WorldWideScience

Sample records for chokokoritsu taiyo denchi

  1. Technological development for super-high efficiency solar cells. Technological development for super-high efficiency singlecrystalline silicon solar cells (super-high efficiency singlecrystalline Si solar cells); Chokokoritsu taiyo denchi no gijutsu kaihatsu. Chokokoritsu tankessho silicon taiyo denchi no gijutsu kaihatsu (chokokoritsu tankessho silicon taiyo denchi cell no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development of super-high efficiency singlecrystalline silicon solar cells in fiscal 1994. (1) On development of high-performance light receiving layer, the fine electrode for receiving surfaces was designed to reduce serial resistance, and the high-quality oxide passivation film was studied to reduce surface recombination velocity. (2) On development of forming technology of back heterojunction, the high-quality cell with B-doped fine crystalline Si film on its back was studied by heat treatment of the fine crystalline Si film, and the cell structure with high back reflectance of light was also studied. (3) On analysis for high-efficiency cells, the relation between the back recombination velocity at the interface between p-type substrate and back passivation film, and the internal collection efficiency as probe light was injected from the back, was calculated by numerical simulation. As a result, the cell back recombination velocity could be evaluated by measuring the spectral internal collection efficiency to back injection. 15 figs., 6 tabs.

  2. Technological development for super-high efficiency solar cells. Survey on the commercialization on analysis; Chokokoritsu taiyo denchi no gijutsu kaihatsu. Jitsuyoka kaiseki ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on analysis of super-high efficiency solar cells for practical use in fiscal 1994. (1) On the survey on crystalline compound solar cells, it was pointed out that the present study target is III-V compound semiconductor solar cell, and efficiencies of 36-39% are theoretically expected by use of two-junction cells. (2) On structure of super-high efficiency solar cells of 40%, selection of upper and lower cell materials for multi-junction cells, high-efficiency tandem Si solar cells, and the merit and possibility of light collection operation were surveyed, and their issues were discussed. (3) On physical properties of mixed crystalline semiconductors and characteristic evaluation of solar cells, impurities, trap center, minority carrier life, and applicability of supper lattice structure to high-efficiency solar cells were surveyed. (4) On fabrication technology of compound semiconductor solar cells, various problems of and approaches to electrode formation and antireflection film technologies, the meaning and issues of thin film substrate technology and continuous process, trial calculation of costs, safety, and resource problem were surveyed.

  3. Technological development for super-high efficiency solar cells. Technological development for crystalline compound solar cells (high-efficiency III-V tandem solar cells); Chokokoritsu taiyo denchi no gijutsu kaihatsu. Kessho kagobutsu taiyo denchi no gijutsu kaihatsu (III-V zoku kagobutsu handotai taiyo denchi no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development of III-V compound semiconductor solar cells in fiscal 1994. (1) On development of epitaxial growth technology of lattice mismatching systems, the optimum structure of InGaAs strain intermediate layers was studied for reducing a dislocation density by lattice mismatching of GaAs layer grown on Si substrate and difference in thermal expansion coefficient. The effect of strain layer on dislocation reduction was found only at 250dyne/cm in strain energy. Growth of GaAs layers on the Si substrate treated by hydrofluoric acid at low temperature was attempted by MBE method. As a dislocation distribution was controlled by laying different atoms at hetero-interface, the dislocation density of growing layer surfaces decreased by concentration of dislocation at hetero-interface. (2) On development of high-efficiency tandem cell structure, tunnel junction characteristics, cell formation process and optimum design method of lattice matching tandem cells were studied, while thin film cell formation was basically studied for lattice mismatching tandem cells. 45 figs., 8 tabs.

  4. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for development of extra-high efficiency solar cells (fundamental research on extra-high efficiency Si solar cells); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Chokokoritsu taiyo denchi no gijutsu kaihatsu no tame no kaiseki hyoka (chokokoritsu silicon taiyo denchi gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, T.; Suzuki, E.; Ishikawa, K.; Takato, H.; Yui, N.; Shimokawa, R. [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for analysis and evaluation for development of extra-high efficiency silicon solar cells. It is necessary for development of extra-high efficiency Si solar cells to extend as far as possible service life of minority carriers and to develop the evaluation techniques. Noting photoluminescence (PL) observable even with Si, the method of evaluating characteristics of minority carriers, which are not limited in samples, is developed to experimentally determine their service life from transitional response of the PL characteristics. Si has an extremely low quantum effect, because it is an indirect transitional semiconductor, and needs measurement of very high sensitivity. A rapid heat annealing apparatus and others to generate carriers in the infrared and ultraviolet regions are provided in consideration that these are possible means to increase efficiency. These possibilities will be pursued by developing the annealing techniques. 1 fig.

  5. Technological development for super-high efficiency solar cells. Technological development of solar-high efficiency singlecrystalline silicon solar cells (high quality singlecrystalline silicon substrates); Chokokoritsu taiyo denchi no gijutsu kaihatsu. Chokokoritsu tankessho silicon taiyo denchi no gijutsu kaihatsu (kohinshitsu tankessho silicon kiban no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development for high quality efficiency singlecrystalline silicon substrates in fiscal 1994. (1) On electromagnetic casting/once FZ bath method, a Si single crystal of 600mm long was successfully obtained by improvement of power source frequency and furnace parts. High carbon content resulted in no single crystal including solids. In undoped electromagnetic casting ingots, resistivities over 1500ohm-cm were obtained because of effective preventive measures from contaminants. (2) On electromagnetic melting CZ method, since vibration and temperature control of melt surface by magnetic shield was insufficient for stable pulling of single crystals, its practical use was hopeless. (3) On electron beam melting CZ method, a Si single crystal of 25mm in diameter was obtained by preventive measures from evaporation of Si and influence of deposits, and improved uniform deposition distribution in a furnace. The oscillation circuit constant of power source, and water-cooling copper crucible structure were also analyzed for the optimum design of electromagnetic melting furnaces. 3 figs., 1 tab.

  6. Technological development for super-high efficiency solar cells. Technological development for crystalline compound solar cells (research and development of composite materials on solar cells under microgravity environment); Chokokoritsu taiyo denchi no gijutsu kaihatsu. Kessho kagobutsu taiyo denchi no gijutsu kaihatsu (bisho juryoku kankyo wo riyoshita taiyo denchiyo zairyo kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on development of composite materials for solar cells under microgravity environment in fiscal 1994. (1) On a thin film capillary method, 26 experiments of GaSb thin film crystal growth were conducted using the especially prepared high-accuracy electric furnace under microgravity. The wettability of thin film crystals was improved by refining equipment. Rhombus crystal planes and large crystal grains were observed in GaSb thin film crystals prepared under microgravity. (2) On a liquid phase method, the effect of the gravity on crystal structure and grain morphology was studied for synthesis of CdS fine grains. (3) On technological development of composite materials, the solidification experiment of Cu-In-Se melt was conducted under short time microgravity of 10{sup -4}g for 10 sec. As a result, more uniform texture and more high crystallinity were obtained under microgravity, and In in melt was concentrated by surface tension effect. It was suggested that high-quality CIS thin films will be obtained by Se doping into Cu-In composite films under microgravity environment.

  7. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for development of extra-high efficiency solar cells (fundamental research on extra-high efficiency III-V compound semiconductor tandem solar cells); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Chokokoritsu taiyo denchi no gijutsu kaihatsu no tame no kaiseki hyoka (chokokoritsu III-V zoku kagobutsu taiyo denchi gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, T.; Kawanami, H.; Sakata, I.; Nagai, K.; Matsumoto, K.; Miki, K. [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for development of extra-high efficiency III-V compound semiconductor tandem solar cells. Heteroepitaxial structures of compound semiconductors, such as GaAs, on silicon substrates are analyzed and evaluated by EXAFS, Raman and RHEED for the initial stage of the film growth and heterointerfaces. The device capable of in-situ observation of the growing surface structures during the period of heteroepitaxial film growth is introduced, to investigate the effects of rise-up and initial growth conditions on defects. The effects of atomic hydrogen on growth of a GaAs film on a silicon substrate are investigated from photoluminescence and solar cell characteristics, to confirm the effects of reducing defects. Heteroepitaxial growth of InGaP, which has the optimum band width for forming multi-junction silicon solar cells, on a silicon substrate is investigated, to find that an interfacial buffer layer is necessary to form a good film. 2 figs.

  8. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko; Matsumoto, Hitoshi; Komatsu, Yasumitsu; Shirai, Sadaharu.

    1989-09-29

    In the solar cell module of this invention, such junctions as CdS/CdTe or CdS/CuInSe {sub 2} are contained as a photoelectromotive force part coexists with air in a closed space which consists of glass, metal parts and a bonding resin layer; the photoelectromotive force part is coated either with a fluorine resin or a silicone resin. The fluorine resin contains a fundamental skeleton of an alternative copolymer of fluoroolefin and a hydrocarbon-based vinyl monomer; the silicone resin has three types, i.e., addition-reacted, condensated or UV-curing type, and the released oxygen is sealed in the closed space. The resin layer which adheres the glass and the metal plate is a thermoplastic resin which is polyethylene modified by copolymerization of acid anhydride. By this, the reliability of the solar cell module was enhanced. 3 figs.

  9. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko.

    1990-01-24

    This invention concerns a module frame of solar cell and a solar cell module using this frame. In particular, it concerns a frame and a module useful for the CdS/CdTe or CdS/CuInSe {sub 2} based cell. In the existing solar cell module, sealant is packed in between the edges of a glass substrate, a resin layer and a back protective thin film, etc. and a grooved frame of U-shaped section. For the sealant, silicon based resin and butyl rubber based resin are used many times, but either resin has defects such as their overflow from the module structure. In order to solve these defects, this invention proposes to provide stair-shaped protrusions along the four sides of the bottom of the box frame (herein after called the lower frame) of the module and at the same time, provide a groove for pooling the sealant at the portion where such protrusion meets the side wall, furthermore to provide depressions for pooling the sealant at the upper edge inside the side wall of the lower frame or to punch holes at the corners of the bottom of the lower frame. 9 figs.

  10. Achievement report for fiscal 1997 on the technological development for practical application of a solar energy power generation system. Development of technology to manufacture ultra-high efficiency crystal compound solar cells; 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The present research is intended to develop hetero-epitaxy technology for compound semiconductors on silicon substrates, and hetero-epitaxy technology for grid mismatch between III-V family compound semiconductors, and realize high-efficiency solar cells on silicon substrates. Based on the InP-based etching using a reactive ion etching device, etching conditions suitable for contact layer removal and element separation were obtained. The InP substrate etched under the optimized condition was found etched ideally. Test samples were made, which use a GaAs layer grown at high V/III ratio as the buffer layer, and its effect on crystallization performance was investigated. As a result, it was found that making the V/III ratio high can achieve reduction in defect density and improvement in crystallization performance. A three-stage growth method was used to improve efficiency of GaAs/Si cells, and heat treatment temperature was optimized for an attempt of improving the cell efficiency. It was revealed that rise in the open terminal voltage contributes to improving the cell characteristics at annealing temperatures higher than 950 degrees C or higher, which has been used on a trial basis during this fiscal year. (NEDO)

  11. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for extra-high efficiency solar cells (research on new concentrator modules); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Chokokoritsu taiyo denchi no gijutsu kaihatsu no tame no kaiseki hyoka (shingata shuko module)

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, J.; Sakuta, K.; Sawada, S.; Yaoita, A. [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for analysis and evaluation of concentrator modules for extra-high efficiency solar cells. The outdoor exposure tests have been under way for 3 years for fluorescent plates, as part of the research program for development of materials and elementary techniques, and essentially no degradation has been observed by the perylene pigment test. Coupling of the fluorescent concentrator and solar cell units is investigated for the coupling position and method, to theoretically analyze geometrical coupling efficiency, where they are coupled at the bottom faces in consideration of easiness of module fabrication. It is demonstrated that a high coupling efficiency can be realized when the cell is sufficiently wide relative to thickness of the fluorescent plate. The coupling method is experimentally examined using transparent silicon gel. A prototype module having the same size as the commercial module (420mm by 960mm) is made on a trial basis, where a total of nine 20mm-thick cells are cut out of a single-crystalline silicon solar cell, 100mm by 100mm in size, and are connected to concentrators at the bottom faces. It shows 2.3 times increased output by the test using a large-area solar simulator. 2 figs.

  12. Compound semiconductor solar cell; Kagakubutsu handotai taiyo denchi

    Energy Technology Data Exchange (ETDEWEB)

    Kumazawa, S.; Hanafusa, A.; Murosono, M. [Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan)

    1997-12-22

    In the compound semiconductor solar cell, SnO2: F film is employed as the transparent conductive film like in amorphous silicon solar cell. However, doping the SnO2 film with fluorine lowers the optical transmission. In the invented compound semiconductor solar cell, highly transparent tin oxide without any dopant is employed. In this way, the short circuit current density of solar cell is increased, resulting in solar cell with high conversion efficiency. Employing SnO2 film which has so uneven thickness that the difference in thickness between convex part and concave part varies in a range of 5 nm - 100 nm increases the conversion efficiency. The increase in conversion efficiency is thought to be attributed to the absorption of light which is once reflected at some part of the interface between the SnO2 film and n-type semiconductor takes place at the other part of the interface because of ruggedness of the interface. Laminating a thick film (as thick as over 200 nm) consisting of zinc oxide, or indium oxide, or ITO on the SnO2 film increases furthermore the conversion efficiency. 2 figs., 2 tabs.

  13. Solar cell module and its manufacturing process. Taiyo denchi module oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko.

    1990-01-12

    The reason behind the high power costs of solar cells is expensiveness of solar cell element devices and its modules, and efforts to lower the costs of the former have so far been made, but the same efforts are necessary for the latter too. Concerning CdS/CdTe or CdS/CuInSe {sub 2} solar cells, when the oxygen concentration in the atmosphere available around the element device becomes less, deterioration of its performance occurs. Heretofore, concerning the above two kinds of solar cell modules, a stress was placed on prevention of infiltration of water into the element device and no concern has been paid to the effect of oxygen. Consequently, several issues have remained unsolved like alteration of crude material around the element of module with material which does not react with oxygen or absorb it. In view of the above, this invention proposes to make a solar cell module of the structure that thermosetting resin is set at the peripheral blank part of the substrate with no formation of solar cell element and a box with a flange is applied to that part in the heated and pressurized condition at the time of making protection of the back of the CdS/CdTe or CdS/CuInSe {sub 2} solar cell element device. 7 figs.

  14. Manufacture method of a solar cell. Taiyo denchi no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, S.; Hanabusa, A.; Arita, T.; Murosono, M.

    1993-12-24

    Conventional manufacture methods of a CdS/CdTe solar cell have problems that a blurred layer of CdTe printing and a redeposition layer of CdTe firing exist at a CdS contact surface and the contact width between the CdS film and its electrode AgIn film is required to be larger than 0.30 mm in order to reduce the contact resistance and to give a highly efficient solar cell. This invention aims to provide a manufacture method of a solar cell in which a CdS film of the window layer and a CdTe film of the optical absorption layer are stacked successively followed by the formation of a carbon film as an acceptor material on the CdTe film, and the surface of the CdS film is treated by laser irradiation by the use of a mask of the carbon film. Consequently, a clean surface is obtained between the CdS film and the electrode AgIn film so as to reduce the contact resistance and the contact width between the CdS film and the AgIn film can be reduced so that a highly efficient solar cell can be produced. 5 figs.

  15. Production method of thin film solar cell; Hakumaku taiyo denchi no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Oki, K.; Watanabe, T.; Matsui, M.

    1996-01-23

    This invention relates to the film formation of chalcopyrite type compound semiconductor used for thin film solar cell. In the case of CuInS2 thin film, heteromorphic phases such as CuIn5S8, Cu2S, and In2S3 are formed on the top surface together with the CuInS2 phase, resulting in the decrease in junction property when n-type semiconductor layer such as CdS layer is formed on it. According to the invention, p-type semiconductor layer made of chalcopyrite type compound semiconductor is dipped into an ammonia water before being laminated with n-type semiconductor layer. Although higher concentration and higher temperature of the ammonia water accelerates the heteromorphic phase film removal velocity, it also gives rise to higher evaporation rate of ammonia. The preferable concentration and temperature are, therefore, 0.01 - 50% and 5 - 80{degree}C, respectively. In this way, the chalcopyrite type compound semiconductor thin film free from heteromorphic phases on its surface can be produced. The thin film solar cell produced by using such thin film has a high conversion efficiency because of a good junction property with n-type semiconductor. 1 fig.

  16. Application of flexible photovoltaic modules to building material; Flexible taiyo denchi module no kenzai eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1998-01-31

    This paper describes the structure and features of flexible photovoltaic modules and their application to power generation systems. Formed on a plastic film with a thickness of about 50 {mu} m is a solar cell layer with a thcikness of about 1 {mu} m, composed of a metal electrode, an a-Si layer, and a transparent electrode. In order to suppress photo-deterioration, p-i-n junctions piled in two steps, or a so-called tandem structure was adopted for one solar cell to generate an open voltage of about 1.8V. An a-Si solar cell can be manufactured in large area by using a film making technology which uses an air phase reaction referred to as plasma CVD. In addition, the solar cell can be divided into a large number of solar cells to form series connection. An integrated structure using a plastic film for a substrate is coined the SCAF structure. A stock of modules made in a belt form can be cut into sizes as required by particular applications. This paper introduces the solar roofing system developed jointly with Misawa Home Corporation among the NEDO studies, a double-affixing system and installation of the system on a ternary curved surface. 2 refs., 6 figs., 1 tab.

  17. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkahshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Corp., Tokyo (Japan)

    1997-11-25

    Optimal operation control was discussed on a forced-circulation solar water heater using solar cells not only as the power supply of a heat collecting pump, but also for controlling operation of the heat collecting pump. With this system, when the amount of power generated by solar cells reaches a sufficient level for operating the heat collecting pump, the heat collecting pump starts operation, wherein the heat collecting medium circulates in the system. The discussion was given by using simulation based on experimental expressions such as the relation expression between insolation and heat collecting medium flow rate as derived from the result of the system`s heat collecting performance test. As a result, the following conclusions were obtained: optimal insolation for activating the discussed system is from 50 to 100 W/m {sup 2}, and the heat collected within this range is within -1.5% of the collected heat amount at an optimum value; optimal activating insolation for the case of 1000 to 2000 W/m {sup 2} with low daily cumulative insolation is from 0 to 50 W/m {sup 2}, whereas the optimal activating insolation amount increases as the daily cumulative insolation amount increases; and the optimal activating insolation amount increases as water to be supplied requires higher temperature. 1 ref., 17 figs., 2 tabs.

