might participate in the regulation of mitochondrial fission and mitophagy

  5. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  6. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  7. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis.

    Science.gov (United States)

    Philippar, Ulrike; Roussos, Evanthia T; Oser, Matthew; Yamaguchi, Hideki; Kim, Hyung-Do; Giampieri, Silvia; Wang, Yarong; Goswami, Sumanta; Wyckoff, Jeffrey B; Lauffenburger, Douglas A; Sahai, Erik; Condeelis, John S; Gertler, Frank B

    2008-12-01

    The spread of cancer during metastatic disease requires that tumor cells subvert normal regulatory networks governing cell motility to invade surrounding tissues and migrate toward blood and lymphatic vessels. Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) proteins regulate cell motility by controlling the geometry of assembling actin networks. Mena, an Ena/VASP protein, is upregulated in the invasive subpopulation of breast cancer cells. In addition, Mena is alternately spliced to produce an invasion isoform, Mena(INV). Here we show that Mena and Mena(INV) promote carcinoma cell motility and invasiveness in vivo and in vitro, and increase lung metastasis. Mena and Mena(INV) potentiate epidermal growth factor (EGF)-induced membrane protrusion and increase the matrix degradation activity of tumor cells. Interestingly, Mena(INV) is significantly more effective than Mena in driving metastases and sensitizing cells to EGF-dependent invasion and protrusion. Upregulation of Mena(INV) could therefore enable tumor cells to invade in response to otherwise benign EGF stimulus levels.

  8. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  9. Collective cell migration: Implications for wound healing and cancer invasion

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-07-01

    Full Text Available During embryonic morphogenesis, wound repair and cancer invasion, cells often migrate collectively via tight cell-cell junctions, a process named collective migration. During such migration, cells move as coherent groups, large cell sheets, strands or tubes rather than individually. One unexpected finding regarding collective cell migration is that being a "multicellular structure" enables cells to better respond to chemical and physical cues, when compared with isolated cells. This is important because epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular connections. Recent studies have gained some mechanistic insights that will benefit the clinical understanding of wound healing in general. In this review, we will briefly introduce the role of collective cell migration in wound healing, regeneration and cancer invasion and discuss its underlying mechanisms as well as implications for wound healing.

  10. Palliative management of hilar cholangiocarcinoma

    NARCIS (Netherlands)

    Singhal, D.; van Gulik, T. M.; Gouma, D. J.

    2005-01-01

    Around 80% of the patients with hilar cholangiocarcinoma are candidates for palliative management due to extensive co-morbidity for major surgery, metastases or advanced loco-regional disease. The primary aim of treatment is to provide biliary drainage with long-term relief from pruritis,

  11. Palliation: Hilar cholangiocarcinoma

    Science.gov (United States)

    Goenka, Mahesh Kr; Goenka, Usha

    2014-01-01

    Hilar cholangiocarcinomas are common tumors of the bile duct that are often unresectable at presentation. Palliation, therefore, remains the goal in the majority of these patients. Palliative treatment is particularly indicated in the presence of cholangitis and pruritus but is often also offered for high-grade jaundice and abdominal pain. Endoscopic drainage by placing stents at endoscopic retrograde cholangio-pancreatography (ERCP) is usually the preferred modality of palliation. However, for advanced disease, percutaneous stenting has been shown to be superior to endoscopic stenting. Endosonography-guided biliary drainage is emerging as an alternative technique, particularly when ERCP is not possible or fails. Metal stents are usually preferred over plastic stents, both for ERCP and for percutaneous biliary drainage. There is no consensus as to whether it is necessary to place multiple stents within advanced hilar blocks or whether unilateral stenting would suffice. However, recent data have suggested that, contrary to previous belief, it is useful to drain more than 50% of the liver volume for favorable long-term results. In the presence of cholangitis, it is beneficial to drain all of the obstructed biliary segments. Surgical bypass plays a limited role in palliation and is offered primarily as a segment III bypass if, during a laparotomy for resection, the tumor is found to be unresectable. Photodynamic therapy and, more recently, radiofrequency ablation have been used as adjuvant therapies to improve the results of biliary stenting. The exact technique to be used for palliation is guided by the extent of the biliary involvement (Bismuth class) and the availability of local expertise. PMID:25232449

  12. Cancer review: Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Yezaz Ahmed Ghouri

    2015-01-01

    Full Text Available Cholangiocarcinoma (CCA is the most common biliary tract malignancy. CCA is classified as intrahepatic, perihilar or distal extrahepatic; the individual subtypes differ in their biologic behavior, clinical presentation, and management. Throughout the last decades, CCA incidence rates had significantly increased. In addition to known established risk factors, novel possible risk factors (i.e. obesity, hepatitis C virus have been identified that are of high importance in developed countries where CCA prevalence rates have been low. CCA tends to develop on the background of inflammation and cholestasis. In recent years, our understanding of the molecular mechanisms of cholangiocarcinogenesis has increased, thereby, providing the basis for molecularly targeted therapies. In its diagnostic evaluation, imaging techniques have improved, and the role of complementary techniques has been defined. There is a need for improved CCA biomarkers as currently used ones are suboptimal. Multiple staging systems have been developed, but none of these is optimal. The prognosis of CCA is considered dismal. However, treatment options have improved throughout the last two decades for carefully selected subgroups of CCA patients. Perihilar CCA can now be treated with orthotopic liver transplantation with neoadjuvant chemoradiation achieving 5-year survival rates of 68%. Classically considered chemotherapy-resistant, the ABC-02 trial has shown the therapeutic benefit of combination therapy with gemcitabine and cisplatin. The benefits of adjuvant treatments for resectable CCA, local ablative therapies and molecularly targeted therapies still need to be defined. In this article, we will provide the reader with an overview over CCA, and discuss the latest developments and controversies.

  13. Dysregulated Expression of MITF in Subsets of Hepatocellular Carcinoma and Cholangiocarcinoma.

    Science.gov (United States)

    Nooron, Nattakarn; Ohba, Koji; Takeda, Kazuhisa; Shibahara, Shigeki; Chiabchalard, Anchalee

    2017-08-01

    Cholangiocarcinoma represents the second most common primary liver tumor after hepatocellular carcinoma. Mahanine, a carbazole alkaloid derived from Murraya koenigii (Linn.) Spreng, has been used as folk medicine in Thailand, where the liver fluke-associated cholangiocarcinoma is common. The expression of microphthalmia-associated transcription factor (MITF) is maintained at immunohistochemically undetectable levels in hepatocytes and cholangiocytes. To explore the regulation of MITF expression in the liver, we immunohistochemically analyzed the MITF expression using hepatocellular carcinoma and cholangiocarcinoma specimens of the human liver cancer tissue array. MITF immunoreactivity was detected in subsets of hepatocellular carcinoma (6 out of 38 specimens; 16%) and cholangiocarcinoma (2/7 specimens; 29%). Moreover, immunoreactivity for glioma-associated oncogene 1 (GLI1), a transcription factor of the Hedgehog signaling pathway, was detected in 55% of hepatocellular carcinoma (21/38 specimens) and 86% of cholangiocarcinoma (6/7 specimens). Importantly, MITF was detectable only in the GLI1-positive hepatocellular carcinoma and cholangiocarcinoma, and MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. Subsequently, the effect of mahanine was analyzed in HepG2 human hepatocellular carcinoma and HuCCT1 and KKU-100 human cholangiocarcinoma cells. Mahanine (25 µM) showed the potent cytotoxicity in these hepatic cancer cell lines, which was associated with increased expression levels of MITF, as judged by Western blot analysis. MITF is over-expressed in subsets of hepatocellular carcinoma and cholangiocarcinoma, and detectable MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. MITF expression levels may be determined in hepatic cancer cells by the balance between the Hedgehog signaling and the cellular stress.

  14. Invasion of Porphyromonas gingivalis strains into vascular cells and tissue

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2015-08-01

    Full Text Available Porphyromonas gingivalis is considered a major pathogen in adult periodontitis and is also associated with multiple systemic diseases, for example, cardiovascular diseases. One of its most important virulence factors is invasion of host cells. The invasion process includes attachment, entry/internalization, trafficking, persistence, and exit. The present review discusses these processes related to P. gingivalis in cardiovascular cells and tissue. Although most P. gingivalis strains invade, the invasion capacity of strains and the mechanisms of invasion including intracellular trafficking among them differ. This is consistent with the fact that there are significant differences in the pathogenicity of P. gingivalis strains. P. gingivalis invasion mechanisms are also dependent on types of host cells. Although much is known about the invasion process of P. gingivalis, we still have little knowledge of its exit mechanisms. Nevertheless, it is intriguing that P. gingivalis can remain viable in human cardiovascular cells and atherosclerotic plaque and later exit and re-enter previously uninfected host cells.

  15. Invasion of Ureaplasma diversum in Hep-2 cells

    Directory of Open Access Journals (Sweden)

    Braga Antonio

    2010-03-01

    Full Text Available Abstract Background Understanding mollicutes is challenging due to their variety and relationship with host cells. Invasion has explained issues related to their opportunistic role. Few studies have been done on the Ureaplasma diversum mollicute, which is detected in healthy or diseased bovine. The invasion in Hep-2 cells of four clinical isolates and two reference strains of their ureaplasma was studied by Confocal Laser Scanning Microscopy and gentamicin invasion assay. Results The isolates and strains used were detected inside the cells after infection of one minute without difference in the arrangement for adhesion and invasion. The adhesion was scattered throughout the cells, and after three hours, the invasion of the ureaplasmas surrounded the nuclear region but were not observed inside the nuclei. The gentamicin invasion assay detected that 1% of the ATCC strains were inside the infected Hep-2 cells in contrast to 10% to the clinical isolates. A high level of phospholipase C activity was also detected in all studied ureaplasma. Conclusions The results presented herein will help better understand U. diversum infections, aswell as cellular attachment and virulence.

  16. Elevated AQP1 Expression Is Associated With Unfavorable Oncologic Outcome in Patients With Hilar Cholangiocarcinoma.

    Science.gov (United States)

    Li, Chunxiang; Li, Xiaofu; Wu, Linfeng; Jiang, Zheng

    2017-08-01

    Hilar cholangiocarcinomas are malignant tumors with a poor prognosis. An early prediction of prognosis for patients may help us determine treatment strategies. Aquaporin 1 is a cell membrane channel involved in water transport, cell motility, and proliferation. Increasing evidences showed that aquaporin 1 played a role in tumor prognosis and diagnosis. The purpose of this study is to evaluate the role of aquaporin 1 in hilar cholangiocarcinoma. Here, we analyzed messenger RNA expression data of genes function as bile secretion in a data set of 169 samples using the R2 bioinformatic platform ( http://r2.amc.nl ). Quantitative polymerase chain reaction was performed to verify the gene expression in 17 hilar cholangiocarcinoma samples. Immunohistochemistry was also performed in a series of specimens from 62 hilar cholangiocarcinoma tissues, and its clinical significance was assessed by clinical correlation and Kaplan-Meier analyses. All data were analyzed using the R2 web application, aquaporin 1 was selected for further analysis. The significant expression variation of aquaporin 1 among 17 cases with cholangiocarcinoma was also found using quantitative polymerase chain reaction. The expression level of aquaporin 1 protein significantly correlated with tumor-node-metastasis stage ( P = .002) and overall survival time ( P = .010). Higher aquaporin 1 expression indicated poor prognostic outcomes ( P hilar cholangiocarcinoma ( P = .002). This study highlighted the prognostic value of aquaporin 1 in hilar cholangiocarcinoma. Strong aquaporin 1 expression predicts poor survival, regardless of pathological features. Immunohistochemical detection of aquaporin 1, as a prognostic marker, may contribute to predicting clinical outcome for patients with hilar cholangiocarcinoma.

  17. Invasion of Human Oral Epithelial Cells by Prevotella intermedia

    Science.gov (United States)

    Dorn, Brian R.; Leung, K.-P.; Progulske-Fox, Ann

    1998-01-01

    Invasion of oral epithelial cells by pathogenic oral bacteria may represent an important virulence factor in the progression of periodontal disease. Here we report that a clinical isolate of Prevotella intermedia, strain 17, was found to invade a human oral epithelial cell line (KB), whereas P. intermedia 27, another clinical isolate, and P. intermedia 25611, the type strain, were not found to invade the cell line. Invasion was quantified by the recovery of viable bacteria following a standard antibiotic protection assay and observed by electron microscopy. Cytochalasin D, cycloheximide, monodansylcadaverine, and low temperature (4°C) inhibited the internalization of P. intermedia 17. Antibodies raised against P. intermedia type C fimbriae and against whole cells inhibited invasion, but the anti-type-C-fimbria antibody inhibited invasion to a greater extent than the anti-whole-cell antibody. This work provides evidence that at least one strain of P. intermedia can invade an oral epithelial cell line and that the type C fimbriae and a cytoskeletal rearrangement are required for this invasion. PMID:9826397

  18. Desmoplastic Tumor Microenvironment and Immunotherapy in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Høgdall, Dan; Lewinska, Monika; Andersen, Jesper B

    2018-01-01

    connective tissue which surrounds and infiltrates the tumor epithelium. This desmoplastic environment presents a clinical challenge, limiting drug delivery and supporting the growth of the tumor mass. In this review we attempt to highlight key pathways involved in cell to cell communication between the tumor......Cholangiocarcinoma (CCA) is a dismal disease which often is diagnosed at a late stage where the tumor is locally advanced, metastatic, and, as a result, is associated with low resectability. The heterogeneity of this cancer type is a major reason why the majority of patients fail to respond...... to therapy, and surgery remains their only curative option. Among patients who undergo surgical intervention, such tumors typically recur in 50% of cases within 1year. Thus, CCA is among the most aggressive and chemoresistant malignancies. CCA is characterized by marked tumor reactive stroma, a fibrogenic...

  19. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  20. Prevalence of nonalcoholic steatohepatitis among patients with resectable intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Reddy, Srinevas K; Hyder, Omar; Marsh, J Wallis; Sotiropoulos, Georgios C; Paul, Andreas; Alexandrescu, Sorin; Marques, Hugo; Pulitano, Carlo; Barroso, Eduardo; Aldrighetti, Luca; Geller, David A; Sempoux, Christine; Herlea, Vlad; Popescu, Irinel; Anders, Robert; Rubbia-Brandt, Laura; Gigot, Jean-Francois; Mentha, Giles; Pawlik, Timothy M

    2013-04-01

    The objective of this report was to determine the prevalence of underlying nonalcoholic steatohepatitis in resectable intrahepatic cholangiocarcinoma. Demographics, comorbidities, clinicopathologic characteristics, surgical treatments, and outcomes from patients who underwent resection of intrahepatic cholangiocarcinoma at one of eight hepatobiliary centers between 1991 and 2011 were reviewed. Of 181 patients who underwent resection for intrahepatic cholangiocarcinoma, 31 (17.1 %) had underlying nonalcoholic steatohepatitis. Patients with nonalcoholic steatohepatitis were more likely obese (median body mass index, 30.0 vs. 26.0 kg/m(2), p < 0.001) and had higher rates of diabetes mellitus (38.7 vs. 22.0 %, p = 0.05) and the metabolic syndrome (22.6 vs. 10.0 %, p = 0.05) compared with those without nonalcoholic steatohepatitis. Presence and severity of hepatic steatosis, lobular inflammation, and hepatocyte ballooning were more common among nonalcoholic steatohepatitis patients (all p < 0.001). Macrovascular (35.5 vs. 11.3 %, p = 0.01) and any vascular (48.4 vs. 26.7 %, p = 0.02) tumor invasion were more common among patients with nonalcoholic steatohepatitis. There were no differences in recurrence-free (median, 17.0 versus 19.4 months, p = 0.42) or overall (median, 31.5 versus 36.3 months, p = 0.97) survival after surgical resection between patients with and without nonalcoholic steatohepatitis. Nonalcoholic steatohepatitis affects up to 20 % of patients with resectable intrahepatic cholangiocarcinoma.

  1. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Lei Gu

    Full Text Available Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23 of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted.

  2. Hepatic abscess versus peripheral cholangiocarcinoma: Sonographic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Chung, Kyoo Byung; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of); Lee, Chang Hee [Kunkuk University College of Medicine, Chung-Ju Hospital, Chung-Ju (Korea, Republic of)

    2000-12-15

    To find out the sonographic findings that are useful to differentiate hepatic abscess from peripheral cholangiocarcinoma. Twenty-two hepatic abscesses and 22 peripheral cholangiocarcinomas which had been confirmed histologically were included in this study. Objective points were echo characteristics of the lesion, internal septation, presence of peripheral low echoic rim, demarcation from normal liver(well or poorly defined), posterior enhancement, multiplicity, dilatation of bile duct(obstructive or non-obstructive), intrahepatic duct stone, pleural effusion, and intra-abdominal fluid collection. Echo characteristics of the lesion were classified in-to four types. Type I; Predominantly echogenic with hypoechoic portion, type II; Echogenic without hypoechoic portion, type III; Predominantly hypoechoic with echogenic portion, type IV; Hypoechoic without echogenic portion. 1)Nine abscesses and 2 peripheral cholangiocarcinomas were type I(p=0.037), 2)One abscess and 18 peripheral cholangiocarcinomas were type II(p=0.001), 3)Seven abscesses and none of peripheral cholangiocarcinomas were type III(p=0.001), 4)Five abscesses and 2 peripheral cholangiocarcinomas were type IV(p=0.410). Only 7 abscesses showed internal septations(p=0.013). One abscess and 9 peripheral cholangiocarcinomas showed peripheral hypoechoic halos(p=0.012). Only 9 peripheral cholangiocarcinomas showed obstructive bile duct dilatation (p=0.001). There were no statistically significant differences between abscess and peripheral cholangiocarcinoma on other objective points. Predominantly echogenic with hypoechoic portion, predominantly hypoechoic with echogenic portion, and internal septation are the features suggestive of hepatic abscess, and echogenic without hypoechoic portion, peripheral hypoechoic halo, obstructive bile duct dilatation are suggestive of peripheral cholangiocarcinoma. Therefore these sonographic findings are helpful to differentiate hepatic abscess from peripheral

  3. Primary Hepatic Lymphoma Mimicking Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Foroogh Forghani1,

    2017-07-01

    Full Text Available Primary hepatic lymphoma (PHL presenting with obstructive jaundice is rare and can mimic a preoperative diagnosis of cholangiocarcinoma. We should consider PHL in patients with radiological hepatic disease with normal serum alpha-fetoprotein and carcinoembryonic antigen levels, and elevated lactate dehydrogenase. We present the case of a 67-year-old male with no significant medical history presented with abdominal pain, jaundice, fever, and abnormal liver function tests. Abdominal sonography and computed tomography scan suggested a diagnosis of obstructive jaundice and cholangitis due to cholangiocarcinoma (Klatskin tumor. A subsequent liver biopsy diagnosed PHL, and the patient was treated with combination chemotherapy, including rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP. PHL should be considered in patients presenting with biliary obstruction.

  4. Hilar cholangiocarcinoma: expert consensus statement.

    Science.gov (United States)

    Mansour, John C; Aloia, Thomas A; Crane, Christopher H; Heimbach, Julie K; Nagino, Masato; Vauthey, Jean-Nicolas

    2015-08-01

    An American Hepato-Pancreato-Biliary Association (AHPBA)-sponsored consensus meeting of expert panellists met on 15 January 2014 to review current evidence on the management of hilar cholangiocarcinoma in order to establish practice guidelines and to agree consensus statements. It was established that the treatment of patients with hilar cholangiocarcinoma requires a coordinated, multidisciplinary approach to optimize the chances for both durable survival and effective palliation. An adequate diagnostic and staging work-up includes high-quality cross-sectional imaging; however, pathologic confirmation is not required prior to resection or initiation of a liver transplant trimodal treatment protocol. The ideal treatment for suitable patients with resectable hilar malignancy is resection of the intra- and extrahepatic bile ducts, as well as resection of the involved ipsilateral liver. Preoperative biliary drainage is best achieved with percutaneous transhepatic approaches and may be indicated for patients with cholangitis, malnutrition or hepatic insufficiency. Portal vein embolization is a safe and effective strategy for increasing the future liver remnant (FLR) and is particularly useful for patients with an FLR of hilar cholangiocarcinoma should be evaluated for a standard trimodal protocol incorporating external beam and endoluminal radiation therapy, systemic chemotherapy and liver transplantation. Post-resection chemoradiation should be offered to patients who show high-risk features on surgical pathology. Chemoradiation is also recommended for patients with locally advanced, unresectable hilar cancers. For patients with locally recurrent or metastatic hilar cholangiocarcinoma, first-line chemotherapy with gemcitabine and cisplatin is recommended based on multiple Phase II trials and a large randomized controlled trial including a heterogeneous population of patients with biliary cancers. © 2015 International Hepato-Pancreato-Biliary Association.

  5. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  6. Identification of molecular pathways facilitating glioma cell invasion in situ.

    Directory of Open Access Journals (Sweden)

    Ido Nevo

    Full Text Available Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  7. Mast cells and eosinophils in invasive breast carcinoma

    International Nuclear Information System (INIS)

    Amini, Rose-Marie; Aaltonen, Kirsimari; Nevanlinna, Heli; Carvalho, Ricardo; Salonen, Laura; Heikkilä, Päivi; Blomqvist, Carl

    2007-01-01

    Inflammatory cells in the tumour stroma has gained increasing interest recently. Thus, we aimed to study the frequency and prognostic impact of stromal mast cells and tumour infiltrating eosinophils in invasive breast carcinomas. Tissue microarrays containing 234 cases of invasive breast cancer were prepared and analysed for the presence of stromal mast cells and eosinophils. Tumour infiltrating eosinophils were counted on hematoxylin-eosin slides. Immunostaining for tryptase was done and the total number of mast cells were counted and correlated to the proliferation marker Ki 67, positivity for estrogen and progesterone receptors, clinical parameters and clinical outcome. Stromal mast cells were found to correlate to low grade tumours and estrogen receptor positivity. There was a total lack of eosinophils in breast cancer tumours. A high number of mast cells in the tumours correlated to low-grade tumours and estrogen receptor positivity. Eosinophils are not tumour infiltrating in breast cancers

  8. Management of periorbital basal cell carcinoma with orbital invasion.

    Science.gov (United States)

    Sun, Michelle T; Wu, Albert; Figueira, Edwin; Huilgol, Shyamala; Selva, Dinesh

    2015-11-01

    Basal cell carcinoma (BCC) is the most common eyelid malignancy; however, orbital invasion by periocular BCC is rare, and management remains challenging. Established risk factors for orbital invasion by BCC include male gender, advanced age, medial canthal location, previous recurrences, large tumor size, aggressive histologic subtype and perineural invasion. Management requires a multidisciplinary approach with orbital exenteration remaining the treatment of choice. Globe-sparing treatment may be appropriate in selected patients and radiotherapy and chemotherapy are often used as adjuvant therapies for advanced or inoperable cases, although the evidence remains limited. We aim to summarize the presentation and treatment of BCC with orbital invasion to better guide the management of this complex condition.

  9. Autoimmune Hepatitis: A Risk Factor for Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Rajat Garg

    2017-11-01

    Full Text Available Cholangiocarcinoma (CCA is a very aggressive and lethal tumor, which arises from the epithelial cells of bile ducts. CCA comprises about 3% of all gastrointestinal malignancies and its incidence is on the rise in the recent years. Anatomically, it is classified into intrahepatic, perihilar, or extrahepatic (distal CCA. There are a number of risk factors associated with CCA including primary sclerosing cholangitis, fibropolycystic liver disease, parasitic infection, viral hepatitis, chronic liver disease, and genetic disorders like Lynch syndrome. Autoimmune hepatitis is also recently reported to have an association with development of CCA. We report an interesting case of perihilar CCA in the setting of autoimmune hepatitis along with a literature review. This case highlights the importance of early treatment and close clinical follow-up of patients with autoimmune hepatitis for development of CCA.

  10. The Inside Story of Shigella Invasion of Intestinal Epithelial Cells

    Science.gov (United States)

    Carayol, Nathalie; Tran Van Nhieu, Guy

    2013-01-01

    As opposed to other invasive pathogens that reside into host cells in a parasitic mode, Shigella, the causative agent of bacillary dysentery, invades the colonic mucosa but does not penetrate further to survive into deeper tissues. Instead, Shigella invades, replicates, and disseminates within the colonic mucosa. Bacterial invasion and spreading in intestinal epithelium lead to the elicitation of inflammatory responses responsible for the tissue destruction and shedding in the environment for further infection of other hosts. In this article, we highlight specific features of the Shigella arsenal of virulence determinants injected by a type III secretion apparatus (T3SA) that point to the targeting of intestinal epithelial cells as a discrete route of invasion during the initial event of the infectious process. PMID:24086068

  11. URG11 Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2018-01-01

    Full Text Available Upregulated gene 11 (URG11, a new gene upregulated by hepatitis B virus X protein, is involved in the development and progression of several tumors, including liver, stomach, lung, and colon cancers. However, the role of URG11 in prostate cancer remains yet to be elucidated. By determined expression in human prostate cancer tissues, URG11 was found significantly upregulated and positively correlated with the severity of prostate cancer, compared with that in benign prostatic hyperplasia tissues. Further, the mRNA and protein levels of URG11 were significantly upregulated in human prostate cancer cell lines (DU145, PC3, and LNCaP, compared with human prostate epithelial cell line (RWPE-1. Moreover, by the application of siRNA against URG11, the proliferation, migration, and invasion of prostate cancer cells were markedly inhibited. Genetic knockdown of URG11 also induced cell cycle arrest at G1/S phase, induced apoptosis, and decreased the expression level of β-catenin in prostate cancer cells. Overexpression of URG11 promoted the expression of β-catenin, the growth, the migration, and invasion ability of prostate cancer cells. Taken together, this study reveals that URG11 is critical for the proliferation, migration, and invasion in prostate cancer cells, providing the evidence of URG11 to be a novel potential therapeutic target of prostate cancer.

  12. Tetraspanin 1 promotes invasiveness of cervical cancer cells.

    Science.gov (United States)

    Hölters, Sebastian; Anacker, Jelena; Jansen, Lars; Beer-Grondke, Katrin; Dürst, Matthias; Rubio, Ignacio

    2013-08-01

    Tetraspanins are a heterogeneous group of 4-transmembrane proteins that segregate into so-called tetraspanin-enriched microdomains (TEMs) along with other cell surface proteins such as integrins. TEMs of various types are reportedly involved in the regulation of cell growth, migration and invasion of several tumour cell types, both as suppressors or supporting structures. Tetraspanin 1 (Tspan1, NET-1), a member of the transmembrane 4 superfamily (TM4SF) of tetraspanins, is overexpressed in high-grade cervical intraepithelial neoplasia (CIN) and terminal carcinomas but its precise function in the context of carcinoma of the cervix uteri is not known. Here, we present a comprehensive investigation of the role of tetraspanin 1 in the cervical cancer cell lines SiHa and HeLa. We document that tetraspanin 1 increases the invasive potential of cervical cancer cells, whereas proliferation, growth in soft agar and adhesion are largely unaffected. In line with the latter findings, our data exclude the participation of testraspanin in integrin-mediated activation of focal adhesion kinase (FAK), paxillin and phosphoinositide-3-kinase (PI3K) and in EGFR-dependent signalling to the Ras/Erk pathway. In conclusion, our data argue against a role for tetraspanin 1 as a genuine mediator of cell surface receptor signalling but rather document a role for tetraspanin 1 in the control of cervical cancer cell motility and invasion.

  13. The genetic and molecular basis of bacterial invasion of epithelial cells

    African Journals Online (AJOL)

    Invasion of epithelial cells was demonstrated to be triggered by invasion plasmid antigens B, C, and D ( IpaB, IpaC and IpaD ) which is accomplished by intracellular spread gene icsA. The invasion of epithelial cells by some individual species of bacteria were also reviewed.Yersinia enterocolitica invasiveness was shown ...

  14. MiR-145 functions as a tumor suppressor targeting NUAK1 in human intrahepatic cholangiocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xinkui; Sun, Daoyi; Chai, Hao; Shan, Wengang [Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China); Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China); Yu, Yue [Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China); Pu, Liyong [Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China); Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China); Cheng, Feng, E-mail: docchengfeng@njmu.edu.cn [Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China); Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province (China)

    2015-09-18

    The dysregulation of micro (mi)RNAs is associated with cancer development. The miRNA miR-145 is downregulated in intrahepatic cholangiocarcinoma (ICC); however, its precise role in tumor progression has not yet been elucidated. Novel (nua) kinase family (NUAK)1 functions as an oncogene in various cancers and is a putative target of miR-145 regulation. In this study, we investigated the regulation of NUAK1 by miR-145 in ICC. We found that miR-145 level was significantly decreased in ICC tissue and cell lines, which corresponded with an increase in NUAK1 expression. NUAK1 was found to be a direct target of miR-145 regulation. The overexpression of miR-145 in ICC cell lines inhibited proliferation, growth, and invasion by suppressing NUAK1 expression, which was associated with a decrease in Akt signaling and matrix metalloproteinase protein expression. Similar results were observed by inhibiting NUAK1 expression. These results demonstrate that miR-145 can prevent ICC progression by targeting NUAK1 and its downstream effectors, and can therefore be useful for clinical diagnosis and targeted therapy of ICC. - Highlights: • MiR-145 suppresses ICC proliferation and invasion abilities. • We demonstrated that miR-145 directly targets NUAK1 in ICC. • MiR-145 expression in ICC was associated with Akt signaling and MMPs expression.

  15. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Science.gov (United States)

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  16. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshinori Kagawa

    Full Text Available The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP, was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  17. Multidisciplinary management of intrahepatic cholangiocarcinoma: Current approaches.

    Science.gov (United States)

    Guro, Hanisah; Kim, Jin Won; Choi, YoungRok; Cho, Jai Young; Yoon, Yoo-Seok; Han, Ho-Seong

    2017-06-01

    Intrahepatic cholangiocarcinoma (ICC) is a common primary hepatic tumor. However, its outcomes are usually worse than those of hepatocellular carcinoma owing to its non-specific presentation and detection at an advanced stage. The most widely used serum marker, carbohydrate antigen 19-9, is non-specific. Furthermore, imaging studies rarely identify any pathognomonic features. Surgery is the only treatment option that offers a chance of long-term survival. However, the resectability rate is low owing to the high frequencies of intrahepatic metastases, peritoneal carcinomatosis, or extrahepatic metastases. Surgical treatment should be tailored according to the macroscopic classification of ICC (e.g. mass-forming, periductal infiltrating, and intraductal growth types) because it reflects the tumor's dissemination pattern. Although lymph node metastasis is a negative prognostic factor, the importance and extent of lymph node dissection is still controversial. To improve patient survival, liver transplantation is considered in some patients with unresectable ICC, especially in those with an insufficient remnant liver volume. Minimally invasive procedures, including laparoscopic and robotic liver resection, have been tested and achieved comparable outcomes to conventional surgery in preliminary studies. No randomized trials have confirmed the efficacy of adjuvant chemotherapy in ICC, and several trials have evaluated molecular-targeted agents as monotherapy or in combination with cytotoxic chemotherapy. Multidisciplinary approaches are necessary to improve the outcomes of ICC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Molecular pathogenesis of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Andersen, Jesper Bøje

    2014-01-01

    Cholangiocarcinoma (CCA) is an orphan cancer of the hepatobiliary tract, the incidence of which has increased in the past decade. The molecular pathogenesis of this treatment-refractory disease is poorly understood. Desmoplasia is a key causal feature of CCA; however, a majority of tumors develop...... and individualization for precision therapies. Many questions persevere as to the evolutionary process and cellular origin of the initial transforming event, the context of intratumoral plasticity and the causal driver action. Next-generation sequencing has begun to underline the persistent alterations, which may...

  19. Upregulation of CD147 Promotes Metastasis of Cholangiocarcinoma by Modulating the Epithelial-to-Mesenchymal Transitional Process.

    Science.gov (United States)

    Dana, Paweena; Kariya, Ryusho; Vaeteewoottacharn, Kulthida; Sawanyawisuth, Kanlayanee; Seubwai, Wunchana; Matsuda, Kouki; Okada, Seiji; Wongkham, Sopit

    2017-08-07

    CD147 is a transmembrane protein that can induce the expression and activity of matrix metalloproteinases (MMPs). Expression of CD147 has been shown to potentiate cell migration, invasion, and metastasis of cancer. In this study, the critical role of CD147 in metastasis was elucidated using CD147-overexpressing cholangiocarcinoma (CCA) cells in vitro and in vivo. The molecular mechanism, demonstrated herein, supported the hypothesis that metastasis increased in CD147-overexpressing cells. Five CD147-overexpressing clones (Ex-CD147) were established from a low CD147-expressing CCA cell line, KKU-055, using lentivirus containing pReceiver-Lenti-CD147. The metastatic capability was determined using the tail vein injection mouse model and an in vitro 3D invasion assay. Liver colonization was assessed using anti-HLA class I immunohistochemistry. Adhesion abilities, cytoskeletal arrangements, MMP activities, the expressions of adhesion molecules, and epithelial-mesenchymal transitional markers were analyzed. All Ex-CD147 clones exhibited a high CD147 expression and high liver colonization in the tail vein-injected mouse model, whereas parental cells lacked this ability. Ex-CD147 clones exhibited metastatic phenotypes (i.e., an increase in F-actin rearrangement) and cell invasion and a decrease in cell adhesion. The molecular mechanisms were shown to be via the induction of MMP-2 activity and enhancement of epithelial-mesenchymal transitions. An increase in mesenchymal markers Slug, vimentin, and N-cadherin, and a decrease in epithelial markers E-cadherin and claudin-1, together with suppression of the adhesion molecule ICAM-1, were observed in the Ex-CD147 clones. Moreover, suppression of CD147 expression using siCD147 in two CCA cell lines with high CD147 expression significantly decreased cell migration and invasion of these CCA cells. These findings emphasize the essential role of CD147 in CCA metastasis and suggest CD147 as a promising target for the effective

  20. TROP2 correlates with microvessel density and poor prognosis in hilar cholangiocarcinoma.

    Science.gov (United States)

    Ning, Shanglei; Guo, Sen; Xie, Jianjun; Xu, Yunfei; Lu, Xiaofei; Chen, Yuxin

    2013-02-01

    Trophoblast cell surface antigen 2 (TROP2) was found to be associated with tumor progression and poor prognosis in a variety of epithelial carcinomas. The aim of the study was to investigate TROP2 expression and its prognostic impact in hilar cholangiocarcinoma. Immunohistochemistry and quantitative real-time PCR were used to determine TROP2 expression in surgical specimens from 70 hilar cholangiocarcinoma patients receiving radical resection. The relationship between TROP2 expression and microvessel density was investigated and standard statistical analysis was used to evaluate TROP2 prognosis significance in hilar cholangiocarcinoma. High TROP2 expression by immunohistochemistry was found in 43 (61.4 %) of the 70 tumor specimens. Quantitative real-time PCR confirmed that TROP2 level in tumor was significantly higher than in non-tumoral biliary tissues (P = 0.001). Significant correlations were found between TROP2 expression and histological differentiation (P = 0.016) and tumor T stage (P = 0.031) in hilar cholangiocarcinoma. TROP2 expression correlated with microvessel density in hilar cholangiocarcinoma (P = 0.026). High TROP2 expression patients had a significantly poorer overall survival rate than those with low TROP2 expression (30 vs. 68.5 %, P = 0.001), and multivariate Cox regression analysis indicated TROP2 as an independent prognostic factor for hilar cholangiocarcinoma (P = 0.004). TROP2 expression correlates with microvessel density significantly and is an independent prognostic factor in human hilar cholangiocarcinoma.

  1. Clinicopathological and prognostic significance of epithelial mesenchymal transition-related protein expression in intrahepatic cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Yao X

    2012-10-01

    Full Text Available Xing Yao,1,* Xiang Wang,1,* Zishu Wang,2,* Licheng Dai,1 Guolei Zhang,1 Qiang Yan,1 Weimin Zhou11Huzhou Central Hospital, Zhejiang Huzhou, 2Department of Medical Oncology, First Affiliated Hospital, Bengbu Medical College, Anhui, People’s Republic of China *These authors contributed equally to this workBackground: The aim of this study was to examine the patterns of expression of epithelial-mesenchymal transition (EMT-related proteins in intrahepatic cholangiocarcinoma. The clinicopathological and prognostic value of these markers was also evaluated.Methods: We detected the expression status of three EMT-related proteins, ie, E-cadherin, vimentin, and N-cadherin, by immunohistochemistry in consecutive intrahepatic cholangiocarcinoma specimens from 96 patients.Results: The frequency of loss of the epithelial marker E-cadherin, and acquisition of mesenchymal markers, vimentin and N-cadherin, in intrahepatic cholangiocarcinoma was 43.8%, 37.5% and 57.3%, respectively. Altered expression of EMT markers was associated with aggressive tumor behavior, including lymph node metastasis, undifferentiated-type histology, advanced tumor stage, venous invasion, and shorter overall survival. Moreover, loss of E-cadherin was retained as an independent prognostic factor for patients with intrahepatic cholangiocarcinoma in multivariate analysis.Conclusion: Our results suggest that the EMT process is associated with tumor progression and a poor outcome in patients with intrahepatic cholangiocarcinoma, and inhibition of EMT might offer novel promising molecular targets for the treatment of affected patients.Keywords: intrahepatic cholangiocarcinoma, epithelial-mesenchymal transition, expression, prognosis, immunohistochemistry

  2. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Fan Jia; Wang Xiaoying; Zhou Jian; Qiu Shuangjian; Yu Yao; Liu Yinkun; Tang Zhaoyou

    2007-01-01

    CC chemokine receptor 1 (CCR1) has an important role in the recruitment of leukocytes to the site of inflammation. The migration and metastasis of tumor cells shares many similarities with leukocyte trafficking, which is mainly regulated by chemokine receptor-ligand interactions. CCR1 is highly expressed in hepatocellular carcinoma (HCC) cells and tissues with unknown functions. In this study, we silenced CCR1 expression in the human HCC cell line HCCLM3 using artificial microRNA (miRNA)-mediated RNA interference (RNAi) and examined the invasiveness and proliferation of CCR1-silenced HCCLM3 cells and the matrix metalloproteinase (MMP) activity. The miRNA-mediated knockdown expression of CCR1 significantly inhibited the invasive ability of HCCLM3 cells, but had only a minor effect on the cellular proliferation rate. Moreover, CCR1 knockdown significantly reduced the secretion of MMP-2. Together, these findings indicate that CCR1 has an important role in HCCLM3 invasion and that CCR1 might be a new target of HCC treatment

  3. Migrastatin analogues inhibit canine mammary cancer cell migration and invasion.

    Directory of Open Access Journals (Sweden)

    Kinga Majchrzak

    Full Text Available BACKGROUND: Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6 on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. RESULTS: OUR RESULTS SHOWED THAT TWO OF SIX FULLY SYNTHETIC ANALOGUES OF MIGRASTATIN: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6 disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. CONCLUSION: Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6 were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs

  4. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response.

