WorldWideScience

Sample records for chojumyogata futaishiki kaijo

  1. Response characteristics of a long life type floating offshore airport in waves. 3rd Report. Response due to short waves and an attempt of active inclination control; Chojumyogata futaishiki kaijo kuko no harochu oto tokusei. Tanhachoiki no oto oyobi shisei seigyo no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, T.; Ma, N.; Nishio, O.; Sato, N. [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1996-12-31

    Notice was given on response characteristics in a short wavelength range of a large floating structure for an offshore airport consisting of semi-submersible replaceable type units, and influence of unit lacking. An attempt was also made on performing restoration of inclination change during unit lacking and suppression of long-cycle variation in waves by using air pressure control. The result of a numerical calculation based on a three-dimensional singular point method may be summarized as follows: mass force added vertically on columns in short wavelength range differs in the outer edges and the central part; relatively uniform values are shown in the central part; and interactive interference is recognized in wave forces in the vertical direction, but the influence therefrom decreases as the wave length decreases. Calculations on vertical movements and bending moments in waves were performed by using a mode synthesizing method. The calculations used fluid force which was calculated based on the three-dimensional singular point method utilizing symmetry with respect to each condition for a complete model plus unit lacking and unit lacking plus inclination control. As a result of verifying the calculations by using an experiment, relatively good agreement was achieved in either case. A high-frequency vibration experiment made clear the characteristics of elastic response in the short-wave length range. 14 refs., 14 figs.

  2. Naissaarele kerkivad esimesed ärimeeste suvemajad / Anne Oja

    Index Scriptorium Estoniae

    Oja, Anne, 1970-

    2004-01-01

    Naissaarele ostavad kinnistuid ja ehitavad suvilaid tuntud kultuuritegelased ja ärimehed, kelle seas on dirigent Tõnu Kaljuste, ehitusärimees Andres Koger, Hawaii Expressi omanik Kaijo Kuusing ja Laevaomanike Liidu juht Rein Merisalu

  3. Design and model experiments on thruster assisted mooring system; Futaishiki kaiyo kozobutsu no thruster ni yoru choshuki doyo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Koterayama, W [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T [Kyushu University, Fukuoka (Japan)

    1997-12-31

    Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.

  4. Design and model experiments on thruster assisted mooring system; Futaishiki kaiyo kozobutsu no thruster ni yoru choshuki doyo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Kajiwara, H. [Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Computer Science and System Engineering; Hyakudome, T. [Kyushu University, Fukuoka (Japan)

    1996-12-31

    Described herein are dynamics and model experiments of the system in which positioning of a floating marine structure by mooring is combined with thruster-controlled positioning. Coefficients of dynamic forces acting on a floating structure model are determined experimentally and by the three-dimensional singularity distribution method, and the controller is designed by the PID, LQI and H{infinity} control theories. A model having a scale ratio of 1/100 was used for the experiments, where 2 thrusters were arranged in a diagonal line, one on the X-axis. It is found that the LQI and H{infinity} controllers of the thruster can control long-cycle rolling of the floating structure. They allow thruster control which is insensitive to wave cycle motion, and efficiently reduce positioning energy. The H{infinity} control regulates frequency characteristics of a closed loop more finely than the LQI control, and exhibits better controllability. 25 refs., 25 figs.

  5. Topographical effects on wave exciting forces on huge floating structure. 2; Ogata futaishiki kaiyo kozobutsu ni sayosuru haryoku ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Y [Hiroshima University, Hiroshima (Japan); Okusu, M [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1997-12-31

    A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.

  6. Topographical effects on wave exciting forces on huge floating structure. 2; Ogata futaishiki kaiyo kozobutsu ni sayosuru haryoku ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Y. [Hiroshima University, Hiroshima (Japan); Okusu, M. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-12-31

    A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.