  18. Stabilized efficiency of stacked a-Si solar cell; Sekisogata a-Si taiyo denchi no anteika koritsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahisa, K.; Kojima, T.; Nakamura, K.; Koyanagi, T.; Yanagisawa, T. [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Different types of tests combining light and temperature were carried out in a laboratory on predicting long-term performance of stacked amorphous silicon solar cells. Cell terminals were left open, xenon was used as an irradiation light source, and cell temperature was controlled within {+-} 2 degC of the setting. The result of the experiment may be summarized as follows: with regard to the deterioration characteristics, the speed in which the efficiency changes reached a maximum within 10 hours, and thereafter the change has slowed down gradually in the case of temperature at 50 degC; in the case of 25 degC, the maximization is reached between 500 and 1000 hours; the stabilization efficiency turns out to be a pessimistic value according to the saturated value derived from an experimental expression, hence the value would have to be expressed by specifying cell temperatures, light intensities and elapsed time; the minimum value of seasonal variation may be estimated at about 85% as a pessimistic value; for recovery characteristics, the saturated value for the recovery tends to become lower as the lower the value immediately before the recovery; and if the light intensity is varied, the deterioration characteristic shifts to that at an individual light intensity. 4 refs., 11 figs., 2 tabs.

  19. On practicality of a hybrid car with solar cells; Taiyo denchi wo tosaishita hybrid car no jitsuyosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Nagayoshi, H.; Kamisako, K. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    The paper stated a development of a hybrid car which is a parallel type with gasoline engine and electric motor as driving source (connecting each according to the situation) and is also equipped with solar cells. Specifications are gasoline engine of 1200cc, induction motor of 5.5kW, lead battery of 288V and 7.2kWh, monocrystal silicon solar cells of 180W maximum output, and body weight of 1100kg. The rear wheel is driven by electric motor, and the front wheel by gasoline engine. The car is loaded with battery charge use solar cells on hood and roof. To enhance cleaning degree, 1.6kW solar cells are installed as an installed power system and used for battery charge. Even by an electric motor with output less than that of the usual electric car, harmful exhaust gas emitted in start-up can be controlled. This is because the electric motor can be used in accelerating. It was confirmed that the power required for it could be supplied by solar cells installed on the car. The hybrid car is practically useful for prevention of local air pollution. 5 refs., 4 figs., 2 tabs.

  20. Influence of spectral solar radiation to the generating power of photovoltaic module; Taiyo denchi shutsuryoku eno taiyoko supekutoru eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Minaki, S.; Ishihara, Y.; Todaka, T.; Harada, K. [Doshisha University, Kyoto (Japan); Oshiro, T.; Nakamura, H. [Japan quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    As to the influence of spectral solar radiation to generating power of solar cells, a study was conducted from the aspects of season, time zone, intensity of solar radiation, etc. In the study, spectral responsive variation correction coefficients were introduced as evaluation values expressing the influence of spectral solar radiation. For the spectral distribution, an all sky spectral pyranometer by wavelength was used, and data were used which were obtained in the measurement in experimental facilities of the solar techno center. Concerning solar cell relative spectral sensitivity values, used were relative spectral sensitivity values of monocrystal and amorphous standard solar cells to the short-circuit current. Spectral response variation correction coefficients are coefficients correcting variations in conversion efficiency of solar cells due to changes in the spectral distribution. The changes of spectral responsive variation correction coefficients were studied using data obtained during April 1994 and March 1996. As a result, it was found that the coefficients showed large changes in summer and small ones in winter and that amorphous solar cells indicate this trend conspicuously. 3 refs., 6 figs., 3 tabs.

  1. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkanshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Resources Co. Ltd., Shizuoka (Japan)

    1996-10-27

    For the purpose of satisfying demands for qualitative improvement on tapwater temperature and pressure, an indirect-type solar water heater using solar cells, in which a closed type hot water storage tank connected directly to the water supply is integrated with a solar collector, was examined for its characteristics and performance. The heat collecting medium is a water solution of polypropylene glycol, which circulates through the solar collector pump, cistern, solar collector, and heat exchanger (hot water storage tank). The results of the test are summarized below. When comparison is made between the two solar collector pump control methods, the solar cells direct connection method and the differential thermo method utilizing temperature difference between the solar collector and the hot water storage tank, they are alike in collecting heat on clear days, but on cloudy days the latter collects 5% more than the former. In winter, when the heat exchanger heat transfer area is 0.4m{sup 2} large, a further increase in the area improves but a little the heat collecting efficiency. An increase in the medium flow rate and temperature, or in the Reynolds number, enhances the heat collecting efficiency. 13 figs., 6 tabs.

  2. Estimation of the charge quantity from solar cell to battery; Taiyo denchi ni yoru chikudenchi eno juden yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, K.; Nishitani, M. [Daiichi University, College of Technology, Kagoshima (Japan)

    1996-10-27

    In performing an experiment of running a small electric vehicle by installing solar cells in it and by charging the storage battery at a specific voltage, an estimation was made on the charge quantity to the battery for each solar altitude and inclination of a module at different hours. The solar altitude was determined at Daiichi University, College of Technology, according to the month and the time of day from a formula using day-declination and time equation of a chronological table of science. The quantity of global solar radiation was determined by resolving the solar radiation into its direct and diffuse components on the basis of the extra-terrestrial solar radiation quantity with the change in radius vector taken into consideration; and then, the global solar radiation on the inclined face was obtained from the angle of inclination and incidence. On the roof of a Daiichi University building, solar cell modules were installed facing north and south at 0{degree}, 30{degree}, 45{degree}, 60{degree} and 90{degree} each, so that a short-circuit current was measured for each differently inclined angle. As a result of the experiment, shown in an regression formula is a relation between the temperature conversion value of the maximum output of the solar cell at the standard temperature of 25{degree}C and the quantity of solar radiation on the inclined surface. Consequently, it enabled the prediction of a charging quantity, in the case of running a small vehicle with solar cells installed, from the quantity of solar radiation on the inclined surface in the clear weather. 2 refs., 4 figs., 2 tabs.

  3. Manufacture method of CuInSe sub 2 solar cell. CuInSe sub 2 taiyo denchi no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y. (Fuji Electric Co. Ltd., Tokyo (Japan))

    1992-04-28

    Energy conversion efficiency of CdS/CuInSe{sub 2} solar cell is very sensitive to a ratio of Cu/In composition and its control is important on manufacture of the cell. The invention aims to provide a CuInSe{sub 2} thin film solar cell and its manufacture method to give a prescribed Cu/In compositional ratio precisely and to enable production of large area cell and low cost. The invention concerns a manufacture method of a CuInSe{sub 2} solar cell, in which Cu-In alloy foil with a prescribed ratio of Cu/In composition is prepared and pressed onto the electrode film on the substrate surface to form a alloy film with a prescribed thickness, on which selenium is deposited from vapor and heated to form a CuInSe{sub 2} film. CdS is stacked on the CuInSe{sub 2} film to form a photovoltaic conversion layer and to afford a CdS/CuInSe{sub 2} solar cell. Zinc oxide may be stacked on the above CdS film and a film made of a transparent conductive material is stacked on the zinc oxide layer to give a solar cell. The invention also includes a manufacturing method in which ZnCdS film is formed on the CuInSe{sub 2} film prepared by the above method. 3 figs.

  4. Study of installation of PV systems at campus; Campus ni okeru taiyoko hatsuden donyu ni kansuru kenkyu (taiyo denchi nomi wo secchishita baai no yobi kento)

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboi, N.; Tanaka, H.; Okumiya, M. [Nagoya University, Nagoya (Japan)

    1997-11-25

    In terms of energy consumption, environmentality and economical efficiency in the case of installing the photovoltaic power system on the rooftop of the university campus, a comparative study was conducted with other power generation systems. As objects to be comparatively studied, selected were the all-electric type centralized space heating/cooling system, cogeneration system, nighttime heat storage system and centralized system with solar cells installed. The panel area of the PV system is 10,000m{sup 2} on the rooftop and 7,000{sup 2} on the outer wall. About data on solar radiation, average values obtained in Nagoya were used. Assessment was made in terms of energy consumption amount at the time of operation, system COP, emission amounts of CO2, NOx and SOx at the time of manufacturing and operation, initial cost, running cost, etc. As a result of the study, an effect of reducing global warming gas was admitted in the PV system. However, the initial cost of the solar cell panel was high, and the life cycle cost of the PV system was lower than other systems. 1 ref., 7 figs., 3 tabs.

  5. Control method for light deterioration of amorphous solar cell. 2. Temperature effect method; Amorphous taiyo denchi no hikari rekka yokuseiho. 2. Ondo kokaho

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Itsumi, J.; Sano, N. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1997-11-25

    Experimental studies have been carried out on suppressing early deterioration in amorphous silicon solar cells. The amorphous silicon solar cell is characterized by deterioration due to light irradiation and restoration due to temperature rise. An exposure experiment was performed under three conditions: installation in natural environment, installation with rear side of the solar cells covered with an insulating material, and installation with rear side of the solar cells covered with warming elements and an insulating material. Tests were made on suppressing progress of the early deterioration caused by temperature conditions. As a result, the efficiency in the natural condition was found to decrease as largely as 32% in an open circuit condition and 58% in a short circuit condition. The efficiency reduction rate was smaller in the open circuit condition when the insulation material was installed, but in the short circuit condition, resistance characteristics caused by rain water and electrolytic corrosion were exhibited. For the case with warming elements installed, the reduction in the efficiency was more remarkable, contrary to the expectation. The cause was determined that water existing between the rear side and the warming elements was warmed up, accelerating the electrolytic action, and resulting in deterioration advanced over a wide area in the rear side. 6 refs., 6 figs., 3 tabs.

  6. Shunt and series resistance of photovoltaic module evaluated from the I-V curve; I-V tokusei kara hyokashita taiyo denchi no shunt teiko to chokuretsu teiko

    Energy Technology Data Exchange (ETDEWEB)

    Asano, K.; Kawamura, H.; Yamanaka, S.; Kawamura, H.; Ono, H. [Meijo University, Nagoya (Japan)

    1997-11-25

    With an objective of discussing I-V characteristics when a shadow has appeared on part of a photovoltaic module, evaluations were given as a first stage of the study on saturation current, shunt resistance and series resistance for the solar cell module. As a result of measuring change in amount of power generated in a sunny day with a shadow appearing over the solar cell module, reduction in power generation capability of about 23% was verified. In other words, the I-V characteristics of the solar cell module change largely because of existence of the shadow caused on the module. The I-V characteristics curve may be expressed and calculated as a function of the shunt resistance and series resistance. By curve-fitting measurement data for a case of changing insolation without existence of partial shadow, values of the shunt resistance and series resistance were derived. As a result, it was found that the calculations agree well with measurements. It was made also clear that each parameter shows temperature dependence. 6 refs., 10 figs., 1 tab.

  7. Temperature dependence of the early degradation in a-Si solar cells; Amorphous Si taiyo denchi no shoki rekka no ondo izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Takahisa, K.; Kojima, T.; Nakamura, K.; Koyanagi, T.; Yanagisawa, T. [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Discussions were given on early degradation in up to about ten minutes in amorphous silicon solar cells. The experiment has used a model cell of single junction layer for power use with a Glass/ITO/P-i-n:a-Si/Al structure. Test samples were annealed at 130 degC for 30 minutes to eliminate hysteresis of degradation during storage. Xenon was used as an irradiation light source, and the temperatures were varied from 0 to 100 degC and the measurement time was set to 0.1 to 500 minutes. The result of the experiment may be summarized as follows: with regard to time-based degradation pattern for conversion efficiency, the tilt of a pattern to express degradation rate varies with temperature conditions, and changes in 10 to 20 minutes of light irradiation as a boundary; in long-term degradation after 20 minutes, the higher the environmental temperature, the lower the degradation is suppressed, but the rate of initial degradation up to about 10 minutes is higher as the higher the temperature; and the degradation rate increases as the higher the temperature in the initial degradation of about 10 minutes, whereas, corresponding to this fact, it is estimated that a phenomenon is involved, in which carrier recombination defect may increase. 4 refs., 7 figs., 1 tab.

  8. Concentration characteristics and cell arrangement in luminescent concentrator PV modules; Keiko shukogata taiyo denchi module no cell haichi to shuko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, A. [Science University of Tokyo, Tokyo (Japan); Sakuta, K. [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    A luminescent concentrator PV module requires no tracking equipment and can use scattered light. A mini PV module was prepared from a luminescent plate of 100times100times3mm, and a single-crystalline PV cell of 100times20mm. Characteristics of various prototype modules with different PV cell areas and cell arrangements were also measured. Four kinds of edge reflecting materials with different reflectances by various white coating were applied to Al sashes for module frames, and each sash was fixed on one edge of the luminescent plate. In experiment, 3 other edges were covered with black tapes to reduce each reflectance to 0%. Although PV module output was affected by reflectance of edges, the output was satisfactory at 90% or more in reflectance showing no difference in output. A concentrating efficiency decreased with an increase in luminescent plate (concentrator) area, while it was improved by cell arrangement with short optical pass length, and cell arrangement hardly affected by edge reflection. 4 refs., 7 figs.

  9. Photovoltaic array capacity determined by considering the environmental factors for load patterns; Fuka pattern ni taisuru kankyo inshi wo koryoshita taiyo denchi array yoryo no kettei

    Energy Technology Data Exchange (ETDEWEB)

    Kameyama, N.; Higuchi, T.; Yamagami, Y.; Tani, T. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-01-30

    Effectiveness of the spectral method was confirmed for system interconnection type photovoltaic (PV) power generation systems, and PV array capacity determined in harmony with the power load was investigated. In this study, system interconnection type PV power generation systems with polycrystalline Si and amorphous Si PV cell modules were discussed. The output electric energy evaluated by the spectral method was compared with that evaluated by the conventional method only considering the cell temperature. Obtained results are as follows. For the polycrystalline Si, the differences between solar supply rates in summer evaluated by the both methods and measured value were less than 2%, which resulted in the accurate determination. For the amorphous Si, however, the difference less than 3% was obtained by the spectral method and that less than 11% was obtained by the conventional method. The spectral method provided higher accuracy. When constructing a system with large array capacity, it was found that the optimum design of PV power generation system can be performed using the spectral method with less array capacity than using the conventional method. 4 refs., 9 figs., 4 tabs.

  10. Development of measurement device for evaluation of solar cell module output. 2; Taiyo denchi module shutsuryoku hyokayo sokuteiki no kaihatsu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Minoda, M.; Itsumi, J. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1996-10-27

    Enhancement in design efficiency may be attained as well as utilization in maintenance if on-the-spot data is made available, for the purpose of flexibly dealing with changes in design or matching with a house structure, in calculating the power generation output of a solar cell (PV) module. Under the circumstances, a small-sized compound measuring device was produced as a prototype which, using an I-V curve tracer, measured output and condition of a roof at the time of installation, compared with the optimum operation and predicted the power generation. The device was structured with the main body consisting of a computing part, measurement controller and power supply and with various sensor modules. The electron load control method was employed in order to measure I-V characteristics of the PV module, since it was desirable to use a variable load and to cover the range from the release voltage of a solar cell to the short-circuit state through the maximum output point. The reference module method was used for the system evaluation. The device was presumably applicable to a PV system design by incorporating a sensor module for measuring design environment data, which was essential at the time of a system design, in addition to those for measuring output. 9 refs., 4 figs., 3 tabs.

  11. Control method for light deterioration of amorphous solar cell. Temperature effect method; Amorphous taiyo denchi no hikari rekka yokuseiho. Ondo kokaho

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Yokoyama, S.; Itsumi, J. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1996-10-27

    This paper describes a proposed method for suppressing light deterioration (temperature effect method), in which an annealing effect was always expected by laminating an NEM element and a heat insulation material on the back side of a-Si solar cell module and thereby raising the temperature in the back side of the module, and also describes an outdoor exposure test device completed for the method. The NEM element consisted of conductive potassium titanate and high molecular polymer and was a self temperature-controlling organic exothermic body that required no outside temperature control device. It was provided with a heat generating temperature of 45-75{degree}C as the exothermic property of the element and capable of generating heating temperature arbitrarily according to the purpose. The NEM element varied a resistance value against the ambient temperature and kept the element temperature constant. Measurement was commenced starting April 19, 1996, using the completed outdoor exposure test device and a measuring circuit. The deterioration phenomenon was and from then on continuously examined under the following conditions: (1) measurements were those of clear days only, and (2) measurements to be used were those between 10:00 and 14:00 with the quantity of solar radiation on a constant level. 4 refs., 4 figs., 1 tab.

  12. Indirect solar-pumped laser diode using a solar cell; Taiyo denchi wo mochiita taiyoko kansetsu reikigata handotai laser no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Y.; Yugami, H.; Naito, H.; Arashi, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-10-27

    This paper describes the operating characteristics of a stabilizing circuit using commercial electricity, those of a stabilizing circuit using solar cells, relation between the quantity of solar radiation and the maximum output of a semiconductor laser diode (LD), and simulation results of annual LD output in Sendai City. The stabilizing circuit for the solar-cell driven LD was structured such that the output of the solar cell panels was guided to a DC/DC converter, that the voltage was set at a prescribed value and that the current was stabilized with the use of power MOSFET. The solar cells used in the experiment were monocrystal silicone solar cells with the maximum output of 53W each. In the experiment, the LD was protected by stabilizing the current at a set value when an excess current was supplied to the stabilizing circuit. As a result of the simulation of the annual LD output from the meteorological data of Sendai City, it was predicted that a solar cell of approximately 1kW was able to provide an annual output of 102MJ and that the efficiency was highest with four sheets of the solar cell. Consequently, consistency proved to be essential between the LD and the solar cell output. 3 refs., 7 figs.

  13. Effect of PV module output power on module temperature; Taiyo denchi no shutsuryoku henka ga module hyomen ondo ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T.; Kitamura, A. [Kansai Electric Power Co. Inc., Osaka (Japan); Igaki, K.; Mizumoto, T. [Kanden Kako Co. Inc., Osaka (Japan)

    1996-10-27

    Effect of the photovoltaic (PV) module output power variation on the module surface temperature has been investigated by field measurements. PV modules with capacity of 54 W were used for the temperature measurements. Three 2 kW-class PV systems were operated. T-type thermocouples were used for measuring temperatures. Measurement time intervals were 15 minutes, 30 minutes, 60 minutes, and 24 hours. Measurement period was between May 25, 1995 and June 25, 1996. The surface temperature increased during non-loaded PV output, and decreased during load-carrying PV output. Difference of the surface temperature between non-loaded PV output and load-carrying PV output was 3.5{degree}C at maximum through a year. The surface temperature was saturated within 30 minutes. When PV output was changed in 30 or 60 minutes interval, the variation of surface temperature was distinctly observed. When PV output was changed in 15 minutes interval, it was not observed distinctly. There was no difference of the surface temperatures during the time zones with less solar radiation, such as in the morning and evening, and at night. Except these time zones, difference of the surface temperatures was 3.5{degree}C at maximum. 4 figs.