  5. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells.

    Science.gov (United States)

    Chaudhari, Pratik Rajeev; Charles, Silvania Emlit; D'Souza, Zinia Charlotte; Vaidya, Milind Murlidhar

    2017-11-15

    BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Molecular aspects of tumor cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2010-03-01

    Full Text Available Cell migration and invasion are crucial steps in many physiological events. However, they are also implicated in the physiopathology of many diseases, such as cancer. To spread through the tissues, tumor cells use mechanisms that involve several molecular actors: adhesion receptor families, receptor tyrosine kinases, cytoskeleton proteins, adapter and signalling proteins interplay in a complex scenario. The balance of cellular signals for proliferation and survival responses also regulates migratory behaviours of tumor cells. To complicate the scene of crime drug resistance players can interfere thus worsening this delicate situation. The complete understanding of this molecular jungle is an impossible mission: some molecular aspects are reviewed in this paper.

  7. The prognostic potential and carcinogenesis of long non-coding RNA TUG1 in human cholangiocarcinoma.

    Science.gov (United States)

    Xu, Yi; Leng, Kaiming; Li, Zhenglong; Zhang, Fumin; Zhong, Xiangyu; Kang, Pengcheng; Jiang, Xingming; Cui, Yunfu

    2017-09-12

    Cholangiocarcinoma (CCA) is a fatal disease with increasing worldwide incidence and is characterized by poor prognosis due to its poor response to conventional chemotherapy or radiotherapy. Long non-coding RNAs (lncRNAs) play key roles in multiple human cancers, including CCA. Cancer progression related lncRNA taurine-up-regulated gene 1 (TUG1) was reported to be involved in human carcinomas. However, the impact of TUG1 in CCA is unclear. The aim of this study was to explore the expression pattern of TUG1 and evaluate its clinical significance as well as prognostic potential in CCA. In addition, the functional roles of TUG1 including cell proliferation, apoptosis, migration, invasion and epithelial-mesenchymal transition (EMT), were evaluated after TUG1 silencing. Our data demonstrated up-regulation of TUG1 in both CCA tissues and cell lines. Moreover, overexpression of TUG1 is linked to tumor size ( p =0.005), TNM stage ( p =0.013), postoperative recurrence ( p =0.036) and overall survival ( p =0.010) of CCA patients. Furthermore, down-regulation of TUG1 following RNA silencing reduced cell growth and increased apoptosis in CCA cells. Additionally, TUG1 suppression inhibited metastasis potential in vitro by reversing EMT. Overall, our results suggest that TUG1 may be a rational CCA-related prognostic factor and therapeutic target.

  8. TGFβ loss activates ADAMTS-1-mediated EGF-dependent invasion in a model of esophageal cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Le Bras, Grégoire F.; Taylor, Chase; Koumangoye, Rainelli B. [Department of Surgery, Vanderbilt University, Nashville, TN (United States); Revetta, Frank [Department of Pathology, Vanderbilt University, Nashville, TN (United States); Loomans, Holli A. [Department of Cancer Biology, Vanderbilt University, Nashville, TN (United States); Andl, Claudia D., E-mail: claudia.andl@vanderbilt.edu [Department of Surgery, Vanderbilt University, Nashville, TN (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN (United States); Department of Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN (United States)

    2015-01-01

    The TGFβ signaling pathway is essential to epithelial homeostasis and is often inhibited during progression of esophageal squamous cell carcinoma. Recently, an important role for TGFβ signaling has been described in the crosstalk between epithelial and stromal cells regulating squamous tumor cell invasion in mouse models of head-and-neck squamous cell carcinoma (HNSCC). Loss of TGFβ signaling, in either compartment, leads to HNSCC however, the mechanisms involved are not well understood. Using organotypic reconstruct cultures (OTC) to model the interaction between epithelial and stromal cells that occur in dysplastic lesions, we show that loss of TGFβ signaling promotes an invasive phenotype in both fibroblast and epithelial compartments. Employing immortalized esophageal keratinocytes established to reproduce common mutations of esophageal squamous cell carcinoma, we show that treatment of OTC with inhibitors of TGFβ signaling (A83-01 or SB431542) enhances invasion of epithelial cells into a fibroblast-embedded Matrigel/collagen I matrix. Invasion induced by A83-01 is independent of proliferation but relies on protease activity and expression of ADAMTS-1 and can be altered by matrix density. This invasion was associated with increased expression of pro-inflammatory cytokines, IL1 and EGFR ligands HB-EGF and TGFα. Altering EGF signaling prevented or induced epithelial cell invasion in this model. Loss of expression of the TGFβ target gene ROBO1 suggested that chemorepulsion may regulate keratinocyte invasion. Taken together, our data show increased invasion through inhibition of TGFβ signaling altered epithelial-fibroblasts interactions, repressing markers of activated fibroblasts, and altering integrin-fibronectin interactions. These results suggest that inhibition of TGFβ signaling modulates an array of pathways that combined promote multiple aspects of tumor invasion. - Highlights: • Chemical inhibition of TGFβ signaling advances collective invasion

  9. Inhibition of Zoledronic Acid on Cell Proliferation and Invasion of Lung Cancer Cell Line 95D

    Directory of Open Access Journals (Sweden)

    Mingming LI

    2009-03-01

    Full Text Available Background and objective Abnormal proliferation and metastasis is the basic characteristic of malignant tumors. The aim of this work is to explore the effects of zoledronic acid on cell proliferation and invasion in lung cancer cell line 95D. Methods The effect of zoledrnic acid (ZOL on proliferation of lung cancer cell line 95D was detected by MTT. The expression of proliferation and invasion-relation genes and proteins were detected by Western blot, RT-PCR and immunofluorescence. Changes of invasion of lung cancer cell numbers were measured by polycarbonates coated with Matrigel. Results ZOL could inhibit the proliferation of lung cancer cell line 95D in vitro in a time-dependant and a dose-dependant manner. With time extending after ZOL treated, the mRNA expresion of VEGF, MMP9, MMP2 and protein expression of VEGF, MMP9, ERK1/ ERK2 were decreased. The results of Tanswell invasion showed the numbers of invasive cells were significantly reduced in 95D cells treated with ZOL 4 d and 6 d later. Conclusion ZOL could inhibit cell proliferation and invasion of lung cancer cell line 95D.

  10. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration

    International Nuclear Information System (INIS)

    Sloan, Kevin E; Ilag, Leodevico L; Jay, Daniel G; Eustace, Brenda K; Stewart, Jean K; Zehetmeier, Carol; Torella, Claudia; Simeone, Marina; Roy, Jennifer E; Unger, Christine; Louis, David N

    2004-01-01

    Invasion is an important early step of cancer metastasis that is not well understood. Developing therapeutics to limit metastasis requires the identification and validation of candidate proteins necessary for invasion and migration. We developed a functional proteomic screen to identify mediators of tumor cell invasion. This screen couples Fluorophore Assisted Light Inactivation (FALI) to a scFv antibody library to systematically inactivate surface proteins expressed by human fibrosarcoma cells followed by a high-throughput assessment of transwell invasion. Using this screen, we have identified CD155 (the poliovirus receptor) as a mediator of tumor cell invasion through its role in migration. Knockdown of CD155 by FALI or by RNAi resulted in a significant decrease in transwell migration of HT1080 fibrosarcoma cells towards a serum chemoattractant. CD155 was found to be highly expressed in multiple cancer cell lines and primary tumors including glioblastoma (GBM). Knockdown of CD155 also decreased migration of U87MG GBM cells. CD155 is recruited to the leading edge of migrating cells where it colocalizes with actin and αv-integrin, known mediators of motility and adhesion. Knockdown of CD155 also altered cellular morphology, resulting in cells that were larger and more elongated than controls when plated on a Matrigel substrate. These results implicate a role for CD155 in mediating tumor cell invasion and migration and suggest that CD155 may contribute to tumorigenesis

  11. Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    De Oliveira Tiago

    2012-04-01

    Full Text Available Abstract Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC cells. Methods Syndecan-2 (SDC-2 expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.

  12. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  13. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  14. Cell polarity signaling in the plasticity of cancer cell invasiveness

    Czech Academy of Sciences Publication Activity Database

    Gandalovičová, A.; Vomastek, Tomáš; Rosel, D.; Brábek, J.

    2016-01-01

    Roč. 7, č. 18 (2016), s. 25022-25049 ISSN 1949-2553 R&D Projects: GA ČR GA13-06405S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : polarity * invasion * plasticity Subject RIV: EE - Microbiology, Virology Impact factor: 5.168, year: 2016

  15. The E-cadherin repressor slug and progression of human extrahepatic hilar cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Wang Xin-sheng

    2010-07-01

    Full Text Available Abstract Objectives This study explored the expression and function of Slug in human extrahepatic hilar cholangiocarcinoma (EHC to identify its role in tumor progression. Methods The expression of Snail and Slug mRNA in 52 human tissue samples of EHC was investigated. The mRNA of Snail and Slug were quantified using reverse transcriptase-PCR, and correlations with E-cadherin expression and clinicopathological factors were investigated. We then investigated transfection of Slug cDNA in endogenous E-cadherin-positive human EHC FRH0201 cells, selectively induced the loss of E-cadherin protein expression, and then small interfering RNA (siRNA for inhibition of Slug expression in endogenous Slug-positive human EHC QBC939 cells, selectively induced the loss of Slug protein expression. A Boyden chamber transwell assay was used for invasion. Results Slug mRNA was overexpressed in 18 cases (34.6% of EHC compared with adjacent noncancerous tissue. E-Cadherin protein expression determined in the same 52 cases by immunohistochemistry was significantly down-regulated in those cases with Slug mRNA overexpression (P = 0.0001. The tumor and nontumor ratio of Slug mRNA was correlated with nodal metastasis(p = 0.0102, distant metastasis (p = 0.0001and Survival time(p = 0.0443. However, Snail mRNA correlated with neither E-cadherin expression nor tumor invasiveness. By inhibiting Slug expression by RNA interference, we found that reduced Slug levels upregulated E-cadherin and decreased invasion in QBC939 cell. When the QBC939 cells was infected with Slug cDNA,, significant E-cadherin was downregulated and increased invasion in QBC939 cell. Conclusions The results suggested that Slug expression plays an important role in both the regulation of E-cadherin expression and in the acquisition of invasive potential in human EHC. Slug is possibly a potential target for an antitumor therapy blocking the functions of invasion and metastasis in human EHCs.

  16. Plasmodium falciparum field isolates from South America use an atypical red blood cell invasion pathway associated with invasion ligand polymorphisms

    DEFF Research Database (Denmark)

    Lopez-Perez, Mary; Villasis, Elizabeth; Machado, Ricardo L D

    2012-01-01

    Studies of Plasmodium falciparum invasion pathways in field isolates have been limited. Red blood cell (RBC) invasion is a complex process involving two invasion protein families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins, which are polymorphic and not fully...... characterized in field isolates. To determine the various P. falciparum invasion pathways used by parasite isolates from South America, we studied the invasion phenotypes in three regions: Colombia, Peru and Brazil. Additionally, polymorphisms in three members of the EBL (EBA-181, EBA-175 and EBL-1) and five...... pathways and the ligand polymorphisms differed substantially among the Colombian and Brazilian isolates while the Peruvian isolates represent an amalgam of those present in the Colombian and Brazilian field isolates. The NrTrCr invasion profile was associated with the presence of the PfRh2a pepC variant...

  17. Indirubin inhibits cell proliferation, migration, invasion and angiogenesis in tumor-derived endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Z

    2018-05-01

    Full Text Available Zhuohong Li, Chaofu Zhu, Baiping An, Yu Chen, Xiuyun He, Lin Qian, Lan Lan, Shijie Li Department of Oncology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China Purpose: Hepatocellular carcinoma is one of the most predominant malignancies with high fatality rate and its incidence is rising at an alarming rate because of its resistance to radio- and chemotherapy. Indirubin is the major active anti-tumor ingredient of a traditional Chinese herbal medicine. The present study aimed to analyze the effects of indirubin on cell proliferation, migration, invasion, and angiogenesis of tumor-derived endothelial cells (Td-EC. Methods: Td-EC were derived from human umbilical vein endothelial cells (HUVEC by treating HUVEC with the conditioned medium of human liver cancer cell line HepG2. Cell proliferation, migration, invasion, and angiogenesis were assessed by MTT, wound healing, in vitro cell invasion, and in vitro tube formation assay. Results: Td-EC were successfully obtained from HUVEC cultured with 50% culture supernatant from serum-starved HepG2 cells. Indirubin significantly inhibited Td-EC proliferation in a dose- and time-dependent manner. Indirubin also inhibited Td-EC migration, invasion, and angiogenesis. However, indirubin’s effects were weaker on HUVEC than Td-EC. Conclusion: Indirubin significantly inhibited Td-EC proliferation, migration, invasion, and angiogenesis. Keywords: indirubin, Td-EC, proliferation, migration, invasion, angiogenesis

  18. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  19. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon; Yun, Chae-Ok; Han, Deok-Jong; Choi, Eun Young

    2015-01-01

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  20. Risk assessment and perioperative care in perihilar cholangiocarcinoma

    NARCIS (Netherlands)

    Coelen, R.J.S.

    2016-01-01

    Perihilar cholangiocarcinoma is one of the most complex gastrointestinal malignancies due to the many pitfalls encountered at various stages of its management. Despite several techniques to optimize the patient for operation, liver surgery for perihilar cholangiocarcinoma remains a hazardous

  1. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  2. ERβ inhibits proliferation and invasion of breast cancer cells

    Science.gov (United States)

    Lazennec, Gwendal; Bresson, Damien; Lucas, Annick; Chauveau, Corine; Vignon, Françoise

    2001-01-01

    Recent studies indicate that the expression of ERβ in breast cancer is lower than in normal breast, suggesting that ERβ could play an important role in carcinogenesis. To investigate this hypothesis, we engineered estrogen-receptor negative MDA-MB-231 breast cancer cells to reintroduce either ERα or ERβ protein with an adenoviral vector. In these cells, ERβ (as ERα) expression was monitored using RT-PCR and Western blot. ERβ protein was localized in the nucleus (immunocytochemistry) and able to transactivate estrogen-responsive reporter constructs in the presence of estradiol. ERβ and ERα induced the expression of several endogenous genes such as pS2, TGFα or the cyclin kinase inhibitor p21, but in contrast to ERα, ERβ was unable to regulate c-myc proto-oncogene expression. The pure antiestrogen ICI 164, 384 completely blocked ERα and ERβ estrogen-induced activities. ERβ inhibited MDA-MB-231 cell proliferation in a ligand-independent manner, whereas ERα inhibition of proliferation is hormone-dependent. Moreover, ERβ and ERα, decreased cell motility and invasion. Our data bring the first evidence that ERβ is an important modulator of proliferation and invasion of breast cancer cells and support the hypothesis that the loss of ERβ expression could be one of the events leading to the development of breast cancer. PMID:11517191

  3. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  4. Molecular profiling of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Oliveira, Douglas V N P; Zhang, Shanshan; Chen, Xin

    2017-01-01

    . Areas covered: The present review article outlines the main studies and resulting discoveries on the molecular profiling of iCCA, with a special emphasis on the different techniques used for this purpose, the diagnostic and prognostic markers identified, as well as the genes and pathways that could......INTRODUCTION: Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary tumor of the liver and a highly lethal disease. Therapeutic options for advanced iCCA are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor...... be potentially targeted with innovative therapies. Expert commentary: Molecular profiling has led to the identification of distinct iCCA subtypes, characterized by peculiar genetic alterations and transcriptomic features. Targeted therapies against some of the identified genes are ongoing and hold great promise...

  5. Cell-baswd non-invasive prenatal testing

    DEFF Research Database (Denmark)

    Uldbjerg, Niels; Singh, Ripudaman; Christensen, Rikke

    that fetal cells are stable in blood samples stored up to 48 hours. Using these cells, we have detected subchromosomal abnormalities including one with mosaic 45, X/46, X, r(X) which have been confirmed at DNA from chorion villus sampling. Conclusions: We conclude that fcmb-NIPT deserves full attention......CONTROL ID: 2520273 ABSTRACT FINAL ID: OC06.03 TITLE: Cell based Non-invasive Prenatal Testing (NIPT) AUTHORS (FIRST NAME, LAST NAME): Niels Uldbjerg2, Ripudaman Singh4, Rikke Christensen3, Palle Schelde4, Ida Vogel1, Else Marie Vestergaard3, Lotte Hatt4, Steen Kølvrå4 INSTITUTIONS (ALL): 1...... therefore hypothesize that NIPT based on amplified DNA from fetal cells circulating in maternal blood (fcmb-NIPT) will make it possible to detect subchromosomal aberrations. Methods: We obtained 30 ml of whole blood from 100 pregnant women undergoing chorion villus sampling at a gestational age of 10...

  6. Interventional therapy of hilar cholangiocarcinoma in type III and IV

    International Nuclear Information System (INIS)

    Fan Weijun; Wu Peihong; Zhang Liang; Huang Jinhua; Zhang Fujun; Gu Yangkui; Zhao Ming; Huang Xianglong; Guo Changyu

    2005-01-01

    Objective: To explore the role of synthetic interventional therapy for hilar cholangiocarcinoma in type III and IV. Methods: Twenty-one patients with obstructive cholestasis were pathological confirmed as cholangioadenocarcinoma, and they were classified as type III and IV cholangioadenocarcinoma by CT, MRCP, and percutaneous transhepatic cholangiography. Percutaneous transhepatic cholangiography with internal and external drainage (PTCD), multipolar radiofrequency (RF) ablation, biliary stent endoprosthesis, and interventional adjuvant chemotherapy were applied sequentially. Results: All masses presented with density diminution in CT one month after RF ablation, in which 13 masses had about 30% reduction in size, 4 masses had about 20% reduction in size, and 4 masses remained unchanged. All the masses presented with size reduction with an average of 37% in follow-up CT after 6 months, and the most remarkable size reduction was 60%. The direct and indirect bilirubin levels prompt returned to normal range in 17 cases one month after synthetic interventional therapy and returned to normal range in all cases 6 months later. All patients survived with the follow-up period ranging from 9 to 24 months, with the mean survival time of 14 months. Conclusion: Synthetic interventional therapy is a micro-invasive and effective treatment for type III and IV cholangiocarcinoma. (authors)

  7. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    International Nuclear Information System (INIS)

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-01

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP 2 and PIP 3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  8. The interventional treatment for biliary recurrent obstruction after palliative T tube drainage in patients with obstruction due to cholangiocarcinoma

    International Nuclear Information System (INIS)

    Han Xinwei; Li Yongdong; Guan Sheng; Wu Gang; Xing Gusheng; Ma Bo

    2002-01-01

    Objective: To explore the interventional method to treat biliary recurrent jaundice after T tube drainage in patients with malignant obstructive jaundice due to cholangiocarcinoma. Methods: 7 biliary metallic stents were placed in 7 patients with recurrent jaundice after T-tube drainage in cholangiocarcinoma cases. Results: Stent placement was once successful in all 7 cases with successful rate of 100%. For all cases, TBIL, ALT, GTP and AKP values 7 days postoperatively were significantly lower than that of preoperation together with subsidence of jaundice satisfactorily for 100% after the treatment. Conclusions: Percutaneous placement of biliary metallic stents was effective economic, minimal invasive and safe for palliation of biliary recurrent jaundice after T tube drainage in cholangiocarcinoma-induced obstructive jaundice

  9. Hilar cholangiocarcinoma: diagnosis, treatment options, and management

    Science.gov (United States)

    Soares, Kevin C.; Kamel, Ihab; Cosgrove, David P.; Herman, Joseph M.

    2014-01-01

    Hilar cholangiocarcinoma (HC) is a rare disease with a poor prognosis which typically presents in the 6th decade of life. Of the 3,000 cases seen annually in the United States, less than one half of these tumors are resectable. A variety of risk factors have been associated with HC, most notably primary sclerosing cholangitis (PSC), biliary stone disease and parasitic liver disease. Patients typically present with abdominal pain, pruritis, weight loss, and jaundice. Computed topography (CT), magnetic resonance imaging (MRI), and ultrasound (US) are used to characterize biliary lesions. Endoscopic retrograde cholangiopancreatography (ERCP) and percutaneous transhepatic cholangiography (PTC) assess local ductal extent of the tumor while allowing for therapeutic biliary drainage. MRCP has demonstrated similar efficacies to PTC and ERCP in identifying anatomic extension of tumors with less complications. Treatment consists of surgery, radiation, chemotherapy and photodynamic therapy. Biliary drainage of the future liver remnant should be performed to decrease bilirubin levels thereby facilitating future liver hypertrophy. Standard therapy consists of surgical margin-negative (R0) resection with extrahepatic bile duct resection, hepatectomy and en bloc lymphadenectomy. Local resection should not be undertaken. Lymph node invasion, tumor grade and negative margins are important prognostic indicators. In instances where curative resection is not possible, liver transplantation has demonstrated acceptable outcomes in highly selected patients. Despite the limited data, chemotherapy is indicated for patients with unresectable tumors and adequate functional status. Five-year survival after surgical resection of HC ranges from 10% to 40% however, recurrence can be as high as 50-70% even after R0 resection. Due to the complexity of this disease, a multi-disciplinary approach with multimodal treatment is recommended for this complex disease. PMID:24696835

  10. High mobility group A1 enhances tumorigenicity of human cholangiocarcinoma and confers resistance to therapy

    DEFF Research Database (Denmark)

    Quintavalle, Cristina; Burmeister, Katharina; Piscuoglio, Salvatore

    2017-01-01

    High mobility group A1 (HMGA1) protein has been described to play an important role in numerous types of human carcinoma. By the modulation of several target genes HMGA1 promotes proliferation and epithelial-mesenchymal transition of tumor cells. However, its role in cholangiocarcinoma (CCA) has...

  11. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K.; van Wijk, Albert C.; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C.; van Gulik, Thomas M.; Storm, Gert; Heger, Michal

    2016-01-01

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of

  12. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, R.; Broekgaarden, M.; Krekorian, M.; Alles, L.K.; van Wijk, A.C; Mackaaij, C.; Verheij, J.; van der Wal, A.C.; van Gullik, T.M.; Storm, Gerrit; Heger, M.

    2016-01-01

    Background: Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression

  13. Whole-Genome Sequencing of Invasion-Resistant Cells Identifies Laminin α2 as a Host Factor for Bacterial Invasion

    DEFF Research Database (Denmark)

    van Wijk, Xander M.; Döhrmann, Simon; Hallstrom, Bjorn

    2017-01-01

    cells. Whole-genome sequencing and transcriptome sequencing (RNA-Seq) uncovered a deletion in the gene encoding the laminin subunit α2 (Lama2) that eliminated much of domain L4a. Silencing of the long Lama2 isoform in wild-type cells strongly reduced bacterial invasion, whereas transfection with human...... LAMA2 cDNA significantly enhanced invasion in pgsA745 cells. The addition of exogenous laminin-α2β1γ1/laminin-α2β2γ1 strongly increased bacterial invasion in CHO cells, as well as in human alveolar basal epithelial and human brain microvascular endothelial cells. Thus, the L4a domain in laminin α2...

  14. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo.

    Science.gov (United States)

    Qin, Youyou; Cui, Wu; Yang, Xuewei; Tong, Baifeng

    2016-03-01

    Kaempferol is a flavonoid that has been reported to exhibit antitumor activity in various malignant tumors. However, the role of kaempferol on cholangiocarcinoma (CCA) is largely unknown. In this article, we found that kaempferol inhibited proliferation, reduced colony formation ability, and induced apoptosis in HCCC9810 and QBC939 cells in vitro. Results from transwell assay and wound-healing assay demonstrated that kaempferol significantly suppressed the migration and invasion abilities of HCCC9810 and QBC939 cells in vitro. Kaempferol was found to decrease the expression of Bcl-2 and increase the expressions of Bax, Fas, cleaved-caspase 3, cleaved-caspase 8, cleaved-caspase 9, and cleaved-PARP. In addition, kaempferol also downregulated the levels of phosphorylated AKT, TIMP2, and MMP2. In vivo, it was found that the volume of subcutaneous xenograft (0.15 cm(3)) in the kaempferol-treated group was smaller than that (0.6 cm(3)) in the control group. Kaempferol also suppressed the number and volume of metastasis foci in the lung metastasis model, with no marked effects on body weight of mice. Immunohistochemistry assay showed that the number of Ki-67-positive cells was lower in the kaempferol-treated group than that in the control group. We further confirmed that the changes of apoptosis- and invasion-related proteins after kaempferol treatment in vivo were similar to the results in vitro. These data suggest that kaempferol may be a promising candidate agent for the treatment of CCA. © The Author 2016. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  15. Cholangiocarcinoma

    Science.gov (United States)

    ... of the ducts that carries bile from the liver to the small intestine. ... Updated December 9, 2015. www.cancer.gov/types/liver/hp/bile-duct-treatment-pdq . Accessed July 8, 2016. Zani S, Pappas ...

  16. MDCT assessment of resectability in hilar cholangiocarcinoma.

    Science.gov (United States)

    Ni, Qihong; Wang, Haolu; Zhang, Yunhe; Qian, Lijun; Chi, Jiachang; Liang, Xiaowen; Chen, Tao; Wang, Jian

    2017-03-01

    The purpose of this study is to investigate the value of multidetector computed tomography (MDCT) assessment of resectability in hilar cholangiocarcinoma, and to identify the factors associated with unresectability and accurate evaluation of resectability. From January 2007 to June 2015, a total of 77 consecutive patients were included. All patients had preoperative MDCT (with MPR and MinIP) and surgical treatment, and were pathologically proven with hilar cholangiocarcinoma. The MDCT images were reviewed retrospectively by two senior radiologists and one hepatobiliary surgeon. The surgical findings and pathologic results were considered to be the gold standard. The Chi square test was used to identify factors associated with unresectability and accurate evaluation of resectability. The sensitivity, specificity, and overall accuracy of MDCT assessment were 83.3 %, 75.9 %, and 80.5 %, respectively. The main causes of inaccuracy were incorrect evaluation of N2 lymph node metastasis (4/15) and distant metastasis (4/15). Bismuth type IV tumor, main or bilateral hepatic artery involvement, and main or bilateral portal vein involvement were highly associated with unresectability (P hilar cholangiocarcinoma. Bismuth type IV tumor and main or bilateral vascular involvement highly suggest the unresectability of hilar cholangiocarcinoma. Patients without biliary drainage have a more accurate MDCT evaluation of resectability. We suggest MDCT should be performed before biliary drainage to achieve an accurate evaluation of resectability in hilar cholangiocarcinoma.

  17. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells.

    Science.gov (United States)

    Nakamura, Koji; Sawada, Kenjiro; Kinose, Yasuto; Yoshimura, Akihiko; Toda, Aska; Nakatsuka, Erika; Hashimoto, Kae; Mabuchi, Seiji; Morishige, Ken-Ichirou; Kurachi, Hirohisa; Lengyel, Ernst; Kimura, Tadashi

    2017-01-01

    Epithelial ovarian cancer (EOC) cells metastasize within the peritoneal cavity and directly encounter human peritoneal mesothelial cells (HPMC) as the initial step of metastasis. The contact between ovarian cancer cells and the single layer of mesothelial cells involves direct communications that modulate cancer progression but the mechanisms are unclear. One candidate mediating cell-cell communications is exosomes, 30-100 nm membrane vesicles of endocytic origin, through the cell-cell transfer of proteins, mRNAs, or microRNAs. Therefore, the goal was to mechanistically characterize how EOC-derived exosomes modulate metastasis. Exosomes from ovarian cancer cells were fluorescently labeled and cocultured with HPMCs which internalized the exosomes. Upon exosome uptake, HPMCs underwent a change in cellular morphology to a mesenchymal, spindle phenotype. CD44, a cell surface glycoprotein, was found to be enriched in the cancer cell-derived exosomes, transferred, and internalized to HPMCs, leading to high levels of CD44 in HPMCs. This increased CD44 expression in HPMCs promoted cancer invasion by inducing the HPMCs to secrete MMP9 and by cleaning the mesothelial barrier for improved cancer cell invasion. When CD44 expression was knocked down in cancer cells, exosomes had fewer effects on HPMCs. The inhibition of exosome release from cancer cells blocked CD44 internalization in HPMCs and suppressed ovarian cancer invasion. In ovarian cancer omental metastasis, positive CD44 expression was observed in those mesothelial cells that directly interacted with cancer cells, whereas CD44 expression was negative in the mesothelial cells remote from the invading edge. This study indicates that ovarian cancer-derived exosomes transfer CD44 to HPMCs, facilitating cancer invasion. Mechanistic insight from the current study suggests that therapeutic targeting of exosomes may be beneficial in treating ovarian cancer. Mol Cancer Res; 15(1); 78-92. ©2016 AACR. ©2016 American

  18. SPARCL1 is a novel predictor of tumor recurrence and survival in hilar cholangiocarcinoma.

    Science.gov (United States)

    Yu, Yang; Chen, Yan; Ma, Jianxia; Yu, Xiaofeng; Yu, Guanzhen; Li, Zhaoshen

    2016-03-01

    Secreted protein acidic and rich in cysteines-like protein 1 (SPARCL1) has been implicated in tumor initiation, formation, and progression of various cancers, yet its role in hilar cholangiocarcinoma remains largely uncharacterized. In the present study, tissue microarrays containing resected hilar cholangiocarcinoma specimens from 92 patients were used to evaluate the expression of SPARCL1 protein by immunohistochemistry (IHC). In vitro assays were used to determine the effect of SPARCL1 overexpression on cell growth and migration. Loss of SPARCL1 expression was observed in 46 (50.0 %) of the 92 primary tumors. SPARCL1 expression is inversely associated with poorly or undifferentiation specimens (P = 0.030) in addition to lymph node metastasis (P = 0.047). Survival analysis demonstrated that SPARCL1 is an independent factor in predicting the outcome of patients with hilar cholangiocarcinoma. SPARCL1 overexpression suppressed tumor cell migration in vitro by inhibiting MMP-9, MMP-2, Vimentin, and Fibronectin expression, whereas did not inhibit cell proliferation in vitro. Our results suggest that loss of SPARCL1 is involved in the tumorigenesis of hilar cholangiocarcinoma and may serve as a novel molecular biomarker for patients' outcome.

  19. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  20. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Grasieli de Oliveira Ramos

    Full Text Available Cell migration is regulated by adhesion to the extracellular matrix (ECM through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC. We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad, plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.

  1. Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells.

    Science.gov (United States)

    Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi

    2015-07-01

    Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    OpenAIRE

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa...

  3. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma

    International Nuclear Information System (INIS)

    Ramakrishnan, Swathi; Ku, ShengYu; Ciamporcero, Eric; Miles, Kiersten Marie; Attwood, Kris; Chintala, Sreenivasulu; Shen, Li; Ellis, Leigh; Sotomayor, Paula; Swetzig, Wendy; Huang, Ray; Conroy, Dylan; Orillion, Ashley; Das, Gokul; Pili, Roberto

    2016-01-01

    Class I histone deacetylases (HDACs) have been reported to be overexpressed in clear cell renal cell carcinoma (ccRCC), whereas the expression of class II HDACs is unknown. Four isogenic cell lines C2/C2VHL and 786-O/786-OVHL with differential VHL expression are used in our studies. Cobalt chloride is used to mimic hypoxia in vitro. HIF-2α knockdowns in C2 and 786-O cells is used to evaluate the effect on HDAC 1 expression and activity. Invasion and migration assays are used to investigate the role of HDAC 1 and HDAC 6 expression in ccRCC cells. Comparisons are made between experimental groups using the paired T-test, the two-sample Student’s T-test or one-way ANOVA, as appropriate. ccRCC and the TCGA dataset are used to observe the clinical correlation between HDAC 1 and HDAC 6 overexpression and overall and progression free survival. Our analysis of tumor and matched non-tumor tissues from radical nephrectomies showed overexpression of class I and II HDACs (HDAC6 only in a subset of patients). In vitro, both HDAC1 and HDAC6 over-expression increased cell invasion and motility, respectively, in ccRCC cells. HDAC1 regulated invasiveness by increasing matrix metalloproteinase (MMP) expression. Furthermore, hypoxia stimulation in VHL-reconstituted cell lines increased HIF isoforms and HDAC1 expression. Presence of hypoxia response elements in the HDAC1 promoter along with chromatin immunoprecipitation data suggests that HIF-2α is a transcriptional regulator of HDAC1 gene. Conversely, HDAC6 and estrogen receptor alpha (ERα) were co-localized in cytoplasm of ccRCC cells and HDAC6 enhanced cell motility by decreasing acetylated α-tubulin expression, and this biological effect was attenuated by either biochemical or pharmacological inhibition. Finally, analysis of human ccRCC specimens revealed positive correlation between HIF isoforms and HDAC. HDAC1 mRNA upregulation was associated with worse overall survival in the TCGA dataset. Taking together, these results

  4. Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells.

    Science.gov (United States)

    Aikawa, Chihiro; Nozawa, Takashi; Maruyama, Fumito; Tsumoto, Kohei; Hamada, Shigeyuki; Nakagawa, Ichiro

    2010-06-01

    Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild-type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin-binding protein F1-disrupted mutant SAM1-infected cells. In Bcl-2-overexpressing HeLa cells (HBD98-2-4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98-2-4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS-infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.

  5. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion

    Directory of Open Access Journals (Sweden)

    Brábek Jan

    2010-09-01

    Full Text Available Abstract During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.

  6. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC Promote Trophoblast Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Nan Yu

    Full Text Available Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo-secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β and leukemia inhibitory factor (LIF expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR. The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP-2 (MMP-2, MMP-9, vascular endothelial growth factor (VEGF, tissue inhibitor of metalloproteinase (TIMP-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion.

  7. Percutaneous biliary drainage in patients with cholangiocarcinoma

    International Nuclear Information System (INIS)

    Mehta, A.C.; Gobel, R.J.; Rose, S.C.; Hayes, J.K.; Miller, F.J.

    1990-01-01

    This paper determines whether radiation therapy (RT) is a risk factor for infectious complications (particularly hepatic abscess formation) related to percutaneous biliary drainage (PBD). The authors retrospectively reviewed the charts of 98 consecutive patients who had undergone PBD for obstruction. In 34 patients with benign obstruction, three infectious complications occurred, none of which were hepatic abscess or fatal sepsis. In 39 patients who had malignant obstruction but did not have cholangiocarcinoma, 13 infectious complications occurred, including two hepatic abscesses and three cases of fatal sepsis. Of the 25 patients with cholangiocarcinoma, 15 underwent RT; in these 15 patients, 14 infectious complications occurred, including six hepatic abscesses and two cases of fatal sepsis

  8. Plasmodium falciparum field isolates from South America use an atypical red blood cell invasion pathway associated with invasion ligand polymorphisms.

    Directory of Open Access Journals (Sweden)

    Mary Lopez-Perez

    Full Text Available Studies of Plasmodium falciparum invasion pathways in field isolates have been limited. Red blood cell (RBC invasion is a complex process involving two invasion protein families; Erythrocyte Binding-Like (EBL and the Reticulocyte Binding-Like (PfRh proteins, which are polymorphic and not fully characterized in field isolates. To determine the various P. falciparum invasion pathways used by parasite isolates from South America, we studied the invasion phenotypes in three regions: Colombia, Peru and Brazil. Additionally, polymorphisms in three members of the EBL (EBA-181, EBA-175 and EBL-1 and five members of the PfRh (PfRh1, PfRh2a, PfRh2b, PfRh4, PfRh5 families were determined. We found that most P. falciparum field isolates from Colombia and Peru invade RBCs through an atypical invasion pathway phenotypically characterized as resistant to all enzyme treatments (NrTrCr. Moreover, the invasion pathways and the ligand polymorphisms differed substantially among the Colombian and Brazilian isolates while the Peruvian isolates represent an amalgam of those present in the Colombian and Brazilian field isolates. The NrTrCr invasion profile was associated with the presence of the PfRh2a pepC variant, the PfRh5 variant 1 and EBA-181 RVNKN variant. The ebl and Pfrh expression levels in a field isolate displaying the NrTrCr profile also pointed to PfRh2a, PfRh5 and EBA-181 as being possibly the major players in this invasion pathway. Notably, our studies demonstrate the uniqueness of the Peruvian P. falciparum field isolates in terms of their invasion profiles and ligand polymorphisms, and present a unique opportunity for studying the ability of P. falciparum parasites to expand their invasion repertoire after being reintroduced to human populations. The present study is directly relevant to asexual blood stage vaccine design focused on invasion pathway proteins, suggesting that regional invasion variants and global geographical variation are likely to

  9. Adult bile duct strictures: differentiating benign biliary stenosis from cholangiocarcinoma.

    Science.gov (United States)

    Nguyen Canh, Hiep; Harada, Kenichi

    2016-12-01

    Biliary epithelial cells preferentially respond to various insults under chronic pathological conditions leading to reactively atypical changes, hyperplasia, or the development of biliary neoplasms (such as biliary intraepithelial neoplasia, intraductal papillary neoplasm of the bile duct, and cholangiocarcinoma). Moreover, benign biliary strictures can be caused by a variety of disorders (such as IgG4-related sclerosing cholangitis, eosinophilic cholangitis, and follicular cholangitis) and often mimic malignancies, despite their benign nature. In addition, primary sclerosing cholangitis is a well-characterized precursor lesion of cholangiocarcinoma and many other chronic inflammatory disorders increase the risk of malignancies. Because of these factors and the changes in biliary epithelial cells, biliary strictures frequently pose a diagnostic challenge. Although the ability to differentiate neoplastic from non-neoplastic biliary strictures has markedly progressed with the advance in radiological modalities, brush cytology and bile duct biopsy examination remains effective. However, no single modality is adequate to diagnose benign biliary strictures because of the low sensitivity. Therefore, understanding the underlying causes by compiling the entire clinical, laboratory, and imaging data; considering the under-recognized causes; and collaborating between experts in various fields including cytopathologists with multiple approaches is necessary to achieve an accurate diagnosis.