  7. Experimental study on the response of very large floating structures (VLFS) in wave; Choogata futaishiki kaiyo kozobutsu no harochu oto ni kansuru jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ota, M; Ikegami, H; Yamaguchi, Y [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1997-10-01

    The elastic response of VLFS of 1200m long in wave was studied experimentally using a water tank and integral elastic model of 1/80 scale. As offshore airport, a ultra- thin box type floating structure of 5km long, 1km wide and several meter thick is used, and the effect of elasticity is not negligible for such a structure. The experiment used a water tank of 160m long, 30m wide and 3.1m deep. Supposing a water depth of 20m for real VLFSs, the experiment was carried out mainly in a local shallow water area prepared with a temporary bottom together with that in a deep water area. A simple mooring equipment with a linear spring equivalent to real VLFSs was used. The integral floating model was prepared by not mechanical but welded junction to obtain uniform elasticity. The response in wave showed a complicated 3-D behavior, offering useful data for verification of a behavior estimation method. The response was nearly equal between shallow and deep water areas at the same wave length, and the response amplitude in regular waves was equivalent to the significant amplitude in long and short crested irregular waves. 7 refs., 8 figs., 3 tabs.

  8. FY1995 study of aid system for the elderly and the disabled using metal hydride alloy actuators; 1995 nendo suiso kyuzo gokingata actuator ni yoru kaijo shien system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Purpose of the project is to develop a transfer aid system for the elderly who need assistance in moving from a bed or a chair. It can make up insufficiency of assistant persons and can help to comfortably move the elderly. It has the highest demand in rehabilitation centers or hospitals. We have been designing an actuator using a metal hydride alloy for more than ten years and have confirmed that the actuator is very useful for developing the transfer. Furthermore, we have designed the transfer from a view point of human interfaces. This research was done under the above background. 1. We studied a comfortable posture for the elderly at an initial phase of standing to design the optimal knee pad using a life-size model of a transfer. Especially, we managed to lighten the burden imposed on the elderly by referring electromyographic signals at lower limbs and ground reaction forces. 2. Since the tactile sensation of the bottom of elderly person's foot gets dull, we designed a foot stage to prevent the elderly from the dull. 3. We determined the optimal mixture rate of a metal hydride alloy and developed an elastic bellows in order to design the actuator used for the transfer aid. 4. We determined the optimal compliance to prevent the elderly from a mechanical shock and designed a mechanism so that the transfer aid can work well. 5. Based on the above results, we developed the transfer aid using the metal hydride actuator. It was ascertained that it can lift a elderly person with 80kg weight by using only 40g alloy. Furthermore, it is proved that the transfer is not heavy (about 20g weight), small, silent, and moves smoothly by a battery on the market. (NEDO)

  9. Feasibility design of a floating airport and estimation of environmental forces on it; Futaishiki kuko no sekkei to kankyo gairyoku no suitei ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y.; Tabeta, S.; Takei, Y. [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1996-12-31

    A rough design was performed on a floating airport. On this floating structure, environmental external force was estimated, mooring design was carried out, and discussions was given on the position retaining performance important for airport functions and behavior of the floating structure. The discussion was given on cases that the airport is surrounded and not surrounded by floating breakwaters. A floating structure which becomes super-large in size requires considerations on force due to sea level gradient as a result of a tide. Deriving flow condition changes and force acting on the floating structure simultaneously by using numerical calculations makes it possible to estimate current force given with considerations on influence of the flow conditions created by installing the floating airport. Estimation was carried out by using a zone dividing method on wave drifting force acting upon the floating airport. As a result, it was found that installing floating and permeating type breakwaters can reduce the wave drifting force acting on the floating airport. The wave drifting force working on the floating airport can be reduced by installing the floating and permeating type breakwaters to lower levels than when no such breakwaters are installed. The airport may be moored with less number of fenders when the fenders of the same type are used. 18 refs., 10 figs., 5 tabs.