  14. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (CuInSe2 based PV cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (CuInSe2 taiyo denchi seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of CuInSe2 based PV cell in fiscal 1994. (1) On formation of high-quality CIGS thin films by bilayer method, Mo film was deposited on a glass substrate by sputtering, and CIGS film with different Ga/In ratios was next formed on the substrate by quaternary simultaneous deposition at different In and Ga deposition speeds. In addition, CdS film was deposited on the CIGS film, and ZnO and ITO films were finally deposited on it by sputtering to complete solar cell. This solar cell offered the maximum conversion efficiency among cells using CIGS film. (2) On formation of high-quality CIGS thin films by three-stage method, a certain correlation was found between substrate temperature and CIGS film composition by monitoring substrate temperature in film forming process. This phenomenon allowed rigorous control of CIS film compositions important for CIS thin film solar cells. (3) On low-cost process technology for thin film formation, Cu(In,Ga)S2 solid solution film was fabricated by expanded selenic process. 3 figs.

  15. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (CdS/CdTe solar cell modules); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (CdTe taiyo denchi module seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of CdS/CdTe solar cell modules in fiscal 1994. (1) On the fabrication technology for high-efficiency large-area solar cells, high-quality CdTe active layer was studied. S content taken in the active layer at sintering of CdTe decreased with an increase in formed CdTe, resulting in improvement of Voc of cells. (2) On the window layer with wide band gap, the solar cell superior in collection efficiency and photoelectric characteristics could be obtained using the newly developed mixed crystal film of Cd(1-x)Zn(x)S. (3) On the forming technology of large-area coating/sintering films, improvement of CdS film quality was studied by pressurized processing of printed CdS films. As a result, improvement of film density and light transmissivity was confirmed. (4) On the leveling process technology of CdTe films, smooth surface films were obtained by experiment using an equipment simultaneously exciting samples in all directions as one of uniform coating methods of films. 7 figs.

  16. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (development of fabrication technology of thin film polycrystalline Si solar cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (usumaku takessho silicon kei taiyo denchi seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of thin film polycrystalline Si solar cells in fiscal 1994. (1) On the fabrication technology of high-quality Si thin films, the new equipment was studied which allows uniform stable melting recrystallization over a large area. The new equipment adopted a heating method based on RTP system, and is now under adjustment. (2) On the fabrication technology of light/carrier confinement structure, degradation of hydrogen-treated thin film Si solar cells by light irradiation was examined. As a result, since any characteristic degradation was not found even by long time light irradiation, the high quality of the cells was confirmed regardless of hydrogen-treatment. Fabrication of stable reproducible fine texture structure became possible by using fabrication technology of light confinement structure by texture treatment of cell surfaces. (3) On low-cost process technology, design by VEST process, estimation of cell characteristics by simulation, and characteristics of prototype cells were reported. 33 figs., 1 tab.

  17. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (production technology for amorphous silicon solar cell modules); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (amorphous taiyo denchi module seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of amorphous Si solar cell modules in fiscal 1994. (1) On process technology for prototype film substrate solar cells, an advanced preprocessing equipment for film substrates, stepping roll type film forming technology, and prototype submodules were studied. A conversion efficiency of 7.2% was achieved by use of the submodule formed in an effective region of 40 {times} 40cm{sup 2}. (2) On efficiency improvement technology for film substrate solar cells, p/i and n/i interfaces, forming condition for Ag film electrodes, film thickness of transparent electrode ITO, and optimum transmissivity were studied. (3) On technology for advanced solar cells, high-quality a-SiGe: H film, ion control in plasma CVD, and a-Si film formation by plasma CVD using SiH2Cl2 were studied as production technology of narrow gap materials. (4) On advanced two-layer tandem solar cells, the defect density in optical degradation of a-Si cells by reverse bias dark current was evaluated, and outdoor exposure data were analyzed. 4 figs., 1 tab.

  18. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (improvement of conversion efficiency of amorphous silicon solar cells after degradation); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (amorphous taiyo denchi no shoki rekkago koritsu kojo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development for qualitative improvement of a-Si solar cells after initial degradation in fiscal 1994. On the fabrication technology of light-stable a-Si films, the film formation method possible to control combined hydrogen by repetitive formation/treatment was developed. The obtained high-quality light-stable a-Si film was featured by low defect density in a wide optical band gap range, and defect density of nearly 3 {times} 10{sup 16}/cm{sup -3} after light irradiation. The light degradation rate of the cell where the a-Si film was applied to i layer was relatively stable by 10% or less. The a-Si/a-Si double-layer tandem cell fabricated by this technology produced a high conversion efficiency of 10.5%. By applying {mu}c-Si material to photoactive layer as narrow band gap material, the cell with optical sensitivity even in long wavelength ranges more than 1000nm was obtained. The a-Si/{mu}c-Si double-layer tandem cell produced an initial efficiency of 8.0% and an efficiency after degradation of 7.5%. 12 figs., 3 tabs.

  19. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for thin substrate polycrystalline solar cells (compound semiconductors and their fabrication technologies); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Usumaku taiyo denchi jitsuyoka no tame no kaiseki hyoka (kagobutsu taiyo denchi zairyo oyobi seisaku gijutsu no kaiseki hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    Oyagi, H.; Okada, Y.; Yamaguchi, H.; Shiota, T.; Kuroda, S.; Igarashi, O.; Tanino, H.; Makita, Y.; Yamada, A.; Kimura, S.; Ohara, A.; Niki, S.; Shibata, H.; Fons, P. [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for analysis and evaluation for thin-film compound semiconductor solar cells. The study on epitaxial growth and optical properties of the thin films of CuInSe2 and CuGaSe2 evaluates the thin epitaxial films grown under various conditions, showing morphology of the defects at the interface of heteroepitaxial growth. These results are used to set the growth conditions under which a thin film of high luminescence by exciter recombination is produced. The study also gives information of luminescence transition in the vicinity of the band ends and of energy level between the bands. The study on structural analysis of the epitaxially grown thin films of CuInSe2 investigates dependence of lattice constants of the MBE-grown CIS layer on film thickness by the X-ray diffractometry based on the bond method. The study on epitaxial growth by the Se(CH3)2-halogen transfer method tests epitaxial growth of the single-crystalline Mo on a substrate of single-crystalline sapphire. 5 figs.

  20. Development of practical application technology for photovoltaic power generation systems in fiscal 1997. Development of technologies to manufacture thin film solar cells, development of technologies to manufacture low-cost large-area modules, development of technologies to manufacture next-generation thin film solar cells (development of technologies to manufacture CIS solar cell modules); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, tei cost daimenseki module seizo gijutsu kaihatsu, jisedai usumaku taiyo denchi no seizo gijutsu kaihatsu (CIS taiyo denchi module no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development was made with an objective to achieve conversion efficiency of 13% in a 30 cm times 30 cm size submodule of a CIS-based thin film solar cell, and to develop a manufacturing technology that can achieve 140 yen/Wp. This paper describes the achievements attained during fiscal 1997. In fiscal 1997, based on the achievements reached during the previous year, a submodule with a size of 10 cm times 30 cm was fabricated for an attempt of improving the open voltage and short circuit current density. Simultaneously, the applicability thereof to a module with an area as large as 30 cm times 30 cm was evaluated. As a result of experimental discussions, enhancement in the open voltage was verified by increasing amount of Ga or sulfur, but it was not possible to achieve 600 mV or higher. In the research of component technologies to establish a mass production process, research and development was made on a high-resistance buffer layer film forming technology, a high-quality window layer film forming technology, a high-quality metallic rear electrode film forming technology, and patterning technologies. The outdoor exposure test was continued on laminated mini-modules with a size of 10 cm times 10 cm. (NEDO)

  1. Design and construction of radiant panel for cooling and heating with photovoltaic and thermoelectric element modules; Taiyo denchi to netsuden soshi module wo mochiita fukusha reidanbo panel no sekkei oyobi shisaku

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Tani, T. [Science University of Tokyo, Tokyo (Japan); Kadotani, K.; Imaizumi, H. [Komatsu Ltd., Tokyo (Japan)

    1997-11-25

    Utilizing cooling properties and current voltage characteristics of a small cooling panel using thermoelectric elements which had been fabricated previously on a trial basis, design and prototype production were executed on a large radiant cooling and heating panel driven by photovoltaic cell modules. The panel design set the cooling area to about 0.5 m {sup 2} and the number of elements to 70 pieces, and optimum number of elements in series and parallel connection was derived. As a result of the analysis, it was made clear that the optimum number of thermoelectric module arrays in series and parallel connection varies depending on insolation intensity. It was found preferable that the number of parallel connection array be set to one to two in a region or time period in which low insolation intensity is distributed in greater amount. In the case where high insolation intensity is distributed in a greater amount, setting it to two to three is preferable. By using the structured design method and the HASP Tokyo data, thermoelectric element modules were interconnected with 35 modules in series and two in parallel on a cooling panel installed on the roof of the Science University of Tokyo. A simulation result revealed that the average temperature difference on the cooled surface in summer is 4.37 degC, and the solar cell utilization rate is 0.67. It is necessary in the future to improve heat dissipation efficiency and area ratio. 1 ref., 12 figs., 5 tabs.

  2. Change of the equivalent circuit constants accompanied by the degradation and recovery of efficiency on a-Si solar cells; A-Si taiyo denchi no koritsu no rekka to kaifuku ni tomonau toka kairo teisu no henka

    Energy Technology Data Exchange (ETDEWEB)

    Takahisa, K.; Kojima, T.; Nakamura, K.; Koyanagi, T.; Yanagisawa, T. [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Investigations were given on how the equivalent circuit constants change when efficiency of amorphous silicon solar cells changes with time in light degradation and temperature recovery. In the experiment, light irradiation tests under a constant temperature and light intensity condition, followed by recovery tests under a constant temperature and constant weak light intensity or constant temperature condition were repeated continuously. According to the result of an experiment on single layer type cells, the change in each equivalent circuit constant in association with degradation in efficiency and file factor and variation in recovery is reversible mostly. However, a slightly irreversible component was recognized only in the initial degradation process in series resistance and diode factor values. With regard to stacked cells, it was suggested that the main players to determine cell characteristics during the processes of deterioration and recovery take turns among the three layers as follows: the shape of the time-based change in the efficiency comes different and is not saturating; as the efficiency decreases, the extent of the change increases in the diode factor and series resistance; and the path the deterioration takes differs from that the recovery takes. 2 refs., 12 figs.

  3. Dependence of open-circuit voltage of SnO2-nSi solar cells; SnO2-nSi taiyo denchi no sanka ondo menhoi izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, S.; Shimizu, A.; Yano, K.; Kasuga, M. [Yamanashi University, Yamanashi (Japan). Faculty of Engineering

    1997-11-25

    Although metal(or semiconductor)-semiconductor solar cells, SnO2-nSi solar cell for example, are superior in cost and efficiency, its barrier height and open-circuit voltage V(oc) are lower than those of p-n junctions. To improve these defects, study was made on the dependence of V(oc) on oxidation temperature and surface orientation using various solar cells prepared from (100)Si and (111)Si under various oxidation conditions. As a result, the density of surface states increases with a decrease in oxidation temperature of Si substrates, resulting in an increase in diode factor and V(oc). In this case, since oxide films are extremely thin and contribution of non-terminated bonds is large in the initial oxidation stage, the quantity of dangling bonds is larger in (100) plane than (111) plane, resulting in an increase in diode factor and V(oc). Since the surface energy level (the degree of electrons dominated by acceptor-like surface state from this level to the top of a valence band) of (100) Si is lower than that of (111) Si, the effective barrier height and V(oc) increase. 28 refs., 6 figs., 2 tabs.

  4. Development of technology for thin substrate polycrystalline solar cells for practical use. Survey on analysis for practical use; Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Jitsuyoka kaiseki ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on the manufacturing technology trend of thin substrate solar cells for practical use in fiscal 1994. In production of Si raw material, as electron beam melting and ingot production are combined, C, P, Ca and Al are removed by evaporation, while Fe and Ti by solidifying segregation. As the basic technology of continuous casting for substrate production, a drop coagulation method for Si melt is under investigation which is more advantageous in unidirectional solidification and cell conversion efficiency than conventional methods. The cost and future of single crystal Si and polycrystal Si were compared on the basis of document survey. Every institute commonly uses FZ substrates to produce single crystal Si cells, and SiO2 for surface passivation. New cell structure, hetero-structure, thin cell, crystalline defect and lifetime are under investigation for ultrahigh-efficiency solar cells. The technology trend was also surveyed through academic societies and conferences. 5 tabs.

  5. Research and development of evaluation system for photovoltaic power generation system. Research and development of evaluation systems for photovoltaic cells and modules; Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu. Taiyo denchi hyoka system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of the evaluation system for solar cells in fiscal 1994. (1) On development of the performance evaluation method for solar cells, data collection, analysis and measurement of atmospheric conditions necessary for outdoor measurement were carried out to improve the measurement accuracy of laminated solar cells. The validity of measurement methods was verified by comparing experimental results with outdoor measurement ones to improve the indoor measurement accuracy by multiple light source solar simulator. Generated energy in solar cell module level was also studied in field. (2) On development of the reliability evaluation method for solar cells, deterioration data were collected and analyzed by long-term exposure test. As a result, it was clarified that Pmax values are directly affected by seasonal change in air mass, and deterioration of solar cells is hardly found after exposure test for one year, showing a stable state. The characteristic recovery experiment of amorphous solar cell modules was carried out, and the accelerated deterioration test method of thin film cell modules was also studied. 2 figs.

  6. Research and development of evaluation system for photovoltaic power generation system. Survey on research and development of solar cell evaluation system; Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu. Taiyo denchi hyoka system no kenkyu kaihatsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on R and D of solar cell evaluation systems in fiscal 1994. The performance/reliability evaluation subcommittee continuously analyzed technical issues and discussed solution measures from the last fiscal year. On development of performance evaluation methods, improvement of measurement accuracy for laminated solar cells is the study issue to be solved. Although laminated solar cells are measured by multiple light source solar simulator, difficult spectrum compensation causes measurement errors. Collection and analysis of data for determining atmospheric conditions, and outdoor measurement experiment under the atmospheric conditions for reference solar light were carried out. The study on incident angle characteristics of laminated solar cells clarified that the deviation from COS characteristics is 1.0% or less at an incident angle of 30{degree}. The study on generated energy in solar cell module level in field clarified that generated energy and generation efficiency are proportional to intensity of solar radiation. 1 tab.

  7. Research on fabrication technology for thin film solar cells for practical use. Survey on the commercialization analysis; Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Jitsuyoka kaiseki ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on the technological trend, safety and latest technologies of thin film solar cells in fiscal 1994. As the fabrication technology for amorphous film solar cells, three-electrode plasma CVD was surveyed as fabrication method for high-mobility materials, and hydrogen radical CVD as fabrication method for high-photostable films. Current foreign and domestic reliability tests were surveyed for reliability evaluation of solar cells. In order to ascertain the performance, efficiency, physical properties and optimum structure of polycrystalline Si thin film solar cells, previously reported test results on physical properties such as carrier concentration, carrier lifetime and mobility of films were surveyed together with device simulation results. In addition, technologies for high-efficiency CuInSe2 system and CdTe system solar cells, technologies for cost reduction and mass production, and environmental influence were surveyed. Estimation of production costs for cell modules, and safety of thin film solar cells were also surveyed.

  8. Valuation of the quantity of electric output from photovoltaic generation system in case of PV module applied to installing to vertical direction; Taiyo denchi wo suichoku ni haichishita baai no hatsudenryo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, K. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1996-10-27

    In general, it is most efficient and economical to install photovoltaic (PV) modules with proper slope. There are room spaces on the wall except ground or roof. The PV modules were installed on the vertical wall, to consider the compensative method for this weak point. When modules were installed vertically, there is an advantage that reflecting solar light as well as incident solar light can be utilized compared with the installation with slope. The PV modules were installed on the roof of building with inclination of 90{degree} facing to south using the roof material as a reflecting material (S90), and with inclination of 15{degree} facing to south (S15), to compare their output. The output ratio, S90/S15 was 0.42. When it was very fine, this value increased to 0.60. When using plated steel plate as the reflecting material, this value increased to 0.74, which provided 10 to 30% larger output than the roof material. From these results, about 50% of module output of S15 can be expected for S90. If receiving larger reflection, there would only a slight difference in the module output between S15 and S90. 3 figs., 1 tab.

  9. Studies of flat-plate solar air collectors with absorber plates made of amorphous silicon photovoltaic modules; Amorphous taiyo denchi module wo shunetsuban to shita heibangata kukishiki shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    A light/heat hybrid air type heat collector has been developed in which heat is collected by solar cell panels. In Type 1 heat collector provided with a glass cover, two modules are connected in series and placed under a glass cover to serve as a heat collecting plate, each module built of a steel plate and two thin-film amorphous solar cells bonded to the steel plate. Air runs under the heat collecting plate. Type 2 heat collector is a Type 1 heat collector minus the glass cover. Air is taken in by a fan, runs in a vinyl chloride tube, and then through the heat collector where it is heated by the sun, and goes out at the exit. Heat collecting performance was subjected to theoretical analysis. This heat collector approximated in point of heat collection a model using a board painted black, which means that the new type functions effectively as an air-type heat collector. Operating as a photovoltaic power generator, the covered type generated approximately 20% less than the uncovered type under 800W/m{sup 2} insolation conditions. Type 1 has been in service for five months, and Type 2 for 2 months. At present, both are free of troubles such as deformation and the amorphous solar cell modules have deteriorated but a little. 4 refs., 9 figs.

  10. Changes of the temperature coefficients of the characteristics which accompany degradation and recovery of a-Si solar cells; A-Si taiyo denchi no hikari (denryu) rekka oyobi kaifuku ni tomonau tokusei ondo keisu no henka

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, T.; Koyanagi, T.; Nakamura, K.; Takahisa, K.; Kojima, T. [electrotechnical Laboratory, Tsukuba (Japan)

    1996-10-27

    Pursuant to the measuring of temperature dependency of the characteristics such as conversion efficiency, during the process of degradation in a-Si solar cells due to light and electric current and the process of recovery by annealing, this paper describes changes in temperature coefficients, correlation between the characteristic parameters and the degradation, and the results of the examination of their characteristics. The conversion efficiency {mu} degraded approximately by 45% of the initial value each by the irradiation under a light intensity with 3 SUN accelerated and by the infusion of current at 20mA/cm{sup 2}; and then, the efficiency recovered to 70-75% of the degradation by subsequent annealing. In addition, in the temperature dependency at 80{degree}C against at 20{degree}C, Isc slightly increased while Vcc greatly decreased. This slight increase in Isc was mainly due to the decrease in the width of the forbidden band, while the decrease in Vcc was due to the increase in the reverse saturation current. The temperature dependency of {mu}N was negative, becoming small in accordance with the degradation. The temperature dependency of FF/FFO was negative initially both in light and current, but it decreased with the degradation and turned to positive. The temperature coefficients of I-V parameters reversibly changed corresponding to the degradation and recovery of these parameters and stayed in a good correlation. 7 refs., 8 figs., 1 tab.