  10. The associated expression of Maspin and Bax proteins as a potential prognostic factor in intrahepatic cholangiocarcinoma

    International Nuclear Information System (INIS)

    Romani, Antonello A; Soliani, Paolo; Desenzani, Silvia; Borghetti, Angelo F; Crafa, Pellegrino

    2006-01-01

    Maspin, a member of the serpin family, is a suppressor of tumor growth, an inhibitor of angiogenesis and an inducer of apoptosis. Maspin induces apoptosis by increasing Bax, a member of the Bcl-2 family of apoptosis-regulating proteins. In this exploratory study, we investigated the associated expression of Maspin and Bax proteins as a potential prognostic factor in intrahepatic cholangiocarcinoma (IHCCA). Twenty-two paraffin-embedded samples were analyzed by immunohistochemical methods using Maspin, Bax and CD34 antibodies. Maspin was scored semiquantitatively (HSCORE). Apoptosis was assessed using an antibody against cleaved caspase-3. The strong relationship observed between the expression of Maspin and Bax, indicates that Bax is likely to be the key effector of Maspin-mediated induction of apoptosis as indicated by the activation of cleaved caspase-3. We categorized Maspin HSCORE by calculating the optimal cutpoint. A Maspin HSCORE above the cutpoint was inversely related with tumor dimension, depth of tumor and vascular invasion. Uni/multivariate analysis suggests that a Maspin HSCORE below the cutpoint significantly worsens the patients' prognosis. Tumors with Maspin HSCORE below the cutpoint had a shorter survival (11+/-5 months) than did patients with Maspin HSCORE above the cutpoint (27+/-4 months), whereas Kaplan-Meier analysis and logrank test showed no significant difference in overall survival between the patients. The associated expression of Maspin and Bax might delay tumor progression in IHCCA. Maspin above the cutpoint might counteract tumor development by increasing cell apoptosis, and by decreasing tumor mass and cell invasion. The combined expression of Maspin and Bax appears to influence the susceptibility of tumor cholangiocytes to apoptosis and thus may be involved in delaying IHCCA progression

  11. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells

    OpenAIRE

    Lu, Yong; Jiang, Feng; Jiang, Hao; Wu, Kalina; Zheng, Xuguang; Cai, Yizhong; Katakowski, Mark; Chopp, Michael; To, Shing-Shun Tony

    2010-01-01

    Gallic acid, an organic acid, also known as 3,4,5-trihydroxybenzoic acid, is cytotoxic against certain cancer cells, without harming normal cells. The objective of this study is to evaluate whether gallic acid can inhibit glioma cell viability, proliferation, invasion and reduce glioma cell mediated angiogenesis. Treatment of U87 and U251n glioma cells with gallic acid inhibited cell viability in a dose- and time-dependent manner. BrdU and tube formation assays indicated that gallic acid sign...

  12. Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra-Soheila; Essmann, Frank; Deezagi, Abdolkhaleg; Engers, Rainer; Goering, Wolfgang; Schulz, Wolfgang A

    2010-08-01

    Many metastatic cancers recapitulate the epithelial-to-mesenchymal transition (EMT) resulting in enhanced cell motility and invasiveness. The EMT is regulated by several transcription factors, including the zinc finger protein SNAI2, also named Slug, which appears to exert additional functions during development and cancer progression. We have studied the function of SNAI2 in prostate cancer cells. Quantitative RT-PCR analysis showed strong SNAI2 expression particularly in the PC-3 and PC3-16 prostate carcinoma cell lines. Knockdown of SNAI2 by specific siRNA induced changes in EMT markers and inhibited invasion of both cell lines into a matrigel matrix. SNAI2 siRNA-treated cells did not tolerate detachment from the culture plates, likely at least in part due to downregulation of integrin alpha6beta4. SNAI2 knockdown disturbed the microtubular and actin cytoskeletons, especially severely in PC-3 cells, resulting in grossly enlarged, flattened, and sometimes multinuclear cells. Knockdown also decreased cell proliferation, with a prominent G0/G1 arrest in PC3-16. Together, our data imply that SNAI2 exerts strong effects on the cytoskeleton and adhesion of those prostate cancer cells that express it and is necessary for their proliferation and invasiveness.

  13. NEDD 4 binding protein 2-like 1 promotes cancer cell invasion in oral squamous cell carcinoma.

    Science.gov (United States)

    Sasahira, Tomonori; Kurihara, Miyako; Nishiguchi, Yukiko; Fujiwara, Rina; Kirita, Tadaaki; Kuniyasu, Hiroki

    2016-08-01

    Head and neck cancer, including oral squamous cell carcinoma, is the sixth most common cancer worldwide. Although cancer cell invasion and metastasis are crucial for tumor progression, detailed molecular mechanisms underlying the invasion and metastasis of oral squamous cell carcinoma are unclear. Comparison of transcriptional profiles using a cDNA microarray demonstrated that N4BP2L1, a novel oncogene expressed by neural precursor cells, is involved in oral squamous cell carcinoma. Expression of N4BP2L1 in oral squamous cell carcinoma is regulated by activation of miR-448 and is higher than in normal oral mucosa. Knockdown of N4BP2L1 and upregulation of miR-448 significantly reduced the invasive potential of oral squamous cell carcinoma cells. We studied N4BP2L1 expression in 187 cases of oral squamous cell carcinoma and found its overexpression to be significantly associated with nodal metastasis (P = 0.0155) and poor prognosis (P = 0.0136). Expression of miR-448 was found to be inversely associated with that of N4BP2L1 (P = 0.0019). Cox proportional hazards analysis identified N4BP2L1 expression as an independent predictor of disease-free survival (P = 0.0349). Our results suggest that N4BP2L1 plays an important role in tumor cell invasion in oral squamous cell carcinoma. Further studies on expression of N4BP2L1 may provide new insight into its function and clarify its potential as biomarker in human oral cancer.

  14. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States); Wang, Lei; Poyil, Pratheeshkumar [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Luo, Jia [Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: Zhuo.Zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States)

    2016-11-15

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  15. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    International Nuclear Information System (INIS)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern; Wang, Lei; Poyil, Pratheeshkumar; Luo, Jia; Zhang, Zhuo

    2016-01-01

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  16. Locally Advanced Basal Cell Carcinoma with Intraocular Invasion

    Directory of Open Access Journals (Sweden)

    Georgi Tchernev

    2018-01-01

    Full Text Available We present a 103 - year - old patient, with duration of complaints of about ten years. The initial complaint had been presented as a small nodule, located on the eyebrow, which subsequently ulcerated and encompassed larger regions of the upper and lower eyelids. For the past three years, the patient also had complaints of a worsening of his vision, without seeking for medical help. Within the dermatological examination, an intraocular and periocular localised tumour was established, characterised by a raised peripheral edge and central ulceration. More careful examination revealed that the bulb was fully consumed. The patient refused further diagnosis and treatment. Advanced basal cell carcinomas with intraocular invasion are rare in general. If the patient refuses surgery, radiotherapy and systemic therapy with modern medications such as Vismodegib or Sonidegib are available as treatment options.

  17. Recurrent Amplification at 13q34 Targets at CUL4A, IRS2, and TFDP1 As an Independent Adverse Prognosticator in Intrahepatic Cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Liu

    Full Text Available Amplification of genes at 13q34 has been reported to be associated with tumor proliferation and progression in diverse types of cancers. However, its role in intrahepatic cholangiocarcinoma (iCCA has yet to be explored. We examined two iCCA cell lines and 86 cases of intrahepatic cholangiocarcinoma to analyze copy number of three target genes, including cullin 4A (CUL4A, insulin receptor substrate 2 (IRS2, and transcription factor Dp-1 (TFDP1 at 13q34 by quantitative real-time polymerase chain reaction. The cell lines and all tumor samples were used to test the relationship between copy number (CN alterations and protein expression by western blotting and immunohistochemical assays, respectively. IRS2 was introduced, and each target gene was silenced in cell lines. The mobility potential of cells was compared in the basal condition and after manipulation using cell migration and invasion assays. CN alterations correlated with protein expression levels. The SNU1079 cell line containing deletions of the target genes demonstrated decreased protein expression levels and significantly lower numbers of migratory and invasive cells, as opposed to the RBE cell line, which does not contain CN alterations. Overexpression of IRS2 by introducing IRS2 in SUN1079 cells increased the mobility potential. In contrast, silencing each target gene showed a trend or statistical significance toward inhibition of migratory and invasive capacities in RBE cells. In tumor samples, the amplification of each of these genes was associated with poor disease-free survival. Twelve cases (13.9% demonstrated copy numbers > 4 for all three genes tested (CUL4A, IRS2, and TFDP1, and showed a significant difference in disease-free survival by both univariate and multivariate survival analyses (hazard ratio, 2.69; 95% confidence interval, 1.23 to 5.88; P = 0.013. Our data demonstrate that amplification of genes at 13q34 plays an oncogenic role in iCCA featuring adverse disease

  18. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    International Nuclear Information System (INIS)

    Rodríguez-Rigueiro, Teresa; Valladares-Ayerbes, Manuel; Haz-Conde, Mar; Aparicio, Luis A; Figueroa, Angélica

    2011-01-01

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  19. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells

    Science.gov (United States)

    XIE, LIQUN; DUAN, ZEXING; LIU, CAIJU; ZHENG, YANMIN; ZHOU, JING

    2015-01-01

    The aim of this study was to determine the expression of protease-activated receptor 2 (PAR-2) in the human pancreatic cancer cell line SW1990, and to evaluate its effect on cell proliferation and invasion. The expression of PAR-2 protein and mRNA in SW1990 cells was determined by immunocytochemistry and reverse transcription polymerase chain reaction (PCR), respectively. MTT and cell invasion and migration assays, as well as semi-quantitative PCR and zymography analysis, were additionally performed. PAR-2 mRNA was significantly upregulated in the cells treated with trypsin or the PAR-2 activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV) (P0.05). Trypsin and SLIGKV significantly promoted SW1990 cell proliferation in a dose- and time-dependent manner (P<0.05). Compared with the control group, trypsin and SLIGKV significantly increased the mRNA expression (P<0.01) and gelatinolytic activity (P<0.01) of matrix metalloproteinase (MMP)-2. In conclusion, PAR-2 is expressed in SW1990 cells. PAR-2 activation may promote the invasion and migration of human pancreatic cancer cells by increasing MMP-2 expression. PMID:25452809

  20. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  1. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yang CM

    2017-02-01

    Full Text Available Chun-ming Yang,1 Shan Ji,2 Yan Li,3 Li-ye Fu,3 Tao Jiang,3 Fan-dong Meng31Department of Urology, The First Affiliated Hospital, China Medical University, 2Department of Endocrinology, The Fifth People’s Hospital of Shenyang, 3Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, ChinaAbstract: β-Catenin (CTNNB1 gene coding protein is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC.Keywords: kidney cancer, oncogene, β-catenin, survival time, tumor migration-related protein

  2. Stimulation of Hepatoma Cell Invasiveness and Metastatic Potential by Proteins Secreted From Irradiated Nonparenchymal Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Leyuan [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai (China); Wang Zhiming [Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai (China); Gao Yabo [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai (China); Wang Lingyan [Experimental Research Center, Zhongshan Hospital, Fudan University, Shanghai (China); Zeng Zhaochong, E-mail: zeng.zhaochong@zs-hospital.sh.cn [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai (China)

    2012-11-01

    Purpose: To determine whether factors secreted by irradiated liver nonparenchymal cells (NPCs) may influence invasiveness and/or metastatic potential of hepatocellular carcinoma (HCC) cells and to elucidate a possible mechanism for such effect. Methods and Materials: Primary rat NPCs were cultured and divided into irradiated (10-Gy X-ray) and nonirradiated groups. Forty-eight hours after irradiation, conditioned medium from irradiated (SR) or nonirradiated (SnonR) cultures were collected and added to sublethally irradiated cultures of the hepatoma McA-RH7777 cell line. Then, hepatoma cells were continuously passaged for eight generations (RH10Gy-SR and RH10Gy-SnonR). The invasiveness and metastatic potential of McA-RH7777, RH10Gy-SnonR, and RH10Gy-SR cells were evaluated using an in vitro gelatinous protein (Matrigel) invasion and an in vivo metastasis assay. In addition, SR and SnonR were tested using rat cytokine antibody arrays and enzyme-linked immunosorbent assay (ELISA). Results: In vitro gelatinous protein invasion assay indicated that the numbers of invading cells was significantly higher in RH10Gy-SR (40 {+-} 4.74) than in RH10Gy-SnonR (30.6 {+-} 3.85) cells, and lowest in McA-RH7777 (11.4 {+-} 3.56) cells. The same pattern was observed in vivo in a lung metastasis assay, as evaluated by number of metastatic lung nodules seen with RH10Gy-SR (28.83 {+-} 5.38), RH10Gy-SnonR (22.17 {+-} 4.26), and McA-RH7777 (8.3 {+-} 3.8) cells. Rat cytokine antibody arrays and ELISA demonstrated that metastasis-promoting cytokines (tumor necrosis factor-{alpha} and interleukin-6), circulating growth factors (vascular endothelial growth factor and epidermal growth factor), and metalloproteinases (MMP-2 and MMP-9) were upregulated in SR compared with SnonR. Conclusions: Radiation can increase invasiveness and metastatic potential of sublethally irradiated hepatoma cells, and soluble mediators released from irradiated NPCs promote this potential. Increased secretion of

  3. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  4. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing; Wang, Zehua

    2015-01-01

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  5. Differential nuclear shape dynamics of invasive andnon-invasive breast cancer cells are associated with actin cytoskeleton organization and stability.

    Science.gov (United States)

    Chiotaki, Rena; Polioudaki, Hara; Theodoropoulos, Panayiotis A

    2014-08-01

    Cancer cells often exhibit characteristic aberrations in their nuclear architecture, which are indicative of their malignant potential. In this study, we have examined the nuclear and cytoskeletal composition, attachment configuration dynamics, and osmotic or drug treatment response of invasive (Hs578T and MDA-MB-231) and non-invasive (MCF-10A and MCF-7) breast cancer cell lines. Unlike MCF-10A and MCF-7, Hs578T and MDA-MB-231 cells showed extensive nuclear elasticity and deformability and displayed distinct kinetic profiles during substrate attachment. The nuclear shape of MCF-10A and MCF-7 cells remained almost unaffected upon detachment, hyperosmotic shock, or cytoskeleton depolymerization, while Hs578T and MDA-MB-231 revealed dramatic nuclear contour malformations following actin reorganization.

  6. Ezrin mediates c-Myc actions in prostate cancer cell invasion

    DEFF Research Database (Denmark)

    Chuan, Yin Choy; Iglesias Gato, Diego; Fernandez-Perez, L

    2010-01-01

    The forced overexpression of c-Myc in mouse prostate and in normal human prostate epithelial cells results in tumor transformation with an invasive phenotype. How c-Myc regulates cell invasion is poorly understood. In this study, we have investigated the interplay of c-Myc and androgens in the re...

  7. Helicobacter pylori induces cell migration and invasion through casein kinase 2 in gastric epithelial cells.

    Science.gov (United States)

    Lee, Yeo Song; Lee, Do Yeon; Yu, Da Yeon; Kim, Shin; Lee, Yong Chan

    2014-12-01

    Chronic infection with Helicobacter pylori (H. pylori) is causally linked with gastric carcinogenesis. Virulent H. pylori strains deliver bacterial CagA into gastric epithelial cells. Induction of high motility and an elongated phenotype is considered to be CagA-dependent process. Casein kinase 2 plays a critical role in carcinogenesis through signaling pathways related to the epithelial mesenchymal transition. This study was aimed to investigate the effect of H. pylori infection on the casein kinase 2-mediated migration and invasion in gastric epithelial cells. AGS or MKN28 cells as human gastric epithelial cells and H. pylori strains Hp60190 (ATCC 49503, CagA(+)) and Hp8822 (CagA(-)) were used. Cells were infected with H. pylori at multiplicity of infection of 100 : 1 for various times. We measured in vitro kinase assay to examine casein kinase 2 activity and performed immunofluorescent staining to observe E-cadherin complex. We also examined β-catenin transactivation through promoter assay and MMP7 expression by real-time PCR and ELISA. H. pylori upregulates casein kinase 2 activity and inhibition of casein kinase 2 in H. pylori-infected cells profoundly suppressed cell invasiveness and motility. We confirmed that casein kinase 2 mediates membranous α-catenin depletion through dissociation of the α-/β-catenin complex in H. pylori-infected cells. We also found that H. pylori induces β-catenin nuclear translocation and increases MMP7 expressions mediated through casein kinase 2. We show for the first time that CagA(+) H. pylori upregulates cellular invasiveness and motility through casein kinase 2. The demonstration of a mechanistic interplay between H. pylori and casein kinase 2 provides important insights into the role of CagA(+) H. pylori in the gastric cancer invasion and metastasis. © 2014 John Wiley & Sons Ltd.

  8. Functional Assay of Cancer Cell Invasion Potential Based on Mechanotransduction of Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Andrew C. Weitz

    2017-08-01

    Full Text Available Cancer cells undergo a number of biophysical changes as they transform from an indolent to an aggressive state. These changes, which include altered mechanical and electrical properties, can reveal important diagnostic information about disease status. Here, we introduce a high-throughput, functional technique for assessing cancer cell invasion potential, which works by probing for the mechanically excitable phenotype exhibited by invasive cancer cells. Cells are labeled with fluorescent calcium dye and imaged during stimulation with low-intensity focused ultrasound, a non-contact mechanical stimulus. We show that cells located at the focus of the stimulus exhibit calcium elevation for invasive prostate (PC-3 and DU-145 and bladder (T24/83 cancer cell lines, but not for non-invasive cell lines (BPH-1, PNT1A, and RT112/84. In invasive cells, ultrasound stimulation initiates a calcium wave that propagates from the cells at the transducer focus to other cells, over distances greater than 1 mm. We demonstrate that this wave is mediated by extracellular signaling molecules and can be abolished through inhibition of transient receptor potential channels and inositol trisphosphate receptors, implicating these proteins in the mechanotransduction process. If validated clinically, our technology could provide a means to assess tumor invasion potential in cytology specimens, which is not currently possible. It may therefore have applications in diseases such as bladder cancer, where cytologic diagnosis of tumor invasion could improve clinical decision-making.

  9. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Meyer, Morten; Petterson, Stine Asferg

    2016-01-01

    AIMS: Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking...... invasion and tumor stemness into account. METHODS: Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains...... of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. RESULTS: We observed a pronounced invasion into brain slice...

  10. Effect of cell-phone radiofrequency on angiogenesis and cell invasion in human head and neck cancer cells.

    Science.gov (United States)

    Alahmad, Yaman M; Aljaber, Mohammed; Saleh, Alaaeldin I; Yalcin, Huseyin C; Aboulkassim, Tahar; Yasmeen, Amber; Batist, Gerald; Moustafa, Ala-Eddin Al

    2018-05-13

    Today, the cell phone is the most widespread technology globally. However, the outcome of cell-phone radiofrequency on head and neck cancer progression has not yet been explored. The chorioallantoic membrane (CAM) and human head and neck cancer cell lines, FaDu and SCC25, were used to explore the outcome of cell-phone radiofrequency on angiogenesis, cell invasion, and colony formation of head and neck cancer cells, respectively. Western blot analysis was used to investigate the impact of the cell phone on the regulation of E-cadherin and Erk1/Erk2 genes. Our data revealed that cell-phone radiofrequency promotes angiogenesis of the CAM. In addition, the cell phone enhances cell invasion and colony formation of human head and neck cancer cells; this is accompanied by a downregulation of E-cadherin expression. More significantly, we found that the cell phone can activate Erk1/Erk2 in our experimental models. Our investigation reveals that cell-phone radiofrequency could enhance head and neck cancer by stimulating angiogenesis and cell invasion via Erk1/Erk2 activation. © 2018 Wiley Periodicals, Inc.

  11. Molecular basis of mammalian cell invasion by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Nobuko Yoshida

    2006-03-01

    Full Text Available Establishment of infection by Trypanosoma cruzi, the agent of Chagas' disease, depends on a series of events involving interactions of diverse parasite molecules with host components. Here we focus on the mechanisms of target cell invasion by metacyclic trypomastigotes (MT and mammalian tissue culture trypomastigotes (TCT. During MT or TCT internalization, signal transduction pathways are activated both in the parasite and the target cell, leading to Ca2+ mobilization. For cell adhesion, MT engage surface glycoproteins, such as gp82 and gp35/50, which are Ca2+ signal-inducing molecules. In T. cruzi isolates that enter host cells in gp82-mediated manner, parasite protein tyrosine kinase as well as phospholipase C are activated, and Ca2+ is released from I P3-sensitive stores, whereas in T. cruzi isolates that attach to target cells mainly through gp35/50, the signaling pathway involving adenylate cyclase appears to be stimulated, with Ca2+ release from acidocalciosomes. In addition, T. cruzi isolate-dependent inhibitory signals, mediated by MT-specific gp90, may be triggered both in the host cell and the parasite. The repertoire of TCT molecules implicated in cell invasion includes surface glycoproteins of gp85 family, with members containing binding sites for laminin and cytokeratin 18, enzymes such as cruzipain, trans-sialidase, and an oligopeptidase B that generates a Ca2+-agonist from a precursor molecule.O estabelecimento da infecção por Trypanosoma cruzi, o agente da doença de Chagas, depende de uma série de eventos envolvendo interações de diversas moléculas do parasita com componentes do hospedeiro. Focalizamos aqui os mecanismos de invasão celular por tripomastigotas metacíclicos (TM e por tripomastigotas de cultura de tecido (TCT. Durante a internalização de TM ou TCT, vias de transdução de sinal são ativadas tanto no parasita como na célula alvo, acarretando a mobilização de Ca2+. Para adesão, TM utiliza as glicoprote

  12. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    Science.gov (United States)

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386

  13. Invasion from a cell aggregate—the roles of active cell motion and mechanical equilibrium

    International Nuclear Information System (INIS)

    Szabó, A; Varga, K; Czirók, A; Garay, T; Hegedűs, B

    2012-01-01

    Cell invasion from an aggregate into a surrounding extracellular matrix (ECM) is an important process during development disease, e.g., vascular network assembly or tumor progression. To describe the behavior emerging from autonomous cell motility, cell–cell adhesion and contact guidance by ECM filaments, we propose a suitably modified cellular Potts model. We consider an active cell motility process in which internal polarity is governed by a positive feedback from cell displacements, a mechanism that can result in highly persistent motion when constrained by an oriented ECM structure. The model allows us to explore the interplay between haptotaxis, matrix degradation and active cell movement. We show that for certain conditions the cells are able to both invade the ECM and follow the ECM tracks. Furthermore, we argue that enforcing mechanical equilibrium within a bulk cell mass is of key importance in multicellular simulations

  14. Preoperative assessment of hilar cholangiocarcinoma using multidetector-row CT. Correlation with histopathological findings

    International Nuclear Information System (INIS)

    Watadani, Takeyuki; Akahane, Masaaki; Ohtomo, Kuni; Yoshikawa, Takeharu

    2008-01-01

    Our aim was to investigate the diagnostic reliability of multidetector-row computed tomography (MDCT) for preoperative assessment of local tumoral spread in hilar cholangiocarcinoma. Thirteen of 30 consecutive patients with hilar cholangiocarcinoma who underwent surgery, excluding 17 patients who underwent biliary drainage or preoperative portal embolization, were retrospectively evaluated. Using MDCT systems of 4 detector rows or 16 detector rows, plain and dynamic contrast-enhanced images of three phases were obtained. Extent of tumor spread and lymph node metastasis were assessed with MDCT and compared with histopathological findings. The Bismuth-Corlette classification of hilar cholangiocarcinoma with MDCT were type I, 1 patient; type IIIa, 3 patients; type IIIb, 4 patients; and type IV, 5 patients; those with histopathological findings were type I, 1 patient; type IIIa, 2 patients; type IIIb, 4 patients; and type IV, 6 patients. One patient diagnosed as type IIIa with MDCT was pathologically diagnosed as type IV. Accuracy of MDCT in tumoral spread was 92.3%, although that of lymph node metastasis was 54%. MDCT is likely to play an important role in evaluation of focal lesion spread especially in intrapancreatic tumor invasion, although a greater number of cohort cases are necessary to clearly define its role. (author)

  15. Cholangiocarcinoma presenting as a solitary epididymal metastasis: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Bailey David M

    2007-08-01

    Full Text Available Abstract Background Solid tumor metastasis to the epididymis is a rare occurrence and is mostly discovered incidentally at autopsy or after therapeutic orchidectomy for prostate cancer. Other primary carcinomas that have been demonstrated to metastasize to the paratesticular region include those originating in the stomach, kidney, ileum, and colon. Case presentation A 72-year-old gentleman presented with a firm and tender mass involving the right epididymis. On examination, he was jaundiced. Computed tomography of the abdomen demonstrated an obstructive stricture of the extra-hepatic bile ducts, in keeping with a cholangiocarcinoma, through which a metal stent was endoscopically inserted for symptomatic relief. Subsequent right radical orchidectomy yielded a diffusely infiltrative adenocarcinoma obliterating the epididymis, extending into the rete testis, vas deferens and spermatic cord and showing widespread vascular and perineural invasion. Residual epididymal, rete, and testicular tubules showed no in situ neoplasia. Morphologically and immunohistochemically the features were in keeping with a metastasis from a primary cholangiocarcinoma. Conclusion Only two cases of bile duct carcinoma metastasising to the male genital tract have previously been reported in the literature, the testis being the main site of metastasis in both cases. To our knowledge, this is the first described case of cholangiocarcinoma metastasising primarily to the epididymis, and presenting as a solitary epididymal metastasis in the absence of disseminated disease. It serves to highlight the importance of performing a thorough examination of the male external genitalia both clinically, in the follow up of cancer patients, and at autopsy.

  16. Autocrine and Paracrine Mechanisms Promoting Chemoresistance in Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Massimiliano Cadamuro

    2017-01-01

    Full Text Available Resistance to conventional chemotherapeutic agents, a typical feature of cholangiocarcinoma, prevents the efficacy of the therapeutic arsenal usually used to combat malignancy in humans. Mechanisms of chemoresistance by neoplastic cholangiocytes include evasion of drug-induced apoptosis mediated by autocrine and paracrine cues released in the tumor microenvironment. Here, recent evidence regarding molecular mechanisms of chemoresistance is reviewed, as well as associations between well-developed chemoresistance and activation of the cancer stem cell compartment. It is concluded that improved understanding of the complex interplay between apoptosis signaling and the promotion of cell survival represent potentially productive areas for active investigation, with the ultimate aim of encouraging future studies to unveil new, effective strategies able to overcome current limitations on treatment.

  17. Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour.

    Directory of Open Access Journals (Sweden)

    Silvia Blacher

    Full Text Available The endothelial cell spheroid assay provides a suitable in vitro model to study (lymph angiogenesis and test pro- and anti-(lymph angiogenic factors or drugs. Usually, the extent of cell invasion, observed through optical microscopy, is measured. The present study proposes the spatial distribution of migrated cells as a new descriptor of the (lymph angiogenic response. The utility of this novel method rests with its capacity to locally characterise spheroid structure, allowing not only the investigation of single and collective cell invasion but also the evolution of the spheroid core itself. Moreover, the proposed method can be applied to 2D-projected spheroid images obtained by optical microscopy, as well as to 3D images acquired by confocal microscopy. To validate the proposed methodology, endothelial cell invasion was evaluated under different experimental conditions. The results were compared with widely used global parameters. The comparison shows that our method prevents local spheroid modifications from being overlooked and leading to the possible misinterpretation of results.

  18. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    Science.gov (United States)

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. EMMPRIN contributes to the in vitro invasion of human salivary adenoid cystic carcinoma cells

    Science.gov (United States)

    YANG, XINJIE; ZHANG, PU; MA, QIN; KONG, LIANG; LI, YUAN; LIU, BAOLIN; LEI, DELIN

    2012-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a transmembrane glycoprotein that is involved in tumor invasion by stimulating matrix metalloproteinase (MMP) expression. Our previous immunohistochemical study found that the expression of EMMPRIN in salivary adenoid cystic carcinoma (SACC) was positively correlated with tumor perineural and perivascular invasion. The present study was designed to further investigate the role of EMMPRIN in the invasion of SACC. Western blot results showed that EMMPRIN was upregulated in the highly metastatic SACC cell line SACC-LM, compared to SACC-83, a SACC cell line with low metastatic ability. Blocking of EMMPRIN by its antibody significantly decreased the adhesion, secretion of MMP-2 and MMP-9, and invasion activity of SACC-LM cells in vitro (PEMMPRIN may play an important role in the invasion of SACC by stimulating the expression of MMP-2 and MMP-9 in tumor and stromal cells. PMID:22200897

  20. Histopathology of a benign bile duct lesion in the liver: Morphologic mimicker or precursor of intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Lee, Kyoung-Bun

    2016-09-01

    A bile duct lesion originating from intrahepatic bile ducts is generally regarded as an incidental pathologic finding in liver specimens. However, a recent study on the molecular classification of intrahepatic cholangiocarcinoma has focused on the heterogeneity of this carcinoma and has suggested that the cells of different origins present in the biliary tree may have a major role in the mechanism of oncogenesis. In this review, benign intrahepatic bile duct lesions-regarded in the past as reactive changes or remnant developmental anomalies and now noted to have potential for developing precursor lesions of intrahepatic cholangiocarcinoma-are discussed by focusing on the histopathologic features and its implications in clinical practice.

  1. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    Science.gov (United States)

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  2. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Feng, E-mail: jiangfeng1161@163.com [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Zhao, Hongxi [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Wang, Li [Department of Gynecology and Obstetrics, The Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China); Guo, Xinyu [Assisted Reproductive Center, General Hospital of Guangzhou Military Command, Guangzhou 510010 (China); Wang, Xiaohong; Yin, Guowu [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Hu, Yunsheng [Department of Orthopedics, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Li, Yi [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Yao, Yuanqing, E-mail: yuanqingyaoxa@163.com [Department of Gynecology and Obstetrics, The Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China)

    2015-02-27

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions.

  3. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    International Nuclear Information System (INIS)

    Jiang, Feng; Zhao, Hongxi; Wang, Li; Guo, Xinyu; Wang, Xiaohong; Yin, Guowu; Hu, Yunsheng; Li, Yi; Yao, Yuanqing

    2015-01-01

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions

  4. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhao, Gang; Chen, Jiawei; Deng, Yanqiu; Gao, Feng; Zhu, Jiwei; Feng, Zhenzhong; Lv, Xiuhong; Zhao, Zheng

    2011-01-01

    Highlights: → NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. → NDRG1 knockdown resulted in increased cell invasion activities. → Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. → Eleven common NDRG1-regulated genes might enhance cell invasive activity. → Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.

  5. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Directory of Open Access Journals (Sweden)

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  6. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  7. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    International Nuclear Information System (INIS)

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-01-01

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer

  8. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Che K

    2017-02-01

    Full Text Available Keying Che,1,* Yang Zhao,2,3,* Xiao Qu,1 Zhaofei Pang,1 Yang Ni,4 Tiehong Zhang,4 Jiajun Du,1,5 Hongchang Shen4 1Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 2Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 4Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 5Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Purpose: Gastric carcinoma (GC is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma.Materials and methods: Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS was statistically analyzed.Results: Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145 of them. Single cell invasion and large cell invasion were observed in 62.8% (186 and 16.9% (50 of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0

  9. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model.

    Directory of Open Access Journals (Sweden)

    Stine Skov Jensen

    Full Text Available Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking invasion and tumor stemness into account.Glioblastoma stem cell-like containing spheroid (GSS cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models.We observed a pronounced invasion into brain slice cultures both by confocal time-lapse microscopy and immunohistochemistry. This invasion closely resembled the invasion in vivo. The Ki-67 proliferation indexes in spheroids implanted into brain slices were lower than in free-floating spheroids. The expression of stem cell markers varied between free-floating spheroids, spheroids implanted into brain slices and tumors in vivo.The established invasion model kept in stem cell medium closely mimics tumor cell invasion into the brain in vivo preserving also to some extent the expression of stem cell markers. The model is feasible and robust and we suggest the model as an in vivo-like model with a great potential in glioma studies and drug discovery.

  10. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  11. In vitro inhibition of Eimeria tenella sporozoite invasion into host cells by probiotics.

    Science.gov (United States)

    Hessenberger, S; Schatzmayr, G; Teichmann, K

    2016-10-15

    The aim was to study the effects of probiotics isolated from the intestinal tract of livestock animals on Eimeria tenella invasion into Madin-Darby bovine kidney (MDBK) cells in vitro. E. tenella sporozoites were purified and labeled with 5(6)-carboxyfluorescein diacetate N-succinimidyl ester before seeding on cell cultures, and invasion was evaluated by fluorescence microscopy. Two protocols (A and B) were used. In protocol A, Enterococcus faecium # 589 or Lactobacillus salivarius subsp. salivarius # 505 were added together with sporozoites to MDBK cell cultures and invasion was evaluated after incubation for approximately 20h. Viable, dead, or spent culture supernatants of probiotics were tested. In protocol B, viable probiotics were incubated with MDBK cells for one hour before sporozoites were added and invasion was evaluated after two more hours of incubation. Parasite invasion of viable, dead, or spent culture supernatant of E. faecium # 589 was assessed. Using protocol A, it was shown that parasite invasion was inhibited by viable (80%) or dead (75%) E. faecium # 589. While inhibition by viable L. salivarius subsp. salivarius # 505 was not valid at the highest concentration and not significant at the other test concentrations, dead cells inhibited parasite invasion up to 45%. Spent culture supernatants of both probiotics had no influence on parasite invasion. Using protocol B, it was shown that viable Bifidobacterium animalis subsp. animalis # 503, E. faecium # 497, E. faecium # 589, L. reuteri # 514, L. salivarius subsp. salivarius # 505, and Bacillus subtilis # 588 inhibited parasite invasion into MDBK cells up to 80%. Anticoccidial activity was strain-specific for E. faecium strains, and the strongest effect was shown by E. faecium # 589. Anticoccidial effects of some of the tested probiotics have already been shown in vivo, which makes them candidates to prevent coccidiosis. These findings have now been confirmed in vitro. The used parasite invasion

  12. IMP3 expression is associated with poor outcome and epigenetic deregulation in intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Gao, Yuanyuan; Yang, Michelle; Jiang, Zhong; Woda, Bruce A; Mercurio, Arthur M; Qin, Jianjie; Huang, Xinli; Zhang, Feng

    2014-06-01

    IMP3 is a fetal protein not expressed in normal adult tissues. IMP3 is an oncoprotein and a useful biomarker for a variety of malignancies and is associated with reduced overall survival of a number of them. IMP3 expression and its prognostic value for patients with intrahepatic cholangiocarcinoma (ICC) have not been well investigated. The molecular mechanism underlying IMP3 expression in human cancer cells remains to be elucidated. Here we investigated IMP3 expression in ICC and adjacent nonneoplastic liver in 72 unifocal primary ICCs from a single institute by immunohistochemistry, immunoblotting, and real-time polymerase chain reaction. IMP3 was specifically expressed in cancer cells but not in the surrounding normal tissue, and 59 (82%) of 72 ICCs were IMP3 positive by immunohistochemistry. Among 35 cases with lymphovascular invasion, 26 (74%) showed IMP3 positivity in lymph node metastases. IMP3 expression was significantly correlated with tumor size, pathological grade, metastasis, and clinical stage. Kaplan-Meier analysis demonstrated an inverse correlation between IMP3 expression and overall survival rate. Multivariate analysis revealed that IMP3 was the only risk factor associated with survival. To further explore the mechanism of IMP3 expression in cancers, we identified 2 CpG islands at IMP3 proximal promoter. Interestingly, the IMP3 promoter was almost completely demethylated in ICCs in contrast to densely methylated promoter in normal liver tissues. IMP3 expression is a useful biomarker for ICCs and can provide an independent prognostic value for patients with ICC. To our knoweldge, this is the first direct evidence of epigenetic deregulation of IMP3 in human cancer. Copyright © 2014 The Auhtors. Published by Elsevier Inc. All rights reserved.

  13. Genistein inhibits cell invasion and motility by inducing cell differentiation in murine osteosarcoma cell line LM8.

    Science.gov (United States)

    Nakamura, Atsushi; Aizawa, Junichi; Sakayama, Kenshi; Kidani, Teruki; Takata, Tomoyo; Norimatsu, Yoshiaki; Miura, Hiromasa; Masuno, Hiroshi

    2012-09-26

    One of the problems associated with osteosarcoma is the frequent formation of micrometastases in the lung prior to diagnosis because the development of metastatic lesions often causes a fatal outcome. Therefore, the prevention of pulmonary metastases during the early stage of tumor development is critical for the improvement of the prognosis of osteosarcoma patients. In Japan, soy is consumed in a wide variety of forms, such as miso soup and soy sauce. The purpose of this study is to investigate the effect of genistein, an isoflavone found in soy, on the invasive and motile potential of osteosarcoma cells. LM8 cells were treated for 3 days with various concentrations of genistein. The effect of genistein on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine (BrdU) incorporation study. The assays of cell invasion and motility were performed using the cell culture inserts with either matrigel-coated membranes or uncoated membranes in the invasion chambers. The expression and secretion of MMP-2 were determined by immunohistochemistry and gelatin zymography. The subcellular localization and cellular level of β-catenin were determined by immunofluorescence and Western blot. For examining cell morphology, the ethanol-fixed cells were stained with hematoxylin-eosin (H&E). The expression of osteocalcin mRNA was determined by reverse transcription-polymerase chain reaction (RT-PCR). Genistein dose-dependently inhibits cell proliferation. Genistein-treated cells were less invasive and less motile than untreated cells. The expression and secretion of MMP-2 were lower in the genistein-treated cultures than in the untreated cultures. β-Catenin in untreated cells was located in the cytoplasm and/or nucleus, while in genistein-treated cells it was translocated near to the plasma membrane. The level of β-catenin was higher in genistein-treated cells than in untreated cells. Treatment of LM8 cells with genistein induced morphological

  14. Genistein inhibits cell invasion and motility by inducing cell differentiation in murine osteosarcoma cell line LM8

    Directory of Open Access Journals (Sweden)

    Nakamura Atsushi

    2012-09-01

    Full Text Available Abstract Background One of the problems associated with osteosarcoma is the frequent formation of micrometastases in the lung prior to diagnosis because the development of metastatic lesions often causes a fatal outcome. Therefore, the prevention of pulmonary metastases during the early stage of tumor development is critical for the improvement of the prognosis of osteosarcoma patients. In Japan, soy is consumed in a wide variety of forms, such as miso soup and soy sauce. The purpose of this study is to investigate the effect of genistein, an isoflavone found in soy, on the invasive and motile potential of osteosarcoma cells. Methods LM8 cells were treated for 3 days with various concentrations of genistein. The effect of genistein on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2’-deoxyuridine (BrdU incorporation study. The assays of cell invasion and motility were performed using the cell culture inserts with either matrigel-coated membranes or uncoated membranes in the invasion chambers. The expression and secretion of MMP-2 were determined by immunohistochemistry and gelatin zymography. The subcellular localization and cellular level of β-catenin were determined by immunofluorescence and Western blot. For examining cell morphology, the ethanol-fixed cells were stained with hematoxylin-eosin (H&E. The expression of osteocalcin mRNA was determined by reverse transcription-polymerase chain reaction (RT-PCR. Results Genistein dose-dependently inhibits cell proliferation. Genistein-treated cells were less invasive and less motile than untreated cells. The expression and secretion of MMP-2 were lower in the genistein-treated cultures than in the untreated cultures. β-Catenin in untreated cells was located in the cytoplasm and/or nucleus, while in genistein-treated cells it was translocated near to the plasma membrane. The level of β-catenin was higher in genistein-treated cells than in untreated cells

  15. Exploring new strategies in diagnosis and treatment of hilar cholangiocarcinoma

    NARCIS (Netherlands)

    Mantel, Hendrik Teunis Johannes

    2016-01-01

    Hilar cholangiocarcinoma is a rare form of cancer arising at the confluence of the right and left bile duct. The disease is known for its difficult diagnosis and treatment. The chapters in this thesis describe different aspects of hilar cholangiocarcinoma with the aim to improve diagnosis and

  16. Results of postoperative radiotherapy for resectable hilar cholangiocarcinoma

    NARCIS (Netherlands)

    Gerhards, Michael F.; van Gulik, Thomas M.; González González, Dioniso; Rauws, Erik A. J.; Gouma, Dirk J.