  10. Experimental study on the estimation method of hydrodynamic force acting on floating offshore structures; Futaishiki kaiyo kozobutsu ni kuwawaru ryutairyoku no suiteiho ni kansuru jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, K; Kato, S [Ship Research Inst., Tokyo (Japan); Koterayama, W [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-10

    In the design of various floating offshore structures (FOS), the functionality, safety and amenity of FOSs were examined by estimating responses of FOSs to environmental external forces such as wave, wind and flow. In this paper, the estimation method of drag acting on the whole FOS was established by combining previous study results on hydrodynamic force acting on various bodies such as Reynolds number effect (RNE), 3-D effect (TDE) and interference effect (IE). This hydrodynamic force was also compared with that obtained from the experiment result on a FOS model for TLP to confirm the applicability of this estimation method. The estimation result on the drag coefficient in steady flow by considering RNE, TDE and IE well agreed with experimental one. The drag coefficient acting on FOSs in heaving could be estimated in practically sufficient accuracy by considering drag acting on not columns but only square columns. The estimation result on the drag coefficient acting on FOSs in surging by considering RNE, TDE and IE well agreed with experimental one. 12 refs., 10 figs., 1 tab.

  11. Fundamental study on PV system for floating water power device `Mighty Whale`; Okiai futaishiki haryoku sochi `Mighty Whale` eno taiyoko hatsuden sochi tosai no kihon kento

    Energy Technology Data Exchange (ETDEWEB)

    Washio, Y [Japan Marine Science and Technology Center, Kanagawa (Japan)

    1996-10-27

    Studied in this paper is the use of a photovoltaic power generation system in combination with a wave energy conversion system to cover the latter`s weak point that it is available but intermittently. An offshore floating wave power device Mighty Whale (MW) is described, which will have a wave energy absorbing air chamber in the front and an anti-rocking float that looks like a whale in the rear. The movement, up and down and back and forth, of the water surface in the air chamber due to incident waves turns the power generator turbine. Out of the space available on the MW, a 200m{sup 2} area has been specified as the place suitable for the installation of solar cells capable of a maximum output of 20kW, for which specification the elevation of the sun has been taken into account. Batteries will routinely be supplied with power in parallel from the wave activated and photovoltaic devices, the supply will be limited when the batteries are fully charged, and an auxiliary power generator will be run in case of shortage. Power that can be provided by a 20kW solar array was calculated using actual data of sunshine on the slope for each array orientation, and required battery capacity was calculated for each solar array orientation. Important items for consideration for the insurance of reliability on the ocean include measures against salt damage, detailed designing of wiring, and coordinated operation of photovoltaic and wave activated power generation systems. 3 refs., 6 figs., 5 tabs.

  12. Assessment of a Mega-Float on water quality and ecosystem in Tokyo bay; Choogata futaishiki kaiyo kozobutsu ga Tokyowan no suishitsu to seitaikei ni oyobosu eikyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kyozuka, Y.; Hu, C.; Hasemi, H. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hikai, A.

    1997-08-01

    The effect on the marine environment in the bay when a Mega-Float is installed in a bay was investigated. The physical process such as a residual flow (including tidal currents, water temperature, salt, density, and density currents), and the ecosystem model for which floating organic matter and plankton are handled were incorporated to develop a program for water quality calculation in a bay. The program was used for Tokyo Bay and compared with the conventional calculation result and the oceanograhpic observation result. Simultaneously, the effect on the Mega-Float was considered. On the flow in Tokyo Bay in summer, the calculation result that comparatively coincided with the observation value in a residual flow level was obtained. The horizontal distribution of COD comparatively coincides with the existing observation result. The influence that the Mega-Float exerts on the flow, water temperature, water quality, and ecosystem in the ambient sea area was little and local in the calculation scale (L {times} B {times} d = 6 km {times} 3 km {times} 2 m) of this time. However, the difference occurring due to the design position must also be investigated in future. 12 refs., 8 figs., 5 tabs.

  13. Four-year measurement of methane flux over a temperate forest with a relaxed eddy accumulation method

    Science.gov (United States)

    Sakabe, A.; Kosugi, Y.; Ueyama, M.; Hamotani, K.; Takahashi, K.; Iwata, H.; Itoh, M.