  11. Fiscal 1994 New Sunshine Program achievement report. Development of photovoltaic power generation system practicalization technology - Research on practicalization of thin-film solar cell manufacturing technology (Technology for higher quality - Development of CuInSe{sub 2} solar cell manufacturing technology); 1994 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu (kohinshitsuka gijutsu (CuInSe{sub 2} taiyo denchi seizo no gijutsu kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The aim is to develop solar cells that exhibit conversion efficiency of 12% in a 10cm times 10cm-large minimodule. When a substrate made of soda lime glass with an SiO{sub 2} coating thereon is used, high reproducibility is achieved in the manufacture of CuInSe{sub 2} (CIS) thin-film solar cells. For the manufacture of a high-quality Cu(InGa)Se{sub 2}(CIGS) light absorbing thin-film layer, it is necessary to develop high-quality precursor film manufacturing and gas phase selenization technologies. A laminated precursor film formed by sputtering is selenized in a H{sub 2}Se gas atmosphere for the formation of CuInSe{sub 2} and CIGS light absorbing thin-film layers, and 16 ZnO/CdS/CIS-structured thin film solar cells built into a 10cm times 10cm-large substrate exhibit conversion efficiency of 11.6%. A CIGS cell using a sulfur-containing Zn compound buffer layer exhibits conversion efficiency of 12.1%. Conditions for the manufacture of a ZnO:Al transparent conductive film are studied. Dependence of CIS-based solar cell output characteristics on temperature and irradiation may be compensated for under the JIS (Japanese Industrial Standard) compensatory formula. The CIS-based thin-film solar cell suffers but a little reduction in output due to temperature rise, and may be therefore said to be excellent. (NEDO)

  12. Development of technology for thin substrate polycrystalline solar cells for practical use. Development of manufacturing technologies for low-cost substrates (technical development for production of high purity silicon); Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Tei cost kiban seizo gijutsu kaihatsu (taiyo denchiyo silicon seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on development of manufacturing technologies of Si for solar cells in fiscal 1994. (1) P in Si could be successfully reduced to 0.1ppmw by EB melting method. The condition possible to reduce P in Si while continuously supplying metal Si was found. The 20kg class EB melting equipment was also designed and manufactured which can be connected with solidifying rough refining process. (2) Use of a water-cooling copper mold was studied using a small melting equipment for cost reduction in solidifying rough refining process. As a result, the prospect of crucible-free technology for removal of P and solidifying rough refining was obtained. (3) B in Si could be successfully reduced to the target of 0.1ppmw by vapor addition method using a plasma melting equipment. (4) The prototype SOG-Si achieved a conversion efficiency of 14.1% as solar cell. In addition, the advanced solar cell prepared by efficiency enhancement process achieved a conversion efficiency of 15.9%. 3 figs.

  13. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system /development of technology to manufacture solar cells/development of technology to manufacture thin film solar cells (development of technology to manufacture materials and substrates (development of technology to manufacture silicon crystal based high-quality materials and substrates)); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchi seizo gijutsu kaihatsu, usumaku taiyo denchi seizo gijutsu kaihatsu, zairyo kiban seizo gijutsu kaihatsu (silicon kesshokei kohinshitsu zairyo kiban no seizo gujutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is intended to develop thin film solar cells capable of mass production with high photo-stability and at low cost. Thus, the objective of the present research is to analyze the growth process of micro crystal silicon based thin films, the crystal being a high quality silicon crystal based material, and develop technology to manufacture high-quality micro crystal silicon thin films based on the findings therefrom. It was found that, when silicon source is available in cathode, pure hydrogen plasma forms micro crystal silicon films by using the plasma as a result of the chemical transportation effect from the silicon source. It was revealed that the crystal formation due to hydrogen plasma exposure is performed substantially by the crystals forming the films due to the chemical transportation effect, rather than crystallization in the vicinity of the surface. The crystal formation under this experiment was concluded that the formation takes place during film growth accompanied by diffusion of film forming precursors on the surface on which the film grows. According to the result obtained so far, the most important issue in the future is particularly the control of crystal growing azimuth by reducing the initially formed amorphous layer by controlling the stress in the initial phase for film formation, and by controlling the film forming precursors. (NEDO)

  14. Change of photovoltaic module conversion efficiency with the environmental factors in different site. Comparison of the conversion efficiency in Tokyo with the one in Nagano; Kotonaru chiten ni okeru taiyo denchi module no shutsuryoku tokusei no henka. Tokyoto Shinjukuku to Naganoken Chinoshi tono hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, T.; Tani, T.; Hirata, Y.; Inasaka, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Assuming that photovoltaic power systems were installed at two points, Shinjuku Tokyo and Chino Nagano, a study was conducted of difference in generated output of the systems caused by the difference in environmental factors. In the study, it was assumed that two of the photovoltaic power system with rated capacity of 3kW were installed at the two points, and the annual generated output was calculated and compared by the conventional method considering only cell temperature and the output estimation method considering intensity of solar radiation, cell temperature, and spectral distribution of solar radiation. The result of the study was as follows: the difference in output ratio at the two points was 1.7% or lower under the influence of intensity of solar radiation and cell temperature. On the other hand, under the influence of the distribution of spectral solar radiation, the difference is larger than under other environmental factors, 2.4% in polycrystalline Si and 5.5% in amorphous Si. The generated output estimated by the conventional method and the spectral method produced a difference between 81 kWh in Tokyo and 258 kWh in Nagano in amorphous Si. This is because environmental factors such as intensity of solar radiation and distribution of spectral solar radiation are different between the two points. 1 ref., 2 figs., 3 tabs.

  15. Development of practical application technology for photovoltaic power generation systems in fiscal 1997. Development of technologies to manufacture thin film solar cells, development of technologies to manufacture low-cost large-area modules (dissolution and deposition process); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, tei cost daimenseki module seizo gijutsu kaihatsu (yokai sekishutsuho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development was performed by noticing on the plasma spraying method as a process that can manufacture thin poly-crystalline silicon films at a high speed. Fiscal 1997 has established a technology that can form a silicon film directly without using seed crystals in an area of 2-cm square on a carbon supported substrate by using a small film manufacturing equipment using the dissolution and deposition process. The size of the crystal is as very large as several hundred {mu}m, by which a possibility of making high-performance solar cells was verified. Discussions were given to apply this technology to large-area substrates, whereas a device was developed, which is capable of forming a film in an area corresponding to 10-cm square. According to a film forming experiment using this device, the film has begun being formed on part of a 10-cm square substrate, verifying the effectiveness of this method. While the film thickness is about 100 {mu}m, it was confirmed that the crystal size will not change even if the thickness is made mechanically as thin as about 50 {mu}m. Further discussions were given on enhancement of wettability by means of coating, and light enclosing structure. (NEDO)

  16. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (Over-layered TCO on tempered glass for solar cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (kyoka class fukugo tomei doden kiban seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of over-layered TCO on tempered glass in fiscal 1994. (1) On the fabrication technology of heat-resistant over-layered TCO, thermal deformation of TCO substrates was studied by both experiment and numerical computation. The thermal deformation increased with carrier concentration. As the observation result on change in lattice strain of heated TCO films by high-temperature X-ray diffraction, lattice strain was largely affected by thermal expansion. (2) On development of the low-temperature heat treatment method of TCO films, a technological prospect was obtained for fabrication of low-resistance TCO films by heat treatment without strength deterioration of tempered TCO substrates. (3) On development of cost reduction technology, the large-area CVD equipment was devised on the basis of the inline tempering method which tempers substrate glass by air cooling after formation of SnO2 film as fabrication method of tempered TCO. The TCO substrate tempered by air cooling could endure the drop test of 227g and 1.5m. 5 figs., 1 tab.

  17. Research and development of system to utilize photovoltaic energy. Survey on the high-durability and low-cost materials for constructing the solar-cell module and its structure; Taiyoko hatsuden riyo system no kenkyu. Taiyo denchi module yo kotaikyusei tei cost zairyo, kozo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the results obtained during fiscal 1994 on a survey on the high-durability and low-cost materials for constructing the solar-cell module and on its structure. With respect to forms and materials used in the present solar-cell modules, identification was made on the current status of products commercially available and developed inside and outside Japan. Main types of solar cells used for electric power are of crystal-based silicon. Amorphous silicon and CdS-CdTe are used for consumer applications of indoor and outdoor use. As regards transparent resin materials, fluorine resin, PET, acryl, and polyimide are used as surface materials, and EVA, silicon and PVB are often used as fillers. Developments inside and outside Japan are limited to systems of polycarbonate, methacryl, fluorine, polyurethane, acryl and polyester. Butyl rubber and polyurethane are used as sealing materials. Developments are being performed on silicon rubber, polychloroprene rubber and EPT rubber for shaped materials, and silicon systems, urethane systems and polysulfide systems for non-shaped materials. 3 figs., 8 tabs.

  18. Development of technology for thin substrate polycrystalline solar cells for practical use. Development of manufacturing technologies for low-cost substrates (low-cost Si sheets by continuous casting method); Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Tei cost kiban seizo gijutsu kaihatsu (renzoku cast ho ni yoru tei cost Si kiban seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on manufacturing of low-cost Si substrates by continuous casting method in fiscal 1994. (1) On manufacturing of ingots of 16 piece size, the ingot of nearly 170kg was manufactured by batch process using the Si melt injection unit prepared in last year. (2) On oxygen and carbon contents in wafers, the contents were measured by FT-IR after slicing of the ingot. As a result, the oxygen and carbon contents could be successfully reduced to the targets of 10ppma and 5ppma or less, respectively. (3) The resistivity distribution of the ingot ranged over the target of 1-2ohm-cm. (4) Cells of 100 {times} 100mm{sup 2} wide and 350{mu}m thick were verified by in-house evaluation process. Although lower cell conversion efficiency was found at the center top of the ingot, a vertical efficiency stability was nearly sufficient as a whole. (5) On the crystal growth unit prepared in fiscal 1994, any problems were not found on automatic driving and vibration during moving. 8 figs.

  19. Analysis and evaluation for practical application of photovoltaic power generation system. Research and development of elemental technologies for thin-type solar cells; Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Usugata takessho taiyo denchi jitsuyoka no tame no kaiseki hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, T.; Shimokawa, R.; Yui, N.; Takato, H.; Takahashi, T.; Ishii, K.; Suzuki, E.; Nagai, K.; Kawanami, H.; Tanimoto, J.; Sakuta, H.; Iwata, Y.; Saito, N.; Koyama, K.; Sawada, S. [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for analysis and evaluation for thin substrate polycrystalline solar cells. In order to analyze the structures of the grain boundaries in and interfaces with the cell substrate, and their effects on electrical activity, the photoluminescence (PL) measurement which enables spectroscopic analysis is applied to electromagnetically cast Si crystals. There are good correlations among PL luminous intensity, MBIC output and dislocation density for the grain boundary which contains many strains and serves as the dislocation source, because carriers in such a grain boundary easily disappear to reduce its luminous intensity at the band ends. Concrete scenarios for realizing thin-film silicon solar cells of high efficiency are presented, based on the analysis of the light-contained thin-film silicon solar cells of high output current, made in the previous year on a trial basis. An alumina substrate of high reflectivity is produced by the experiments of combining various devices. It is expected to realize high output current for the thin-film solar cells. 3 figs.

  20. Development of technology for thin substrate polycrystalline solar cells for practical use. Development of manufacturing technologies for low-cost substrates (low-cost Si substrates); Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Tei cost kiban seizo gijutsu kaihatsu (usugata takessho kigan seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on manufacturing technologies for low-cost high-quality Si substrates in fiscal 1994. (1) On the 220mm square type electromagnetic casting technology, development of fast stable casting technology was studied using the previously installed 220mm square type electromagnetic casting furnace. As a result, continuous stable casting was achieved at high casting speed up to 3.0mm/min. Any degradation of crystalline quality due to high speed casting was not found. (2) On the 350mm square type electromagnetic casting furnace, oscillation circuit constants were analyzed for design of the power source for No.4 electromagnetic casting furnace. In graphite heating experiment using the 350mm square type water-cooling copper crucible heated by 1000kW high-frequency power source, sufficient heat quantity was obtained for initial melting of Si. Any problems in Si melting were not found through Al block melting test. 6 figs.

  1. Development of technology for thin substrate polycrystalline solar cells for practical use. Development of elementary technologies for low-cost polycrystalline cell modules; Usugata takessho taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Takessho cell module tei cost ka yoso gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on development of elementary technologies for low-cost polycrystalline cell modules in fiscal 1994. (1) On development of elementary technologies for mass production, fast surface machining, fast electrode forming and fast forming of junctions and antireflection films were studied. Surface machining by rotating grindstone was studied as fast cutting of fine grooves on Si substrates, resulting in possible fast machining superior in shape accuracy. Electrode properties equivalent or superior to previous ones were obtained by fast electrode forming using a fast printing/sintering equipment even at transfer speed 7.5 times as high as that of conventional methods. Simultaneous fast forming of junctions and antireflection films were achieved by heat treatment after deposition on Si substrate surfaces while heat-decomposing Ti and P compound gas. (2) On development of module structure, an optimum cell group angle, low reflection rate at glass surface, and fast wiring were studied. 5 figs., 2 tabs.

  2. Method for estimation of the output electric power of PV module with considering environmental factors. Method for estimation of output using I-V curves; Kankyo inshi wo koryoshita taiyo denchi module no shutsuryoku keisanho. I-V tokusei curve ni yoru keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Y.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1996-10-27

    Based on the basic quality equation of photovoltaic (PV) cell, a quality equation of PV module has been constructed by considering the spectral distribution of solar radiation and its intensity. A calculation method has been also proposed for determining the output from current-voltage (I-V) curves. Effectiveness of this method was examined by comparing calculated results and observed results. Amorphous Si (a-Si) and polycrystal Si PV modules were examined. By considering the environmental factors, differences of the annual output between the calculated and observed values were reduced from 2.50% to 0.95% for the a-Si PV module, and from 2.52% to 1.24% for the polycrystal Si PV module, which resulted in the reduction more than 50%. For the a-Si PV module, the environmental factor most greatly affecting the annual output was the spectral distribution of solar radiation, which was 3.86 times as large as the cell temperature, and 1.04 times as large as the intensity of solar radiation. For the polycrystal PV module, the environmental factor most greatly affecting the annual output was the cell temperature, which was 7.05 times as large as the spectral distribution of solar radiation, and 1.74 times as large as the intensity of solar radiation. 6 refs., 4 figs., 1 tab.

  3. Improvement of the efficiency characteristics on the photovoltaic generation system based on a generation control circuit. Part 3. Research on architectural systematization of energy conversion devices; Dosaten seigyo kairo wo mochiita taiyo denchi hatsuden koritsu no kaizen. 3. Energy henkan no kenchiku system ka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Ito, N.; Kimura, G.; Fukao, S.; Sunaga, N.; Tsunoda, M.; Muro, K. [Tokyo Metropolitan University, Tokyo (Japan)

    1996-10-27

    In introducing a photovoltaic power generation system to urban homes, the general practice is to install a large number of solar cell panels on the roof. However, as is often the case, a part of the solar cell panels is in the shadows (partial shadows) of neighboring homes, electric poles, cables and trees. Under the circumstances, studies were made on the numerous changes in the lowered generating capacity of individual solar cells by the partial shadows. Developed by the authors were the generation point control principle, in which the generation point was individually controlled on serially connected plural solar cell modules, and a practical circuit system based on that principle with the effects verified in a field test. In the test, the generated power of the system was 476W without partial shadows, and was 323W with partial shadows and without the operation of the generation point control circuit, increasing to 406W with partial shadows and with the operation of the circuit. As a result, compared with the case where no generation point control circuit was employed, the effectiveness of the proposed circuit was evident. 3 refs., 10 figs., 1 tab.

  4. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for thin substrate polycrystalline solar cells (alloy-base amorphous materials, PIN layers, strains in the interface, and effects of impurities); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Usumaku taiyo denchi jitsuyoka no tame no kaiseki hyoka (gokinkei amorphous zairyo pin kakuso kaimen ni okeru yugami fujunbutsu nado no eikyo)

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A.; Oeda, H.; Yamasaki, S.; Hata, N.; Kondo, M.; Toshima, Y.; Sakata, I.; Ganguly, G.; Suzuki, A.; Kamei, T.; Okushi, H.; Nonaka, H.; Oda, N.; Katagiri, H.; Ichimura, N.; Kokubu, K.; Nakamura, K.; Sekikawa, T.; Yamanaka, M. [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for analysis and evaluation for thin film solar cells. The study on quantitative analysis of hydrogen atoms in a plasma determines quantity of hydrogen atoms in the plasma of monosilane diluted with hydrogen. It is found, contrary to expectation, that quantity of hydrogen atoms in the plasma decreases as it is more diluted with hydrogen. The study on light-induced degradation of the thin chlorine-base amorphous silicon films confirms that the plasma CVD method with 20% of dichlorosilane gas added to monosilane gas produces the thin amorphous silicon film 3 times faster than the conventional method. The thin film has essentially the same defect density as the one prepared by the conventional method, showing good photoelectric characteristics. The thin film of chlorinated amorphous silicon has a 1 digit lower defect density than the conventional one of amorphous silicon, as revealed by the accelerated degradation test with irradiated laser light and the constant current method to determine saturated defect density. 3 figs.

  5. Solid electrolyte fuel cell. Kotai denkaishitsu nenryo denchi sochi

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, R. (Yuasa Battery Co. Ltd., Osaka (Japan))

    1992-09-22

    The honeycomb structure has been proposed for the solid electrolyte fuel cell to increase the output power of the cell. However, the honeycomb structure has a shortcoming or difficulty in formation of air electrode, fuel electrode and solid electrolyte membrane as well as in fabrication of air manifold and fuel manifold. This invention solves the problem. In the solid electrolyte cell whose power generation component is composed by laminating the solid electrolyte membrane and the air electrode on the surface of the hollow polygonal column shape fuel electrode, the power generation component and the current conductive component are put together by inserting the metal oxide between the air electrode on the surface of the power generation component and the surface of the current conductive component. With this structure, the parallel connection of a number of solid electrolyte fuel cells by means of electro-conductive component metal oxide in the current conductive component can be achieved, resulting an increase in output power. Examples of the said metal oxide are LaMnO3, LaCoO3, CaMnO3 or LaCrO3 doped with Sr or Ca. 9 figs.

  6. Fuel cell power generation system. Nenryo denchi hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Shiba, Y.

    1993-06-11

    It is general to fabricate the primary cooling water system including the fuel cell main body using corrosion resistant stainless steel, while the secondary cooling system including absorption type freezer is made of carbon steel. For this structure, returning the cooling water of the secondary cooling system to the primary cooling system can cause the corrosion of the primary cooling system. That is, the water of inferior quality in the secondary system can corrode the primary system including the fuel cell. This invention solves the problem. The fuel cell bypass which is branched from the fuel cell cooling water inlet, detours the fuel cell, and it is connected to the water-vapor separator installed to the fuel cell. And the heat exchanger is installed at any of fuel cooling water outlet line, fuel cell cooling water inlet line, or fuel cell bypass line. With this structure, recovering the heat generated during the power generation by the fuel cell at the secondary side of the heat exchanger can be achieved while separating the primary and secondary cooling water. So that the trouble of fuel cell operation caused by the contamination of the primary cooling water with the secondary cooling water which contains corrosive impurities can be avoided. 6 figs.