    2003-01-01

    The aim of this study was to assess the value of radiotherapy, and especially intraluminal brachytherapy, after resection of hilar cholangio-carcinoma by analyzing long-term complications and survival. Between 1983 and 1998, 112 patients underwent resection of a hilar cholangio-carcinoma. Of the 91

  17. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis.

    Science.gov (United States)

    Uygur, Berna; Wu, Wen-Shu

    2011-11-10

    SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  18. Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion.

    Directory of Open Access Journals (Sweden)

    Deborah Huveldt

    Full Text Available Anti-VEGF antibody therapy with bevacizumab provides significant clinical benefit in patients with recurrent glioblastoma multiforme (GBM. Unfortunately, progression on bevacizumab therapy is often associated with a diffuse disease recurrence pattern, which limits subsequent therapeutic options. Therefore, there is an urgent need to understand bevacizumab's influence on glioma biology and block it's actions towards cell invasion. To explore the mechanism(s of GBM cell invasion we have examined a panel of serially transplanted human GBM lines grown either in short-term culture, as xenografts in mouse flank, or injected orthotopically in mouse brain. Using an orthotopic xenograft model that exhibits increased invasiveness upon bevacizumab treatment, we also tested the effect of dasatinib, a broad spectrum SFK inhibitor, on bevacizumab-induced invasion.We show that 1 activation of Src family kinases (SFKs is common in GBM, 2 the relative invasiveness of 17 serially transplanted GBM xenografts correlates strongly with p120 catenin phosphorylation at Y228, a Src kinase site, and 3 SFK activation assessed immunohistochemically in orthotopic xenografts, as well as the phosphorylation of downstream substrates occurs specifically at the invasive tumor edge. Further, we show that SFK signaling is markedly elevated at the invasive tumor front upon bevacizumab administration, and that dasatinib treatment effectively blocked the increased invasion induced by bevacizumab.Our data are consistent with the hypothesis that the increased invasiveness associated with anti-VEGF therapy is due to increased SFK signaling, and support testing the combination of dasatinib with bevacizumab in the clinic.

  19. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Multhaupt, Hinke A. B.; Couchman, John R.

    2015-01-01

    breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. Methods: The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry......, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two......-tailed paired t-test and one-way ANOVA with Tukey¿s post-hoc test were used in the analysis of data. Results: MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced...

  20. Placental Growth Factor Promotes Ovarian Cancer Cell Invasion via ZEB2

    Directory of Open Access Journals (Sweden)

    Ning Song

    2016-01-01

    Full Text Available Background/Aims: The aggressive manner of ovarian cancer (OVC cells accounts for the majority of its lethality. Recently, we have shown that placental growth factor (PLGF promotes metastases of OVC cells through miR-543-regulated MMP7. In the current study, we analyzed the effects of PLGF on another cell invasion associated protein, ZEB2, in OVC cells. Methods: The PLGF and ZEB2 levels in OVC tissues were compared to the paired adjacent non-tumor ovary tissue. We modified ZEB2 levels in OVC cells, and examined its effects on PLGF mRNA and protein levels by RT-qPCR and by Western blot, respectively. We also modified PLGF levels in OVC cells, and examined its effects on ZEB2 mRNA and protein levels by RT-qPCR and by Western blot, respectively. Then, we examined the cell invasiveness in PLGF-modified OVC cells in a transwell cell invasion assay. Finally, we used specific signal pathway inhibitors to treat PLGF-modified OVC cells and examined the effects on ZEB2 activation. Results: PLGF and ZEB2 levels were both significantly increased in OVC tissues, compared to the paired adjacent non-tumor ovary tissue. The PLGF and ZEB2 levels were strongly correlated. ZEB2 modification did not alter PLGF levels. Overexpression of PLGF in OVC cells significantly increased ZEB2 levels and cell invasiveness, while PLGF depletion in OVC cells significantly decreased ZEB2 levels and cell invasiveness. Application of a specific MAPK-p38 inhibitor, but not application of specific inhibitors for MAPK-p42/p44, PI3k/Akt, or JNK signaling pathways, to PLGF-overexpressing OVC cells substantially abolished the PLGF-induced ZEB2 activation. Conclusion: PLGF enhances OVC cell invasion through MAPK-p38-dependent activation of ZEB2.

  1. Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion

    Directory of Open Access Journals (Sweden)

    Alison Roos

    2017-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most frequent primary brain tumor in adults with a 5-year survival rate of 5% despite intensive research efforts. The poor prognosis is due, in part, to aggressive invasion into the surrounding brain parenchyma. Invasion is a complex process mediated by cell-intrinsic pathways, extrinsic microenvironmental cues, and biophysical cues from the peritumoral stromal matrix. Recent data have attributed GBM invasion to the glioma stem-like cell (GSC subpopulation. GSCs are slowly dividing, highly invasive, therapy resistant, and are considered to give rise to tumor recurrence. GSCs are localized in a heterogeneous cellular niche, and cross talk between stromal cells and GSCs cultivates a fertile environment that promotes GSC invasion. Pro-migratory soluble factors from endothelial cells, astrocytes, macrophages, microglia, and non-stem-like tumor cells can stimulate peritumoral invasion of GSCs. Therefore, therapeutic efforts designed to target the invasive GSCs may enhance patient survival. In this review, we summarize the current understanding of extrinsic pathways and major stromal and immune players facilitating GSC maintenance and survival.

  2. Human bone marrow mesenchymal stem cells induce collagen production and tongue cancer invasion.

    Directory of Open Access Journals (Sweden)

    Sirpa Salo

    Full Text Available Tumor microenvironment (TME is an active player in carcinogenesis and changes in its composition modify cancer growth. Carcinoma-associated fibroblasts, bone marrow-derived multipotent mesenchymal stem cells (BMMSCs, and inflammatory cells can all affect the composition of TME leading to changes in proliferation, invasion and metastasis formation of carcinoma cells. In this study, we confirmed an interaction between BMMSCs and oral tongue squamous cell carcinoma (OTSCC cells by analyzing the invasion progression and gene expression pattern. In a 3-dimensional myoma organotypic invasion model the presence of BMMSCs inhibited the proliferation but increased the invasion of OTSCC cells. Furthermore, the signals originating from OTSCC cells up-regulated the expression of inflammatory chemokines by BMMSCs, whereas BMMSC products induced the expression of known invasion linked molecules by carcinoma cells. Particularly, after the cell-cell interactions, the chemokine CCL5 was abundantly secreted from BMMSCs and a function blocking antibody against CCL5 inhibited BMMSC enhanced cancer invasion area. However, CCL5 blocking antibody did not inhibit the depth of invasion. Additionally, after exposure to BMMSCs, the expression of type I collagen mRNA in OTSCC cells was markedly up-regulated. Interestingly, also high expression of type I collagen N-terminal propeptide (PINP in vivo correlated with the cancer-specific mortality of OTSCC patients, whereas there was no association between cancer tissue CCL5 levels and the clinical parameters. In conclusion, our results suggest that the interaction between BMMSC and carcinoma cells induce cytokine and matrix molecule expression, of which high level of type I collagen production correlates with the prognosis of OTSCC patients.

  3. Analysis of Invasion Dynamics of Matrix-Embedded Cells in a Multisample Format.

    Science.gov (United States)

    Van Troys, Marleen; Masuzzo, Paola; Huyck, Lynn; Bakkali, Karima; Waterschoot, Davy; Martens, Lennart; Ampe, Christophe

    2018-01-01

    In vitro tests of cancer cell invasion are the "first line" tools of preclinical researchers for screening the multitude of chemical compounds or cell perturbations that may aid in halting or treating cancer malignancy. In order to have predictive value or to contribute to designing personalized treatment regimes, these tests need to take into account the cancer cell environment and measure effects on invasion in sufficient detail. The in vitro invasion assays presented here are a trade-off between feasibility in a multisample format and mimicking the complexity of the tumor microenvironment. They allow testing multiple samples and conditions in parallel using 3D-matrix-embedded cells and deal with the heterogeneous behavior of an invading cell population in time. We describe the steps to take, the technical problems to tackle and useful software tools for the entire workflow: from the experimental setup to the quantification of the invasive capacity of the cells. The protocol is intended to guide researchers to standardize experimental set-ups and to annotate their invasion experiments in sufficient detail. In addition, it provides options for image processing and a solution for storage, visualization, quantitative analysis, and multisample comparison of acquired cell invasion data.

  4. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.

    Directory of Open Access Journals (Sweden)

    Yan-fei Liu

    Full Text Available Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2, which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.

  5. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    Science.gov (United States)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  6. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  7. In-vivo monitoring of development of cholangiocarcinoma induced with C. sinensis and N-nitrosodimethylamine in Syrian golen hamsters using ultrasonography and magnetic resonance imaging: a preliminary study

    International Nuclear Information System (INIS)

    Woo, Hyunsik; Han, Joon Koo; Kim, Jung Hoon; Hong, Sung-Tae; Uddin, M.H.; Jang, Ja-June

    2017-01-01

    The purpose of this study is to evaluate high-resolution ultrasound and magnetic resonance imaging (MRI) in monitoring of cholangiocarcinoma in the hamsters with C. sinensis infection and N-nitrosodimethylamine (NDMA). Twenty-four male Syrian golden hamsters of were divided into four groups composed of five hamsters as control, five hamsters receiving 30 metacercariae of C. sinensis per each hamster, five hamsters receiving NDMA in drinking water, and nine hamsters receiving both metacercariae and NDMA. Ultrasound was performed every other week from baseline to the 12th week of infection. MRI and histopathologic examination was done from the 4th week to 12th week. Cholangiocarcinomas appeared as early as the 6th week of infection. There were 12 cholangiocarcinomas, nine and ten of which were demonstrated by ultrasound and MRI, respectively. Ultrasound and MRI findings of cholangiocarcinomas in the hamsters were similar to those of the mass-forming intrahepatic cholangiocarcinomas in humans. Ultrasound and MRI also showed other findings of disease progression such as periductal increased echogenicity or signal intensity, ductal dilatation, complicated cysts, and sludges in the gallbladder. High-resolution ultrasound and MRI can monitor and detect the occurrence of cholangiocarcinoma in the hamsters non-invasively. (orig.)

  8. In-vivo monitoring of development of cholangiocarcinoma induced with C. sinensis and N-nitrosodimethylamine in Syrian golen hamsters using ultrasonography and magnetic resonance imaging: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hyunsik [SMG-SNU Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Han, Joon Koo; Kim, Jung Hoon [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Hong, Sung-Tae [Seoul National University, Department of Parasitology, College of Medicine, Seoul (Korea, Republic of); Uddin, M.H. [Seoul National University, Adult Stem Cell Research Center, Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul (Korea, Republic of); Jang, Ja-June [Seoul National University, Department of Pathology, College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    The purpose of this study is to evaluate high-resolution ultrasound and magnetic resonance imaging (MRI) in monitoring of cholangiocarcinoma in the hamsters with C. sinensis infection and N-nitrosodimethylamine (NDMA). Twenty-four male Syrian golden hamsters of were divided into four groups composed of five hamsters as control, five hamsters receiving 30 metacercariae of C. sinensis per each hamster, five hamsters receiving NDMA in drinking water, and nine hamsters receiving both metacercariae and NDMA. Ultrasound was performed every other week from baseline to the 12th week of infection. MRI and histopathologic examination was done from the 4th week to 12th week. Cholangiocarcinomas appeared as early as the 6th week of infection. There were 12 cholangiocarcinomas, nine and ten of which were demonstrated by ultrasound and MRI, respectively. Ultrasound and MRI findings of cholangiocarcinomas in the hamsters were similar to those of the mass-forming intrahepatic cholangiocarcinomas in humans. Ultrasound and MRI also showed other findings of disease progression such as periductal increased echogenicity or signal intensity, ductal dilatation, complicated cysts, and sludges in the gallbladder. High-resolution ultrasound and MRI can monitor and detect the occurrence of cholangiocarcinoma in the hamsters non-invasively. (orig.)

  9. Correct diagnosis of vascular encasement and longitudinal extension of hilar cholangiocarcinoma by four-channel multidetector-row computed tomography

    International Nuclear Information System (INIS)

    Okumoto, Tadayuki; Yamada, Takayuki; Sato, Akihiro

    2009-01-01

    Accurate diagnosis of local invasion of hilar cholangiocarcinomas is challenging due to their small size and the anatomic complexity of the hepatic hilar region. On the other hand, the correct diagnosis of local invasion is essential for assuring the possibility of curative surgery. The purpose of this study was to evaluate the feasibility of four-channel multidetector-row computed tomography (MDCT) in the assessment of vascular and bile duct involvement, by which we could obtain useful information for the surgical management of hilar cholangiocarcinoma. The subjects were 18 patients for whom the extent of tumor invasion was surgically and pathologically confirmed. All patients underwent preoperative multiphasic CT scanning by MDCT. Arterial and portal dominant phases were acquired using a detector configuration of 1.25 mm x 4 mm, and both axial and multiplanar reconstructed images were interpreted. Longitudinal extension was evaluated up to second-order branches. Vascular invasion is considered to be the degree of tumor contiguity to the hepatic arteries and portal vein and was graded by CT. The longitudinal extension was correctly diagnosed in 14 patients (77.8%). Hepatic artery invasion was correctly diagnosed in 17 patients with sensitivity of 100% and specificity of 90%, respectively. Portal vein invasion was correctly diagnosed in 47 of 51 branches with sensitivity and specificity of 92.3% and 90.2%, respectively. Multiplanar reconstructed images contributed to the correct diagnosis for both vascular encasement and longitudinal tumor extension. In conclusion, MDCT is useful in preoperative evaluation of hilar cholangiocarcinoma, especially when combined with multiplanar reconstructed images. (author)

  10. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression

    OpenAIRE

    YANG, CAILING; YAN, JIANGUO; YUAN, GUOYAN; ZHANG, YINGHUA; LU, DERONG; REN, MINGXIN; CUI, WEIGANG

    2014-01-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro. The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matri...

  11. Implications of Rho GTPase signaling in glioma cell invasion and tumor progression

    Directory of Open Access Journals (Sweden)

    Shannon Patricia Fortin Ensign

    2013-10-01

    Full Text Available Glioblastoma (GB is the most malignant of primary adult brain tumors, characterized by a highly locally-invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.

  12. Embryonic chicken transplantation is a promising model for studying the invasive behaviour of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Aparna eJayachandran

    2015-02-01

    Full Text Available Epithelial-to-mesenchymal transition is a hallmark event in the metastatic cascade conferring invasive ability to tumor cells. There are ongoing efforts to replicate the physiological events occurring during mobilization of tumor cells in model systems. However, few systems are able to capture these complex in vivo events. The embryonic chicken transplantation model has emerged as a useful system to assess melanoma cells including functions that are relevant to the metastatic process, namely invasion and plasticity. The chicken embryo represents an accessible and economical 3-dimensional in vivo model for investigating melanoma cell invasion as it exploits the ancestral relationship between melanoma and its precursor neural crest cells. We describe a methodology which enables the interrogation of melanoma cell motility within the developing avian embryo. This model involves the injection of melanoma cells into the neural tube of chicken embryos. Melanoma cells are labelled using fluorescent tracker dye, Vybrant DiO, then cultured as hanging drops for 24 hours to aggregate the cells. Groups of approximately 700 cells are placed into the neural tube of chicken embryos prior to the onset of neural crest migration at the hindbrain level (embryonic day 1.5 or trunk level (embryonic day 2.5. Chick embryos are reincubated and analysed after 48 hours for the location of melanoma cells using fluorescent microscopy on whole mounts and cross-sections of the embryos. Using this system, we compared the in vivo invasive behavior of epithelial-like and mesenchymal-like melanoma cells. We report that the developing embryonic microenvironment confers motile abilities to both types of melanoma cells. Hence the embryonic chicken transplantation model has potential to become a valuable tool for in vivo melanoma invasion studies. Importantly, it may provide novel insights into and reveal previously unknown mediators of the metastatic steps of invasion and

  13. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture.

    Science.gov (United States)

    Hagi, Akifumi; Nakayama, Mitsuo; Miura, Yutaka; Yagasaki, Kazumi

    2007-01-01

    Total parenteral nutrition containing a lipid emulsion is often employed after surgical tumor resection. This study investigated the effects of a fish oil-based infusion on rat hepatoma cell invasion. Rat ascites hepatoma cell line AH109A was precultured with a fish oil-based or safflower oil-based emulsion for 48 h. Changes in membranous fatty acid composition were evaluated by gas chromatography. The invasiveness of hepatoma cells was assessed by coculturing with mesentery-derived mesothelial cells. To examine ex vivo effects of the fish oil-based infusion on hepatoma invasion, sera were prepared from rats infused with fish oil- or safflower oil-based emulsion and the effects of these sera were assessed. To clarify the mechanism of inhibition of invasion by the fish oil-based emulsion, the effects of prostaglandin (PG) E(2) and PGE(3) on invasion were examined. Pretreatment with the fish oil-based emulsion reduced invasiveness without affecting growth compared with the safflower oil-based emulsion. Pretreatment with the sera from rats infused with the fish oil-based emulsion also reduced invasiveness compared with the sera from rats infused with the safflower oil-based emulsion. The addition of PGE(2) eliminated the inhibitory effect of the fish oil-based emulsion, and the addition of PGE(3) reduced the invasiveness of hepatoma cells pretreated with the safflower oil-based emulsion. These results suggest that the fish oil-based emulsion may have anti-invasive effects. Changes in the membranous fatty acid composition and consequent changes in the prostaglandins produced may be involved in this inhibitory effect.

  14. Clonorchis sinensis granulin: identification, immunolocalization, and function in promoting the metastasis of cholangiocarcinoma and hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Caiqin; Lei, Huali; Tian, Yanli; Shang, Mei; Wu, Yinjuan; Li, Ye; Zhao, Lu; Shi, Mengchen; Tang, Xin; Chen, Tingjin; Lv, Zhiyue; Huang, Yan; Tang, Xiaoping; Yu, Xinbing; Li, Xuerong

    2017-05-25

    Long-term infections by Clonorchis sinensis are associated with cholangitis, cholecystitis, liver fibrosis, cirrhosis, and even liver cancer. Molecules from the worm play vital roles in disease progress. In the present study, we identified and explored molecular characterization of C. sinensis granulin (CsGRN), a growth factor-like protein from C. sinensis excretory/secretory products (CsESPs). The encoding sequence and conserved domains of CsGRN were identified and analysed by bioinformatics tools. Recombinant CsGRN (rCsGRN) protein was expressed in Escherichia coli BL21 (DE3). The localisation of CsGRN in adult worms and Balb/c mice infected with C. sinensis was investigated by immunofluorescence and immunohistochemistry, respectively. Stable CsGRN-overexpressed cell lines of hepatoma cells (PLC-GRN cells) and cholangiocarcinoma cells (RBE-GRN cells) were constructed by transfection of eukaryotic expression plasmid of pEGFP-C1-CsGRN. The effects on cell migration and invasion of CsGRN were assessed through the wound-healing assay and transwell assay. The levels of matrix metalloproteinase 2 and 9 (MMP2 and MMP9) in PLC-GRN or RBE-GRN cells were detected by real-time PCR (qRT-PCR). The levels of E-cadherin, vimentin, N-cadherin, zona occludens proteins (ZO-1), β-catenin, phosphorylated ERK (p-ERK) and phosphorylated AKT (p-AKT) were analysed by Western blotting. CsGRN, including the conserved GRN domains, was confirmed to be a member of the granulin family. CsGRN was identified as an ingredient of CsESPs. CsGRN was localised in the tegument and testes of the adult worm. Furthermore, it appeared in the cytoplasm of hepatocytes and biliary epithelium cells from infected Balb/c mouse. The enhancement of cell migration and invasion of PLC-GRN and RBE-GRN cells were observed. In addition, CsGRN upregulated the levels of vimentin, N-cadherin, β-catenin, MMP2 and MMP9, while it downregulated the level of ZO-1 in PLC-GRN/RBE-GRN cells. In total proteins of liver tissue

  15. Protein kinase Cδ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Kharait, Sourabh; Dhir, Rajiv; Lauffenburger, Douglas; Wells, Alan

    2006-01-01

    Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cδ (PKCδ)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCδ is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCδ using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCδ and phosphorylated PKCδ protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCδ inhibition can limit migration and invasion of prostate cancer cells

  16. TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.

    Directory of Open Access Journals (Sweden)

    Agathe Oulidi

    Full Text Available Adrenomedullin (AM is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level.

  17. Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel-based approach.

    Directory of Open Access Journals (Sweden)

    Claudio G Rolli

    2010-01-01

    Full Text Available Cell migration is a fundamental feature of the interaction of cells with their surrounding. The cell's stiffness and ability to deform itself are two major characteristics that rule migration behavior especially in three-dimensional tissue. We simulate this situation making use of a micro-fabricated migration chip to test the active invasive behavior of pancreatic cancer cells (Panc-1 into narrow channels. At a channel width of 7 microm cell migration through the channels was significantly impeded due to size exclusion. A striking increase in cell invasiveness was observed once the cells were treated with the bioactive lipid sphingosylphosphorylcholine (SPC that leads to a reorganization of the cell's keratin network, an enhancement of the cell's deformability, and also an increase in the cell's migration speed on flat surfaces. The migration speed of the highly deformed cells inside the channels was three times higher than of cells on flat substrates but was not affected upon SPC treatment. Cells inside the channels migrated predominantly by smooth sliding while maintaining constant cell length. In contrast, cells on adhesion mediating narrow lines moved in a stepwise way, characterized by fluctuations in cell length. Taken together, with our migration chip we demonstrate that the dimensionality of the environment strongly affects the migration phenotype and we suggest that the spatial cytoskeletal keratin organization correlates with the tumor cell's invasive potential.

  18. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    Science.gov (United States)

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  19. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells

    NARCIS (Netherlands)

    Sinha, B; Francois, P; Que, Y A; Hussain, M; Heilmann, C; Moreillon, P; Lew, D; Krause, K H; Peters, Georg; Herrmann, M

    2000-01-01

    Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin alpha(5)beta(1) (B. Sinha et al., Cell.

  20. BMP2 induces PANC-1 cell invasion by MMP-2 overexpression through ROS and ERK.

    Science.gov (United States)

    Liu, Jun; Ben, Qi-Wen; Yao, Wei-Yan; Zhang, Jian-Jun; Chen, Da-Fan; He, Xiang-Yi; Li, Lei; Yuan, Yao-Zong

    2012-06-01

    The emerging roles of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers have drawn great attention in cancer research. We hypothesized that BMP2 promotes cancer metastasis by modulating MMP-2 secretion and activity through intracellular ROS regulation and ERK activation in human pancreatic cancer. Our data show that stimulation of PANC-1 cells with BMP2 induced MMP-2 secretion and activation, associated with decreased E-cadherin expression, resulting in epithelial-to-mesenchymal transformation (EMT) and cell invasion. Blockade of ROS by the ROS scavenger, 2-MPG, abolished cell invasion, inhibited the EMT process and decreased MMP-2 expression, suggesting ROS accumulation caused an increase in MMP-2 expression in BMP2-stimulated PANC-1 cell invasion. Furthermore, treatment of PANC-1 cells with 2-MPG or ERK inhibitor PD98059 reduced the phosphorylation of ERK, resulting in attenuation of BMP2-induced cell invasion and MMP-2 activation. Taken together, these results suggest that BMP2 induces the cell invasion of PANC-1 cells by enhancing MMP-2 secretion and acting through ROS accumulation and ERK activation.

  1. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    Science.gov (United States)

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  2. [The possibility of local control of cancer by neoadjuvant chemoradiation therapy with gemcitabine and surgical resection for advanced cholangiocarcinoma].

    Science.gov (United States)

    Nakagawa, Kei; Katayose, Yu; Rikiyama, Toshiki; Okaue, Adoru; Unno, Michiaki

    2009-11-01

    Surgical resection is the gold standard of treatment for cholangiocarcinoma. However, there are also many recurrences after operation, because of the anatomical background and the tendency of invasion. We thought that eliminating the remnant of the cancer could yield a better prognosis. Therefore, an introduction of the neoadjuvant chemoradiation therapy with gemcitabine and surgical resection for advanced cholangiocarcinoma patient (NACRAC) was planned. The safety of NACRAC was confirmed by a pilot study. The recommended dose of gemcitabine (600 mg/m2) was determined by a phase I study. A phase II study is now being performed for evaluating the effectiveness and safety. NACRAC may control the frontal part of the tumor with difficult distinctions made by MDCT, and abolishing the cancer remnant is expected. The possibility of extended prognosis by NACRAC can be considered.

  3. Invasion of Varroa mites into honey bee brood cells

    NARCIS (Netherlands)

    Boot, W.J.

    1995-01-01

    The parasitic mite Varroa-jacobsoni is one of the most serious pests of Western honey bees, Apis mellifera. The mites parasitize adult bees, but reproduction only occurs while parasitizing on honey bee brood. Invasion into a

  4. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Li, Yingrui; Xu, Xun; Song, Luting

    2012-01-01

    sequencing of 66 individual tumor cells from a muscle-invasive bladder transitional cell carcinoma (TCC). Analyses of the somatic mutant allele frequency spectrum and clonal structure revealed that the tumor cells were derived from a single ancestral cell, but that subsequent evolution occurred, leading...... to two distinct tumor cell subpopulations. By analyzing recurrently mutant genes in an additional cohort of 99 TCC tumors, we identified genes that might play roles in the maintenance of the ancestral clone and in the muscle-invasive capability of subclones of this bladder cancer, respectively...

  5. Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells.

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L; Park, John K

    2008-07-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule-destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement-related processes. Scratch wound-healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down-regulation of cellular stathmin levels and in the absence and presence of sublethal nitrosourea ([1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]; CCNU) concentrations. We show that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 micromol/L, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain, and that nitrosoureas may have therapeutic benefits in addition to their antiproliferative effects.

  6. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    Science.gov (United States)

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927

  7. HIF1 Contributes to Hypoxia-Induced Pancreatic Cancer Cells Invasion via Promoting QSOX1 Expression

    Directory of Open Access Journals (Sweden)

    Chen-Ye Shi

    2013-08-01

    Full Text Available Background: Quiescin sulfhydryl oxidase 1 (QSOX1, which oxidizes sulfhydryl groups to form disulfide bonds in proteins, is found to be over-expressed in various pancreatic cancer cell lines and patients. QSOX1 promotes invasion of pancreatic cancer cells by activating MMP-2 and MMP-9. However, its regulatory mechanism remains largely undefined. Methods: Real-time PCR and Western blot were employed to detect the expression of QSOX1 in human pancreatic cancer cell lines under hypoxic condition. Luciferase reporter and ChIP assays were used to assess the regulation of QSOX1 by hypoxia-inducible factor 1 (HIF-1. Small interfering RNA (siRNA was applied to knock down endogenous expression of QSOX1. Matrigel-coated invasion chamber essays were conducted to detect the invasion capacity of QSOX1-depleted cells. Results: Both hypoxia and hypoxia mimicking reagent up-regulated the expression of QSOX1 in human pancreatic cancer cell lines. Knockdown of HIF-1α eliminated hypoxia induced QSOX1 expression. HIF-1α was found directly bound to two hypoxia-response elements (HRE of QSOX1 gene, both of which were required for HIF-1 induced QSOX1 expression. Moreover, QSOX1 silencing blocked hypoxia-induced pancreatic cancer cells invasion. Conclusion: QSOX1 is a direct target of HIF-1 and may contribute to hypoxia-induced pancreatic cancer cells invasion.

  8. Percutaneous transhepatic biliary drainage for hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Qian Xiaojun; Jin Wenhui; Dai Dingke; Yu Ping; Gao Kun; Zhai Renyou

    2007-01-01

    Objective: To evaluate the effect of PTBD in treating malignant biliary obstruction caused by hilar cholangiocarcinoma. Methods: We retrospectively analyzed the data of 103 patients(M:62,F:41)with malignant obstructive jaundice caused by hilar cholangiocarcinoma. After taking percutaneous transhepatic cholangiography, metallic stent or plastic external catheter or external-internal catheter for drainage was deployed and then followed up was undertaken with clinical and radiographic evaluation and laboratory. examination. Results: All patients went though PTBD successfully (100%). According to Bismuth classification, all 103 cases consisted of I type(N=30), II type (N=30), III type (N=26) and IV type (N=17). Thirty-nine cases were placed with 47 stents and 64 eases with drainage tubes. 4 cases installed two stems for bilateral drainage, 2 cases installed two stents because of long segmental strictures with stent in stent, 1 case was placed with three stents, and 3 cases installed stent and plastic catheter together. Sixty-four cases received plastic catheters in this series, 35 cases installed two or more catheters for bilateral drainage, 28 cases installed external and internal drainage catheters, 12 eases installed external drainage catheters, and 24 eases installed both of them. There were 17 patients involving incorporative infection before procedure, 13 cases cured after procedure, and 15 new patients got inflammation after procedure. 13 cases showed increase of amylase (from May, 2004), 8 eases had bloody bile drainage and 1 case with pyloric obstruction. Total serum bilirubin reduced from (386 ± 162) μmol/L to (161 ± 117) μmol/L, (P<0.01) short term curative effect was related with the type of hilar cholangiocarcinoma. The survival time was 186 days(median), and 1, 3, 6, 12 month survival rate were 89.9%, 75.3%, 59.6%, 16.9%, respectively. Conclusion: Percutaneous transhepatic bile drainage is a safe and effective palliative therapy of malignant

  9. Computed tomographic findings of intrahepatic peripheral cholangiocarcinoma

    International Nuclear Information System (INIS)

    Woo, Seong Ku; Suh, Soo Jhi; Kim, Ho Joon; Chun, Byung Hee

    1986-01-01

    Cholangiocarcinoma is synonymous with bile duct carcinoma, and can originate in a small intrahepatic bile duct (peripheral type), a major intrahepatic duct including the hepatic hills, an extrahepatic duct, or near the papilla of Vater (central type). In a sense bile duct carcinoma of the peripheral type is cholangiocarcinoma of the liver; it has the same gross configuration as hepatocellular carcinoma, resulting in difficulty to differentiate on the CT. The authors studied CT findings of 14 cases of pathologically proven peripheral type cholangiocarcinoma of the liver during the last 4 years. The results were as follows: 1. Of 14 cases, 8 were female and 6 were male, and the age ranged from 5th to 7th decades. 2. Preoperative clinical diagnosis were as follows: hepatoma 8 cases, abscess 5 cases and metastasis 1 case in order of frequency. 3. Diagnosis were confirmed by hepatic lobectomy in 7 cases, wedge resection in 5 cases and needle biopsy in 2 case. 4. Laboratory findings were not specific, but there were only 2 cases with elevated alpha-fetoprotein level. 5. Associated diseases were gallstones in 1 case, intrahepatic duct stones in 1 case, extrahepatic duct stones in 2 cases, acute or chronic cholecystitis in 5 cases and CS in 3 cases. 6. Angiographic and scintigraphic findings were helpful in differential diagnosis from hepatoma but ultrasonography was non-specific. 7. The number of tumor were solitary in 12 cases and multiple in 2 cases. Among solitary cases, the site of involvement of the liver were right lobe in 8 cases and left lobe in 4 cases. 8. Common CT features of the intrahepatic peripheral cholangiocinoma of the liver were irregular, inhomogeneous, occasionally peripherally enhancing, low density liver mass, frequently accompanied by diffuse or segmental dilatation of the intrahepatic bile duct. If there were normal alpha fetoprotein level, positive skin and/or stool examination for CS and diffuse or segmental dilatation of the intrahepatic duct

  10. Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration.

    Science.gov (United States)

    Somogyi, Kálmán; Rørth, Pernille

    2004-07-01

    Cells migrating through a tissue exert force via their cytoskeleton and are themselves subject to tension, but the effects of physical forces on cell behavior in vivo are poorly understood. Border cell migration during Drosophila oogenesis is a useful model for invasive cell movement. We report that this migration requires the activity of the transcriptional factor serum response factor (SRF) and its cofactor MAL-D and present evidence that nuclear accumulation of MAL-D is induced by cell stretching. Border cells that cannot migrate lack nuclear MAL-D but can accumulate it if they are pulled by other migrating cells. Like mammalian MAL, MAL-D also responds to activated Diaphanous, which affects actin dynamics. MAL-D/SRF activity is required to build a robust actin cytoskeleton in the migrating cells; mutant cells break apart when initiating migration. Thus, tension-induced MAL-D activity may provide a feedback mechanism for enhancing cytoskeletal strength during invasive migration.

  11. Osteoactivin regulates head and neck squamous cell carcinoma invasion by modulating matrix metalloproteases.

    Science.gov (United States)

    Arosarena, Oneida A; Barr, Eric W; Thorpe, Ryan; Yankey, Hilary; Tarr, Joseph T; Safadi, Fayez F

    2018-01-01

    Nearly 60% of patients with head and neck squamous cell carcinoma (HNSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell migration and invasion, which are in part dependent on extracellular matrix degradation by matrix metalloproteinases. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies, and has been shown to upregulate matrix metalloproteinase (MMP) expression and activity. To determine how OA modulates MMP expression and activity in HNSCC, and to investigate OA effects on cell invasion, we assessed effects of OA treatment on MMP mRNA and protein expression, as well as gelatinase and caseinolytic activity in HNSCC cell lines. We assessed the effects of OA gene silencing on MMP expression, gelatinase and caseinolytic activity, and cell invasion. OA treatment had differential effects on MMP mRNA expression. OA treatment upregulated MMP-10 expression in UMSCC14a (p = 0.0431) and SCC15 (p < 0.0001) cells, but decreased MMP-9 expression in UMSCC14a cells (p = 0.0002). OA gene silencing decreased MMP-10 expression in UMSCC12 cells (p = 0.0001), and MMP-3 (p = 0.0005) and -9 (p = 0.0036) expression in SCC25 cells. In SCC15 and SCC25 cells, OA treatment increased MMP-2 (p = 0.0408) and MMP-9 gelatinase activity (p < 0.0001), respectively. OA depletion decreased MMP-2 (p = 0.0023) and -9 (p < 0.0001) activity in SCC25 cells. OA treatment increased 70 kDa caseinolytic activity in UMSCC12 cells consistent with tissue type plasminogen activator (p = 0.0078). OA depletion decreased invasive capacity of UMSCC12 cells (p < 0.0001). OA's effects on MMP expression in HNSCC are variable, and may promote cancer cell invasion. © 2017 Wiley Periodicals, Inc.

  12. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  13. Case report: A female case of isolated IgG4-related sclerosing cholangitis mimicking cholangiocarcinoma.

    Science.gov (United States)

    Xiao, Jianchun; Li, Guanqiao; Yang, Gang; Jia, Congwei; Li, Binglu

    2017-04-01

    IgG4-related disease is a newly recognized fibroinflammatory disorder, characterized by tumefactive lesions, storiform fibrosis and IgG4-positive plasma cells infiltration. IgG4-related sclerosing cholangitis (IgG4-SC) is the most common extrapancreatic manifestation of IgG4-related disease, but it is frequently associated with autoimmune pancreatitis(AIP). Only few case was reported to be diagnosed with IgG4-SC in the absence of AIP, with a striking male preponderance. Here we report a female case of isolated IgG4 related sclerosing cholangitis mimicking cholangiocarcinoma. A 58-year-old woman complaint of one-month history of jaundice and right upper quadrant discomfort, and the biliary reconstruction showed full-length wall thickening and segmental stenosis. Cholangiocarcinoma was then diagnosed. Choledochoplasty was performed, followed by Roux-en-Y anastomosis. However, pathological examination revealed IgG4-related sclerosing cholangitis (IgG4-SC) and the retrospective measurement of serum IgG4 was 346 mg/dL post-operatively. The patient was followed for another nine monthswithout recurrence. The differential diagnosis between cholangiocarcinoma and IgG4-SC is challenging due to significant overlap of clinical manifestations, lab tests and imaging characteristics. However, as an afterthought of this case, typical cholangiocarcinoma rarely presents full-length wall thickening. What the case taught us was pre-operative IgG4 measurement for patients with long bile duct involvement was highly recommended in order to rule out IgG4-SC.