    2013-12-01

    Forests are generally assumed to be an atmospheric methane (CH4) sink (Le Mer and Roger, 2001). However, under Asian monsoon climate, forests are subject to wide spatiotemporal range in soil water status, where forest soils often became water-saturated condition heterogeneously. In such warm and humid conditions, forests may act as a CH4 source and/or sink with considerable spatiotemporal variations. Micrometeorological methods such as eddy covariance (EC) method continuously measure spatially-representative flux at a canopy scale without artificial disturbance. In this study, we measured CH4 fluxes over a temperate forest during four-year period using a CH4 analyzer based on tunable diode laser spectroscopy detection with a relaxed eddy accumulation (REA) method (Hamotani et al., 1996, 2001). We revealed the amplitude and seasonal variations of canopy-scale CH4 fluxes. The REA method is the attractive alternative to the EC method to measure trace-gas flux because it allows the use of analyzers with an optimal integration time. We also conducted continuous chamber measurements on forest floor to reveal spatial variations in soil CH4 fluxes and its controlling processes. The observations were made in an evergreen coniferous forest in central Japan. The site has a warm temperate monsoon climate with wet summer. Some wetlands were located in riparian zones along streams within the flux footprint area. For the REA method, the sonic anemometer (SAT-550, Kaijo) was mounted on top of the 29-m-tall tower and air was sampled from just below the sonic anemometer to reservoirs according to the direction of vertical wind velocity (w). After accumulating air for 30 minutes, the air in the reservoirs was pulled into a CO2/H2O gas analyzer (LI-840, Li-Cor) and a CH4 analyzer (FMA-200, Los Gatos Research). Before entering the analyzers, the sampled air was dried using a gas dryer (PD-50 T-48; Perma Pure Inc.). The REA flux is obtained from the difference in the mean concentrations

  14. Hydroelastic responses of pontoon type very large floating offshore structures. 2nd Report. Effect of the water depth and the drift forces; Pontoon gata choogata futaishiki kaiyo kozobutsu no harochu chosei oto ni kansuru kenkyu. 2. Senkai eikyo to hyoryuryoku

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, H; Miyajima, S [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Masuda, K; Ikoma, T [Nihon University, Tokyo (Japan). College of Science and Technology

    1997-12-31

    Steady-state drift force in regular waves is theoretically analyzed. It is also studied under combined external force experimentally using a two-dimensional water tank. The fluid forces are analyzed by the pressure distribution method based on the potential theory, in which the effects of water depth are taken into account to discuss the effects of elastic deformation of the floating structure on the drift characteristics of steady-state waves. The tests were carried out using a wave-making circulating water tank equipped with a wind duct to create wind, waves and tidal flow. Drift force under a combined external force by wind, wave and/or tidal flow cannot be accurately predicted by arithmetically adding these components. For predicting drift force by tidal flow, it is necessary to take into account drag force in current at the floating structure bottom as well as that in wind at the front face. Drift force by tidal flow is affected by shallowness of water, which should be taken into account for drag forces. The floating structure will be deformed along the wave face as its stiffness decreases, basically decreasing steady-state drift force. 9 refs., 14 figs.

  15. Hydroelastic responses of pontoon type very large floating offshore structures. 2nd Report. Effect of the water depth and the drift forces; Pontoon gata choogata futaishiki kaiyo kozobutsu no harochu chosei oto ni kansuru kenkyu. 2. Senkai eikyo to hyoryuryoku

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, H.; Miyajima, S. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Masuda, K.; Ikoma, T. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-12-31

    Steady-state drift force in regular waves is theoretically analyzed. It is also studied under combined external force experimentally using a two-dimensional water tank. The fluid forces are analyzed by the pressure distribution method based on the potential theory, in which the effects of water depth are taken into account to discuss the effects of elastic deformation of the floating structure on the drift characteristics of steady-state waves. The tests were carried out using a wave-making circulating water tank equipped with a wind duct to create wind, waves and tidal flow. Drift force under a combined external force by wind, wave and/or tidal flow cannot be accurately predicted by arithmetically adding these components. For predicting drift force by tidal flow, it is necessary to take into account drag force in current at the floating structure bottom as well as that in wind at the front face. Drift force by tidal flow is affected by shallowness of water, which should be taken into account for drag forces. The floating structure will be deformed along the wave face as its stiffness decreases, basically decreasing steady-state drift force. 9 refs., 14 figs.