  7. Solid oxide electrolyte fuel cell system. Kotai denkaishitsu nenryo denchi sochi

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, R. (Yuasa Battery Co. Ltd., Osaka (Japan))

    1992-09-17

    To improve the solid oxide electrolyte fuel cell for higher output, provision of manifolds for air and fuel in honeycomb structure has been proposed. The method of making them in the honeycomb structure has a problem of difficulty in the fabrication. This invention is concerned with a structure, wherein the structural body of the power generating member and that of the electric conducting member are connected between the air electrode on the surface of the structural body of the power generating member and that on the surface of the structural member of the electric conducting member with interposed conductive metal oxide, and the interconnecting member of the power generating structural member body is connected to the air electrode on the surface of the structural member of another power generating member. As a result of this structure, high output solid oxide electrolyte fuel cell can be fabricated by connecting the structural bodies of the power generating members and those of the conducting members in regular succession. Strontium or calcium doped LaMnO3, LaCoO3, CaMnO3, and LaCrO3 are used as the metal oxides. 10 figs.

  8. Survey on commercial use of fuel cells; Nenryo denchi ni kansuru jitsuyoka no tame no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The basic survey was carried out for the future approach to R & D of fuel cells. Phosphoric acid fuel cell (PAFC) is in the stage of demonstration research and field test supported by subsidy after the end of Sunshine project. Its reliability and durability problems are being solved, and its cost reduction is only one problem for practical use. Distributed systems or on-site systems will be used utilizing its excellent environmental characteristics. Molten carbonate fuel cell (MCFC), solid oxide one (SOFC) and polymer electrolyte one (PEFC) under development were thus surveyed. The following are surveyed: (1) Contribution to a human society such as improvement of energy demand/supply structure and environmental protection, (2) Technological items such as outlook for R & D, validity of developmental issues, comparison between various R & D and significance in industrial promotion, (3) Economic items such as profitability and feasible period, and (4) Social items such as sociability, compatibility to needs, possibility of locations, international meaning, market scale and promotion scenario. 90 refs., 67 figs., 96 tabs.

  9. Solid polyelectrolyte fuel cell power supply system; Kotai kobunshigata nenryo denchi dengen system

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, T. [Kanagawa (Japan); Kadoma, H. [Yokohama (Japan); Hashizaki, K.; Tani, T. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1996-06-11

    When a previous solid polyelectrolyte fuel cell power supply system is used underwater, the water generated by the cell reaction is stored in a water storage tank and it is necessary that the system is suspended in case the generated water is full in the water storage tank to take the system out of water and the water in the tank is discharged in the atmosphere. The solid polyelectrolyte fuel cell power supply system of this invention is equipped with a discharge pump to exhaust the generated water out of the closed vessel accommodating the system or equipped with a device to exhaust the generated water into the outside water accompanied with gushing of high-pressure gas into the outside water. As a result, the water generated by the cell reaction can be exhausted from the system into the outside water at any required time so that the fuel cell power supply system can be operated continuously as far as the supply of the fuel or the oxidizer last. By the installment of this function, a solid polyelectrolyte fuel cell power supply system can be used as an independent underwater power source or as a power source for an underwater moving body. 4 figs.

  10. Present situation and subjects of fuel cell development. Nenryo denchi kaihatsu no genjo to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshisada (Fuji Electric Co., Ltd., Tokyo, (Japan))

    1990-02-10

    This report explains the present situation of the development of phosphoric acid type fuel cells. Tests on New Energy and Industrial Technology Development Organization {prime} s 1,000kW plant for distribution arrangement and two plants (two electric power companies) to substitute thermal power were completed in 1989. With the success of these tests, Japanese technologies on fuel cells were improved greatly. Two projects on on-site type cells for detached islands and for industry using city gas are on progress. In civil circles, there are several projects on progress such as Tokyo Power Company {prime} s Goi plant of 11MW whose operation is going to be started in 1991. As for development situation abroad, the USA has carried out field tests on a 4.5MW plant and many 12.5KW and 43kW plants for gas utility, and it is now developing a 200kW plant. On the other hand, European countries make researches mainly on aldali type fuel cells, and they make it a policy to purchase elemental cells of phosphoric acid type from Japan and the USA. 1 fig., 3 tabs.

  11. Nickel oxide-hydrogen secondary cell. Nickel sankabutsu suiso niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Keneichi; Kanda, Motoki; Sato, Yuji; Hayashida, Hirotaka.

    1989-11-15

    In a nickel oxide - hydrogen secondary cell, if a nickel electrode, which is not chemically treated, is used as a positive electrode, hydrogen will accummulates in a negative electrode consisting of a hydrogen storage alloy in the early stage of charge/discharge cycle, thus reducing the life of the cell. In this invention, by letting the electrolytic solution of the cell contain a compound which supplies the dissolved oxygen to the electrolyte, and reacting the hydrogen in the negative electrode while in the initial charging with dissolved oxygen in the electrolyte solution, accummulation of hydrogen in the negative electrode is prevented. The dissolved oxygen ddoner is an oxides or peroxides which generate oxygen by decomposition. The example is KO {sub 2}, O {sub 3}, H {sub 2} O {sub 2}, BaO {sub 2}, CaO {sub 2}, MgO {sub 2}, K {sub 2} O {sub 2} and Na {sub 2} O {sub 2}. It is preferred that these oxides or peroxides are contained in a microcapsule, gel or porous membrane. 4 figs.

  12. Housebuilders` concept of photovoltaic power generation system; Jutaku meka ga kangaeru taiyo hikari hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, O. [Misawa Homes Institute of Research and Development Co., Tokyo (Japan)

    1995-01-30

    The author of this article is an executive of a consolidated research institute of a big house building company. Hence he requests readers strongly not to consider solar batteries for housing from the viewpoint of profitability to be applied to the commercial photovoltaic generation system. Since those who purchase houses decide their purchase after judging comprehensively the performance such as heat insulation and earthquake resistance, plan, design, the function such as agreeableness and safety, comfort of living, cost, etc. of a house, he stresses that the photovoltaic power generation system for housing is to be developed as one of the systems composing a house. Besides he also stresses importance of considering solar batteries as roofing material. Taking into account several conditions to be considered in case when solar batteries are introduced into housing, development of a roofing type photovoltaic power generation module is desirable. Also electric power generated by solar batteries can be sold to power supply companies, when it becomes surplus. The annual power consumption by a single house, 3,600 KWh, can be taken care of by photovoltaic power generation. The problem is cost, but its big reduction is expected by introduction of amorphous solar batteries into the market. 3 figs., 3 tabs.

  13. Proceedings of JSES/JWEA Joint Conference (1997); Taiyo/Furyoku energy koen ronbunshu (1997)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-25

    The paper includes 114 papers made public in the JSES/JWEA Conference held in Toyohashi University of Technology on November 28 and 29, 1997. In the field of the photovoltaic power system, included were papers titled Photovoltaic system at Nagaoka College of Technology, Generation characteristics of photovoltaic power generation equipment at TEPCO R and D Center. As to solar cell modules, Change of photovoltaic module conversion efficiency with the environmental factors in different site, Change of environmental factors in different site which effect the conversion efficiency of photovoltaic module, etc. In relation to the solar hot water system, Investigation of the simulation for the solar DHW system by TRNSYS, etc. Concerning the hydrogen production, Experimental study of hydrogen generation by water electrolysis using solar battery, etc. About solar houses/buildings, Study on indoor pollution by microbes grown in a solar house in Tokyo, etc. Besides, papers in the following fields were included: wind power, wave power, hybrid systems, space heating/cooling and air conditioning, solar energy collection, heat pumps, etc

  14. CO2 recovery system using solar energy; Taiyo energy wo riyoshita CO2 bunri kaishu system

    Energy Technology Data Exchange (ETDEWEB)

    Hosho, F.; Naito, H.; Yugami, H.; Arashi, H. [Tohoku University, Sendai (Japan)

    1997-11-25

    As a part of studies on chemical absorption process with MEA (monoethanolamine) for CO2 recovery from boiler waste gas in thermal power plants, use of solar heat as MEA regenerating energy was studied. An integrated stationary evacuated concentrator (ISEC) effective as collector in a medium temperature range was used to realize a regenerating temperature range of 100-120degC. ISEC is featured by vacuum insulation, use of selective absorbing membranes for an absorber, a CPC (compound parabolic concentrator)-shaped reflection mirror, and high-efficiency. An MEA regenerator is composed of an ISEC and PG(propylene glycol)-MEA heat exchanger, and circulates PG as heat medium. Heat collection experiment was also made using water instead of MEA. Both batch and continuous systems could supply a heat quantity necessary for MEA regeneration. CO2 concentration in the top of the regenerator rapidly decreased with PG circulation regenerating MEA. As mol ratios of CO2/MEA were compared between before and after regeneration, a recovery rate was estimated to be 59.4% for the batch system. 8 figs., 4 tabs.

  15. Proceedings of JSES/JWEA Joint Conference (1996); Taiyo/furyoku energy koen ronbunshu (1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-27

    The proceedings has 10 papers on photovoltaic power systems, 9 on characteristics of solar cells, 5 on residential use photovoltaic power systems, 3 on solar cars, 6 on solar hybrids, 9 on solar energy storage, 5 on passive solar energy, 4 on power generation/hydrogen production, 5 on wind power, 5 on wind power/wave power, 7 on insolation/meteorology, 3 on heat collection, 9 on air cooling/conditioning, 4 on hot water supply systems, 6 on heat pumps, and 5 on the application to biotechnology. As a special lecture, `The development of a new electric vehicle, EcoVehicle, and the environment` was given by National Institute for Environmental Studies. This was taken notice of as a new concept of electric vehicles. Namely, technologies were collected which are useful for improving electric vehicle performance, and technologies which can use due to the electric vehicle were adopted. The vehicle was so designed as to make good use of characteristics of electric vehicles. As a result, born was `EcoVehicle,` a two-seater having a car width of 1.2m and a car length of 3.3m. The vehicle was installed with polycrystalline solar cells on the roof and spoiler, and has a maximum output of 60W. It can travel 1000km per year when assuming annual duration of sunshine to be 1800 hours.

  16. Production method of electrode or electrode/electrolyte membrane assembly of fuel cell and electrode of fuel cell; Nenryo denchi yo no denkyoku matawa denkyoku/denkaishitsumaku setsugotai no seizo hoho oyobi nenryo denchi yo no denkyoku

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, T. [Toyota Motor Co. Ltd., Aichi (Japan)

    1997-07-31

    This invention relates to the production method of assembly of porous electrode and polymer electrolyte membrane used for solid electrolyte fuel cell. Camphor is dissolved in alcohol solvent, and carbon particle carrying catalyst is dispersed to form paste type ink. The sheet type electrode is formed on electrolyte membrane by means of screen printing. The electrode is then dried at 80degC for one hour to precipitate camphor contained in the electrode. The electrode and electrolyte membrane is hot-pressed to be united. The assembly of electrode and electrolyte membrane is dried in vacuum at 80degC for three hours to sublimate the precipitated camphor. The assembly of porous electrode and electrolyte membrane is thus produced. The produced electrode/electrolyte membrane assembly has good gas-permeability and electric conductivity. 8 figs.

  17. Operation method of circulation blower of fuel cell power generation system; Nenryo denchi hatsuden sochi no junkan buroa unten hoho

    Energy Technology Data Exchange (ETDEWEB)

    Iida, T. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1998-02-13

    The conventional circulation blower of fuel cell power generation system has such problem as generating a big pressure difference between electrodes. When the blower is started, the pressure difference is caused by sudden start of suction of cell exhaust gas from the upper stream of the circulation blower since the starting is done in total voltage start by switch. When the blower is stopped, the pressure difference is also caused by sudden stop of suction of cell exhaust gas from the upper stream of the circulation blower. In the invention, the motor driving the circulation blower which circulates the cell exhaust gas of fuel cell power generation system to the cell inlet is equipped with a rotation control system (VVVF). When the blower is started, a smooth start of blower, or smooth start of suction of exhaust gas is given by the control system because the rotation speed is gradually increased from low speed. When the blower is stopped, a smooth stop of blower, or smooth stop of suction of exhaust gas is given by the control system because the rotation speed is gradually decreased from high speed to low speed. In this way, the generation of extreme pressure difference between electrodes of fuel cell can be suppressed. 2 figs.

  18. NEDO`s solar energy program in developing countries; Hatten tojokoku ni okeru NEDO no taiyo energy project

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1998-05-31

    This paper describes the solar energy program promoted in developing countries by NEDO. Research of photovoltaic power generation systems for middle-scale villages has been conducted in Indonesia between FY 1984 and FY 1989. International cooperative demonstration development for photovoltaic power generation systems has been conducted in Nepal, Mongolia, Thailand and Malaysia for five to six years since FY 1994. For the research of solar heat, air heat collection type drying systems using solar heat has been promoted between FY 1993 and FY 1998. Employment of solar micro hydraulic power hybrid systems is planned in regions with rainy and dry seasons. In FY 1997, photovoltaic power generation systems were constructed in Gansu, Sinkiang Uighur, and Hopeh in China for operation researches. Durability tests have been conducted in Oman. A plan of construction of photovoltaic power generation systems with a capacity from a few MW to 1 GW at maximum in deserts is to be promoted as international cooperative activities with PVPS of IEA and CTI. Japan will play a major role on the activities as a proposal country based on the achievement of PVTEC. 6 figs., 2 tabs.

  19. Effective use of active solar system on a residence; Jutakuyo taiyo enerugi akuteibu yuko riyo hoshiki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y. [Kanto Gakuin University, Yokohama (Japan)

    1999-11-25

    In this paper, reduction of primary energy consumed in a residence was calculated for the application of combination and hybrid systems of thermal solar energy and photovoltaic generation. The relation between the cost of each system and reduced energy was investigated. A combination system is more effective than a hybrid system for a residence in cost bases. At present time, the system of which area of panel less than 20 % of the floor area should be a solar system because of high cost of a PV system. And this percentage goes down to 5 % when the cost of PV system down to that of solar system in panel area bases. For a system larger than this, adding PV panel to a solar system, a combination system should be formed. (author)

  20. Confinement of solar thermal energy by Nesa film; Nesa maku ni yoru taiyo netsu energy no fujikome

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A.; Yano, K.; Kasuga, M.; Daigo, Y. [Yamanashi University, Yamanashi (Japan). Faculty of Engineering

    1997-11-25

    This paper reports a Nesa (SnO2) film as selective transmissive film for effective confinement of solar thermal energy. Solar light spectrum ranges from 0.3 to 2.0{mu}m, while thermal radiation from bodies at 100-200degC is infrared ray more than 2{mu}m. Consequently, a solar water heater using the film which can pass rays below 2.0{mu}m while reflect rays over 2.0{mu}m for windows is very efficient. The Nesa film reflects rays with wavelengths more than plasma wavelengths (controllable from 1 to several {mu}m) by plasma action of free electrons. The Nesa films with different carrier densities were fabricated by spraying deposition method at dopant rates (Sb/Sn) from 0 to 2mol%. The solar water heaters were prepared using normal glass and specific glass coated with the Nesa film as selective transmissive film. The heater using the glass coated with the Nesa film of 2{mu}m plasma wavelength for windows could efficiently confine solar heat. The Nesa film of 700nm plasma wavelength which can pass visible light while reflect infrared ray was effective to reduce cooling/heating losses. 3 refs., 6 figs.

  1. Study on solar collector utilizing electro-hydrodynamical effect; Denki ryutai rikigaku koka wo riyosuru taiyo shunetsuki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Aoki, H.; Wako, Y. [Hachinohe Institute of Technology, Aomori (Japan)

    1997-11-25

    This paper proposes a cone type electro-hydrodynamical (EHD) heat collector, describes its structure and principle, and mentions possibility of improving the heat collecting efficiency. The paper proposes a heat collector with a shape close to a cone. Trees are of cone form so that their every leaf, branch and truck can capture solar energy efficiently. Imitating this fact existing in the natural world, a cone-shaped heat collector was fabricated on a trial basis to discuss its heat collecting efficiency. Furthermore, black round stones are placed in the inner cone of the cone- shaped heat collector of double-glass structure. A low boiling point medium is placed between the inner and outer cones to cause corona discharge in vapor generated by absorbing the solar heat, and generate corona wind for an attempt to accelerate heat transfer into a heat exchanger. Thus, development was made on a cone-shaped high-efficiency heat collector utilizing electro-hydrodynamical (EHD) effect, and elucidation was given on dynamic phenomena of an electro-thermal fluid. Heat transfer in the EHD heat collector has a possibility of being accelerated by generation of ionic wind. In addition, it is thought that there would be an optimum value in applied voltage to increase electric charge supply as a result of corona discharge. 1 ref., 2 figs.