  14. Trousseau's Syndrome Caused by Intrahepatic Cholangiocarcinoma: An Autopsy Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Takashi Yuri

    2014-05-01

    Full Text Available An autopsy case report of Trousseau's syndrome caused by intrahepatic cholangiocarcinoma is presented, and seven previously reported cases are reviewed. A 73-year-old woman experiencing light-headedness and dementia of unknown cause for 6 months developed severe hypotonia. A hypointense lesion compatible with acute cerebral infarction was detected by magnetic resonance imaging. Abdominal computed tomography revealed an ill-defined large liver mass in the right lobe. The mass was not further investigated because of the patient's poor condition. She died of multiple organ failure, and an autopsy was conducted. Postmortem examination revealed intrahepatic cholangiocarcinoma, fibrous vegetations on the mitral valves and multiple thromboemboli in the cerebrum, spleen and rectum. Trousseau's syndrome is defined as an idiopathic thromboembolism in patients with undiagnosed or concomitantly diagnosed malignancy. This syndrome is encountered frequently in patients with mucin-producing carcinomas, while the incidence in patients with intrahepatic cholangiocarcinoma is uncommon. We found that tissue factor and mucin tumor marker (CA19-9, CA15-3 and CA-125 expression in cancer cells may be involved in the pathogenesis of thromboembolism. A patient with unexplained thromboembolism may have occult visceral malignancy; thus, mucin tumor markers may indicate the origin of a mucin-producing carcinoma, and postmortem examination may play an important role in revealing the hidden malignancy.

  15. Which features of advanced head and neck basal cell carcinoma are associated with perineural invasion?

    Directory of Open Access Journals (Sweden)

    André Bandiera de Oliveira Santos

    Full Text Available Abstract Introduction Perineural invasion is a unique route for tumor dissemination. In basal cell carcinomas, the incidence is low, but increases in advanced cases. Its importance is recognized but not fully understood. Objective To compare head and neck basal cell carcinomas with and without perineural invasion. Methods A retrospective medical chart review of multidisciplinary surgeries for basal cell carcinomas that required a head and neck surgery specialist in a tertiary referral center was performed. Clinical-demographics and histopathological features were analyzed. Results Of 354 cases, perineural invasion was present in 23.1%. Larger tumors and morpheaform subtype were statistically related to perineural invasion. Nodular and superficial subtypes were less frequent in positive cases. No significant difference was found in gender, age, ulceration, location, and mixed histology. Conclusion In this series of selected patients with basal cell carcinomas submitted to major resections, perineural invasion was clearly related to morpheaform subtype and to larger tumors. Other classically associated features, such as location in high-risk mask zone of the face, male gender and mixed histology, were not so strongly linked to perineural invasion.

  16. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    International Nuclear Information System (INIS)

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-01-01

    Highlights: ► Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. ► Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. ► Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding

  17. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  18. The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.

    Science.gov (United States)

    Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru

    2017-06-01

    Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Metallic stent and stereotactic conformal radiotherapy for hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Li Yu; Wang Ning; Tian Qihe; Guo Zhanwen; Zhang Haibo; Song Liyan

    2005-01-01

    Objective: To evaluate the effect of metallic stent combined with stereotactic conformal radiotherapy (SCRT) for hilar cholangiocarcinoma. Methods: Fifty-four patients with hilar cholangiocarcinoma were analyzed, including 31 treated with stent plus stereotactic conformal radiotherapy (combined group) and 23 with metallic stent alone (control group). Results: The mean survival time of combined group was 11.1 ± 4.6 months, compared with 5.1 ± 2.8 months of the control group, giving a significant difference between the two groups (P<0.01). Conclusion: The combination of metallic stent and stereotactic conformal radiotherapy is more effective than metallic stent alone for unresectable hilar cholangiocarcinoma. (authors)

  20. [Occupational cholangiocarcinoma in a printer that responded to neoadjuvant chemoradiotherapy].

    Science.gov (United States)

    Nakagawa, Kei; Katayose, Yu; Ishida, Kazuyuki; Hayashi, Hiroki; Morikawa, Takanori; Yoshida, Hiroshi; Motoi, Fuyuhiko; Naitoh, Takeshi; Kubo, Shoji; Unno, Michiaki

    2015-07-01

    A 42-year-old man working at a printing company was referred to our hospital for examination and treatment of icterus. We diagnosed resectable hilar cholangiocarcinoma and provided neoadjuvant chemoradiotherapy, extended right hepatectomy, and extrahepatic bile duct resection. A detailed history revealed that he had used 1,2-dichloropropane as part of his work as an offset colour proof-printer, and he has subsequently been recognized as having occupational cholangiocarcinoma. He has survived without recurrence for more than 2 and half years since the liver resection. In the present report, we describe our valuable experience of neoadjuvant chemoradiotherapy for occupational cholangiocarcinoma.

  1. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  2. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    International Nuclear Information System (INIS)

    Chiu, Yung-Wei; Lin, Tseng-Hsi; Huang, Wen-Shih; Teng, Chun-Yuh; Liou, Yi-Sheng; Kuo, Wu-Hsien; Lin, Wea-Lung; Huang, Hai-I; Tung, Jai-Nien; Huang, Chih-Yang; Liu, Jer-Yuh; Wang, Wen-Hung; Hwang, Jin-Ming

    2011-01-01

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-β. In addition, baicalein reduced the phosphorylation levels of PKCα and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: → Baicalein inhibits several essential steps in the onset of metastasis.

  3. The expression of HSP27 is associated with poor clinical outcome in intrahepatic cholangiocarcinoma

    International Nuclear Information System (INIS)

    Romani, Antonello A; Crafa, Pellegrino; Desenzani, Silvia; Graiani, Gallia; Lagrasta, Costanza; Sianesi, Mario; Soliani, Paolo; Borghetti, Angelo F

    2007-01-01

    The heat shock proteins (HSPs) 27-kDa (HSP27) and 72-kDa (HSP72), are ubiquitous chaperone molecules inducible in cells exposed to different stress conditions. Increased level of HSPs are reported in several human cancers, and found to be associated with the resistance to some anticancer treatments and poor prognosis. However, there is no study of the relationship between HSPs expression and patient's prognosis in intrahepatic cholangiocarcinoma (IHCCA). In this exploratory retrospective study, we investigated the expressions of HSP27 and HSP72 as potential prognostic factors in IHCCA. Thirty-one paraffin-embedded samples were analyzed by immunohistochemical methods using HSP27 and HSP72 monoclonal antibodies. Proliferation rate was assessed in the same specimens by using monoclonal antibody against phosphorylated histone H3 (pHH3). Fisher's exact test was used to assess the hypothesis of independence between categorical variables in 2 × 2 tables. The ANOVA procedure was used to evaluate the association between ordinal and categorical variables. Estimates of the survival probability were calculated using the Kaplan-Meier method, and the log rank test was employed to test the null hypothesis of equality in overall survival among groups. The hazard ratio associated with HSP27 and HSP72 expression was estimated by Cox hazard-proportional regression. The expression of HSP27 was related to mitotic index, tumor greatest dimension, capsular and vascular invasion while the expression of HSP72 was only related to the presence of necrosis and the lymphoid infiltration. Kaplan-Maier analysis suggested that the expression of HSP27 significantly worsened the patients' median overall survival (11 ± 3.18 vs 55 ± 4.1 months, P-value = 0.0003). Moreover HSP27-positive patients exhibited the worst mean survival (7.0 ± 3.2 months) in the absence of concomitant HSP72 expression. The expression of HSP27, likely increasing cell proliferation, tumor mass, vascular and

  4. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  5. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  6. Targeting of Survivin Pathways by YM155 Inhibits Cell Death and Invasion in Oral Squamous Cell Carcinoma Cells.

    Science.gov (United States)

    Zhang, Wei; Liu, Yuan; Li, Yu Feng; Yue, Yun; Yang, Xinghua; Peng, Lin

    2016-01-01

    Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first "Survivin suppressant" but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. Survivin protein plays critical roles in oral squamous cell carcinoma (OSCC), suggesting that YM155 would be extremely valuable for OSCC. In this study, we tested our hypothesis whether YM155 could be an effective inhibitor of cell growth, invasion and angiogenesis in oral squamous cell carcinoma (OSCC) cells. SCC9 and SCC25 were treated with different concentration of YM155 for indicated time. Using MTT assay and flow cytometry analysis to detect cell growth and apoptosis; Using transwell and Wound healing assay to detect migration and invasion; Using reverse transcription-PCR, Western blotting and electrophoretic mobility shift assay for measuring gene and protein expression, and DNA binding activity of NF-x03BA;B. YM155 inhibited survivin-rich expressed SCC9 cell growth in a dose- and time dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-x03BA;B and downregulation of NF-x03BA;B downstream genes MMP-9, resulting in the inhibition of SCC9 cell migration and invasion in vitro and caused antitumor activity and anti metastasis in vivo. YM155 treatment did not affect cell growth, apoptosis and invasion of surviving-poor expressed SCC25 cells in vitro. YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin signaling processes. Our findings provide evidence showing that YM155 could act as a small molecule survivin inhibitor on survivin-rich expressed SCC9 cells in culture as well as when grown as tumor in a xenograft model. We also suggest that survivin could be further developed as a potential therapeutic agent for the treatment of survivin-rich expressed

  7. The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells

    International Nuclear Information System (INIS)

    Kim, Jee-Youn; Kim, Yong-Jun; Lee, Sun; Park, Jae-Hoon

    2009-01-01

    The rapid growth of tumor parenchyma leads to chronic hypoxia that can result in the selection of cancer cells with a more aggressive behavior and death-resistant potential to survive and proliferate. Thus, identifying the key molecules and molecular mechanisms responsible for the phenotypic changes associated with chronic hypoxia has valuable implications for the development of a therapeutic modality. The aim of this study was to identify the molecular basis of the phenotypic changes triggered by chronic repeated hypoxia. Hypoxia-resistant T98G (HRT98G) cells were selected by repeated exposure to hypoxia and reoxygenation. Cell death rate was determined by the trypan blue exclusion method and protein expression levels were examined by western blot analysis. The invasive phenotype of the tumor cells was determined by the Matrigel invasion assay. Immunohistochemistry was performed to analyze the expression of proteins in the brain tumor samples. The Student T-test and Pearson Chi-Square test was used for statistical analyses. We demonstrate that chronic repeated hypoxic exposures cause T98G cells to survive low oxygen tension. As compared with parent cells, hypoxia-selected T98G cells not only express higher levels of anti-apoptotic proteins such as Bcl-2, Bcl-X L , and phosphorylated ERK, but they also have a more invasive potential in Matrigel invasion chambers. Activation or suppression of ERK pathways with a specific activator or inhibitor, respectively, indicates that ERK is a key molecule responsible for death resistance under hypoxic conditions and a more invasive phenotype. Finally, we show that the activation of ERK is more prominent in malignant glioblastomas exposed to hypoxia than in low grade astrocytic glial tumors. Our study suggests that activation of ERK plays a pivotal role in death resistance under chronic hypoxia and phenotypic changes related to the invasive phenotype of HRT98G cells compared to parent cells

  8. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1.

    Science.gov (United States)

    He, Hang; Hao, Si-Jie; Yao, Lie; Yang, Feng; Di, Yang; Li, Ji; Jiang, Yong-Jian; Jin, Chen; Fu, De-Liang

    2014-10-01

    miRNA-218 is a highlighted tumor suppressor and its underlying role in tumor progression is still unknown. Here, we restored the expression of miRNA-218 in pancreatic cancer to clarify the function and potent downstream pathway of miRNA-218. The expressions of both miRNA-218 and its potent target gene ROBO1 were revealed by RT-PCR and western blotting analysis. Transfection of miRNA-218 precursor mimics and luciferase assay were performed to elucidate the regulation mechanism between miRNA-218 and ROBO1. Cells, stably expressing miRNA-218 followed by forced expression of mutant ROBO1, were established through co-transfections of both lentivirus vector and plasmid vector. The cell migration and invasion abilities were evaluated by migration assay and invasion assay respectively. An increased expression of ROBO1 was revealed in cell BxPC-3-LN compared with cell BxPC-3. Elevated expression of miRNA-218 would suppress the expression of ROBO1 via complementary binding to a specific region within 3'UTR of ROBO1 mRNA (sites 971-978) in pancreatic cancer cells. Stably restoring the expression of miRNA-218 in pancreatic cancer significantly downregulated the expression of ROBO1 and effectively inhibited cell migration and invasion. Forced expression of mutant ROBO1 could reverse the repression effects of miRNA-218 on cell migration and invasion. Consequently, miRNA-218 acted as a tumor suppressor in pancreatic cancer by inhibiting cell invasion and migration. ROBO1 was a functional target of miRNA-218's downstream pathway involving in cell invasion and migration of pancreatic cancer.

  9. [Clinical application of combined hepatic artery resection and reconstruction in surgical treatment for hilar cholangiocarcinoma].

    Science.gov (United States)

    Dai, H S; Bie, P; Wang, S G; He, Y; Li, D J; Tian, F; Zhao, X; Chen, Z Y

    2018-01-01

    Objective: To clarify whether the surgical treatment for hilar cholangiocarcinoma combined with artery reconstruction is optimistic to the patients with hilar cholangiocarcinoma with hepatic artery invasion. Methods: There were 384 patients who received treatment in the First Affiliated Hospital to Army Medical University from January 2008 to January 2016 analyzed retrospectively. There were 27 patients underwent palliative operation, 245 patients underwent radical operation, radical resection account for 63.8%. Patients were divided into four groups according to different operation method: routine radical resection group( n =174), portal vein reconstruction group ( n =47), hepatic artery reconstruction group ( n =24), palliative group( n =27). General information of patients who underwent radical operation treatment was analyzed by chi-square test and analysis of variance. The period of operation time, blood loss, the length of hospital stay and hospitalization expenses of the radical operation patients were analyzed by one-way ANOVA. Comparison among groups was analyzed by LSD- t test. Results: The follow-up ended up in June first, 2016. Each of patients followed for 6 to 60 months, the median follow-up period was 24 months. 1-, 3-, and 5-year survival rates were 81.3%, 44.9% and 13.5% of routine radical operation group, and were 83.0%, 44.7% and 15.1% of portal vein reconstruction group, and were 70.8%, 27.7% and 6.9% of hepatic artery reconstruction group, respectively. And 1-, 3-, and 5-year survival rates of hepatic artery reconstruction group was lower than routine radical group and portal vein reconstruction group significantly ( P 0.05). The data shows that the ratio of lymphatic metastasis in hepatic artery reconstruction group (70.8%) is much higher than them in routine radical operation group (20.1%) and portal vein reconstruction group (19.1%) significantly ( P hilar cholangiocarcinoma. Cox regression analysis indicate that hepatic artery resection and

  10. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  11. Role of fascin in the proliferation and invasiveness of esophageal carcinoma cells

    International Nuclear Information System (INIS)

    Xie, J.J.; Xu, L.Y.; Zhang, H.H.; Cai, W.J.; Mai, R.Q.; Xie, Y.M.; Yang, Z.M.; Niu, Y.D.; Shen, Z.Y.; Li, E.M.

    2005-01-01

    Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility in various transformed cells. The overexpression of fascin in esophageal squamous cell carcinoma (ESCC) has been described only recently, but the roles and mechanism still remained unclear. Here, by using RNA interference (RNAi), we have stably silenced the expression of the fascin in EC109 cells, an ESCC cell line. Down-regulation of fascin resulted in a suppression of cell proliferation and as well as a decrease in cell invasiveness. Furthermore, we revealed that fascin might have functions in regulating tumor growth in vivo. The effect of fascin on cell invasiveness correlated with the activation of matrix metalloproteases such as MMP-2 and MMP-9. We examined that fascin down-expression also led to a decrease of c-erbB-2 and β-catenin at the protein level. These results suggested that fascin might play crucial roles in regulating neoplasm progression of ESCC

  12. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1.

    Science.gov (United States)

    Luo, Jian; Chen, Yongjun; Li, Qiang; Wang, Bing; Zhou, Yanqiong; Lan, Hongzhen

    2016-08-01

    Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin‑dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III-IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments.

  13. Prognostic significance of snail expression in hilar cholangiocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Dalu [Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin (China); Liang, Jun [Department of Oncology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province (China); Li, Rong [Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin (China); Liu, Shihai [Department of Laboratory Center, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province (China); Wang, Jigang [Department of Oncology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province (China); Zhang, Kejun; Chen, Dong [Department of General Surgery, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province (China)

    2012-05-11

    Many patients with hilar cholangiocarcinoma (HC) have a poor prognosis. Snail, a transcription factor and E-cadherin repressor, is a novel prognostic factor in many cancers. The aim of this study was to evaluate the relationship between snail and E-cadherin protein expression and the prognostic significance of snail expression in HC. We examined the protein expression of snail and E-cadherin in HC tissues from 47 patients (22 males and 25 females, mean age 61.2 years) using immunohistochemistry and RT-PCR. Proliferation rate was also evaluated in the same cases by the MIB1 index. High, low and negative snail protein expression was recorded in 18 (38%), 17 (36%), and 12 (26%) cases, respectively, and 40.4% (19/47) cases showed reduced E-cadherin protein expression in HC samples. No significant correlation was found between snail and E-cadherin protein expression levels (P = 0.056). No significant correlation was found between snail protein expression levels and gender, age, tumor grade, vascular or perineural invasion, nodal metastasis and invasion, or proliferative index. Cancer samples with positive snail protein expression were associated with poor survival compared with the negative expresser groups. Kaplan-Meier curves comparing different snail protein expression levels to survival showed highly significant separation (P < 0.0001, log-rank test). With multivariate analysis, only snail protein expression among all parameters was found to influence survival (P = 0.0003). We suggest that snail expression levels can predict poor survival regardless of pathological features and tumor proliferation. Immunohistochemical detection of snail protein expression levels in routine sections may provide the first biological prognostic marker.

  14. FLUORESCENCE DIAGNOSIS AND PHOTODYNAMIC THERAPY IN COMBINED TREATMENT OF CHOLANGIOCARCINOMA

    Directory of Open Access Journals (Sweden)

    A. A. Shiryaev

    2016-01-01

    Full Text Available The results of the pilot study of combined treatment for non-resectable cholangiocarcinoma complicated with obstructive jaundice are represented this paper. Method included percutaneous transhepatic biliary drainage, endoscopic fluorescence diagnosis, photodynamic therapy of tumor stricture, and stenting of bile ducts. Fourteen patients who underwent the treatment in the surgery department clinic of I.M. Sechenov First Moscow State Medical University were enrolled in the study. Fluorescence diagnosis and photodynamic therapy were carried out using photosensitizers photosens (0.5 mg/kg, fotolon (1 mg/kg, and radachlorin (1 mg/kg. The average light dose for one session was 115±5 J/cm2. Fluorescence diagnosis using endoscopic video-fluorescence system for endoscopy and minimally invasive surgery allowed to obtain videoassisted fluorescence image of the tumor and to measure level of photosensitizer fluorescence in tumor in all patients. Malignant tumor was confirmed by morphological study in 12 patients, biopsy of material for morphological study failed in 2 patients with Klatskin tumor. The preliminary results of combined minimally invasive treatment were assessed as promising. The survival time in 4 patients after treatment accounted for 21, 17, 13 and 11 months, respectively. For now 5 patients are under follow-up. Follow-up periods are 13 and 19 months in 2 of them and from 4 to 6 months in 3 of them. Five patients with multiple distant metastases before the treatment died in 3±1 months after therapy. The average lifetime in the treatment group is 9.5 months up to date, however the duration is expected to belonger because 5 of 14 patients are alive.

  15. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Farrar William L

    2010-10-01

    Full Text Available Abstract Background Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. Results Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions Using this

  16. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    Science.gov (United States)

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  17. Optimization of Invasion-Specific Effects of Betulin Derivatives on Prostate Cancer Cells through Lead Development.

    Directory of Open Access Journals (Sweden)

    Ville Härmä

    Full Text Available The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D growth conditions using non-transformed prostate epithelial cells (EP156T, an androgen-sensitive prostate cancer cell line (LNCaP, and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.

  18. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Braig, Simone; Stoiber, Katharina; Zahler, Stefan; Vollmar, Angelika M

    2015-01-01

    The invasive potential of cancer cells strongly depends on cellular stiffness, a physical quantity that is not only regulated by the mechanical impact of the cytoskeleton but also influenced by the membrane rigidity. To analyze the specific role of membrane rigidity in cancer progression, we treated cancer cells with the Acetyl-CoA carboxylase inhibitor Soraphen A and revealed an alteration of the phospholipidome via mass spectrometry. Migration, invasion, and cell death assays were employed to relate this alteration to functional consequences, and a decrease of migration and invasion without significant impact on cell death has been recorded. Fourier fluctuation analysis of giant plasma membrane vesicles showed that Soraphen A increases membrane rigidity of carcinoma cell membranes. Mechanical measurements of the creep deformation response of whole intact cells were performed using the optical stretcher. The increase in membrane rigidity was observed in one cell line without changing the creep deformation response indicating no restructuring of the cytoskeleton. These data indicate that the increase of membrane rigidity alone is sufficient to inhibit invasiveness of cancer cells, thus disclosing the eminent role of membrane rigidity in migratory processes. (paper)

  19. [Knockdown of NEDD9 inhibits the proliferation, invasion and migration of esophageal carcinoma EC109 cells].

    Science.gov (United States)

    Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie

    2016-12-01

    Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.

  20. The miR-599 promotes non-small cell lung cancer cell invasion via SATB2

    International Nuclear Information System (INIS)

    Tian, Wenjun; Wang, Guanghai; Liu, Yiqing; Huang, Zhenglan; Zhang, Caiqing; Ning, Kang; Yu, Cuixiang; Shen, Yajuan; Wang, Minghui; Li, Yuantang; Wang, Yong; Zhang, Bingchang; Zhao, Yaoran

    2017-01-01

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. Here, we identified that miR-599 is up-regulated in non-small cell lung cancer (NSCLC) patients. It promoted NSCLC cell proliferation by negatively regulating SATB2. In NSCLC cell lines, CCK-8 proliferation assay indicated that the cell proliferation is promoted by miR-599 mimics. Transwell assay showed that miR-599 mimics promoted the invasion and migration of NSCLC cells. Luciferase assays confirmed that miR-599 directly binds to the 3'untranslated region of SATB2, and western blotting showed that miR-599 suppresses the expression of SATB2 at the protein level. This study indicates that miR-599 promotes proliferation and invasion of NSCLC cell lines via SATB2. The miR-599 may represent a potential therapeutic target for NSCLC treatment. - Highlights: • miR-599 is up-regulated in NSCLC. • miR-599 promotes the proliferation and invasion of NSCLC cells. • miR-599 inhibitors inhibits the proliferation and invasion of NSCLC cells. • miR-599 targets 3′ UTR of SATB2 in NSCLC cells. • miR-599 inhibits SATB2 in NSCLC cells.

  1. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2016-01-29

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  2. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Wu Qian

    2012-01-01

    Full Text Available Abstract Background Carcinoma cells must circumvent the normally suppressive signals to disseminate. While often considered 'stop' signals for adherent cells, CXCR3-binding chemokines have recently been correlated positively with cancer progression though the molecular basis remains unclear. Results Here, we examined the expression and function of two CXCR3 variants in human prostate cancer biopsies and cell lines. Globally, both CXCR3 mRNA and protein were elevated in localized and metastatic human cancer biopsies compared to normal. Additionally, CXCR3A mRNA level was upregulated while CXCR3B mRNA was downregulated in these prostate cancer specimens. In contrast to normal prostate epithelial cells (RWPE-1, CXCR3A was up to half the receptor in the invasive and metastatic DU-145 and PC-3 prostate cancer cells, but not in the localized LNCaP cells. Instead of inhibiting cell migration as in RWPE-1 cells, the CXCR3 ligands CXCL4/PF4 and CXCL10/IP10 promoted cell motility and invasiveness in both DU-145 and PC-3 cells via PLCβ3 and μ-calpain activation. CXCR3-mediated diminution of cell motility in RWPE-1 cells is likely a result of cAMP upregulation and m-calpain inhibition via CXCR3B signal transduction. Interestingly, overexpression of CXCR3B in DU-145 cells decreased cell movement and invasion. Conclusion These data suggest that the aberrant expression of CXCR3A and down-regulation of CXCR3B may switch a progression "stop" to a "go" signal to promote prostate tumor metastasis via stimulating cell migration and invasion.

  3. Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells

    International Nuclear Information System (INIS)

    Wu, Bin; Li, Ji; Huang, Damao; Wang, Weiwei; Chen, Yu; Liao, Youxiang; Tang, Xiaowei; Xie, Hongfu; Tang, Faqing

    2011-01-01

    Ezrin is highly expressed in skin cancer and promotes tumor metastasis. Ezrin serves as a promising target for anti-metastasis therapy. The aim of this study is to determine if the flavonoid bacailein inhibits the metastasis of skin cancer cells through Ezrin. Cells from a cutaneous squamous carcinoma cell line, A431, were treated with baicalein at 0-60 μM to establish the non-cytotoxic concentration (NCC) range for baicalein. Following treatment with baicalein within this range, total Ezrin protein (both phosphorylated and unphosphorylated forms) and phosphorylated-Ezrin (phos-Ezrin) were detected by western blotting, and Ezrin RNA was detected in A431 cells using reverse transcription-polymerase chain reaction (RT-PCR). Thereafter, the motility and invasiveness of A431 cells following baicalein treatment were determined using wound-healing and Boyden chamber invasion assays. Short-interfering RNA (si-RNA) specifically targeting Ezrin was transfected into A431 cells, and a si-RNA Ezrin-A431 cell line was established by G418 selection. This stable cell line was transiently transfected with Ezrin and mutant Ezrin plasmids, and its motilityand invasiveness was subsequently determined to clarify whether bacailein inhibits these processes through Ezrin. We determined the range of NCCs for baicalein to be 2.5-40 μM in A431 cells. Baicalein displayed a dose- and time-dependent inhibition of expressions of total Ezrin and phos-Ezrin within this range NCCs. In addition, it exerted this inhibitory effect through the reduction of Ezrin RNA transcript. Baicalein also inhibited the motility and invasiveness of A431 skin carcinoma cells within the range of NCCs, in a dose- and time-dependent manner. A431 cell motility and invasiveness were inhibited by 73% and 80% respectively when cells were treated with 20 μM baicalein. However, the motility and invasiveness of A431 cells containing the Ezrin mutant were not effectively inhibited by baicalein. Baicalein reduces the

  4. Biophysical force regulation in 3D tumor cell invasion

    Science.gov (United States)

    Wu, Mingming

    When embedded within 3D extracellular matrices (ECM), animal cells constantly probe and adapt to the ECM locally (at cell length scale) and exert forces and communicate with other cells globally (up to 10 times of cell length). It is now well accepted that mechanical crosstalk between animal cells and their microenvironment critically regulate cell function such as migration, proliferation and differentiation. Disruption of the cell-ECM crosstalk is implicated in a number of pathologic processes including tumor progression and fibrosis. Central to the problem of cell-ECM crosstalk is the physical force that cells generate. By measuring single cell generated force within 3D collagen matrices, we revealed a mechanical crosstalk mechanism between the tumor cells and the ECM. Cells generate sufficient force to stiffen collagen fiber network, and stiffer matrix, in return promotes larger cell force generation. Our work highlights the importance of fibrous nonlinear elasticity in regulating tumor cell-ECM interaction, and results may have implications in the rapid tissue stiffening commonly found in tumor progression and fibrosis. This work is partially supported by NIH Grants R21RR025801 and R21GM103388.

  5. Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Chaisaingmongkol, Jittiporn; Budhu, Anuradha; Dang, Hien

    2017-01-01

    Intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are clinically disparate primary liver cancers with etiological and biological heterogeneity. We identified common molecular subtypes linked to similar prognosis among 199 Thai ICC and HCC patients through systems integratio...

  6. Lycopene inhibits the cell proliferation and invasion of human head and neck squamous cell carcinoma.

    Science.gov (United States)

    Ye, Min; Wu, Qundan; Zhang, Min; Huang, Jinbei

    2016-10-01

    Lycopene has been shown to be associated with anticancer effects in numerous tumor types. However, the underlying mechanisms of lycopene in human head and neck squamous cell carcinoma (HNSCC) remain to be determined. The present study aimed to investigate the involvement of lycopene overload and the cytotoxic effects of lycopene on HNSCC cells, and to determine the possible mechanisms involved. Treatment with lycopene at a dose of >10 µM for >24 h inhibited the growth of FaDu and Cal27 cells in a time‑ and dose‑dependent manner. The clearest increase in growth inhibition was due to the apoptotic population being significantly increased. The invasion abilities decreased with 25 µM lycopene exerting significant inhibitory effects (Plycopene induced the upregulation of the pro‑apoptotic protein, B‑cell lymphoma‑associated X protein, and therefore, resulted in the inhibition of the protein kinase B and mitogen‑activated protein kinase signaling pathway. These data provided insights into the antitumor activity of lycopene in HNSCC cells.

  7. Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma.

    Science.gov (United States)

    Park, Junhee; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Kim, Hyungkeun; Park, Kwang-Kyun; Chung, Won-Yoon

    2017-02-07

    High recurrence and lower survival rates in patients with oral squamous cell carcinoma (OSCC) are associated with its bone invasion. We identified the oncogenic role of RUNX3 during bone invasion by OSCC. Tumor growth and the generation of osteolytic lesions were significantly inhibited in mice that were subcutaneously inoculated with RUNX3-knockdown human OSCC cells. RUNX3 knockdown enhanced TGF-β-induced growth arrest and inhibited OSCC cell migration and invasion in the absence or presence of transforming growth factor-β (TGF-β), a major growth factor abundant in the bone microenvironment. RUNX3 knockdown induced cell cycle arrest at the G1 and G2 phases and promoted G2 arrest by TGF-β in Ca9.22 OSCC cells. RUNX3 knockdown also inhibited both the basal and TGF-β-induced epithelial-to-mesenchymal transition by increasing E-cadherin expression and suppressing the nuclear translocation of β-catenin. In addition, the expression and TGF-β-mediated induction of parathyroid hormone-related protein (PTHrP), one of key osteolytic factors, was blocked in RUNX3-knockdown OSCC cells. Furthermore, treating human osteoblastic cells with conditioned medium derived from RUNX3-knockdown OSCC cells reduced the receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin ratio compared with treatment with conditioned medium from RUNX3-expressing cells. These findings indicate that RUNX3 expression in OSCC cells contributes to their bone invasion and the resulting osteolysis by inducing their malignant behaviors and production of osteolytic factors. RUNX3 alone or in combination with TGF-β and PTHrP may be a useful predictive biomarker and therapeutic target for bone invasion by oral cancer.

  8. The Effects of NDRG2 Overexpression on Cell Proliferation and Invasiveness of SW48 Colorectal Cancer Cell Line.

    Science.gov (United States)

    Golestan, Ali; Mojtahedi, Zahra; Ghalamfarsa, Ghasem; Hamidinia, Maryam; Takhshid, Mohammad Ali

    2015-09-01

    Colorectal cancer (CRC) is one of the most common causes of cancer-related death in the world. The expression of N-myc downstream-regulated gene 2 (NDRG2) is down-regulated in CRC. The aim of this study was to investigate the effect of NDRG2 overexpression on cell proliferation and invasive potential of SW48 cells. SW48 cells were transfected with a plasmid overexpressing NDRG2. After stable transfection, the effect of NDRG2 overexpression on cell proliferation was evaluated by MTT assay. The effects of NDRG2 overexpression on cell migration, invasion and cell motility and matrix metalloproteinase 9 (MMP9) activities were also investigated using matrigel transwell assay, wound healing assay and gelatin zymography, respectively. MTT assay showed that overexpression of NDRG2 caused attenuation of SW48 cell proliferation. Transwell and wound healing assay revealed that NDRG2 overexpression led to inhibition of migration, invasion, and motility of SW48 cells. The overexpression of NDRG2 also reduced the activity of secreted MMP-9. The results of this study suggest that NDRG2 overexpression inhibits proliferation and invasive potential of SW48 cells, which likely occurs via suppression of MMP-9 activity.

  9. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells.

    Science.gov (United States)

    Oh, Phil-Sun; Kim, Hyun-Soo; Kim, Eun-Mi; Hwang, Hyosook; Ryu, Hyang Hwa; Lim, SeokTae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2017-12-01

    The aim of this study was to determine the effects and molecular mechanism of blue light emitting diode (LED) in tumor cells. A migration and invasion assay for the metastatic behavior of mouse colon cancer CT-26 and human fibrosarcoma HT-1080 cells was performed. Cancer cell migration-related proteins were identified by obtaining a 2-dimensional gel electrophoresis (2-DE) in total cellular protein profile of blue LED-irradiated cancer cells, followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of proteins. Protein levels were examined by immunoblotting. Irradiation with blue LED inhibited CT-26 and HT-1080 cell migration and invasion. The anti-metastatic effects of blue LED irradiation were associated with inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 expression. P38 MAPK phosphorylation was increased in blue LED-irradiated CT-26 and HT-1080 cells, but was inhibited after pretreatment with SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK phosphorylation by SB203580 treatment increased number of migratory cancer cells in CT-26 and HT-1080 cells, indicating that blue LED irradiation inhibited cancer cell migration via phosphorylation of p38 MAPK. Additionally blue LED irradiation of mice injected with CT-26 cells expressing luciferase decreased early stage lung metastasis compared to untreated control mice. These results indicate that blue LED irradiation inhibits cancer cell migration and invasion in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  10. Melanotransferrin induces human melanoma SK-Mel-28 cell invasion in vivo

    International Nuclear Information System (INIS)

    Bertrand, Yanick; Demeule, Michel; Michaud-Levesque, Jonathan; Beliveau, Richard

    2007-01-01

    The expression of melanotransferrin (MTf), a membrane-bound glycoprotein highly expressed in melanomas, is correlated with tumor vascularization and progression, suggesting a proinvasive function associated with MTf in malignant tumors. To test this hypothesis, we silenced MTf in human melanoma SK-MEL-28 cells using small interfering RNA (siRNA) and examined the plasmin activity and invasiveness of MTf-silenced melanoma. In vitro, the siRNA-mediated MTf knockdown inhibited by 58% the cell surface activation of plasminogen into plasmin. In addition, decreased expression of MTf in melanoma cells reduced cell migration. In vivo, we used a nude mice invasion model in which tissue factor (TF) induces vascular [ 125 I]-fibrin deposition following injection. Using this metastasis model, the invasive potential of MTf-silenced cells into the lungs was reduced by fivefold. Altogether, these findings strongly suggest that MTf overexpression in melanoma cells contributes to tumor progession by stimulating plasmin generation as well as cell migration and invasion

  11. [The effect of Angelica sinensis on adhesion, invasion, migration and metastasis of melanoma cells].

    Science.gov (United States)

    Gu, Qin; Xu, Jian-ya; Cheng, Luo-gen; Xia, Wei-jun

    2007-03-01

    To study the effect of Angelica sinensis on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and discuss its functional mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTT assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous melanoma model was used to study the effect of Angelica sinensis on metastasis in vivo. The extract of Angelica sinensis inhibited the proliferation of B16-BL6 metastatic cells and its migration capacity significantly. It regulated bidirectionally the adhesion of B16-BL6 metastatic cells to the basement component laminin while it had no effect on the invasion capacity. In the mouse spotaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extract of Angelica sinensis at the concentration of 3.67 mg/kg. The extract of Angelica sinensis can inhibit the metastasis of of B16-BL6 metastatic mouse melanoma cells and its mechanism is maybe that Angelica sinensis can inhibit the B16-BL6 cells adhering to the ECM and reduce the migration of B16-BL6 cells.

  12. Invasion of melanoma cells into dermal connective tissue in vitro: evidence for an important role of cysteine proteases.

    NARCIS (Netherlands)

    Dennhofer, R.; Kurschat, P.; Zigrino, P.; Klose, A.; Bosserhoff, A.; Muijen, G.N.P. van; Krieg, T.; Mauch, C.; Hunzelmann, N.

    2003-01-01

    Invasion of melanoma cells into the dermal connective tissue is a major characteristic in the complex process of metastasis. Proteases play an important role in tumor cell invasion as these enzymes are able to degrade most components of the extracellular matrix (ECM), and thus enable cells to

  13. NF-{kappa}B p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Gao [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yeh, P Y [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Lu, Y -S [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan, ROC (China); Chang, W C [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Kuo, M -L [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Cheng, A -L [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China)], E-mail: alcheng@ntu.edu.tw

    2008-11-14

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-{kappa}B controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-{kappa}B activity in response to TNF-{alpha}, an abundance of basal and TNF-{alpha}-induced NF-{kappa}B-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a {kappa}B site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells.

  14. NF-κB p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Gao Ming; Yeh, P.Y.; Lu, Y.-S.; Chang, W.C.; Kuo, M.-L.; Cheng, A.-L.

    2008-01-01

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-κB controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-κB activity in response to TNF-α, an abundance of basal and TNF-α-induced NF-κB-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a κB site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells

  15. The anticancer effects of Resina Draconis extract on cholangiocarcinoma.

    Science.gov (United States)

    Wen, Feng; Zhao, Xiangxuan; Zhao, Yun; Lu, Zaiming; Guo, Qiyong

    2016-11-01

    Cholangiocarcinoma (CCA) is a relatively rare, heterogeneous malignant tumor with poor clinical outcomes. Because of high insensitivity to chemotherapy and radiotherapy, there are no effective treatment options. Efforts to identify and develop new agents for prevention and treatment of this deadly disease are urgent. Here, we assessed the apoptotic cytotoxicity of Resina Draconis extract (RDE) using in vitro and in vivo assays and identified the mechanisms underlying antitumor effects of RDE. RDE was obtained via vacuum distillation of Resina Draconis with 75 % ethanol. The ethanol extract could inhibit CCA cell proliferation and trigger apoptotic cell death in both QBC939 and HCCC9810 cell lines in a time- and concentration-dependent manner. RDE treatment resulted in intracellular caspase-8 and poly (ADP-ribose) polymerase protease activation. RDE significantly downregulated antiapoptotic protein survivin expression and upregulated proapoptotic protein Bak expression. RDE also inhibited CCA tumor growth in vivo. We observed that human CCA tissues had much higher survivin expression than did paired adjacent normal tissue. Taken together, the current data suggested that RDE has anticancer effects on CCA, and that RDE could function as a novel anticancer agent to benefit patients with CCA.

  16. Hedgehog pathway as a potential treatment target in human cholangiocarcinoma.

    Science.gov (United States)

    Riedlinger, Dorothee; Bahra, Marcus; Boas-Knoop, Sabine; Lippert, Steffen; Bradtmöller, Maren; Guse, Katrin; Seehofer, Daniel; Bova, Roberta; Sauer, Igor M; Neuhaus, Peter; Koch, Arend; Kamphues, Carsten

    2014-08-01

    Innovative treatment concepts targeting essential signaling pathways may offer new chances for patients suffering from cholangiocarcinoma (CCC). For that, we performed a systematic molecular genetic analysis concerning the Hedgehog activity in human CCC samples and analyzed the effect of Hh inhibition on CCC cells in vitro and in vivo. Activation of the Hh pathway was analyzed in 50 human CCC samples using quantitative polymerase chain reaction (qPCR). The efficacy of Hh inhibition using cyclopamine and BMS-833923 was evaluated in vitro. In addition, the effect of BMS-833923, alone or in combination with gemcitabine, was analyzed in vivo in a murine subcutaneous xenograft model. Expression analysis revealed a significant activation of the Hh-signaling pathway in nearly 50% of CCCs. Hh inhibition resulted in a significant decrease in cell proliferation of CCC cells. Moreover, a distinct inhibition of tumor growth could be seen as a result of a combined therapy with BMS-833923 and gemcitabine in CCC xenografts. The results of our study suggest that the Hh pathway plays a relevant role at least in a subset of human CCC. Inhibition of this pathway may represent a possible treatment option for CCC patients in which the Hh pathway is activated. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  17. Destructive impact of t-lymphocytes, NK and mast cells on basal cell layers: implications for tumor invasion

    International Nuclear Information System (INIS)

    Yuan, Hongyan; Hsiao, Yi-Hsuan; Zhang, Yiyu; Wang, Jinlian; Yin, Chao; Shen, Rong; Su, Yiping

    2013-01-01

    Our previous studies have suggested that the primary impact of immune cell infiltration into the normal or pre-invasive tissue component is associated with the physical destruction of epithelial capsules, which may promote tumor progression and invasion. Our current study attempted to further verify our previous observations and determine the primary type(s) of infiltrating immune cells and the possible mechanism associated with physical destructions of the epithelial capsules. In total, the study was conducted with 250 primary breast and prostate tumors, the primary immune cell of cytotoxic T-lymphocytes (CTL), Natural killer cells (NK) and Mast cells were analyzed by immunohistochemistry, fluorescent labeling and apoptosis assay. qRT-PCR was used for gene expression analysis. Our current study assessed the physical disruption of these immune cells and potential impact on the epithelial capsule of human breast and prostate tumors. Our study yield several clinically-relevant findings that have not been studied before. (1) A vast majority of these infiltrating immune cells are distributed in the normal-appearing or pre-invasive tissue components rather than in invasive cancer tissues. (2) These cells often form rings or semilunar structures that either surround focally-disrupted basal cell layers or physically attach to the basal cells. (3) Basal cells physically associated with these immune cells generally displayed distinct signs of degeneration, including substantially elevated apoptosis, necrosis, and reduced tumor suppressor p63 expression. In contrast, luminal cells overlying focally disrupted basal cell layers had a substantially increased proliferation rate and elevated expression of stem cell markers compared to their adjacent morphologically similar counterparts that overlie a non-disrupted capsule. Our findings suggest that at the early stage of tumor invasion, CTL, NK and Mast cells are the main types of tumor infiltrating immune cells involved in focal

  18. [Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells].

    Science.gov (United States)

    Chen, Dengyu; Chu, Yifan; Zheng, Qingwei; Xu, Zhiben; Zhou, Ping; Li, Sheng

    2017-08-01

    Objective To down-regulate the expression of zinc-finger E-box binding homeobox 1 (ZEB1) gene by shRNA, and investigate its effect on invasion, migration and proliferation, as well as the related gene expressions of lncRNA HOTAIR and E-cadherin in human gastric cancer BGC823 cells. Methods RNA interfering (RNAi) was used to knock down ZEB1 in gastric cancer BGC823 cells. The recombinant plasmid shZEB1 was constructed and transfected into the gastric cancer BGC823 cells by Lipofectamine TM 2000, and the stably transfected cells were isolated by G418 selection and limited dilution. The expression of ZEB1 mRNA and protein was detected by real-time quantitative PCR and Western blot analysis. Cell proliferation was determined by MTT assay, and the invasion and migration abilities of BGC823 cells were monitored by Transwell TM invasion assay and wound healing assay, respectively. The expressions of lncRNA HOTAIR and E-cadherin mRNA were detected by real-time quantitative PCR. Results After ZEB1 expression was successfully down-regulated in BGC823 cells by siRNA, the proliferation, invasion and migration rates in shZEB1 transfection group were significantly lower than those in control group; meanwhile, the expression of lncRNA HOTAIR was reduced and E-cadherin expression was enhanced. Conclusion Knock-down of ZEB1 expression by RNA interference can decease lncRNA HOTAIR expression and restrain cell proliferation, invasion and migration in gastric cancer BGC823 cells.

  19. EBP1 suppresses growth, migration, and invasion of thyroid cancer cells through upregulating RASAL expression.

    Science.gov (United States)

    Liu, Hongyan; Li, Zhenjie; Li, Liujuan; Peng, Haiying; Zhang, Zhijun

    2015-11-01

    Ebp1, a protein identified by its interactions with the ErbB3 receptor, has been characterized as a negative regulator of cancers. RAS GTPase-activating protein (RasGAP), RASAL1, was recently identified as a major tumor suppressor in thyroid cancer. In this study, we examined EBP1 expression in papillary and follicular thyroid cancer cells. We found that compared with normal thyroid cells, TPC1, WRO, and FTC133 thyroid tumor cells exhibited lower EBP1 expression at messenger RNA (mRNA) and protein levels. We then investigated the effects of forced EBP1 expression on growth, migration, and invasiveness of thyroid tumor cells. By using MTT and Boyden chamber assays, we showed that EBP1 overexpression dramatically reduced growth rate, migration, and invasiveness of K1 and FTC133 thyroid tumor cells. Furthermore, we explored the molecular mechanism underlying the effects of EBP1 on the cells by disclosing the correlation of EBP1 and RASAL1 expression. RASAL expression was elevated in thyroid tumor cells overexpressing EBP1. Knockdown RASAL by transduction of RASAL1 shRNA lentiviral particles markedly reduced RASAL levels with restoration of EBP1, and RASAL1 knockdown abrogated the effects of forced EBP1 expression on cell growth, migration, and invasiveness of thyroid tumor cells. These findings suggest that Ebp1 suppressed thyroid cancer cell lines by upregulating RASRAL expression.

  20. Combined hepatocellular-cholangiocarcinoma in a Yellow-headed Amazon (Amazona oratrix).

    Science.gov (United States)

    Tennakoon, Anusha Hemamali; Izawa, Takeshi; Fujita, Daisuke; Denda, Yuki; Seto, Eiko; Sasai, Hiroshi; Kuwamura, Mitsuru; Yamate, Jyoji

    2013-11-01

    A 9-year-old male Yellow-headed Amazon (Amazona oratrix) with a history of anorexia and vomiting died of a liver tumor. The tumor consisted of neoplastic cells with hepatocellular and cholangiocellular differentiations and their intermingled areas. Neoplastic hepatocytes showed islands or trabecular growth with vacuolated eosinophilic cytoplasm. Cells showing biliary differentiation formed ducts or tubules lined by cytokeratin AE1/AE3-positive epithelia, accompanied by desmoplasia consisting of myofibroblasts reacting to α-smooth muscle actin and desmin. The tumor was diagnosed as a combined hepatocellular-cholangiocarcinoma, which is very rare in the avian.

  1. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells

    Science.gov (United States)

    Okumura, Takashi; Ohuchida, Kenoki; Sada, Masafumi; Abe, Toshiya; Endo, Sho; Koikawa, Kazuhiro; Iwamoto, Chika; Miura, Daisuke; Mizuuchi, Yusuke; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Oda, Yoshinao; Hashizume, Makoto; Nakamura, Masafumi

    2017-01-01

    Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells. PMID:28407685

  2. Inflammation-based prognostic score is a useful predictor of postoperative outcome in patients with extrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Oshiro, Yukio; Sasaki, Ryoko; Fukunaga, Kiyoshi; Kondo, Tadashi; Oda, Tatsuya; Takahashi, Hideto; Ohkohchi, Nobuhiro

    2013-03-01

    Recent studies have revealed that the Glasgow prognostic score (GPS), an inflammation-based prognostic score, is useful for predicting outcome in a variety of cancers. This study sought to investigate the significance of GPS for prognostication of patients who underwent surgery with extrahepatic cholangiocarcinoma. We retrospectively analyzed a total of 62 patients who underwent resection for extrahepatic cholangiocarcinoma. We calculated the GPS as follows: patients with both an elevated C-reactive protein (>10 mg/L) and hypoalbuminemia (L) were allocated a score of 2; patients with one or none of these abnormalities were allocated a s ore of 1 or 0, respectively. Prognostic significance was analyzed by the log-rank test and a Cox proportional hazards model. Overall survival rate was 25.5 % at 5 years for all 62 patients. Venous invasion (p = 0.01), pathological primary tumor category (p = 0.013), lymph node metastasis category (p GPS (p = 0.008) were significantly associated with survival by univariate analysis. A Cox model demonstrated that increased GPS was an independent predictive factor with poor prognosis. The preoperative GPS is a useful predictor of postoperative outcome in patients with extrahepatic cholangiocarcinoma.

  3. miR-146a Suppresses Invasion of Pancreatic Cancer Cells

    Science.gov (United States)

    Li, Yiwei; VandenBoom, Timothy G.; Wang, Zhiwei; Kong, Dejuan; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.

    2010-01-01

    The aggressive course of pancreatic cancer is believed to reflect its unusually invasive and metastatic nature, which is associated with epidermal growth factor receptor (EGFR) overexpression and NF-κB activation. MicroRNAs (miRNA) have been implicated in the regulation of various pathobiological processes in cancer, including metastasis in pancreatic cancer and in other human malignancies. In this study, we report lower expression of miR-146a in pancreatic cancer cells compared with normal human pancreatic duct epithelial cells. Reexpression of miR-146a inhibited the invasive capacity of pancreatic cancer cells with concomitant downregulation of EGFR and the NF-κB regulatory kinase interleukin 1 receptor–associated kinase 1 (IRAK-1). Cellular mechanism studies revealed crosstalk between EGFR, IRAK-1, IκBα, NF-κB, and MTA-2, a transcription factor that regulates metastasis. Treatment of pancreatic cancer cells with the natural products 3,3′-diinodolylmethane (DIM) or isoflavone, which increased miR-146a expression, caused a downregulation of EGFR, MTA-2, IRAK-1, and NF-κB, resulting in an inhibition of pancreatic cancer cell invasion. Our findings reveal DIM and isoflavone as nontoxic activators of a miRNA that can block pancreatic cancer cell invasion and metastasis, offering starting points to design novel anticancer agents. PMID:20124483

  4. KIF20A-Mediated RNA Granule Transport System Promotes the Invasiveness of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2014-12-01

    Full Text Available Pancreatic cancers are aggressive because they are highly invasive and highly metastatic; moreover, effective treatments for aggressive pancreatic cancers are lacking. Here, we report that the motor kinesin protein KIF20A promoted the motility and invasiveness of pancreatic cancer cells through transporting the RNA-binding protein IGF2BP3 and IGF2BP3-bound transcripts toward cell protrusions along microtubules. We previously reported that IGF2BP3 and its target transcripts are assembled into cytoplasmic stress granules of pancreatic cancer cells, and that IGF2BP3 promotes the motility and invasiveness of pancreatic cancer cells through regulation of localized translation of IGF2BP3-bound transcripts in cell protrusions. We show that knockdown of KIF20A inhibited accumulation of IGF2BP3-containing stress granules in cell protrusions and suppressed local protein expression from specific IGF2BP3-bound transcripts, ARF6 and ARHGEF4, in the protrusions. Our results provide insight into the link between regulation of KIF20A-mediated trafficking of IGF2BP3-containing stress granules and modulation of the motility and invasiveness in pancreatic cancers.

  5. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Li Fan

    2010-04-01

    Full Text Available Abstract Background In spite of recent advances in diagnostic and therapeutic measures, the prognosis of hepatocellular carcinoma (HCC patients remains poor. Therefore, it is crucial to understand what factors are involved in promoting development of HCC. Evidence is accumulating that members of the chemokine receptor family are viewed as promising therapeutic targets in the fight against cancer. More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of HCC cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in hepatocellular carcinoma tissues and cell lines and to evaluate the role of CXCR7 in tumor growth, angiogenesis and invasion of HCC cells. Methods We constructed CXCR7 expressing shRNA, and CXCR7shRNA was subsequently stably transfected into human HCC cells. We evaluated the effect of CXCR7 inhibition on cell invasion, adhesion, VEGF secretion, tube formation and tumor growth. Immunohistochemistry was done to assess the expression of CXCR7 in human hepatocellular carcinoma tissues and CD31 in tumor of mice. We also evaluated the effect of VEGF stimulation on expression of CXCR7. Results CXCR7 was overexpressed in hepatocellular carcinoma tissues. We showed that high invasive potential HCC cell lines express high levels of CXCR7. In vitro, CXCL12 was found to induce invasion, adhesion, tube formation, and VEGF secretion in SMMC-7721 cells. These biological effects were inhibited by silencing of CXCR7 in SMMC-7721 cells. In addition, we also found that VEGF stimulation can up-regulate CXCR7 expression in SMMC-7721 cells and HUVECs. More importantly, enhanced expression of CXCR7 by VEGF was founctional. In vivo, tumor growth and angiogenesis were suppressed by knockdown of CXCR7 in SMMC-7721 cells. However, silencing of CXCR7 did not affect metastasis of tumor in vivo

  6. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    OpenAIRE

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify...

  7. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells.

    Science.gov (United States)

    Gu, Junyi; Lu, Zhongsheng; Ji, Chenghong; Chen, Yuchao; Liu, Yuzhao; Lei, Zhe; Wang, Longqiang; Zhang, Hong-Tao; Li, Xiangdong

    2017-09-01

    Melatonin, an indolamine mostly synthesized in the pineal gland, exerts the anti-cancer effect by various mechanisms in glioma cells. Our previous study showed that miR-155 promoted glioma cell proliferation and invasion. However, the question of whether melatonin may inhibit glioma by regulating miRNAs has not yet been addressed. In this study, we found that melatonin (100μM, 1μM and 1nM) significantly inhibited the expression of miR-155 in human glioma cell lines U87, U373 and U251. Especially, the lowest expression of miR-155 was detected in 1μM melatonin-treated glioma cells. Melatonin (1μM) inhibits cell proliferation of U87 by promoting cell apoptosis. Nevertheless, melatonin had no effect on cell cycle distribution of U87 cells. Moreover, U87 cells treated with 1μM melatonin presented significantly lower migration and invasion ability when compared with control cells. Importantly, melatonin inhibited c-MYB expression, and c-MYB knockdown reduced miR-155 expression and migration and invasion in U87 cells. Taken together, for the first time, our findings show that melatonin inhibits miR-155 expression and thereby represses glioma cell proliferation, migration and invasion, and suggest that melatonin may downregulate the expression of miR-155 via repression of c-MYB. This will provide a theoretical basis for revealing the anti-glioma mechanisms of melatonin. Copyright © 2017. Published by Elsevier Masson SAS.

  8. In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Dharmawardhane Suranganie F

    2005-04-01

    Full Text Available Abstract Background Inflammatory breast cancer (IBC is the most lethal form of locally invasive breast cancer known. However, very little information is available on the cellular mechanisms responsible for manifestation of the IBC phenotype. To understand the unique phenotype of IBC, we compared the motile and adhesive interactions of an IBC cell line, SUM 149, to the non-IBC cell line SUM 102. Results Our results demonstrate that both IBC and non-IBC cell lines exhibit similar adhesive properties to basal lamina, but SUM 149 showed a marked increase in adhesion to collagen I. In vitro haptotaxis assays demonstrate that SUM 149 was less invasive, while wound healing assays show a less in vitro migratory phenotype for SUM 149 cells relative to SUM 102 cells. We also demonstrate a role for Rho and E-cadherin in the unique invasive phenotype of IBC. Immunoblotting reveals higher E-cadherin and RhoA expression in the IBC cell line but similar RhoC expression. Rhodamine phalloidin staining demonstrates increased formation of actin stress fibers and larger focal adhesions in SUM 149 relative to the SUM 102 cell line. Conclusion The observed unique actin and cellular architecture as well as the invasive and adhesive responses to the extracellular matrix of SUM 149 IBC cells suggest that the preference of IBC cells for connective tissue, possibly a mediator important for the vasculogenic mimicry via tubulogenesis seen in IBC pathological specimens. Overexpression of E-cadherin and RhoA may contribute to passive dissemination of IBC by promoting cell-cell adhesion and actin cytoskeletal structures that maintain tissue integrity. Therefore, we believe that these findings indicate a passive metastatic mechanism by which IBC cells invade the circulatory system as tumor emboli rather than by active migratory mechanisms.

  9. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  10. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  11. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  12. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion

    Directory of Open Access Journals (Sweden)

    Michalski Christoph W

    2007-12-01

    Full Text Available Abstract Background Bone gamma-carboxyglutamate protein (BGLAP; osteocalcin is a small, highly conserved molecule first identified in the mineralized matrix of bone. It has been implicated in the pathophysiology of various malignancies. In this study, we analyzed the expression and role of BGLAP in the normal human pancreas, chronic pancreatitis (CP, and pancreatic ductal adenocarcinoma (PDAC using quantitative RT-PCR, immunohistochemistry, immunocytochemistry and enzyme immunoassays, as well as cell proliferation and invasion assays. Gene silencing was carried out using specific siRNA molecules. Results Compared to the normal pancreas, BGLAP mRNA and protein levels were not significantly different in CP and PDAC tissues. BGLAP was faintly present in the cytoplasm of normal acinar cells but was strongly expressed in the cytoplasm and nuclei of tubular complexes and PanIN lesions of CP and PDAC tissues. Furthermore, BGLAP expression was found in the cancer cells in PDAC tissues as well as in 4 cultured pancreatic cancer cell lines. TNFalpha reduced BGLAP mRNA and protein expression levels in pancreatic cancer cell lines. In addition, BGLAP silencing led to reduction of both cell growth and invasion in those cells. Conclusion BGLAP is expressed in pancreatic cancer cells, where it potentially increases pancreatic cancer cell growth and invasion through autocrine and/or paracrine mechanisms.

  13. PBX3 promotes migration and invasion of colorectal cancer cells via activation of MAPK/ERK signaling pathway.

    Science.gov (United States)

    Han, Hai-Bo; Gu, Jin; Ji, Deng-Bo; Li, Zhao-Wei; Zhang, Yuan; Zhao, Wei; Wang, Li-Min; Zhang, Zhi-Qian

    2014-12-28

    To investigate the role of pre-B-cell leukemia homeobox (PBX)3 in migration and invasion of colorectal cancer (CRC) cells. We detected PBX3 expression in five cell lines and surgical specimens from 111 patients with CRC using real-time reverse transcription-polymerase chain reaction. We forced expression of PBX3 in low metastatic HT-29 and SW480 cells and knocked down expression of PBX3 in highly metastatic LOVO and HCT-8 cells. Wound healing and Boyden chamber assays were used to detect cell migration and invasion after altered expression of PBX3. Western blot was performed to detect the change of signaling molecule ERK1/2 following PBX3 overexpression. High level of PBX3 expression was correlated with the invasive potential of CRC cells, and significantly associated with lymph node invasion (P = 0.02), distant metastasis (P = 0.04), advanced TNM stage (P = 0.03) and poor overall survival of patients (P migration and invasion, while inhibited PBX3 expression in highly metastatic cells suppressed migration and invasion. Furthermore, upregulation of phosphorylated extracellular signal-regulated kinase (ERK)1/2 was found to be one of the targeted molecules responsible for PBX3-induced CRC cell migration and invasion. PBX3 induces invasion and metastasis of CRC cells partially through activation of the MAPK/ERK signaling pathway.

  14. Downregulation of SPARC expression inhibits the invasion of human trophoblast cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yahong Jiang

    Full Text Available Successful pregnancy depends on the precise regulation of extravilloustrophoblast (EVT invasion into the uterine decidua. SPARC (secreted protein acidic and rich in cysteine is a matricellular glycoprotein that plays critical roles in the pathologies associated with obesity and diabetes, as well as tumorigenesis. The objective of this study was to investigate the role of SPARC in the process of trophoblast invasion which shares many similarities with tumor cell invasion. By Western blot, higher expression of SPARC was observed in mouse brain, ovary and uterus compared to other mouse tissues. Immunohistochemistry analysis revealed a spatio-temporal expression of SPARC in mouse uterus in the periimplantation period. At the implantation site of d8 pregnancy, SPARC mainly accumulated in the secondary decidua zone (SDZ, trophoblast cells and blastocyst. The expression of SPARC was also detected in human placental villi and trophoblast cell lines. In a Matrigel invasion assay, we found SPARC-specific RNA interference significantly reduced the invasion of human extravilloustrophoblast HTR8/SVneo cells. Microarray analysis revealed that SPARC depletion upregulated the expression of interleukin 11 (IL11, KISS1, insulin-like growth factor binding protein 4 (IGFBP4, collagen type I alpha 1 (COLIA1, matrix metallopeptidase 9 (MMP9, and downregulated the expression of the alpha polypeptide of chorionic gonadotropin (CGA, MMP1, gap junction protein alpha 1 (GJA1, et al. The gene array result was further validated by qRT-PCR and Western blot. The present data indicate that SPARC may play an important role in the regulation of normal placentation by promoting the invasion of trophoblast cells into the uterine decidua.

  15. Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Allon Weiner

    2016-05-01

    Full Text Available Intracellular pathogens include all viruses, many bacteria and parasites capable of invading and surviving within host cells. Key to survival is the subversion of host cell pathways by the pathogen for the purpose of propagation and evading the immune system. The intracellular bacterium Shigella flexneri, the causative agent of bacillary dysentery, invades host cells in a vacuole that is subsequently ruptured to allow growth of the pathogen within the host cytoplasm. S. flexneri invasion has been classically described as a macropinocytosis-like process, however the underlying details and the role of macropinosomes in the intracellular bacterial lifestyle have remained elusive. We applied dynamic imaging and advanced large volume correlative light electron microscopy (CLEM to study the highly transient events of S. flexneri's early invasion into host epithelial cells and elucidate some of its fundamental features. First, we demonstrate a clear distinction between two compartments formed during the first step of invasion: the bacterial containing vacuole and surrounding macropinosomes, often considered identical. Next, we report a functional link between macropinosomes and the process of vacuolar rupture, demonstrating that rupture timing is dependent on the availability of macropinosomes as well as the activity of the small GTPase Rab11 recruited directly to macropinosomes. We go on to reveal that the bacterial containing vacuole and macropinosomes come into direct contact at the onset of vacuolar rupture. Finally, we demonstrate that S. flexneri does not subvert pre-existing host endocytic vesicles during the invasion steps leading to vacuolar rupture, and propose that macropinosomes are the major compartment involved in these events. These results provide the basis for a new model of the early steps of S. flexneri epithelial cell invasion, establishing a different view of the enigmatic process of cytoplasmic access by invasive bacterial

  16. Effects of X-irradiation on artificial blood vessel wall degradation by invasive tumor cells

    International Nuclear Information System (INIS)

    Heisel, M.A.; Laug, W.E.; Stowe, S.M.; Jones, P.A.

    1984-01-01

    Artificial vessel wall cultures, constructed by growing arterial endothelial cells on preformed layers of rat smooth muscle cells, were used to evaluate the effects of X-irradiation on tumor cell-induced tissue degradation. Bovine endothelial cells had radiation sensitivities similar to those of rat smooth muscle cells. Preirradiation of smooth muscle cells, before the addition of human fibrosarcoma (HT 1080) cells, did not increase the rate of degradation and destruction by the invasive cells. However, the degradation rate was decreased if the cultures were irradiated after the addition of HT 1080 cells. The presence of bovine endothelial cells markedly inhibited the destructive abilities of fibrosarcoma cells, but preirradiation of artificial vessel walls substantially decreased their capabilities to resist HT 1080-induced lysis. These findings suggest that the abilities of blood vessels to limit extravasation may be compromised by ionizing radiation

  17. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-01-01

    The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3high or αvβ3low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3high cells showed a threefold increased cell invasion compared to αvβ3low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3high cells but not in αvβ3low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3high cells, whereas the invasiveness of β3 specific knock

  18. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2013-01-01

    The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3 high or αvβ3 low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3 high cells showed a threefold increased cell invasion compared to αvβ3 low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3 high cells but not in αvβ3 low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3 low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3 high cells, whereas the invasiveness of β3 specific knock

  19. Endoscopic and Photodynamic Therapy of Cholangiocarcinoma.

    Science.gov (United States)

    Meier, Benjamin; Caca, Karel

    2016-12-01

    Most patients with cholangiocarcinoma (CCA) have unresectable disease. Endoscopic bile duct drainage is one of the major objectives of palliation of obstructive jaundice. Stent implantation using endoscopic retrograde cholangiography is considered to be the standard technique. Unilateral versus bilateral stenting is associated with different advantages and disadvantages; however, a standard approach is still not defined. As there are various kinds of stents, there is an ongoing discussion on which stent to use in which situation. Palliation of obstructive jaundice can be augmented through the use of photodynamic therapy (PDT). Studies have shown a prolonged survival for the combinations of PDT and different stent applications as well as combinations of PDT and additional systemic chemotherapy. More well-designed studies are needed to better evaluate and standardize endoscopic treatment of unresectable CCA.

  20. ANDROGENS REGULATE T47D CELLS MOTILITY AND INVASION THROUGH ACTIN CYTOSKELETON REMODELLING

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Montt-Guevara

    2016-09-01

    Full Text Available The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgens receptor (AR is expressed in approximately 70% to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple negative breast cancers. Recent studies have associated the actin-binding proteins of the Ezrin-Radixin-Moesin (ERM family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T, dihydrotestosterone (DHT and dehydroepiandrosterone (DHEA may regulate breast cancer cell motility and invasion through the control of actin remodelling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER, while the non aromatizable androgen – DHT only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer, and eventually to develop new strategies for treatment of breast cancer.

  1. [Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells].

    Science.gov (United States)

    Xu, Jian-Ya; Gu, Qin; Xia, Wei-Jun

    2010-10-01

    To study the effect of Spatholobus suberctus, a kind of Chinese Traditional Medicine which can dissolve the stasis by activating the blood circulation, on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and its mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTP assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous motility melanoma model was used to study the effect of Spatholobus suberctus on metastasis in vivo. At the highest innoxious concentration, the extracts of Spatholobus suberctus inhibited the adhesion and invasion capacity of B16-BL6 metastatic cells significantly. In the mouse spontaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extracts of Spatholobus suberctu. The extracts of Spatholobus suberctu can inhibit the metastasis of of B16-BI6 metastatic mouse melanoma cells and its mechanism may be inhibiting the capability of B16-BL6 cells in adhering to the ECM and invading the basement membrane.

  2. Moscatilin Inhibits Lung Cancer Cell Motility and Invasion via Suppression of Endogenous Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Akkarawut Kowitdamrong

    2013-01-01

    Full Text Available Lung cancer is the leading cause of death among cancer patients worldwide, and most of them have died from metastasis. Migration and invasion are prerequisite processes associated with high metastasis potential in cancers. Moscatilin, a bibenzyl derivative isolated from the Thai orchid Dendrobium pulchellum, has been shown to have anticancer effect against numerous cancer cell lines. However, little is known regarding the effect of moscatilin on cancer cell migration and invasion. The present study demonstrates that nontoxic concentrations of moscatilin were able to inhibit human nonsmall cell lung cancer H23 cell migration and invasion. The inhibitory effect of moscatilin was associated with an attenuation of endogenous reactive oxygen species (ROS, in which hydroxyl radical (OH∙ was identified as a dominant species in the suppression of filopodia formation. Western blot analysis also revealed that moscatilin downregulated activated focal adhesion kinase (phosphorylated FAK, Tyr 397 and activated ATP-dependent tyrosine kinase (phosphorylated Akt, Ser 473, whereas their parental counterparts were not detectable changed. In conclusion, our results indicate the novel molecular basis of moscalitin-inhibiting lung cancer cell motility and invasion and demonstrate a promising antimetastatic potential of such an agent for lung cancer therapy.

  3. Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells

    International Nuclear Information System (INIS)

    Nakabayashi, Hiromichi; Yawata, Toshio; Shimizu, Keiji

    2010-01-01

    The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo. The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated. Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells. These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas

  4. Aldehyde dehydrogenase 1A1 circumscribes high invasive glioma cells and predicts poor prognosis

    Science.gov (United States)

    Xu, Sen-Lin; Liu, Sha; Cui, Wei; Shi, Yu; Liu, Qin; Duan, Jiang-Jie; Yu, Shi-Cang; Zhang, Xia; Cui, You-Hong; Kung, Hsiang-Fu; Bian, Xiu-Wu

    2015-01-01

    Glioma is the most aggressive brain tumor with high invasiveness and poor prognosis. More reliable, sensitive and practical biomarkers to reveal glioma high invasiveness remain to be explored for the guidance of therapy. We herein evaluated the diagnostic and prognostic value of aldehyde dehydrogenase 1A1 (ALDH1A1) in the glioma specimens from 237 patients, and found that ADLH1A1 was frequently overexpressed in the high-grade glioma (WHO grade III-IV) as compared to the low-grade glioma (WHO grade I-II) patients. The tumor cells with ALDH1A1 expression were more abundant in the region between tumor and the borderline of adjacent tissue as compared to the central part of the tumor. ALDH1A1 overexpression was associated with poor differentiation and dismal prognosis. Notably, the overall and disease-free survivals of the patients who had ALDH1A1+ tumor cells sparsely located in the adjacent tissue were much worse. Furthermore, ALDH1A1 expression was correlated with the “classical-like” (CL) subtype as we examined GBM specimens from 72 patients. Multivariate Cox regression analysis revealed that ALDH1A1 was an independent marker for glioma patients’ outcome. Mechanistically, both in vitro and in vivo studies revealed that ALDH1A1+ cells isolated from either a glioblastoma cell line U251 or primary glioblastoma cells displayed significant invasiveness, clonogenicity, and proliferation as compared to ALDH1A1- cells, due to increased levels of mRNA and protein for matrix metalloproteinase 2, 7 and 9 (MMP2, MMP7 and MMP9). These results indicate that ALDH1A1+ cells contribute to the progression of glioma including invasion, proliferation and poor prognosis, and suggest that targeting ALDH1A1 may have important implications for the treatment of highly invasive glioma. PMID:26101711

  5. Retinoid inhibition of in vitro invasion of human amnion basement membrane by human tumor cells

    International Nuclear Information System (INIS)

    Fazely, F.; Ledinko, N.; Smith, D.J.

    1986-01-01

    The biological activity of retinoids was assayed in an in vitro quantitative assay of human tumor cell invasion using human amnion basement membrane (BM). The effects measured were the inhibition of tumor cell migration through the BM and tumor cell degradative enzyme activity on 14 C-proline labeled collagenous and noncollagenous components of the BM. The human lung carcinoma A549 or the human Ewing's sarcoma TC-106 cell lines treated with retinoids for two days were incubated on the BM in the absence of retinoids. A dose-dependent inhibition of cell invasion was produced by retinoids. Among the retinoids tested, the most powerful was retinol acetate which inhibited invasion by 50% of A549 cells at a concentration of 0.009 μg/mL, and of TC-106 cells at 0.07 μg/mL. Retinol acetate inhibited A549 and TC-106 cell growth by approximately 50% at levels over 100-fold higher than those needed for antiinvasive activity. Retinol acetate was about 20 times more potent than retinoic acid and 30 times more potent than retinol palmitate. The model system will be useful for investigating antiinvasive activity of other retinoids as well as other compounds

  6. Retinoid inhibition of in vitro invasion of human amnion basement membrane by human tumor cells

    International Nuclear Information System (INIS)

    Fazely, F.

    1988-01-01

    The effects measured were the inhibition of tumor cell migration through the basement membrane (BM) and tumor cell degradative enzyme activity on 3 H-proline labeled collagenous and non collagenous components of the BM. The human lung carcinoma A549 or the human Ewing's sarcoma TC-106 cell lines treated with retinoids for two days were incubated on the BM in the absence of retinoids. A dose-dependent inhibition of cell invasion was produced by retinoids. Among the retinoids tested the most powerful was retinol acetate which inhibited invasion by 50% of A549 cells at a concentration of 0.09 μg/ml, and TC-106 cells at 0.08 μg/ml. Retinol acetate inhibited A549 and TC-106 cell growth by approximately 50% at levels almost 100-fold higher than those needed for antiinvasive activity. Retinol acetate was about 20 times more potent than retinoic acid and 30 times more than retinol palmitate. Furthermore, A549 cells treated with retinol acetate, under conditions whereby an anti-invasive state was induced,showed an increase in the number of cellular retinoic acid binding proteins (CRABP), a decrease in the activity of type IV collagenase and ectosialyltransferase, and no change in the activity of transglutaminase

  7. Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells

    DEFF Research Database (Denmark)

    Kustikova, O.; Kramerov, D.; Grigorian, M.

    1998-01-01

    in vitro nor in vivo. CSML100 possesses all characteristics of a highly progressive carcinoma. These cells do not form tight contacts, are highly invasive in vitro, and are metastatic in vivo. AP-1 activity was considerably higher in CSML100 cells than in CSML0 cells. There was a common predominant Jun...... from tumors of epithelial origin revealed a correlation of fra-1 expression with mesenchymal characteristics of carcinoma cells. Moreover, we show here for the first time that the expression of exogenous Fra-1 in epithelioid cells results in morphological changes that resemble fibroblastoid conversion...

  8. Cell-Matrix Interactions in Breast Carcinoma Invasion.

    Science.gov (United States)

    1998-01-01

    nitrosourea induced rat mammary tumors. Proc. Natl. Acad. Sei. U.S.A. 85:9292- 9296. 11. Georges-Labouesse, E., Messaddeq, N., Yehia, G., Cadalbert, L...1992) Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF- inositol lipid breakdown. J. Cell Biol., 121, 673-678...stimulates inositol lipid synthesis and enhances PDGF-inositol lipid breakdown./. Cell Biol. 121:673-678. Messen, CM., F. Hogervorst, L.H. Jaspars, A.A

  9. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Lu-Kai Wang

    Full Text Available Non-small cell lung cancers (NSCLCs cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R, TGF-beta receptor type-1 (TGFBR1, and epidermal growth factor receptor (EGFR, are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.

  10. Non-invasive measurements of carboxyhemoglobin and methemoglobin in children with sickle cell disease.

    Science.gov (United States)

    Caboot, Jason B; Jawad, Abbas F; McDonough, Joseph M; Bowdre, Cheryl Y; Arens, Raanan; Marcus, Carole L; Mason, Thornton B A; Smith-Whitley, Kim; Ohene-Frempong, Kwaku; Allen, Julian L

    2012-08-01

    Assessment of oxyhemoglobin saturation in patients with sickle cell disease (SCD) is vital for prompt recognition of hypoxemia. The accuracy of pulse oximeter measurements of blood oxygenation in SCD patients is variable, partially due to carboxyhemoglobin (COHb) and methemoglobin (MetHb), which decrease the oxygen content of blood. This study evaluated the accuracy and reliability of a non-invasive pulse co-oximeter in measuring COHb and MetHb percentages (SpCO and SpMet) in children with SCD. We hypothesized that measurements of COHb and MetHb by non-invasive pulse co-oximetry agree within acceptable clinical accuracy with those made by invasive whole blood co-oximetry. Fifty children with SCD-SS underwent pulse co-oximetry and blood co-oximetry while breathing room air. Non-invasive COHb and MetHb readings were compared to the corresponding blood measurements. The pulse co-oximeter bias was 0.1% for COHb and -0.22% for MetHb. The precision of the measured SpCO was ± 2.1% within a COHb range of 0.4-6.1%, and the precision of the measured SpMet was ± 0.33% within a MetHb range of 0.1-1.1%. Non-invasive pulse co-oximetry was useful in measuring COHb and MetHb levels in children with SCD. Although the non-invasive technique slightly overestimated the invasive COHb measurements and slightly underestimated the invasive MetHb measurements, there was close agreement between the two methods. Copyright © 2012 Wiley Periodicals, Inc.

  11. Functional characterization of E- and P-cadherin in invasive breast cancer cells

    International Nuclear Information System (INIS)

    Sarrió, David; Palacios, José; Hergueta-Redondo, Marta; Gómez-López, Gonzalo; Cano, Amparo; Moreno-Bueno, Gema

    2009-01-01

    Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer

  12. Functional characterization of E- and P-cadherin in invasive breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cano Amparo

    2009-03-01

    Full Text Available Abstract Background Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. Methods To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. Results Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. Conclusion E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.