  2. Performance and application of solar energy distillation system; Taiyo enerugi shinku joryu shisutemu no jikki seino to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, I.; Narasaki, Y. [Ebara Corp., Tokyo (Japan); Nakaya, A.; Sato, H. [Keio University, Tokyo (Japan)

    1999-11-25

    We have developed a solar energy distillation system. We have manufactured two practical scale test units and then, we have tested them for practical use at the same time through a year (1998-1999) at Al-Azhar University/Water Research Center in Gaza, Palestine and Ryukyu University in Okinawa, Japan. This is a self-sustainable, durable and high efficient system. The system consists of a 15.5 m{sup 2} solar collector, 5.1 m{sup 2} solar cells, a 3-stage evaporator, a distilled water tank and a saline water tank with a final stage condenser. A highest distillation performance of 204.5 kgday{sup -1} (13.2 kgm{sup -2}day{sup -1}) was obtained on 1 July 1998 in Gaza, Palestine. The power consumption for the distillation (160.7 kgday{sup -1}) was 873.2 Wh (5.4 kWhm{sup -3}) on 30 August 1999 in Okinawa, Japan. We confirmed that the system can produce fresh water from brackish water (sea water) without any consumption of fossil energy resources. (author)

  3. FY 1998 result report on the leading R and D of MGC ultra-high efficiency turbine system technology; 1998 nendo MGC chokokoritsu turbine system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    One of the main subjects for further conserving energy by enhancing efficiency of gas turbine system for power generation, etc. is the heightening of operation temperature. The development is urgently needed of heat-resistant ultra-high temperature members which make high-reliable operation under ultra-high temperature possible. Therefore, an introductory study was made aiming at using MGC materials which does not reduce strength even at high temperature and also has plastic deformability as large-size structure members of gas turbine system for power generation use. In FY 1998, the following were studied: (1) basic study to get material design guidelines for making efficiency of MGC materials higher; (2) construction of the basic data for elucidating the manifestation mechanism of high temperature characteristics of MGC materials; (3) setting of gas turbine specifications which are to be the basis of study work in and after FY 1999; (4) setting of parameters to be evaluated, evaluation criteria, etc., and definition of the evaluation criteria for possibility of establishing an MGC ultra-high efficiency gas turbine system. (NEDO)

  4. Achievement report for fiscal 1998. Leading research and development of MGC-built superhigh-efficiency turbine system technology; 1998 nendo MGC chokokoritsu turbine system gijutsu sendo kenkyu kaihatsu kenkyu seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    To further enhance energy efficiency by improving on the gas turbine system, it is necessary, first of all, to develop superhigh-temperature materials to allow the system to operate at higher temperatures. Described in this report are studies on the application of MGC (melt-growth composite) materials which retain strength and plastic deformation capability even at high temperatures. Various compositions are explored for improvement on fracture toughness and thermal shock resistance. The Al{sub 2}O{sub 3}/YAG system is investigated for the study of relations between microstructural control and fracture toughness. Literature on the development of nanocomposites is surveyed, and a preliminary experiment is discussed for improvement on purity by zone melting crystallization. In a study for an advanced manufacture of larger crystals, technologies of crystal growth condition setting and optimization, quality stabilization, productivity improvement, and crystal size enlargement are taken up. Casting and machining technologies are studied to enable crystals to assume complicated shapes. For the purpose of elucidating the mechanism of the occurrence of properties proper to high temperatures, a study is made on the evaluation of mechanical and physical properties and on the mechanism and control of crystal growth. Also studied are systems (gas turbine cycle, combustor, etc.) to which MGC materials may be applied. (NEDO)

  5. Fundamental analysis of thermally regenerative fuel cell utilizing solar heat; Taiyonetsu wo riyosuru netsu saiseigata nenryo denchi no kiso tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Y.; Tanaka, T.; Takashima, T.; Doi, T. [Electrotechnical Laboratory, Tsukuba (Japan); Aosawa, T.; Kogoshi, S. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Study was made on a thermally regenerative fuel cell using solar heat. The thermally regenerative fuel cell was devised which is composed of 2-propanol liquid-phase endothermic dehydrogenation at nearly 100degC, and acetone liquid- phase exothermic hydrogenation at nearly 30degC as reverse reaction. This low-temperature dehydrogenation can relatively easily utilize a flat solar heat concentrator. 2-propanol dehydrogenation generates acetone and hydrogen. Generated acetone generates electric power in hydrogenation, generating propanol. This propanol regenerates acetone and hydrogen in dehydrogenation. The activity of Ru and Pt composite catalyst was considerably higher than that of Ru or Pt single catalyst. The activity was also higher in carbon felt or carbon cloth carrier than carbon plate carrier. The open circuit voltage of the fuel cell was estimated to be 110-120mV, nearly consisting with theoretical values. Short circuit current was also estimated to be 9-11mA, suggesting reduction of its internal resistance as an important subject. 4 refs., 5 figs., 2 tabs.

  6. Study on property-gradient polymer electrolyte for rechargeable lithium batteries; Lithium niji denchi no tame no keisha tokusei kobunshi denkaishitsu no sosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kokumi, Z.; Kanemura, S.; Inaba, M.; Takehara, Z.; Yao, K.; Uchimoto, Y. [Kyoto University, Kyoto (Japan)

    1997-02-01

    This paper describes the fundamental experiments for creating property-gradient polymer electrolyte for rechargeable lithium batteries. The rechargeable lithium battery is composed of an anodic composite agent section with high ion conductivity, a separator equivalent section with high mechanical strength (high bridging degree), and a section surpressing the precipitation of metal lithium by contacting with it. The continuous property-gradient polymer electrolyte was tried to be synthesized by means of the plasma polymerization method. As a result, plasma polymerization electrolyte with high ion conductivity could be prepared from the liquid phase by using a monomer with low vapor pressure. Porous material simulating the anodic composite agent was impregnated by the monomer, which was plasma-polymerized. As a result, it was found that the bridging degree decreased from the surface towards the inside of the plasma-polymerized porous material. In addition, polymer was prepared using fluorine-base monomer. Thus, LiF thin film could be prepared through the reaction between the polymer and metal lithium. 3 figs.

  7. Research and development of molten carbonate fuel cell power generation system. ; Supporting studies. Yoyu tansan'engata nenryo denchi hatsuden system no kenkyu kaihatsu. ; Support kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This paper presents a report on supporting studies as part of researches on a molten carbonate fuel cell power generation system, as a NEDO fiscal 1988-1992 report. With respect to developing the material technologies, iron-based and nickel-based cathodes have been fabricated on a trial basis to compare and discuss their polarization characteristics; optimal conditions for hydrogen reduction when Ni-Al anodes are manufactured have been elucidated; Ni-Cr alloy thin separators have been fabricated on a trial basis; and prototype ceramics materials (cathodes and electrolyte plates) have been manufactured and evaluated. These activities have provided a large number of useful findings. In addition, developments have been progressed in respective areas of coal gas handling technologies, capacity increasing technologies, and high-performance gas separation and purification technologies. In the coal gas handling technologies, for example, influences of HCl and NH3 on desulfurization using TiO2-ZnO have been investigated to have elucidated that NH3 has no influence whatsoever. The capacity increasing technology development has discussed a system configuration of coal gas MCFC power generation of 500-MW class, and device sizes. 3 figs.

  8. Research and development of molten carbonate fuel cell power generation system. ; Supporting studies. Yoyu tansan'engata nenryo denchi hatsuden system no kenkyu kaihatsu. ; Support kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    With an objective to develop a molten carbonate fuel cell (MCFC) power generation system, this paper discusses such supporting technologies as material and coal gas handling technologies, capacity increasing technologies, and CO2 separating technologies. Performance of generating a voltage of 0.825V has been obtained from a single cell using iron-based alloy powder materials when anode porosity is 70% and current density is 150 mA/cm[sup 2]. A separator material with aluminum electrolytically plated, and nickel dispersed showed superb corrosion resistance. Crack generation has been reduced in a ZrO2 fiber reinforced electrolyte plate. High-performance corrosion resistant electrolyte plates have been fabricated in the ceramic system by using the electrode microstructure controlling technology and alumina-based fiber reinforcement. Desulfurizing catalyst, TiO2-ZnO, for coal gas dry refining has been studied. Zinc ferrite, a regenerative desulfurizing agent, has been improved for the inorganic salt type gas refining. Discussions have been given on increasing capacity of a 500-MW class coal gasification MCFC power generation system. A CO2 separation testing equipment of a PSA system has been opened for inspection, but no anomalies such as corrosion, damages, and sludge generation have been discovered. 4 figs.

  9. Solar cells and thin film LED using amorphous SiC. Amorphous SiC wo mochiita taiyou denchi oyobi usumaku LED

    Energy Technology Data Exchange (ETDEWEB)

    Hamakawa, Y. (Osaka Univ., Osaka (Japan). Faculty of Engineering Science)

    1990-03-25

    This paper introduced the photoelectric properties of amorphous SiC (a-SiC), application to highly efficient solar cells, application to wide area emitting elements such as LED (light emitting diode) and application to OEIC (optoelectronic integrated circuit) which is expected in near future. The light sensitizing effect in which photoconductivity of a-SiC:H film increases 2-3 figures by B dopping, was found. Flexible and wide area thin film LED has been able to manufacture by this discovery. In addition, highly efficient conversion rate has been able to get by the technical development such as solar cells made of a-SiC/ a-Si hetrojunction. Further, wide area sollar cells has been able to manufacture on any substrate by the development of TFLED (thin film light emitting diode). The application of TFLED made of SiC to OEIC is also investigated. 18 refs., 15 figs., 2 tabs.

  10. Sony Co., Ltd.: An outlook is made for merchandising of the manganese acid lithium ion battery; Mangansan richiumuion denchi no shohinka ni medo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Sony Co., Ltd. sells the manganese acid lithium ion battery that a battery is 1 by 2 as to the next generation lithium ion during 99 years. It is characteristics that a price is restrained because manganese is used for the proper pole material instead of cobalt of the rare metal. It becomes mass production by Koriyama factory where a lithium ion battery is being manufactured improving an existent production line. It is seen when some percents of manufacture cost goes down more than cobalt acid battery of news file before. A manganese acid lithium ion battery uses manganese acid lithium for the proper pole of the battery. The efficiency of the charge of the usual lithium ion battery is good, and composition is easy, and uses cobalt acid lithium, which is easy to produce. One side where a material fee is cheap, the stability at the high temperature of manganese acid is low, and composition is difficult. Only NEC Moli Energy corporation who is the subsidiary company of NEC succeeds in the mass production. NEC Moli Energy corporation is extending market share by the price competition power. It seems to have the possibility that manganese acid becomes the main force with a battery by two by new entering of Sony Co., Ltd. of the lithium ion battery extreme big enterprises. (translated by NEDO)

  11. 大洋FE(FEK)型无刷发电机自动电压调整器%Taiyo Model: FE(FEK) Brushless A. C. Generator AVR

    Institute of Scientific and Technical Information of China (English)

    姜锦范

    2001-01-01

    表述大洋FE(FEK)型发电机调压器系统,分析电压校正器中比较电路、相位控制电路原理,通过给出有关环节电路的波形图来阐明AVR调压原理,最后阐明整个系统的调节过程.

  12. Performance in cooling mode of a heat pump using panels with PV cells as the condenser; Taiyo denchitsuki panel wo gyoshukuki to shita heat pump no reibo unten

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan); Fujita, M. [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1996-10-27

    Comparison was made between heat pumps in cooling operation, one having two panels provided with solar cells, the second having an air-cooled heat exchanger alone, and the third having a series connection of a panel unit and air-cooled heat exchanger, all serving as condenser. The results are shown below. In the case of two-panel-unit condenser, there is a difference ({Delta}t) of 15{degree}C between the daytime free air temperature and condensing temperature but, with decreased insolation, free air temperature, and wind speed in the evening, the {Delta}t lowered to approximately 8{degree}C while the COP (coefficient of performance) increased from 2.4 to 3.3. On a cloudy day in summer, the two-panel-unit condenser had a {Delta}t of 13.9{degree}C and a COP of 3.1. In the case of the series-connection condenser, the {Delta}t was approximately 8{degree}C and the COP was 3.5. The COP of the two-panel-unit condenser was lower than that of the air-cooled heat exchanger by 9% at an insolation of 442W/m{sup 2} but it rose to 12% in the absence of insolation. The COP of the two-panel-unit condenser was higher than that of a one-panel-unit condenser by 17%. When an insulator plate was attached to the back of a panel, the {Delta}t increased but the COP decreased by 14%. In the case of the series-connection condenser, the COP increased by 6% in the absence of the insulator plate. 2 refs., 9 figs.

  13. Development of fiber coupled high temperature solar furnace for space experiment; Komitsudo taiyo enerugi no hikari fuaiba denso to uchu zairyo jikkenro no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yano, M.; Naito, H.; Yugami, H. [Tohoku Univ., Sendai (Japan)

    1998-12-05

    Advanced utilization of solar energy will be an important technology for future space development. A solar concentrating system coupled with optical fibers was designed for high temperature material processing in space. Cassegrainian optics were used for the first-stage solar concentrator in order to fit the rim angle with the maximum angle for optical fibers used in this experiment. The strongly diverged solar rays at the exit of the optical fiber bundle are reconcentrated by Compound Parabolic Concentrators (CPCs). Using the system we can obtain the spatially fixed and stable high temperature point because of the flexibility of the optical fiber bundle. Its concentration ratio was measured for evaluate the optical performance of the CPC. It was revealed that the experimental value was nearly equal to the theoretical one. For simulating the space experiment on lunar surface, the temperature distributions in lunar regolith was analyzed by the finite element method coupled with raytracing method. It is shown that the CPC is useful to obtaining the high temperature for material processing on lunar surface. (author)

  14. Photocatalytic removal of nitrogen oxides from ambient air using solar energy; Taiyo energy wo riyoshita taikichu no NOx no hikari shokubai jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, M.; Taoda, H.; Watanabe, E.; Nonami, T.; Iseda, K.; Kato, K. [National Industrial Research Institute of Nagoya, Nagoya (Japan); Kunieda, S. [NGK Insulators, Ltd., Nagoya (Japan); Kato, S.

    1997-11-25

    Experiment was made on removal of NOx from ambient air using ceramic blocks coated with a newly developed easy-to- handle TiO2 film photocatalyst. After TiO2 sol was prepared by hydrolyzing titanium tetraisopropoxide, the photocatalytic blocks were prepared through drying and sintering after immersing the blocks in TiO2 sol. The effect of the number of coating on catalytic performance was studied using the single-coated and triple-coated blocks. Artificial solar light of 1mW/cm{sup 2} was used as light source for flowing reaction experiment of air (containing NOx) in a laboratory. NOx concentration rapidly decreased with irradiation, and 94% and 98% of NOx were removed by the single- and triple-coated blocks, respectively. NOx was completely oxidized to HNO3 through NO2 by triple-coated blocks. The demonstration test of removal of NOx from ambient air in Okazaki city showed a removal rate of nearly 90% in noonday and 40% or more in average, while not 0% but 5-20% even in the nighttime. The latter is probably derived from adsorption by the porous photocatalytic blocks. 2 figs., 4 tabs.

  15. Improved design of three-dimensional lens for low concentrator PV modules; Teishukogata taiyo denchiyo sanjigen lens no koseinoka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Goma, S.; Yoshioka, K.; Saito, T. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    Attention is paid to reduction in area required for solar cells by solar concentration as a means of solving cost limits of solar cells and unstable supply of Si materials. Low concentration solar cells are effective from the aspects of utilization of scattered light and unnecessary ray tracing. The optical concentration ratio was calculated of three-dimensional lens having design values of various north/south and east/west direction allowable incidence half angles. The three-dimensional lens are designed by cutting a rectangular parallelepiped by the two-dimensional composite elliptical plane designed by various allowable incidence half angles from two directions of north/south and east/west. Using Perez`s sky solar radiation models and meteorological data HASP, calculated were the annual accumulated global radiation ratio on an inclined surface and the optical efficiency. Calculated were the solar cell area ratio and solar concentration area ratio of the concentration type to obtain solar radiation the same as that of the planar type. From the optimization calculation, it was found that lens are optimal which have design values of north/south and east/west direction allowable incidence half angles of 30-70deg. The solar cell area ratio is 57% and the solar concentration area ratio is 1.2 times. It was found that by making the module area 1.2 times, more than 40% of the solar cells used can be saved. 5 refs., 8 figs.

  16. Impressions on being awarded with the fiscal 1995 prizes from the Japan Solar Energy Society; Nihon taiyo energy gakkai jusho shokan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-31

    Studies have been made on a microorganism battery which converts solar energy directly into electric energy by utilizing photosynthetic reactions in micro-algae. Electric energy is drawn out from an end of the electronic transmission system for photosynthesis when light is irradiated, and from decomposition of glycogen in organisms when light is shut off. An amorphous solar cell was made capable of restoring output deterioration by annealing. Annealing cycle is important in addition to annealing temperature and time. Investigations were conducted on the relationship between a long-time integral error in irregularly varying insolation intensity and sampling time for the purpose of establishing a measuring method to incorporate it into the Japan Industrial Standard. Development was made on a high-efficiency Fresnel prism having a skylight function, but having no light carrying duct. Awards were given to a solar battery charger applying a counter-flow preventing relay, a solar light/heat hybrid heat pump system, and development of hybrid of hydrogen generation by photovoltaic power (power storage using hydrogen absorbing alloys) with a fuel cell. Cold and hot waste heat recovery by using a seasonal heat storage tank, a water pumping wind mill for irrigation, and water facilities and environmental effects in urban areas also won awards. 3 figs.

  17. Japan`s New Sunshine Project. 1994 annual summary of solar energy R and D program; 1994 nendo new sunshine keikaku. Seika hokokusho gaiyoshu (taiyo energy)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    The paper reported the results of fiscal 1994 studies on solar energy in the New Sunshine Project. Relating to the technical development for the practical use of photovoltaic power systems, the development of manufacturing technologies for low-cost substrates and the development of element technology for manufacturing low-cost polycrystalline cells/modules were reported as the development of technology for thin substrate polycrystalline solar cells for practical use. As to the research on fabrication technology for thin film solar cells for practical use, reports were made on the research on low-cost fabrication technology for large-area modules and the technological development for qualitative improvement, etc. In respect to the technological development for super-high efficiency solar cells, reported were the technological development for super-high efficiency single crystalline silicon solar cells and the technological development for crystalline compound solar cells, etc. Concerning the research and development of photovoltaic power systems, reports were on the characterization and control of surface/interface recombination velocity of crystalline silicon thin films and the research on surface passivation for high-efficiency silicon solar cells, etc. In regard to the utilization technology of solar thermal energy, the energy conversion technology using chemical reactions and the development of chemical refrigeration and cold storage systems using solar heat were reported as the research and development of utilization technology of solar thermal systems for industrial use.

  18. Development of a high temperature solar receiver for high-efficient thermionic conversion systems; Fukugo netsuden henkan system yo chokoon taiyo junetsuki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Umeoka, T.; Naito, H.; Yugami, H.; Arashi, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-10-27

    For thermionic conversion systems (TIC) using concentrated sunlight as heat source, the newly developed solar receiver was tested. Concentrated sunlight aims at the inner surface of the cavity type solar receiver. The emitter of TIC installed in the rear of the solar receiver is uniformly heated over 1700K by thermal radiation from the rear of the solar receiver, emitting thermion. Electric power is generated by collecting the thermion by collector. Mo is used as emitter material, however, because of poor heat absorption of Mo, high-absorptive TiC is used for heat absorption surface to heat Mo by thermal conduction from high-temperature TiC. Functionally gradient material (FGM) with an intermediate layer of gradient TiC/Mo ratios between TiC and Mo is used as emitter material. The emitter is thus uniformly heated at high temperatures of 1723{plus_minus}12K. As a result, the developed solar receiver is applicable to heat the emitter of TIC. Heat flux measurement at the graphite cavity clarified that cavity temperature of as high as 1780K and heat flow of 50W/cm{sup 2} are obtained at 4.7kW in input. 6 figs.