  13. Multislice helical CT in the diagnosis of hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Yang Li; Zhao Shaohong; Nie Yongkang; Zhao Hong; Fang Jie; Cai Zulong; Yang Zhou; Ying Yifeng

    2005-01-01

    Objective: To investigate the value ofMSCT in observing the direct findings of hilar cholangiocarcinoma1Methods Multislice helical CT studies were performed on the upper abdomen in 19 consecutive patientswith painless jaundice1 Precontrast and dynamic contrast enhanced (25 s phase and 60 s phase) scanswere conducted, and 3D imageswere reconstructed using enhanced raw data in 15 cases1 The direct CT findings of hilar cholangiocarcinoma were studied by three radiologists respectively in a 32scale strategy1 The morphological features and extension of bile duct involvement by hilar cholangiocarcinoma were analyzed1 All the 19 caseswere pathologically p roved as hilar cholangiocarcinoma by surgery (15 cases) and ERCP ( 4 cases) 1 Results The direct findings and extension of hilar cholangiocarcinoma could be demonstrated in 14 out of 15 3D reconstruction images, 8 out of 19 in 25 s phase, and 7 out of 19 in 60 s phase of contrast enhancement scans, respectively ( P < 0105 ) 1 The tumor involving the bile duct was enhanced most remarkablely on 25 s phase, and the bile duct wall thickening, bile duct narrowing or occlusion were demonstrated as the p rimary findings of hilar cholangiocarcinoma1 The intraductal sp read of tumor could be demonstrated as small nodules on the bile duct wall p roximal or distal to the tumor1 Conclusion. The tumor involving the bile duct can be enhanced most remarkablely on 25 s phase after contrast injection1 Multislice helical CT, especially 3D reconstructed images, can be used to detect the direct findings of hilar cholangiocarcinomas and the extension of tumor involving the bile duct. (authors)

  14. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    Science.gov (United States)

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Diagnostic value of multidetector computed tomography for renal sinus fat invasion in renal cell carcinoma patients

    International Nuclear Information System (INIS)

    Kim, Cherry; Choi, Hyuck Jae; Cho, Kyoung-Sik

    2014-01-01

    Objective: Although renal sinus fat invasion has prognostic significance in patients with renal cell carcinomas (RCCs), there are no previous studies about the value of multidetector computed tomography (MDCT) about this issue in the current literature. Materials and methods: A total of 863 consecutive patients (renal sinus fat invasion in 110 patients (12.7%)) from single institutions with surgically-confirmed renal cell carcinoma who underwent MDCT between 2010 and 2012 were included in this study. The area under the curves (AUCs) of the receiver operating characteristic (ROC) analysis was used to compare diagnostic performance. Reference standard was pathologic examination. Weighted κ statistics were used to measure the level of interobserver agreement. Multivariate logistic regression model was used to find the predictors for renal sinus fat invasion. Image analysis was first performed with axial-only CT images. A second analysis was then performed with both axial and coronal CT images. A qualitative analysis was then conducted by two reviewers who reached consensus regarding tumor size, decreased perfusion, tumor margin, vessel displacement, and lymph node metastasis. The reference standard was pathologic evaluation. Results: The AUCs of the ROC analysis were 0.881 and 0.922 for axial-only images and 0.889 and 0.902 for combined images in both readers. The AUC of tumor size was 0.884, a similar value to that of the reviewers. In multivariate analysis, tumor size, a linear-nodular or nodular type of fat infiltration, and an irregular tumor margin were independent predicting factors for perinephric fat invasion. Conclusion: MDCT shows relatively high diagnostic performance in detecting perinephric fat invasion of RCC but suffers from a relatively low PPV related to low prevalence of renal sinus fat invasion. Applying tumor size alone we could get similar diagnostic performance to those of radiologists. Tumor size, fat infiltration with a nodular appearance, and

  16. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ying; Gao, Yan, E-mail: gaoyanhdhos@126.com

    2014-05-09

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  17. Non-invasive imaging of kupffer cell status using radiolabelled mannosylated albumin

    NARCIS (Netherlands)

    Mahajan, V.; Hartimath, S.; Comley, R.; Stefan-Gueldner, M.; Roth, A.; Poelstra, K.; Reker-Smit, C.; Kamps, J.; Dierckx, R.; de Vries, Erik

    2014-01-01

    Background and Aims: Kupffer cells are responsible for maintaining liver homeostasis and have a vital role in chronic hepatotoxicity and various liver diseases. Positron Imaging Tomography (PET) is a non-invasive imaging technique that allows quantification and visualization of biochemical processes

  18. [Cardiac invasion of ATLL cells and therapeutic effects of local along with systemic treatments].

    Science.gov (United States)

    Imoto, S; Nakagawa, T; Ito, M

    1989-07-01

    We report a rare case of adult T cell leukemia/lymphoma (ATLL) in which cardiac invasion was clinically demonstrated and treated effectively. A 45-year-old female was admitted because of exertional dyspnea and cervical tumors. The leukocyte count was 19,100/microliters with 20% of flower cells. HTLV-I antibody was positive. She was diagnosed as ATLL and treated with VEPA. She got remission for a short duration which was followed by relapse. OPEC was started as salvage therapy. In the course, extensive pericardial effusion was found in chest X-P. Pericardial puncture demonstrated ATLL cells and high titer of free IL-2 receptor (57,400U/ml) in the effusion. It was diagnosed as pericardial invasion of ATLL cells. Chemotherapy was started with new combination of drugs (cisplatin, mitoxantrone, ifosfamide, and prednisolone). Concomitantly pericardial drainage was performed and the drugs were administered directly into the pericardial cavity. The clinical improvement was obtained and pericardial effusion did not appear thereafter. She died 4 months after the diagnosis of cardiac invasion. On autopsy myocardial invasion was identified. The pericardium widely adhered and effusion measured 42 ml.

  19. Reflectance confocal microscopy: non-invasive distinction between actinic keratosis and squamous cell carcinoma

    NARCIS (Netherlands)

    Peppelman, M.; Nguyen, K.P.; Hoogedoorn, L.; Erp, P.E.J. van; Gerritsen, M.J.P.

    2015-01-01

    BACKGROUND: Early recognition of squamous cell carcinoma (SCC) is difficult. Non-invasive reflectance confocal microscopic (RCM) imaging of the skin is a promising diagnostic technique. Although several RCM features for SCC and AK have been described, it is not determined whether RCM has the ability

  20. Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion.

    NARCIS (Netherlands)

    Dinglasan, R.R.; Alaganan, A.; Ghosh, A.K.; Saito, A.; Kuppevelt, A.H.M.S.M. van; Jacobs-Lorena, M.

    2007-01-01

    Malaria transmission entails development of the Plasmodium parasite in its insect vector, the Anopheles mosquito. Parasite invasion of the mosquito midgut is the critical first step and involves adhesion to host epithelial cell ligands. Partial evidence suggests that midgut oligosaccharides are

  1. MRI versus CT for detecting cartilage invasion in patients with laryngeal and hypopharyngeal squamous cell carcinoma

    NARCIS (Netherlands)

    Wegner, Inge; Hooft, Lotty; Reitsma, Johannes B.; Pameijer, Frank A.; de Bree, Remco; Stegeman, Inge

    2016-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: To determine and compare the diagnostic accuracy of preoperative conventional MRI and conventional CT for detecting cartilage invasion in patients with laryngeal and hypopharyngeal squamous cell carcinoma, who

  2. PTK6 promotes cancer migration and invasion in pancreatic cancer cells dependent on ERK signaling.

    Directory of Open Access Journals (Sweden)

    Hiroaki Ono

    Full Text Available Protein Tyrosine Kinase 6 (PTK6 is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each. In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05. Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer.

  3. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition.

    Science.gov (United States)

    Ogunbolude, Yetunde; Dai, Chenlu; Bagu, Edward T; Goel, Raghuveera Kumar; Miah, Sayem; MacAusland-Berg, Joshua; Ng, Chi Ying; Chibbar, Rajni; Napper, Scott; Raptis, Leda; Vizeacoumar, Frederick; Vizeacoumar, Franco; Bonham, Keith; Lukong, Kiven Erique

    2017-12-22

    The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

  4. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    Science.gov (United States)

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  5. Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Ide, Hisamitsu; Nakagawa, Takashi; Terado, Yuichi; Kamiyama, Yutaka; Muto, Satoru; Horie, Shigeo

    2008-01-01

    Protein tyrosine kinase plays a central role in the proliferation and differentiation of various types of cells. One of these protein kinases, Tyk2, a member of the Jak family kinases, is known to play important roles in receptor signal transduction by interferons, interleukins, growth factors, and other hormones. In the present study, we investigated Tyk2 expression and its role in the growth and invasiveness of human prostate cancer cells. We used a small interfering RNA targeting Tyk2 and an inhibitor of Tyk2, tyrphostin A1, to suppress the expression and signaling of Tyk2 in prostate cancer cells. We detected mRNAs for Jak family kinases in prostate cancer cell lines by RT-PCR and Tyk2 protein in human prostate cancer specimens by immunohistochemistry. Inhibition of Tyk2 signaling resulted in attenuation of the urokinase-type plasminogen activator-enhanced invasiveness of prostate cancer cells in vitro without affecting the cellular growth rate. These results suggest that Tyk2 signaling in prostate cancer cells facilitate invasion of these cells, and interference with this signaling may be a potential therapeutic pathway

  6. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells

    Directory of Open Access Journals (Sweden)

    Miyata Teruo

    2007-06-01

    Full Text Available Abstract Background Invasion is a hallmark of a malignant tumor, such as a glioma, and the progression is followed by the interaction of tumor cells with an extracellular matrix (ECM. This study examined the role of type I collagen in the invasion of the malignant human glioma cell line T98G by the introduction of the human collagen type I α1 (HCOL1A1 gene. Results The cells overexpressing HCOL1A1 were in a cluster, whereas the control cells were scattered. Overexpression of HCOL1A1 significantly suppressed the motility and invasion of the tumor cells. The glioma cell growth was markedly inhibited in vitro and in vivo by the overexpression of HCOL1A1; in particular, tumorigenicity completely regressed in nude mice. Furthermore, the HCOL1A1 gene induced apoptosis in glioma cells. Conclusion These results indicate that HCOL1A1 have a suppressive biological function in glioma progression and that the introduction of HCOL1A1 provides the basis of a novel therapeutic approach for the treatment of malignant human glioma.

  7. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junzhao; Yuan, Peng; Mao, Qixin [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Henan (China); Xie, Tian; Yang, Hanzhao [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Wang, Chengzheng, E-mail: wangchengzheng@126.com [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China)

    2016-09-09

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.

  8. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  9. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion.

    Science.gov (United States)

    A P, Sudheesh; Laishram, Rakesh S

    2018-03-01

    Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3'-end processing and expression of pre-mRNAs encoding key anti-invasive factors ( KISS1R , CDH1 , NME1 , CDH13 , FEZ1 , and WIF1 ) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP-PIPKIα-mediated 3'-end processing as a key anti-invasive mechanism in breast cancer. Copyright © 2018 A.P. and Laishram.

  10. miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10

    International Nuclear Information System (INIS)

    Chen, Yating; Zhang, Hongwei; Ma, Duan; Zhang, Jin; Wang, Huijun; Zhao, Jiayi; Xu, Cheng; Du, Yingying; Luo, Xin; Zheng, Fengyun; Liu, Rui

    2012-01-01

    miRNAs are a group of small RNA molecules regulating target genes by inducing mRNA degradation or translational repression. Aberrant expression of miRNAs correlates with various cancers. Although miR-135a has been implicated in several other cancers, its role in breast cancer is unknown. HOXA10 however, is associated with multiple cancer types and was recently shown to induce p53 expression in breast cancer cells and reduce their invasive ability. Because HOXA10 is a confirmed miR-135a target in more than one tissue, we examined miR-135a levels in relation to breast cancer phenotypes to determine if miR-135a plays role in this cancer type. Expression levels of miR-135a in tissues and cells were determined by poly (A)-RT PCR. The effect of miR-135a on proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, and target protein expression was determined by western blotting. GFP and luciferase reporter plasmids were constructed to confirm the action of miR-135a on downstream target genes including HOXA10. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student's t-test. Here we report that miR-135a was highly expressed in metastatic breast tumors. We found that the expression of miR-135a was required for the migration and invasion of breast cancer cells, but not their proliferation. HOXA10, which encodes a transcription factor required for embryonic development and is a metastasis suppressor in breast cancer, was shown to be a direct target of miR-135a in breast cancer cells. Our analysis showed that miR-135a suppressed the expression of HOXA10 both at the mRNA and protein level, and its ability to promote cellular migration and invasion was partially reversed by overexpression of HOXA10. In summary, our results indicate that miR-135a is an onco-miRNA that can promote breast cancer cell migration and invasion. HOXA10 is a target gene for mi

  11. Urokinase plasminogen activator receptor on invasive cancer cells: A prognostic factor in distal gastric adenocarcinoma

    DEFF Research Database (Denmark)

    Alpizar, Warner Enrique Alpizar; Christensen, Ib Jarle; Santoni-Rugiu, Eric

    2012-01-01

    Gastric cancer is the second cancer causing death worldwide. The five-year survival for this malignancy is below 25% and few parameters have shown an impact on the prognosis of the disease. The receptor for urokinase plasminogen activator (uPAR) is involved in extracellular matrix degradation...... by mediating cell surface associated plasminogen activation, and its presence on gastric cancer cells is linked to micrometastasis and poor prognosis. Using immunohistochemistry, the prognostic significance of uPAR was evaluated in tissue samples from a retrospective series of 95 gastric cancer patients. u...... association between the expression of uPAR on tumor cells in the peripheral invasion zone and overall survival of gastric cancer patients (HR = 2.16; 95% CI: 1.13-4.14; p = 0.02). Multivariate analysis showed that uPAR immunoreactivity in cancer cells at the invasive front is an independent prognostic factor...

  12. Live-cell imaging of invasion and intravasation in an artificial microvessel platform.

    Science.gov (United States)

    Wong, Andrew D; Searson, Peter C

    2014-09-01

    Methods to visualize metastasis exist, but additional tools to better define the biologic and physical processes underlying invasion and intravasation are still needed. One difficulty in studying metastasis stems from the complexity of the interface between the tumor microenvironment and the vascular system. Here, we report the development of an investigational platform that positions tumor cells next to an artificial vessel embedded in an extracellular matrix. On this platform, we used live-cell fluorescence microscopy to analyze the complex interplay between metastatic cancer cells and a functional artificial microvessel that was lined with endothelial cells. The platform recapitulated known interactions, and its use demonstrated the capabilities for a systematic study of novel physical and biologic parameters involved in invasion and intravasation. In summary, our work offers an important new tool to advance knowledge about metastasis and candidate antimetastatic therapies. ©2014 American Association for Cancer Research.

  13. Deconstructing autofluorescence: non-invasive detection and monitoring of biochemistry in cells and tissues (Conference Presentation)

    Science.gov (United States)

    Goldys, Ewa M.; Gosnell, Martin E.; Anwer, Ayad G.; Cassano, Juan C.; Sue, Carolyn M.; Mahbub, Saabah B.; Pernichery, Sandeep M.; Inglis, David W.; Adhikary, Partho P.; Jazayeri, Jalal A.; Cahill, Michael A.; Saad, Sonia; Pollock, Carol; Sutton-Mcdowall, Melanie L.; Thompson, Jeremy G.

    2016-03-01

    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous fluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from imaging of native fluorescence has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Multispectral intrinsic fluorescence imaging was applied to patient olfactory neurosphere-derived cells, cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast, subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant cell subpopulations, in particular a subpopulation with compromised mitochondrial function. The versatility of our method is further illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent.

  14. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J

    1998-06-29

    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  15. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules.

    Science.gov (United States)

    Buhrmann, Constanze; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2017-09-27

    Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC.

  16. [Inhibitory effect of baicalein on the proliferation and invasion of osteosarcoma cells and mechanism].

    Science.gov (United States)

    Tang, Zhibin; Li, Chun; Chen, Zhiwei

    2015-03-01

    To explore the effect of baicalein on the proliferation and invasion of osteosarcoma cells and its related mechanism. Osteosarcoma MG-63 cells that were cultured in vitro were respectively treated with 20 μL culture medium (control group), dehydrated alcohol (0 μmol/L baicalein group), 100 and 200 μmol/L baicalein solution for 48 hours. Cell proliferation was analyzed by MTT assay. The cell invasion ability was detected using Transwell(TM) invasion assay. The expression of ezrin mRNA was examined by real-time quantitative PCR. The expressions of ezrin protein and p-ezrin protein were measured using Western blotting. Apoptosis index (AI) was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). The inhibitory rates of cell proliferation significantly increased in 100 and 200 μmol/L baicalein groups as compared with 0 μmol/L baicalein group. Moreover, that was higher in 200 μmol/L baicalein group than in 100 μmol/L baicalein group. In comparison with control and 0 μmol/L baicalein groups, the mean cell numbers of permeated membrane and levels of ezrin mRNA, ezrin protein and p-ezrin protein gradually decreased, but AI was gradually elevated with the increase of baicalein concentrations, whereas there was no significant difference in these indicators between 0 μmol/L baicalein group and control group. Baicalein can inhibit the proliferation and invasion of osteosarcoma MG-63 cells. The mechanism may be associated with the inhibited expression and activity of ezrin protein and the promoted tumor cell apoptosis.

  17. PRAF3 induces apoptosis and inhibits migration and invasion in human esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shi, Guo-Zhen; Yuan, Yang; Jiang, Guo-Jun; Ge, Zhi-Jun; Zhou, Jian; Gong, De-Jun; Tao, Jing; Tan, Yong-Fei; Huang, Sheng-Dong

    2012-01-01

    Prenylated Rab acceptor 1 domain family member 3 (PRAF3) is involved in the regulation of many cellular processes including apoptosis, migration and invasion. This study was conducted to investigate the effect of PRAF3 on apoptosis, migration and invasion in human esophageal squamous cell carcinoma (ESCC). The expression of PRAF3 mRNA and protein in primary ESCC and the matched normal tissues (57cases) was determined by quantitative RT-PCR and Western blot. Immunohistochemical analysis of PRAF3 expression was carried out in paraffin-embedded sections of ESCC and correlated with clinical features. The role of PRAF3 in apoptosis, migration and invasion was studied in ESCC cell lines of Eca109 and TE-1 through the adenovirus mediated PRAF3 gene transfer. The effect of PRAF3 on apoptosis was analyzed by annexin V-FITC assay. The regulation of PRAF3 on migration was determined by transwell and wounding healing assay, while the cellular invasion was analyzed by matrigel-coated transwell assay. We found that the expression of PRAF3 was significantly down-regulated in ESCC tissue compared with the matched normal tissue and was correlated with the clinical features of pathological grade, tumor stage and lymph node metastasis. Moreover, overexpression of PRAF3 induced cell apoptosis through both caspase-8 and caspase-9 dependent pathways, and inhibited cell migration and invasion by suppressing the activity of both MMP-2 and MMP-9 in human ESCC cell lines. Our data suggest that PRAF3 plays an important role in the regulation of tumor progression and metastasis and serves as a tumor suppressor in human ESCC. We propose that PRAF3 might be used as a potential therapeutic agent for human ESCC

  18. Inhibition of IGF-1-Mediated Cellular Migration and Invasion by Migracin A in Ovarian Clear Cell Carcinoma Cells.

    Science.gov (United States)

    Ukaji, Tamami; Lin, Yinzhi; Banno, Kouji; Okada, Shoshiro; Umezawa, Kazuo

    2015-01-01

    Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.

  19. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria); DeVaney, Trevor [Institute of Biophysics, Medical University of Graz (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz (Austria); Raynham, Tony; Ireson, Christopher [Cancer Research Technology Ltd, London (United Kingdom); Sattler, Wolfgang, E-mail: wolfgang.sattler@medunigraz.at [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria)

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  20. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun S73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  1. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines

    DEFF Research Database (Denmark)

    Viticchiè, Giuditta; Lena, Anna Maria; Latina, Alessia

    2011-01-01

    Prostate cancers show a slow progression from a local lesion (primary tumor) to a metastatic and hormone-resistant phenotype. After an initial step of hyperplasia, in a high percentage of cases a neoplastic transformation event occurs that, less frequently, is followed by epithelial to mesenchymal...... cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2...

  2. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Guenhaël Sanz

    Full Text Available Olfactory receptors (ORs are expressed in the olfactory epithelium, where they detect odorants, but also in other tissues with additional functions. Some ORs are even overexpressed in tumor cells. In this study, we identified ORs expressed in enterochromaffin tumor cells by RT-PCR, showing that single cells can co-express several ORs. Some of the receptors identified were already reported in other tumors, but they are orphan (without known ligand, as it is the case for most of the hundreds of human ORs. Thus, genes coding for human ORs with known ligands were transfected into these cells, expressing functional heterologous ORs. The in vitro stimulation of these cells by the corresponding OR odorant agonists promoted cell invasion of collagen gels. Using LNCaP prostate cancer cells, the stimulation of the PSGR (Prostate Specific G protein-coupled Receptor, an endogenously overexpressed OR, by β-ionone, its odorant agonist, resulted in the same phenotypic change. We also showed the involvement of a PI3 kinase γ dependent signaling pathway in this promotion of tumor cell invasiveness triggered by OR stimulation. Finally, after subcutaneous inoculation of LNCaP cells into NSG immunodeficient mice, the in vivo stimulation of these cells by the PSGR agonist β-ionone significantly enhanced metastasis emergence and spreading.

  3. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices.

    Science.gov (United States)

    Gualeni, B; Coulman, S A; Shah, D; Eng, P F; Ashraf, H; Vescovo, P; Blayney, G J; Piveteau, L-D; Guy, O J; Birchall, J C

    2018-03-01

    Translation of cell therapies to the clinic is accompanied by numerous challenges, including controlled and targeted delivery of the cells to their site of action, without compromising cell viability and functionality. To explore the use of hollow microneedle devices (to date only used for the delivery of drugs and vaccines into the skin and for the extraction of biological fluids) to deliver cells into skin in a minimally invasive, user-friendly and targeted fashion. Melanocyte, keratinocyte and mixed epidermal cell suspensions were passed through various types of microneedles and subsequently delivered into the skin. Cell viability and functionality are maintained after injection through hollow microneedles with a bore size ≥ 75 μm. Healthy cells are delivered into the skin at clinically relevant depths. Hollow microneedles provide an innovative and minimally invasive method for delivering functional cells into the skin. Microneedle cell delivery represents a potential new treatment option for cell therapy approaches including skin repigmentation, wound repair, scar and burn remodelling, immune therapies and cancer vaccines. © 2017 British Association of Dermatologists.

  4. Serum albumin predicts survival in patients with hilar cholangiocarcinoma.

    Science.gov (United States)

    Waghray, Abhijeet; Sobotka, Anastasia; Marrero, Carlos Romero; Estfan, Bassam; Aucejo, Federico; Narayanan Menon, K V

    2017-02-01

    Hilar cholangiocarcinoma is a devastating malignancy with incidence varying by geography and other risk factors. Rapid progression of disease and delays in diagnosis restrict the number of patients eligible for curative therapy. The objective of this study was to determine prognostic factors of overall survival in all patients presenting with hilar cholangiocarcinoma. All adult patients with histologically confirmed hilar cholangiocarcinoma from 2003 to 2013 were evaluated for predictors of survival using demographic factors, laboratory data, symptoms and radiological characteristics at presentation. A total of 116 patients were identified to have pathological diagnosis of hilar cholangiocarcinoma and were included in the analysis. Patients with a serum albumin level >3.0 g/dL (P 3.0 g/dL was identified as an independent predictor of overall survival (hazard ratio 0.31; 95% confidence interval 0.14-0.70) with a survival benefit of 44 weeks. This study was the largest analysis to date of prognostic factors in patients with hilar cholangiocarcinoma. A serum albumin level >3.0 g/dL conferred an independent survival advantage with a significantly greater length of survival. © The Author(s) 2016. Published by Oxford University Press and Sixth Affiliated Hospital of Sun Yat-Sen University.

  5. Preoperative biliary drainage in hilar cholangiocarcinoma: When and how?

    Science.gov (United States)

    Paik, Woo Hyun; Loganathan, Nerenthran; Hwang, Jin-Hyeok

    2014-01-01

    Hilar cholangiocarcinoma is a tumor of the extrahepatic bile duct involving the left main hepatic duct, the right main hepatic duct, or their confluence. Biliary drainage in hilar cholangiocarcinoma is sometimes clinically challenging because of complexities associated with the level of biliary obstruction. This may result in some adverse events, especially acute cholangitis. Hence the decision on the indication and methods of biliary drainage in patients with hilar cholangiocarcinoma should be carefully evaluated. This review focuses on the optimal method and duration of preoperative biliary drainage (PBD) in resectable hilar cholangiocarcinoma. Under certain special indications such as right lobectomy for Bismuth type IIIA or IV hilar cholangiocarcinoma, or preoperative portal vein embolization with chemoradiation therapy, PBD should be strongly recommended. Generally, selective biliary drainage is enough before surgery, however, in the cases of development of cholangitis after unilateral drainage or slow resolving hyperbilirubinemia, total biliary drainage may be considered. Although the optimal preoperative bilirubin level is still a matter of debate, the shortest possible duration of PBD is recommended. Endoscopic nasobiliary drainage seems to be the most appropriate method of PBD in terms of minimizing the risks of tract seeding and inflammatory reactions. PMID:24634710

  6. In vitro characterization of cancer cell morphology, chemokinesis, and matrix invasion using a novel microfabricated system

    Science.gov (United States)

    Blaha, Laura

    A diagnosis of metastatic cancer reduces a patient's 5-year survival rate by nearly 80% compared to a primary tumor diagnosed at an early stage. While gene expression arrays have revealed unique gene signatures for metastatic cancer cells, we are lacking an understanding of the tangible physical changes that distinguish metastatic tumor cells from each other and from their related primary tumors. At the fundamental level, this translates into first characterizing the phenotype of metastatic cancer cells in vitro both in 2D - looking at morphology and migration - and in 3D - focusing on matrix invasion. While 2D in vitro studies have provided insight into the effects of specific environmental conditions on specific cancer cell lines, the unique details included in each experimental design make it challenging to compare cell phenotype across different in vitro platforms as well as between laboratories and disciplines that share the goal of understanding cancer. While 3D phenotype studies have employed more standardized and ubiquitous assays, most available tools lack the imaging capability and geometry to effectively characterize all factors driving 3D matrix invasion. In this work, we present protocols and platforms aimed at addressing the problems identified in the tools currently available for studying metastatic cancer in vitro. First, we present a 2D study of morphology and migration using widely accepted protocols. The study is applied to characterizing phenotypes of three breast cancer cell lines with different metastatic organ tropisms. The results show that general populations of cells from each of the 3 lines are unique in shape and motility despite being derived from the same tumor line and that the observed phenotype differences may be related to differences in focal adhesion assembly. More broadly, these studies suggest that standardizing phenotype studies using commonly available techniques may provide a platform by which to compare phenotypic studies

  7. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    International Nuclear Information System (INIS)

    Xue, Gang; Zou, Xi; Zhou, Jin-Yong; Sun, Wei; Wu, Jian; Xu, Jia-Li; Wang, Rui-Ping

    2013-01-01

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug

  8. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Zou, Xi [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Zhou, Jin-Yong [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Sun, Wei [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Wu, Jian [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Xu, Jia-Li [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Wang, Rui-Ping, E-mail: ruipingwang61@hotmail.com [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)

    2013-09-20

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.

  9. YK-4-279 inhibits ERG and ETV1 mediated prostate cancer cell invasion.

    Directory of Open Access Journals (Sweden)

    Said Rahim

    2011-04-01

    Full Text Available Genomic rearrangements involving the ETS family of transcription factors occur in 40-70% of prostate cancer cases. ERG and ETV1 are the most common ETS members observed in these genetic alterations. The high prevalence of these rearrangements and their biological significance represents a novel therapeutic target for the treatment of prostate cancer.We recently reported the development of YK-4-279, a small molecule inhibitor of EWS-FLI1 oncoprotein in Ewing's Sarcoma. Since ERG and ETV1 belong to the same class of ETS factors as FLI1, we tested the ability of YK-4-279 to inhibit biological functions of ERG and ETV1 proteins in prostate cancer. YK-4-279 inhibited ERG and ETV1 mediated transcriptional activity in a luciferase assay. YK-4-279 also decreased ERG and ETV1 downstream target mRNA and protein expression in ETV1-fusion positive LNCaP and ERG fusion positive VCaP cells. YK-4-279 reduced the motility of LNCaP cells in a scratch assay and the invasive phenotype of both LNCaP and VCaP cells in a HUVEC invasion assay. Fusion-negative PC3 cells were unresponsive to YK-4-279. SiRNA mediated ERG knockdown in VCaP cells resulted in a loss of drug responsiveness. Concurrently, transient ERG expression in PC-3 cells resulted in increased invasive potential, which was reduced by YK-4-279.These data demonstrate that YK-4-279 inhibits ERG and ETV1 biological activity in fusion-positive prostate cancer cells leading to decreased motility and invasion. Therefore, YK-4-279 may have an impact on metastasis in prostate cancer and it may be further evaluated for its clinical applications in prostate cancer in addition to Ewing's sarcoma.

  10. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  11. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    International Nuclear Information System (INIS)

    Cekanova, Maria; Fernando, Romaine I.; Siriwardhana, Nalin; Sukhthankar, Mugdha; Parra, Columba de la; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J.; Wade, Paul A.; Saxton, Arnold M.; Donnell, Robert M.; Pestell, Richard G.

    2015-01-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis

  12. Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells

    DEFF Research Database (Denmark)

    Kong, Su Chii; Nøhr-Nielsen, Asbjørn; Zeeberg, Katrine

    2016-01-01

    , localization, activity, and function were explored in human PDAC cells (MIAPaCa-2, Panc-1, BxPC-3, AsPC-1) and normal human pancreatic ductal epithelial (HPDE) cells, by quantitative polymerase chain reaction, immunoblotting, immunocytochemistry, lactate flux, migration, and invasion assays. RESULTS: MCT1......, or knockdown of MCT1 or MCT4. PDAC cell migration was largely unaffected by MCT1/MCT2 inhibition or MCT1 knockdown but was reduced by 4-CIN and by MCT4 knockdown (BxPC-3). Invasion measured in Boyden chamber (BxPC-3, Panc-1) and spheroid outgrowth (BxPC-3) assays was attenuated by 4-CIN and AR-C155858...

  13. CENPI is overexpressed in colorectal cancer and regulates cell migration and invasion.

    Science.gov (United States)

    Ding, Na; Li, Rongxin; Shi, Wenhao; He, Cui

    2018-06-21

    Centromere protein I (CENPI),an important member of centromere protein family, has been suggest to serve as a oncogene in breast cancer, but the clinical significance and biological function of CENPI in colorectal cancer (CRC) is still unclear. In our results, we found CENPI was overexpressed in CRC tissues and cells, and associated with clinical stage, tumor depth, lymph node metastasis, distant metastasis and differentiation in CRC patients. However, there was no significant association between CENPI protein expression and overall survival time in colon cancer patients and rectal cancer patients through analyzing TCGA survival data. Moreover, CENPI mRNA and protein were increased in metastatic lymph nodes compared with primary CRC tissues. Down-regulation of CENPI expression suppresses CRC cell migration, invasion and epithelial mesenchymal transition process. In conclusion, CENPI is overexpressed in CRC and functions as oncogene in modulating CRC cell migration, invasion and EMT process. Copyright © 2018. Published by Elsevier B.V.

  14. Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Grum-Schwensen, Birgitte; Beck, Mette K

    2012-01-01

    microenvironment, making it an attractive target for anti-cancer therapy. In this study, we produced a function-blocking anti-S100A4 monoclonal antibody with metastasis-suppressing activity. Antibody treatment significantly reduced metastatic burden in the lungs of experimental animals by blocking the recruitment...... of T cells to the site of the primary tumor. In vitro studies demonstrated that this antibody efficiently reduced the invasion of T cells in a fibroblast monolayer. Moreover, it was capable of suppressing the invasive growth of human and mouse fibroblasts. We presume therefore that the antibody exerts...... its activity by suppressing stroma cell recruitment to the site of the growing tumor. Our epitope mapping studies suggested that the antibody recognition site overlaps with the target binding interface of human S100A4. We conclude here that this antibody could serve as a solid basis for development...

  15. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells.

    Science.gov (United States)

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-11-16

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets.

  16. ErbB receptors and cell polarity: New pathways and paradigms for understanding cell migration and invasion

    International Nuclear Information System (INIS)

    Feigin, Michael E.; Muthuswamy, Senthil K.

    2009-01-01

    The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression

  17. Effect of cetuximab combined with paclitaxel + cisplatin neoadjuvant chemotherapy on esophageal cancer cell proliferation and invasion

    Directory of Open Access Journals (Sweden)

    Yu-Lin Zhao

    2017-07-01

    Full Text Available Objective: To study the effect of cetuximab combined with paclitaxel + cisplatin neoadjuvant chemotherapy on esophageal cancer cell proliferation and invasion. Methods: A total of 62 patients with esophageal cancer who were treated in the hospital between January 2015 and December 2016 were collected and divided into control group and observation group according to random number table, with 31 cases in each group. Control group of patients received paclitaxel + cisplatin neoadjuvant chemotherapy + surgery, and observation group of patients accepted cetuximab combined with paclitaxel + cisplatin neoadjuvant chemotherapy + surgery. The differences in proliferation and invasion gene expression in the tumor tissue were compared between two groups of patients before and after chemotherapy. Results: Before chemotherapy, differences in proliferation and invasion gene expression in tumor tissue were not statistically significant between two groups of patients. After chemotherapy, proproliferation genes FOXA1, ABCE1, USP39 and Nestin mRNA expression in tumor tissue of observation group were significantly lower than those of control group; anti-proliferation genes PETN, KLF4, TSLC1 and AnnexinA2 mRNA expression were significantly higher than those of control group; pro-invasion genes γ-synuclein, CXCR4 and Snail mRNA expression were significantly lower than those of control group; anti-invasion genes CIAPIN1, Fez and Lrig1 mRNA expression were significantly higher than that of control group. Conclusions: Cetuximab combined with paclitaxel + cisplatin neoadjuvant chemotherapy can effectively inhibit the malignant degree of esophageal cancer cells and inhibit its proliferation and invasion.

  18. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer.

    Science.gov (United States)

    Singh, Ramesh; Pochampally, Radhika; Watabe, Kounosuke; Lu, Zhaohui; Mo, Yin-Yuan

    2014-11-26

    Exosomes are 30-100 nm membrane vesicles of endocytic origin, mediating diverse biological functions including tumor cell invasion, cell-cell communication and antigen presentation through transfer of proteins, mRNAs and microRNAs. Recent evidence suggests that microRNAs can be released through ceramide-dependent secretory machinery regulated by neutral sphingomyelinase 2 (nSMase2) enzyme encoded by the smpd3 gene that triggers exosome secretion. However, whether exosome-mediated microRNA transfer plays any role in cell invasion remains poorly understood. Thus, the aim of this study was to identify the exosomal microRNAs involved in breast cancer invasion. The expression level of endogenous and exosomal miRNAs were examined by real time PCR and the expression level of target proteins were detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study its uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-10b was estimated by invasion assay. In this study, we demonstrate that microRNA carrying exosomes can be transferred among different cell lines through direct uptake. miR-10b is highly expressed in metastatic breast cancer MDA-MB-231 cells as compared to non-metastatic breast cancer cells or non-malignant breast cells; it is actively secreted into medium via exosomes. In particular, nSMase2 or ceramide promotes the exosome-mediated miR-10b secretion whereas ceramide inhibitor suppresses this secretion. Moreover, upon uptake, miR-10b can suppress the protein level of its target genes such as HOXD10 and KLF4, indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could induce the invasion ability of non-malignant HMLE cells. Together, our results suggest that a set of specific microRNAs may play an important role in modulating tumor microenvironment through

  19. Amaranthus caudatus extract inhibits the invasion of E. coli into uroepithelial cells.

    Science.gov (United States)

    Mohanty, Soumitra; Zambrana, Silvia; Dieulouard, Soizic; Kamolvit, Witchuda; Nilsén, Vera; Gonzales, Eduardo; Östenson, Claes-Göran; Brauner, Annelie

    2018-06-28

    Amaranthus caudatus is traditionally used to treat infections. Based on its traditional usage, we investigated the effect of A. caudatus on the bladder epithelial cells in the protection of E. coli infection. The direct antimicrobial effects of A. caudatus on uropathogenic bacteria were investigated using minimum inhibitory concentration (MIC) assay. Bladder epithelial cell lines T24 and 5637 and uropathogenic E. coli strain #12 were used to investigate the effect of A. caudatus. Bacterial adhesion and invasion into bladder cells treated with A. caudatus was analyzed. Expression of uroplakin-1a (UPK1A), β1 integrin (ITGB1), caveolin-1 (CAV1) and the antimicrobial peptides human β defensin-2 (DEFB4A) and LL-37 (CAMP) was evaluated using RT-PCR. No direct antibacterial effect on E. coli or any of the tested uropathogenic strains was observed by A. caudatus. However, we demonstrated reduced mRNA expression of uroplakin-1a and caveolin-1, but not β1 integrin after treatment of uroepithelial cells, mirrored by the decreased adhesion and invasion of E. coli. A. caudatus treatment did not induce increased gene expression of the antimicrobial peptides, LL-37 and human β-defensin-2. Our results showed that A. caudatus has a protective role on bladder epithelial cells against uropathogenic E. coli infection by decreasing the bacterial adhesion and invasion, thereby preventing infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization.

    Science.gov (United States)

    Guan, Pei-Pei; Yu, Xin; Guo, Jian-Jun; Wang, Yue; Wang, Tao; Li, Jia-Yi; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-04-20

    Interstitial fluid flow and associated shear stress are relevant mechanical signals in cartilage and bone (patho)physiology. However, their effects on chondrosarcoma cell motility, invasion and metastasis have yet to be delineated. Using human SW1353, HS.819.T and CH2879 chondrosarcoma cell lines as model systems, we found that fluid shear stress induces the accumulation of cyclic AMP (cAMP) and interleukin-1β (IL-1β), which in turn markedly enhance chondrosarcoma cell motility and invasion via the induction of matrix metalloproteinase-7 (MMP-7). Specifically, shear-induced cAMP and IL-1β activate PI3-K, ERK1/2 and p38 signaling pathways, which lead to the synthesis of MMP-7 via transactivating NF-κB and c-Jun in human chondrosarcoma cells. Importantly, MMP-7 upregulation in response to shear stress exposure has the ability to promote lung colonization of chondrosarcomas in vivo. These findings offer a better understanding of the mechanisms underlying MMP-7 activation in shear-stimulated chondrosarcoma cells, and provide insights on designing new therapeutic strategies to interfere with chondrosarcoma invasion and metastasis.

  1. DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zou, Shitao; Shang, Zeng-Fu; Liu, Biao; Zhang, Shuyu; Wu, Jinchang; Huang, Min; Ding, Wei-Qun; Zhou, Jundong

    2016-05-31

    DNA polymerase iota (Pol ι) is an error-prone DNA polymerase involved in translesion DNA synthesis (TLS) that contributes to the accumulation of DNA mutations. We recently showed that Pol ι is overexpressed in human esophageal squamous cell cancer (ESCC) tissues which promotes ESCC' progression. The present study was aimed at investigating the molecular mechanisms by which Pol ι enhances the invasiveness and metastasis of ESCC cells. We found that the expression of Pol ι is significantly higher in ESCCs with lymph node metastasis compared to those without lymph node metastasis. Kaplan-Meier analysis revealed an inverse correlation between Pol ι expression and patient prognosis. The expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two essential regulators of cells' invasiveness, were positively associated with Pol ι expression in ESCC tissues. Ectopic expression of Pol ι enhanced the motility and invasiveness of ESCC cells as evaluated by wound-healing and transwell assays, respectively. A xenograft nude mouse model showed that Pol ι promotes the colonization of ESCC cells in the liver, lung and kidney. Signaling pathway analysis identified the JNK-AP-1 cascade as a mediator of the Pol ι-induced increase in the expression of MMP-2/9 and enhancement of ESCC progression. These data demonstrate the underlying mechanism by which Pol ι promotes ESCC progression, suggesting that Pol ι is a potential novel prognostic biomarker and therapeutic target for ESCC.