  19. Achievement report for fiscal 1997 on joint research to develop fuel cell technologies for urban energy centers. Research on evaluating life of phosphoric acid fuel cells; 1997 nendo toshi energy center nado nenryo denchi gijutsu kaihatsu kyodo kenkyu seika hokokusho. Rinsangata nenryo denchi jumyo hyoka kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This paper discusses life evaluation on phosphoric acid fuel cells of urban energy center type for regional energy supply and on-site type to be installed in buildings. Operation characteristics tests and disassembly checks allow to identify factors for voltage decrease, and estimate the life therefrom particularly if the voltage decrease is caused from catalyst activity. The time before 10% decrease value is reached is now about 40,000 hours. The creep analysis method that has been developed recently can predict deformation in full-size reformers nearly exactly, and is effective in operating the reformer and evaluating the life at the design stage. Creep buckling is the critical value, which is caused by ecliptic deformation of internal tubes in the second catalyst layer. In a heat exchanger for fuel gas preheating, carbon in the reformed gas is carbonized and deposited due to catalytic action of nickel in the brazing material that bonds plates and fins in the heat exchanger. Iron also has a possibility of performing catalytic action. In the on-site type 1,000-kW class fuel cells, no structural problems have been presented even after the operation has been stopped. In order to extend time interval between phosphoric acid supply into the cells, it is necessary to reduce difference in the remaining phosphoric acid amounts in the stack lamination direction and in the cell flat surface. (NEDO)

  20. FY 1994 Report on the results of the joint research project for optimum introduction of development of fuel cell technologies for urban energy centers; 1994 nendo toshi energy center nado nenryo denchi gijutsu kaihatsu saiteki donyu chosa seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Described herein are the FY 1994 results of the joint research project for optimum introduction of development of fuel cell technologies for urban energy centers or the like. The necessary economic conditions for introduction of a fuel cell system to be competitive with the conventional system which individually supplies electric power and heat are 250,000 yen/kW as the construction unit cost, 0.10m{sup 2}/kW as the installation area, 5 years as the cell body life, use of an inexpensive fuel gas (2 to 6 yen/Mcal). Moreover, it is an indoor system which shall have the operational characteristics to follow daily demand fluctuations while operating under the optimum conditions in the urban redevelopment area considered. A 5,000kW-class fuel cell plant burning fuel gas (2 yen/Mcal) will need a total floor area of approximately 400,000 m{sup 2} in an energy-intensive office type demand area. These conditions shall be met in order to economically introduce the 5,000kW-class plant. It is also necessary to compare the plant with the competitive cogeneration plants. The specifications for the prototype now under consideration are sufficient for the energy-saving effect, and it is premised that these specifications and characteristics are secured. (NEDO)

  1. Study of perovskite oxides as the cathode for solid oxide fuel cell (SOFC); Koon kotai denkaishitsu nenryo denchi (SOFC) yo seikyoku to shite no perovskite gata sankabutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y. [Mie University, Mie (Japan). Faculty of Engineering

    1999-03-15

    The perovskite type manganite systems, Ln{sub 1-x}A{sub x}MO{sub 3} (Ln=rare earth, A=Sr, Ca) were studied as the electrode materials for solid oxide fuel cells (SOFC). The highest cathodic activity was obtained for the La{sub 1-x}Sr{sub x}CoO{sub 3} electrode. The reactivity tests of La{sub 1-x}A{sub x}MO{sub 3} with yttria-stabilized zirconia (YSZ) showed that the formation of the pyrochlore Ln{sub 2}Zr{sub 2}O{sub 7} decreases the electrode activity. However, this was suppressed for the perovskites having smaller lanthanoids than La, for example, for the Gd{sub 1-x}A{sub x}MnO{sub 3} and GdCoO{sub 3} systems. No reaction product appeared between the Gd{sub 1-x} A{sub x}MnO{sub 3} perovskite and YSZ even at a high annealing temperature of 1,400degreeC. GdCoO{sub 3} did not react with YSZ even at 1,000degreeC. The adjustment of the thermal expansion rate to YSZ needed the formation of solid solution such as Ln{sub 1-x}Sr{sub x}Mn{sub 1-y}Co{sub y}O{sub 3}, some of which showed the high cathodic activity and good compatibility. (author)

  2. Fiscal 1998 research report. Survey on data collection for development of new energy technology (fuel cell); 1998 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (nenryo denchi)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report is composed of Part 1: the development trend of fuel cells in fiscal 1998, and Part 2: the collected data and appendices. Part 1 includes 4 chapters, (1) The outline of the development trend, (2) Stationary fuel cell, (3) The development trend of fuel cell vehicles, and (4) The development trend of small transportable fuel cells. The report newly includes the development trend of small-capacity fuel cells and the report on 1998 Fuel Cell Seminar notable as an international conference on fuel cell summarizing the trend of fuel cells in fiscal 1998, as compared with the fiscal 1997 report. Part 2 is the collected data on domestic and foreign demonstration operation results of fuel cells, and technical development of every fuel cell. In addition to various collected data on the whole of fuel cells and their use techniques, Part 2 includes the principle, features, system configuration, performance simulation technique, application and market analysis of fuel cells, and the national policy and concerned laws on a subsidy system for introduction of fuel cells, for example. (NEDO)

  3. Simulation of PV/FC power hybrid system. Change of system capacity with load form factor; Taiyoko hatsuden nenryo denchi hybrid system no simulation. Fuka keijoritsu ni yoru system yoryo no henka

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, N.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Study is conducted of a photovoltaic/fuel-cell hybrid system whose power storage is a hydrogen storage that uses a hydrogen absorbing alloy. In a simulation in this research, the solar cell conversion efficiency is changed from 15.0% to 21.0% and the fuel cell power conversion efficiency from 40.0% to 50.0%, and the resultant changes in the capacity and operation rate are investigated for each of the devices in the system. The findings follow. A 1.0% change in the solar cell conversion efficiency results in a 4.8kW change in the solar cell capacity and a 1.6-ton change in the hydrogen storage capacity. With a 1.0% change in the fuel cell power conversion efficiency, there is a 14.7kW change in the solar cell capacity and a 5.3-ton change in the hydrogen storage capacity. The fuel cell capacity is not dependent on the solar cell conversion efficiency or fuel cell power conversion efficiency but on the maximum load in each of the load form factors. The rate of occurrence of an operation rate of less than 30% is 54.7% both in DC/DC converter and hydrogen generator, 24.6% in fuel cells, and 16.7% in the DC/DC inverter. 7 refs., 7 figs., 1 tab.

  4. FY1995 study on property-gradient polymer electrolyte for rechargeable lithium batteries; 1995 nendo lithium niji denchi no tame no keisha tokusei kobunshi denkaishitsu no sosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Polymer electrolytes are essential materials to develop safe and reliable rechargeable lithium batteries. Nobel 'property-gradient' polymer electrolytes in which ionic conductivity distributes along with their thickness were synthesized by employing plasma polymerization technology. Vinyl monomers bound with oligo-ether side chains via siloxane bond were served as starting monomers for plasma polymerization. Ionic conductivity of formed polymers changed along with their thickness. Monomer solutions containing lithium salt which were impregnated into porous matrix were polymerized by exposing RF plasma and directly gave polymer electrolytes. The polymer electrolytes showed distributing ionic conductivity through its direction of thickness; 'property-gradient' polymer electrolyte were prepared. Metallic lithium surface were covered with thin plasma polymer layer containing fluorine to suppress dendritic lithium deposition during charging. The layer reacted so fast that suppression of the dendritic deposition was not satisfactory. (NEDO)

  5. Completion of the 200kW power conditioner for Miyakojima battery energy storage system of Okinawa Electric Power Co; Okinawa Denryoku (kabu) Miyakojima 200kW denchi denryoku chozoyo denryoku henkan sochi no kansei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Toshiba delivered the 200kW power conditioner for a Na-S (NAS) battery energy storage system (BESS) to Miyako PV generation demonstration research laboratory of Okinawa Electric Power Co. This power conditioner performs charge/discharge of the NAS battery and additional static var control (SVC) and governor-free control under a condition where both PV cell and NAS battery are connected with a DC circuit. Operation control of the whole BESS and data collection can be carried out by commands from Okinawa island through PHS telephone line. The demonstration study of this system on load leveling by BESS and output fluctuation control for new energy generation is in joint promotion by Toshiba and Okinawa Electric Power Co. (translated by NEDO)

  6. Research and development of peripheral technology for photovoltaic power systems. Study of nickel-hydride storage battery for photovoltaic generation systems; Shuhen gijutsu no kenkyu kaihatsu. Taiyoko hatsuden`yo suiso denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of nickel-hydride storage battery for photovoltaic generation systems in fiscal 1994. (1) On the study on low-cost electrode materials, the physical properties and electrode characteristics were studied of the prototype hydrogen absorbing alloys prepared by substituting Cu or Ni for Co in Mm(Ni-Co-Mn-Al)5 (Mm: mixture of rare earth elements). The result clarified that it is difficult to reduce Co content in the alloy to 0.4 atom or less. Simple heat treatment and milling processes in production of hydrogen absorbing alloy electrodes were achieved by adopting an improved metal mold and gas atomization method. Characteristics and cycle life of the Ni positive electrode prepared by applying active paste material of Ni(OH)2 were studied, however, the result showed only lives of nearly 300 cycles. (2) On the study on electrode structure for high-performance (long-life) battery, the 3-D porous metal electrode support was evaluated, and various battery configurations were studied. 11 figs., 1 tab.

  7. Research and development of peripheral technology for photovoltaic power systems. Research and development of redox flow battery for photovoltaic power generation; Shuhen gijutsu no kenkyu kaihatsu. Taiyoko hatsuden`yo redox denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of redox flow battery for photovoltaic power generation in fiscal 1994. (1) On the production method of electrolyte, silica reduction treatment was attempted to use ammonium metavanadate recovered from boiler as electrolyte of redox flow battery. Silica removal rates more than 90% were achieved by crystallizing V as polyvanadate while keeping molten silica. It was ascertained in minicell experiment that trivalent and quadrivalent V electrolytes produced from recovered V are applicable to continuous charge/discharge operation for one week. (2) On development of battery systems, the relation between battery characteristics and physicochemical properties of carbon fiber electrodes was studied to improve carbon fiber electrodes. The efficiency of 80% was achieved at current density of 160mA/cm{sup 2} by use of layered electrodes, resulting in considerable cost reduction. Performance evaluation operation of the 2kW battery prepared in the last fiscal year was also carried out. 4 figs.

  8. Museum of water, green and the sun - Marumori. New energy vision of the Marumori Town area; 2001 nendo Marumori machi shin energy vision hokokusho. Chiiki shin energy vision sakutei tou jigyo (Mizu to midori nto taiyo no hakubutsukan Marumori)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    In Marumori Town, Miyagi Prefecture, a 'new energy vision of the area' was worked out which indicated the assessment of the energy reserved in the town and the course of new energy to be determined in the future. The energy consumption amount of Marumori Town in FY 1999 was estimated at 47,535 kL in crude oil conversion. By sector, the energy consumption amount was the largest in the order of the industrial sector, the transportation sector and the commercial/residential sector. The availability of new energy in Maruyama Town was estimated at approximately 480,585 GJ, of which the solar energy utilization was the largest, 53.1%. The photovoltaic power generation was the next largest, 25.4%, followed by the temperature difference energy (underground water), 8.9%, clean energy car, 7.8%, etc. As a plan for the first introduction of new energy, the following were studied: introduction of photovoltaic power generation facilities to the Marumori Town Office, introduction of new energy to public facilities around the Fudoson Park, introduction of wind power generation facilities to the town-run pasture, construction of the Marumori-type biogas plant, construction of a mini hydroelectric power plant, introduction of clean energy car to public vehicles, introduction of new energy facilities to the area of Kawa-no-Eki (station of the river), etc. (NEDO)

  9. 1992 JSES (Japan Solar Energy Society)/JWEA (Japan Wind Energy Association) Joint Conference. 1992 nendo Nihon Taiyo Energy Gakkai Nihon Furyoku Energy Kyokai godo kenkyu happyokai koen ronbunshu

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-03

    The proceedings of the conference include the results of research and development of the photovoltaic power generation system, the wind power generation and biomass. As for the photovoltaic power generation system, reports are made on the following: power generation efficiency of the system, output characteristics of solar cell module, interconnected power system, optical properties of solar cells, solar cell array, development of intermittent flow redox batteries to be used for the photovoltaic power generation system. As to solar radiation utilization, studies on the following are made public: an optical/thermal hybrid heat collector which is designed to obtain light and heat at the same time using a solar cell as a heat collecting board, solar car, a silica gel layer used in a solar thermal utilization direct regenerating type adsorption tank, a solar greenhouse, a solar refrigerating system, solar pond, a solar energy ground thermal storage system, a solar-cell blade wind turbine as a composite system, photovoltaic-thermo composite pannels, solar house, passive solar heating. A small wind turbine generation system for mountanious regions is described. As biomass, production of tall-golden-rod is reported.

  10. 1992 JSES (Japan Solar Energy Society)/JWEA (Japan Wind Energy Association) Joint Conference; 1992 nendo Nihon Taiyo Energy Gakkai Nihon Furyoku Energy Kyokai godo kenkyu happyokai koen ronbunshu

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-03

    The proceedings of the conference include the results of research and development of the photovoltaic power generation system, the wind power generation and biomass. As for the photovoltaic power generation system, reports are made on the following: power generation efficiency of the system, output characteristics of solar cell module, interconnected power system, optical properties of solar cells, solar cell array, development of intermittent flow redox batteries to be used for the photovoltaic power generation system. As to solar radiation utilization, studies on the following are made public: an optical/thermal hybrid heat collector which is designed to obtain light and heat at the same time using a solar cell as a heat collecting board, solar car, a silica gel layer used in a solar thermal utilization direct regenerating type adsorption tank, a solar greenhouse, a solar refrigerating system, solar pond, a solar energy ground thermal storage system, a solar-cell blade wind turbine as a composite system, photovoltaic-thermo composite pannels, solar house, passive solar heating. A small wind turbine generation system for mountanious regions is described. As biomass, production of tall-golden-rod is reported.

  11. Annual cycle solar energy utilization with seasonal storage. Part 8. Study on periodic steady state of the annual cycle energy system at a practical operation; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 8

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Okumiya, M. [Nagoya University, Nagoya (Japan)

    1997-11-25

    A study was made of the periodic steady state of the annual cycle solar energy system with seasonal heat storage at a practical operation. Cold heat in winter and warm heat in summer are stored in the seasonal storage tank, and these are each used in shift until when demand for cold/warm heat appears. Moreover, gap in quantity of cold/warm heat going in/out of the heat storage tank during a year is filled by natural energy such as solar energy, so that the system can be operated in annual cycles. Studies were conducted of the periodic unsteady term and the problem on lowering of performance during the term such as the periodic unsteady term of water temperature inside the seasonal heat storage tank and temperature of the soil around the storage tank, and the level of lowering of performance during the term, necessity of additional operation/control at the start of operation and aged deterioration of the system. Within the assumption, even if starting operation in any time of the year, the system could show the performance almost expected from the first operation year with no additional system operation and control required only at the start of operation. It is thought that the heat source selection control of heat pump largely contributes to this. 4 refs., 5 figs., 3 tabs.

  12. Research and development of utilization technology of solar thermal energy system for industrial and other use. International joint technology development for solar energy utilization systems; Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Taiyo energy riyo system kokusai kyodo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for international joint technology development for solar energy utilization systems. The joint study with an Indonesian research institute takes a model of lumber drying plant for the design and feasibility study. All the parts it needs are technically available in Indonesia, except carbon fiber sheets and electronic devices for controlling purposes. The drying cost is higher than that of a plant which procures charge-free wood fuel, but lower than that of a plant which procures fuel at 30$/t. A cacao drying plant model is also studied. The feasibility study shows that the initial investment for the blowing-up model is much higher by 60% to 100% than that for the conventional plant. Its fuel cost is lower by 11% than that of residual oil but 27% higher than that of wood. 4 figs.

  13. Research and development of system to utilize photovoltaic energy. Study on large-scale PV power supply system; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyo energy kyokyu system no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on large-scale PV power supply systems in fiscal 1994. (1) On optimization of large-scale systems, the conceptual design of the model system was carried out which supposes a large-scale integrated PV power generation system in desert area. As a result, a pair of 250kW generation system was designed as minimum one consisting power unit. Its frame and construction method were designed considering weather conditions in the inland of China. (2) On optimization of large-scale transmission systems, as large-scale power transmission systems for PV power generation, the following were studied: AC aerial transmission, DC aerial transmission, superconducting transmission, hydrogen gas pipeline, and LH2 tanker transport. (3) On the influence of large-scale systems, it was estimated that emission control is expected by substituting PV power generation for coal fired power generation, the negative influence on natural environment cannot be supposed, and the favorable economic effect is expected as influence on social environment. 4 tabs.

  14. Hybrid utilization of solar energy. Part 2. Performance analyses of heating system with air hybrid collector; Taiyo energy no hybrid riyo ni kansuru kenkyu. 2. Kuki shunetsu hybrid collector wo mochiita danbo system no seino hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, M.; Okumiya, M. [Nagoya University, Nagoya (Japan)

    1996-10-27

    For the effective utilization of solar energy at houses, a heating system using an air hybrid collector (capable of simultaneously performing heat collection and photovoltaic power generation). As the specimen house, a wooden house of a total floor area of 120m{sup 2} was simulated. Collected air is fanned into a crushed stone heat accumulator (capable of storing one day`s collection) or into a living room. The output of solar cell arrays is put into a heat pump (capable of handling a maximum hourly load of 36,327kJ/h) via an inverter so as to drive the fan (corresponding to average insolation on the heat collecting plate of 10.7MJ/hm{sup 2} and heat collecting efficiency of 40%), and shortage in power if any is supplied from the system interconnection. A hybrid collector, as compared with the conventional air collector, is lower in thermal efficiency but the merit that it exhibits with respect to power generation is far greater than what is needed to counterbalance the demerit. When the hybrid system is in heating operation, there is an ideal heat cycle of collection, accumulation, and radiation when the load is light, but the balance between accumulation and radiation is disturbed when the load is heavy. 4 refs., 8 figs., 3 tabs.

  15. Effects on annual cost of solar/air-heat utilization system of carbon tax and interest rate for a residential house; Jutakuyo taiyo/taikinetsu riyo system no nenkan keihi ni oyobosu tansozei kinri no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Q.; Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1996-10-27

    In recent years, a system has been proposed that utilizes river heat, air-heat, exhaust heat from a cooler, etc., in addition to natural energy for the heat pump. With the introduction of such system, the amount of energy used and that of CO2 exhaust will be greatly reduced, but annual expenses will be increased as it stands. In order to improve the cost efficiency of the system, a proposal has been made for the introduction of an economic policy such as the carbon tax and a low interest financing system. With these matters in the background, the subject study predicts the production of solar cells in the future and, on the basis of this production, determines the price, conversion efficiency and equipment energy of solar cells in the future. Using these values and taking into consideration the introduction of the carbon tax and the low interest financing system, the optimum area was determined for solar cells and heat concentrators in a future residential solar/air-heat energy system. The carbon tax, being imposed on all CO2 discharges, had a large effect. Moreover, as the tax increased, annual expenses decreased for the solar/air-heat system. 3 refs., 6 figs.

  16. System optimization of solar hydrogen energy system based on hydrogen production cost. 2; Suiso seizo cost wo hyoka shihyo to shita taiyo suiso energy system no saiteki sekkei. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ota, D.; Yamagami, Y.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1996-10-27

    In this paper, to evaluate the hydrogen production cost per unit volume, system optimization of solar hydrogen energy system is discussed. Based on the simulation of the I-V characteristics of amorphous Si (a-Si) photovoltaic array, the working point between the array and hydrogen generator was determined. The cost ratio of each design point was calculated. The optimum design points were 500 W/m{sup 2} for the single crystal Si system, and 600 W/m{sup 2} for the a-Si system. When the rating capacity of design point was constant, almost constant cost ratio was obtained independent of the type of photovoltaic cells. It was found that the photovoltaic cells can be fabricated in about 15% lower cost at maximum. It was also found that the optimum design point sifts to the lower insolation site due to reduction of the photovoltaic cell cost. Since the annual hydrogen generation quantity does not depend on the type of photovoltaic cells under the constant rating capacity of design point, hydrogen can be produced in lower cost by using photovoltaic cell of lower cost. 5 refs., 10 figs., 5 tabs.

  17. Solid electrolyte membranes and the system to produce hydrogen from thermally decomposed water by solar energy; Taiyo energy riyo ni yoru mizu no chokusetsu netsubunkai kara no suiso seizoyo

    Energy Technology Data Exchange (ETDEWEB)

    Nigara, K.; Watanabe, K.; Kawamura, K.; Kawada, T.; Mizusaki, J.; Ishigame, M. [Tohoku University, Sendai (Japan). Research Institute for Scientific Measurements

    1996-10-27

    For conversion of solar heat to transportable energy, hydrogen production by direct thermal decomposition of water using concentrated high-temperature solar heat was studied. Water vapor is injected into the tubular target with high melting point and high oxygen permeability at high temperature while heating the target by concentrated solar heat over 2000K. Oxygen in decomposed gas is discharged through an oxygen permeable membrane to extract hydrogen. Solid electrolyte is used as one of the target materials. Oxygen gas in the high-oxygen partial pressure site changes into oxygen ion by accepting two electrons at the target surface, and returns to neutral oxygen gas in the low-oxygen partial pressure site by discharging two electrons at the surface after permeation through oxygen vacancy. In the case of n-type solid electrolyte, to obtain constant permeation of a large amount of oxygen, flow of a large amount of electrons is indispensable in the opposite direction to oxygen ion. Among [(ZrO2)(1-x)(CeO2)x](0.9)(CaO)(0.1), materials of 0.4-0.5 in x seems to be useful as the target material. 7 refs., 7 figs.

  18. Study on the optimal control of the ground thermal storage system in the greenhouse. Part 4; Onshitsu ni okeru taiyo energy dochu chikunetsu system ni okeru saiteki seigyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M. [Sanko Air Conditioning Co. Ltd., Osaka (Japan); Nakahara, N. [Kanagawa University, Yokohama (Japan)

    1996-10-27

    Three types of weight in both energy saving and optimum room temperature environment were changed to obtain the optimal control solution of the ground thermal storage system in a greenhouse. The relation diagram between the optimal solution of a performance function, and the state constraints and control function constraints was created in consideration of the energy term in a control function value area and the room temperature environment. As a result, the whole image of the performance function could be grasped in consideration of the energy term with inequality constraints and the room temperature environmental term in this study. The rate of a weighting factor in the performance function significantly influences the optimal solution. The influence on the optimal solution also changes when the optimal room temperature schedule differs. The influence that three types of rising algorithm exert on the convergence and converging speed was investigated. Superiority or inferiority occurs according to the space properties of a performance function. A zigzag method is most disadvantageous. The constraints can be converged to the optimal solution using an SUMT outer point method irrespective of the initial value. 6 refs., 6 figs., 4 tabs.

  19. Report on technological development of fuel cell power generation 1998. Research and development on polymer electrolyte fuel cell (technological development of generating system, development of atmospheric operation home power system of several kW class); 1998 nendo seika hokokusho. Nenryo denchi hatsuden gijutsu kaihatsu, kotai kobunshigata nenryo denchi no kenkyu kaihatsu, hatsuden system gijutsu kaihatsu, joatsu sadogata su kW kyu kateiyo dengen system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper explains the results of the research and development of polymer electrolyte fuel cells in fiscal 1998. For the purpose of developing a power source suitable for household use, a cell unit was developed in which performance was improved by reducing the thickness of a catalyst layer and increasing its ion-exchange capacity in the fuel cell body. There were prospects that low cost carbon materials and resin materials were usable in a carbon/resin composite plate. In the fuel supply technology, a serial two step type remover was developed concerning CO in a fuel using a selective oxidation process, which confirmed that the exit concentration was reducible to 10ppm or below even under a low S/C condition. With a reform ratio of 95% achieved with a 1kW class natural gas reformer, a thermal efficiency of 85% was attained by efficiently using combustion exhaust gas/reform gas sensible heat. In order to achieve a power generating efficiency of 35%, it is essential to improve reformer heat efficiency and cell performance, and also to produce steam for reforming by effectively utilizing reform gas/burner exhaust gas. The 1kW class module was verified in its stable operation and performance. (NEDO)

  20. 创意坊

    Institute of Scientific and Technical Information of China (English)

    杨迪

    2014-01-01

    瑞士艺术家Taiyo Onorato和Nico Krebs在他们设计的这一系列的相机中重回人类的石器时代——用龟壳、穿山甲壳和动物角,手工制作了各种不同的摄影器材,很是耐人寻味的设计。

  1. 重构后的景观

    Institute of Scientific and Technical Information of China (English)

    汤解; Taiyo Onorato(图); Nico Krebs(图)

    2008-01-01

    Taiyo Onorato和Nico Krebs,对现实中正在流行的结构和构成形态烂熟于心。经过他们重构后的景观,完成了对现实的一次戏谑性的模仿,这表现在,重新描述后的公路景观、户外的卧室、山上种的薯条、泥地里的汽车。

  2. FY 2000 report on the results of development of technology for commercializing high-efficiency fuel cell systems. Development of technology for commercializing high-efficiency fuel cell systems (Development of hydrogen separation type reforming technology); 2000 nendo kokoritsu nenryo denchi system jitsuyoka gijutsu kaihatsu seika hokokusho. Suiso bunrigata kaishitsu gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of new hydrogen production technology using natural gas as the feedstock, for promotion of commercializing high-efficiency fuel cell systems. The hydrogen separation type reforming system is composed of a reformer for producing and purifying hydrogen, and hydrogen suction unit for separating hydrogen produced. The reformer itself can produce pure hydrogen, because the hydrogen permeation membrane, provided in the reforming catalyst bed, can purify hydrogen selectively separated from the reformer gas. The remaining reformer off gas is burned with air to generate heat for the reforming reactions. This reforming process can produce as much hydrogen as does the conventional process at lower temperature, around 500 degrees C versus 800 degrees C needed by the conventional one, and hence more efficient, because hydrogen permeating through the membrane is discharged out of the system to allow the reactions to proceed without being limited by the chemical equilibrium. For development of membrane module manufacturing technology, the prototype membranes are prepared and their performances are evaluated. They are also incorporated in the test reformer to investigate the module performance and interactions between the membrane and reformer structure. Also described are improvement of efficiency of the hydrogen separation type reformer and development of the demonstration system. (NEDO)

  3. Fiscal 1997 report on the results of the international standardization R and D. R and D of the standardization of a method to test acceleration life of phosphorous acid fuel cells; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Rinsangata nenryo denchi no kasoku jumyo shiken hoho no hyojunka ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As for fuel cells, which are expected as a new clean energy, the R and D are being proceeded with in various fields of the world, but the standardization has not been made both in Japan and abroad. In Japan, the situation is that the information on technical terms, indication method, performance test method, and environment/safety test methods of the phosphorous acid fuel cell power generation is publicly spread. In relation to the international promotion of fuel cells to be predicted, it is necessary to internationally standardize cells themselves which are a key component of fuel cell power generation facilities. Phosphorous acid fuel cells are expected of the earliest commercialization of all, but the common test method to evaluate life characteristics of the cell stack has not been established yet. In the R and D, for the purpose of internationally standardizing test methods to evaluate life characteristics of the cell stack, a study on the acceleration life test method of phosphoric acid fuel cells was conducted in terms of the technical trend, data, standard, etc. A plan was prepared on general rules of the method to test acceleration life at the cell reaction part of the small cell, and activities also were started for setting up a technical committee for the fuel cell power system in President`s Advisory Committee on Future Technology. 29 figs., 20 tabs.

  4. Feasibility study of international cooperation in the research/development of a solar energy utilization system by the innovative solar thermochemical process; Kakushinteki solar netsukagaku process ni yoru taiyo energy riyo system no kaihatsu kenkyu ni kakawaru kokusai kyoryoku kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    At COP3 in 1997, an agreement was made to the innovative technical development/promotion by international cooperation, and the promotion of transfer of environmental technology to developing countries. Under the agreement, a feasibility study of international cooperation was made, and especially a study was conducted of the utilization/development of solar energy by the innovative solar thermochemical process. The main reason for global warming is emissions of a large amount of CO2 caused by the direct combustion of fossil fuels. Therefore, a CO2 recycle system taken up in the study enables a more substantial decline in CO2 emission (kg/kWh) per unit generation than the conventional thermal power system by composing solar methanol or solar dimethyl ether using fossil fuels including coal, water, CO2, etc. as raw materials and using solar energy as heat source, and by using this as fuel (solar fuel). CO2 can be reduced by 13% to 14% by substituting solar methanol or solar dimethyl ether produced from petroleum/methane equivalent-mol mixed raw materials for the equivalent mol coal and natural gas of the thermal power plant (CO2 recovery is not necessary). 34 refs., 47 figs., 34 tabs.

  5. Survey report on a regional new energy vision establishment in Ueki Township. Town of solar energy and energy conservation (vision to build the town by actively living and creating with environment); Uekimachi chiiki shin energy vision sakutei chosa hokokusho. Taiyo energy to sho energy no machi (kankyo to sekkyokuteki ni kyosei kyososuru machizukuri vision)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Discussions were given on the new energy vision at Ueki Township in Kumamoto Prefecture. The total energy demand in Ueki Township is 898 x 10{sup 7} Kcal. of which about 44% is accounted for by the transportation department, 34.7% by the industrial department, and 21% by the consumer department. The total available regional new energy amount is estimated to be 52.1 x 10{sup 6} kWh/year, which is consisted of stockbreeding wastes energy at 44.1%, solar energy power generation at 33.2% and solar heat utilization at 22.6%. Introduction of wind energy was judged impracticable. The new energy introduction plan calls for introduction of solar energy power generation for lighting and air conditioning of the diamond shaped nursery school, the Yamamoto nursery school, the Ueki Township office building, the multi-purpose sports center, the Ueki Hospital operated by the national health insurance, the multi-purpose health and welfare center, Yoshimatsu Sports Park, and Tahara Sports Park. A subsidy institution by the local government was discussed as the proliferation plan of solar energy power generation systems to be installed in individuals' houses and enterprises, with which introduction to residential houses of about 30% was targeted by 2010. (NEDO)

  6. Annual cycle solar energy utilization with seasonal storage. Part 7. Examination on design and control of the system partially recovering exhaust heat of heat pump; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 7. Bubuntekina hainetsu kaishu wo koryoshita baai no sekkei seigyoho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Okumiya, M. [Nagoya University, Nagoya (Japan)

    1996-10-27

    The capacity and performance of the existing system that recovers the overall heating and cooling exhaust heat completely into a seasonal storage tank and the system that discharges the exhaust heat slightly to the outside and recovers it partially were compared and investigated. The system uses a central single-duct discharge system as an air-conditioning system. A heat pump and a flat-plate solar collector installed on the roof of a building are used as the heat source. The seasonal storage tank in the ground just under the building is a cylindrical water tank of 5 m deep with the concrete used as body. The upper surface of a storage tank is heat-insulated by a stylo-platform of 200 mm, and the lower side surface by a stylo-platform of 100 mm. Calculation when the difference in temperature used in a seasonal storage tank is set to 35{degree}C and 25{degree}C was performed for the system that has two control methods. The overall exhaust heat recovery system is almost the same in energy performance as the partial exhaust heat recovery system. The partial exhaust heat recovery system is more advantageous on the economic side. 4 refs., 6 figs., 3 tabs.

  7. Fiscal 1993 international research cooperation project. Feasibility study of finding out the seeds of international joint research (technology for environmental preservation using biotechnology, technology for effective use unused hydrocarbon resource, technology of solid electrolyte fuel cells for high-efficient electric vehicles); 1993 nendo kokusai kenkyu kyoryoku jigyo. Kokusai kyodo kenkyu seeds hakkutsu no tame no FS chosa (biotechnology ni yoru kankyo taisaku gijutsu, miriyo tanka suiso shigen no yuko riyo gijutsu, kokoritsu denki jidosha no kotai denkaishitsu nenryo denchi gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is aimed at internationally cooperating in the R and D of industrial technology and improving industrial technology of Japan. For it, the following three technologies were investigated: 1) environmental preservation technology using biotechnology, 2) technology for effective use of unused hydrocarbon resource, 3) solid electrolyte fuel cell (SOFC) technology for high-efficient electric vehicles. In 1), bio-remediation is a choice as the result of trially using technologies for remediation of the environment polluted by pollutant, but it is not a technically completed one, but one which will be improved by trial and error. By the application of gene engineering, the use of gene recombination enables wide spread of decomposition genes. In 2), technical subjects were studied such as superheavy distillate, oil shale, coalhead methane and methane hydrate. In 3), designed were cylinder type and planar type SOFC of 850degC operation and 10kW output. Accumulation and weight of a total SOFC system are 81 liters and 100 kg in cylinder type and 136 liters and 200 kg in planar type. The vehicle can be equipped with the SOFC. 171 refs., 72 figs., 54 tabs.

  8. Amla (Emblica officinalis Gaertn.) attenuates age-related renal dysfunction by oxidative stress.

    Science.gov (United States)

    Yokozawa, Takako; Kim, Hyun Young; Kim, Hyun Ju; Tanaka, Takashi; Sugino, Hidetoshi; Okubo, Tsutomu; Chu, Djong-Chi; Juneja, Lekh Raj

    2007-09-19

    To investigate the effects of amla on renal dysfunction involved in oxidative stress during the aging process, we employed young (2 months old) and aged (13 months old) male rats and administered SunAmla (Taiyo Kagaku Co., Ltd., Japan) or an ethyl acetate (EtOAc) extract of amla, a polyphenol-rich fraction, at a dose of 40 or 10 mg/kg body weight/day for 100 days. The administration of SunAmla or EtOAc extract of amla reduced the elevated levels of serum creatinine and urea nitrogen in the aged rats. In addition, the tail arterial blood pressure was markedly elevated in aged control rats as compared with young rats, while the systolic blood pressure was significantly decreased by the administration of SunAmla or EtOAc extract of amla. Furthermore, the oral administration of SunAmla or EtOAc extract of amla significantly reduced thiobarbituric acid-reactive substance levels of serum, renal homogenate, and mitochondria in aged rats, suggesting that amla would ameliorate oxidative stress under aging. The increases of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression in the aorta of aging rats were also significantly suppressed by SunAmla extract or EtOAc extract of amla, respectively. Moreover, the elevated expression level of bax, a proapoptotic protein, was significantly decreased after oral administration of SunAmla or EtOAc extract of amla. However, the level of bcl-2, an antiapoptotic protein, did not show any difference among the groups. The expressions of renal nuclear factor-kappaB (NF-kappaB), inhibitory kappaB in cytoplasm, iNOS, and COX-2 protein levels were also increased with aging. However, SunAmla or EtOAc extract of amla reduced the iNOS and COX-2 expression levels by inhibiting NF-kappaB activation in the aged rats. These results indicate that amla would be a very useful antioxidant for the prevention of age-related renal disease.

  9. PREFACE: International & Interdisciplinary Workshop on Novel Phenomena in Integrated Complex Sciences: from Non-living to Living Systems

    Science.gov (United States)

    Yoshimura, Kazuyoshi; Ohta, Hiroto; Murase, Masatoshi; Nishimura, Kazuo

    2012-03-01

    (Institute for Complex and Adaptive Matter, USA), Yukawa Institute for Theoretical Physics (Kyoto University), Institute of Economic Research (Kyoto University) and Kyoto University GCOEs (Global Centers Of Excellence: Physics, Chemistry, and Economics). The workshop was also supported by Niki Glass Company Ltd., THAMWAY Corp., TAIYO NIPPON SANSO, and Quantum Design Japan. The Editors and the Organizing Committee, Masatoshi Murase Kyoto University, Japan Kazuo Nishimura Kyoto University, Japan Kazuyoshi Yoshimura Kyoto University, Japan: Conference Chairman and Chief Editor Hiroto Ohta Kyoto University, Tokyo University of A&T, Japan: Conference Secretary Conference Photograph, 14 October 2010 Conference Photograph Conference Poster Conference Poster

  10. PREFACE Preface

    Science.gov (United States)

    Takahashi, Migaku; Saito, Hitoshi; Yoshimura, Satoru; Takanashi, Koki; Sahashi, Masashi; Tsunoda, Masakiyo

    2011-01-01

    IgarashiHitachi, CRL, JapanK TajimaAkita Univ., Japan H ItoKansai Univ., JapanM TakedaJAEA, Japan H IwasakiToshiba, JapanY TakemuraYokohama Nat'l Univ., Japan H KatoYamagata Univ., JapanM TanakaUniv. of Tokyo, Japan M KonotoAIST, JapanA TsukamotoNihon Univ., Japan H KubotaAIST, JapanS YabukamiTohoku Gakuin Univ., Japan Treasury Committee of ISAMMA 2010 M SahashiTohoku Univ., Japan, ChairS SaitoTohoku Univ., Japan K IshiyamaTohoku Univ., JapanT TanakaEhime Univ., Japan K NakagawaNihon Univ., JapanN TezukaTohoku Univ., Japan T OgawaTohoku Univ., Japan Executive Committee of ISAMMA 2010 M TakahashiTohoku Univ., Japan, ChairS SaitoTohoku Univ., Japan K TakanashiTohoku Univ., Japan, Vice-chairY SakurabaTohoku Univ., Japan K MiyakeTohoku Univ., JapanT ShimaTohoku Gakuin Univ., Japan T OgawaTohoku Univ., JapanN TezukaTohoku Univ., Japan S OkamotoTohoku Univ., JapanM TsunodaTohoku Univ., Japan M OoganeTohoku Univ., Japan We are grateful to all the participants for their valuable contributions and active discussions. We gratefully acknowledge the financial support from 17 Japanese companies (ASAKA RIKEN CO., LTD, Fujikin Incorporated, Furukawa Electric Co., Ltd, Hitachi Metals, Ltd, IZUMI-TEC CO., LTD, Miwa Electric Industrial CO., LTD, MIWA MFG CO., LTD, NEOARK Corporation, Optima Corporation, PRESTO CO., LTD, SHOWA DENKO K.K., TAIYO YUDEN CO., LTD, TDK Corporation, TEIJIN LIMITED, Ube Material Industries, Ltd, ULVAC, Inc, and V TEX Corporation) and 7 foundations (SENDAI TOURISM & CONVENTION BUREAU, The Iwatani Naoji Foundation, Tohoku University Electro-Related Departments Global COE Program 'Center of Education and Research for Information Electronics Systems', The Murata Science Foundation, Research Foundation for Materials Science, Nippon Sheet Glass Foundation for Materials Science and Engineering, and Aoba Foundation for The Promotion of Engineering).