  2. ETV4 and Myeov knockdown impairs colon cancer cell line proliferation and invasion

    International Nuclear Information System (INIS)

    Moss, Alan C.; Lawlor, Garrett; Murray, David; Tighe, Donal; Madden, Stephen F.; Mulligan, Anne-Marie; Keane, Conor O.; Brady, Hugh R.; Doran, Peter P.; MacMathuna, Padraic

    2006-01-01

    We have identified novel colorectal cancer-associated genes using NCBI's UNIGENE cDNA libraries. Colon cancer libraries were examined using Digital Differential Display and disease-associated genes were selected. Among these were ETV4 and MYEOV, novel colorectal cancer-associated genes. Samples of matched normal and neoplastic colon were obtained from human subjects and gene expression was quantified using real-time PCR. ETV4 gene expression was significantly increased in colonic neoplasia in comparison to matched normal colonic tissue (p < 0.05). Myeov expression was also increased in colon neoplasia in comparison to matched normal tissue. The effect of siRNA-mediated knockdown of ETV4 and Myeov on cell proliferation and invasion was assessed. ETV4 knockdown resulted in a 90% decrease in cell proliferation (p < 0.05) and a 67% decrease in cell invasion. Myeov knockdown resulted in a 48% decrease in cell proliferation (p < 0.05) and a 36% decrease in cell invasion. These data suggest that ETV4 and Myeov may provide novel targets for therapeutic intervention

  3. Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression

    International Nuclear Information System (INIS)

    Messi, Elio; Florian, Maria C; Caccia, Claudio; Zanisi, Mariarosa; Maggi, Roberto

    2008-01-01

    Neuroblastoma is a severe pediatric tumor, histologically characterised by a variety of cellular phenotypes. One of the pharmacological approaches to neuroblastoma is the treatment with retinoic acid. The mechanism of action of retinoic acid is still unclear, and the development of resistance to this differentiating agent is a great therapy problem. Doublecortin, a microtubule-associated protein involved in neuronal migration, has recently been proposed as a molecular marker for the detection of minimal residual disease in human neuroblastoma. Nevertheless, no information is available on the expression of doublecortin in the different cell-types composing human neuroblastoma, its correlation with neuroblastoma cell motility and invasiveness, and the possible modulations exerted by retinoic acid treatment. We analysed by immunofluorescence and by Western blot analysis the presence of doublecortin, lissencephaly-1 (another protein involved in neuronal migration) and of two intermediate filaments proteins, vimentin and neurofilament-68, in SK-N-SH human neuroblastoma cell line both in control conditions and under retinoic acid treatment. Migration and cell invasiveness studies were performed by wound scratch test and a modified microchemotaxis assay, respectively. Doublecortin is expressed in two cell subtypes considered to be the more aggressive and that show high migration capability and invasiveness. Vimentin expression is excluded by these cells, while lissencephaly-1 and neurofilaments-68 are immunodetected in all the cell subtypes of the SK-N-SH cell line. Treatment with retinoic acid reduces cell migration and invasiveness, down regulates doublecortin and lissencephaly-1 expression and up regulates neurofilament-68 expression. However, some cells that escape from retinoic acid action maintain migration capability and invasiveness and express doublecortin. a) Doublecortin is expressed in human neuroblastoma cells that show high motility and invasiveness; b

  4. Irinotecan drug eluting beads used as a treatment of advanced intra hepatic cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Jean Amede Roch

    2008-10-01

    Full Text Available

    This report describes a 74-year-old male with unresectable intrahepatic cholangiocarcinoma (ICC. However surgical procedure is the only curative treatment, it often seems to be ineffective because of the aggressive behaviour of the disease. The role of systemic chemotherapy in the ICC is undefined with a median survival between 6.43 to 12.17 months obtained by using the combination chemotherapy of gemcitabine with cisplatin. In the present case, we performed a targeted treatment using drug eluting beads (DEB with irinotecan (IRI administered as transarterial-chemoembolization (TACE. After one session, the tumour vascularity decreased significantly at the one month evaluation on computed tomography (CT scan of the liver.  This case report suggested that minimally invasive transcatheter DEB embolization could be a promising, safe and effective treatment for selective patients with unresectable ICC.

  5. Microfabricated physical spatial gradients for investigating cell migration and invasion dynamics.

    Directory of Open Access Journals (Sweden)

    Michael Mak

    Full Text Available We devise a novel assay that introduces micro-architectures into highly confining microchannels to probe the decision making processes of migrating cells. The conditions are meant to mimic the tight spaces in the physiological environment that cancer cells encounter during metastasis within the matrix dense stroma and during intravasation and extravasation through the vascular wall. In this study we use the assay to investigate the relative probabilities of a cell 1 permeating and 2 repolarizing (turning around when it migrates into a spatially confining region. We observe the existence of both states even within a single cell line, indicating phenotypic heterogeneity in cell migration invasiveness and persistence. We also show that varying the spatial gradient of the taper can induce behavioral changes in cells, and different cell types respond differently to spatial changes. Particularly, for bovine aortic endothelial cells (BAECs, higher spatial gradients induce more cells to permeate (60% than lower gradients (12%. Furthermore, highly metastatic breast cancer cells (MDA-MB-231 demonstrate a more invasive and permeative nature (87% than non-metastatic breast epithelial cells (MCF-10A (25%. We examine the migration dynamics of cells in the tapered region and derive characteristic constants that quantify this transition process. Our data indicate that cell response to physical spatial gradients is both cell-type specific and heterogeneous within a cell population, analogous to the behaviors reported to occur during tumor progression. Incorporation of micro-architectures in confined channels enables the probing of migration behaviors specific to defined geometries that mimic in vivo microenvironments.

  6. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth......-transfected cells. The fact that NCAM expression influences growth regulation attributes a pivotal role to this cell adhesion molecule during ontogenesis and tumor development.......A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...

  7. Tumor and Stromal-Based Contributions to Head and Neck Squamous Cell Carcinoma Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Markwell, Steven M.; Weed, Scott A., E-mail: scweed@hsc.wvu.edu [Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 (United States)

    2015-02-27

    Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.

  8. Treatment of hilar cholangiocarcinoma with inserting biliary double stents

    International Nuclear Information System (INIS)

    Jia Guangzhi; Zhang Zidong; Wang Xuejing; Yin Hua; Li Jianming

    2004-01-01

    Objective: To investigate the inserting technique of biliary double stents in treating hilar cholangiocarcinoma. Methods: 6 patients with hilar cholangiocarcinoma (Bismuth IV) were treated by percutaneous transhepatic insertion of biliary stents. Double stents were inserted in each patient. Different inserting methods were adopted according to the branch angles formed by left and right hepatic ducts. Results: The jaundice of all patients alleviated or disappeared obviously after stent implantation. The average difference between post-and pre-operation in the serum total bilirubin level was (104 ± 29) μmol/L (P<0.01). Stent obstruction was found in 2 cases after 4 and 6 months respectively. Conclusion: Double stents implantation is effective for the treatment of hilar cholangiocarcinoma. Beware of the angulation between main hepatic duct and adopting different inserting methods. (authors)

  9. Diagnostic value of MRI for hepatic hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Wang Zhen; Zuo Yujiang; Sun Lihui; Zhou Jian; Shen Bingqi

    2010-01-01

    Objective: To investigate the value of MRI in the diagnosis of hepatic hilar cholangiocarcinoma. Methods: Sixty-four patients with hepatic hilar cholangiocarcinomas confirmed by surgery or pathology underwent MRI using a 1.5-T superconductive MR system including conventional unenhanced MRI, MRCP and dynamic contrast-enhanced MRI with Gd-DTPA. Results: Dilatation of the intrahepatic biliary tree with narrowing, occlusion or filling defects in the hepatic hilar bile ducts was noted in all 64 cases. Unenhanced MR[ showed T 1 - and T 2 -hyperintense hilar masses in 42 patients and was normal in the remaining 22 patients. The hilar masses demonstrated slow, progressive and delayed enhancement patterns. There was enhancement of the thickened bile duct wall with luminal narrowing in the 22 patients without hilar masses. Conclusion: The characteristic MRI findings of enhancing hepatic hilar mass and bile duct wall thickening together with MRCP are valuable for diagnosing hepatic hilar cholangiocarcinomas. (authors)

  10. Imaging and interventions in hilar cholangiocarcinoma: A review

    Science.gov (United States)

    Madhusudhan, Kumble Seetharama; Gamanagatti, Shivanand; Gupta, Arun Kumar

    2015-01-01

    Hilar cholangiocarcinoma is a common malignant tumor of the biliary tree. It has poor prognosis with very low 5-year survival rates. Various imaging modalities are available for detection and staging of the hilar cholangiocarcinoma. Although ultrasonography is the initial investigation of choice, imaging with contrast enhanced computed tomography scan or magnetic resonance imaging is needed prior to management. Surgery is curative wherever possible. Radiological interventions play a role in operable patients in the form of biliary drainage and/or portal vein embolization. In inoperable cases, palliative interventions include biliary drainage, biliary stenting and intra-biliary palliative treatment techniques. Complete knowledge of application of various imaging modalities available and about the possible radiological interventions is important for a radiologist to play a critical role in appropriate management of such patients.We review the various imaging techniques and appearances of hilar cholangiocarcinoma and the possible radiological interventions. PMID:25729485

  11. Radiation therapy in the treatment of hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Jing Jin; Zhai Renyou

    2007-01-01

    The incidence of hilar cholangiocarcinoma is very rare worldwide. Radical resection is the only prognostic factor for long survival in patients with hilar cholangiocarcinoma. Postoperative radiation therapy can improve local control and survival rates for patients with palliative resection, but it remains controversial in patients with radical resection. Biliary drainage can effectively release bile duct obstruction for the majority of patients with locally advanced disease, and may even prolong survival when combined with radiation therapy. Radiation therapy includes extrernal beam therapy alone, external beam therapy with intraluminal brachytheapy and new radiation technique, such as three dimentional conformal therapy and intensity modulated radiation therapy. The propective randomized clinical study is needed for further investigation in the role of combined modality therapy especially for hilar cholangiocarcinoma. (authors)

  12. Andrographolide Induces Autophagic Cell Death and Inhibits Invasion and Metastasis of Human Osteosarcoma Cells in An Autophagy-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2017-11-01

    Full Text Available Background/Aims: Osteosarcoma (OS is the most common primary malignant tumor of bone tissue. Although treatment effectiveness has improved, the OS survival rate has fluctuated in recent years. Andrographolide (AG has been reported to have antitumor activity against a variety of tumors. Our aim was to investigate the effects and potential mechanisms of AG in human osteosarcoma. Methods: Cell viability and morphological changes were assessed by MTT and live/dead assays. Apoptosis was detected using Annexin V-FITC/PI double staining, DAPI, and caspase-3 assays. Autophagy was detected with mRFP-GFP-LC3 adenovirus transfection and western blot. Cell migration and invasion were detected by wound healing assay and Transwell® experiments. Results: AG dose-dependently reduced the viability of osteosarcoma cells. No increase in apoptosis was detected in AG-treated human OS MG-63 and U-2OS cells, and the pan-caspase inhibitor z-VAD did not attenuate AG-induced cell death. However, AG induced autophagy by suppressing PI3K/Akt/mTOR and enhancing JNK signaling pathways. 3-MA and Beclin-1 siRNA could reverse the cytotoxic effects of AG. In addition, AG inhibited the invasion and metastasis of OS, and this effect could be reversed with Beclin-1 siRNA. Conclusion: AG inhibits viability and induces autophagic death in OS cells. AG-induced autophagy inhibits the invasion and metastasis of OS.

  13. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    International Nuclear Information System (INIS)

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-01-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton

  14. Enantioselective Effects of o,p'-DDT on Cell Invasion and Adhesion of Breast Cancer Cells: Chirality in Cancer Development.

    Science.gov (United States)

    He, Xiangming; Dong, Xiaowu; Zou, Dehong; Yu, Yang; Fang, Qunying; Zhang, Quan; Zhao, Meirong

    2015-08-18

    The o,p'-dichlorodiphenyltrichloroethane (DDT) with a chiral center possesses enantioselective estrogenic activity, in which R-(-)-o,p'-DDT exerts a more potent estrogenic effect than S-(+)-o,p'-DDT. Although concern regarding DDT exposure and breast cancer has increased in recent decades, the mode of enantioselective action of o,p'-DDT in breast cancer development is still unknown. Herein, we conducted a systematic study of the effect of o,p'-DDT on stereoselective breast tumor cell progression in a widely used in vitro breast tumor cell model, MCF-7 cells. We demonstrated that R-(-)-o,p'-DDT promoted more cancer cell invasion mediated by the human estrogen receptor (ER) by inducing invasion-promoted genes (matrix metalloproteinase-2 and -9 and human telomerase reverse transcriptase) and inhibiting invasion-inhibited genes (tissue inhibitor of metalloproteinase-1 and -4). Molecular docking verified that the binding affinity between R-(-)-o,p'-DDT and human ER was stronger than that of S-(+)-o,p'-DDT. The enantioselective-induced decrease in cell-to-cell adhesion may involve the downregulation of adhesion-promoted genes (E-cadherin and β-catenin). For the first time, these results reveal that estrogenic-like chiral compounds are of significant concern in the progression of human cancers and that human health risk assessment of chiral chemicals should consider enantioselectivity.

  15. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiangyang [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006 (China); State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Wang, Yao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Liu, Chengmei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Lu, Quqin [Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006 (China); Liu, Tao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Chen, Guoan [Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006 (China); Rao, Hai [Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Luo, Shiwen, E-mail: shiwenluo@ncu.edu.cn [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China)

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  16. Hilar cholangiocarcinoma is pathologically similar to pancreatic duct adenocarcinoma: suggestions of similar background and development.

    Science.gov (United States)

    Nakanuma, Yasuni; Sato, Yasunori

    2014-07-01

    Routine experiences suggest that cholangiocarcinomas (CCAs) show different clinicopathological behaviors along the biliary tree, and hilar CCA apparently resembles pancreatic duct adenocarcinoma (PDAC). Herein, the backgrounds for these similarities were reviewed. While all cases of PDAC, hilar CCA, intrahepatic CCA (ICCA) and CCA components of combined hepatocellular-cholangiocarcinoma (cHC-CCA) were adenocarcinomas, micropapillary patterns and columnar carcinoma cells were common in PDAC and hilar CCA, and trabecular components and cuboidal carcinoma cells were common in ICCA and CCA components of cHC-CCA. Anterior gradient protein-2 and S100P were frequently expressed in perihilar CCA and PDAC, while neural cell adhesion molecule and luminal epithelial membrane antigen were common in CCA components of c-HC-CCA. Pdx1 and Hes1 were frequently and markedly expressed aberrantly in PDAC and perihilar CCA, although their expression was rare and mild in CCA components in cHC-CCA and ICCA. Hilar CCA showed a similar postoperative prognosis to PDAC but differed from ICCA and cHC-CCA. Taken together, hilar CCA may differ from ICCA and CCA components of cHC-CCA but have a similar development to PDAC. These similarities may be explained by the unique anatomical, embryological and reactive nature of the pancreatobiliary tract. Further studies of these intractable malignancies are warranted. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  17. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer.

    Science.gov (United States)

    Yang, Fei; Gao, Jun-Yi; Chen, Hua; Du, Zhen-Hua; Zhang, Xue-Qun; Gao, Wei

    2017-01-01

    Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim) were also detected. We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 μM) and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer.

  18. Suppression of actopaxin impairs hepatocellular carcinoma metastasis through modulation of cell migration and invasion.

    Science.gov (United States)

    Ng, Lui; Tung-Ping Poon, Ronnie; Yau, Simon; Chow, Ariel; Lam, Colin; Li, Hung-Sing; Chung-Cheung Yau, Thomas; Law, Wai-Lun; Pang, Roberta

    2013-08-01

    Early reports suggested that actopaxin, a member of the focal adhesion proteins, regulates cell migration. Here we investigated whether actopaxin is involved in hepatocellular carcinoma (HCC) progression and metastasis. We examined actopaxin expression in human HCC samples using immunohistochemistry and western blotting. The functional and molecular effect of actopaxin was studied in vitro by overexpression in a nonmetastatic HCC cell line, as well as repression in a metastatic cell line. The in vivo effect of actopaxin repression was studied in nonobese diabetic and severe combined immunodeficient mice. We found that actopaxin was frequently overexpressed in human HCC patients and its overexpression positively correlated with tumor size, stage, and metastasis. Actopaxin expression also correlated with the metastatic potential of HCC cell lines. Actopaxin overexpression induced the invasion and migration ability of nonmetastatic HCC cells, whereas down-regulation of actopaxin reverted the invasive phenotypes and metastatic potential of metastatic HCC cells through regulating the protein expression of certain focal adhesion proteins including ILK, PINCH, paxillin, and cdc42, as well as regulating the epithelial-mesenchymal transition pathway. Furthermore, there was a close association between actopaxin and CD29. HCC cells with stronger CD29 expression showed a higher actopaxin level, whereas actopaxin repression attenuated CD29 activity. Finally, actopaxin down-regulation enhanced the chemosensitivity of HCC cells towards oxaliplatin treatment by way of a collective result of suppression of survivin protein, β-catenin, and mammalian target of rapamycin pathways and up-regulation of p53. This study provides concrete evidence of a significant role of actopaxin in HCC progression and metastasis, by way of regulation of cell invasiveness and motility, an epithelial-mesenchymal transition process, and chemosensitivity to cytotoxic drugs. Copyright © 2013 by the

  19. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis.

    Directory of Open Access Journals (Sweden)

    Hiromitsu Ito

    Full Text Available Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs, but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1 was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.

  20. Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion.

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    Full Text Available Gremlin-1, a bone morphogenetic protein (BMP antagonist, is overexpressed in various cancerous tissues but its role in carcinogenesis has not been established. Here, we report that gremlin-1 binds various cancer cell lines and this interaction is inhibited by our newly developed gremlin-1 antibody, GRE1. Gremlin-1 binding to cancer cells was unaffected by the presence of BMP-2, BMP-4, and BMP-7. In addition, the binding was independent of vascular endothelial growth factor receptor-2 (VEGFR2 expression on the cell surface. Addition of gremlin-1 to A549 cells induced a fibroblast-like morphology and decreased E-cadherin expression. In a scratch wound healing assay, A549 cells incubated with gremlin-1 or transfected with gremlin-1 showed increased migration, which was inhibited in the presence of the GRE1 antibody. Gremlin-1 transfected A549 cells also exhibited increased invasiveness as well as an increased growth rate. These effects were also inhibited by the addition of the GRE1 antibody. In conclusion, this study demonstrates that gremlin-1 directly interacts with cancer cells in a BMP- and VEGFR2-independent manner and can induce cell migration, invasion, and proliferation.

  1. Knockdown of ZFR suppresses cell proliferation and invasion of human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Xiaolan Zhao

    Full Text Available BACKGROUND: Zinc finger RNA binding protein (ZFR is involved in the regulation of growth and cancer development. However, little is known about ZFR function in pancreatic cancer. METHODS: Herein, to investigate whether ZFR is involved in tumor growth, Oncomine microarray data was firstly used to evaluate ZFR gene expression in human pancreatic tumors. Then short hairpin RNA (shRNA targeting ZFR was designed and delivered into PANC-1 pancreatic cancer cells to knock down ZFR expression. Cell viability, cell proliferation and cell cycle analysis after ZFR knockdown were determined by MTT, colony forming and FACS, respectively. In addition, cell migration and invasion were assessed using the Transwell system. RESULTS: The expression of ZFR was significantly higher in pancreatic tumors than normal pancreas tissues by Oncomine database analysis. Knockdown of ZFR by shRNA-expressing lentivirus significantly decreased the viability and invasion ability of pancreatic cancer cells. Moreover, FACS analysis showed that knockdown of ZFR in PANC-1 cells caused a significant cell cycle arrest at G0/G1 phase. Furthermore, knockdown of ZFR decreased the levels of CDK2, CDK4, CyclinA and CyclinD1 and enhanced the expression of p27, which has evidenced by qRT-PCR and Western blot analysis. CONCLUSIONS: Knockdown of ZFR might provide a novel alternative to targeted therapy of pancreatic cancer and deserves further investigation.

  2. Siegesbeckia orientalis Extract Inhibits TGFβ1-Induced Migration and Invasion of Endometrial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chi-Chang Chang

    2016-08-01

    Full Text Available Type II endometrial carcinoma typically exhibits aggressive metastasis and results in a poor prognosis. Siegesbeckia orientalis Linne is a traditional Chinese medicinal herb with several medicinal benefits, including the cytotoxicity against various cancers. This study investigates the inhibitory effects of S. orientalis ethanol extract (SOE on the migration and invasion of endometrial cancer cells, which were stimulated by transforming growth factor β (TGFβ. The inhibitory effects were evaluated by determining wound healing and performing the Boyden chamber assay. This study reveals that SOE can inhibit TGFβ1-induced cell wound healing, cell migration, and cell invasion in a dose-dependent manner in RL95-2 and HEC-1A endometrial cancer cells. SOE also reversed the TGFβ1-induced epithelial-mesenchymal transition, including the loss of the cell-cell junction and the lamellipodia-like structures. Western blot analysis revealed that SOE inhibited the phosphorylation of ERK1/2, JNK1/2, and Akt, as well as the expression of MMP-9, MMP-2, and u-PA in RL95-2 cells dose-dependently. The results of this investigation suggest that SOE is a potential anti-metastatic agent against human endometrial tumors.

  3. Risk Factors for Cholangiocarcinoma in Thailand: A Systematic

    Science.gov (United States)

    Kamsa-ard, Siriporn; Kamsa-ard, Supot; Luvira, Vor; Suwanrungruang, Krittika; Vatanasapt, Patravoot; Wiangnon, Surapon

    2018-03-27

    Background and objective: Cholangiocarcinoma remains a serious public health concern in Thailand. While many of the risk factors for cholangiocarcinoma in western countries are well-recognized, it remains unclear whether they are the same in Thailand. We set out to investigate the risk factors for cholangiocarcinoma in Thailand. Methods: Starting March 4, 2016, we reviewed studies found using pre-specified keywords on SCOPUS, Pro Quest Science Direct, PubMed, and online public access catalog of Khon Kaen University. Two review authors independently screened studies for inclusion criteria, extracted data, and assessed the studied Risk of Bias. The Newcastle-Ottawa Scale and the Joanna Briggs Institute Critical Appraisal Tools were used to assess the quality of included studies. The risk effects of factors were estimated as a pooled adjusted odds ratio with a 95% confidence interval. The heterogeneity of results was considered using the I-square, Tau-square and Chi-square statistics. Results: A strong association was found between cholangiocarcinoma and age, Opisthorchis viverrini infection, eating raw cyprinoid fish, family history of cancer, liquor consumption, and taking praziquantel. There was only a mild association found between eating nitrite-containing foods, fresh vegetables, education, smoking behavior, and sex. No association was found between cholangiocarcinoma and eating fermented fish (Pla-ra), northeastern Thai or Chinese sausage, sticky rice, meat, chewing betel nut, or eating fruit. There were two protective factors including fresh vegetables consumption and education attainment. Conclusion: There are unique risk factors of cholangiocarcinoma in Thailand, including age, Opisthorchis viverrini infection, eating raw cyprinoid fish, family history of cancer, liquor consumption, and taking praziquantel. Creative Commons Attribution License

  4. Dielectric spectroscopy for non-invasive monitoring of epithelial cell differentiation within three-dimensional scaffolds

    International Nuclear Information System (INIS)

    Daoud, Jamal; Tabrizian, Maryam; Asami, Koji; Rosenberg, Lawrence

    2012-01-01

    In this study, we introduce a cellular differentiation cellular model based on dielectric spectroscopy that characterizes epithelial differentiation processes. Non-invasive cellular monitoring was achieved within a three-dimensional microenvironment consisting of a cell-containing collagen I gel seeded onto microfabricated scaffolds. In this proof-of-concept investigation, Madin–Darby canine kidney cells were cultured within microfabricated, geometrically controlled scaffolds and allowed us to differentiate to hollow cyst-like structures. This transformation within the three-dimensional environment is monitored and characterized through dielectric spectroscopy while maintaining cell culture in vitro. (paper)

  5. Estrogen Receptor α Is Crucial in Zearalenone-Induced Invasion and Migration of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karolina Kowalska

    2018-02-01

    Full Text Available Zearalenone (ZEA, a mycotoxin produced in the genus Fusarium, binds to estrogen receptors (ER and is therefore regarded as an endocrine disruptor. ZEA has also been found to modulate the proliferation and apoptosis of prostate cancer cells in a dose-dependent manner. This study evaluates whether the effect of a low dose of ZEA (0.1 and 0.001 nM on the invasion and migration of prostate cancer cell line PC3 is associated with ERs expression. The invasion and migration was evaluated by modified Boyden chamber assay, scratch assay, gelatin zymography, Real Time qPCR (RTqPCR and Western blot. The involvement of ERs was evaluated with the selective ER antagonists: estrogen receptor α (ERα antagonist 1,3-bis (4-hydroxyphenyl-4-methyl-5-[4-(2-piperidinylethoxy phenol]-1H-pyrazole dihydrochloride (MPP and estrogen receptor β (ERβ antagonist 4-[2–phenyl-5,7–bis (trifluoromethyl pyrazolo [1,5-a]-pyrimidin-3-yl] phenol (PHTPP. ZEA was found to modulate cell motility dependent on estrogen receptors, particularly ERα. Increased cell migration and invasion were associated with increased MMP-2 and MMP-9 activity as well as the up-regulation of the EMT-associated genes vimentin (VIM, zinc finger E-box-binding homeobox 1/2 (ZEB1/2 and transforming growth factor β 1 (TGFβ1. In conclusion, ZEA might modulate the invasiveness of prostate cancer cells dependently on ERα expression.

  6. DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis.

    Science.gov (United States)

    Tan, Cong; Qiao, Fan; Wei, Ping; Chi, Yayun; Wang, Weige; Ni, Shujuan; Wang, Qifeng; Chen, Tongzhen; Sheng, Weiqi; Du, Xiang; Wang, Lei

    2016-04-01

    DIXDC1 (Dishevelled-Axin domain containing 1) is a DIX (Dishevelled-Axin) domain-possessing protein that promotes colon cancer cell proliferation and increases the invasion and migration ability of non-small-cell lung cancer via the PI3K pathway. As a positive regulator of the Wnt/β-catenin pathway, the biological role of DIXDC1 in human gastric cancer and the relationship between DIXDC1 and the Wnt pathway are unclear. In the current study, the upregulation of DIXDC1 was detected in gastric cancer and was associated with advanced TNM stage cancer, lymph node metastasis, and poor prognosis. We also found that the overexpression of DIXDC1 could promote the invasion and migration of gastric cancer cells. The upregulation of MMPs and the downregulation of E-cadherin were found to be involved in the process. DIXDC1 enhanced β-catenin nuclear accumulation, which activated the Wnt pathway. Additionally, the inhibition of β-catenin in DIXDC1-overexpressing cells reversed the metastasis promotion effects of DIXDC1. These results demonstrate that the expression of DIXDC1 is associated with poor prognosis of gastric cancer patients and that DIXDC1 promotes gastric cancer invasion and metastasis through the activation of the Wnt pathway; E-cadherin and MMPs are also involved in this process. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Putrescine importer PlaP contributes to swarming motility and urothelial cell invasion in Proteus mirabilis.

    Science.gov (United States)

    Kurihara, Shin; Sakai, Yumi; Suzuki, Hideyuki; Muth, Aaron; Phanstiel, Otto; Rather, Philip N

    2013-05-31

    Previously, we reported that the speA gene, encoding arginine decarboxylase, is required for swarming in the urinary tract pathogen Proteus mirabilis. In addition, this previous study suggested that putrescine may act as a cell-to-cell signaling molecule (Sturgill, G., and Rather, P. N. (2004) Mol. Microbiol. 51, 437-446). In this new study, PlaP, a putative putrescine importer, was characterized in P. mirabilis. In a wild-type background, a plaP null mutation resulted in a modest swarming defect and slightly decreased levels of intracellular putrescine. In a P. mirabilis speA mutant with greatly reduced levels of intracellular putrescine, plaP was required for the putrescine-dependent rescue of swarming motility. When a speA/plaP double mutant was grown in the presence of extracellular putrescine, the intracellular levels of putrescine were greatly reduced compared with the speA mutant alone, indicating that PlaP functioned as the primary putrescine importer. In urothelial cell invasion assays, a speA mutant exhibited a 50% reduction in invasion when compared with wild type, and this defect could be restored by putrescine in a PlaP-dependent manner. The putrescine analog Triamide-44 partially inhibited the uptake of putrescine by PlaP and decreased both putrescine stimulated swarming and urothelial cell invasion in a speA mutant.

  8. Gemifloxacin, a Fluoroquinolone Antimicrobial Drug, Inhibits Migration and Invasion of Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jung-Yu Kan

    2013-01-01

    Full Text Available Gemifloxacin (GMF is an orally administered broad-spectrum fluoroquinolone antimicrobial agent used to treat acute bacterial exacerbation of pneumonia and bronchitis. Although fluoroquinolone antibiotics have also been found to have anti-inflammatory and anticancer effects, studies on the effect of GMF on treating colon cancer have been relatively rare. To the best of our knowledge, this is the first report to describe the antimetastasis activities of GMF in colon cancer and the possible mechanisms involved. Results have shown that GMF inhibits the migration and invasion of colon cancer SW620 and LoVo cells and causes epithelial mesenchymal transition (EMT. In addition, GMF suppresses the activation of NF-κB and cell migration and invasion induced by TNF-α and inhibits the TAK1/TAB2 interaction, resulting in decreased IκB phosphorylation and NF-κB nuclear translocation in SW620 cells. Furthermore, Snail, a critical transcriptional factor of EMT, was downregulated after GMF treatment. Overexpression of Snail by cDNA transfection significantly decreases the inhibitory effect of GMF on EMT and cell migration and invasion. In conclusion, GMF may be a novel anticancer agent for the treatment of metastasis in colon cancer.

  9. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    International Nuclear Information System (INIS)

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Memmel, Simon; Katzer, Astrid; Hartmann, Susanne; Krohne, Georg; Zimmermann, Heiko; Scholz, Claus-Jürgen; Polat, Bülent; Flentje, Michael

    2015-01-01

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  10. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  11. Use of Ulex europaeus agglutinin I (UEAI) to distinguish vascular and "pseudovascular" invasion in transitional cell carcinoma of bladder with lamina propria invasion.

    Science.gov (United States)

    Larsen, M P; Steinberg, G D; Brendler, C B; Epstein, J I

    1990-01-01

    We used Ulex europaeus agglutinin I (UEAI)-immunoperoxidase staining of endothelium to study the accuracy of hematoxylin and eosin (H&E) diagnosis, occurrence, and significance of lymphvascular invasion in transitional cell carcinoma (TCC) of the bladder invading the lamina propria (Stage T1). Original histologic slides from cases (1967 to 1985) with and without vascular invasion were destained and restained with UEAI-immunoperoxidase. Only 5 of 36 biopsies originally diagnosed with lymphvascular invasion had tumor nests within endothelium-lined spaces. The 31 negative biopsies had extensive retraction artifacts lined by connective tissue and fibroblasts around tumor nests. Thirty-five control biopsies remained negative for lymphvascular invasion. Clinical follow-up of the five patients with proven lymphvascular invasion found three without progression of disease 3 to 10 yr postbiopsy, one dead of a local recurrence of TCC 1.67 yr postbiopsy, and one lost to follow-up. Based on this study, we feel that lymphvascular invasion by TCC in Stage T1 tumors is unusual, is frequently misdiagnosed on H&E stain, and does not necessarily portend a poor prognosis.

  12. Interstitial Fluid Flow Increases Hepatocellular Carcinoma Cell Invasion through CXCR4/CXCL12 and MEK/ERK Signaling

    Science.gov (United States)

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer (~80%), and it is one of the few cancer types with rising incidence in the United States. This highly invasive cancer is very difficult to detect until its later stages, resulting in limited treatment options and low survival rates. There is a dearth of knowledge regarding the mechanisms associated with the effects of biomechanical forces such as interstitial fluid flow (IFF) on hepatocellular carcinoma invasion. We hypothesized that interstitial fluid flow enhanced hepatocellular carcinoma cell invasion through chemokine-mediated autologous chemotaxis. Utilizing a 3D in vitro invasion assay, we demonstrated that interstitial fluid flow promoted invasion of hepatocellular carcinoma derived cell lines. Furthermore, we showed that autologous chemotaxis influences this interstitial fluid flow-induced invasion of hepatocellular carcinoma derived cell lines via the C-X-C chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12) signaling axis. We also demonstrated that mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling affects interstitial fluid flow-induced invasion; however, this pathway was separate from CXCR4/CXCL12 signaling. This study demonstrates, for the first time, the potential role of interstitial fluid flow in hepatocellular carcinoma invasion. Uncovering the mechanisms that control hepatocellular carcinoma invasion will aid in enhancing current liver cancer therapies and provide better treatment options for patients. PMID:26560447

  13. Combining biological agents and chemotherapy in the treatment of cholangiocarcinoma

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Jakobsen, Anders

    2011-01-01

    is not always possible. Chemotherapy is effective and the combination of cisplatin and gemcitabine is considered a standard treatment of inoperable cholangiocarcinoma. Biological targeted treatment to date has minor effect when given as monotherapy, but some of the drugs hold promise as an adjunct...... to chemotherapy. It should, however, be noted that most of the trials are based on few patients, and thus far the literature does not allow for a conclusion as to the role of biological treatment on cholangiocarcinoma. This situation calls for well-designed randomized trials, and international cooperation as well...

  14. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M.; Liu, Jinsong; Chadee, Deborah N.

    2012-01-01

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: ► Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. ► MLK3 is required for MMP expression and activity in ovarian cancer cells. ► MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. ► MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  15. Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Dai W

    2016-04-01

    Full Text Available Wei Dai,1,2 Changfu Sun,1,2 Shaohui Huang,1,2 Qing Zhou1,21Department of Oromaxillofacial-Head and Neck Surgery, 2Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People’s Republic of ChinaAbstract: Carvacrol, a component of thyme oil, as a novel antitumor agent, has been implicated in several types of cancer cells. However, the mechanisms underlying the effect of carvacrol in human oral squamous cell carcinoma (OSCC remain unclear. Here, we report that carvacrol significantly inhibits tumor cell proliferation, metastasis and invasion, and induces apoptosis in OSCC. Our results demonstrated that the molecular mechanisms of the effect of carvacrol in Tca-8113 induces G1/S cell cycle arrest through downregulation of CDK regulator CCND1 and CDK4, and upregulation of CDK inhibitor P21. Further analysis demonstrated that carvacrol also inhibited Tca-8113 cells’ clone formation in clonogenic cell survival assay. Student’s t-test (two-tailed was used to compare differences between groups, and the significance level was P<0.01. Then, treatment of Tca-8113 cells with carvacrol resulted in downregulation of Bcl-2, Cox2, and upregulation of Bax. Carvacrol significantly inhibited the migration and invasion of human OSCC cells by blocking the phosphorylation of FAK and MMP-9 and MMP-2, transcription factor ZEB1, and β-catenin proteins’ expression. Taken together, these results provide novel insights into the mechanism of carvacrol and suggest potential therapeutic strategies for human OSCC.Keywords: carvacrol, proliferation, metastasis and invasion, oral squamous cell carcinoma

  16. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion.

    Science.gov (United States)

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka; Tonami, Hisao

    2017-01-01

    Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion.

  17. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joe Tien

    Full Text Available This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.

  18. Verrucoid Variant of Invasive Squamous Cell Carcinoma in Oral Submucous Fibrosis: A Clinicopathological Challenge.

    Science.gov (United States)

    Ramani, Priya; Krithika, C; Ananthalakshmi, R; Singaram, Mamta; Jagdish, Praveena; Janardhanan, Sunitha; Jeevakarunyam, Sathiyajeeva

    2016-11-04

    Verrucous carcinoma (VC) is an exophytic, low-grade, well-differentiated variant of squamous cell carcinoma. It is described as a lesion appearing in the sixth or seventh decade of life that has minimal aggressive potential and, in long-standing cases, has been shown to transform into squamous cell carcinoma. Oral submucous fibrosis (OSMF) is a potentially malignant disorder, and about one-third of the affected population develop oral squamous cell carcinoma. The histopathological diagnosis of verrucous carcinoma is challenging, and the interpretation of early squamous cell carcinoma requires immense experience. Here we present a rare case of a 24-year-old male with OSMF transforming to verrucous carcinoma with invasive squamous cell carcinoma. Even though the case had a straightforward clinical diagnosis, the serial sectioning done for pathological diagnosis disclosed the squamous cell carcinoma.

  19. Effect of NeuroD gene silencing on the migration and invasion of human pancreatic cancer cells PANC-1.

    Science.gov (United States)

    Wang, Yang; Su, Dong Wei; Gao, Li; Ding, Gui Ling; Ni, Can Rong; Zhu, Ming Hua

    2014-07-01

    The aim of this study is to investigate the influence of Lenti-EGFP-NeuroD-miR, RNAi lentiviral expression vector, on the expression level of NeuroD and migration, and invasion of PANC-1 cell line. PANC-1 cells were cultured and cotransfected with Lenti-EGFP-NeuroD-miR and Lenti-GFP. The infection rate of lentivirus was determined by fluorescence. The interfering effection by the expression of NeuroD mRNA in PANC-1 cells was analyzed by real-time PCR after transfected. Biological behavior of PANC-1 cells transinfected was observed, and the migration and invasion were studied by transwell assay. Intrapancreatic allografts model in nude mice was established to observe the effects of NeuroD on tumorigenesis, tumor growth, and invasion in vivo. The expression of NeuroD mRNA decreased significantly after RNAi lentivirus transinfecting PANC-1 cell. The cell's migration and invasion ability decreased obviously as soon as down regulate of NeuroD in PANC-1 cells. Comparing with control group, the tumors were smaller in size and the invasiveness was inhibited after 8 weeks intrapancreatic allografts in nude mice. Lenti-EGFP-NeuroD-miR transfected into PANC-1 cells shows a stable, effective, and especial blocking expression of NeuroD in mRNA level. The RNAi of lentiviral vector target NeuroD can reduce the migration and invasion abilities of PANC-1 cells.

  20. Targets and probes for non-invasive imaging of β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Jodal, Andreas; Behe, Martin [Paul Scherrer Institut, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); Schibli, Roger [Paul Scherrer Institut, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2017-04-15

    β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications. (orig.)

  1. Targets and probes for non-invasive imaging of β-cells

    International Nuclear Information System (INIS)

    Jodal, Andreas; Behe, Martin; Schibli, Roger

    2017-01-01

    β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications. (orig.)